Article In: scopus, cienciavitae

Super-strong hydrogel composites reinforced with PBO nanofibers for cartilage replacement

Macromolecular Bioscience

Oliveira, Andreia S.; Silva, João C.; Serro, Ana P.2023Wiley

Key information

Authors:

Oliveira, Andreia S. (Andreia Sofia Gonçalves de Oliveira); Silva, João C. (João Carlos Fernandes da Silva); Loureiro, Mónica V. (Mónica de Jesus Veiga Loureiro); Marques, Ana C. (Ana Clara Lopes Marques); Kotov, Nicholas A.; Colaço, Rogério (Rogério Anacleto Cordeiro Colaço); Serro, Ana P. (Ana Paula Valagão Amadeu do Serro)

Published in

02/01/2023

Abstract

Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA–PBO composites with water contents in the 59–76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA–PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.

Publication details

Authors in the community:

Publication version

VoR - Version of Record

Publisher

Wiley

Link to the publisher's version

https://onlinelibrary.wiley.com/doi/full/10.1002/mabi.202200240

Title of the publication container

Macromolecular Bioscience

First page or article number

1

Last page

18

Volume

23

Issue

2

ISSN

1616-5195

Fields of Science and Technology (FOS)

materials-engineering - Materials engineering

Publication language (ISO code)

eng - English

Alternative identifier (URI)

http://dx.doi.org/10.1002/mabi.202200240

Rights type:

Open access

Creative Commons license

CC-BY - CC-BY