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Resumo

Introduzem-se os conceitos de categoria derivada e de functores derivados entre categorias

derivadas. A categoria derivada D(A ) de uma categoria abeliana A é obtida a partir da

categoria de homotopia de complexos K(A ) através de localização formal em relação à classe de

quasi-isomorfismos. Apesar de D(A ) não ser abeliana, esta categoria possui uma classe de triângulos

singulares que desempenham um papel análogo às sequências curtas exatas. Os functores deriva-

dos são então definidos como objetos iniciais na categoria de extensões que preservam os triângulos

singulares. Utilizando sequências espectrais e functores δ, aplica-se este formalismo a uma categoria

abeliana concreta: a categoria de feixes coerentes CohX sobre uma variedade projetiva suave X. Por

fim, introduz-se o conceito de functor integral. Dadas duas variedades X e Y nas condições anteriores,

um functor integral é um certo tipo de functor D(CohX) → D(CohY ) entre as categorias derivadas de

X e Y . Estes functores são utilizados frequentemente tanto em Geometria Algébrica como em Física

Matemática devido à sua natureza geométrica.

Palavras-chave: Categorias Derivadas, Functores Derivados, Functores Integrais,

Transformadas de Fourier-Mukai, Álgebra Homológica.
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Abstract

We provide an introduction to the theory of derived categories and derived functors. To achieve

this, we begin by studying the triangulated structure on the homotopy category of complexes over an

abelian category A , and define its derived category D(A ) by formally inverting quasi-isomorphisms.

In this way, the derived category, although not abelian, inherits a canonical structure of a triangulated

category, and derived functors are defined as initial objects in the category of extensions that preserve

the distinguished triangles. We apply these constructions to the abelian category CohX of coherent

sheaves on a smooth projective variety X, with the help of tools such as spectral sequences and

δ-functors. Finally, we introduce integral functors. Given two such varieties X and Y , these are

geometrically motivated functors Db(CohX) → Db(CohY ) between the derived categories, which are

extensively used in present-day Algebraic Geometry and Mathematical Physics.

Keywords: Derived Categories, Derived Functors, Integral Functors, Fourier-Mukai Trans-

forms, Homological Algebra.
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Notation and necessary background

We assume familiarity with the basics of category theory. Usually, we denote an arbitrary category by

C (or D , . . .), and use the notation Obj(C ) and Mor(C ) for its class of objects and its class of morphisms

(which are also called arrows), respectively. We often write A ∈ C as a shorthand for A ∈ Obj(C ). Given

A,B ∈ Obj(C ), we denote the subclass of morphisms A→ B in C by MorC (A,B), or simply Mor(A,B)

if the category is understood from context. The composition operation on Mor(C ) is denoted by the

symbol ◦. A functor F from C to D is denoted by F : A → B, whereas a natural transformation η

between F and a second functor G : C → D is denoted, when possible, by a double arrow η : F ⇒ G.

Unless mentioned, all functors are assumed to be covariant. A contravariant functor F : C → D is also

described as a (covariant) functor F : C opp → D , where C opp denotes the opposite category of C . Full

generality on the definition of a category is often not required for our purposes. Consequently, we can

assume that any category C is, at least, locally small, i.e. MorC (A,B) is a set for any A,B ∈ Obj(C ).

Additive or abelian categories are usually denoted by A (or B, . . .). In this case, we use HomA (A,B)

for the set of morphisms A → B. The kernel of a morphism f : A → B is denoted by kerf : Kerf → A,

where the lowercase symbol is used for the morphism, and the uppercase symbol for the object. Similar

notation is used for the cokernel and for the (co)image. Equivalences between additive categories

A → B are assumed to be additive functors. For any A ∈ A , where A is at least additive, we use

the notation Hom(A,−) : A → Ab for the representable functor defined as follows: B 7→ Hom(A,B) on

objects; if f : B → C is an arrow in A , its image under this functor is the map Hom(A,B)→ Hom(A,C)

that sends ϕ ∈ Hom(A,B) to (f ◦ ϕ) ∈ Hom(A,C). There is an analogous contravariant relative,

Hom(−, A) : A opp → Ab.

We use the following notation for well known categories: Ab for the category of abelian groups, Rings

for the category of commutative rings, ModA for the category of modules over a commutative ring A,

and Veck for the category of vector spaces over a field k. In this text, we always assume rings to be

commutative and unital.

We assume familiarity with the core concepts of modern Algebraic Geometry, at the level of [Vak17],

Parts I-III. Throughout the text, we use Op(X) to denote the category of open subsets of a topological

space X. This is the category whose objects are open subsets U ⊆ X, and that has a single morphism

V → U (the inclusion) if and only if V ⊆ U . A presheaf on X with values in a concrete category C is

hence viewed as a functor F : Op(X)opp → C . If U ∈ Op(X), use two notations indiscriminately for

the sections over U : F (U) and Γ(U,F ). If V ⊆ U , the restriction morphism from U to V is denoted

resU,V . If f ∈ F (U), we often use the shorthand notation f |V for resU,V (f). The stalk of a sheaf F

at a point p is denoted Fp. The category of sheaves on X with values in C is denoted CX . Lastly, we

specify notation we use for certain sheaves on X: if i : U ↪→ X is the inclusion of an open subset, given

F ∈ CX , we denote its restriction sheaf by F |U , [Vak17, 2.2.8]; given G ∈ AbU , its extension by zero is

denoted i!(F ) ∈ AbX , [Vak17, 2.7.G]. The constant sheaf associated to G ∈ Ab is denoted G, [Vak17,

2.2.E], and the skyscraper at p ∈ X by the pushforward jp,∗(G) by under inclusion j : {p} ↪→ X, [Vak17,

2.2.9 and 2.2.12].
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Chapter 1

Introduction

1.1 Brief history and motivation

The birth of Category Theory is usually attributed to a 1945 article by Mac Lane and Eilenberg

entitled General theory of natural equivalences. Motivated by the relationship between a vector space

and its bidual, the authors introduced categories as auxiliary objects to define the concepts of functors

and natural transformations, [EM45]. This formalism was built on the premise that

Mathematical objects are determined by – and understood by – the network of relationships

they enjoy with all the other objects of their species. (B. Mazur in [Maz17])

A chain complex in an additive category is simply a sequence of objects and morphisms, with

the property that consecutive arrows should compose to the zero map. From such a complex, one

can retrieve data, namely objects called the (co)homology groups. These groups reflect interactions

between first neighbors in the sequence. Homological algebra is the study of the information retained

in these objects, and how this information can be translated into mathematical invariants. As an example,

given a topological space, one can build a chain complex of abelian groups that encodes the number of

"holes" of each dimension in the space, which is a topological invariant. This area of Mathematics also

provides "obstructions to carrying out various kinds of constructions; when the obstructions are zero,

the construction is possible", [Wei94]. Additionally, working with complexes and taking (co)homology

is sometimes the only palpable way of doing actual calculations in problems requiring a high level of

abstraction.

This field reached maturity in the mid-fifties with the publication of Cartan and Eilenberg’s Homologi-

cal Algebra, [CE56], where the authors formalized the central notions of exact sequences, injective and

projective resolutions, and gave a first definition of derived functors. Given a short exact sequence of,

say, modules over a commutative ring A,

0 M N K 0,

we can apply to it the representable functor HomA(P,−), to get a complex of abelian groups

0 HomA(P,M) HomA(P,N) HomA(P,N) 0

which may not be exact at HomA(P,N) anymore1. However, one can always find abelian groups

ExtiA(P,−) that augment the complex above to a sequence

1Hence, we say that HomA(P,−) is left exact.
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0 HomA(P,M) HomA(P,N) HomA(P,K)

Ext1
A(P,M) Ext1

A(P,N) Ext1
A(P,K)

Ext2
A(P,M) · · ·

which is now exact. The assignments ExtiA(P,−) : ModA → Ab were known at the time as right iterated

satellites2 of the functor HomA(P,−), and mathematicians knew how to compute them. Indeed, to

compute ExtiA(P,M), one takes an injective resolution of M , that is, an exact sequence

0 M I0 I1 I2 I3 . . . ,

where Ii are injective A-modules, removes the M term and applies HomA(P,−) to get the complex

0 HomA(P, I0) HomA(P, I1) HomA(P, I2) HomA(P, I3) . . . .

This way, ExtiA(P,M) is precisely the cohomology of this sequence at HomA(P, Ii). This definition

makes sense since any injective resolution of M is unique up to homotopy, and hence ExtiA(P,M)

is determined up to canonical isomorphism, while also being functorial in M . Cartan and Eilenberg

generalized this notion to arbitrary additive functors with source in the category of modules over a ring,

and also described a way to compose the iterated satellites via spectral sequences. Mac Lane wrote

in a book review in the Bulletin of the American Mathematical Society that "The authors’ approach in

this book can best be described in philosophical terms and as monistic: everything is unified.", [Lan56].

One year after the publication of [CE56], and without previous access to this celebrated book,

Grothendieck published the article Sur quelques points d’algèbre homologique in the Tôhoku Mathemat-

ical Journal. In Tôhoku, as it is nowadays called, Grothendieck drew a comparison between modules

over a ring and sheaves of abelian groups, and noted that one can develop their homology theory in a

similiar way. Furthermore, this article axiomatized abelian categories as we know them today, while

also introducing the concept of equivalence of categories.

In the early sixties, Grothendieck realized that the derived functors of Cartan and Eilenberg were too

limited to allow several manipulations which arise naturally in the context of general abelian categories.

In fact, he noted that one usually does not work with complexes that are defined up to homotopy, but

only that are defined up to a weaker equivalence, called quasi-isomorphism. One example of this

behaviour occurs in the abelian category of sheaves of abelian groups on a topological space. Indeed,

given such a sheaf F , one can construct a resolution by flasque sheaves. The issue is that two such

resolutions of F need not be homotopy equivalent, but only quasi-isomorphic. For Grothendieck, the

solution to this problem was to invent a new category, called the derived category.

A proper definition of the derived category of an abelian category first3 appeared in Verdier’s 1967

2These, of course, are now known as the right (higher ) derived functors of HomA(P,−).
3A fair share of the theory was first made publicly available in a book by Hartshorne, consisting of lecture notes from a seminar

given by Grothendieck at Harvard University in 1963/64, [Har66]. Verdier’s thesis was published later in the nineties in Société
Mathématique de France’s journal Astérisque, [Ver96].
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PhD thesis, titled appropriately Des catégories dérivées des catégories abéliennes, which he conducted

under the supervision of Grothendieck. There, we read the first sentence of the 250-page monograph:

"Nous proposons dans ce travail un formalisme de l’hyperhomologie". Motivated by the fact that two

quasi-isomorphic complexes give two isomorphic Cartan-Eilenberg satellite functors, he proposed to

build a theory of derived functors that would be invariant under quasi-isomorphism, and not only under

homotopy equivalence. To every abelian category A , one would take the classical category ComA of

complexes over A , and construct a new one, its derived category D(A ), by formally inverting quasi-

isomorphisms. Despite losing the structure of an abelian category during this procedure, D(A ) would

carry a structure of distinguished triangles, which would play the role of short exact sequences. Under

this formalism, given a left exact functor F : A → B between abelian categories, he defined its total

right derived functor RF : D∗(A ) → D∗(B) between the derived categories. Analogously to how an

exact functor of abelian categories sends short exact sequences to short exact sequences, RF would

send distinguished triangles in D∗(A ) to distinguished triangles in D∗(B).

Derived categories found important roles in several areas of Mathematics in the years to follow, but

especially in Algebraic Geometry. This field underwent a revolution during the mid 20th century, largely

due to Grothendieck’s overall of the subject building upon the concept of schemes. These objects were

defined in his eight-fascicle 1500-page long Éléments de géométrie algébrique, published from 1960

through 1967. The study of schemes is, to a large extent, the study of sheaves defined over them.

Being a (locally) ringed space, a scheme X carries a structure sheaf of rings OX , called its sheaf of

regular functions. Due to this inherent structure, there is a natural choice of sheaves to consider on

a scheme, sheaves of OX -modules. Among these type of sheaves, there are two important variants,

that of quasi-coherent sheaves, and that of coherent sheaves, which carry special relevance due to

their algebraic nature4. Given a scheme X, the category CohX of coherent sheaves on X is an abelian

category. A morphism of schemes f : X → Y , induces two useful functors f∗ : CohX → CohY and

f∗ : CohY → CohX between them, which, in most cases, are not exact. It is then natural to use the

formalism of derived functors to help solve the complications that non-exactness brings.

The use of Verdier’s derived functors has been ubiquitous in the study of coherent sheaves on (pro-

jective) varieties since the eighties. In [Muk81], Mukai used compositions of these functors to construct

geometrically motivated equivalences between the derived categories of dual abelian varieties. In the

article, the author draws a comparison between these type of equivalences and the ones provided by

classical Fourier transforms in L2-spaces. Any functor of the type Mukai introduced became thereafter

baptized an integral functor and, in the case of the functor being an equivalence, a Fourier-Mukai

transform. In the 2000s, Orlov showed that, under certain conditions, any equivalence of categories

between the derived categories of coherent sheaves on smooth projective varieties is in fact a Fourier-

Mukai transform (Corollary 5.2.9).

In the present day, Fourier-Mukai transforms are extensively used in Mathematical Physics as a pow-

erful source of dualities. An example of such a duality is the Homological Mirror Symmetry conjecture,

which relates the algebrogeometric properties of a variety with the symplectic geometry of its dual.
4As we will see in Chapter 4, the study of quasi-coherent sheaves on an affine scheme SpecA is equivalent to the study of

modules over the ring A.
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1.2 Objectives and thesis outline

Our goal is to provide an academic, yet concise, introduction to the derived category of coherent

sheaves on a regular projective scheme over a field. To our knowledge, there is no reference that intro-

duces this theory in a self-contained detailed manner, starting from the basics of triangulated categories

up until the definition of integral functors. Therefore, our discussion is not meant to be broad, but some-

what deep. Our writing style is, hopefully, pedagogical in nature. Our main references are [GM03],

[Wei94], [Ver96] and [Nee01] for homological algebra results, and [Vak17], [Har77] and [Sta21] for alge-

braic geometry ones. We remark that, due to the nature of the subject, most of the statements about

derived functors have a dual analogue. If the context makes it clear what the dual statements are, these

will not be explicitly written.

The text is divided into five chapters, the first one consisting of these introductory notes. Due to

guidelines of the university, there are also four complementary appendices.

The second chapter introduces the derived category of an abelian category, using the theory devel-

oped by Verdier and Grothendieck. We start by discussing the formal procedure of localizing a category,

and introduce what we mean by a triangulated category. The derived category is constructed by formally

inverting certain arrows in the homotopy category of complexes. Appendix A focuses on the interplay

between an abelian and a triangulated structure on a category. A particularly long proof is provided in

Appendix B.

Chapter 3 introduces derived functors. Our main theorem is an existence result for derived functors

(Theorem 3.1.10), which relies on the existence of classes of adapted objects to the functor we try to

derive. The classical derived functors of Cartan-Eilenberg are retrieved from the "total" ones in Sec-

tion 3.3. We introduce δ-functors in Subsection 3.3.1, which are an abstraction of the higher derived

functors. Shortly after, we show that injective objects are adapted to right derive any left exact functor,

and explore how the derived category of an abelian category A relates to the derived category of a full

abelian subcategory B ⊆ A . We end the chapter showing how the derived functor formalism handles

composition. We introduce spectral sequences in Appendix C and show how they were classically used

to compose higher derived functors.

The fourth chapter is devoted to recalling important results about abelian categories of sheaves

defined on a scheme. To be specific, given a scheme X, we deal with the categories of sheaves of

OX -modules, quasicoherent sheaves and coherent sheaves on X, and probe each category for classes

adapted to four half-exact functors: global sections, pushforward, tensor product and pullback. We take

the approach of requiring the least conditions on X as possible. However, some conditions are standard

to impose, namely Noetherianess (Section 4.2). Section 4.3 is arguably the most important part of this

text, which is where we construct the derived functors of the aforementioned half-exact functors. Most

of the statements in this chapter are given without proof, or referred to Appendix D.

Lastly, Chapter 5 is a brief introduction to integral functors and Fourier-Mukai transforms. We state

no more than the main definitions and most basic properties. Our last remark concerns how knowing

the category of coherent sheaves on a scheme X determines X up to isomorphism.
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Chapter 2

The derived category

2.1 Formal localization of categories

Let C be any category and S any subclass of morphisms in C . Motivated by the construction of

the localization of a ring with respect to a multiplicative subset, our goal is to define a category C [S−1],

together with a functor Q : C → C [S−1] which maps arrows in S to isomorphisms C [S−1]. Moreover, Q

should be initial with respect to functors out of C that have this property. In other words, Q should satisfy

the following universal property: for any category D with a functor F : C → D sending morphisms in

S ⊆ C to isomorphisms in D , there exists a unique morphism G : C [S−1] → D making the following

diagram commute:

C D

C [S−1]

F

Q
∃ ! G

. (2.1)

As a motivation for the definitions that will follow, consider the informal discussion below. Further

details can be found in [GM03, III.2].

A quiver (or directed multigraph) is a 4-tuple (V,E, s, t) consisting of two sets V (the set of vertices)

and E (the set of edges), and two morphisms s, t : E → V such that, for each edge e ∈ E, s(e) is the

initial vertex of e and t(e) is its target vertex, [Die16]. A standard way of defining a (small) category C

is by considering a directed multigraph Γ, equipped with an associative composition operation on edges

and with a distinguished self-loop for each vertex. The set of objects of C is then defined to be the vertex

set of Γ, a morphism in C is a directed edge of Γ, composition of morphisms is defined, and so are the

identity morphisms on each object, by using the self-loops.

With this in mind, an intuitive first approach to the construction of a pair (C [S−1], Q) as above is to

construct a new directed multigraph Γ′ from Γ, such that morphisms in S "become invertible". Informally,

we describe this procedure in the following steps:

• We define the vertex set of Γ′ to be the same as the vertex set of the quiver associated to C , Γ.

• We introduce variables xs, one for each morphism s ∈ S.

• Let E′ be the union of the edge set of Γ and a set consisting of a directed edge for each new

variable xs. The directed edge corresponding to xs has the same vertices as the edge of the

quiver of C corresponding to s, but with the opposite orientation.

• A path in E′ is a finite sequence of elements of E′ such that the target vertex of any edge coincides

with the source vertex of the next edge. Two paths in E′ that agree on their source and target
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vertices are said to be equivalent if they can be concatenated by repeated use of the following two

equivalences:

– Consecutive edges coming from Γ (i.e. corresponding to morphisms in C ) can be replaced

by their composition;

– A path X s−→ Y
xs−→ X (respectively, Y xs−→ X

s−→ Y ) can be replaced by the edge X idX−−→ X

(respectively, Y idY−−→ Y ).

• With these definitions, there is an associative composition operation on the set of paths in E′. We

define the set of edges of Γ′ to be the set of equivalence classes of paths in E′.

As expected, we define C [S−1] to be the category corresponding to the directed multigraph Γ′. There

is a natural functor Q : C → C [S−1] that sends each morphism X
f−→ Y in C to the equivalence class

of its corresponding path (of lenght 1) in Γ′. It can be shown that this pair (C [S−1], Q) has the universal

property described in diagram (2.1), [GM03, III.2]. However, this construction is cumbersome to work

with. For instance, note that, with this description of C [S−1], a morphism A → B is an equivalence

classes of paths of the form

A X1 X2 X3 X4 . . . Xk B
f1 xs1 f2 xs2 fk

. (2.2)

In particular, given any two morphisms A → B in C [S−1], there is no guarantee that they can be

represented by paths of the same length. This poses an obstacle if we want to do addition on morphisms.

More precisely, if C has the structure of an additive category, C [S−1] may not inherit this structure.

Consider the path (2.2). If are able to somehow "shift" all the edges corresponding to morphisms

in S to the left or to the right of the path, then we can represent this (and hence all) morphism(s) in

the localization by equivalence classes of paths of length two. This discussion motivates the following

definition.

Definition 2.1.1. Let C be any category and S a subclass of morphisms of C . We say that S is a

localizing class if the following axioms hold:

A1) S is multiplicatively closed, i.e. for every A ∈ C , idA ∈ S, and if f, g ∈ S are two composable

morphisms, their composition is also in S.

A2) Given an arbitrary morphism X → Y (in C ) and a morphism Z → Y in S, there exists an object

T ∈ C , together with morphisms T 99K Z (in C ) and T 99K X in S, such that the diagram

T Z

X Y

S3 ∈S

commutes.

A3) The dual statement of A2) also holds, i.e. any solid diagram
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Y X

Z T

S3 ∈S

can be completed to a commutative square by the dashed arrows.

A4) Given two morphisms f, g : X → Y , there exists a morphism Y
s∈S−−→ T such that s ◦ f = s ◦ g if

and only if there exists a morphism U
s′∈S−−−→ X such that f ◦ s′ = g ◦ s′.

Axiom A2 (respectively, A3) above is known as the right (respectively, left) Ore condition. Note

that, together with axiom A1, they enable one to "shift morphisms in S" to the left (respectively, right)

in the description of C [S−1] discussed above. In fact, suppose we have a morphism X → Z in C [S−1]

given by the equivalence class of a path X f−→ Y
xs−→ Z. By axiom A2, we can find morphisms g : T → Z

in C and s′ : T → X in S such that s ◦ g = f ◦ s′. But then, as edges in C [S−1],

[
X Y Z

f xs

]
∼
[
X T X Y Z

xs′ s′ f xs

]
∼

∼
[
X T Z Y Z

xs′ g s xs

]
∼
[
X T Z

xs′ g
]
,

proving the claim. The next definition follows naturally from this discussion.

Definition/Proposition 2.1.2. Let C be a category and S ⊆ Mor(C ) a localizing class. We define the

localization of C with respect to S as the category C [S−1] such that:

i) Obj(C [S−1]) = Obj(C ).

ii) Morphisms A → B are equivalence classes of roof diagrams from A to B. More precisely, up to

equivalence, a morphism A→ B is a pair (a roof ) (s : C → A, f : C → B),

C

A B

S3s f .

We denote the equivalence class of this pair by fs−1, which is indicative of the fact that going from

A to B is equal to going through the "inverse" of s and then through f . Two roofs from A to B,

(s1, f) and (s2, g), are equivalent if we can complete the solid diagram

C ′′

C C ′

A B

h

(s
1
◦h

)∈
S

u

s 1
∈S

fs2∈
S

g

7



by the dashed arrows (which are in C ) so that the two squares commute (i.e. s1 ◦ h = s2 ◦ u and

f ◦ h = g ◦ u) and s1 ◦ h ∈ S.

iii) Given two morphisms A
fs−1

1−−−→ B and B
gs−1

2−−−→ C, the composition morphism is given in the follow-

ing way: fill in the solid diagram

Z

X Y

A B C

S3s3 h

S3s1

f

S3s2
g

by completing the solid diagram X
f−→ B

s2←− Y to the shown commutative square (which is always

possible, by axiom A2 of Definition 2.1.1). The composition of the equivalence classes is defined

as the equivalence class of the roof (s1 ◦ s3, g ◦ h).

iv) The identity morphism A→ A is defined as the equivalence class of the roof (idA, idA):

A

A A

idA idA .

Proof. There are several things to check here, namely: the relation on roofs defined above is an equiv-

alence relation; the composition of equivalence classes is well-defined (i.e. does not depend on the

chosen completion); composition is associative; the identity morphisms satisfy the required axioms. The

proof can be found in [GM03, III.8].

Remark 2.1.3. A few comments are to be made regarding Definition 2.1.1 and Definition/Proposition

2.1.2. If C is a category and S is a subclass of morphisms of C , we say that S is a right Ore system if

axioms A1, A2 and the necessary direction of axiom A4 of Definition 2.1.1 hold. Dually, S is called a left

Ore system if axioms A1, A3 and the sufficient condition of axiom A4 of said definition hold. In this way,

S is a localizing class (as in Definition 2.1.1) if it is both a left and right Ore system.

A detailed look at the proof of Definition/Proposition 2.1.2 shows that, in order to define what we

called "the localization of C with respect to S", one actually just needs that S is a right Ore system.

Consequently, we call C [S−1] a right calculus of fractions, since morphisms are (equivalence classes

of) spans or left S-roofs,

•

• •

S3 .

Denote this construction temporarily by C [S−1]right. We will show in Proposition 2.1.5 that C [S−1]right

comes equipped with a functor Qright : C → C [S−1]right satisfying the universal property of diagram

(2.1).
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Dually, if we start with a left Ore system S, we built its left calculus of fractions C [S−1]left. Its mor-

phisms are now (equivalence classes of) cospans or right S-roofs,

• •

•
∈S .

It can be shown that C [S−1]left is also equipped with a functor Qleft : C → C [S−1]left that satisfies the

same universal property as Qright. Therefore, if S is a localizing class, C [S−1]right and C [S−1]left are

canonically isomorphic, and calling these objects the localization C [S−1] makes sense. Further details

can be found in [Sta21, Tag 04VB].

The natural question to ask now is: why are we only interested in localizing classes and two-sided

calculus of fractions? The answer to this question will not be clear until Section 3.2, where we use the

localization formalism to construct left and right derived functors. Indeed, if F : C → D is a functor, the

construction of its "left derived" (respectively, "right derived") counterpart (whatever this means at the

moment) will require C to have a right (respectively, left) calculus of fractions. Since we are interested

in constructing both "left and right counterparts", we want C to have a localizing class.

The next proposition establishes some useful properties of this construction, namely the possibility

of finding a "common denominator" of a finite collection of morphisms in the localization.

Proposition 2.1.4. Let C , S and C [S−1] be as in Definition/Proposition 2.1.2.

a) Cancellation laws:

i) If f : X → B is a morphism in C , s : X → A is a map in S, and t : X ′ → X is a map in C such

that s ◦ t ∈ S, then (f ◦ t)(s ◦ t)−1 = fs−1,

X ′

X X ′

A B

t idX′

s

fs◦t

f◦t

.

ii) If f : X → B and g : B → C are morphisms in C , and s : X → A is a morphism in S, then

(gid−1
B ) ◦ (fs−1) = (g ◦ f)s−1,

X

X B

A B C

idX f

s

f

idB
g

.

iii) If f : X → C is a morphism in C , and s : B → A and t : X → B are morphisms in S, then

(ft−1) ◦ (idBs
−1) = f(s ◦ t)−1,

9
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X

B X

A B C

t idX

s

idB

t
f

.

b) Finding common denominators: if {Y
fis
−1
i−−−→ Xi} is a finite collection of morphisms of C [S−1] with

the same source, there exists a finite collection of morphisms {gi : Y ′ → Xi} of C and a morphism

s : Y ′ → Y of S such that, for each i, fis−1
i = gis

−1,

Y ′

Yi

Y Xi

s gi

si fi

.

c) Equality of morphisms with same denominator: if f, g : Y ′ → Y are two morphisms of C and

s : X → Y ′ is a morphism of S, then fs−1 = gs−1 in C [S−1] if and only if there exists a morphism

a : Y ′′ → Y ′ in C such that s ◦ a ∈ S and f ◦ a = g ◦ a.

Proof. The details of the proofs of assertions a) i)-iii) are omitted (the diagrams are essentially the proof).

For b), suppose that si : Y → Yi and fi : Yi → Y . Then, it suffices to prove that there exist s : Y ′ → Y

in S and ai : Y ′ → Yi such that s = si ◦ ai:

Y ′

Yi Y ′

Y Xi

ai idY ′

si

fis

gi

,

where we set gi := fi ◦ ai. Let us show that we can do this when we have two roofs f1s
−1
1 and f2s

−1
2 .

We can fill the square

Y ′ Y1

Y2 Y

a1

S3t1 s1

s2

,

and so, we take s = s2 ◦ t1 ∈ S and a2 = t1. Now, it is clear that we can use this procedure to reduce the

case of finding a common denominator of n morphisms to the case of finding a common denominator of

n− 1 morphisms, so we are done by induction.

For c), the condition is clearly sufficient since fs−1 = (f ◦ a)(a ◦ s)−1 = (g ◦ a)(a ◦ s)−1 = gs−1, by

part a) i). Conversely, suppose fs−1 = gs−1, i.e. there exist h1 : Y ′′′ → Y ′ and h2 : Y ′′′ → Y ′ such that

s ◦ h1 = s ◦ h2 ∈ S and f ◦ h1 = g ◦ h2, as in the following diagram:
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Y ′′

Y ′′′

Y ′ Y ′

X Y

s′

h1 h2

s

fs

g

.

By axiom A4 of Definition 2.1.1, there exists s′ : Y ′′ → Y ′′′ in S such that h1 ◦ s′ = h2 ◦ s′. Then, define

a = h1 ◦ s′ = h2 ◦ s′.

Finally, the next proposition validates that our construction of C [S−1] has the universal property

mentioned at the begining of this section.

Proposition 2.1.5. Let C , S and C [S−1] be as in Definition/Proposition 2.1.2. There is a functor

Q : C → C [S−1] defined by Q(X) = X for every X ∈ Obj(C ), and Q(f : X → Y ) = f id−1
X . This

functor sends every morphism in S to an isomorphism in C [S−1]. Moreover, Q is initial with respect to

this property, as in diagram (2.1).

Proof. Q behaves well with respect to composition by Proposition 2.1.4 a) ii) and

Q(idX) = idX id−1
X =: id

C [S−1]
X . If s : X → Y is a morphism in S then it is easy to check that sid−1

X has in-

verse idXs
−1. Then, if G exists as in diagram (2.1), G(fs−1) = G((f id−1

X ) ◦ (idXs
−1)) =

= G(Q(f)) ◦G(Q(s))−1 = F (f) ◦ F (s)−1. Therefore, we define G by this expression.

Having already established that it is possible to find common denominators, if we have an addi-

tion operation on the morphisms in C , we can extend it to an addition operation on morphisms in the

localization C [S−1]. This is the content of the next proposition.

Proposition 2.1.6. Let C be an additive category and S ⊆ Mor(C ) a localizing class. Then, there is a

canonical structure of an additive category on C [S−1].

i) For every A,B ∈ Obj(C ), MorC [S−1](A,B) is an abelian group for the operation defined as follows:

we define the sum of two morphisms A
f1s
−1
1−−−−→ B and A

f2s
−1
2−−−−→ B by first finding a common

denominator using Proposition 2.1.4 b); if f1s
−1
1 = g1s

−1 and f2s
−1
2 = g2s

−1 (for s ∈ S), we define

the sum to be (g1 + g2)s−1:

C

C1

A B

s g1

s1 f1

+

C

C2

A B

s g2

s2 f2

=

C

A B

s g1+g2 .

This definition does not depend on the choice of C, g1, g2 and s. Moreover, the composition

operation of C [S−1] is distributive over this addition operation.
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ii) The zero object of MorC [S−1](A,B) is the zero object of C .

iii) The product of two objectsA,B ∈ Obj(C ) in MorC [S−1](A,B) is the triple (A×B, p1id−1
A×B , p2id−1

A×B),

where A × B is the product in C and p1 : A×B → A, p2 : A×B → B are the natural projection

morphisms in C .

In addition, the natural functor Q : C → C [S−1] of Proposition 2.1.5 is additive.

Proof. We leave (almost all) the details of the proof omitted – see [Mil21, pgs. 26-35]. Note that the

identity element for the sum in MorC [S−1](A,B) is the morphism

A

A B

idA 0 =
Prop 2.1.4 a) i)

C

A B

s 0 for any s ∈ S.

Remark 2.1.7. Notice that if S is a localizing class of an additive category C , axiom A4 of Definition

2.1.1 can be replaced by:

A4)’ Given f : X → Y , ∃ Y s∈S−−→ T such that s ◦ f = 0 if and only if ∃ U s′∈S−−−→ X such that f ◦ s′ = 0.

We finish this section with the proposition below, a result that will be used extensively throughout this

text.

Proposition 2.1.8. Let C be a category and S a localizing class in C . If B is a full subcategory of C ,

consider the class SB = S ∩Mor(B). Suppose that SB is a localizing class in B. Then, the natural

functor B[S−1
B ]→ C [S−1] is fully faithful if one of following conditions hold: given any X ∈ Obj(C ), and

i) any morphism X → B in S with B ∈ Obj(B), there exists B′ ∈ Obj(B) and a morphism B′ → X,

such that the composition B′ → X → B is in S;

ii) any morphism B → X in S with B ∈ Obj(B), there exists B′ ∈ Obj(B) and a morphism X → B′,

such that the composition B → X → B′ is in S.

Proof. Condition i) is adapted the description of the localizations as right calculi of fractions, while condi-

tion ii) is adapted to description as left calculi of fractions (Remark 2.1.3). We prove the claim assuming

condition i).

In order to prove faithfulness, suppose B1
∈S←−− B → B2 and B1

∈S←−− B′ → B2 are two morphisms in

B[S−1
B ] that are equivalent in C [S−1]. Then, there exists X ∈ Obj(C ) and arrows X → B and X → B′

such that the composition X → B → B1 is in S. By hypothesis, there exists Obj(B) 3 B′′ → X as in

the diagram

B′′

X

B B′

B1 B2

S3

S3

∈S

,
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and the morphisms are equivalent in B[S−1
B ]. Regarding fullness, suppose B1

s∈S←−− X
f−→ B2 is a

morphism in C [S−1] with source and target in B. Then there exists B′ ∈ Obj(B) and B′
t−→ X, and

(f ◦ t)(s ◦ t)−1 = fs−1 by Proposition 2.1.4 a) i).

2.2 Triangulated categories

Definition 2.2.1. Let (D , T ) be a pair consisting of an additive category D and an additive automor-

phism T : D → D . A triangle of the pair (D , T ) is a sextuplet (A,B,C, f, g, h), where A,B,C ∈ D ,

f ∈ Hom(A,B), g ∈ Hom(B,C) and h ∈ Hom(C, T (A)), which we denote by

A B C T (A).
f g h

A morphism of triangles (A,B,C, f, g, h) → (D,E, F, x, y, z) is given by morphisms A
α−→ D,

B
β−→ E and C γ−→ F , such that the diagram

A B C T (A)

D E F T (D)

α

f

β

g

γ

h

T (α)

x y z

is commutative. This morphism is an isomorphism if α, β and γ are isomorphisms.

Definition 2.2.2. Let D be an additive category. The structure of a triangulated category on D is the

data of an additive automorphism T : D → D , called the shift functor, and a class T of triangles of the

pair (D , T ) that are required to satisfy the following axioms:

A1) i) Any triangle of the form A
idA−−→ A→ 0→ T (A) is in T .

ii) Any triangle isomorphic to a triangle in T is in T itself.

iii) For each morphism f : A→ B there exists a triangle in T of the form

A B C T (A)
f

.

A2) The triangle A f−→ B
g−→ C

h−→ T (A) is in T if and only if the triangle B g−→ C
h−→ T (A)

−T (f)−−−−→ T (B)

is in T .

A3) Every solid diagram

A B C T (A)

D E F T (D)

α β γ T (α)

whose rows are triangles in T can be completed (not necessarily uniquely) by γ to a morphism of

triangles.
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A4) Octahedron axiom: let f : A→ B and g : B → C be two morphisms; using A1 iii) complete f , g ◦ f

and g to triangles in T :

A B C ′ T (A),

A C B′ T (A),

B C A′ T (B).

f u t

g◦f v l

g m n

Then, we require the existence of morphisms α : C ′ → B′ and β : B′ → A′ fitting into a triangle

C ′ B′ A′ T (C ′),
α β T (u)◦n

which is in T . Moreover, these morphisms are required to satisfy certain commutativity conditions,

which are best explained by observing the following diagram:

B′

C ′ A′

A C

B

β

t

α

n

T (u)◦n

f

m

g

u

g◦f

l v

.

Note that we write the maps t, l, n and T (u) ◦ n as if their targets would be A,A,B and C ′, re-

spectively. This diagram is constructed by first filling in the bottom cap of the octahedron – its left

face is the the triangle induced by f , its right face is the the triangle induced by g, the front face is

completed by commutativity, as is the rear face (if u would be replaced by T (u), of course). Finally,

the front face of the upper cap is the triangle induced by the composition g ◦ f . Then, this axiom

requires that arrows α and β exist so that the rear face of the upper cap is a triangle in T , and,

moreover, they should form commutative triangles in all the other faces that contain them.

A triangle in the class T is said to be a distinguished triangle.

Remark 2.2.3. Axiom A4 was included in the definition above for completeness. However, we will never

use this axiom explicitly when dealing with derived categories and derived functors. For that reason,

when we need to prove that a class of triangles is distinguished, we will only deal with axioms A1-A3,

referring the interested reader to the literature for the octahedron axiom.

These axioms supply a lot of information. For example, starting with the distinguished triangle

A
idA−−→ A→ 0→ T (A), we have that 0→ A

idA−−→ A→ 0 is also distinguished by A2.
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By the same axiom, it is also easy to show that, given any distinguished triangleA f−→ B
g−→ C

h−→ T (A),

we can include it into a helix of morphisms

T−1(A) A T (A) T 2(A)

T−2(C) T−1(C) C T (C) . . .

. . . T−1(B) B T (B) T 2(B)

h

g

f

,

such that any three consecutive morphisms form a distinguished triangle. With these observations, it is

easy to draw a comparison with chain complexes. In fact, consider the next proposition.

Proposition 2.2.4. Let (D , T ) be a triangulated category and A
f−→ B

g−→ C
h−→ T (A) a distinguished

triangle. Then g ◦ f = 0. Consequently, the composition of any two consecutive morphisms in a distin-

guished triangle is trivial.

Proof. Consider the morphism of distinguished triangles

A A 0 T (A)

A B C T (A)

idA

idA

f idT (A)

f g h

,

whose existence is guaranteed by axioms A1 i) and A3 of Definition 2.2.2. The more general claim is

obtained by "rotating" the triangle to the left or to the right (i.e. using axiom A2).

We can go one step further and equip our triangulated category D with a functor to an abelian

category, enabling us to define a notion of cohomology in D , under certain conditions.

Definition 2.2.5. Let (D , T ) be a triangulated category and A an abelian category. An additive (covari-

ant1) functor F : D → A is called a cohomological functor if, for every distinguished triangle

A B C T (A)
f g h

in D , the complex

F (A) F (B) F (C)
F (f) F (g)

is exact in A .

Corollary 2.2.6. If F : D → A is a cohomological functor, then any distinguished triangle

A B C T (A)
f g h

1The definition of a cohomological contravariant functor is the expected one.
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in D gives rise to a long exact sequence

· · · F (T−1(C))

F (A) F (B) F (C)

F (T (A)) · · · .

−F (T−1(h))

F (f) F (g)

−F (T (f))

Example 2.2.7. Let (D , T ) be a triangulated category and D ∈ D any object. Then the additive functors

Hom(D,−) : D → Ab and Hom(−, D) : D → Ab are cohomological.

Let us prove the case of Hom(D,−). Suppose A f−→ B
g−→ C

h−→ T (A) is distinguished. By Proposition

2.2.4, we just need to show that Ker (g ◦ −) ⊆ Im (f ◦ −). Let φ : D → B be such that g◦φ = 0. Consider

the distinguished triangles D → 0 → T (D)
−idT (D)−−−−−→ T (D) (axioms A1-i and A2 of Definition 2.2.2) and

B
g−→ C

h−→ T (A)
−T (f)−−−−→ T (B) (axiom A2). Then, by axiom A3, we can fill in the solid diagram:

D 0 T (D) T (D)

B C T (A) T (B)

φ ψ

−idT (D)

T (φ)

g h −T (f)

,

and so T (φ) = T (f) ◦ ψ =⇒ φ = f ◦ T−1(ψ).

The next proposition consolidates several useful properties of the set of distinguished triangles.

Proposition 2.2.8. Let (D , T ) be a triangulated category.

i) Given a morphism of distinguished triangles

A B C T (A)

A′ B′ C ′ T (A′)

f g h T (f) ,

if two of the morphisms f, g and h are isomorphisms, then so is the third.

ii) If A f−→ B
g−→ C

h−→ T (A) is a distinguished triangle, then f is an isomorphism if and only if C ∼= 0.

iii) Let f : A→ B be a morphism in D . Complete f to distinguished triangles

A B C T (A)

A B C ′ T (A)

f g h

f g′ h′

using axiom A1 i) of Definition 2.2.2. Then C ∼= C ′.

Proof. Assertions ii) and iii) follow easily from i). For i), it suffices to prove that if f and g are iso-

morphisms, so is h (since we can just rotate the triangle). Since the functor Hom(C ′,−) : D → Ab is

cohomological (Example 2.2.7), we have a commutative diagram of abelian groups with exact rows
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Hom(C ′, A) Hom(C ′, B) Hom(C ′, C) Hom(C ′, T (A)) Hom(C ′, T (B))

Hom(C ′, A′) Hom(C ′, B′) Hom(C ′, C ′) Hom(C ′, T (A′)) Hom(C ′, T (B′))

f◦− g◦− h◦− T (f)◦− T (g)◦−

and h◦− is an isomorphism by the 5-lemma. Therefore, there exists a unique morphism φ ∈ Hom(C ′, C)

such that h ◦ φ = idC′ . We get a left inverse by a similar argument applied to the long exact sequence

associated to the cohomological functor Hom(−, C) : D → Ab.

Remark 2.2.9. It follows from assertion iii) of the proposition above and from axiom A2 of Definition 2.2.2

that any distinguished triangle is determined (up to isomorphism) by any one of its maps. For example,

the data of the octahedron axiom is determined (up to isomorphism) by the two maps f : A → B and

g : B → C, [Wei94, Rem. 10.2.2, pag. 375]. However, a distinguished triangle is not determined up

to unique isomorphism, namely because we don’t require the dashed morphism in axiom A3 of Defi-

nition 2.2.2 to be unique (we will see a concrete example of this non-uniqueness in Example 2.3.25).

For reasons that will become apparent in Subsection 2.3.2, an object C fitting into a distinguished tri-

angle A → B → C → T (A) is usually called a cone of A → B. Under this terminology, the fact that

distinguished triangles are not determined up to unique isomorphism is often stated in the literature

as saying that "the choice of cones is not functorial". This statement can be understood as follows. If

(D , T ) is a triangulated category, given a morphism f : A → B, we always have a "cone" C, by axiom

A2 of Definition 2.2.2. We consider the category of morphisms Mor(D), whose objects are morphisms

in D , and whose morphisms are commuting squares of morphisms. If we try to define an assignment

cone (−) : Mor(D) → D , which sends an object of Mor(D) (such as f ) to a "cone" (such as C), and

sends a morphism

A B

D E

f

g

to a morphism cone (f) → cone (g) in the conditions of axiom A3 of Definition 2.2.2, this assignment

will not define a functor in general, as we can not expect it to respect composition, [Fri14, pag. 12].

More details can be found in [Ste]. The choice of words "not functorial" is not the best since, for the

triangulated categories we will consider, we actually can define a "cone" functor (Lemma 2.3.22). What

we will still not have is that providing f determines cone (f) up to unique isomorphism.

After verifying that any distinguished triangle gives rise to a double infinite complex, a fitting question

one may ask is if it is possible to endow an abelian category with the structure of triangulated category

and, conversely, in what situation is a triangulated category abelian. Consider the following definition.

Definition 2.2.10 ([GM03, III.3]). Let A be an abelian category. We say that A is semisimple if, for

any short exact sequence 0→ A
f−→ B

g−→ C → 0, the following three equivalent conditions hold:

i) There exists a right-inverse for the epimorphism g (which we call a section).
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ii) There exists a left-inverse for the monomorphism f (which we call a retraction).

iii) The short exact sequence splits, i.e. is isomorphic to the short exact sequence

0 A A⊕ C C 0
( 1

0 ) ( 0 1 )
.

Under this terminology, the next proposition makes the connection between triangulated and abelian

categories precise.

Proposition 2.2.11. Let C be an additive category.

i) If C is triangulated (with automorphism T ) and abelian, then C is semisimple. Moreover, any

distinguished triangle is isomorphic to a triangle of the form

A B T (Kerf)⊕ Cokerf T (A)
f g h (2.3)

for natural maps g, h.

ii) Conversely, if C is abelian and semisimple, C has the structure of a triangulated category, by

picking any automorphism T and setting a triangle to be distinguished if it is isomorphic to a

triangle of the form (2.3).

We refer the reader to Appendix A for the proof of Proposition 2.2.11, as well as some additional

remarks on triangulated categories. We finish this section with two definitions. The first one gives a

name to the functors between triangulated categories that preserve the additional structure we impose

on the underlying additive categories. The second clarifies the notion of a subobject in the category of

triangulated categories.

Definition 2.2.12. Let (D , T ) and (N , S) be triangulated categories. An additive functor F : D → N is

called exact if:

i) There is a functor isomorphism F ◦ T
∼=

=⇒ S ◦ F .

ii) Any distinguished triangle A → B → C → T (A) in D is mapped via F to a distinguished triangle

F (A) → F (B) → F (C) → S(F (A)) in N , where F (T (A)) is identified with S(F (A)) via the

isomorphism in i).

Definition 2.2.13 ([Nee01, 1.5]). Let (D , T ) be a triangulated category. If D ′ is a full additive subcategory

of D , we say that (D ′, T ) is a full triangulated subcategory if T (D ′) = D ′ (i.e. D ′ is invariant under

shift), and for any distinguished triangle A→ B → C → T (A) in D , with A,B ∈ Obj(D ′), C is isomorphic

to an object in D ′.

2.3 The homotopy category of complexes

Throughout this section, let A be an abelian category. We recall the basic definitions and proposi-

tions regarding the homotopy category of complexes over A . We do not provide proofs for most of the

statements in this section. If necessary, we refer the reader to [GM03], sections III.1 and III.3.
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Definition 2.3.1. A complex in A is a collection of objects {Ai}i∈Z of A together with morphisms

di : Ai → Ai+1 (called differentials) such that di+1 ◦ di = 0 for every i. We denote a complex by (A•, d),

or simply by A• if there is no risk for confusion.

A morphism of complexes f : (A•, dA) → (B•, dB) (also called a chain map) is a collection of mor-

phisms {f i : Ai → Bi}i∈Z of A such that f i+1 ◦ diA = diB ◦ f i for every i.

We denote the category of complexes over A by ComA .

Remark 2.3.2. There is a natural functor A → ComA taking an object A ∈ A to the complex with the

only non-zero term being A in degree 0 (and, obviously, with all differentials begin trivial). A complex in

the image of this map is said to be concentrated in degree 0.

Remark 2.3.3. ComA has a canonical structure of an abelian category.

Definition/Proposition 2.3.4. For every i, there is a well-defined functor Hi : ComA → A called the

i-th cohomology functor. For each (A•, dA) ∈ ComA , Hi(A•) = Kerdi/Imdi−1. Given a chain map

f : (A•, dA)→ (B•, dB), the map on cohomology Hi(f) : Hi(A•)→ Hi(B•) arises from the composition

KerdiA KerdiB Hi(B•).
f |

ker di
A

Definition 2.3.5. If A• ∈ ComA is such that Hi(A•) = 0 for every i, we say that A• is acyclic.

Definition 2.3.6. A chain map f : A• → B• is said to be a quasi-isomorphism (or quis for short) if the

induced maps on cohomology Hi(f) : Hi(A•)→ Hi(B•) are isomorphisms for all i.

Example 2.3.7. There is a functor τ≤0 : ComA → ComA that assigns to a complex A•, the subcomplex

τ≤0(A•) given as

A• : . . . A−1 A0 A1 . . .

τ≤0(A•) : . . . A−1 Kerd0 0 . . .

d−2 d−1 d0 d1

d−2 d−1
.

Notice that we have a canonical map τ≤0(A•) → A•. Dually, we define τ≥0 : ComA → ComA (with a

canonical map A• → τ≥0(A•)) as

A• : . . . A−1 A0 A1 . . .

τ≥0(A•) : . . . 0 A0/imd−1 A1 . . .

d−2 d−1 d0 d1

d0 d1
.

These subcomplexes have the following properties:

• Hi(τ≤0(A•)) = 0 for i > 0, and Hi(τ≤0(A•)) ∼= Hi(A•) for i ≤ 0;

• Hi(τ≥0(A•)) = 0 for i < 0, and Hi(τ≥0(A•)) ∼= Hi(A•) for i ≥ 0.

We conclude that, if A• is such that Hi(A•) = 0 for all i > 0, then the natural map τ≤0(A•)→ A• is a quis.

Dually, if B• is such that Hi(B•) = 0 for all i < 0, the natural map B• → τ≥0(B•) is a quis.

19



Definition/Proposition 2.3.8. Given any (A•, dA), (B•, dB) ∈ ComA , we define a relation ∼ on the

abelian group HomComA (A•, B•) by setting f ∼ g if and only if there exists a collection2 of maps

h = {hi : Ai → Bi−1}i∈Z such that f i − gi = di−1
B ◦ hi + hi+1 ◦ diA for every i.

This is an equivalence relation that behaves well with respect to addition of complexes, whose equiv-

alence classes are called homotopy classes. Two chain maps that belong to the same equivalence

class are said to be homotopic. A chain map that is in the same equivalence class of the trivial map is

said to be nulhomotopic.

The composition of homotopy classes of chain maps is well-defined. We define the homotopy cat-

egory of complexes in A , denoted K (A ), as the category whose objects are the same as ComA , but

with HomK (A )(A
•, B•) consisting of homotopy classes of chain maps in HomComA (A•, B•),

i.e. HomK (A )(A
•, B•) := HomComA (A•, B•)/ ∼.

An isomorphism φ ∈ HomK (A )(A
•, B•) is called a homotopy equivalence.

Remark 2.3.9. K (A ) inherits a structure of an additive category from ComA .

Proposition 2.3.10. If two chain maps f, g : A• → B• are homotopic, then Hi(f) = Hi(g) for every i.

Therefore, we have well-defined functors Hi : K (A )→ A .

Corollary 2.3.11. Any homotopy equivalence f : A• → B• is a quis.

2.3.1 Cones

Definition 2.3.12. We define a functor [1] : ComA → ComA such that, if (A•, dA) ∈ ComA ,

[1](A•) := (A•[1], dA•[1]) is the complex with (A•[1])i := Ai+1 and diA•[1]
:= −di+1

A , for every i. For

f ∈ HomComA (A•, B•), f [1] : A•[1] → B•[1] is the chain map that, in degree i, is equal to f i+1. We

call this functor the left shift (by 1).

Definition/Proposition 2.3.13. The functor [1] : ComA → ComA is an automorphism, with inverse the

functor [−1] : ComA → ComA . Given (A•, dA) ∈ ComA , this functor is defined by (A•[−1])i = Ai−1 and

diA•[−1] = −di−1
A , for every i. For f ∈ HomComA (A•, B•), f [−1] : A•[−1]→ B•[−1] is the chain map that, in

degree i, is equal to f i−1. We call this functor the right shift (by 1).

Remark 2.3.14. We define the left (respectively, right) shift by n, [n] : ComA → ComA (respectively

[−n] : ComA → ComA ) as the n-fold composition of the functor [1] (respectively, [−1]). These obviously

extend to well defined automorphisms in K (A ).

Remark 2.3.15. It is easy to see that Hi(A•[n]) = Hi+n(A•), for every i, n ∈ Z.

As mentioned in Remark 2.3.3, the category ComA is abelian (and so, in particular, it is additive).

One might wonder if it is possible to use the automorphism [1] : ComA → ComA of Definition 2.3.12 to

define a structure of a triangulated category on ComA , by, of course, specifying a class of distinguished

triangles. In general, this is not possible.

2This collection is not a chain map.
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Example 2.3.16. Consider the category of abelian groups Ab. ComAb does not have the structure of a

triangulated category (for any automorphism) since it is abelian, but not semisimple (Proposition 2.2.11).

In fact, for any prime p, consider the group homomorphism f : Z/p2Z → Z/pZ viewed as a chain map

between complexes concentrated in degree 0. Consider the kernel of this map, kerf : Kerf → Z/p2Z.

This is a monomorphism and, if ComAb were semisimple, this would split (Definition 2.2.10), implying

that Z/p2Z is decomposable, a false statement.

Definition 2.3.17. Given a chain map f : A• → B•, the cone of f is the chain complex (cone (f) , dcone(f)),

where (cone (f))i := Ai+1 ⊕Bi and the differential is

dicone(f) :=

−di+1
A 0

f i+1 diB


for every i.

Remark 2.3.18. If A,B are objects in A (viewed as complexes concentrated in degree 0) and f : A→ B

is a morphism (viewed as a chain map), cone (f) has information about the (co)kernel of f . In fact,

H−1(cone (f)) ∼= Kerf and H0(cone (f)) = Cokerf .

Definition/Proposition 2.3.19. Given any chain map f : A• → B•, we have two natural morphisms

τf : B
• → cone (f)

πf : cone (f)→ A
•
[1]

which are given, for each degree i, by the canonical injection Bi ↪→ Ai+1 ⊕ Bi, and the canonical

projection Ai+1 ⊕Bi � Ai+1, respectively.

The next proposition says that we can fit these morphisms into a short exact sequence in ComA .

Proposition 2.3.20. Given any chain map f : A• → B•, there is a short exact sequence of chain com-

plexes

0 B• cone (f) A•[1] 0.
τf πf

Consequently, we have a long exact sequence

· · · Hi(A•)

Hi(B•) Hi(cone (f)) Hi+1(A•)

Hi+1(B•) · · ·

∂i−1

∂i

where the connecting homomorphism is actually ∂i = Hi+1(f).

Proof. It is easy to check that the sequence is exact. In the long exact sequence we have used that

Hi(A•[1]) = Hi+1(A•).
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By the Snake Lemma, for any x ∈ Kerdi+1
A , and some y ∈ Bi, we have:

∂i(x) =
[
(τ i+1
f )−1 ◦ dicone(f) ◦ (πif )−1

]
(x) mod ImdiB

=
[
(τ i+1
f )−1 ◦ dicone(f)

]
(x, y) mod ImdiB

= (τ i+1
f )−1(−di+1

A (x), f i+1(x) + diB(y)) mod ImdiB

= f i+1(x) + diB(y) mod ImdiB

= f i+1(x) mod ImdiB .

We obtain from this proposition the following important characterization of quasi-isomorphisms.

Corollary 2.3.21. A chain map f : A• → B• is a quasi-isomorphism if and only if cone (f) is acyclic.

The following property says assigning the cone of a chain map is a functorial procedure3.

Lemma 2.3.22. Any solid commutative diagram in ComA

A• B• cone (f) A•[1]

C • D• cone (g) C •[1]

h

f

	 w

τf

(
h[1] 0

0 w

)
πf

h[1]

g τg πg

can be completed by the dashed arrow (so that all squares are commutative). Moreover,

cone (−) : Hom(ComA )→ ComA is a functor.

If we have a chain map f : A• → B•, we get a complex cone (f). In particular, we can take the cone of

the natural injection τf : B• → cone (f) to get the complex cone (τf ), or the cone of the natural projection

πf : cone (f)→ A•[1] to get the complex cone (πf ). Then, we get natural maps

τ(τf ) : cone (f)→ cone (τf ) ,

π(τf ) : cone (τf )→ B
•
[1],

τ(πf ) : A
•
[1]→ cone (πf ) ,

π(πf ) : cone (πf )→ cone (f) [1].

The following proposition asserts that these operations are closely related to the left and right shifts.

Proposition 2.3.23. Let f : A• → B• be a chain map. There exist homotopy equivalences

α : A
•
[1]→ cone (τf )

β : cone (πf )→ B
•
[1]

whose homotopy inverses are the natural projection cone (τf )
( 0 1 0 )−−−−−→ A•[1], and the natural inclusion

B•[1]
( 0 1 0 )T−−−−−−→ cone (τf ), respectively. Moreover, α and β fit into the following diagram:

3Recall the discussion of Remark 2.2.9.
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A•[1] cone (πf ) cone (f) [1]

cone (f) A•[1] B•[1] cone (f) [1]

cone (f) cone (τf ) B•[1]

	ComA

τ(πf )

	K(A )

π(πf )

β

	K(A )

πf

	ComAα

f [1]

−f [1]

τf[1]

τ(τf ) π(τf )

.

The upper and lower rectangles are commutative K (A ) (but not in ComA ) when taken separately. The

whole diagram is commutative in K (A ) up to the sign of f [1].

Proof. We deal first with the existence of the homotopy equivalences. Denote by ξ the natural pro-

jection cone (τf )
( 0 1 0 )−−−−−→ A•[1], and by ι the natural inclusion B•[1]

( 0 1 0 )T−−−−−−→ cone (τf ). Note the explicit

expressions for the differentials:

dicone(τf ) =


−di+1

B 0 0

0 −di+1
A 0

1 f i+1 diB

 , dicone(πf ) =


di+2
A 0 0

−f i+2 −di+1
B 0

1 0 −di+1
A

 .

Define αi = (−fi+1 1 0 )
T and βi = ( 0 1 fi+1 ). The signs of f i+1 in the first entry of αi and the last entry

of βi are chosen to guarantee that α and β are chain maps. It is immediate to check that ξ ◦ α = idA•[1]

and β ◦ ι = idB•[1]. Note that

α ◦ ξ − idcone(τf ) =


−1 −f [1] 0

0 0 0

0 0 −1

 , ι ◦ β − idcone(πf ) =


−1 0 0

0 0 f [1]

0 0 −1

 .

Consider the collections of maps h = {hi : cone (τf )
i → cone (τf )

i−1} and t = {ti : cone (πf )
i →

cone (πf )
i−1} given by

hi =


0 0 −1

0 0 0

0 0 0

 , ti =


0 0 −1

0 0 0

0 0 0

 .

By direct computation, αi ◦ ξi − idcone(τf )i = di−1
cone(τf ) ◦ h

i − hi+1 ◦ dicone(τf ), so that α ◦ ξ h∼ idcone(τf ).

Similarly, ι ◦ β t∼ idcone(πf ).

Regarding the commutativity of the diagram, the squares marked 	ComA commute by direct compu-

tation of the compositions. Since πf = ξ ◦ τ(τf ) we have that α ◦ πf = α ◦ ξ ◦ τ(τf )
h∼ τ(τf ). Similarly,

τf [1] = π(πf ) ◦ ι and τf [1] ◦ β
t∼ π(πf ).
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2.3.2 The homotopy category is triangulated

So far, we have introduced:

• The homotopy category K (A ) of an abelian category A , which has a canonical structure of an

additive category, inherited from ComA .

• A natural shift automorphism [1] : K (A )→ K (A ).

• A cone functor cone (−) : Hom(K(A )) → K(A ). Moreover, for any morphism f : A• → B• in

K (A ), there are natural morphisms τf : B• → cone (f) and πf : cone (f) → A•[1] which compose

to the zero map.

Comparing this list with Definition 2.2.2 and Proposition 2.2.4, we can ask if one is able to define a

structure of a triangulated category on K (A ), using the cone construction. This is indeed possible.

Proposition 2.3.24. The pair (K (A ) , [1]) has the structure of a triangulated category, by specifying the

distinguished triangles to be triangles isomorphic to ones of the form

A• B• cone (f) A•[1]
f τf πf

.

Proof. We verify the axioms of Definition 2.2.2 one by one:

A1) Assertions ii) and iii) are clear. For i), we need to show that A• idA•−−→ A• → 0 → A•[1] is distin-

guished. Consider the following diagram:

A• A• 0 A•[1]

A• A• cone (idA•) A•[1]

idA•

idA• τidA• πidA•

.

Showing that cone (idA•) is homotopy equivalent to the zero object is the same as showing that the

identity map on cone (idA•) is nulhomotopic. It is easy to check that the homotopy

{hi : cone (idA•)
i → cone (idA•)

i−1}i given by

hi =

0 idAi

0 0


works.

A2) We show that if A• f−→ B• τf−→ cone (f)
πf−−→ A•[1] is distinguished, so is

B• τf−→ cone (f)
πf−−→ A•[1]

−f [1]−−−→ B•[1] (the converse statement is similar). Proposition 2.3.23

provides an isomorphism between such triangles:

B• cone (f) A•[1] B•[1]

B• cone (f) cone (τf ) B•[1]

τf πf −f [1]

∼=
τf τ(τf ) π(τf )

.
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A3) The proof of this axiom is just Lemma 2.3.22.

A4) Again, we refer to the literature for the octahedron axiom. See, for example, [GM03, IV.1.14].

We finish this section with a few remarks.

Recall that we have used Proposition 2.2.11 in Example 2.3.16 in order to show that, while ComA

is abelian, the pair (ComA , [1]) is not triangulated. Using the converse statement of the proposition, we

note that, if A is not semisimple, K (A ) is not abelian. This "inverse" relationship can be explained

in a broader sense than what was discussed here. Even if A is abelian, the failure of the existence of

(co)kernels in the triangulated category K (A ) (or limits and colimits in general) arises from not requiring

the dashed arrow in axiom A3 of Definition 2.2.2 to be unique (Remark 2.2.9). More details can be found

in [Ste]. Let us illustrate a concrete example of this non-uniqueness behavior.

Example 2.3.25. Consider the category of abelian groups Ab and the triangulated category (K (Ab) , [1]).

Let Z be viewed as a complex concentrated in degree 0. Then Z[1] is a complex concentrated in degree

−1. Consider the following diagram:

Z 0 Z[1] Z[1]

0 Z[1] Z[1] 0

−1

1

.

The rows are distinguished triangles by the axioms of Definition 2.2.2. There are two dashed arrows that

make the diagram complete to a morphism of distinguished triangles in K(Ab), namely the zero map

and the identity idZ[1]. These maps are not homotopy equivalent since Z[1] is not the zero object.

2.4 Definition of the derived category

Again, let A be an abelian category throughout this section.

Definition 2.4.1. The derived category of A is the localization of K (A ) with respect to the localizing

class of quasi-isomorphisms.

We check that the class of quasi-isomorphisms in K (A ) is indeed a localizing class, by verifying the

axioms of Definition 2.1.1.

Proposition 2.4.2. S = {f ∈ Mor(K (A )) : f is a quis} is a localizing class.

Proof. A1) Follows directly from functoriality of the cohomology functors as in Proposition 2.3.10.

A2) Consider the diagram in K (A )

A•

C • B•

f

g
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where g is any chain map and f is a quis. We want to complete this diagram to a commuting square

so that the left downwards morphism is a quis. Consider the following distinguished triangles4:

A• B• cone (f) A•[1],

B• cone (f) cone (τf ) B•[1].

f τf πf

τf τ(τf ) π(τf )

Shift the second triangle to the right.

By Proposition 2.3.23, the diagram to

the right is commutative in K (A ).

In the diagram, ξ = ( 0 1 0 ) is the natural projection,

in the notation of Proposition 2.3.23.

cone (τf ) [−1] A•

B• B•

cone (f) cone (f)

cone (τf ) A•[1]

−π(τf )[−1]

ξ[−1]

∼=
f

τf τf

τ(τf ) πf

ξ

∼=

cone (τf ◦ g) [−1] cone (τf ) [−1]

C • B•

cone (f) cone (f)

cone (τf ◦ g) cone (τf )

γ[−1]

−π(τf◦g)[−1] −π(τf )[−1]

τf◦g

g

τf

τ(τf◦g) τ(τf )

γ

Now take the distinguished triangle associated to

the morphism (τf ◦ g) : C • → cone (f), i.e.

C • cone (f) cone (τf ◦ g) C •[1]
τf◦g τ(τf◦g) π(τf◦g)

and shift it to the right. By Lemma 2.3.22, we can

complete the diagram to the left to a commutative

diagram via the dashed arrow.

Finally, join the two diagrams to

obtain the diagram on right side.

We prove the assertion if we show

that the top left downwards morphism

−π(τf◦g)[−1] is a quis, or, equivalently,

that the morphism

cone (τf ◦ g)
π(τf◦g)−−−−−→ C

•
[1]

is a quis.

cone (τf ◦ g) [−1] cone (τf ) [−1] A•

C • B• B•

cone (f) cone (f) cone (f)

cone (τf ◦ g) cone (τf ) A•[1]

γ[−1]

−π(τf◦g)[−1] −π(τf )[−1]

ξ[−1]

∼=
f

τf◦g

g

τf τf

τ(τf◦g) τ(τf ) πf

γ ξ

∼=

By Corollary 2.3.21, this the same as showing that cone
(
π(τf◦g)

)
is acyclic. But, again by Proposi-

tion 2.3.23, cone
(
π(τf◦g)

)
is homotopy equivalent to cone (f), which is acyclic by hypothesis.

A3) This is similar to axiom A2.

A4) Since K (A ) is additive, it suffices to prove the equivalent axiom A4)’, stated in the Remark 2.1.7.

We will prove the direct implication, i.e. if f : A• → B• is a chain map and there exists a quis

4The fact that K (A ) is triangulated is not necessary for the proof. We just use this notion to make the diagram easier to digest.
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s : B• → C • such that s ◦ f is nulhomotopic, then there exists a quis s′ : D• → A• such that f ◦ s′

is nulhomotopic. Let h = {hi : Ai → Ci−1}i be a homotopy so that si ◦ f i = di−1
C ◦ hi + hi+1 ◦ diA.

Then, we can define a map of complexes g : A• → cone (s) [−1] given by gi = ( fi −hi )
T , so that

the bottom square is commutative:

cone (g) [−1]

A• B• C •

cone (s) [−1] cone (s) [−1]

−πg [−1]

g

f s

πs[−1]

Now, since the composition of any two consecutive morphisms in a distinguished triangle is zero5.,

g ◦ πg[−1] is nulhomotopic. Then f ◦ πg[−1] is also nulhomotopic by commutativity of the square.

Finally, πg[−1] is a quis because cone (πg) ∼= cone (s) by Proposition 2.3.23.

Some remarks are timely.

• Explicitly, the objects in D(A ) are chain complexes A• with terms in A , and morphisms A• → B•

are equivalence classes of roofs

C •

A• B•

quis

where the arrows themselves are homotopy classes of chain maps.

• By the definition of quasi-isomorphism (Definition 2.3.6) and the universal property of the local-

ization (Proposition 2.1.5), we have well-defined cohomology functors on the derived category,

defined as the unique functors (up to unique natural isomorphism) making the diagram

K (A ) A

D(A )

Hi

,

commute.

• In particular, any two quasi-isomorphic complexes in K (A ) become isomorphic in D(A ). How-

ever, as we will see in Example 2.4.10, there exist isomorphic complexes A• and B• in D(A ), such

that there are no quis A• → B• or B• → A•.

• As is the case of general localization of additive categories (Proposition 2.1.6), D(A ) inherits a

structure of an additive category from K (A ).

5Again, the fact that K (A ) is triangulated is not necessary for this to hold.
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These remarks allow us to further characterize the structure of the derived category. Recall from

Proposition 2.1.5 that if Q : K (A )→ D(A ) is the natural localization functor, and f : A• → B• is a chain

map, Q(f) = f id−1
A• .

Corollary 2.4.3 (of Proposition 2.1.4 c). A chain map f : A• → B• (or, more precisely, Q(f) = f id−1
A• ) is

0 in D(A ) if and only if there exists a quis g : C • → A• such that f ◦ g is homotopy equivalent to zero.

In particular,

Corollary 2.4.4. A complex A• is 0 in D(A ) if and only if it is acyclic.

2.4.1 The derived category is triangulated

The derived category D(A ) of an abelian category A was defined in the last section to be the

localization of the homotopy category K(A ) with respect to the set of quasi-isomorphisms. K(A ) has

a structure of a triangulated category by Proposition 2.3.24, so it is natural to ask if we can extend this

to a triangulated structure on D(A ). In this section, we prove that this is indeed possible.

We prove the general result for the localization of a triangulated category (D , T ) first, and then focus

on the specific example of (K (A ) , [1]).

Definition 2.4.5. Let (D , T ) be a triangulated category and S be a localizing class in D . We say that S

is compatible with the triangulation if the following conditions hold:

a1) If s is a morphism of D , s ∈ S if and only if T (s) ∈ S.

a2) Axiom A3 of Definition 2.2.2 is "well-behaved with respect to localization"; more precisely, every

solid diagram with rows consisting of distinguished triangles

A B C T (A)

D E F T (D)

α∈S β∈S γ∈S T (α)∈S

and with α, β ∈ S can be completed (not necessarily uniquely) by γ ∈ S to a morphism of triangles.

Theorem 2.4.6. Let (D , T ) be a triangulated category and S a localizing class in D compatible with the

triangulation. Denote by Q : D → D [S−1] the natural functor of the localization.

The functor TS : D [S−1] → D [S−1] defined by TS(A) = T (A) for A ∈ Obj(D [S−1]) = Obj(D), and

TS(fs−1) = T (f)(T (s))−1, is well-defined with respect to equivalence of roofs and is an automorphism.

Then, the pair (D [S−1], TS) has the structure of a triangulated category if we define a triangle in

D [S−1] to be distinguished if it is isomorphic to the image under Q of a distinguished triangle of D .

Proof. Due to the length of this proof, we refer the reader to Appendix B.

Having settled the general statement for arbitrary triangulated categories, we apply our efforts to the

homotopy category and its localization, the derived category.
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Proposition 2.4.7. Let A be an abelian category and (K (A ) , [1]) its homotopy category, equipped with

the triangulated structure introduced in Proposition 2.3.24. The set of quasi-isomorphisms S in K (A )

is compatible with the triangulation. Therefore, by Theorem 2.4.6, we have a canonical structure of a

triangulated category in D(A ).

Proof. We prove that S satisfies the conditions of Definition 2.4.5. Axiom a1 is clear from the definition

of quasi-isomorphism (Definition 2.3.6). For axiom a2, if we are given the solid diagram

A• B• C • A•[1]

D• E• F • D•[1]

quis quis quis

where the rows are distinguished triangles in K (A ), we can find a dashed arrow completing the diagram

to a morphism of distinguished triangles (since K (A ) is triangulated). Any such arrow is a quis. In fact,

extend the completed diagram on its right side by adding the square

A•[1] B•[1]

D•[1] E•[1],

quis quis

which maintains commutativity. Apply the cohomology functor Hi : K (A ) → A and use the 5-lemma.

2.4.2 Short exact sequences

Let A be an abelian category. We have constructed two additive categories, K (A ) and D(A ), both

of which have the structure of a triangulated category, while not being abelian in general.

By the long cohomology sequence of Proposition 2.3.20 and the definition of distinguished triangles

in K (A ) (Proposition 2.3.24), the cohomology functors Hi : K (A ) → A are cohomological, in the

sense of Definition 2.2.5. Therefore, any distinguished triangle in K(A ),

A• B• cone (f) A•[1],
f τf πf

induces a long exact sequence in cohomology. The same thing happens for the cohomology functors

Hi : D(A )→ A .

A pertinent question to ask is if there is a converse to this behaviour. Namely, if any short exact

sequence 0 → A• → B• → C • → 0 in ComA induces a distinguished triangle A• → B• → C • → A•[1] in

K (A ) or D(A ). The next example shows the answer is negative for K (A ).

Example 2.4.8. Consider A = Ab and the short exact sequence

0 Z Z Z/2 0,
·2 (2.4)

viewed as a short exact sequence of complexes concentrated in degree 0. If (2.4) was a distinguished
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triangle in K (Ab), there would exist a homotopy equivalence Z/2
∼=−→ cone

(
Z ·2−→ Z

)
by Proposition

2.2.8 iii), but this is impossible. In fact, there is no non-zero chain map between these complexes,

0 Z/2

Z Z·2

,

and the zero map between these complexes is not a quasi-isomorphism.

The advantage of working with D(A ) as opposed to K (A ) is that there is a one-to-one correspon-

dence between short exact sequences in ComA and distinguished triangles in D(A ).

Proposition 2.4.9. Let 0 → A• f−→ B• g−→ C • → 0 be a short exact sequence in ComA . Then, there is a

natural quasi-isomorphism α : cone (f)→ C •, and so the triangle

A• B• C • A•[1]
f g πf◦α−1

is distinguished in D(A ), where α−1 is the inverse of α in D(A ), and πf : cone (f)→ A•[1] is the natural

projection. Moreover, any distinguished triangle in D(A ) is isomorphic to one obtained in this way.

Proof. Define αi : Ai+1 ⊕ Bi
( 0 gi )
−−−−→ Ci. Since g is surjective, so is α. The kernel of α is the complex

A•[1]⊕Kerg = A•[1]⊕Imf = cone
(
A• f−→ Imf

)
. Since A• f−→ Imf is an isomorphism, its cone is acyclic.

The short exact sequence of complexes

0 cone
(
A• f−→ Imf

)
cone (f) C • 0

gives rise to a long exact sequence on cohomology, and hence α is a quis. Then,

A• B• C • A•[1]

A• B• cone (f) A•[1]

f g

α−1∼=

πf◦α−1

f τf πf

clearly provides an isomorphism in D(A ) with a distinguished triangle, which is in the image of the

natural functor K(A )→ D(A ).

Now, for the converse direction, if A• f−→ B• τf−→ cone (f)
πf−−→ A•[1] is a distinguished triangle, there is

an isomorphism

A• B• cone (f) A•[1]

A• cone (πf ) [−1] cone (f) A•[1]

f

∼=

τf πf

τπf [−1] ππf [−1] πf

,

by Proposition 2.3.23, and the bottom distinguished triangle is the one obtained by the procedure above

from the short exact sequence

0 A• cone (πf ) [−1] cone (f) 0
τπf [−1] ππf [−1]

.
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We take this opportunity to clarify that, although quasi-isomorphic complexes are canonically iso-

morphic in the derived category, not every pair of isomorphic complexes in the derived category has a

quasi-isomorphism between its elements.

Example 2.4.10. Consider A = Ab, and the chain complexes

A• : . . . 0 Z Z 0 0 Z/2 0 . . . ,

C • : . . . 0 0 Z/2 0 0 Z/2 0 . . . ,

B• : . . . 0 0 Z/2 0 Z Z 0 . . . .

·2

·2

By Example 2.4.8, there are no quasi-isomorphisms A• → B• or B• → A•. However, there is a right roof

A• B•

C •

quis quis

in K (Ab). Therefore, A• ∼= B• in D(Ab).
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Chapter 3

Derived functors

Recall that an additive functor F : A → B between abelian categories is said to be exact if it pre-

serves short exact sequences. Since taking cohomology commutes with exact functors [Vak17, 1.6.H],

F is exact if and only if the image of an acyclic complex under F is again acyclic.

Such an additive functor F has a natural extension to an additive functor ComA → ComB, by ap-

plying F term-wise. It is easy to show that this extension is well-defined with respect to homotopy of

complexes, hence defining an additive functor K(F ) : K (A )→ K (B).

A natural next step in this reasoning is asking: can we extend this even further, to an additive functor

D(F ) : D(A )→ D(B) at the level of derived categories? More precisely, denoting byQA : K (A )→ D(A )

the natural functor of the localization (and similarly for QB), can we define an arrow D(A ) 99K D(B)

such that the diagram

K (A ) D(B)

D(A )

QB◦K(F )

QA
(3.1)

is commutative? Well, if such a D(F ) exists, F must send zero objects in D(A ) to zero objects in B.

By Corollary 2.4.4, this is equivalent to requiring K(F ) to send acyclic complexes in ComA to acyclic

complexes in ComB. By the remark in the paragraph above, this occurs if and only if F is exact. Now,

F being exact is also a sufficient condition for D(F ) to be well-defined by Proposition 2.1.5. In fact, it is

trivial to verify that

Lemma 3.0.1. For any chain map f : A• → B• we have a canonical isomorphism

K(F )(cone (f)) ∼= cone (K(F )(f)).

Therefore, if F is exact, K(F ) sends quasi-isomorphisms in K (A ) to quasi-isomorphisms in K (B).

These two observations also show that, under this hypothesis, the functor D(F ) is exact in the sense of

triangulated categories (Definition 2.2.12).

As we will see in Chapter 4, a fair share of the most important functors used in Algebraic Geometry

are additive functors between abelian categories that are not exact, but only left or right exact. The

derived versions of such functors are exact functors (of triangulated categories) between the derived

categories of the abelian categories where they are defined, and aim to provide an extension of the

form of diagram (3.1). Since strict commutativity of such a diagram is impossible if F is not exact, this

condition is relaxed to a suitable universal property.
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3.1 Definition of derived functors

Let F : A → B be an additive functor between abelian categories. If F is left-exact, one defines

its right derived functor RF . Dually, F is right-exact, one defines its left derived functor LF . These

functors will not be defined in the whole derived category D(A ), but only for specific full triangulated

subcategories of D(A ) (recall Definition 2.2.13).

Definition/Proposition 3.1.1. Let A be an abelian category. K (A ) has the following full additive

subcategories:

i) K+(A ), whose objects are complexes A• which are bounded below, i.e. ∃ N such that Ai = 0

for all i ≤ N .

ii) K−(A ), with objects complexes A• that are bounded above, i.e. ∃ N such that Ai = 0 for all

i ≥ N .

iii) Kb(A ), whose objects are complexes which are bounded, i.e. both bounded below and bounded

above.

Definition/Proposition 3.1.2. Let A be an abelian category and S be the class of quasi-isomorphisms

in K (A ). For each ∗ = {+,−, b}, define S∗ := S ∩Mor(K∗(A )). Then,

i) the full additive subcategory K∗(A ) and the class S∗ are in the conditions of Proposition 2.1.8.

Therefore, D∗(A ) := K∗(A )[S−1
∗ ] is a full additive subcategory of D(A ).

ii) (K∗(A ), [1]) is a full triangulated subcategory of (K (A ) , [1]). From this, it follows that S∗ is com-

patible with the triangulation on K∗(A ) (as in Definition 2.4.5), which implies there is a canonical

structure of a triangulated category in D∗(A ) by Theorem 2.4.6.

iii) Finally, D∗(A ) is a full triangulated subcategory of D(A ), and the canonical functor

D∗(A )→ D(A ) is exact.

Proof. First, note that S∗ is a localizing class in K∗(A ). Indeed, by the proof of Proposition 2.3.24, it

suffices to show that the cone of a morphism in K∗(A ) is a complex in K∗(A ), which is clearly true.

This fact also proves statement ii).

That being said, we prove statement i) for the case ∗ = +. Let B• be bounded below chain com-

plex and B• f−→ A• is a quis an arbitrary chain complex A•. Then, there exists N > 0, such that

Hi(B•) ∼= Hi(A•) = 0 for i < N . Then, similarly to Example 2.3.7, there exists a truncation functor

τ≥N (−) and the natural map A• → τ≥N (A•) is a quis. This shows condition ii) of Proposition 2.1.8. In the

case ∗ = −, one would use a truncation functor of the type τ≤N (−) to show condition i) of Proposition

2.1.8, and in the case ∗ = b, one would use both truncation functors.

Regarding iii), the fact that D∗(A ) ⊆ D(A ) is a full triangulated subcategory is immediate from ii)

and by our definition of distinguished triangles in D(A ). Exactness of D∗(A )→ D(A ) is also trivial.
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The basic idea of the construction of the derived version of an additive functor F : A → B is to apply

F term-wise like we did for K(F ) : K(A ) → K(B), but not to every complex in D∗(A ). Instead, given

A• ∈ D∗(A ), we choose a special representative R• in the equivalence class of complexes in K∗(A )

that are quasi-isomorphic to A• (and any two such representatives are canonically isomorphic in D∗(A ),

by construction), and say that the value of the derived functor of F at A• equals to the object obtained

by term-wise application of F to R•. We make precise what we mean.

Definition/Proposition 3.1.3. Let A be an abelian category and R be a subclass of Obj(A ) with the

following property: for each A ∈ A , there exists R ∈ R together with a monomorphism A ↪→ R. Then,

given any A• ∈ K+(A ), there exists a bounded below complex R• of objects ofR, and a quis q : A• → R•.

Such a quis q is called a quasi-resolution1 of A•.

Proof. We assume that A• is such that Ai = 0 for i < 0, and that we are working over the category

of modules of a ring, thanks to the Freyd-Mitchell Embedding Theorem2. Recall that given a diagram

Y
f←− X g−→ Z, if f is a monomorphism, its fibered coproduct

X Z

Y Y tX Z

g

f ιZ

ιY

is such that ιZ is also a monomorphism. We set Ri = 0 for all i < 0. We will construct objects Ri ∈ R,

differentials dR : Ri → Ri+1 and maps qi : Ai → R0 by induction on i. After this procedure, we will show

that the chain map q is indeed a quis. For i = 0, consider the following diagram:

R0 R1

R0 R0 tA0 A1

0 A0 A1 A2 . . . .

:=d0R

ιR0

x

d0A

q0 ιA1

d1A

The monomorphism q0 exists by hypothesis. We take the fibered coproduct of q0 and d0
A to get the

arrows ιR0 , and ιA1 (which is a monomorphism). Again, by hypothesis, we get the monomorphism x.

Finally, we define d0
R := x ◦ ιR0 , and q1 := x ◦ ιA1 (which is again a monomorphism).

For step i+ 1, consider the diagram:

Ri−1 Ri Ri+1

Ri−1 Ri Coker (di−1
R ) Coker (di−1

R ) tAi Ai+1

. . . Ai−2 Ai−1 Ai Ai Ai+1

di−1
R :=diR

	

di−1
R

x

di−2
A

qi−1

di−1
A

qi

diA

ιAi+1

1This terminology is not standard in the literature. Its use will be justified ahead, in Remark 3.3.5.
2This theorem asserts that every small abelian category admits an exact fully faithful functor to ModA (where A is not necessar-

ily commutative). A sketch of the proof of this statement is in [Wei94, 1.6]. This result enables us to use standard diagram-chasing
techniques on A .
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We start step i + 1 with the diagram filled in up until Ai, with the square marked with 	 already com-

mutative. We take the cokernel of di−1
R to get coker (di−1

R ) : Ri → Coker (di−1
R ). We consider the fibered

coproduct of the morphisms coker (di−1
R ) ◦ qi and diA. Finally, by hypothesis, we get the monomorphism

x. We then define qi+1 := x◦ ιAi+1 , and diR := x◦ ιCoker (di−1
R ) ◦coker (di−1

R ). By construction, diR ◦d
i−1
R = 0

and diR ◦ qi = qi+1 ◦ diA.

In order to see that q is a quis, observe the diagram above and note that:

• Hi(q) is surjective: let α ∈ Ker (diR) be a representative; since x is injective, β := coker (di−1
R )(α)

is zero in the fibered coproduct; therefore, there exists γ ∈ Ai such that (coker (di−1
R ) ◦ qi)(γ) =

= diA(γ) = 0; then γ is a suitable preimage of α under Hi(q).

• Hi+1(q) is injective: let α ∈ Ker (di+1
A ) be a representative of an element in Hi+1(A•); suppose

that qi+1(α) = 0 in Hi+1(R•); since x is injective, this means that there exists β ∈ Ri such that

ιAi+1(α) = (ιCoker (di−1
R ) ◦ coker (di−1

R ))(β); hence there exists γ ∈ Ai such that

(ιCoker (di−1
R ) ◦ coker (di−1

R ) ◦ qi)(γ) = (ιCoker (di−1
R ) ◦ coker (di−1

R ))(β) = ιAi+1(α) = (ιAi+1 ◦ diA)(γ)

and hence α is zero in Hi+1(A•).

Definition 3.1.4. Let A ,B be abelian categories and F : A → B be a left exact functor. We say that a

subclass R of Obj(A ) is F -adapted if:

A1) R is closed under direct sums;

A2) F (or, more precisely, K+(F )) maps any bounded below acyclic complex with terms in R into an

acyclic complex with terms in B;

A3) every object in A is a subobject of an object in R (that is, R is in the conditions of Defini-

tion/Proposition 3.1.3).

Remark 3.1.5. Dually, we have a definition of an F -adapted class of objects for a right exact functor F .

By the discussion at the start of this chapter, if F is exact, the class of all objects of A is F -adapted.

Proposition 3.1.6. Let F : A → B a left exact functor, R a class of F -adapted objects of A and SR the

class of quis in K+(R). Then:

i) SR is a localizing class of morphisms in K+(R);

ii) the canonical exact functor

K+(R)[SR−1]→ D+(A )

is an equivalence of categories.

35



Proof. For i), an attentive reading of the proof of Proposition 2.4.2 makes apparent that it suffices to

show that the cone of a morphism between objects in R is again an object in R. This follows from axiom

A1 of Definition 3.1.4.

Now, we claim that assertion ii) follows from Definition/Proposition 3.1.3. In fact, if any A• ∈ K+(A )

admits a quasi-resolution q : A• → R• by a bounded below complex R• of objects of R, the canonical

functor K+(R)[SR−1] → D+(A ) is fully faithful, by Proposition 2.1.8. Moreover, it is also essentially

surjective since, according to Remark 2.1.3 and the proof of Proposition 2.1.5, the right roof in K+(A )

R• A•

R•

idR• q

defines an isomorphism R• → A• in D+(A ). This concludes the proof.

Remark 3.1.7. Note that, according to the proposition above, giving a quasi-resolution of A• ∈ K+(A )

by a bounded below complex of objects in R can be done functorially. Indeed, given A•, B• ∈ K+(A )

with a map f : A• → B•, given a quis q : A• → R• as above, since the class of quis in K+(A ) is a

localizing class by Definition/Proposition 3.1.2, we can find x and t to make the square

A• R•

B• C •

T •

q

quis

f x

t

quis

s

quis

,

commute, whereC • ∈ K+(A ) does not necessarily have its terms inR. However, by Definition/Proposition

3.1.3, we can find a quis such as s, where now T • ∈ K+(R). We conclude that, given a solid diagram

A• R•

A

B• R•

B

quis

f

quis

,

with R•

A, R
•

B ∈ K+(R), there is always a dashed arrow completing the diagram to a commutative square.

A priori, such a dashed arrow need not be unique. However, this is the case for certain classes R, as

we will see in Remark 3.4.12.

We can now state the definition of a derived functor.

Definition 3.1.8. Let F : A → B be a left exact functor between abelian categories. Denote by

QA : K+(A )→ D+(A ) the natural map of the localization (and similarly for QB).

The right derived functor of F is a pair (RF, η) consisting of:

• an exact functor of triangulated categories RF : D+(A )→ D+(B),

• together with a natural transformation η : QB ◦K+(F )⇒ RF ◦QA,
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which we represent diagrammatically by

K+(A ) D+(B)

D+(A )

QB◦K+(F )

QA RF
η .

The pair (RF, η) is required to satisfy the following universal property: for any other pair

(G : D+(A )→ D+(B), γ : QB ◦K+(F )⇒ G ◦QA),

there exists a unique natural transformation ε : RF ⇒ G such that the diagram

QB ◦K+(F ) G ◦QA

RF ◦QA

γ

η ε◦QA

commutes.

At first sight, this definition may be difficult to digest. In the notation of Definition 3.1.8, and as

discussed in the beginning of this chapter, the idea of the derived functor RF is to extend the morphism

QB ◦K+(F ) to a morphism D+(A )→ D+(B).

What we mean by an extension of a functor is the following: if H : C → D is a functor between

arbitrary categories C and D , a (left) extension of H with respect to a functor Q : C → C ′ is a functor

E : C ′ → D , endowed with a natural transformation θ : E ◦Q ⇒ H. We can define the category EH
Q of

(left) extensions of H with respect to Q in an obvious way: objects are (left) extensions (such as E),

with morphisms consisting of natural transformations between such (left) extensions. In this setting, a

(left) Kan extension of H with respect to Q is an initial object in EH
Q , [Hin20]. Such an object is denoted

LanQH. Kan extensions are, in a certain way, "the most universal of the universal constructions"3,

[Leh14]. Having accepted these definitions, it is immediate to see that, while RF is not a left Kan

extension of the composition QB ◦ K+(F ) with respect to the localization functor QA, it is an initial

object in the full subcategory of E
QB◦K+(F )
QA

consisting of left extensions that are exact as functors of

triangulated categories.

As with all objects defined by universal properties, if a right derived functor (RF, η) exists, then it is

uniquely defined, up to unique isomorphism. In particular, if F is exact, (D+(F ), id) is its right derived

functor, whereD+(F ) is the mapD+(A )→ D+(B) induced byK+(F ), as we saw in the the introduction

of this chapter.

Remark 3.1.9. Fixing abelian categories A and B, we can define a functor

R : {left exact functors A → B that admit a right derived functor} → {exact functors D+(A )→ D+(B)}

3Indeed, one can show that the existence of (co)limits and adjoints is equivalent to the existence of specific Kan extensions.
For example, given a diagram H : I → C , its colimit exists if and only if H has a left Kan extension LanQH with respect to the
unique functor Q : I → 1 to the terminal category 1; in this case, lim−→H is the value of LanQH at the unique object of 1, [Lan78,
X.7.1].
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that sends F to RF , and a natural transformation τ : F ⇒ G to a canonical natural transformation

Rτ : RF ⇒ RG. Denoting by K+(τ) the extension of τ to a natural transformation K+(F )⇒ K+(G), we

define Rτ as follows. If

η : QB ◦K+(F )⇒ RF ◦QA,

γ : QB ◦K+(G)⇒ RG ◦QA

are the natural transformations associated to RF and RG, respectively, Rτ is the unique natural trans-

formation (by the universal property of Definition 3.1.8) fitting into the diagram

QB ◦K+(F ) RG ◦QA

RF ◦QA

γ◦QB(K+(τ))

η Rτ◦QA
.

The next theorem asserts that the existence of right derived functors follows from the existence of

adapted classes.

Theorem 3.1.10. If F : A → B is a left exact functor between abelian categories, and A admits a class

of F -adapted objects R, then the right derived functor of F exists.

The proof of this theorem is the subject of the next section.

3.2 Existence of derived functors

We split the proof of Theorem 3.1.10 into four parts:

1) Construction of the functor RF ;

2) Showing that RF is exact;

3) Constructing the natural transformation η;

4) Verifying the universal property of the pair (RF, η).

The following reasoning is adapted from [GM03, III.6].

3.2.1 Construction of RF

Let SR be the class of quasi-isomorphisms q : A• → B• such that A•, B• ∈ K+(R). Then, by Propo-

sition 3.1.6, the canonical functor Ψ: K+(R)[SR−1] → D+(A ) is an equivalence of categories. Denote

by Φ: D+(A )→ K+(R)[SR−1] a quasi-inverse to Ψ. On objects, this map assigns to each A• ∈ D+(A )

a complex R• ∈ K+(R) with a quis A• → R•. We have two natural isomorphisms of functors:

α : idK+(R)[SR−1] ⇒ Φ ◦Ψ

β : idD+(A ) ⇒ Ψ ◦ Φ .

If q ∈ SR, cone (q) ∈ K+(R) by axiom A1 of Definition 3.1.4. By axiom A2 of the same definition and

Lemma 3.0.1, cone (K+(F )(f)) ∼= K+(F )(cone (f)) is acyclic, and hence K+(F ) maps SR into the class
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of quasi-isomorphisms in K+(B). Therefore, by Proposition 2.1.5, K+(F ) determines a well-defined

functor F (unique up to unique isomorphism) making the bottom square of the diagram

D+(A ) D+(B)

K+(R)[SR−1] D+(B)

K+(R) K+(B)

:=RF

Φ

F

Ψ

K+(F )

QR QB

(3.2)

commute. Moreover, it is clear that F is an exact functor of triangulated categories. We set RF := F ◦ Φ.

3.2.2 Exactness of RF

It suffices to show that Φ is an exact functor. Condition i) of Definition 2.2.12 is easy to show: if

A• ∈ D+(A ), there exists R• ∈ K+(R) such that A• ∼= Ψ(R•), and so, Φ(A•) ∼= R•.; then:

Φ(A
•
[1]) ∼= Φ(Ψ(R

•
)[1]) ∼= Φ(Ψ(R

•
[1])) ∼= R

•
[1] ∼= Φ(A

•
)[1].

Now, for condition ii) of Definition 2.2.12, let ∆d be a distinguished triangle in D+(A ). We want to show

that Φ(∆d) ∼= QR(δd), for δd a distinguished triangle in K+(R). Since Ψ is full, ∆d ∼= Ψ(∆), where ∆ is

a (not necessarily distinguished) triangle in K+(R)[SR−1], and so we need to show that ∆ ∼= QR(δd).

This is equivalent to showing Ψ(∆) ∼= Ψ(QR(δd)) in D+(A ) by fully faithfulness of Ψ.

Let ∆ be the triangleB• fs−1

−−−→ C • gt−1

−−−→ D• hk−1

−−−→ B•[1], whereB•, C •, D• ∈ K+(R) and s, t, k ∈ SR. By

hypothesis Ψ(∆) is distinguished in D+(A ). If fs−1 is the equivalence class of the roof B• s←− T • f−→ C •,

the diagram

T • C • cone (f) T •[1]

B• C • D• B•[1]

f id−1
T •

sid−1
T •

τf id−1
C•

πf id−1
cone(f)

s[1]id−1
T •[1]

fs−1 gt−1
hk−1

can be completed by the dashed arrow to a morphism of distinguished triangles in D+(A ), according to

axiom A3 of Definition 2.2.2. Since s is a quis, sid−1
T • is an isomorphism in D+(A ) and, by Proposition

2.2.8 i), the diagram above provides the desired isomorphism.

3.2.3 Construction of η

We want to define a natural transformation η, fitting into the diagram

K+(A ) D+(B)

D+(A )

QB◦K+(F )

QA RF
η . (3.3)
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Let A• ∈ K+(A ). According to our definition of RF , such a natural transformation η is

(?) a collection of maps η(A•) in D+(B) (natural with respect to morphisms in K+(A )),

from K+(F )(A•) to K+(F )(R•), where R• = Φ(QA(A•)) is a complex of F -adapted objects which

is quasi-isomorphic to A•.

We can think of η(A•) as measuring the difference, in D+(B), between the complex K+(F )(A•) that

one obtains from A• by term-wise application of F , and its image RF (A•) under the construction of the

right derived functor. Indeed, as already asserted, when F is exact, RF (A•) = K+(F )(A•), and η is just

the identity.

Using the natural isomorphism β, we have an isomorphism β(A•) : A•
∼=−→ Ψ(R•) = R• in D+(A ).

Being an isomorphism in the localization, β(A•) can be represented by a right roof A• s−→ C • t←− R•, where

s, t are quis, and C • ∈ K+(A ) (see Remark 2.1.3). We can find a quis q : C • → D• to a D• ∈ K+(R) as

in Remark 3.1.7, and the starting right roof is equivalent to the roof

A• R•

D•

q◦s q◦t

by the dual statement of Proposition 2.1.4 a) i). Applying K+(F ) to this roof we get

K+(F )(A•) K+(F )(R•)

K+(F )(D•)
K+(F )(q◦s) K+(F )(q◦t)

.

Now, since both D• and R• are objects in K+(R), K+(F )(q ◦ t) is a quis in K+(B), by axiom A2 of

Definition 3.1.4. Therefore, this roof determines a morphism K+(F )(A•) → K+(F )(R•) in D+(B). We

define η(A•) to be this morphism.

Note that:

• η(A•) does not depend on the choice of representative for the morphism β(A•). Indeed, ifA• s1−→ C1
• t1←− R•

and A• s2−→ C2
• t2←− R• are two representatives for the morphism, with si, ti quis and Ci

• ∈ K+(R)

for i = 1, 2, then we can find a commutative diagram

A• R•

C1
•

C2
•

C3
•

s1

s2

t2

t1

x1 x2

such that C3
• ∈ K+(R) and x2 ◦ t2 is a quis. By applying K+(F ) to the diagram, we see that the

two morphisms K+(F )(A•)→ K+(F )(R•) one obtains from (t1, s1) and from (t2, s2) are the same

morphism one obtains from (x2 ◦ t2, x1 ◦ s1).
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• The naturality of the collection {η(A•) : A• ∈ K+(A )} follows from the naturality of the transforma-

tion β, [GM03, III.6.10].

3.2.4 Universal property

We want to show that if G : D+(A )→ D+(B) is another exact functor together with a natural trans-

formation γ : QB ◦K+(F )⇒ G ◦QA, then there exists a unique natural transformation ε : RF ⇒ G such

that the following diagram of natural transformations is commutative:

QB ◦K+(F ) G ◦QA

RF ◦QA

γ

η ε◦QA
. (3.4)

Once again, let A• ∈ K+(A ), R• = Φ(QA(A•)), and A• s−→ C • t←− R• be a right roof representing the

isomorphism β(A•), with C • ∈ K+(R) and s, t quis. We will apply two functors to this roof:

i) Applying QB ◦K+(F ) we get a diagram in D+(B):

K+(F )(A•) K+(F )(C •) K+(F )(R•)
QB(K+(F )(s)) QB(K+(F )(t))

∼=
.

Note that the morphism in the right side is an isomorphism in D+(B) because, as discussed in

the previous section, K+(F )(t) is a quis in K+(B).

ii) Applying G ◦QA we get the diagram in D+(B):

G(A•) G(C •) G(R•)
G(QA(s))

∼=

G(QA(t))

∼=
.

Here both morphisms are isomorphisms because s, t are quis and G is a functor.

Using the natural transformation γ, we can relate the two diagrams obtained in i) and ii). Indeed, the

following diagram is commutative in D+(B):

K+(F )(A•) K+(F )(C •) K+(F )(R•)

G(A•) G(C •) G(R•)

QB(K+(F )(s))

γ(A
•
) γ(C

•
)

QB(K+(F )(t))

∼=

γ(R
•
)

G(QA(s))

∼=

G(QA(t))

∼=

.

Inverting the left pointing isomorphisms on the right side, we get the following solid commutative diagram

in D+(B):

K+(F )(A•) K+(F )(R•)

G(A•) G(R•)

η(A
•
)

γ(A
•
) := ε(A

• )
γ(R

•
)

G(β(A
•
))

∼=

.
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Finally, we define ε(A•) := RF (A•) → G(A•) as the composition G(β(A•))−1 ◦ γ(R•), indicated by the

dotted arrow above. Naturality of the collection {ε(A•) : A• ∈ K+(A )} follows from the naturality of β.

Therefore, by the commutative diagram above, ε clearly fits in diagram (3.4). The claimed uniqueness

of ε follows from G(β(A•)) being an isomorphism.

3.2.5 Some remarks on the proof

In summary, given a class of F -adapted objects R, one computes RF it as follows: if A• ∈ K+(A ),

we choose a quasi-resolution of A• by a bounded above complex R• ∈ K+(R), and apply F term-wise

to this complex to get RF (A•) = K+(F )(R•).

The proof of Theorem 3.1.10 sheds light on how the construction of RF does not depend on the

choices we made along the way, namely the choice of quasi-resolution R• for each A• ∈ D+(A ) (i.e. the

choice of quasi-inverse Φ), and the choice of F -adapted class R.

• If q1 : A• → R1
• and q2 : A• → R2

• are two quasi-resolutions, K+(F )(R1
•
) and K+(F )(R2

•
) are

canonically isomorphic inD+(B), via β. In particular, the value of RF at a bounded below complex

whose terms are F -adapted objects can be computed by just applying K+(F ), i.e. if R• ∈ K+(R),

RF (R•) is canonically isomorphic to K+(F )(R•).

• If R1 and R2 are two F -adapted classes in A , the two derived functors RF1 and RF2 one con-

structs are isomorphic, by a unique isomorphism, by Definition 3.1.8.

Lastly, we emphasize the need for the use of right roofs in the proof we constructed. As warned in

Remark 2.1.3, to prove the existence of the right derived functor of F , we used that the class of quasi-

isomorphisms in K+(A ) is a left Ore system. Namely, we used that any A ∈ Obj(A ) can be embedded

in an object of the class R (Proposition 3.1.3). Of course, if F is right exact, the dual construction of its

left derived functor LF : D−(A ) → D−(B), requires every A ∈ Obj(A ) to be a quotient object of an

object of R, and that the class of quasi-isomorphisms in K−(B) is a right Ore system.

3.2.6 A generalization to functors defined on homotopy categories

Let A and B be abelian categories. We have seen that if F : A → B is an additive functor, it

induces an exact functor of triangulated categories K∗(F ) : K∗(A ) → K∗(B), for ∗ = {∅,+,−, b}

(recall Lemma 3.0.1). In addition, if we require F to be left exact, Definition 3.1.8 and Theorem 3.1.10

define, and guarantee the existence, respectively, of the right derived functor RF : D+(A )→ D+(B) of

F . A close inspection of the construction of RF points to the possibility of defining, and guaranteeing

the existence of, a right derived version of an exact functor of triangulated categories K+(A )→ K(B),

which is not necessarily induced from a functor A → B between the underlying abelian categories.

Definition 3.2.1 ([Huy06, pag. 48]). Let A and B be abelian categories, and V : K+(A ) → K(B)

be an exact functor of triangulated categories. A triangulated subcategory KV ⊆ K+(A ) is said to be

adapted to V if it satisfies the next two conditions:
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a1) if A• ∈ KV is acyclic, V (A•) is acyclic;

a2) for any A• ∈ K+(A ), there exists R• ∈ KV and a quis A• → R•.

Remark 3.2.2. It is direct to see that, if F : A → B is a left exact functor and R is a class of F -adapted

objects in A , the additive subcategory KF ⊆ K+(A ) consisting of bounded below complexes with terms

in R is a triangulated subcategory (Definition 2.2.13) by axiom A1 of Definition 3.1.4. Moreover, axiom

A2 and Definition/Proposition 3.1.3 shows that KF is adapted to K+(F ), in the terms of Definition 3.2.1.

Definition 3.2.3. Let A and B be abelian categories, and V : K+(A )→ K(B) be exact (as a functor of

triangulated categories). The right derived functor of V is a pair (RV, η) consisting of an exact functor

of triangulated categories RV : D+(A ) → D(B), and a natural transformation η : QB ◦ V ⇒ RV ◦ QA.

This pair is required to be initial with respect to any other such pair.

Let V : K+(A ) → K(B) be as in the definition above. We will show that, if K+(A ) admits a

triangulated subcategory KV adapted to V , our reasoning behind the proof of Theorem 3.1.10 holds

true to guarantee the existence of RV .

• Following Proposition 3.1.6, the class of quasi-isomorphisms S in (the underlying additive category

of) KV is localizing because the cone of a morphism between objects in KV is again in KV , by

Definition 2.2.13. Moreover, the exact functor KV [S−1] → D+(A ) is an equivalence since axiom

a2 of Definition 3.2.1 holds.

• Following Section 3.2.1, V maps S into the class of

quasi-isomorphisms in K(B) by axiom a1 of Definition

3.2.1. Therefore, we can define RV using the diagram to

the right.

• Using axiom a2 of Definition 3.2.1 when needed, the

content of Sections 3.2.2, 3.2.3 and 3.2.4 holds without

change.

D+(A ) D(B)

KV [S−1] D(B)

KV K(B)

:=RV

quasi−resolution

V

V

For future reference, we state this result as a theorem.

Theorem 3.2.4. In the notation of Definition 3.2.3, RV exists if K+(A ) admits a triangulated subcate-

gory adapted to V .

Remark 3.2.5. In the terminology of Remark 3.2.2, the right derived functor ofK+(F ) : K+(A )→ K+(B)

as in Definition 3.2.3 coincides with the right derived functor of F : A → B as in Definition 3.1.8, that is

R(K+(F )) = RF .

3.3 Classical derived functors

Definition 3.3.1. Let A ,B be abelian categories and F : A → B a left exact functor. Suppose that

RF : D+(A ) → D+(B) is everywhere defined. The i-th (higher) right derived functor of F is the
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functor RiF : A → B defined as A 7→ Hi(RF (A)), where A is seen as a complex concentrated in

degree 0.

Remark 3.3.2. We will also use the notation RiF to denote the composition D+(A )
RF−−→ D+(B)

Hi−−→ B.

Definition 3.3.3. Let A be any abelian category. A right resolution of an object A ∈ A is complex

C • ∈ ComA such that

0 A C0 C1 C2 . . . (3.5)

is an exact sequence. We denote such a resolution by 0→ A→ C •.

Lemma 3.3.4. Let A be an abelian category and A ∈ Obj(A ). Viewing A as a complex concentrated

in degree 0, giving a right resolution 0 → A → C • in ComA is the same as giving a quasi-isomorphism

A→ C •.

Proof. Suppose the resolution 0→ A→ C • is given as in diagram (3.5) above, and that the diagram

. . . 0 0 A 0 0 . . .

. . . 0 0 C0 C1 C2 . . .

� (3.6)

in A represents a quis A → C •. Then, exactness of the sequence (3.5) at Ci, for i ≥ 1, is the same

information as the downward arrow 0→ Ci in diagram (3.6). Moreover, the commutativity of the square

marked with � expresses A as the kernel of the differential C0 → C1.

Remark 3.3.5. Recall that, if F : A → B is a left exact functor such that A admits a class of F -adapted

objects R, we defined in Definition/Proposition 3.1.3 a quasi-resolution of a complex A• ∈ K+(A ) to be

a quis q : A• → R•, where R• ∈ K+(R). This terminology can be justified as follows:

• If A• = A ∈ Obj(A ) is concentrated in degree 0, Lemma 3.3.4 shows that a quasi-resolution such

as q is just a right resolution of A in A (as in Definition 3.3.3).

• If A• is an actual complex, a right resolution 0 → A• → R•,• of A• in ComA requires a double

complex R•,•, which will be defined in Section 3.6.

Proposition 3.3.6. Let F : A → B be a left exact functor such that A admits a class of F -adapted

objects. Given any A ∈ A , RiF (A) = 0 for i < 0, and R0F (A) ∼= F (A). In particular, R0F is left exact.

Proof. Choose a quis A→ R•, where R• is a bounded below complex of F -adapted objects. By Lemma

3.3.4, this is equivalent to giving a right resolution 0→ A→ R•. Then, RF (A) is the complex

0 F (R0) F (R1) F (R2) . . . ,

with F (R0) in degree 0. RiF (A) is, by definition, the cohomology of this complex at degree i. It is

clear that RF i(A) = 0 for i < 0. Since F is left exact, applying F to 0 → A → R• shows that F (A) ∼=

Ker (R0 → R1) = R0F (A).
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Corollary 3.3.7. Under the hypothesis of Proposition 3.3.6, any short exact sequence

0→ A→ B → C → 0 in A induces a long exact sequence

0

F (A) F (B) F (C)

R1F (A) R1F (B) R1F (C)

R2F (A) · · ·

(3.7)

in B.

Proof. The short exact sequence in A corresponds to a distinguished triangle A → B → C → A[1] in

D+(A ) by Proposition 2.4.9. Since RF is an exact functor of triangulated categories (Section 3.2.2),

the triangle RF (A)→ RF (B)→ RF (C)→ RF (A)[1] is distinguished in D+(B). Since the cohomology

functors Hi : D+(B) → B are cohomological in the sense of Definition 2.2.5, we get a long exact

sequence

0 RF 0(A) RF 0(B) RF 0(C) RF 1(A) RF 1(B) . . .

in B by Corollary 2.2.6. Using Proposition 3.3.6, we get the form presented in diagram (3.7).

Definition 3.3.8. Under the hypothesis of Definition 3.3.1, an object A ∈ Obj(A ) is called F -acyclic if

RiF (A) = 0 for every i ≥ 1.

Lemma 3.3.9. Under the hypothesis of Definition 3.3.1, any object of an F -adapted class in A

is F -acyclic.

Proof. This is a direct consequence of axiom A2 of Definition 3.1.4.

3.3.1 Delta functors

In this subsection, we define the concept of cohomological δ-functors. We will only need the broad-

ness of this construction and its properties in Section 4.3. However, these objects generalize the higher

derived functors of Definition 3.3.1, and so their definition is easier to understand right after the previous

discussion.

Definition 3.3.10 ([Wei94, Defn. 2.1.1]). Let A ,B be abelian categories. A (cohomological) δ-functor

from A to B is a family of additive functors T = {Tn : A → B}n≥0 indexed in the non-negative integers,

together with the following data: for every short exact sequence 0 → A1 → A2 → A3 → 0 in A , a

collection of morphisms δ = {δn : Tn(A3)→ Tn+1(A1)}n≥0 satisfying the following properties:

i) for each short exact sequence as above, there exists a long exact sequence
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0

T 0(A1) T 0(A2) T 0(A3)

T 1(A1) T 1(A2) T 1(A3)

T 2(A1) · · ·

δ0

δ1

ii) the collection δ is functorial in the short exact sequence, i.e. if

0 A1 A2 A3 0

0 B1 B2 B3 0

is a commutative diagram of short exact sequences in A , then the induced squares

Tn(A3) Tn+1(A1)

Tn(B3) Tn+1(B1)

δnA

δnB

are commutative.

Example 3.3.11 ([Wei94, Examp. 2.1.2]). If A is an abelian category, the collection of cohomology

functors {Hn : Com+(A )→ A }n≥0 is a δ-functor, where the δn are obtained via the Snake Lemma.

Definition 3.3.12. A morphism between δ-functors (T, δ), (S, δ) : A → B is a collection of natural

transformations F = {Fn : Tn ⇒ Sn}n≥0 such that, for any short exact sequence 0→ A1 → A2 → A3 → 0,

the following square is commutative:

Tn(A3) Tn+1(A1)

Sn(A3) Sn+1(A1)

δn

Fn(A3) Fn+1(A1)

δ
n

.

Definition 3.3.13. We say that a δ-functor (T, δ) : A → B is universal if it has the following property:

given any other δ-functor (S, δ) : A → B and a natural transformation F0 : T 0 ⇒ S0, there is a unique

sequence of natural transformations {Fn : Tn ⇒ Sn}n≥1 such that, together with F0, defines a morphism

of δ-functors F : (T, δ)→ (S, δ).

Remark 3.3.14. From the definition above, it is clear that, for every choice of T 0, there can exist at

most one (up to unique isomorphism) universal δ-functor T = {Tn : A → B}n≥0 with T 0 as the term of

degree 0.

There is a procedure to check if a given δ-functor is universal.

Definition 3.3.15. An additive functor F : A → B between abelian categories is called effaceable if, for

each A ∈ Obj(A ), there exists a monomorphism i : A→ A′ into some A′ ∈ Obj(A ) such that F (i) = 0.
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Theorem 3.3.16. If (T, δ) : A → B is a δ-functor such that Tn are effaceable for n ≥ 1, then T is

universal.

Proof. Let (S, δ) : A → B be another δ-functor and F0 : T 0 ⇒ S0 a natural transformation. We construct

the extension to a morphism of delta functors by induction on n. Suppose we have already constructed

natural transformations Fi : T i ⇒ Si for i ≤ n respecting the δ-functors. It suffices to construct a natural

transformation Fn+1 : Tn+1 ⇒ Sn+1 that verifies the commutativity requirement with respect to short

exact sequences of the form

0 A A′ Coker i 0
i

,

where A ∈ Obj(A ) and i : A → A′ is a monomorphism such that Tn+1(i) = 0. Since T is a δ-functor,

we have a long exact sequence

. . . Tn(A) Tn(A′) Tn(Coker i) Tn+1(A) Tn+1(A′) . . .
Tn(i) δn 0

,

and so δn is surjective. Therefore Tn+1(A) ∼= Tn(Coker i)/Ker δn ∼= Tn(Coker i)/Im (cokerTn(i)) =

= Coker (Tn(coker i)). We define Fn+1(A) : Tn+1(A)→ Sn+1(A) as the map making the bottom square

of the diagram

Tn(Coker i) Sn(Coker i)

Coker (Tn(coker i)) Coker (Sn(coker i))

Tn+1(A) Sn+1(A)

Fn(Coker i)

δn∼= δ
n

:=Fn+1(A)

commute. Unicity is then clear.

Proposition 3.3.17. Let F : A → B be a left exact functor between abelian categories, with A admitting

a class of F -adapted objects R, so that RF : D+(A ) → D+(B) is everywhere defined. Then the

collection of higher derived functors {RiF : A → B}i≥0 is a universal δ-functor.

Proof. The family {RiF}i≥0 is a δ-functor by Corollary 3.3.7 and the proof of Theorem 3.1.10. By

Theorem 3.3.16, it suffices to show that RiF is effaceable for each i ≥ 1. Since R is a class of

F -adapted objects in A , for any A ∈ A there is a monomorphism A ↪→ A′ with A′ ∈ R (axiom A3

of Definition 3.1.4). But Ri(A′) = 0 by Lemma 3.3.9, and so the image of this map under Ri is zero.

The proposition above proves that, as previously asserted, the higher derived functors are universal

δ-functors. We can ask if a converse statement holds. More precisely, do all, universal or not, δ-functors

arise as the cohomology of a right derived functor? Under conditions that guarantee the existence of

right derived functors, the answer is affirmative for universal δ-functors.

In fact, suppose T = {T i : A → B}i≥0 is any universal δ-functor. Then T 0 is left exact by Definition

3.3.10. If there exists a class of T 0-adapted objects in A , the higher right derived functors RiT 0 are well

defined by Theorem 3.1.10. Since R0T 0 ∼= T 0 (Proposition 3.3.6), and we have just seen that the right
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derived functors are universal in Proposition 3.3.17, there are unique natural isomorphisms T i ∼= RiT 0

for every i ≥ 0, by Remark 3.3.14.

This discussion also gives an easy example of a δ-functor that does not arise as a higher derived

functor: we pick a left exact functor F : A → B such that A admits a class of F -adapted objects, and

consider the δ-functor T = {T i : A → B}i≥0 given by T 0 = 0 and T i = Ri−1F , for i ≥ 1. T is also

necessarily non-universal.

3.4 Classes of adapted objects

3.4.1 On the existence of adapted classes

Throughout this subsection, let A ,B be abelian categories, and F : A → B a left exact functor.

In Theorem 3.1.10, we showed that the right derived functor RF exists if A has a class of F -adapted

objects. Theorem 3.4.2 below gives a partial inversion of this statement: it gives conditions on the

existence of F -adapted classes, assuming the existence of RF .

Definition 3.4.1. Suppose that RF : D+(A ) → D+(B) exists. We denote by acyc(F ) the subclass of

F -acyclic objects in A . We say that acyc(F ) is sufficiently large if any object of A is a sub-object of

an object of acyc(F ).

Theorem 3.4.2. Suppose that RF : D+(A )→ D+(B) exists. There exists an F -adapted class R in A

if and only if acyc(F ) is sufficiently large.

Proof. If R is an F -adapted class, R ⊆ acyc(F ) by Lemma 3.3.9, and so acyc(F ) is sufficiently large

because R is (axiom A3 of Definition 3.1.4). Conversely, suppose that acyc(F ) is sufficiently large. Take

any sufficiently large subclass R of acyc(F ) which is stable under direct sum (e.g. acyc(F ) itself). To

prove that R is F -adapted, we only need to show that any acyclic complex R• ∈ K+(R) is sent via F to

an acyclic complex of B, by Definition 3.1.4. If we write such an R• as . . .→ 0→ R0 d0−→ R1 → R2 → . . .,

we can break the complex into short exact sequences

0 R0 R1 Imd1 0,

0 Imd1 R2 Imd2 0,

0 Imd2 R3 Imd3 0,

...

d0 d1

d2

d3

Each of these short exact sequences induces a long right derived sequence by Corollary 3.3.7. Since

all Ri are F -acyclic, Imdi are F -acyclic as well.

Corollary 3.4.3. Suppose that RF : D+(A ) → D+(B) exists. Any sufficiently large subclass R of

acyc(F ) that is stable under direct sums is F -adapted. If such a R exists, we can compute RF (A•) as

follows: we find a R• ∈ K+(R) with a quis A• → R•, and RF (A•) = K+(F )(R•).
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3.4.2 A global adapted class

In this subsection, we will prove that, under certain conditions on the abelian category A , there is

a class of objects in A which is adapted to any left exact functor F : A → B. Recall the following

definition.

Definition/Proposition 3.4.4. Let A be an abelian category. An object I ∈ Obj(A ) is said to be

injective if it satisfies two equivalent conditions:

i) Given any morphism X → I and monomorphism X ↪→ Y , there exists a (not necessarily unique)

morphism Y → I making the diagram

X Y

I

commute.

ii) The functor Hom(−, I) : A opp → Ab is exact.

The dual notion is called a projective object.

Definition/Proposition 3.4.5. Let A be an abelian category. An injective resolution of an object

A ∈ Obj(A ) is a right resolution of A by injective objects, or, equivalently by Lemma 3.3.4, a quis

A→ I •, where I • is a bounded below complex of injective objects.

Definition/Proposition 3.4.6. An abelian category A is said to have enough injectives if, for any

A ∈ Obj(A ), there exists an injective object I and a monomorphism A ↪→ I (or, equivalently, a short

exact sequence 0→ A→ I → I/A→ 0).

The following two propositions will be crucial for what is to follow.

Proposition 3.4.7 ([Ive86, Pag. 43]). Let A be an abelian category, C • ∈ K (A ) acyclic, and

I • ∈ K+(A ) a bounded below complex of injective objects. Then HomK (A )(C
•, I •) = 0.

Proof. We can assume that Ii = 0 for all i < 0. Let f : C • → I • be a chain map. We will construct a

homotopy {hi : Ci → Ii−1}i∈Z. Set hi = 0 for all i ≤ 0. We will built the rest of the collection by induction

on i. Assume we have constructed maps hj , for 1 ≤ j ≤ i, such that

f j = hj+1 ◦ djC + dj−1
I ◦ hj (3.8)

for all 0 ≤ j ≤ (i − 1). Since C • is acyclic, we can factor diC : Ci → Ci+1 as the composition

Ci � Cokerdi−1
C

i
↪−→ Ci+1, where ι is a monomorphism induced by diC . Consider the following diagram:

. . . Ci−2 Ci−1 Ci Cokerdi−1
C Ci+1

. . . Ii−2 Ii−1 Ii

di−2
C

fi−1

di−1
C

hi−1
fi

hi

ι

x

hi+1

di−2
I di−1

I

.
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Since di−1
I ◦

(
hi ◦ di−1

C

)
= di−1

I ◦
(
f i−1 − di−2

I ◦ hi−1
)

= di−1
I ◦ f i−1 = f i ◦ di−1

C , we have that(
f i − di−1

I ◦ hi
)
◦ di−1

C = 0. By the the universal property of the cokernel of di−1
C , there exists an ar-

row x such that
(
f i − di−1

I ◦ hi
)

= x ◦ cokerdi−1
C . Since ι is a monomorphism and Ii is injective, there

exists hi+1 as in the diagram, satisfying x = hi+1 ◦ ι. It is easy to check that this hi+1 verifies equation

(3.8) when j = i. This finishes the induction step, and the proof.

Proposition 3.4.8. If A is an abelian category and I • ∈ K+(A ) is a bounded below complex of injective

objects, for any quis q : A• → B• between A•, B• ∈ K (A ), the induced homomorphism

HomK (A )(B
•
, I

•
)

(−) ◦ q−−−−→ HomK (A )(A
•
, I

•
)

is an isomorphism.

Proof. Consider the standard distinguished triangle A• q−→ B• τq−→ cone (q)
πq−→ A•[1] in K (A ). By Corol-

lary 2.2.6 and Example 2.2.7, we have a long exact sequence of abelian groups

· · · HomK (A )(A
•[1], I •)

HomK (A )(cone (q) , I •) HomK (A )(B
•, I •) HomK (A )(A

•, I •)

HomK (A )(cone (q) [−1], I •) · · · .

(−) ◦ (−πq)

(−) ◦ τq (−) ◦ q

(−) ◦ (−πq [−1])

Since q is a quis if and only if cone (q) is acyclic (Corollary 2.3.21), we get the the desired statement by

applying Proposition 3.4.7.

Corollary 3.4.9. If A is an abelian category and q : I • → C • is a quis from a bounded below complex of

injectives I • ∈ K+(A ) to C • ∈ K+(A ), then there exists a chain map f : C • → I • such that f ◦ q ∼ idI• .

Moreover, f is a quis.

The next theorem is central to the theory of derived functors.

Theorem 3.4.10. Let A be an abelian category with enough injectives, and F : A → B a left exact

functor. Then the class I of injective objects in A is F -adapted.

Notice that axiom A1 of Definition 3.1.4 follows easily from condition ii) of Definition/Proposition 3.4.4,

while A3 follows directly from Definition/Proposition 3.4.6. In this way, we are left to show the following

proposition.

Proposition 3.4.11. In the terminology of Theorem 3.4.10, if I • ∈ K+(I) is acyclic, K+(F )(I •) is acyclic.

Proof. If I • is acyclic, the zero map 0: I • → I • is a quis. By Corollary 3.4.9, this map is homotopy equiva-

lent to the identity idI• . Since K+(F ) is an additive functor, it follows that the identity map of K+(F )(I •) is

homotopy equivalent to the zero map 0: K+(F )(I •)→ K+(F )(I •). We conclude by Corollary 2.4.4.

Remark 3.4.12. Proposition 3.4.8 also says something important above quasi-resolutions by complexes

of injectives. Using Remark 3.1.7 and Proposition 3.4.11, we know that, given a morphism f : A• → B•
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and quasi-resolutions A• → I •A and B• → I •B by complexes of injectives, we can always find a dashed

arrow making the square

A• I •A

B• I •B

quis

f

quis

commute. Then, Proposition 3.4.8 asserts that any such arrow is unique up to homotopy. We will use

this fact in the proof of Proposition 4.3.11.

Theorems 3.1.10 and 3.4.10 guarantee the existence of right derived functors

RF : D+(A ) → D+(B) of left exact functors F : A → B, under the hypothesis that A has enough

injectives. Dually, the same reasoning shows that, given any right exact functor G : A → B from an

abelian category with enough projectives, its left derived functor LG : D−(A ) → D−(B) exists. Note

that, in this case, we can compute RF using F -acyclic quasi-resolutions, according to Corollary 3.4.3.

We finish this section with the following remark: if q : I •1 → I •2 is any quis between bounded below

complexes of injectives in an abelian category, then q is a homotopy equivalence. This follows trivially

from applying Corollary 3.4.9 twice. Consequently, the next proposition is immediate.

Proposition 3.4.13. If A is an abelian category, I is its class of injective objects and S−1
I the localizing

class of quis in K+(I), the natural localization functor K+(I)→ K+[S−1
I ] is an isomorphism.

3.5 Thick subcategories and equivalences

As we will see in Subsection 4.3.4, we are often confronted with the following scenario. We are given

a left exact functor F : B → C from an abelian category B with enough injectives, and hence we can

speak of its right derived functor RF : D+(B) → D+(C ), according to the previous section. We want

to consider the restriction of F to a full abelian subcategory A ⊆ B, F ′ : A → C . If A does not have

enough injectives, there is no direct way of defining the right derived functor RF ′ : D+(A )→ D+(C ). If

we try to use RF applied to objects in D+(A ), there is no way to guarantee that the target of this functor

lands in the derived category of bounded below complexes with terms in the essential image of F since,

in general, the canonical exact functor D+(A)→ D+(B) is not fully faithful.

A way to solve this problem is to find an equivalence ϕ between D+(A ) and a full triangulated

subcategory N of D+(B), and use this data to define RF ′ as the composition

D+(A ) D+(C )

N

:=RF ′

ϕ−1 RF |N
.

Any such ϕ implies that complexes in N have cohomology groups in the full subcategory A . This

motivates the following definition.

Definition 3.5.1. Given a full abelian subcategory A ⊆ B, we denote by D∗A (B) the full triangulated

subcategory of D∗(B) containing those complexes whose cohomology is in A , where ∗ = {∅,+,−, b}.

A similar notation applies for the homotopy categories.
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Motivated by this discussion, we want to find conditions on A so that the natural functorD∗(A )→ D∗(B)

defines an equivalence of categories between D∗(A ) and D∗A (B).

Definition 3.5.2. Let A be an abelian category. An extension of an object Q by an object K is any

object X fitting in a short exact sequence of the form 0→ K → X → Q→ 0.

Definition 3.5.3. A thick subcategory of an abelian category B is a full abelian subcategory A ⊆ B,

such that any extension in B of objects of A is again in A .

Proposition 3.5.4. Let ∗ = {∅,+,−, b}. If A ⊆ B is a thick subcategory, then the full additive subcate-

gories K∗(A ) and K∗A (B) are full triangulated subcategories of K∗(B).

Proof. According to Definition 2.2.13, we only need to show that the cone of a morphism between

objects of K∗(A ) (respectively, K∗A (B)) is in K∗(A ) (respectively, K∗A (B)). For K∗(A ), this is im-

mediate because the cone is an extension object (Proposition 2.3.20). For K∗A (B), if f : A• → B• is a

morphism between complexes of B whose cohomology is in A , consider the long exact sequence of

Proposition 2.3.20, associated to the canonical distinguished triangle. We can split the long sequence

into short exact sequences of the form 0→ ImHi(f)→ Hi(cone (f))→ KerHi+1(f)→ 0 and hence

express Hi(cone (f)) as an extension in B of objects in A , and so Hi(cone (f)) ∈ A .

The next proposition asserts that, under certain conditions, if A ⊆ B is a full abelian subcategory,

any bounded below complex with terms in B and cohomology in A is isomorphic in D+(B) to a chain

complex with terms in A .

Proposition 3.5.5 ([KS90, Prop. 1.7.11]). Let A ⊆ B be a full abelian subcategory. Suppose the

following condition holds:

(?) For any monomorphism A ↪→ B with A ∈ A , there exists a morphism B → A′, where A′ ∈ A ,

such that the composition A ↪→ B → A′ is still a monomorphism.

Then, for any B• ∈ K+
A (B), there is a complex A• ∈ K+(A ) and a quis B• → A•.

Theorem 3.5.6. Let B be an abelian category and A ⊆ B a thick subcategory. Suppose that condition

(?) of Proposition 3.5.5 holds. Then, the canonical functor D∗(A )→ D∗(B) is fully faithful and induces

an equivalence of categories D∗(A ) ∼= D∗A (B), for ∗ = {+, b}.

If the dual statement of (?) holds, then we have the same result for ∗ = {−, b}.

Proof. Since A is thick, K∗A (B) is a full triangulated subcategory of K∗(B) by Proposition 3.5.4. If

∗ = +, since (?) holds, so does condition ii) of Proposition 2.1.8, by Proposition 3.5.5. We conclude that

D+(A ) → D+(B) is fully faithful. It is also essentially surjective by Proposition 3.5.5. For ∗ = b, we

follow the same reasoning and use truncation functors similar to those defined in Example 2.3.7.

Corollary 3.5.7. Let B be an abelian category and A ⊆ B a thick subcategory. Suppose that any

object A ∈ A can be embedded in an object A′ ∈ A which is injective as an object of B. Then the

canonical functor D∗(A )→ D∗(B) induces an equivalence D∗(A ) ∼= D∗A (B), for ∗ = {+, b}.
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Proof. We show that condition (?) of Proposition 3.5.5 holds. Let A ↪→ B be a monomorphism with

A ∈ A . Then we can find a monomorphism A ↪→ A′ where A′ ∈ A is injective of B. By Defini-

tion/Proposition 3.4.4, we can find an arrow B → A′ such that the composition A ↪→ B → A′ is equal to

the monomorphism A ↪→ A′.

3.6 Composition of derived functors

As we will see in Chapter 5, composition of derived functors is ubiquitous in the study of derived

categories of coherent sheaves, namely in the construction of integral functors (Definition 5.2.4). Under

certain conditions, the composition of derived functors is the derived functor of the composition.

Proposition 3.6.1. Let V1 : K+(A ) → K+(B) and V2 : K+(B) → K(C ) be two exact functors of trian-

gulated categories. Suppose there exist triangulated subcategories KV1 ⊆ K+(A ) and KV2 ⊆ K+(A )

which are adapted to V1 and V2, respectively. Then, by Theorem 3.2.4, the right derived functors

RV1 : D+(A )→ D+(B) and RV2 : D+(A )→ D(C ) exist. If V1(KV1
) ⊆ KV2

, then:

i) KV1
is adapted to the composition (V2 ◦ V1) : K+(A )→ K(C ), and hence the right derived functor

R(V2 ◦ V1) : D+(A )→ D(C ) exists.

ii) There is a natural isomorphism of functors R(V2 ◦ V1) R(V2) ◦R(V1)
∼= .

Proof. Assertion i) is clear. For ii), there is a natural transformation γ : QC ◦ (V2 ◦V1)⇒ (RV2 ◦RV1)◦QA
given as follows: if A• ∈ K+(A ) and R• ∈ KV1

is such that A• ∼= R• in D+(A ), represent this

isomorphism by a right roof A• quis−−→ T • quis←−− R•, where T • ∈ KV1
, as in subsection 3.2.3; apply-

ing V2 ◦ V1 we get the roof V2(V1(A•)) → V2(V1(T •))
quis←−− V2(V1(R•)) in K(C ), as V1(KV1) ⊆ KV2 ;

we define γ(A•) to be the morphism represented by this roof. By the universal property of the pair

(R(V2 ◦ V1), η : QC ◦ (V2 ◦ V1) ⇒ R(V2 ◦ V1) ◦ QA), there is a unique natural transformation

ε : R(V2 ◦ R1) ⇒ RV2 ◦ RV1 such that (ε ◦ QA) ◦ η = γ. By the construction of subsection 3.2.4, ε

is an isomorphism since γ restricts to the identity on objects of KV1 .

In the case where A and B have enough injective objects, and V1 and V2 are induced by left exact

functors A → B and B → C , we can derive the result above via a more hands-on method. This

procedure uses a homological tool called a spectral sequence of a double complex. We refer the reader

to Appendix C, where we introduce this device, and show how it can be used to prove Proposition 3.6.1

in the aforementioned special case. The formalism of spectral sequences will also be required later

in Subsection 4.3.5. For future reference, we state right away the result below, which we prove in the

appendix.

Corollary 3.6.2. Let F : A → B be a left exact functor and A have enough injectives. If C ⊆ B is a

thick subcategory and RiF (A) ∈ C for all A ∈ A , then RF (A•) ∈ D+
C (B) for every A• ∈ D+(A ). In

other words, RF restricts to RF : D+(A )→ D+
C (B).

Proof. We prove this result in page C.11 of Appendix C.
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Chapter 4

Abelian categories of sheaves
We begin by setting the notation for the rest of the text. A ringed space is denoted by a pair (X,R),

where X is the topological space, and R is the accompanying sheaf of rings on X. The category of

ringed spaces is denoted RgSpaces. The abelian category of R-modules on a ringed space (X,R) is

denoted by ModR(X).

We denote the category of schemes by Sch. If X ∈ Sch, we always denote its structure sheaf by OX .

In this case, and when there is no chance for confusion, we write the shorthand ModX := ModOX (X).

The structure of a ringed space (X,R) enables one to define several functors out of the abelian

category ModR(X). The following table compiles some of the most important ones, along with their

type of exactness.

Name Required data Symbol Exactness

Stalk p ∈ X (−)p : ModR(X)→ ModRp
Exact

Sections U ∈ Op(X) Γ(U,−) : ModR(X)→ ModR(U) Left exact

Pushforward f ∈ MorRgSpaces(X,Y ) f∗ : ModR(X)→ ModS (Y ) Left exact

Tensor product F ∈ ModR(X) F ⊗R (−) : ModR(X)→ ModR(X) Right exact

Inverse image f ∈ MorRgSpaces(X,Y ) f−1 : ModS (Y )→ Modf−1(S )(X) Exact

Pullback f ∈ MorRgSpaces(X,Y ) f∗ : ModS (Y )→ ModR(X) Right exact

Table 4.1: Functors defined over the ringed spaces (X,R) and (Y,S ).

We remind ourselves of the definition of the pullback functor. If f : (X,R) → (Y,S ) is a morphism

of ringed spaces, so that f ] : f−1S → R is the accompanying map of sheaves of rings on X, for any

U ∈ Op(X), the maps on sections f ](U) : f−1S (U) → R(U) induce the structure of a f−1S -module

on R. Therefore, given any G ∈ Modf−1S (X), the tensor product R ⊗f−1S G is a well defined f−1S -

module on X. There is a canonical structure of a R-module on this tensor product, induced by the

extension of scalars over each U ∈ Op(X),

R(U)×
(
R(U)⊗f−1S (U) G (U)

)
R(U)⊗f−1S (U) G (U)

(r′, r ⊗ g) (r′r)⊗ g

The functor f∗ : ModS (Y )→ ModR(X) is then defined as the composition

ModS (Y ) Modf−1(S )(X) ModR(X)
f−1 R⊗f−1(S )(−)

.

To conclude, we recall the adjuntion f∗ a f∗, [Vak17, 16.3.4].
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In order to define the derived analogue of the half-exact functors of Table 4.1 under the framework

developed in Chapters 2 and 3, a natural procedure to follow is to survey the abelian category ModR(X)

for the existence of injective (respectively, projective) objects, since, according to Theorem 3.4.10, these

form a class adapted to any left (respectively, right) exact functor.

4.1 Probing injective and projective objects

4.1.1 Modules over ringed spaces

Proposition 4.1.1. If A is a ring, ModA has enough projectives and enough injectives.

Sketch of proof. Let M ∈ ModA. The existence of enough projectives is straightforward: there exists an

epimorphism F �M from a free A-module F , [Rei95, 2.4], and free A-modules are projective, [Lan02,

III. §4]. Regarding the existence of injectives, Baer’s criterion asserts that Q ∈ ModA is injective if and

only if the following condition holds: for every ideal I ⊆ A, every A-module homomorphism I → Q

extends to A → Q, [Wei94, 2.3.1]. Using this criterion, we see that an abelian group G is injective as

a Z-module if and only if it is divisible (i.e. G = nG for every n ∈ N). Together with the fact that every

quotient of a divisible group is again divisible, this shows that the category ModZ ≡ Ab has enough

injectives, since every Z-module is the quotient of a free Z-module F by a submodule K, and hence

injects into the divisible group (F ⊗Z Q)/K. Finally, to show that M embeds into an injective module, we

consider the group HomZ(A,M) of group homomorphisms from the underlying abelian group of A to the

underlying abelian group of M . We can endow HomZ(A,M) with the structure of an A-module via the

action (a, φ) 7→ φa, where φa : A → M is the group homomorphism defined by φa(a′) = φ(aa′). There

is an injection M ↪→ HomZ(A,M) of A-modules defined by m 7→ ψm, where ψm(a) = am. Since ModZ

has enough injectives, we can find an injection of Z-modules M ↪→ Q, with Q divisible, and so we have

M ↪→ HomZ(A,M) ↪→ HomZ(A,Q). One can show that HomZ(A,Q) is an injective A-module, [Wei94,

2.3.11].

Proposition 4.1.2. Let (X,R) be a ringed space. Then ModR(X) has enough injectives.

Proof. Let F ∈ ModR(X). We want to show that there a monomorphism F ↪→ I , where I is an

injective R-module on X. Let x ∈ X be any point and ιx : {x} ↪→ X be the inclusion. Since Fx is an Rx-

module and ModRx has enough injectives by Proposition 4.1.1, there exists an embedding hx : Fx ↪→ Ix

into an injective Rx-module. Consider the skyscraper sheaf ιx,∗(Ix) with abelian group Ix and supported

at x, which is seen an R-module on X via the structure maps of the stalk as a filtered colimit. Define

I =
∏
x∈X ιx,∗(Ix) ∈ ModR(X). Since morphisms of sheaves are determined by their induced maps

on stalks [Vak17, 2.4.D],

HomR(F ,I ) ∼=
∏
x∈X

HomR(F , ιx,∗(Ix)) ∼=
∏
x∈X

HomRx
(Fx, Ix).

On one hand, this shows that I is an injective R-module because HomR(−,I ) : ModR(X)opp → Ab is

exact (Definition/Proposition 3.4.4) and, on other hand, it determines a monomorphism F ↪→ I induced

by the collection of embeddings maps {hx}x∈X .
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Remark 4.1.3. In particular, this proposition shows that the category of sheaves of abelian groups on X

has enough injectives, since AbX ∼= ModZ(X), [Vak17, 2.2.13].

The next example shows that there exists a ringed space (X,R) such that ModR(X) does not have

enough projectives. The discussion is inspired on the blog post [Cla17].

Example 4.1.4. Let X denote a topological space with the following property: X has a closed point x

such that, for any connected open neighborhood U of x, there exists a strictly smaller open neighborhood

V of x. Suppose there exists an epimorphism P � Z of sheaves of abelian groups on X, with P

projective. Given any W ∈ Op(X), denote by ιW : W ↪→ X the inclusion, and define the shorthand

ZW := ιW,!(ZW ) for the extension by zero of the constant sheaf ZW associated to Z on W (with the

subspace topology).

Fix some connected open neighborhood U of x. Using the hypothesis on X, there exists V ∈

Op(X) with x ∈ V ( U . Therefore, X = (X \ {x}) ∪ V is an open cover, and there is a surjection

ZX\{x} ⊕ZV � Z. Since P is projective, there is a commutative diagram

P

ZX\{x} ⊕ZV Z

and, in particular, the map P(U)→ Z(U) factors through ZX\{x}(U)⊕ZV (U). We have that ZX\{x}(U) = 0,

as x ∈ U . Moreover, by definition of the extension by zero [Vak17, 2.7.G], ZV (U) is in bijection with the

set of families of compatible germs over U of the presheaf

Op(X) 3W 7→

ZV (W ) if W ⊆ V

0 otherwise

.

Since U is connected, the restriction maps over open subsets contained in V are the identity, and this

presheaf just assigns an integer to V , and 0 to any other open subset W 6⊆ V of X (as is the case of U ).

We conclude that any family of compatible germs over U is trivial and hence ZV (U) = 0.

From this discussion, any surjection P � Z is such that the map on sections P(U) → Z(U) over

any connected open neighborhood U of x is zero. This implies that the map on stalks Px → Zx is also

zero for every x ∈ X, contracting the surjectivity of P � Z.

Therefore, we have shown that the topological space X has the property that ModZ(X) does not

have enough projective objects. One example of a topological space satisfying the condition imposed

on X is the (underlying topological space of the) projective line over a field k, [Vak17, 23.4.7].

4.1.2 A review of (quasi)coherent modules

As mentioned at the end of the introduction to this chapter, we are a quest to find an abelian category

of sheaves of modules that is suitable for the construction of the derived analogue of the half-exact

functors of Table 4.1. The previous subsection showed that ModR(X) is not such a category because

of lack of projective objects. Since a scheme X is a particular type of ringed space, we may wonder if
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the additional structure we impose on its definition is sufficient to guarantee the existence of projectives.

This is not the case. In fact, Example 4.1.4 can be adapted to show that there exists a scheme X such

that ModX does not have enough projective objects, [Har77, Exerc. III.6.2.a]. Consequently, we devote

our attention to studying the existence of injective and projective objects in abelian subcategories of the

category of modules over a scheme.

This subsection is devoted to recalling the definition and main properties of locally free, quasicoher-

ent, and coherent sheaves.

Definition 4.1.5. Let (X,R) ∈ RgSpaces and F ∈ ModR(X).

F is said to be a free sheaf on X if F ∼= R⊕I for some index set I. If I can be taken to be finite, F

is called a free sheaf of finite rank.

F is said to a locally free sheaf (respectively, locally free sheaf of finite rank ) on X if there exists

an open cover {Ui}i∈I of X such that, for any i ∈ I, F |Ui is a free sheaf (respectively, free sheaf of finite

rank) on the ringed space (Ui,R|Ui).

We denote the full additive subcategories of locally free sheaves and locally free sheaves of finite

rank on a ringed space (X,R) by LocFreeR(X) and LocFreefR(X), respectively. Again, if X ∈ Sch and

there is no risk for confusion, we write LocFreeX (respectively, LocFreefX ) for the category of locally free

OX -modules (respectively, of finite rank) on X.

Remark 4.1.6. For most schemes X, LocFreeX is not an abelian category. An example is given in

[Vak17, 13.4.1].

Definition/Proposition 4.1.7. If A is a ring, the base of open subsets {D(f) := SpecAf : f ∈ A} of the

affine scheme SpecA is called the distinguished affine base, [Vak17, 3.5.A and 4.1.2].

If M ∈ ModA, M̃ ∈ ModSpecA is the sheaf of OSpecA-modules on the affine scheme SpecA deter-

mined by the sheaf on the distinguished affine base that assigns to each D(f) the localization Mf , and,

to each inclusion D(f) ⊆ D(g), the map resD(g),D(f) : Mg → Mf that arises from the universal property

of the localization M →Mg, [Vak17, 4.1.D]. M̃ is called the OSpecA-module induced by M .

Since every A-module homomorphism M → N determines induced maps of Af -modules Mf → Nf ,

for any f ∈ A, that fit into commutative diagrams

Mg Ng

Mf Nf

resD(g),D(f) resD(g),D(f)

for every D(f) ⊆ D(g), this construction determines a functor (−)∼ : ModA → ModSpecA.

Proposition 4.1.8 ([GW10, 7.13]). If A is a ring, and M,N ∈ ModA, the maps

HomA(M,N) HomOSpecA
(M̃, Ñ)

(−)∼

Γ(X,−)

are mutually inverse. In particular, the functor (−)∼ : ModA → ModSpecA is fully faithful.
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Proposition 4.1.9 ([GW10, 7.14]). Let A be a ring.

i) A sequence of A-modules M φ−→ N
ψ−→ P is exact if and only if the sequence of OSpecA-modules

M̃
φ̃−→ Ñ

ψ̃−→ P̃ is exact. In particular, (−)∼ : ModA → ModSpecA is exact.

ii) If φ : M → N is an A-module homomorphism, (Kerφ)
∼ ∼= Ker φ̃, (Cokerφ)

∼ ∼= Coker φ̃ and

(Imφ)∼ ∼= Im φ̃.

iii) If (Mi)i∈I is a family of A-modules, (⊕i∈IMi)
∼ ∼= ⊕i∈IM̃i.

iv) If M : I → ModA is a filtered diagram of A-modules, then (lim−→i
Mi)

∼ ∼= lim−→i
M̃i.

Definition 4.1.10 ([Vak17, 13.2.2]). Let X ∈ Sch and F ∈ ModX . F is said to be quasicoherent

if, for every affine open subset SpecA ⊆ X, F |SpecA
∼= M̃ , for some M ∈ ModA. The category of

quasicoherent OX -modules on X is denoted QCohX .

Remark 4.1.11. Taking X = SpecA in the definition above expresses QCohSpecA as the essential im-

age of the exact functor of Proposition 4.1.8. We conclude that ModA is equivalent to QCohSpecA. In

particular, QCohSpecA has enough injectives and enough projectives, by Proposition 4.1.1.

Remark 4.1.12. Under the equivalence of categories ModA ∼= QCohSpecA, the pushforward and the

pullback have a useful interpretation as restriction and extension of scalars, respectively. Indeed, if

f : SpecA → SpecB is a morphism of affine schemes, where A,B ∈ Rings, and f ] : B → A is the

corresponding map of rings, then:

i) if M ∈ ModA, we have that f∗(M̃) ∼= (BM)∼, where BM denotes M viewed as a B-module via f ],

[Har77, II.5.2.d];

ii) ifN ∈ ModB , f∗(Ñ) ∼= [A(N ⊗B A)]
∼, whereA is seen as aB-module via f ] for the tensor product,

and A(N ⊗B A) is notation for theA-module structure onN⊗BA, given byA×(N⊗BA)→ N⊗BA,

(a, n⊗ a′) 7→ n⊗ (aa′), [Har77, II.5.2.e].

Proposition 4.1.13 ([GW10, 7.16]). Let X ∈ Sch and F ∈ ModX . F ∈ QCohX if and only if there exists

an affine cover {SpecAi}i∈I of X such that, for all i ∈ I, there exists Mi ∈ ModAi with F |SpecAi
∼= M̃i.

Lemma 4.1.14. If X ∈ Sch and F ∈ QCohX , for any U ∈ Op(X), F |U ∈ QCohU .

Proof. Trivial.

Proposition 4.1.15 ([GW10, 7.19]). Let X ∈ Sch.

i) If {Fi}i∈I is a collection of quasicoherent sheaves on X, the OX -module
⊕

i∈I Fi is again quasi-

coherent.

ii) If φ ∈ Hom(QCohX), then Kerφ,Cokerφ, Imφ ∈ QCohX .

iii) If F ,G ∈ QCohX , then F ⊗OX G ∈ QCohX . Moreover, for any affine open subset SpecA ⊆ X,

Γ(SpecA,F ⊗OX G ) ∼= Γ(SpecA,F )⊗Γ(U,OX) Γ(SpecA,G ).
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If X ∈ Sch, assertions i) and ii) of Proposition 4.1.15 show, in particular, that the full subcategory

QCohX ⊆ ModX is abelian. We have a chain of strict inclusions [Vak17, 13.2.A],

LocFreeX ( QCohX ( ModX

(not abelian) (abelian) (abelian)
.

Proposition 4.1.16 ([Har77, II.5.6]). Let X = SpecA be an affine scheme, with A a ring. If

0→ F1 → F2 → F3 → 0 is a short exact sequence of OX -modules and F1 ∈ QCohX , then the left ex-

act functor Γ(X,−) : ModX → ModA gives rise to an exact sequence of A-modules

0→ F1(X)→ F2(X)→ F3(X)→ 0.

Corollary 4.1.17 ([Vak17, 13.4.A]). If X is a scheme, a sequence F1 → F2 → F3 in QCohX is exact if

and only if, given any affine cover {SpecAi}i∈I of X, the sequences

F1(SpecAi)→ F2(SpecAi)→ F3(SpecAi) are exact in ModAi , for every i ∈ I.

Definition 4.1.18. Let A be a ring. M ∈ ModA is said to be:

i) finitely generated if there exists a surjection A⊕p �M , for some p ∈ Z≥0.

ii) finitely presented if there exists a surjection A⊕p � M whose kernel is also finitely generated,

for some p ∈ Z≥0.

iii) coherent if it is finitely generated and the kernel of any morphism A⊕p →M is finitely generated,

for any p ∈ Z≥0.

Lemma 4.1.19 ([Vak17, 13.6.2]). If A is a Noetherian ring, M ∈ ModA is coherent if and only if it is

finitely presented, if and only if it is finitely generated.

Proposition 4.1.20 ([Vak17, 13.6.3]). If A is a ring, the category of coherent A-modules is a full abelian

subcategory of ModA.

Definition 4.1.21. Let X ∈ Sch and F ∈ QCohX . F is called coherent (respectively, finitely pre-

sented, of finite type) if, for every affine open set SpecA ⊆ X, the A-module F (SpecA) is coherent

(respectively, finitely presented, finitely generated).

We denote by CohX ⊆ ModX the subcategory of coherent sheaves on a scheme X. According to

Proposition 4.1.20, CohX is a full abelian subcategory of QCohX , [Vak17, 13.6.4]. Therefore, we have a

chain of strict inclusions CohX ( QCohX ( ModX .

Proposition 4.1.13 showed that the property of an OX -module on a scheme X being quasicoherent

can be checked on a specific affine cover of X. The next statement asserts that coherent sheaves also

have this behavior.

Proposition 4.1.22 ([Vak17, 5.3.2, 13.6.C and 13.6.D]). Let X ∈ Sch and F ∈ ModX . F ∈ CohX if

and only if there exists an affine cover {SpecAi}i∈I of X such that, for all i ∈ I, there exists a coherent

Ai-module Mi with F |SpecAi
∼= M̃i.
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4.1.3 There is no perfect choice of abelian category

Recall the following definitions.

Definition 4.1.23. Let X ∈ Sch. X is said to be:

i) quasicompact, if it is quasicompact as a topological space, i.e. if it can be covered by a finite

number of affine open subsets.

ii) quasiseparated, if the intersection of any two affine open subsets is a finite union of affine open

subsets.

iii) qcqs, if it is both quasicompact and quasiseparated.

iv) Noetherian, if it can be covered by a finite number of affine open subsets of the form SpecA,

where A is a Noetherian ring.

Remark 4.1.24. We say that a topological space X is Noetherian if it satisfies the descending chain

condition for closed subsets, [Vak17, 3.6.14]. In this case, any subset of X (with the subspace topology)

is again Noetherian, [Sta21, Tag 0052]. Any Noetherian topological space is quasicompact, [Sta21, Tag

04ZA].

If X is now a scheme, and X is Noetherian as in Definition 4.1.23 iv), its underlying topological space

is Noetherian, [Vak17, 5.1.C].

Any open subscheme of a quasiseparated subscheme is again quasiseparated. Any Noetherian

scheme is qcqs. We conclude that any open subscheme of a Noetherian scheme is qcqs. In particular,

any affine open subscheme of a Noetherian scheme is again Noetherian, [Vak17, 5.3.3, 5.3.4 and 5.3.A].

Definition 4.1.25. Let φ : X → Y be a morphism of schemes.

φ is said to be quasicompact (respectively, quasiseparated, qcqs) if, for any affine open sub-

scheme SpecB ⊆ Y , (φ−1(SpecB),OX |φ−1(SpecB)) is a quasicompact (respectively, quasiseparated,

qcqs) scheme.

φ is said to be of finite type if, for any affine open subscheme SpecB ⊆ Y , φ−1(SpecB) can be

covered by a finite number of affine open subschemes {SpecAi}ni=1 such that the induced map of rings

B → Ai expresses Ai as a finitely generated B-algebra. In particular, if φ−1(SpecB) ∼= SpecA where A

is a finite B-algebra (i.e. finitely generated as an B-module), then φ is said to be finite.

Remark 4.1.26. Any morphism of schemes X → Y with X Noetherian is qcqs, [Vak17, 7.3.B].

The finiteness conditions imposed on Noetherian schemes bring major simplifications. The next two

statements follow directly from Proposition 4.1.22 and Lemma 4.1.19.

Corollary 4.1.27. Let X be a Noetherian scheme. A quasicoherent sheaf F on X is coherent if and

only if it is finitely generated, if and only if it is of finite type.

Corollary 4.1.28. If X ∈ Sch is Noetherian, then LocFreefX ⊆ CohX . In particular, the structure sheaf

OX is coherent.
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The following proposition concerns extensions in the category of (quasi)coherent sheaves. Again,

Noetherianess is useful in the coherent case.

Proposition 4.1.29 ([Har77, II.5.7]). If X ∈ Sch and 0→ F1 → F2 → F3 → 0 is a short exact sequence

of OX -modules, with F1 and F3 quasicoherent, then F2 is also quasicoherent. If X is Noetherian, and

F1,F3 are coherent, then F2 is also coherent.

Proposition 4.1.30 ([Har77, II.5.8 and Exerc. II.5.5.c]). Let f : X → Y be a morphism of schemes.

i) If G ∈ QCohY , then f∗G ∈ QCohX .

ii) If X and Y are Noetherian and G ∈ CohY , then f∗G ∈ CohX .

iii) If X is Noetherian (or f is qcqs) and F ∈ QCohX , then f∗F ∈ QCohY .

iv) If X and Y are Noetherian, and f is finite, given F ∈ CohX , then f∗F ∈ CohY .

The next proposition shows that any quasicoherent sheaf on a Noetherian scheme has a resolution

by injective quasicoherent sheaves.

Proposition 4.1.31. If X is a Noetherian scheme, the category QCohX has enough injectives.

Proof. Since X is Noetherian, we can cover X with by a finite collection of affine schemes SpecAi, with

Ai Noetherian rings, for i = 1, . . . , n. If F is quasicoherent, F |SpecAi
∼= M̃i, for some Ai-modules Mi,

by Proposition 4.1.13. Since ModAi has enough injectives by Proposition 4.1.1, we can embed each Mi

in an injective Ai-module Ii. Denote by ιSpecAi : SpecAi → X the inclusions. Since Ĩi is a quasicoherent

module on SpecAi, each pushforward ιSpecAi∗(Ĩi) is also quasicoherent by Proposition 4.1.30 iii). Define

G =

n⊕
i=1

ιSpecAi∗(Ĩi) ,

which is again quasicoherent (Proposition 4.1.15 i). The monomorphisms Mi → Ii of Ai-modules

induce monomorphisms (Proposition 4.1.9 ii) of OSpecAi -modules M̃i → Ĩi and hence maps M̃i → G .

The induced map F → G is then injective.

The only thing that is left to show is that G is an injective object in QCohX . By Definition/Proposition

3.4.4, this is equivalent to showing that the left-exact functor HomQCohX (−,G ) : QCohopp
X → Ab is exact,

i.e. showing that if H1
φ−→H2 is an injective map of quasicoherent sheaves on X, then the induced map

Hom(H2,G ) → Hom(H1,G ) is surjective. By the definition of G , this is the same as showing that each

map

Hom(H2, ιSpecAi∗(Ĩi))
−◦φ−−−→ Hom(H1, ιSpecAi∗(Ĩi))

is surjective. By the adjunction ι∗ a ι∗ and the identification ιSpecAi
∗H ∼= H |SpecAi this is the same as

showing that each map

Hom(H2|SpecAi , Ĩi)
−◦φ|SpecAi−−−−−−−→ Hom(H1|SpecAi , Ĩi)
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is surjective. Let H1|SpecAi
∼= Ñi and H2|SpecAi

∼= K̃i for Ai-modules Ni and Ki. By the equivalence of

categories of Remark 4.1.11, this is the same as showing that each map

Hom(Ki, Ii)
−◦φ(SpecAi)−−−−−−−−−→ Hom(Ni, Ii)

is surjective. As φ is injective, so are the map on sections φ(SpecAi) : Ni → Ki. We conclude that the

maps above are surjective since Ii is an injective Ai-module.

The problem with projective objects still holds, as the next example shows.

Example 4.1.32. There exist Noetherian schemes X for which neither QCohX or CohX have enough

projectives. In fact, one can prove that there is no surjection from a projective (quasi)coherent sheaf on

the projective line over an infinite field to its structure sheaf, [Har77, Exerc. III.6.2.b].

However, not all is lost. Recall the following definitions.

Definition/Proposition 4.1.33 ([Vak17, Pags. 148-151]). Let S be a Z≥0-graded ring. The ideal

S+ :=
⊕

n>0 Sn is called the irrelevant ideal. The homogeneous spectrum of S, denoted ProjS, is

set {p ∈ SpecS : p is homogeneous and p 6⊇ S+}, endowed with the subspace topology of SpecS. Given

a homogeneous element f ∈ S+, we set D+(f) := {p ∈ ProjS : f 6∈ p}. The collection {D+(f)} as f

ranges through the homogeneous elements of S+ is a basis for the topology on ProjS. For any such

f , the localization Sf has a canonical structure of a Z-graded ring, and we denote by S[f ] its subring of

elements of degree 0. Explicitly, S[f ] = {s/fk ∈ Sf : deg(s) = k deg(f)}. Each D+(f) is homeomorphic

to SpecS[f ], compatibly with restrictions D+(f) ⊆ D+(g). We define the sheaf OProjS on ProjS to be

the unique (up to unique isomorphism) sheaf such that OProjS |D+(f)
∼= OSpecS[f]

for any homogeneous

element f ∈ S+. From now on, we write ProjS for the scheme (ProjS,OProjS).

Definition 4.1.34. If S is a Z≥0-graded ring and S0 = A, we say that S is a graded ring over A.

Definition 4.1.35. We say that X ∈ Sch is a projective scheme over A (or projective A-scheme) if

there exists a finitely generated graded ring S over A such that X ∼= ProjS.

Example 4.1.36. If A is a ring and n ≥ 0, PnA := ProjA[X0, . . . , Xn] is called the projective n-space over

A, [Vak17, 4.5.8].

Remark 4.1.37. Any affine scheme SpecA is a projective scheme over A since P0
A = ProjA[X] ∼=

∼= SpecA, [Vak17, 4.5.11]. If X is any projective scheme over A, there is a canonical map of schemes

ProjS → SpecA, [Vak17, 6.3.H].

Proposition 4.1.38 ([Vak17, 5.1.I]). All projective A-schemes are qcqs.

Remark 4.1.39. Any projective scheme over a Noetherian ring is a Noetherian scheme, [Vak17, 5.3.D].

The following statement due to Serre asserts that, although we do not have enough projective objects

in CohX over a projective scheme X, we can build resolutions using another type of sheaves.

Proposition 4.1.40 ([Har77, II.5.18]). Let X be a projective scheme over a Noetherian ring A. Then any

coherent sheaf F on X is the quotient of a coherent locally free sheaf on X.
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Remark 4.1.41. In this situation, we say that CohX "has enough locally frees".

On one hand, the passage from the quasicoherent to the coherent setting made possible the ex-

istence of enough locally free coherent sheaves on a projective scheme over a Noetherian ring. On

other hand, we lose the existence of injective objects. Indeed, since injective modules are usually large

(as in not finitely generated) because they should extend morphisms, we cannot hope to find injective

resolutions of coherent sheaves by coherent sheaves. We provide a simple example of this behavior

below.

Example 4.1.42. We will provide an example of a Noetherian scheme X such that CohX does not have

enough injectives. Let X = SpecA, where A is a principal ideal domain (hence Noetherian) that is not

a field. By Remark 4.1.11, showing that CohX does not have enough injectives is equivalent to showing

that the category of finitely generated A-modules does not have enough injectives. We do this by proving

that any injective finitely generated A-module M is trivial.

If M is as above, by the structure theorem of finitely generated modules over principal ideal domains,

we have an isomorphism

M ∼= A⊕r ⊕

(
n⊕
i=1

A/(pαii )

)
,

where pi ∈ A are prime elements and r, n, αi ∈ Z≥0. The sketch of the proof of Proposition 4.1.1

mentions that an abelian group is injective as a Z-module if and only if it is divisible. This assertion can

be extended to the case of a module over a principal ideal domain without change. Therefore, M = aM

for every a ∈ A. Under this assumption, the A-module homomorphisms φa : M → M , m 7→ am, are

surjective, for every a ∈ A. If αi 6= 0, the homomorphism φpαii
sends every element of M to an element

which has 0 (r + i)-th coordinate, so this map is not surjective. We conclude that M ∼= A⊕r. If a ∈ A is

any element, there exists m ∈M such that am = (1, . . . , 0). In particular, this implies that every non-zero

element of A is invertible. This contradicts the hypothesis that A is not a field.

We compile the results we have so far in Figure 4.1.

X Noetherian

ModX Enough injectives (Proposition 4.1.2)

Not enough projectives (Example 4.1.4)

QCohX Enough injectives (Proposition 4.1.31)

Not enough projectives (Example 4.1.32)

CohX
Not enough injectives (Example 4.1.42)

Not enough projectives (Example 4.1.32)

Enough locally frees (X projective, Proposition 4.1.40)

Figure 4.1: Adapted classes of objects in abelian categories of sheaves on schemes.
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We conclude that there is no obvious abelian category of sheaves defined on a scheme that is

suitable for the direct definition of all the half exact functors in Table 4.1. By this we mean that none of

the abelian categories present in Figure 4.1 has a class of objects adapted to each of the functors in

Table 4.1. We are then forced to rely on the chain of inclusions

CohX ( QCohX ( ModX , (4.1)

and study each functor one by one. The next section is devoted to exploiting the chain of inclusions (4.1)

in the context of their derived categories. Under certain conditions, we will show that there is a subcat-

egory of D+(ModX) that is equivalent to D+(QCohX), and that there is a subcategory of Db(QCohX)

that is equivalent to Db(CohX). These relationships will be fundamental for defining the derived versions

of Γ(X,−), f∗, F ⊗ (−), and so on, which will be the subject of Section 4.3.

4.2 Useful equivalences on Noetherian schemes

Throughout this section, let X stand for a Noetherian scheme.

4.2.1 Quasicoherent and coherent sheaves

As we saw in Section 4.1, the abelian category QCohX has enough injectives, but it has a full abelian

subcategory CohX which does not have this property. Therefore, if we have some left exact functor

ξ : QCohX → QCohX , we can right derive it to obtainRξ : D+(QCohX)→ D+(QCohX) yet, as discussed

in Section 3.5, a priori there is no reason for the image of a coherent sheaf F ∈ CohX under Rξ to be a

bounded below complex of coherent sheaves on X. Despite that, there are special functors ξ such that

this happens, and we will study them later in Subsection 4.3.4. Before that, we use the abstract tools

developed in Section 3.5 to derive intermediate results.

Proposition 4.2.1. The natural functor Db(CohX)→ Db(QCohX) induces an equivalence of categories

Db(CohX) ∼= Db
coh(QCohX) between the bounded derived category of coherent sheaves on X and the

bounded derived category of quasicoherent sheaves on X with coherent cohomology, as in Definition

3.5.1.

According to Theorem 3.5.6, it suffices to prove the following two statements.

Proposition 4.2.2. The abelian subcategory CohX ⊆ QCohX is thick.

Proposition 4.2.3. Given F ∈ QCohX and G ∈ CohX with an epimorphism F � G , there exists a

coherent subsheaf G ′ ⊆ F , such that the composition G ′ ↪→ F � G is still an epimorphism.

Proposition 4.2.2 follows directly from Proposition 4.1.29, while Proposition 4.2.3 requires additional

work. The next lemma shows that, on a Noetherian scheme, one can extend coherent sheaves defined

on an open subset to the whole scheme.
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Lemma 4.2.4. If U ∈ Op(X), G ∈ CohU , F ∈ QCohX such that G ⊆ F |U , then there exists G ′ ∈ CohX

such that G ′ ⊆ F and G ′|U ∼= G .

Proof. Can be found in Appendix D, page D.12.

Proof of Proposition 4.2.3. Cover X by a finite number of affine open subsets SpecAi, with Ai Noethe-

rian rings, for i = 1, . . . , n. Then, setting F |SpecAi
∼= M̃i and G |SpecAi

∼= Ñi for Ai-modules Mi, Ni (with

Ni finitely generated), we have surjections Mi � Ni. Since Ni is projective, there exist finitely generated

submodules M ′i ⊆ Mi such that the composition M ′i ⊆ Mi � Ni is surjective. Then because M̃ ′i is a

coherent sheaf on SpecAi such that M̃ ′i ⊆ F |SpecAi , there exists a coherent sheaf G ′i ⊆ F on X that

extends M̃ ′i , by Lemma 4.2.4. We define G ′ =
⊕n

i=1 G ′i .

4.2.2 Sheaves of modules and quasicoherent sheaves

As we will see in Section 4.3, it will also be helpful to deduce an equivalence between the bounded

(below) derived category of quasicoherent sheaves on a Noetherian scheme and the bounded (below)

derived category of OX -modules with quasicoherent cohomology. We will use Corollary 3.5.7 for this

purpose. The next statement follows directly from Proposition 4.1.29.

Proposition 4.2.5. QCohX ⊆ ModX is a thick subcategory.

As we saw in Proposition 4.1.31, any quasicoherent sheaf on X admits a resolution by injective

quasicoherent sheaves. Consider the following result.

Proposition 4.2.6 ([Har66, II.7.18]). If F ∈ QCohX is an injective object in QCohX , there exists

G ∈ QCohX which is injective in ModX , together with a monomorphism F ↪→ G .

Corollary 4.2.7. Let F ∈ QCohX . Then, F is an injective object in ModX if and only if F is an injective

object in QCohX .

Proof. See Appendix D, page D.12.

Since QCohX has enough injectives, we conclude that any quasicoherent sheaf on X can be em-

bedded in a quasicoherent sheaf which is injective as an object in ModX . By Corollary 3.5.7, this result,

together with Proposition 4.2.5, yields the statement below.

Proposition 4.2.8. The natural maps D∗(QCohX) → D∗(ModX) induce equivalences of categories

D∗(QCohX) ∼= D∗qcoh(ModX), for ∗ = {+, b}.

4.3 Derived functors between categories of sheaves

We are now ready to define the derived analogues of the most used functors in Algebraic Geometry,

namely the functors in Table 4.1. It will become apparent from our discussion that some of these ana-

logues can be defined over the category of sheaves of modules over a ringed space, while others can

only be defined on subcategories, such as that of (quasi)coherent sheaves on a scheme.
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The functor we will derive first is the global sections functor. Indeed, its derived functor will be

fundamental throughout this text, as it will provide the definition of cohomology for sheaves.

4.3.1 Sheaf cohomology

Let (X,R) be a ringed space. Recall that the global sections functor Γ(X,−) : ModR(X)→ ModR(X)

is left exact (Table 4.1). Since ModR(X) has enough injectives (Proposition 4.1.2), the right derived

global sections functor

RΓ(X,−) : D+(ModR(X))→ D+(ModR(X))

exists by Theorems 3.1.10 and 3.4.10. We use this functor to define the cohomology of a sheaf of

modules.

Definition 4.3.1. Let (X,R) ∈ RgSpaces and F ∈ ModR(X). For i ≥ 0, the i-th cohomology group

of F , denoted Hi(X,F ), is the image of F under the i-th higher right derived functor of the global

sections functor, i.e. Hi(X,F ) := RiΓ(X,F ), where F is seen as a complex concentrated in degree 0.

4.3.2 Derived sections of quasicoherent sheaves

If X ∈ Sch, the global sections functor can be written Γ(X,−) : QCohX → ModOX(X). If X is

Noetherian, QCohX has enough injectives (Proposition 4.1.31), and the right derived functor

RΓ(X,−) : D+(QCohX)→ D+(ModOX(X)) (4.2)

also exists. The following result is due to Grothendieck, and shows that the number of non-trivial coho-

mology groups of a sheaf of abelian groups on a Noetherian scheme is finite.

Theorem 4.3.2 ([Har77, III.2.7]). If X ∈ Sch is Noetherian and F ∈ AbX , then Hi(X,F ) = 0 for all

i > dim(X).

In particular, given a Noetherian scheme X, the image of F ∈ QCohX (seen as a complex concen-

trated in degree 0) under the right derived functor (4.2) is a bounded complex of OX(X)-modules, i.e.

RΓ(X,F ) ∈ Db(ModOX(X)). The next lemma asserts that this is enough to guarantee that the image

under (4.2) of any actual bounded complex F • ∈ Db(QCohX) also lands in Db(ModOX(X)). We prove

the lemma in full generality since it will be a useful tool for other applications to come.

Lemma 4.3.3. Let A ,B be abelian categories and V : K+(A ) → K+(B) an exact functor of triangu-

lated categories such that K+(A ) admits a triangulated subcategory KV adapted to V , as in Definition

3.2.1. If RV (A) ∈ Db(B) for all A ∈ A , then RV induces a functor RV : Db(A )→ Db(B).

Proof. Let A• ∈ Db(A ) such that Ai = 0 for all i > n. Let q : A• → R• be a quasi-resolution by

R• ∈ KV ⊆ K+(A ). Since dnR ◦ qn = 0, there exists a canonical arrow An 99K KerdnR, and the diagram
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. . . An−1 An An 0 . . .

. . . Rn−1 KerdnR Rn Rn+1 . . .

dn−1
A

qn−1 qn

dn−1
R

dnR

is commutative. Let T • be the complex Rn → Rn+1 → . . .. Notice that 0 → KerdnR → T • is a resolution

of KerdnR ∈ A by a complex T • ∈ KV . Therefore, RV (KerdnR) = V (T •). By assumption ∃ m ≥ 0 such

that RiV (KerdnR) = Hi(V (T •)) = 0 for i > m, and hence RiV (A•) = Hi(V (R•)) = 0 for i > (n+m). By

the use of a truncation functor similar to that of Example 2.3.7, we conclude that RV (A•) ∈ Db(B).

As suggested, Theorem 4.3.2 and Lemma 4.3.3 show that, over a Noetherian scheme X, the right

derived functor of the global sections restricts to

RΓ(X,−) : Db(QCohX)→ Db(ModOX(X)).

4.3.3 Derived pushforward of quasicoherent sheaves

We restrict ourselves to the study of the derived pushforward for morphisms between Noetherian

schemes. If f : X → Y is such a morphism, it takes QCohX into QCohY by Proposition 4.1.30 iii). As

QCohX has enough injectives (Proposition 4.1.31) and f∗ : QCohX → QCohY is left exact (Table 4.1),

its right derived functor

Rf∗ : D+(QCohX)→ D+(QCohY )

exists.

If we are given two morphisms of Noetherian schemes X
f−→ Y

g−→ Z, it is easy to see that

(g ◦ f)∗ = g∗ ◦ f∗. Therefore, it is legitimate to ask if this behavior extends to the derived functors,

namely if there exists a natural isomorphism between R(g ◦ f)∗ and Rg∗ ◦Rf∗. This would follow directly

from Proposition 3.6.1 if one could show that, given any bounded below complex of injective quasico-

herent sheaves I • ∈ K+(QCohX), K+(f∗)(I
•) is a bounded below complex of injective quasicoherent

sheaves on Y . It is easy to construct morphisms f such that this fails. We provide the following example.

Example 4.3.4. From Remark 4.1.12, if f : SpecA → SpecB is a morphism of affine schemes and

M ∈ ModA, then f∗(M̃) ∼= (BM)∼, where BM denotes restriction of scalars via the corresponding map

on rings f ] : B → A.

Let p be a prime, A = Zp and B = Z. Since A is a field and B is a principal ideal domain, SpecA and

SpecB are Noetherian schemes. Giving an example of an injective quasicoherent sheaf I ∈ QCohSpecA

such that f∗(I ) is not injective in QCohSpecB is equivalent (by Remark 4.1.11) to giving an example of

an injective A-module I such that I is not injective when viewed as a B-module. Consider, for example,

the A-module I = Zp. This is injective in ModA because all vector spaces are injective. However, I is

not an injective abelian group because it is not divisible, as asserted in the proof of Proposition 4.1.2.
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This issue can be dealt with by considering a different class of f∗-adapted objects in QCohX , that of

flasque sheaves.

Definition 4.3.5. A sheaf of R-modules F on a ringed space (X,R) is called flasque if, for every

inclusion of open sets V ⊆ U , the restriction maps resU,V : F (U)→ F (V ) are surjective.

Lemma 4.3.6 ([Har77, II.1.16]). Let (X,R) ∈ RgSpaces and 0 → F1
g−→ F2

h−→ F3 → 0 be an exact

sequence in ModR(X). Then:

i) If F1 is flasque, the sequence 0 → F1(U) → F2(U) → F3(U) → 0 is exact in ModR(U), for all

U ∈ Op(X).

ii) If F1 and F2 are flasque, so is F3.

Lemma 4.3.7. If f : (X,R) → (Y,S ) is a map of ringed spaces and F ∈ ModR(X) is flasque, the

pushforward f∗F is also flasque.

Proof. Trivial.

Proposition 4.3.8. If (X,R) is a ringed space, any injective R-module on X is flasque.

Proof. We refer to Appendix D, page D.13.

After this short detour, we are ready to show that flasque quasicoherent sheaves are f∗-adapted. As

an intermediate step, we show that this class is Γ(X,−)-adapted.

Proposition 4.3.9. The class of quasicoherent flasque sheaves on a Noetherian scheme is adapted to

the left exact functor Γ(X,−) : QCohX → ModOX(X).

According to Corollary 3.4.3, since RΓ(X,−) : D+(QCohX) → D+(ModOX(X)) exists, it suffices to

prove the following lemma.

Lemma 4.3.10. Let X ∈ Sch be Noetherian. Then:

i) If {Fi}i∈I is a collection of flasque quasicoherent sheaves on X,
⊕

i∈I Fi is a flasque quasico-

herent sheaf on X.

ii) If F ∈ QCohX is flasque, Hi(X,F ) = RiΓ(X,F ) = 0 for i ≥ 1.

iii) If F ∈ QCohX , there exists a flasque sheaf G ∈ QCohX and a monomorphism F ↪→ G .

Proof. Again, we refer to Appendix D, page D.13.

The next proposition gives a useful characterisation of the higher right derived functors of the push-

forward. Its proof uses the formalism of δ-functors, introduced in Subsection 3.3.1.

Proposition 4.3.11. Let f : X → Y be continuous map of topological spaces, F ∈ AbX and i ≥ 0.

Define the presheaf H i
pre(F ) of abelian groups on Y by assigning, to each U ∈ Op(Y ), the abelian

group H i
pre(F )(U) := Hi(f−1(U),F |f−1(U)). If H i(F ) is the sheafification of H i

pre(F ), there is an

isomorphism Rif∗(F ) ∼= H i(F ).
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Proof. See page D.14 in Appendix D.

As promised, the next proposition asserts that the class of quasicoherent flasque sheaves on a

Noetherian scheme is f∗-adapted.

Proposition 4.3.12. Given a morphism of Noetherian schemes f : X → Y , the class of quasicoherent

flasque sheaves on X is adapted to the left exact functor f∗ : QCohX → QCohY .

Proof. Since Rf∗ : D+(QCohX) → D+(QCohY ) exists, it suffices to prove the hypothesis of Corollary

3.4.3. Two out of three of the hypothesis have already been proven in Lemma 4.3.10. Therefore, we

only need to show that, if F ∈ QCohX is flasque, Rif∗(F ) = 0 for i ≥ 1. For this, it suffices to

show that Rif∗(F )(V ) = 0 for every V ∈ Op(Y ) and i ≥ 1. From Proposition 4.3.11, we see that

Rif∗(F )|V = Rig∗
(
F |f−1(V )

)
, where g : f−1(V ) → Y is f restricted to f−1(V ). Since the restriction of

a flasque sheaf is flasque, the result follows from the previously mentioned proposition and from Lemma

4.3.10 ii).

After settling that quasicoherent flasque sheaves on a Noetherian scheme are adapted to pushfor-

wards, we arrive at the desired equality stated at the beginning of this subsection.

Proposition 4.3.13. If X f−→ Y
g−→ Z are morphisms of Noetherian schemes, then there is a natural

isomorphism R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗ : D+(QCohX)→ D+(QCohZ).

Proof. As hinted before, we use Proposition 3.6.1. The classes of flasque quasicoherent sheaves on X

and on Y are adapted to f∗ and g∗, respectively. Moreover, given any flasque sheaf F ∈ QCohX , f∗(F )

is flasque by Lemma 4.3.7.

In addition, since quasicoherent flasque sheaves on a Noetherian scheme are also adapted to the

global sections functor (Proposition 4.3.9), the next statement follows effortlessly.

Proposition 4.3.14. If f : X → Y is a morphism of Noetherian schemes, there is a natural isomorphism

RΓ(X,−) ∼= RΓ(Y,−) ◦Rf∗ : D+(AbX)→ D+(Ab).

Proof. Follows directly from Propositions 3.6.1 and 4.3.9, together with the equality

Γ(Y, f∗(F )) = Γ(X,F ), for every AbX .

As we did for the global sections functor, we now try to restrict to the bounded derived category

Db(QCohX) on a Noetherian scheme X. This is straightforward with the tools developed so far.

Proposition 4.3.15. If f : X → Y is a morphism of Noetherian schemes, given any F ∈ QCohX ,

Rif∗(F ) = 0 for every i > dim(X).

Proof. Follows directly from Grothendieck’s Theorem 4.3.2 and from Proposition 4.3.11.

Proposition 4.3.16. If f : X → Y is a morphism of Noetherian schemes, the right derived functor

Rf∗ : D+(QCohX)→ D+(QCohY ) restricts to the right derived functor

Rf∗ : Db(QCohX)→ Db(QCohY ).
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Proof. Given any F ∈ QCohX , Rf∗(F ) ∈ Db(QCohY ) by Proposition 4.3.15. Lemma 4.3.3 finishes the

proof.

4.3.4 Restricting to the coherent setting

Up until this point, we have defined the right derived functors

RΓ(X,−) : Db(QCohX)→ Db(ModOX(X)), (4.3)

Rf∗ : Db(QCohX)→ Db(QCohY ) (4.4)

on Noetherian schemes X,Y . In this subsection, we will restrict this functors to the bounded derived

category of coherent sheaves Db(CohX). As mentioned at the end of subsection 4.1.3, there is no direct

way of constructing the right derived analogue of these functors because CohX does not have enough

injectives, even if X is Noetherian. However, as we will shortly see, the results derived in Section 4.2

will enable us to define the coherent analogue of the functors (4.3) and (4.4) indirectly. A downside is

that we need to restrict ourselves to even more specific schemes.

Recall that a scheme over a ring A is a pair (X,φ), consisting of X ∈ Sch and a structure morphism

of schemes φ : X → SpecA, [Vak17, 6.3.7]. Such a morphism induces a structure of an A-algebra on

the rings of sections of the structure sheaf OX , over all open sets, and all restriction maps are maps of

A-algebras, [Vak17, 5.3.6]. We denote the category of schemes over A by SchA. Since SpecZ is the

terminal object in Sch, [Vak17, 6.3.I], any scheme is (canonically) a scheme over Z. Moreover, according

to Remark 4.1.37, any projective A-scheme is a scheme over A.

If we take A = k, a field, any quasicoherent sheaf on X ∈ Schk takes values in the category of

k-vector spaces, denoted Veck. Suppose further that X is Noetherian (e.g. any projective scheme over

k, Remark 4.1.39), then:

• any coherent sheaf on X takes values in the category of finitely generated k-vector spaces, de-

noted Vecfk ;

• the global sections functor Γ(X,−) : QCohX → Veck is a special case of the pushforward. Indeed,

Γ(X,F ) = f∗(F ) if F ∈ QCohX and f : X → Speck is the structure morphism.

We conclude that, in order to restrict the functors (4.3) and (4.4) over Noetherian k-schemes, it

suffices to define the right derived functor of the pushforward, Rf∗ : Db(CohX)→ Db(CohY ).

Recall the following results.

Theorem 4.3.17 ([Vak17, 9.1.1]). Sch has all fibered products. In order words, given any two morphisms

of schemes X f−→ Z and Y g−→ Z, the limit of the diagram X
f−→ Z

g←− Y exists. We denote it by X ×Z Y .

Definition 4.3.18. A morphism of schemes f : X → Y is called:

i) a closed embedding if, for any affine subscheme SpecB ⊆ Y , f−1(SpecB) ∼= SpecA and the

corresponding ring homomorphism B → A is surjective;
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ii) universally closed if, for any scheme Z together with a morphism Z → Y , the projectionX ×Y Z → Z

from the fibered product is a closed map of the underlying topological spaces;

iii) separated if the diagonal morphism ∆: X → X ×Y X, i.e. the unique map arising from the

universal property of the fibered product

X

X ×Y X X

X Y

∆

f

f

,

is a closed embedding; in this case, we also say thatX is separated over Y (or overA if Y = SpecA);

iv) proper if f is universally closed, separated and of finite type; in this case, we also say that X is

proper over Y (or over A if Y = SpecA).

Example 4.3.19. Any closed embedding is proper, [Vak17, 10.3.2].

Lemma 4.3.20 ([Sta21, Tag 02WG]). If f : X → Y and g : Y → Z are two closed embeddings (respec-

tively, universally closed morphisms, separated morphisms, proper morphisms), the composition g ◦ f

is also a closed embedding (respectively, universally closed morphism, separated morphism, proper

morphism).

Proposition 4.3.21 ([Vak17, 10.3.5]). Given any projectiveA-schemeX, the structure morphismX → SpecA

of Remark 4.1.37 is proper.

The following theorem is a deep result that was firstly introduced in Éléments de géométrie al-

gébrique: III. It is now known as Grothendieck’s Coherence Theorem, [Vak17, 18.9.1].

Theorem 4.3.22 ([Gro61, 3.2.1]). Let f : X → Y be a proper morphism of Noetherian schemes. Then,

for any F ∈ CohX , the higher direct images Rif∗(F ) are again coherent, for all i ≥ 0.

Corollary 4.3.23. Let X be a projective scheme over a field k. Then, given any F ∈ CohX , Hi(X,F )

is a finitely generated A-module, for each i ≥ 0.

Proof. Follows directly from Theorem 4.3.22 by choosing f to be the structure morphism X → Speck,

which is proper by Proposition 4.3.21.

By Theorem 4.3.22, if f : X → Y is a proper morphism of Noetherian schemes, given any F ∈ CohX ,

its image under the right derived functor Rf∗ : Db(QCohX) → Db(QCohY ) lands in the full triangulated

subcategory Db
coh(QCohY ) of bounded complexes of quasicoherent sheaves on Y that have coherent

cohomology. Since CohX ⊆ QCohX is a thick subcategory, Corollary 3.6.2 asserts that this property is

sufficient to guarantee that, for any complex F • ∈ Db(CohX), Rf∗(F •) ∈ Db
coh(QCohY ). Consequently,

we can restrict Rf∗ to Rf∗ : Db(CohX)→ Db
coh(QCohY ).
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By Proposition 4.2.1, the inclusionDb(CohY )→ Db(QCohY ) induces an equivalenceDb(CohY ) ∼= Db
coh(QCohY ),

so we have defined Rf∗ : Db(CohX) → Db(CohY ) in the case of proper morphisms of Noetherian

schemes. We summarize our journey until here in the following diagram:

D+(QCohX) D+(QCohY )

Db(QCohX) Db(QCohY )

Db(CohX) Db
coh(QCohY )

Db(CohX) Db(CohY )

Rf∗

Proposition 4.3.16

Proper morphisms

Theorem 4.3.22

and Corollary 3.6.2

∼= Proposition 4.2.1

.

As discussed before, if X is a Noetherian scheme over a field k, this procedure also defined the right

derived functor of global sections, RΓ(X,−) : Db(CohX)→ Db
(

Vecfk

)
.

4.3.5 Derived tensor product

Given a Noetherian scheme X and F ∈ CohX , the tensor product introduced in Table 4.1 restricts

to a right exact functor F ⊗OX (−) : CohX → CohX , by Proposition 4.1.15 and the fact that the tensor

product of two finitely generated modules is again finitely generated, [Sta21, Tag 05BS].

Referencing Figure 4.1, CohX does not have enough projectives, but it has enough locally free

sheaves if X is projective, by Proposition 4.1.40. Consequently, and to simplify the arguments, we focus

our attention on projective schemes over a field k.

Proposition 4.3.24. If X ∈ Schk is projective, the subclass of locally free coherent sheaves on X is

adapted to the right exact functor F ⊗OX (−) : CohX → CohX , where F ∈ CohX .

Proof. We verify the dual axioms of Definition 3.1.4. Axiom A1 is clear and the dual to Axiom A3 is just

Proposition 4.1.40. Therefore, we just need to prove that, given any bounded above acyclic complex G •

of coherent locally free sheaves on X, the complex F ⊗OX G • is acyclic. Since checking exactness of

a complex of sheaves can be preformed at the level of stalks, it suffices to prove acyclicity over a small

enough open subset U of X such that each G i is free. Then, it is clear that tensoring with any coherent

sheaf over U maintains exactness.

Thus, in the notation of the previous proposition, we have defined the left derived functor

L(F ⊗ (−)) : D−(CohX)→ D−(CohX). (4.5)

Definition 4.3.25. A local Noetherian ring (A,m) is called regular if m can be generated by dim(A)

elements. A Noetherian ring is called regular if, for every p ∈ SpecA, the local ring Ap is regular. Finally,

a scheme X is called regular if, for every x ∈ X, there exists an affine open neighbourhood SpecA ⊆ X

of x such that OX(U) is Noetherian and regular.
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The next result is crucial in order to restrict the derived tensor product to the bounded derived cate-

gory of coherent sheaves.

Theorem 4.3.26 ([KK21, Exerc. 5.4.22]). If X is a regular Noetherian scheme, any F ∈ CohX admits a

resolution by coherent locally free sheaves of finite length.

In particular, Theorem 4.3.26 implies that, given two coherent sheaves F and G on a regular pro-

jective scheme over a field, L(F ⊗OX (−))(G ) ∈ Db(CohX). The dual statement of Lemma 4.3.3 shows

that (4.5) restricts to a left derived functor between the bounded derived categories. In summary,

D−(CohX) D−(CohX)

Db(CohX) Db(CohX)

L(F⊗(−))

X regular

Theorem 4.3.26 and Lemma 4.3.3

.

We extend this construction to the derived tensor product of two complexes, using the formalism of

double complexes and spectral sequences (Appendix C). If X is any scheme and F •,G • ∈ K−(CohX),

we build the third quadrant double complex E•,• as follows.

Ep,q := F p ⊗ G q

dp,qh := dpF ⊗ 1

dp,qv := (−1)p+q1⊗ dqG

0 0 0

. . . F−2 ⊗ G 0 F−1 ⊗ G 0 F 0 ⊗ G 0 0

. . . F−2 ⊗ G−1 F−1 ⊗ G−1 F 0 ⊗ G−1 0

. . . F−2 ⊗ G−2 F−1 ⊗ G−2 F 0 ⊗ G−2 0

...
...

...

d−1,−1
v

d−1,−1
h

We define F •⊗G • ∈ K−(CohX) to be the total complex of E•,•, F •⊗G • := (TotE)
•, as in Definition C.1.

This defines a functor

F • ⊗ (−) : K−(CohX)→ K−(CohX)

G • 7→ F • ⊗ G •
.

(4.6)

Lemma 4.3.27. If X ∈ Sch and F •,G •,H • ∈ K−(CohX), then:

i) F • ⊗ (G •[1]) = (F • ⊗ G •)[1].

ii) F • ⊗ (G • ⊕H •) = (F • ⊗ G •)⊕ (F • ⊗H •).

Proof. Straightforward.

Using the lemma above, one can see that (4.6) is an exact functor of triangulated categories. Since

this is not a functor induced from a functor defined over the underlying abelian categories, in order to
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construct its left derived counterpart we need to use the generalizations developed in Subsection 3.2.6.

Proposition 4.3.28. Let X ∈ Schk be projective.

i) The additive subcategory L of bounded above complexes of coherent locally free sheaves on X

is a full triangulated subcategory of K−(CohX).

ii) L is adapted to the exact functor (4.6), in the sense of Definition 3.2.1.

Proof. According to Definition 2.2.13, proving i) is a matter of checking that, given a morphism f : G • →H •

of bounded above complexes of coherent locally free sheaves, the terms of cone (f) are also locally free.

This is a direct consequence of the trivial fact that LocFreeX is stable under direct sums.

To prove assertion ii), we check the axioms of Definition 3.2.1. Axiom a2 follows from the fact that

CohX "has enough locally frees" (Proposition 4.1.40) and the fact that this implies the existence of quasi-

resolutions (Definition/Proposition 3.1.3). For axiom a1, let G • ∈ K−(CohX) be an acyclic bounded

above complex of coherent locally free sheaves. We want to show that F • ⊗ G • is also acyclic. For

this, we use the spectral sequences of Theorem C.3, applied to the double complex Ep,q = F p ⊗ G q.

Consider the spectral sequence whose zero-th differential is dp,qv = (−1)p+q1 ⊗ dqG , which abuts to a

quotient of a filtration of Hp+q(F • ⊗ G •). Its second page is vE
p,q
2 = Hq

hH
p
v (F p ⊗ G q). For fixed p, the

complex F p ⊗ G • is exact, as in the proof of Proposition 4.3.24, and hence vE
p,q
2 = 0 for all p, q, and

F • ⊗ G • is acyclic, as desired.

Having settled the existence of a full triangulated subcategory adapted to F • ⊗ (−) : K−(CohX)→ K−(CohX),

Theorem 3.2.4 then guarantees that the left derived functor

L(F • ⊗ (−)) : D−(CohX)→ D−(CohX) (4.7)

exists, under the assumption that X is a projective k-scheme.

Finally, consider the bifunctor

K−(CohX)×D−(CohX)→ D−(CohX)

(F •
,G •

) 7→ L(F • ⊗ (−))(G •
).

(4.8)

Proposition 4.3.29. The bifunctor (4.8) is exact in the first argument and descends to a well-defined left

derived bifunctor (−)⊗L (−) : D−(CohX)×D−(CohX)→ D−(CohX).

Proof. Exactness in the first argument can be proven easily by choosing quasi-resolutions by complexes

of locally free sheaves and relying on the analogous properties of Lemma 4.3.27 for the first argument.

Regarding the descent to a bifunctor on the derived categories, the claim follows from the universal

property of localisation (Proposition 2.1.5) if we show that, given two quasi-isomorphic F •

1,F
•

2 ∈ K−(CohX),

L(F1
• ⊗ (−))(G •) ∼= L(F2

• ⊗ (−))(G •) for any G • ∈ D−(CohX). Equivalently by Corollary 2.3.21, one

has to show that, if F • ∈ K−(CohX) is acyclic, L(F • ⊗ (−))(G •) is acyclic for any G • ∈ D−(CohX). Let

E • → G • be a quasi-resolution of G • by a bounded above complex E • of coherent locally free sheaves.

Then, L(F •⊗ (−))(G •) = F •⊗E •. Again, we use a spectral sequence associated to the double complex
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Ep,q = F p ⊗ E q, but starting with the horizontal differential dp,qh = dpF ⊗ 1. The second page of the

sequence hE
p,q
2 = Hp

vH
q
h(F p ⊗ E q). For fixed q, tensoring with a locally free sheaf F • ⊗ E q maintains

exactness (we can reduce to the case where E q is free), and therefore hE
p,q
2 = 0 for all p, q. By Theorem

C.3, this implies that Hi(F • ⊗ E •) = 0 for all i.

In order to restrict to the coherent setting, we rely on the same method that was used to define

L(F ⊗ (−)) : Db(CohX)→ Db(CohX) for a single sheaf F ∈ Db(CohX). Given a pair of coherent

sheaves over a regular projective scheme over a field (F ,G ), by Theorem 4.3.26, we pick quasi-

resolutions E •

1 → F and E •

2 → G for E •

1,E2
• ∈ Kb(CohX) bounded complexes of coherent locally free

sheaves, and F ⊗L G = E •

1⊗ E •

2 is again a bounded complex. Lemma 4.3.3 is used once again to guar-

antee that this is sufficient for the bifunctor to restrict to the bounded derived categories. In summary,

D−(CohX)×D−(CohX) D−(CohX)×D−(CohX)

Db(CohX)×Db(CohX) Db(CohX)×Db(CohX)

(−)⊗L(−)

X regular

Theorem 4.3.26 and Lemma 4.3.3

.

We remark the following natural isomorphisms: for F •,G •,H • ∈ Db(CohX),

F • ⊗L G • ∼= G • ⊗L F •
,

F • ⊗L
(
G • ⊗L H •

) ∼= (F • ⊗L G •
)
⊗L H •

.

Proving the existence of these maps reduces to giving the isomorphisms for tensor products of com-

plexes of locally free coherent sheaves, which reduces further to the well-known isomorphisms for tensor

products of single locally free coherent sheaves.

4.3.6 Derived pullback

Recall from the introduction of this chapter that, if f : (X,R) → (Y,S ) is a morphism of ringed

spaces, the pullback under f is the right exact functor

ModS (Y ) Modf−1(S )(X) ModR(X)
f−1 R⊗f−1(S )(−)

.

Therefore, since f−1 is exact, if we want to define the left derived functor Lf∗ we only need to derive

the functor R ⊗f−1(S ) (−). If X,Y ∈ Sch, R = OX and S = OY , given F ∈ ModY , its image

under f−1 is not an OX -module, but a f−1(OY )-module on X. In particular, OX ⊗f−1(OY ) (−) is not a

functor ModX → ModX , but a functor Modf−1(OY )(X)→ ModX . In Subsection 4.3.5, and specifically in

equation (4.7), we only defined a derived tensor product for coherent modules over the structure sheaf

of a scheme. Therefore, we need to generalize our arguments in order define the left derived analogue

of Modf−1(OY )(X)→ ModX . Recall the following definition.
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Definition 4.3.30. Given a ring A, M ∈ ModA is said to be flat if the functor (−)⊗AM : ModA → ModA

is exact.

Definition 4.3.31 ([GW10, 7.37]). Let f : (X,R) → (Y,S ) be a morphism of ringed spaces and F ∈

ModR(X). For any p ∈ X, we can view the Rp-module Fp as a Sf(p)-module via (the induced map on

stalks of) the accompanying map of sheaves f ] : S → f∗(R). Then, F is:

i) f -flat over p ∈ X if Fp is flat as a Sf(p)-module.

ii) f -flat if F is f -flat over every p ∈ X.

We say that f is flat if R is f -flat. Taking Y = X, S = R and f = idX , we say that F is flat (respectively,

over p ∈ X) if F is idX -flat (respectively, over p ∈ X), i.e. if the stalk Fp is a flat Rp-module for every

p ∈ X.

Proposition 4.3.32 ([Sta21, Tag 05NE]). If (X,R) ∈ RgSpaces, F ∈ ModR(X) is flat if and only if the

functor ModR(X)→ ModR(X), G 7→ G ⊗R F is exact.

Proposition 4.3.33 ([Sta21, Tag 02N2]). Let f : (X,R)→ (Y,S ) be a morphism of ringed spaces.

i) f is flat if and only if the functor Modf−1(S )(X)→ Modf−1(S )(X), G 7→ G ⊗f−1(S ) R is exact.

ii) If f is flat, the change of rings functor

Modf−1(S )(X)→ ModR(X)

G 7→ R ⊗f−1(S ) G

is exact. In particular, the pullback f∗ : ModS (Y )→ ModR(X) is exact.

It can be shown that, given a morphism of schemes f : X → Y , the class of flat OX -modules is

adapted to the pullback functor f∗ : ModY → ModX , [Har66, Pag. 99], allowing us to define its left

derived functor Lf∗ : D−(ModY ) → D−(ModX). Moreover, Lf∗ can be proven to take D−(QCohX)

into D−(QCohX), and, in the case where X and Y are Noetherian, D−(CohX) into D−(CohX), [Har66,

II.4.4]. We will not get into the details of this construction because, in the rest of this text, we will only

deal with pullbacks of flat morphisms between schemes, which, according to Proposition 4.3.33 ii), are

already exact. We state this fact as a proposition for future reference.

Proposition 4.3.34. If f : X → Y is a flat morphism between Noetherian schemes, the pullback

f∗ : CohY → CohX extends to a well defined functor Db(CohY )→ Db(CohX) by applying f∗ term-wise,

which we also denote by f∗.
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Chapter 5

Integral functors
We finish the text with a chapter devoted to applications. Namely, we will define the notion of integral

functors and Fourier-Mukai transforms, which are functors between the bounded derived categories

of coherent sheaves on projective schemes. We will present no more than the basic definitions and

immediate properties. Lastly, we state one of the most important results in the theory of integral functors,

due to Orlov.

5.1 Compatibilities between derived functors
Before defining integral transforms, we state two useful relationships between the derived functors

constructed in Chapter 4. First and foremost, we recall some properties of fibered products of schemes

and of the pullback functor.

Proposition 5.1.1 ([Sta21, Tag 02WF]). Let P stand for the following properties of morphisms of schemes:

being an open embedding, being a closed embedding, being qcqs, being proper, being flat. Then, if

X ×Y Z X

Z Y

v

g f

u

is a fibered product square, if f (respectively, u) has property P , then so does g (respectively, v).

Proposition 5.1.2 ([Vak17, 16.3.7]). Let φ : X → Y be a morphism of schemes and F ∈ QCohY .

i) There is a canonical isomorphism φ∗OY ∼= OX .

ii) If ϕ : Z → X is another morphism of schemes, there is a canonical isomorphism

ϕ∗φ∗F ∼= (φ ◦ ϕ)∗F .

iii) If G ∈ QCohY , φ∗(F ⊗OY G ) ∼= φ∗(F )⊗OX φ
∗(G ).

If φ : X → Y is a qcqs morphism between schemes, the pushforward φ∗ : QCohX → QCohY and the

pullback φ∗ : QCohY → QCohX are an adjoint pair, φ∗ a φ∗, [Vak17, 16.3.6]. Explicitly, this means that,

for each pair F ∈ QCohX and G ∈ QCohY , there is an isomorphism

HomModX (φ∗G ,F ) ∼= HomModY (G , φ∗F ),

which is functorial in both F and G . Consequently, there are natural maps:

i) φ∗φ∗F → F , induced by the identity in HomModY (φ∗F , φ∗F );

ii) G → φ∗φ
∗G , induced by the identity in HomModX (φ∗G , φ∗G ).
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We are now set to state a compatibility result between the pullback and pushforward functors.

Proposition 5.1.3. If

W X

Z Y

v

g f

u

is a commutative diagram of schemes, f and g are qcqs, and F ∈ QCohX , there is a natural morphism

u∗f∗F → g∗v
∗F of quasicoherent sheaves on Z.

Proof. Note the following sequence of functorial isomorphisms:

HomModZ (u∗f∗F , g∗v
∗F ) ∼= HomModY (f∗F , (g ◦ u)∗v

∗F )

= HomModY (f∗F , (f ◦ v)∗v
∗F ) = HomModY (f∗F , f∗v∗v

∗F ).

The claimed morphism is the image of the natural map F → v∗v
∗F under the pushforward

f∗ : QCohX → QCohY .

The following result states that, under certain conditions, not only is the natural map we defined in the

above proposition an isomorphism, but we also get an isomorphism of derived functors u∗ ◦Rf∗ ∼= Rg∗ ◦ v∗.

Proposition 5.1.4 ([Sta21, Tag 02KH]). Let f : X → Y be a qcqs morphism and u : Z → Y be a flat

morphism. Consider the fibered product square

X ×Y Z X

Z Y

v

g f

u

.

Then, for any i ≥ 0 and F ∈ QCohX , there is a natural isomorphism

u∗Rif∗F
∼=−→ Rig∗v

∗F .

The statement of Proposition 5.1.4 is usually called flat base change. We can also derive a com-

patibility result between the pushforward and the tensor product functors. Indeed, consider the following

propositions.

Proposition 5.1.5. If φ : X → Y is a qcqs morphism of schemes, F ∈ QCohX and G ∈ QCohY , there

is a natural morphism (φ∗F )⊗OY G → φ∗(F ⊗OX φ
∗G ). Moreover, if G is locally free, this morphism is

an isomorphism.

Proof. Note the following natural isomorphisms:

HomModY ((φ∗F )⊗OY G , φ∗(F ⊗OX φ
∗G )) ∼= HomModOX

(φ∗((φ∗F )⊗OY G ),F ⊗OX φ
∗G )

∼= HomModOX
((φ∗φ∗F )⊗OX φ

∗G ,F ⊗OX φ
∗G ).
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The mentioned morphism is therefore the image of the canonical map φ∗φ∗F → F under the functor

(−)⊗OX φ
∗G : QCohX → QCohX . If G is locally free, in order to prove that the morphism is an isomor-

phism, we replace Y by a sufficiently small open subset so that G is free, i.e. G = O⊕IY . The result then

follows from the fact that tensor product and pullback commute with direct sums.

Proposition 5.1.6. Let f : X → Y be a flat, proper morphism between regular projective schemes over

a field. Then, given any F • ∈ Db(CohX) and G • ∈ Db(CohY ), there exists a natural isomorphism

Rf∗(F
•
)⊗L G • ∼=−→ Rf∗(F

• ⊗L f∗G •
).

Proof. Note that we do not need to derive f∗ since f is flat (Proposition 4.3.34). Pick a quasi-resolution

E • → G • by a bounded complex of locally free coherent sheaves E • by Proposition 4.3.28, and a quasi-

resolution F • → I • by, say a bounded complex of injective quasicoherent sheaves I •, by Proposition

4.3.16. Then, by construction, we want to give an isomorphism f∗(I
•)⊗E •

∼=−→ f∗(I
•⊗f∗E •). Using the

definition of the tensor product of complexes, one sees that this reduces to showing Proposition 5.1.5 in

the locally free case.

Comparing Propositions 5.1.5 and 5.1.6, one sees a clear advantage of working over the derived

category Db(CohX), as it enables us to draw more compatibilities than we could in its underlying abelian

category CohX . Proposition 5.1.6 is usually called the projection formula, [Huy06, Pag. 83].

5.2 Introduction to integral functors

As mentioned at the introduction of this chapter, integral functors are functors between the bounded

derived categories of coherent sheaves on projective schemes. Having said that, not all projective

schemes carry enough structure to define such a functor. We restrict ourselves to smooth projective

varieties, which we now define.

Definition/Proposition 5.2.1 ([Vak17, 5.2.4 and 5.2.F]). A scheme X is said to be integral if it is non-

empty and for every non-empty open subset U ⊆ X the ring OX(U) is an integral domain. Equivalently,

X is integral if it is both reduced (i.e. for every x ∈ X, the local ring OX,x has no non-zero nilpotents,

[Vak17, 5.2.A]) and irreducible.

Definition 5.2.2 ([Har77]). Let k be a field.

A variety over k is a k-scheme X that is integral and such that the structure morphism X → Speck

is separated and of finite type.

A projective variety over a field k is an integral projective k-scheme.

Remark 5.2.3. Some sources (e.g. [Vak17]) define a variety over k simply as a reduced, separated

scheme of finite type over k, hence not requiring irreducibility. We stick to the more classical definition,

as is the case in [Har77] or [Sta21].

The notion of regularity on schemes of finite type over a field k can be generalized to a concept

known as smoothness. In fact, smoothness is a relative definition, i.e. we say that a morphism of
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finite type k-schemes X → Y is smooth, and say that X is smooth if its structure morphism X →

Speck is smooth. Although a more robust definition that regularity [Vak17, 12.2.5], smoothness is more

cumbersome to define. We bypass the need to define this concept by working over algebraically closed

fields k = k. Indeed, a k-scheme of finite type is smooth if and only if it is regular, as in Definition 4.3.25,

[Har77, III.10.0.3]. Note, however, that the arguments made in this section can be generalized to smooth

k-schemes of finite type. A standard text that deals with this more general case is [Huy06], on which the

following discussion is based on.

Working over algebraically closed fields also has the upside that the fibered product X ×Spec k Y of

two (projective) varieties is again a (projective) variety, [Sta21, Tag 05P3] and [Vak17, 9.6].

Until the end of this chapter, let k stand for an algebraically closed field and D(X) := Db(CohX) for

a scheme X. If X,Y ∈ Schk, we also write the shorthand X × Y for the fibered product X ×Spec k Y .

Definition 5.2.4. Let X and Y be regular projective varieties over k, and

X × Y

X Y

q p

be the projections. The integral functor ΦX→YP• with kernel P • ∈ D(X × Y ) is the functor

ΦX→YP• : D(X)→ D(Y )

F • 7→ Rp∗(q
∗F • ⊗L P •

).

We say that ΦX→YP• is a Fourier-Mukai transform if it is an equivalence of categories. In this case, we

say that X and Y are Fourier-Mukai partners.

Remark 5.2.5. We do not need to derive the pullback q∗ because q is flat. Indeed, by Proposition 5.1.1,

the projections q and p are flat if the structure morphisms X → Speck and Y → Speck, respectively, are

flat. By Definition 4.3.31, X → Speck is flat if (−)⊗k OX,x : Veck → Veck is exact for every x ∈ X. This

is the case because, for example, (−)⊗k OX,x is left adjoint to HomVeck(OX,x,−), and all vector spaces

are projective.

Notation. Whenever suitable, we drop the label (·)X→Y from the notation of the integral functor ΦX→YP• .

An immediate observation is that any integral functor is an exact functor of triangulated categories

since it is the composition of the three exact functors q∗, (−) ⊗L P • and Rp∗. We provide a simple

example of a Fourier-Mukai transform.

Example 5.2.6. If X is an in Definition 5.2.4, the identity functor id : D(X) → D(X) is a Fourier-Mukai

transform. Indeed, let ∆: X → X ×X be the diagonal morphism, which is a closed embedding by

Propositions 4.3.21 and 5.1.1 (and hence proper by Example 4.3.19), and also flat by the discussion of

Remark 5.2.5. Write δ = ∆(X) ⊆ X × X and let Oδ := ∆∗OX be its structure sheaf. Then, id ∼= ΦOδ .

Indeed, if F • ∈ D(X),
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ΦOδ(F
•
) = Rp∗(q

∗F • ⊗L Oδ)

= Rp∗(q
∗F • ⊗L ∆∗OX)

∼= Rp∗

(
R∆∗

(
∆∗q∗F • ⊗L OX

))
by Proposition 5.1.6,

∼= R(p∗ ◦∆∗)(∆
∗q∗F • ⊗L OX) by Proposition 4.3.13,

∼= R(p∗ ◦∆∗)(∆
∗q∗F •

) since OX is free,

∼= R(p∗ ◦∆∗)((q ◦∆)∗F •
) by Proposition 5.1.2,

∼= F •
as p ◦∆ = idX = q ◦∆.

Proposition 5.2.7. Let X,Y, Z be regu-

lar projective varieties over k. Let P • ∈

D(X × Y ) and Q• ∈ D(Y × Z). Consider

the diagram of projections to the right.

Define

R • := RπXZ,∗(π
∗
XY P • ⊗L π∗Y ZQ•

).

Then the composition of integral functors

X × Y × Z

X × Y Y × Z

X Y X × Z Y Z

X Z

πXY πY Z
πXZ

πX πZ

q p u t

s r

D(X) D(Y ) D(Z)
ΦP• ΦQ•

is naturally isomorphic to the integral functor ΦR• : D(X)→ D(Z).

Proof. As in Example 5.2.6, we prove the statement by direct calculation. Note the fibered product

square

X × Y × Z Y × Z

X × Y Y

πY Z

πXY u

p

.

Given some F • ∈ D(X),

ΦR•(F •
) ∼= Rr∗(s

∗F • ⊗L R •
)

= Rr∗

(
s∗F • ⊗L RπXZ,∗

(
π∗XY P • ⊗L π∗Y ZQ•

))
∼= Rr∗

(
RπXZ,∗

(
π∗XZs

∗F • ⊗L π∗XY P • ⊗L π∗Y ZQ•
))

by Proposition 5.1.6,

∼= Rr∗

(
RπXZ,∗

(
π∗XF • ⊗L π∗XY P • ⊗L π∗Y ZQ•

))
since s ◦ πXZ = πX ,

∼= RπZ∗

(
π∗XF • ⊗L π∗XY P • ⊗L π∗Y ZQ•

)
since r ◦ πXZ = πZ ,

∼= RπZ,∗

(
π∗XY

(
q∗F • ⊗L P •

)
⊗L π∗Y ZQ•

)
since q ◦ πXZ = πX ,
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ΦR•(F •
) ∼= Rt∗

[
RπY Z,∗

(
π∗XY

(
q∗F • ⊗L P •

)
⊗L π∗Y ZQ•

)]
since t ◦ πY Z = πZ ,

∼= Rt∗

[
RπY Z,∗π

∗
XY

(
q∗F • ⊗L P •

)
⊗L Q•

]
by Proposition 5.1.6,

∼= Rt∗

[
u∗Rp∗

(
q∗F • ⊗L P •

)
⊗L Q•

]
by Proposition 5.1.4,

= Rt∗

[
u∗ΦP• (F •

)⊗L Q•

]
= ΦQ•

(
ΦP•

(
F •
))
.

The previous proposition asserts that the composition of integral functors is again an integral functor.

Taking Z = X in the statement above,

D(X) D(Y )

ΦP•

ΦQ•

,
P •,Q• X × Y ×X OX

δ

X × Y X ×X

πXXπXY ,

we conclude that ΦQ• ◦ ΦP• ∼= idD(X) if and only if ΦR• ∼= ΦOXδ
, where OX

δ is the structure sheaf

of the diagonal ∆: X → X × X, as in Example 5.2.6. In particular, setting S • :=
(
P • ⊗L Q•

)
∈

D(X × Y ), X and Y are Fourier-Mukai partners if one can find an isomorphism RπXX,∗ (π∗XY S •) ∼=

OX
δ on D(X × X), and similarly for the other direction, RπY Y,∗ (π∗Y XS •) ∼= OY

δ on D(Y × Y ), where

πY X : Y ×X × Y → X × Y . An immediate corollary of the following theorem reveals the existence of

such isomorphisms is, not only sufficient, but necessary in order for ΦP• to be an equivalence.

Theorem 5.2.8. Let F : D(X) → D(Y ) be a fully faithful exact functor. Then there exists an object

P • ∈ D(X × Y ), unique up to unique isomorphism, such that F is naturally isomorphic to the integral

transform ΦX→YP• with kernel P •.

Corollary 5.2.9. Any exact equivalence of categories D(X)→ D(Y ) is given by a Fourier-Mukai trans-

form ΦX→YP• , with uniquely defined kernel P •.

The content of Theorem 5.2.8 is known as Orlov’s Theorem. The statement we present is not the

original one appearing in Orlov’s articles [Orl97], and later in [Orl03], where he required F to admit right

and left adjoints. This assumption has since been seen to always be satisfied, [Huy06, 5.14].

We conclude this text by claiming that Corollary 5.2.9 can be used to give a simpler proof of Gabriel’s

Theorem, that dates back to the sixties, [Huy06].

Theorem 5.2.10 ([Gab62]). Suppose X and Y are smooth projective varieties over k. If there exists an

equivalence CohX ∼= CohY , then X and Y are isomorphic.
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Appendix A

Abelian triangulated categories
In this short appendix, we explore if the structure of a triangulated category is compatible with the

structure of an abelian category. Our goal is then to prove Proposition 2.2.11. For convenience, we

repeat Definition 2.2.10.

Definition 2.2.10. Let A be an abelian category. We say that A is semisimple if, for any short exact

sequence 0→ A
f−→ B

g−→ C → 0, the following three equivalent conditions hold:

i) There exists a right-inverse for the epimorphism g (which we call a section).

ii) There exists a left-inverse for the monomorphism f (which we call a retraction).

iii) The short exact sequence splits, i.e. is isomorphic to the short exact sequence

0 A A⊕ C C 0
( 1

0 ) ( 0 1 )
.

Proposition A.1. Let (D , T ) be a triangulated category.

i) If

A B C T (A)

A′ B′ C ′ T (A′)

f g h

f ′ g′ h′

are two distinguished triangles, then so is the triangle

A⊕A′ B ⊕B′ C ⊕ C ′ T (A)⊕ T (A′)

(
f 0
0 f ′

) (
g 0
0 g′

) (
h 0
0 h′

)
.

ii) Given any A,C ∈ D , the following triangle is distinguished:

A A⊕ C C T (A).
( 1

0 ) ( 0 1 ) 0

Proof. For i), consider the map

A⊕A′

(
f 0
0 f ′

)
−−−−−→ B ⊕B′

and complete it to a distinguished triangle by axiom A2 of Definition 2.2.2:

A⊕A′

(
f 0
0 f ′

)
−−−−−→ B ⊕B′ w1−−→ X

w2−−→ T (A)⊕ T (A′).
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Consider the commutative diagrams induced by A3:

A⊕A′ B ⊕B′ X T (A)⊕ T (A′)

A B C T (A)

(
f 0
0 f ′

)

pA pB

w1

w3

w2

pT (A)

f g h

and

A⊕A′ B ⊕B′ X T (A)⊕ T (A′)

A′ B′ C ′ T (A′)

(
f 0
0 f ′

)

pA′ pB′

w1

w4

w2

pT (A′)

f ′ g′ h′

Therefore, we get a commutative diagram

A⊕A′ B ⊕B′ X T (A)⊕ T (A′)

A⊕A′ B ⊕B′ C ⊕ C ′ T (A)⊕ T (A′)

(
f 0
0 f ′

)
w1

(
w3 0
0 w4

)
w2

(
f 0
0 f ′

)
w1 w2

and we are done by Proposition 2.2.8 i).

For ii), start with the distinguished triangle 0 → C
idC−−→ C → 0. By the previous proposition, the

"direct sum" of this distinguished triangle with the distinguished triangle A
idA−−→ A → 0 → T (A) is

distinguished.

Motivated by Definition 2.2.10, we say that a triangle in a triangulated category (D , T ) splits (or is

split) if it is isomorphic to a triangle of the form of Proposition A.1 ii).

Lemma A.2. Let (D , T ) be a triangulated category. If

A B C T (A)
f g h

is a distinguished triangle, then the following are equivalent:

i) The triangle is split.

ii) f = 0 or g = 0 or h = 0.

Proof. If i) holds then g is surjective. Since h ◦ g = 0 this implies that h = 0.

Conversely, if ii) holds we can assume that h = 0 (otherwise we rotate the triangle). Then we have a

commutative diagram of distinguished (Proposition A.1 ii) triangles

A B C T (A)

A A⊕ C C T (A)

f g h

( 1
0 ) ( 0 1 ) 0
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which we can complete by an isomorphism (Proposition 2.2.8 i).

Proposition A.3. Let (D , T ) be a triangulated category and f : A→ B be a monomorphism in D . Then

f splits, i.e. any distinguished triangle induced by f as in axiom A1 i) of Definition 2.2.2 splits.

Proof. If A f−→ B
g−→ C

h−→ T (A) is such an extension, T−1(C)
T−1(h)−−−−−→ A

f−→ B
g−→ C is also distinguished

by axiom A2 of Definition 2.2.2. Then f ◦ T−1(h) = 0 =⇒ T−1(h) = 0 ⇔ h = 0. Lemma A.2 finishes

the proof.

Remark A.4. By a similar argument, it is also true that any epimorphism in a triangulated category splits.

The next result first appeared in Verdier’s PhD thesis, [Ver96, Prop. 1.2.9, pgs. 102/103], where he

introduced the notions of triangulated and derived categories, under the supervisor of Grothendieck.

Proposition A.5. Let (D , T ) be a triangulated category. Then D is abelian if and only if every morphism

f : A→ B in D is isomorphic to a morphism of the form

A′ ⊕ I I ⊕B′
( 0 1

0 0 )
.

Proof. Let us prove the converse direction first. The kernel of a morphism of the form above is A′, and

its cokernel is B′. It is then easy to see that any monomorphism (resp. epimorphism) of the form above

is its image (resp. coimage), and so D is abelian.

For the direct implication, let f : A→ B be any morphism in D . Factor f as

A B

Imf

f

e m

Then, by Proposition A.3, there exist subobjects A′ ↪→ A and B′ ↪→ B such that e is isomorphic to the

natural projection map A′ ⊕ Imf → Imf , and m is isomorphic to the natural inclusion map Imf →

Imf ⊕B. This concludes the proof.

Finally, we prove Proposition 2.2.11.

Proposition 2.2.11. Let C be an additive category.

i) If C is triangulated (with automorphism T ) and abelian, then C is semisimple. Moreover any

distinguished triangle is isomorphic to a triangle of the form

A B T (Kerf)⊕ Cokerf T (A)
f g h

for natural maps g, h.

ii) Conversely, if C is abelian and semisimple, C has the structure of a triangulated category, by

picking any automorphism T and setting a triangle to be distinguished if it is isomorphic to a

triangle of the form above.
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Proof. For i), Proposition A.3 provides a retraction for every monomorphism in C , and hence we prove

semisimplicity by Definition 2.2.10. Now, by Proposition A.5, any morphism f : A→ B in C is isomorphic

to the map

Kerf ⊕ Imf Imf ⊕ Cokerf
( 0 1

0 0 )
.

By application of axioms A1 i) and A2 of Definition 2.2.2, the following are distinguished triangles:

Kerf 0 T (Kerf) T (Kerf),

Imf Imf 0 T (imf),

0 Cokerf Cokerf 0.

−id

id

id

It follows that the triangle

Kerf ⊕ Imf Imf ⊕ Cokerf T (Kerf)⊕ Cokerf T (Kerf)⊕ T (Imf)
( 0 0

0 1 ) ( 0 0
0 1 )

(
−1 0
0 0

)

is also distinguished by Proposition A.1 i). Proposition 2.2.8 iii) finishes the proof.

Regarding ii), it is easy to show that axioms A1-A3 of Definition 2.2.2 hold. For axiom A4, we refer to

a sketch of the proof in [Fri14, pgs. 38/39].

Remark A.6. The proof of the previous proposition shows that any distinguished triangle in an abelian

semisimple category A can be obtained as the direct sum of triangles of the form

• • 0 •

0 • • 0

• 0 • •

id

id

−id

.

In particular, since additive functors preserve direct sums, any additive functor F : A → Ab is coho-

mological (Definition 2.2.5). These remarks show that abelian semisimple categories can be taken as

prototypical examples of triangulated categories.
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Appendix B

Proof of Theorem 2.4.6
As the name suggests, this appendix is devoted to proving Theorem 2.4.6. For convenience, we

repeat the definition of a localizing class compatible with triangulation.

Definition 2.4.5. Let (D , T ) be a triangulated category and S be a localizing class in D . We say that S

is compatible with the triangulation if the following conditions hold:

a1) If s is a morphism of D , s ∈ S if and only if T (s) ∈ S.

a2) Axiom A3 of Definition 2.2.2 is "well-behaved with respect to localization"; more precisely, every

solid diagram with rows consisting of distinguished triangles

A B C T (A)

D E F T (D)

α∈S β∈S γ∈S T (α)∈S

and with α, β ∈ S can be completed (not necessarily uniquely) by γ ∈ S to a morphism of triangles.

Theorem 2.4.6. Let (D , T ) be a triangulated category and S a localizing class in D compatible with the

triangulation. Denote by Q : D → D [S−1] the natural functor of the localization.

The functor TS : D [S−1] → D [S−1] defined by TS(A) = T (A) for A ∈ Obj(D [S−1]) = Obj(D), and

TS(fs−1) = T (f)(T (s))−1, is well-defined with respect to equivalence of roofs and is an automorphism.

Then, the pair (D [S−1], TS) has the structure of a triangulated category if we define a triangle in

D [S−1] to be distinguished if it is isomorphic to the image under Q of a distinguished triangle of D .

Proof. The fact that TS is well defined on roofs follows directly from functoriality of T and axiom a1 of

Definition 2.4.5. It is easy to check that TS is an automorphism. We check the axioms of Definition 2.2.2:

A1) Assertion ii) follows from definition of distinguished triangles in D [S−1], and assertion i) from the

definition of Q (Proposition 2.1.5). For iii), let A s←− X f−→ B be a representative of a morphism A→

B in D [S−1]. Complete the morphism X
f−→ B to a distinguished triangle X f−→ B

g−→ C
h−→ T (X) in

D . Consider the triangle A fs−1

−−−→ B
gid−1

B−−−→ C
(T (s)◦h)id−1

C−−−−−−−−→ T (A) of D [S−1]. Then the diagram

X B C T (X)

A B C T (A)

sid−1
X

f id−1
X gid−1

B hid−1
C

T (s)id−1
T (X)

fs−1 gid−1
B (T (s)◦h)id−1

C

provides an isomorphism from a distinguished triangle because sid−1
X is an isomorphism in D [S−1],

as s is a quis.

A2) Follows directly from the definition of TS on morphisms and the fact that (D , T ) is triangulated.
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A3) This is the axiom that is most cumbersome to show. Given a solid commutative diagram in D [S−1],

with rows consisting of distinguished triangles,

A B C A[1]

D E F D[1]

,

we want to fill in the dashed arrow. First of all, by the definition of distinguished triangles in D [S−1],

we can assume that the horizontal arrows above are just (images under Q of) morphisms in D .

Choosing representatives for the vertical arrows, we have the following diagram:

X Y T (X)

A B C T (A)

D E F T (D)

s∈S

f

t∈S

g

T (s)

T (f)

aid−1
A bid−1

B cid−1
C

did−1
D eid−1

E f id−1
F

.

We want to construct a roof from C to F that makes everything commute.

Claim. We can assume the existence of a morphism X → Y in D making the "back" and "front"

squares commute (by changing, if necessary, the roof representing the equivalence class fs−1).

Proof. Using axiom A2 of Definition 2.1.1, complete the arrows X a◦s−−→ B
t←− Y to a square by the

arrows s′ ∈ S and a′, as shown below.

X̃ Y

X Y T (X)

A B C T (A)

D E F T (D)

s′∈S

a′

s∈S

f

t∈S

g

T (s)

T (f)

aid−1
A bid−1

B cid−1
C

did−1
D eid−1

E f id−1
F

This makes the "back" square commute. Moreover, by Proposition 2.1.4 a) i), the roof (f ◦ s′, s ◦ s′)

is equivalent to the roof (f, s). Now, the commutativity condition (did−1
D )◦ (fs−1) = (gt−1)◦ (aid−1

A )

is saying that Q(d ◦ f) ◦Q(s)−1 = Q(g) ◦Q(t)−1 ◦Q(a) (again by Proposition 2.1.4 a). Now,

Q(d ◦ f ◦ s′) = Q(d ◦ f) ◦Q(s)−1 ◦Q(s ◦ s′) = Q(g) ◦Q(t)−1 ◦Q(a) ◦Q(s ◦ s′)

= Q(g) ◦Q(a′) = Q(g ◦ a′),
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that is, commutativity of "back" square in D makes the "front" square commute in D [S−1]. But

then, Proposition 2.1.4 c) says that there exists ˜̃X and a morphism s′′ :
˜̃
X → X̃ in S such that

d ◦ f ◦ s′ ◦ s′′ = g ◦ a′ ◦ s′′ in D .

With the claim proved, we can fit an arrow x : X → Y in the diagram below, that makes the

"back" and "front" squares of the left side commute. Now, complete x by the arrows y and z to a

distinguished triangle in D :

X Y Z T (X)

A B C T (A)

D E F T (D)

s∈S

f

x

t∈S

g

y

w∈S

h

z

T (s)

T (f)

aid−1
A bid−1

B cid−1
C

did−1
D eid−1

E f id−1
F

.

Finally, we take advantage of axiom a2 of Definition 2.4.5 to construct the dashed arrows above

the objects C and F , so that the "back" and "front" lattices commute. The morphism C → F

represented by the class hw−1 gives what we want.

A4) Once more, we refer to the literature [GM03, IV.2.6] for the octahedron axiom.
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Appendix C

Spectral sequences of double complexes
Definition C.1. Let A be an abelian category. A double complex (with terms in A ) is a collection of

objects E•,• = {Ep,q}p,q∈Z of A , together with morphisms

dp,qh : Ep,q → Ep+1,q

dp,qv : Ep,q → Ep,q+1

Ep,q+1 Ep+1,q+1

Ep,q Ep+1,q

dp,q+1
h

anticommutesdp,qv

dp,qh

dp+1,q
v

such that, for every (p, q), dp+1,q
h ◦ dp,qh = 0, dp,q+1

v ◦ dp,qv = 0 and dp+1,q
v ◦ dp,qh = − dp,q+1

h ◦ dp,qv . This

means that, for every p, the data (Ep,•, dp,•v ) is an "upward" directed "column" complex, and, for every q,

the data (E•,q, d
•,q
h ) is an "right-ward" directed "row" complex.

The total complex associated to E•,• is the complex ((TotE)
•
, D), where

(TotE)
n

=
⊕
p+q=n

Ep,q

for every n ∈ Z, and with differentialDn : (TotE)
n → (TotE)

n+1 induced by the mapsEp,q → (TotE)
n+1,

x 7→ dp,qh (x) + dp,qv (x), where p + q = n. The n-th term of the total complex corresponds to the "anti-

diagonal" q = −p+ n.

We say thatE•,• is in the first (respectively, third) quadrant ifEp,q = 0 for every p, q < 0 (respectively,

p, q > 0).

We can picture a double complex E•,• and its total complex (TotE)
• as in the figure below.

...
...

...

. . . Ep−1,q+1 Ep,q+1 Ep+1,q+1 . . .

. . . Ep−1,q Ep,q Ep+1,q . . .

. . . Ep−1,q−1 Ep,q−1 Ep+1,q−1 . . .

...
...

...

dp,qv

dp,qh

(TotE) n−
1

(TotE
) n

Figure C.1: A double complex E•,•, together with its total complex (TotE)
•.
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Definition C.2. A spectral sequence E in an abelian category A consists of the following data.

i) A family of pages {Er}r∈Z≥0 , where each page is a bigraded object Er = {Ep,qr }p,q∈Z, with each

Ep,qr ∈ Obj(A ).

ii) For each p, q ∈ Z and r ∈ Z≥0, a morphism

dp,qr : Ep,qr → Ep+r,q−r+1
r .

These morphisms should satisfy dp+r,q−r+1
r ◦ dp,qr = 0 for any p, q ∈ Z and r ∈ Z≥0. Consequently,

we call dp,qr differentials.

iii) Isomorphisms αp,qr : Hp,q(Er)→ Er+1, where Hp,q(Er) is the chain cohomology

Hp,q(Er) = Ker (dp,qr )/Im
(
dp−r,q+r−1
r

)
.

If there exists r0 ≥ 0 such that Ep,qr ∼= Ep,qr0 for every p, q and r ≥ r0, we set Ep,q∞ := Ep,qr0 and say that E∞

is the limit page of E, or that the spectral sequence abuts to E∞. In this case, we write Ep,qr ⇒ Ep,q∞ .

E0 E1 E2 E3

. . .

Figure C.2: The pages and differentials of a spectral sequence Er.

Theorem C.3 ([Lan02, XX §9]). Let {E•,•, d
•,•

h , d
•,•
v } be a first quadrant double complex with terms in an

abelian category A . Then, there exist two spectral sequences {vEr, vdr} and {hEr, hdr} respecting the

following properties.

i) vE
p,q
0 = hE

p,q
0 = Ep,q, i.e. their 0-th page is just the bigraded object underlying the double complex

E•,•.

ii) vd
p,q
0 = dp,qv , and hence the first page of vE is the bigraded object Hp,•

v := Hp(E•,q). Analogously,

hd
p,q
0 = dp,qh , and hence hE1 is the bigraded object H •,q

h := Hq(Ep,•). We say that vE starts with

the vertical differential, and that hE starts with the horizontal differential.

iii) vd
p,q
1 is the differential Hp,q

v → Hp+1,q
v induced by dp,qh . Therefore, the second page of vE is the

bigraded object one obtains from taking cohomology again (with respect to this differential), which
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we denote by Hq
hH

p
v (E•,•). Similarly, hd

p,q
1 is the differential Hp,q

h → Hp,q+1
h induced by dp,qv , and

the second page of vE is the bigraded object Hp
vH

q
h(E•,•).

iv) There exist two decreasing filtrations on (TotE)
•, i.e. sequences of subcomplexes

. . . ⊆ vF
p+1 (TotE)

• ⊆ vF
p (TotE)

• ⊆ . . . ⊆ vF
1 (TotE)

• ⊆ vF
0 (TotE)

•
= (TotE)

•

. . . ⊆ hF
q+1 (TotE)

• ⊆ hF
q (TotE)

• ⊆ . . . ⊆ hF
1 (TotE)

• ⊆ hF
0 (TotE)

•
= (TotE)

•

withD(vF
p (TotE)

•
) ⊆ vF

p (TotE)
• (and similarly for hF

•). For fixed n, these satisfy vF i (TotE)
n

=

= hF
i (TotE)

n
= 0 for i > n. There are two induced decreasing filtrations vF

•H •(TotE) and

hF
•H •(TotE) on the cohomology of the total complex, with the same properties.

v) Both spectral sequences abut. Despite vE
p,q
∞ and hE

p,q
∞ not being isomorphic in general, both

limiting pages are related to the cohomology of the total complex. More precisely, the consecutive

quotients satisfy

vE
p,q
∞
∼= vF

pHp+q(TotE)/ vF
p+1Hp+q(TotE),

hE
p,q
∞
∼= hF

qHp+q(TotE)/ hF
q+1Hp+q(TotE).

Remark C.4. This result can be easily adapted to a third quadrant double complex.

Note that what is deep in the result above is that we can start with either the vertical or horizontal

differential and both algorithms provide information above the same object, the total complex. Although a

filtration only provides partial information about the total complex, there are situations where Hn(TotE)

is completely determined. For example, introducing the shorthand Hn := Hn(TotE), we can write

vE
n,0
∞
∼= vF

nHn vF
n−1Hn . . . vF

1Hn HnvE
n−1,1
∞ vE

n−1,1
∞ vE

1,n−1
∞ vE

0,n
∞

,

where the quotients are represented above the hooked arrows. Therefore, if vEn−i,i∞ = 0 for all i, we

have that Hn = 0. This type of argument will be useful to prove Proposition 4.3.28.

The concept of spectral sequences is more easily digested by understating spectral sequences of

filtered complexes, and then relating to the case presented above of a double complex. We recommend

the references [Lan02, XX §9] and [Vak17, 1.7]. The gadget of spectral sequences is "a powerful book-

keeping tool for proving things involving complicated commutative diagrams", [Vak17, 1.7]. We highlight

two useful results that can be proven with the help of this machinery.

Theorem C.5 (Grothendieck’s composition of functors, [Lan02, XX §9.6]). Let A and B be abelian

categories with enough injective objects, and F : A → B andG : B → C be left exact functors. Suppose

F maps injective objects of A into G-acyclic objects of B. Then, for each A ∈ A , there exists a spectral

sequence E such that Ep,q2 = RqG(RpF (A)) and that abuts to Ep,q∞ = Rp+q(G ◦ F )(A).

Note the similarity of the theorem above and Proposition 3.6.1, which we state below for convenience.
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Proposition 3.6.1. Let V1 : K+(A ) → K+(B) and V2 : K+(B) → K(C ) be two exact functors of trian-

gulated categories. Suppose there exist triangulated subcategories KV1 ⊆ K+(A ) and KV2 ⊆ K+(A )

which are adapted to V1 and V2, respectively. Then, by Theorem 3.2.4, the right derived functors

RV1 : D+(A )→ D+(B) and RV2 : D+(A )→ D(C ) exist. If V1(KV1
) ⊆ KV2

, then:

i) KV1
is adapted to the composition (V2 ◦ V1) : K+(A )→ K(C ), and hence the right derived functor

R(V2 ◦ V1) : D+(A )→ D(C ) exists.

ii) There is a natural isomorphism of functors R(V2 ◦ V1) R(V2) ◦R(V1)
∼= .

Under the assumption that A ,B have enough injectives and picking V1 = K+(F ) and V2 = K+(G)

in the aforementioned proposition, the results are equivalent. Theorem C.5 was first introduced by

Grothendieck in [Gro57]. By Hartshorne’s wording, Proposition 3.6.1 "shows the convenience of derived

functors in the context of derived categories. What used to be a spectral sequence becomes now

simply a composition of functors. (And of course one can recover the old spectral sequence from this

proposition by taking cohomology and using the spectral sequence of a double complex)", [Har66, Pag.

60].

Despite the bird’s-eye perspective that the general theory of derived functors provides, spectral se-

quences are still useful for explicit computations. The proof of Grothendieck’s composition of functors

spectral sequence can be adapted to give the following result.

Proposition C.6 ([Huy06, 2.66]). Let A ,B be abelian categories and assume that A has enough

injectives. If F : A → B is a left exact functor, for each A• ∈ D+(A ), there exists a spectral sequence

E such that Ep,q2 = RpF (Hq(A•)) and that abuts to Rp+qF (A•).

As asserted in Section 3.6, the proposition above enables us to prove the result below, which is used

in Subsection 4.3.4.

Corollary 3.6.2. Let A ,B and F be as in the previous proposition. If C ⊆ B is a thick subcategory and

RiF (A) ∈ C for all A ∈ A , then RF (A•) ∈ D+
C (B) for every A• ∈ D+(A ). In other words, RF restricts

to

RF : D+(A )→ D+
C (B).

Proof. Let A• ∈ D+(A ). By Proposition C.6, there exits a spectral sequence E such that Ep,q2 =

RpF (Hp(A•)) ⇒ Rp+qF (A•). Since Hp(A•) ∈ A , RqF (Hp(A•)) ∈ C for all q by hypothesis. In other

words, all the objects in the second page of the spectral sequence are in C . Since subsequent pages are

obtained by taking cohomology over and over again, and C is closed under extensions, all subsequent

pages have terms in C . In particular, the limiting page Ep,q∞ = Rp+qF (A•) ∈ C . By the definition of the

higher derived functors, we conclude that RF (A•) lands in D+
C (B).
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Appendix D

Supplement to Chapter 4
This appendix is devoted to presenting proofs of certain statements made in Chapter 4.

Lemma 4.2.4. If U ∈ Op(X), G ∈ CohU , F ∈ QCohX such that G ⊆ F |U , then there exists G ′ ∈ CohX

such that G ′ ⊆ F and G ′|U ∼= G .

Proof. We split the proof into two steps.

1) Firstly, we prove the claim for the affine case. We set X = SpecA, where A is a Noetherian ring.

Let ι : U → X denote the inclusion. By Lemma 4.1.14, F |U ∈ QCohU . Since U is qcqs by Remark

4.1.24, ι∗(F |U ) and ι∗(G ) are quasicoherent sheaves on X by Proposition 4.1.30 iii). Consider

the morphism φ : F → ι∗(F |U ) of quasicoherent sheaves on X, defined over each V ∈ Op(X),

by φ(V )(f) = f |U∩V , where f ∈ F (V ). Since QCohX is abelian, we have an induced map of

quasicoherent shaves on X, φ : F → ι∗(F |U )/ι∗(G ), and K := Kerφ ∈ QCohX . Note that, if

V ∈ Op(X),

K (V ) = {f ∈ F (V ) : f |U∩V ∈ G (U ∩ V )},

K ⊆ F and K |U = G . Since X is affine, we can write K ∼= K̃ for K ∈ ModA, by Remark 4.1.11.

Since U is quasicompact, we can cover it by a finite number of distinguished affine open subsets

of the form SpecAfi , for fi ∈ A, i = 1, . . . , n. Then Kfi is generated by finitely many elements,

say xi,1/f
N
i , . . . , xi,ri/f

N
i for x1,1, . . . , x1,ri ∈ K. Let K ′ ⊆ K be the submodule generated by

{xi,j}n,rii=1,j=1. Then G ′ := K̃ ′ ∈ CohX , G ′ ⊆ K ⊆ F and G ′|U ∼= K |U = G .

2) For the general case, cover X by affine opens SpecAi, for Ai Noetherian rings, i = 1, . . . , n. Then,

by step 1), there exist G ′i ∈ CohSpecAi such that G ′i ⊆ F |SpecAi and G ′i |U∩SpecAi
∼= G |U∩SpecAi .

Notice that G ′i |SpecAi∩SpecAj
∼= G ′j |SpecAi∩SpecAj since each G ′i is a subobject of F |SpecAi , and F is

a sheaf. Let G ′ be the (unique up to unique isomorphism) gluing of the G ′i along the intersections

SpecAi ∩ SpecAj , [Vak17, 2.5.1]. This sheaf of OX -modules is coherent by Proposition 4.1.22.

Moreover, it is easy to see that G ′ ⊆ F and G ′|U ∼= G .

Corollary 4.2.7. Let F ∈ QCohX . Then, F is an injective object in ModX if and only if F is an injective

object in QCohX .

Proof. We prove the sufficient condition. By Proposition 4.2.6, there exists G ∈ QCohX , injective in

ModX , and a monomorphism F ↪→ G . Since F is injective in QCohX , this monomorphism splits:
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F G

F

.

Let H1 ↪→H2 is a monomorphism in ModOX , and consider the following diagram:

H1 H2

F

G

.

The arrow H2 → G exists since G is injective in ModOX , and so we can define the arrow H2 → F as

the composition with the splitting found previously.

Proposition 4.3.8. If (X,R) is a ringed space, any injective R-module on X is flasque.

Proof. Let I be an injective R-module and ιU : U → X the inclusion of an open set U ⊆ X. If V ⊆ U ,

consider the natural injection (ιV )!(R) ↪→ (ιU )!(R). Since I is injective, we can complete any diagram

(ιV )!(R) (ιU )!(R)

I

This means that the natural map HomOX ((ιU )!(R),I ) → HomR((ιV )!(R),I ) is surjective. Since any

φ ∈ HomR((ιU )!(R),I ) is determined by a map R(U) → I (U), i.e. an element of I (U), and the

restriction maps of I , and similarly for V , we get that

R(U) I (U)

R(V ) I (V )

resU,V ,

as desired.

Lemma 4.3.10. Let X ∈ Sch be Noetherian. Then:

i) If {Fi}i∈I is a collection of flasque quasicoherent sheaves on X,
⊕

i∈I Fi is a flasque quasico-

herent sheaf on X.

ii) If F ∈ QCohX is flasque, Hi(X,F ) = RiΓ(X,F ) = 0 for i ≥ 1.

iii) If F ∈ QCohX , there exists a flasque sheaf G ∈ QCohX and a monomorphism F ↪→ G .

Proof. The first statement holds even without the Noetherian hypothesis and follows easily from Propo-

sition 4.1.15 i) and the definition of flasque sheaves.

The second statement holds for general R-modules on arbitrary ringed spaces (X,R). Since

ModR(X) has enough injectives (Proposition 4.1.2), there is a short exact sequence of R-modules
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0 F I I /F 0 ,

where I is injective. We prove the result by induction on i: if all cohomology groups of a flasque sheaf

are trivial up to the i-th one, so is its (i + 1)-th cohomology group. For the induction base i = 1, since

F is flasque, applying Γ(X,−) to the short exact sequence above gets us an exact sequence of R(X)-

modules by Lemma 4.3.6 i), and so H1(X,F ) = 0. For the induction step, consider the induced long

exact sequence of Corollary 3.3.7:

. . . Hi(X,F ) Hi(X,I ) Hi(X,F/I ) Hi+1(X,F ) Hi+1(X,I ) . . . .

Since the class of injective sheaves is adapted to any functor (Theorem 3.4.10), Hi(X,I ) = 0 for every

i ≥ 1 by Lemma 3.3.9, and hence Hi+1(X,F ) ∼= Hi(X,F/I ). But since F ,I are flasque, so is F/I

by Lemma 4.3.6 ii). By induction hypothesis, Hi(X,F/I ) = 0 and we are done.

The last statement is the only assertion that relies on all the hypothesis on X and F . It follows from

Proposition 4.1.31, Corollary 4.2.7 and Proposition 4.3.8.

Proposition 4.3.11. Let f : X → Y be continuous map of topological spaces, F ∈ AbX and i ≥ 0.

Define the presheaf H i
pre(F ) of abelian groups on Y by assigning, to each U ∈ Op(Y ), the abelian

group

H i
pre(F )(U) := Hi(f−1(U),F |f−1(U)).

If H i(F ) is the sheafification of H i
pre(F ), there is an isomorphism Rif∗(F ) ∼= H i(F ).

Proof. We start by specifying the restriction maps of H i
pre(F ). Recall from Remark 4.1.3 that AbX has

enough injectives. If V ⊆ U , let F |f−1(U)
quis−−→ IU

• and F |f−1(V )
quis−−→ IV

• be a resolution by injective

sheaves of abelian groups on f−1(U) and on f−1(V ), respectively. Let i : f−1(V ) ↪→ f−1(U) be the

inclusion. Since i! a i−1, i!(IV
•
) is a complex of injective sheaves of abelian groups on f−1(U) and,

since i! is exact, i!
(
F |f−1(V )

)
→ i!(IV

•
) is still a quis. Consider the square

F |f−1(U) IU
•

i!
(
F |f−1(V )

)
i!(IV

•
)

quis

∃ !

quis

,

where the left downward map is the canonical map arising from the adjunction. By Remark 3.4.12, there

exists a unique (up to homotopy) dashed arrow making the square commute in K+(QCohf−1(U)). We

define the restriction map H i
pre(F )(U) → H i

pre(F )(V ) to be the map on cohomology determined by

applying f∗ to the downward arrow IU
• → i!(IV

•
).

Consider the functor H i(−) : AbX → AbY , taking G 7→ H i(G ). Note that, for fixed U ∈ Op(X),

H i
pre(−)(U) : AbX → Ab is just the right derived functor of the left exact "sections over U " functor,
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Γ(U,−) : AbX → Ab. Therefore, by Proposition 3.3.17, the collection {H i
pre(−)(U)}i≥0 is a (universal)

δ-functor AbX → Ab. Since sheafification is exact, this implies that the collection {H i(−)}i≥0 is a

δ-functor AbX → AbY . Given any G ∈ AbX and U ∈ Op(X),

H 0
pre(G )(U) = H0(f−1(U),G |f−1(U)) = Γ(f−1(U),G ) = f∗(G )(U),

by Proposition 3.3.6 and the definition of the pushforward. According to Remark 3.3.14 and Theorem

3.3.16, we prove the claim if we show that H i(−) is effaceable for any i ≥ 1. If G is any sheaf of

abelian groups on X, again since AbX has enough injectives, there exists an embedding G ↪→ I into

an injective sheaf of abelian groups. By Proposition 4.3.8, I is flasque. It is clear that I |V is also

flasque, for any V ∈ Op(X). Therefore, H i(F ) = 0 by Lemma 4.3.10 ii).
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