Dissertação de Mestrado
Derived categories of coherent sheaves and integral functors
2021
—Informações chave
Autores:
Orientadores:
Publicado em
28/07/2021
Resumo
We provide an introduction to the theory of derived categories and derived functors. To achieve this, we begin by studying the triangulated structure on the homotopy category of complexes over an abelian category $\ mathscr{A}$, and define its derived category $D(\mathscr{A})$ by formally inverting quasi-isomorphisms. In this way, the derived category, although not abelian, inherits a canonical structure of a triangulated category, and derived functors are defined as initial objects in the category of extensions that preserve the distinguished triangles. We apply these constructions to the abelian category $\mathrm{Coh}_X$ of coherent sheaves on a smooth projective variety $X$, with the help of tools such as spectral sequences and $\delta$-functors. Finally, we introduce integral functors. Given two such varieties $X$ and $Y$, these are geometrically motivated functors $D^b(\mathrm{Coh}_X)\to D^b(\mathrm{Coh}_Y)$ between the derived categories, which are extensively used in present-day Algebraic Geometry and Mathematical Physics.
Detalhes da publicação
Autores da comunidade :
João Gabriel Santos Ruano
ist425693
Orientadores desta instituição:
Emílio Franco Gómez
ist428517
Domínio Científico (FOS)
mathematics - Matemática
Idioma da publicação (código ISO)
por - Português
Acesso à publicação:
Embargo levantado
Data do fim do embargo:
02/06/2022
Nome da instituição
Instituto Superior Técnico