Artigo
DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks
Electronics
2025 — MDPI
—Informações chave
Autores:
Publicado em
01/04/2025
Resumo
This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes.
Detalhes da publicação
Autores da comunidade :
Carlos Miguel da Costa Fernandes
ist46419
Nuno Fachada
ist145239
Versão da publicação
VoR - Versão publicada
Editora
MDPI
Ligação para a versão da editora
https://doi.org/10.3390/electronics14071428
Título do contentor da publicação
Electronics
Primeira página ou número de artigo
1428
Volume
14
Fascículo
7
ISSN
2079-9292
Domínio Científico (FOS)
computer-and-information-sciences - Ciências da Computação e da Informação
Palavras-chave
- LoRaWan
- Large Language Models
- LLMs
- UAVs
- Drones
- UAV placement
- code generation
- IoT
Idioma da publicação (código ISO)
eng - Inglês
Acesso à publicação:
Acesso Aberto
Licença Creative Commons
CC-BY - CC-BY