Dissertação de Mestrado

Derived categories of coherent sheaves and integral functors

João Gabriel Santos Ruano2021

Informações chave

Autores:

João Gabriel Santos Ruano (João Gabriel Santos Ruano)

Orientadores:

Emílio Franco Gómez (Emílio Franco Gómez)

Publicado em

28/07/2021

Resumo

We provide an introduction to the theory of derived categories and derived functors. To achieve this, we begin by studying the triangulated structure on the homotopy category of complexes over an abelian category $\ mathscr{A}$, and define its derived category $D(\mathscr{A})$ by formally inverting quasi-isomorphisms. In this way, the derived category, although not abelian, inherits a canonical structure of a triangulated category, and derived functors are defined as initial objects in the category of extensions that preserve the distinguished triangles. We apply these constructions to the abelian category $\mathrm{Coh}_X$ of coherent sheaves on a smooth projective variety $X$, with the help of tools such as spectral sequences and $\delta$-functors. Finally, we introduce integral functors. Given two such varieties $X$ and $Y$, these are geometrically motivated functors $D^b(\mathrm{Coh}_X)\to D^b(\mathrm{Coh}_Y)$ between the derived categories, which are extensively used in present-day Algebraic Geometry and Mathematical Physics.

Detalhes da publicação

Autores da comunidade :

Orientadores desta instituição:

Domínio Científico (FOS)

mathematics - Matemática

Idioma da publicação (código ISO)

por - Português

Acesso à publicação:

Embargo levantado

Data do fim do embargo:

02/06/2022

Nome da instituição

Instituto Superior Técnico