Artigo

DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks

Electronics

Fernandes, Daniel; Matos-Carvalho, João P.; Fachada, Nuno2025MDPI

Informações chave

Autores:

Fernandes, Daniel; Matos-Carvalho, João P.; Fernandes, Carlos M. (Carlos Miguel da Costa Fernandes); Fachada, Nuno (Nuno Fachada)

Publicado em

01/04/2025

Resumo

This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes.

Detalhes da publicação

Autores da comunidade :

Versão da publicação

VoR - Versão publicada

Editora

MDPI

Ligação para a versão da editora

https://doi.org/10.3390/electronics14071428

Título do contentor da publicação

Electronics

Primeira página ou número de artigo

1428

Volume

14

Fascículo

7

ISSN

2079-9292

Domínio Científico (FOS)

computer-and-information-sciences - Ciências da Computação e da Informação

Palavras-chave

  • LoRaWan
  • Large Language Models
  • LLMs
  • UAVs
  • Drones
  • UAV placement
  • code generation
  • IoT

Idioma da publicação (código ISO)

eng - Inglês

Acesso à publicação:

Acesso Aberto

Licença Creative Commons

CC-BY - CC-BY