
Academic Editors: Arkaitz Zubiaga,

Panayiotis Bozanis and Leonidas

Akritidis

Received: 19 February 2025

Revised: 26 March 2025

Accepted: 28 March 2025

Published: 1 April 2025

Citation: Fernandes, D.;

Matos-Carvalho, J.P.; Fernandes, C.M.;

Fachada, N. DeepSeek-V3, GPT-4,

Phi-4, and LLaMA-3.3 Generate

Correct Code for LoRaWAN-Related

Engineering Tasks. Electronics 2025, 14,

1428. https://doi.org/10.3390/

electronics14071428

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct
Code for LoRaWAN-Related Engineering Tasks
Daniel Fernandes 1,* , João P. Matos-Carvalho 2,3 , Carlos M. Fernandes 1,3 and Nuno Fachada 1,3

1 Copelabs, Lusófona University, 1749-024 Lisbon, Portugal; p7582@ulusofona.pt (C.M.F.);
nuno.fachada@ulusofona.pt (N.F.)

2 LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa,
1749-016 Lisbon, Portugal; jpecarvalho@ciencias.ulisboa.pt

3 Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI),
2829-516 Caparica, Portugal

* Correspondence: daniel.fernandes@ulusofona.pt

Abstract: This paper investigates the performance of 16 Large Language Models (LLMs) in
automating LoRaWAN-related engineering tasks involving optimal placement of drones
and received power calculation under progressively complex zero-shot, natural language
prompts. The primary research question is whether lightweight, locally executed LLMs can
generate correct Python code for these tasks. To assess this, we compared locally run models
against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as
reference points. By extracting and executing the Python functions generated by each model,
we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3
and GPT-4 consistently provided accurate solutions, certain smaller models—particularly
Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability
of lightweight alternatives. Other models exhibited errors stemming from incomplete
understanding or syntactic issues. These findings illustrate the potential of LLM-based
approaches for specialized engineering applications while highlighting the need for careful
model selection, rigorous prompt design, and targeted domain fine-tuning to achieve
reliable outcomes.

Keywords: LoRaWAN; large language models; UAV placement; code generation; IoT

1. Introduction
The rapid expansion of Internet of Things (IoT) applications has led to increased

attention to Low-Power Wide-Area Network (LPWAN) technologies, such as LoRa Wide
Area Network (LoRaWAN), which provide long-range communication with low power
consumption [1]. LoRaWAN networks are particularly appealing for rural areas, where
infrastructure constraints can pose significant challenges to traditional wireless commu-
nication systems [2]. In this context, the integration of Unmanned Aerial Vehicles (UAVs)
as mobile relays has emerged as a promising solution, enabling flexible deployments and
extended coverage [3]. Determining the UAV position that minimizes signal propaga-
tion loss and assessing the corresponding received power are critical for ensuring reliable
connectivity and resource-efficient operations in these rural scenarios [4].

Parallel to these developments in wireless communications, Large Language Mod-
els (LLMs) have shown rapid progress. Modern LLMs—including GPT-4 [5], recent
open-source offerings locally installable with Ollama [6], and novel models such as
DeepSeek [7]—have shown substantial capabilities in understanding complex tasks and

Electronics 2025, 14, 1428 https://doi.org/10.3390/electronics14071428

https://doi.org/10.3390/electronics14071428
https://doi.org/10.3390/electronics14071428
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1356-9349
https://orcid.org/0000-0001-9409-7736
https://orcid.org/0000-0002-1594-6785
https://orcid.org/0000-0002-8487-5837
https://doi.org/10.3390/electronics14071428
https://www.mdpi.com/article/10.3390/electronics14071428?type=check_update&version=2

Electronics 2025, 14, 1428 2 of 24

generating functional code for engineering problems [5]. Furthermore, these models
demonstrate a broad applicability beyond code generation, including text clustering [8],
text summarization [9], machine translation [10], and text classification/question answer-
ing [11]. However, despite these advancements, the effectiveness of lightweight, locally
executed models in generating correct and efficient solutions for domain-specific engineer-
ing tasks remains an open question [12].

This study investigates whether lightweight and locally executed LLMs can generate
correct Python code for UAV planning tasks in LoRaWAN environments. Specifically,
we assess 16 different LLMs by evaluating their ability to generate Python functions that
determine the optimal UAV position from a discrete set of candidate locations, minimizing
propagation loss, and computing the corresponding received power (in dBm). Our primary
goal is to compare the performance of locally run models, such as LLaMA-3.3 [13] and
Phi-4 [14], against state-of-the-art large models such as GPT-4 [5] and DeepSeek-V3 [7],
accessed via their online application programming interfaces (APIs). The inclusion of these
larger models serves as a reference point to establish that such tasks can indeed be solved
using advanced LLMs, allowing for a meaningful comparison with the performance of
smaller, locally executed alternatives. The evaluation uses a zero-shot natural language
prompt configuration, and correctness is measured through a scoring system based on
function extraction and execution results.

Despite significant progress in AI-assisted UAV deployment, previous research has
largely overlooked the unique communication and operational constraints inherent to Lo-
RaWAN environments. LoRaWAN deployments pose distinct challenges such as stringent
power limitations, specialized propagation characteristics at lower frequencies, and long-
range communication requirements that differ fundamentally from scenarios commonly
studied in existing UAV-AI literature. Existing approaches primarily focus on UAV trajec-
tory planning, mission coordination, or visual scene understanding tasks, without explicitly
addressing scenarios involving the low-power, wide-area network constraints and signal
propagation peculiarities of LoRaWAN systems. This gap motivates our study, which specif-
ically examines whether LLMs—particularly lightweight, locally executable variants—can
effectively generate Python code to solve UAV placement and received power calculation
tasks uniquely relevant to LoRaWAN environments.

The findings of this study are significant for two main reasons. First, they illustrate the
extent to which lightweight, locally run LLMs can perform domain-specific engineering
tasks, providing insight into their potential as cost-effective alternatives to proprietary,
large-scale models [15]. Second, these findings may offer practical guidance not only for
practitioners integrating LLM-generated code into IoT and UAV communication workflows
but also for those in a wide range of other fields, as they highlight critical considerations
such as reliability, correctness, and maintainability. The subsequent sections of this paper
are organized as follows. Section 2 provides background information on the use of LLMs for
human–UAV interaction and code generation, also discussing relevant aspects of prompt
design. Section 3 describes the materials and methods employed, including the engineering
problem context, prompt structure, model selection, and evaluation metrics. Results are
presented in Section 4, followed by a detailed discussion in Section 5. Section 6 outlines the
study’s limitations and opportunities for future research. Finally, Section 7 concludes the
paper with final remarks and recommendations.

2. Background
In this section, we start by addressing the general goal of integrating LLMs with UAVs

to improve the behavior, organization, and communication of autonomous systems, as well
as the specific implementation of UAVs as mobile relays and antennas in LoRoWAN envi-

Electronics 2025, 14, 1428 3 of 24

ronments. In Section 2.2, we focus on the specific task of generating code for autonomous
devices and on how LLMs are being used to incorporate code generation at different levels
of workflow. Finally, in Section 2.3, we briefly discuss prompt engineering and its principles,
the benefits and drawbacks of conversational and structured prompting, and how prompt
design impacts code generation or task planning.

2.1. LLMs for Human–UAV Interaction

The nature of UAVs, namely their collective organization and communication re-
quirements, strongly encourages integration with Artificial Intelligence (AI) algorithms.
The recent emergence of LLM technologies in particular is inspiring new frameworks and
prototypes for communication and design of several autonomous systems, and UAVs are
no exception. As LLMs learning and adaptation capabilities in uncertain and dynamic
environments grow and approach human-level proficiency, the scientific literature on the
subject steadily increases [16,17]. Currently, there is a significant amount of knowledge
on LLMs for human–UAV interaction. For a review on the state-of-the art literature on
LLMs and UAVs, please refer to [16]. For a discussion of key areas where LLMs can impact
UAVs, we urge the reader to refer to the paper by Phadke et al. [17]. In the following para-
graphs, we discuss some recent developments on the usage of natural language models for
controlling UAVs.

In [18], Aikins et al. present LEVIOSA, a framework for the generation of UAV
trajectory based on text and speech. The authors use several LLMs to convert natural
language prompts into sets of coordinates to guide the UAVs and low-level controllers
to control each device in its path, aiming for accuracy, synchronization, and collision
avoidance. LEVIOSA was tested on various scenarios with promising results.

Cui et al. [19] propose a Task Planning for Multi-UAV System (TPML) that uses LLMs
as interfaces to translate UAV’s operator instructions into executable codes. After validating
the system in simulation environments and real-wold scenarios, the authors argue that
TPML is able to control multiple UAVs in both synchronous and asynchronous missions
with a single natural language input.

While most of the studies on natural language processing for UAVs focus on processing
the user messages to program or optimize UAV behavior, others try to provide UVAs with
scene descriptions skills in natural language, taking advantage of their capacity to acquire
visual cues of the environment. In [20], the authors use LLMs and Visual Language Models
(VLMs) to provide UAVs with the ability of scene description using natural language.
The generated tests were subject to a readability test, some achieving a high school senior
reading level (level 12 in the Gunning fog index).

In [21], the authors discuss a framework that integrates a novel factorization
method—QTRAN—in a multi-agent reinforcement learning algorithm (MARL) [22] with
an LLM to optimize UAV trajectories, overcoming limitations of value decomposition
algorithms for trajectory planning, as they have difficulties in associating local observations
with the global state of UAV swarms. Although QTRAN overcomes some of the limita-
tions of standard MARLs, its performance can still be improved, namely by enhancing
the representation network. For that purpose, the authors incorporate LLMs in the frame-
work, boosting its overall performance in trajectory optimization and outperforming other
reinforcement learning methods.

LPWAN-based systems are one of the emerging technologies in which UAVs are being
tested and deployed. LPWANS, and LoROWANs in particular, rely on a set of fixed sensor
stations, which measure and transmit a number of environmental data to a central unit.
Traditionally, these stations are static, cover only very small areas and can be impaired by

Electronics 2025, 14, 1428 4 of 24

natural disasters. Due to their mobility, UAVs can act as moving communication nodes,
which solves some of the limitations of static LoROWANs.

Several methods have been proposed to integrate UAVs in LoROWANs. In [23], UAVs
are used to transfer information from ground-based LORAWAN nodes to the base station.
The architecture of the systems thus consists of two layers, the first being the ground nodes
that transmit data using LoRaWAN and the second the swarm of drones communicating
over a WiFi ad hoc network. To enhance the performance of the systems, a distributed
topology algorithm periodically adapts the UAV topology to the position of the ground
nodes. In [24], the authors describe an air quality monitor system based on a LORAWAN
and UAVs. In [25], a UAV emergency monitoring system using a LORAWAN is proposed to
overcome the limitations of ground stations in disaster scenarios. Finally, Arroyo et al. [26]
propose a UAV and LOROWAN system that enables data transfer from sensors to a central
system and then use machine learning to classify the data. To the extent of our knowledge,
there are no studies on the integration of LLMs and UAVs in a LoRaWAN environment.

2.2. Code Generation with LLMs

The landscape of AI-assisted programming has evolved significantly, with extensive
research focusing on natural language generation and understanding of large codebases [27].
Shortly after their inception, some LLMs demonstrated capabilities in code assistance and
code generation, even from natural language specifications. In the first models, those skills
were somewhat limited and the output often required post-processing steps to improve the
quality of the suggested code [28]. But LLMs quickly evolved, and their ability to provide
executable code in due time improved significantly [29]. Furthermore, derivations of
popular LLMs, like Open AI Codex [30], a descendant of ChatGPT-3, and Code Llama [13],
Meta’s programming tool, emerged as specialized models for coding. Nowadays, AI-
assisted programming is a common practice in industry.

In the context of code generation for autonomous devices, Vemprala et al. [31] explore
ChatGPT’s ability on several robot-oriented tasks, including code synthesis. The authors
present a framework for robot control that requires designing and implementing a library
of APIs receptive to prompt engineering for ChatGPT. The proposed framework allows
the generated code to be tested, verified, and validated by a user through simulation and
manual inspection.

In [32], the authors adapt LLMs trained on code completion for writing robot policy
code according to natural language prompts. The generated robot policies exhibit spatial-
geometric reasoning and are able to prescribe precise values to ambiguous descriptions.
By relying on a hierarchical prompting strategy, their approach is able to write more
complex code and solve 39.8% of the problems on the HumanEval [30] benchmark.

Luo et al. [33] use LLMs to generate robot control programs, testing and optimizing
the output in a simulation environment. After a number of optimization rounds, the robot
control codes are deployed on a real robot for construction assembly tasks. The experiments
show that their approach can improve the quality of the generated code, thus simplifying
the robot control process and facilitating the automation of construction tasks.

2.3. Prompt Design

The piece of text or set of instructions that the user provides to an LLM to generate
a specific response is called a prompt. Designing effective prompts is essential to take
advantage of the potential of LLMs, and in a few years the craft established as a field of
research and development of its own [34].

Electronics 2025, 14, 1428 5 of 24

Prompting strategies can be broadly classified into structured and unstructured ap-
proaches. Structured prompting employs precise instructions with explicitly defined
inputs, outputs, and constraints, often leading to more reliable and accurate code genera-
tion. However, structured prompts typically require a deeper understanding of both the
problem domain and the underlying model, potentially limiting flexibility and accessibility.
Conversely, unstructured prompting uses intuitive, conversational language, making it
accessible to a broader audience, reflecting realistic scenarios where users may not possess
specialized knowledge of prompt crafting. However, this can result in less consistent
outputs due to inherent ambiguity.

Prompts may also be categorized based on the number of illustrative examples pro-
vided: zero-shot prompts provide no examples, one-shot prompts include a single example,
and few-shot prompts incorporate multiple examples. Empirical research supports the
trade-offs associated with different prompt styles; for instance, Liang et al. [32] demon-
strate that structured, code-based prompts generally yield superior results for robot-related
reasoning tasks compared to natural language prompts. However, advances in LLM tech-
nology continue to improve the viability of unstructured, natural language prompting in
complex domains such as robotics [31]. Further improvements in output coherence have
also been observed through structured reasoning techniques such as chain-of-thought (CoT)
prompting [33,35].

In this study, we follow a natural language zero-shot prompt strategy, in which the
request is performed in a relatively unstructured fashion without any examples. Nonethe-
less, established best practices for engineering-focused code generation were followed by
explicitly specifying function inputs, expected return types, and required libraries, thus
improving the clarity and reproducibility of the generated code [36].

3. Materials and Methods
This section starts with an overview of the theoretical context that informs our prompt

design in Section 3.1. Next, Section 3.2 presents the proposed prompts and their respective
scenarios. Section 3.3 describes and justifies the models analyzed in this study. Section 3.4
then outlines the prompting and response processing pipeline. The section concludes
with a description of the experimental setup in Section 3.5, including all tested inputs for
both the LLMs and the generated Python functions, the expected function results, and the
evaluation metrics used.

3.1. Theoretical Context

The IoT paradigm refers to the interconnection of physical devices that collect, ex-
change, and process data over the Internet or other communication networks. According to
Sanguesa et al. [37], it is estimated that by 2030, there will be approximately 125 billion IoT
devices, ranging from simple temperature and humidity sensors to more complex sensors
used in sectors such as agriculture and industry. The main goal of these sensors is to
simplify and optimize daily activities. One of the challenges associated with this paradigm
is the large volume of data generated and how it is processed. A potential solution for
data collection is the use of UAVs, which can fly over (or carry) multiple sensors along a
predefined path planning. These UAVs may or may not be capable of transmitting data in
real time to a base station (BS). However, to use UAVs efficiently, it is often necessary to
calculate their location and send control commands to adjust their position or even modify
their flight path. Therefore, reliable communication between the UAV and a base station
is crucial. One possible communication protocol for this purpose is LoRaWAN, which is
based on LoRa (long-range) communication and enables effective long-distance data trans-
mission [38,39]. Essentially, LoRa communication establishes a link between two points:

Electronics 2025, 14, 1428 6 of 24

the transmitter—in this case, the BS—and the receiver, i.e., the UAV. This communication is
based on classical propagation models, such as those found in reference [40].

Regarding the modulation of a communication channel, the received power at the
antenna (pr) depends on factors such as the transmit power (pt), the gain of the antennas
(gr and gt), the distance between the antennas (r), and the losses during transmission (free-
space attenuation). Equation (1) represents the propagation loss lF between the two points:

lF =
pt · gr · gt

pr
=

(
4πr

λ

)2
=

(
4πr f

c

)2
(1)

where λ represents the wavelength. In particular, λ = c
f , with c representing the speed of

light and f the frequency, which in Europe is 868 MHz.
A lower propagation loss results in a stronger received signal. Propagation losses

are typically expressed in dB units, and for a distance in meters and a frequency in Hz,
Equation (1) can be rewritten as Equation (2), which represents the Free Space Path Loss
formula. This formula is valid under free-space conditions, assuming a direct, unobstructed
line of sight. In terms of notation, lowercase variables denote linear values, whereas
uppercase variables denote logarithmic values.

LF(dB) = 20 log(rm) + 20 log(fHz)− 147.55 (2)

To estimate the received power, it is necessary to consider the transmitted power,
the gain of the transmitting and receiving antennas, and the path losses that occur during
transmission. Thus, Equation (3), derived from Equation (1), can be written as

Pr(dBm) = Pt + Gt + Gr − LF (3)

3.2. Scenarios and Prompts

To evaluate the LLM models, three zero-shot prompts with increasing levels of diffi-
culty were designed—see Table 1. In this context, ‘zero-shot’ refers to prompts that do not
provide any examples to the model being tested. Furthermore, these prompts use natural
language, meaning that they are relatively unstructured and have undergone minimal
refinement, apart from ensuring technical precision and clarity. This approach was chosen
as it more closely follows real-world scenarios where domain experts may rely on direct,
straightforward queries to achieve their goals.

The specific request posed by these prompts is for the LLM to identify, from a set of
points, the point where the value of LF is the lowest or to determine the received power
at that point (i.e., the point with the lowest LF). In all scenarios, a frequency of 868 MHz
is considered, as well as a rural area where LoRa communication is possible up to 10 km.
Both antennas are assumed to have a gain of 2.5 dBi each.

To simplify post-processing of responses, all prompts specify the available libraries,
the expected indentation type, and that the return function should be self-contained—i.e.,
all required code including constants and auxiliary functions should be defined within the
requested function.

Electronics 2025, 14, 1428 7 of 24

Table 1. Prompts designed for this study, requiring the tested LLMs to generate Python functions
that solve increasingly complex tasks related to LoRaWAN and UAVs.

Prompt 1

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV
at a communication frequency of 868 MHz. Assume a system with two axes (the x-axis and the y-axis) and that the base station is
in position (0,0). Also, assume that all positions are in kilometers (km).

Create a Python function called `index_position()` which accepts a list of tuples, with each (x, y) tuple representing a possible
position in which the UAV can be placed with respect to the base station. This function should return the list index of the tuple
(i.e., UAV position) which minimizes the propagation loss. Assume that the math and numpy libraries are imported as follows, and
no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the `index_position()` function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the `index_position()` function. Provide Python code with 4-space
indentation following PEP 8.

Prompt 2

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV
at a communication frequency of 868 MHz. Assume a system with two axes (the latitude axis and the longitude axis) where each
value is given in decimal degrees.

Create a Python function called `index_position()` which accepts a list of (latitude, longitude) tuples. The first tuple in this
list represents the position of the base station, while the remaining tuples represent possible positions in which the UAV can be
placed. This function should return the list index of the tuple which minimizes the propagation loss. Assume that the math and
numpy libraries are imported as follows, and no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the `index_position()` function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the `index_position()` function. Provide Python code with 4-space
indentation following PEP 8.

Prompt 3

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV at
a communication frequency of 868 MHz, with a transmission power of 27 dBm. Both the transmitter and UAV antennas have a gain of
2.5 dBi. Assume a system with two axes (the latitude axis and the longitude axis) where each value is given in decimal degrees.

Create a Python function called `power_received()` which accepts a list of (latitude, longitude) tuples. The first tuple in this
list represents the position of the base station, while the remaining tuples represent possible positions in which the UAV can be
placed. This function should return the power received (in dBm) by the UAV at the position that minimizes the propagation loss.
Assume that the math and numpy libraries are imported as follows, and no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the `power_received()` function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the `power_received()` function. Provide Python code with 4-space
indentation following PEP 8.

The first prompt is presented in the first row of Table 1. In this simpler scenario,
the BS and the UAV’s possible positions, measured in kilometers (km), are defined within
a coordinate system with two axes: the x-axis and the y-axis. The BS is fixed at position
(0, 0), while the UAV’s possible positions are provided as an input array to the function
generated by the LLMs. To solve this problem, LLMs must generate a Python function that
calculates the distance (e.g., Euclidean) between the BS and each possible UAV position,
applies Equation (2) to compute power losses, and returns the index of the position with the
lowest loss. The LLM must ensure that power losses maintain a one-to-one correspondence
with the UAV positions to return the correct index.

Electronics 2025, 14, 1428 8 of 24

Prompt 2, shown in the second row of Table 1, increases the complexity by considering
geographical coordinates—latitude and longitude—instead of a simple (x, y) axis. LLMs
must use a different method to calculate the distances between the UAV’s position and the
BS, such as Haversine’s formula. This prompt further increases the difficulty by requiring
that the UAV’s position be given as the first element of the input array. Consequently,
the generated functions must extract this information and return an index greater than
zero, as index zero contains the UAV’s position.

Prompt 3, presented in the last row of Table 1, closely resembles Prompt 2. However,
instead of returning the index with the lowest loss, the generated function must return the
value of that loss by applying Equation (3).

3.3. LLMs Considered

The LLMs models used in this paper were chosen based on their impact in AI research,
innovative approaches, and performance across different domains such as programming,
advanced reasoning, and computational efficiency. Table 2 lists and characterizes the LLMs
selected for this study. For the remainder of this paper, the number of parameters associated
with each model is expressed in billions or trillions with an uppercase B and T, respectively.

Table 2. Characteristics and main purpose of the LLMs tested in this study. ‘Size‘ indicates the
number of parameters in billions (B) or trillions (T). ‘Tag‘ corresponds to the specific model version
invoked in the respective API calls.

Family Version Size Tag Main Purpose

DeepSeek [7,41] R1 7B deepseek-r1:7b Computationally efficient distilled reasoning model.
R1 70B deepseek-r1:70b Distilled reasoning model balancing performance and

computational efficiency.
V3 671B deepseek-v3 Mixture-of-Experts general-purpose model.

Gemma [42,43] 1.1 2B gemma:2b Lightweight model for dialogue, instruction-following,
and coding.

2.0 2B gemma2:2b Compact general-purpose model trained with
knowledge distillation.

GPT [5] 4 1.76T * gpt-4-0613 Multimodal model optimized by OpenAI for text,
audio, and image processing.

LLaMA [13] 3.2 3B llama3.2:3b Lightweight text-only model for multilingual
dialogue and text summarization.

3.3 70B llama3.3:70b Text-only model for deeper comprehension
multilingual conversation.

code 7B codellama:7b Code generation model.

Mistral [44] 0.3 7B mistral:7b Efficient model for text and code generation,
supports function calling.

Phi [14] 4.0 14B phi4:14b Reasoning model trained using high-quality
synthetic data.

Qwen [45,46] 2.5-coder 0.5B qwen2.5-coder:0.5b Code generation model.
2.5-coder 1.5B qwen2.5-coder:1.5b Code generation model.
2.5-coder 3B qwen2.5-coder:3b Code generation model.
2.5 0.5B qwen2.5:0.5b General-purpose language model.
qwq 32B qwq:32b Advanced reasoning model for complex

problem-solving tasks.
* Unofficial estimate.

Electronics 2025, 14, 1428 9 of 24

The DeepSeek family of models includes a range of architectures designed to balance
performance and computational efficiency. DeepSeek-R1 (7B) and DeepSeek-R1 (70B)
are distilled versions derived from the larger DeepSeek-R1 model (671B)—based on the
Qwen and LLaMA architectures—to retain significant reasoning capabilities while reducing
hardware demands [41]. In contrast, DeepSeek-V3 (671B) is a Mixture-of-Experts model
designed to perform well in diverse tasks [7]. Considering these models is crucial due to
their varied architectures and training methodologies, which offer insights into the trade-
offs between model size, training techniques, and task-specific performance. The V3 671B
model was selected over its more developed R1 counterpart, as initial trials demonstrated
it was sufficiently accurate for the prompts presented in Section 3.2, providing a balance
between performance and cost.

The Gemma model family [42,43], developed by Google DeepMind, comprises open
models derived from the research and technology behind the Gemini models. While
influenced by Gemini, Gemma is fully open-source and designed for efficient language
understanding and reasoning. The lightweight Gemma v1.1 (2B) and Gemma2 (2B) imple-
mentations are optimized for resource-limited environments. Gemma2 (2B) incorporates
knowledge distillation, improving efficiency and performance relative to its size. These
models were included to assess the trade-offs in model scaling, particularly for the real-time
and cost-sensitive applications associated with the tested prompts.

OpenAI’s Generative Pre-trained Transformer (GPT) models are proprietary LLMs
designed to understand and generate human-like text, facilitating tasks such as drafting
documents, coding, and responding to queries [5]. Their popularity and advanced capabili-
ties make them essential subjects in LLM comparison studies. In this context, GPT-4-0613
was selected over newer models such as GPT-4o and o1, as preliminary tests indicated its
performance was sufficient for the presented prompts, therefore reducing costs.

The LLaMA series by Meta AI includes models optimized for various applications [13].
LLaMA-3.2 (3B) is a lightweight, multilingual model suited for mobile and edge devices, ap-
propriate for text summarization and classification. LLaMA-3.3 (70B) is a larger, instruction-
tuned model with superior performance in natural conversation and multilingual tasks.
Code Llama (7B) specializes in code generation and understanding. Testing these three
models is important for evaluating how model size, specialization, and efficiency in the
LLaMA family impacts performance across the three implemented prompts.

The Mistral family of language models [44], developed by the French company Mistral
AI, stands out for its efficient architecture and strong performance. Mistral models achieve
high accuracy with fewer parameters, making them more accessible and computationally
efficient compared to many large-scale models. The Mistral v0.3 (7B) model exempli-
fies this approach, demonstrating capabilities in text and code generation, conversation,
and function calling, while effectively handling longer sequences. Its open-source nature
offers a valuable option for research and application development, providing a European
alternative to models predominantly from U.S.- and China-based companies.

The Phi model family [14], developed by Microsoft Research, is focused on the role of
high-quality synthetic data for improving reasoning in compact language models. Phi-4,
a 14-billion parameter model, prioritizes synthetic data to improve problem-solving in
mathematics and coding, outperforming its teacher model, GPT-4, on several benchmarks.
Unlike models that primarily scale with size, Phi-4 follows a distinct training approach,
making it important to compare against other LLMs. Its relatively small size also makes it
relevant for low-resource environments, where optimizing data efficiency can be a crucial
factor in model deployment.

Electronics 2025, 14, 1428 10 of 24

The Qwen model family, developed by Alibaba Cloud, includes general-purpose [45]
and code-specialized [46] LLMs over a wide range of sizes. Their scalability, architectural
optimizations, and strong reasoning capabilities make them valuable for benchmarking
efficiency and specialization. Here, the most recent 2.5 versions are tested—namely the spe-
cialized coder implementations (0.5B, 1.5B, and 3B) and the general-purpose 0.5B model—as
well as QwQ (Qwen with Questions) 32B model with advanced reasoning capabilities.

3.4. Implementation

The pipeline for submitting a prompt to an LLM, obtaining a response, extracting
a Python function, and executing it is illustrated in Figure 1. The process begins by
iterating through a predefined set of LLMs, seeds, temperatures, and prompts. Each
prompt is submitted to the corresponding LLM, and its response is stored in a text file.
Next, the function from each stored response is extracted by searching for the function
definition (e.g., ‘def requested_function():’) and capturing all internal code up to the
last properly indented ‘return’ statement. This ensures that functions defined within the
external function do not prematurely terminate the extraction. The extracted function is then
recorded in a Python file for execution. If the function is not successfully extracted—such
as when the defined function name does not match the expected one—this information is
logged in the results file, and a score of zero is assigned for that LLM, seed, temperature,
and prompt combination.

Ask LLM

Qwen

DeepSeek

Gemma

Mistral

Phi

GPT

Llama

Temperature

Seed

Pre-Processing

answer.txt

Prompt

function.py

Run Python Code

return value

Compare Results

Scenario_values.json

results.csv

Input Data

Output Data

Processing

Success?

Yes Yes

No No

Possible result: 0
Possible result: 1, 2

Possible result:
3, 4, 5

Function Name

Function Parameters
Function Result

Success?

Figure 1. Validation pipeline for the results of LLMs under study.

If the Python function is correctly generated and extracted, it is tested under
Python 3.9.6 using the data provided for each scenario (presented in Section 3.5). One of
three possible outcomes may occur:

• The code contains a syntax error and does not compile, in which case a score of 1 is
recorded in the results file;

• The code executes but encounters a runtime error, resulting in an exception, in which
case a score of 2 is stored in the results file;

Electronics 2025, 14, 1428 11 of 24

• The code executes successfully and returns a result, in which case the score ranges
from 3 to 5, as detailed below.

If the code executes successfully, the function’s output is evaluated as follows: if the
returned value is of a different type than expected (e.g., a float instead of an int), a score
of 3 is recorded in the results file. This type check is performed broadly; for example, if an
integer is expected, types such as int, np.int32, or np.int64 are considered valid (where
np refers to the NumPy library). If the type is correct, the next step is to verify whether the
returned value matches the expected value. For floating-point comparisons, a tolerance
of 1% is allowed. If the result is incorrect, a score of 4 is assigned. Finally, if the returned
value is correct, a score of 5 is recorded, indicating 100% functionally correct code. At the
end of this process, a file containing all recorded scores is available for analysis.

In summary, scores between 0 and 5 are characterized as follows:

0. No Python file was generated—This indicates that the LLM did not generate a
Python function or that the generated function does not have the name specified
in the prompt.

1. Syntax error—The code does not compile.
2. Runtime error—The code is valid Python but has logic incongruencies and/or does

not conform to the prompt requirements.
3. Code runs but returns an incorrect data type—For Prompts 1 and 2, it should return

an integer (the index value), while in Prompt 3, it should return a float.
4. Code runs but returns an incorrect result.
5. Code runs and returns the correct result.

3.5. Experimental Setup

To thoroughly test the capabilities of the models listed in Section 3.3, the prompts
presented in Section 3.2 were individually submitted to LLMs using six different pseudo-
random number generator seeds across six temperature values, in a total of 36 submissions
per prompt for each LLM. Temperatures were increased in 0.2 increments from 0.0 to
1.0 for locally executed LLMs via Ollama. Although Ollama accepts temperatures in the
range of 0.0–1.0, both DeepSeek-V3 and GPT-4, executed through their online APIs, accept
temperatures in the 0.0–2.0 range. Therefore, temperatures were doubled for these models.
For example, and for the purpose of this study, a temperature of 0.6 in local models is
doubled to 1.2 when submitting a prompt to online LLMs.

The LLM-generated Python functions were tested with the following input data, and
return values for each prompt were expected:

Prompt 1 The input data are an array of four positions, namely [(2, 5), (7, 7), (1, 8), (1, 0.5)].
The expected return value is 3, corresponding to coordinate (1, 0.5), which is the
closest one to the BS, which is fixed at (0, 0).

Prompt 2 The input data are an array containing the following coordinates:

BS / UAV → (38.759297963817374,−9.154483012234662)
Position 1 → (38.749330295687805,−9.15304293547367)
Position 2 → (38.75727072916799,−9.157797377555926)
Position 3 → (38.737648166512336,−9.138660615310467)
Position 4 → (38.76841010033327,−9.160013961052972)

The expected return value is 2, corresponding to the index of Position 2, which
minimizes the power loss.

Prompt 3 The input data are the same as in Prompt 2, but the expected value is −50.33 dBm,
which is the minimal loss, obtained at Position 2.

Electronics 2025, 14, 1428 12 of 24

As described in Section 3.4, the capabilities of the different LLMs in correctly an-
swering Prompts 1–3 are assessed using a score between 0 and 5. For six submissions
(one per seed) for each prompt–model–temperature combination, four summary statistics
are calculated and presented: the mean score, a non-parametric 95% confidence interval
around the mean, the percentage of perfect scores (score equal to 5), and a histogram of
score distribution. These metrics allow for a detailed performance investigation of the
capabilities of the 16 tested models to generate Python code to solve the three progressively
complex LoRaWAN-related prompts.

In addition to these summary statistics, a formal statistical comparison between
models is conducted using stratified permutation tests [47]. To account for varying prompt
difficulty, model performance is stratified by prompt, allowing all three prompts to be
included in a unified testing procedure. For each pairwise comparison between two models
at a given temperature, scores are pooled by prompt (six scores per model per prompt, 12
in total), and a one-sided permutation test is applied. The test statistic is the sum of mean
rank differences across prompts. All (12

6) = 924 possible permutations of model labels are
precomputed per prompt, and 1000 stratified permutations are generated by randomly
selecting one permutation per prompt and combining them. The resulting null distribution
is used to estimate the probability of obtaining a test statistic as large or larger than the
observed one under the null hypothesis of no difference. The tests are one-sided, since the
goal is to determine whether one model significantly outperforms another—not whether
it is worse. Finally, multiple testing correction is applied using the Benjamini–Hochberg
procedure to control the false discovery rate (FDR) across all comparisons [48].

4. Results
Results for the simpler Prompt 1 are shown in Figure 2 and Table 3. While all models

generated accurate code for certain seed/temperature combinations, DeepSeek-V3 and
Phi-4 stood out, consistently providing correct answers across all seeds and temperatures.
The three LLaMA models, the three Qwen coder models, and GPT-4 also demonstrated
strong performance, reliably generating correct code for at least a subset of temperature
values—typically at lower settings. Interestingly, GPT-4 exhibited a significant drop in
answer quality at temperatures of 1.6 and higher (i.e., 2 × 0.8), with responses becoming
essentially random at the highest temperature. In contrast, the DeepSeek-R1 models (7B
and 70B), the Gemma models (2B), the Mistral model (7B), and the non-coder Qwen models
(2.5–0.5B and QwQ-32B) failed to consistently produce correct answers.

Results for the slightly more complex Prompt 2, for which the UAV position is given as
a function argument (i.e., it is not predefined within the function) and actual geographical
coordinates are used, are shown in Figure 3 and Table 4. Only four models consistently
generated accurate code: the larger online DeepSeek-V3 and GPT-4 models, as well as the
smaller, locally tested LLaMA-3.3 and Phi-4. However, the drop in performance for GPT-4
at higher temperatures is even more pronounced for this prompt. Conversely, Gemma (2B),
Mistral (7B), and both 0.5B Qwen models failed to produce a single correct answer.

Prompt 3, while similar to Prompt 2 in many respects, requires the requested function
to return a concrete power loss value rather than merely the index of the position with
the lowest loss. This distinction arguably makes it the most complex task for the models
evaluated in this study. The results for this prompt are presented in Figure 4 and Table 5.
The same four models continued to generate accurate code consistently, though within
a more limited range of temperature settings. DeepSeek-V3 demonstrated the highest
overall consistency, reliably producing correct code at temperatures of 0.8 (2 × 0.4) and
1.2 (2× 0.6), while maintaining a high percentage of accurate responses across the remaining
temperatures. GPT-4 and Phi-4 achieved 100% accuracy when the temperature was set

Electronics 2025, 14, 1428 13 of 24

to zero. However, while Phi-4 remained highly consistent at higher temperatures, GPT-4
exhibited a significant decline in performance. LLaMA-3.3 also demonstrated strong
consistency, achieving 100% accuracy in all runs at temperatures of 0.2 and 0.4. None of
the remaining models were able to successfully complete this task. The only exception
was Qwen’s QwQ (32B), which generated a single correct response at a temperature of
0.6. However, beyond this isolated instance, it predominantly produced code containing
invalid syntax or runtime errors.

Figure 5 presents a pairwise significance heatmap based on p-values from a stratified
permutation test, after FDR multiple testing correction, indicating which models (in rows)
statistically outperformed others (in columns) across temperatures. Table 6 summarizes
these results, showing the number of models each system significantly outperformed at
each temperature, as well as the overall total across all temperatures. These results reinforce
what was observed in the descriptive statistics—namely that DeepSeek-V3, GPT-4, Phi-4,
and LLaMA-3.3 are the most consistent and competitive models in these engineering tasks.
At nearly all temperature levels, these models significantly outperformed the majority of
alternatives, with corrected p-values below the 0.05 threshold in a substantial number of
pairwise comparisons. In particular, DeepSeek-V3, Phi-4, and LLaMA-3.3 achieved the
highest number of significant wins at every temperature, while GPT-4 showed similarly
strong performance at lower temperatures but exhibited a sharp decline in statistical
superiority as temperature increased.

In contrast, the two DeepSeek-R1 models, as well as QwQ, registered very few signifi-
cant wins at any temperature. Crucially, their only advantages were against GPT-4 at higher
temperatures, where its output becomes increasingly random and unsuitable for these
types of coding tasks. This further confirms their limited effectiveness, as already observed
in previous results. An additional insight—less apparent in the descriptive statistics but
clearly highlighted in Table 6—is the lack of correlation between model size and perfor-
mance within the Qwen coder family. Specifically, the 1.5B Qwen coder model achieved
the fourth highest total number of pairwise wins (47), surpassing even GPT-4 (45), while
the larger 3B variant achieved roughly half as many.

Finally, Figure 6 presents the mean scores for the tested models across all three prompts,
aggregating results from all seeds and temperature settings. While the initial assumption
was that Prompts 1 to 3 increase in complexity, and the results thus far appear to support
this hypothesis, Figure 6 provides a more comprehensive perspective. For most models,
the mean score declines progressively with increasing prompt complexity, reinforcing
this assumption. However, exceptions include both Gemma models and the non-coder
Qwen-2.5 model, where the score reduction is not strictly monotonic. Another observation
from this figure is that the highest performing models—DeepSeek-V3, GPT-4, LLaMA-3.3,
and Phi-4—maintain consistent performance across prompts, with only a slight decline in
mean score as complexity increases.

Electronics 2025, 14, 1428 14 of 24

co
de

lla
m

a:
7b

de
ep

se
ek

-r
1:
70

b

de
ep

se
ek

-r
1:
7b

de
ep

se
ek

-v
3

ge
m

m
a2

:2
b

ge
m

m
a:
2b

gp
t-
4-

06
13

lla
m

a3
.2
:3
b

lla
m

a3
.3
:7
0b

m
ist

ra
l:7

b

ph
i4
:1
4b

qw
en

2.
5-

co
de

r:0
.5
b

qw
en

2.
5-

co
de

r:1
.5
b

qw
en

2.
5-

co
de

r:3
b

qw
en

2.
5:
0.
5b

qw
q:

32
b

Model

0

1

2

3

4

5

S
c
o
re

Temp.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Prompt 1 mean answer score for the tested models over several temperatures. Each
combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%
confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the
displayed values.

Table 3. Prompt 1 answer statistics, namely the percentage of correct answers (score equal to 5) and
histogram of scores (0–5) for the tested models over several temperatures. Each combination of model
and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and
gpt-4-0613, are twice the displayed values.

Model
Temperature

0.0 0.2 0.4 0.6 0.8 1.0 Overall

codellama:7b 100.0% 100.0% 50.0% 66.7% 100.0% 83.3% 83.3%

deepseek-r1:70b 66.7% 33.3% 33.3% 66.7% 16.7% 50.0% 44.4%

deepseek-r1:7b 50.0% 50.0% 50.0% 66.7% 66.7% 66.7% 58.3%

deepseek-v3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

gemma2:2b 0.0% 16.7% 66.7% 33.3% 16.7% 16.7% 25.0%

gemma:2b 0.0% 0.0% 16.7% 33.3% 16.7% 33.3% 16.7%

gpt-4-0613 100.0% 100.0% 100.0% 66.7% 0.0% 0.0% 61.1%

llama3.2:3b 100.0% 100.0% 66.7% 66.7% 66.7% 66.7% 77.8%

llama3.3:70b 100.0% 100.0% 100.0% 100.0% 83.3% 100.0% 97.2%

mistral:7b 50.0% 16.7% 50.0% 16.7% 33.3% 33.3% 33.3%

phi4:14b 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

qwen2.5-coder:0.5b 100.0% 83.3% 66.7% 50.0% 50.0% 66.7% 69.4%

qwen2.5-coder:1.5b 100.0% 100.0% 100.0% 100.0% 50.0% 50.0% 83.3%

qwen2.5-coder:3b 100.0% 83.3% 50.0% 50.0% 83.3% 16.7% 63.9%

qwen2.5:0.5b 0.0% 50.0% 16.7% 0.0% 16.7% 16.7% 16.7%

qwq:32b 0.0% 16.7% 0.0% 16.7% 0.0% 16.7% 8.3%

Electronics 2025, 14, 1428 15 of 24

co
de

lla
m

a:
7b

de
ep

se
ek

-r
1:
70

b

de
ep

se
ek

-r
1:
7b

de
ep

se
ek

-v
3

ge
m

m
a2

:2
b

ge
m

m
a:
2b

gp
t-
4-

06
13

lla
m

a3
.2
:3
b

lla
m

a3
.3
:7
0b

m
ist

ra
l:7

b

ph
i4
:1
4b

qw
en

2.
5-

co
de

r:0
.5
b

qw
en

2.
5-

co
de

r:1
.5
b

qw
en

2.
5-

co
de

r:3
b

qw
en

2.
5:
0.
5b

qw
q:

32
b

Model

0

1

2

3

4

5

S
c
o
re

Temp.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Prompt 2 mean answer score for the tested models over several temperatures. Each
combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%
confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the
displayed values.

Table 4. Prompt 2 answer statistics, namely the percentage of correct answers (score equal to 5) and
histogram of scores (0–5) for the tested models over several temperatures. Each combination of model
and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and
gpt-4-0613, are twice the displayed values.

Model
Temperature

0.0 0.2 0.4 0.6 0.8 1.0 Overall

codellama:7b 0.0% 16.7% 16.7% 16.7% 0.0% 0.0% 8.3%

deepseek-r1:70b 0.0% 33.3% 33.3% 33.3% 0.0% 0.0% 16.7%

deepseek-r1:7b 50.0% 33.3% 83.3% 16.7% 16.7% 33.3% 38.9%

deepseek-v3 100.0% 100.0% 100.0% 100.0% 100.0% 83.3% 97.2%

gemma2:2b 0.0% 0.0% 16.7% 0.0% 16.7% 0.0% 5.6%

gemma:2b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

gpt-4-0613 100.0% 100.0% 100.0% 66.7% 0.0% 0.0% 61.1%

llama3.2:3b 0.0% 50.0% 0.0% 0.0% 0.0% 0.0% 8.3%

llama3.3:70b 100.0% 100.0% 83.3% 100.0% 83.3% 83.3% 91.7%

mistral:7b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

phi4:14b 100.0% 83.3% 100.0% 100.0% 100.0% 100.0% 97.2%

qwen2.5-coder:0.5b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwen2.5-coder:1.5b 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 5.6%

qwen2.5-coder:3b 50.0% 16.7% 0.0% 0.0% 0.0% 16.7% 13.9%

qwen2.5:0.5b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwq:32b 0.0% 0.0% 33.3% 0.0% 0.0% 0.0% 5.6%

Electronics 2025, 14, 1428 16 of 24

co
de

lla
m

a:
7b

de
ep

se
ek

-r
1:
70

b

de
ep

se
ek

-r
1:
7b

de
ep

se
ek

-v
3

ge
m

m
a2

:2
b

ge
m

m
a:
2b

gp
t-
4-

06
13

lla
m

a3
.2
:3
b

lla
m

a3
.3
:7
0b

m
ist

ra
l:7

b

ph
i4
:1
4b

qw
en

2.
5-

co
de

r:0
.5
b

qw
en

2.
5-

co
de

r:1
.5
b

qw
en

2.
5-

co
de

r:3
b

qw
en

2.
5:
0.
5b

qw
q:

32
b

Model

0

1

2

3

4

5

S
c
o
re

Temp.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Prompt 3 mean answer score for the tested models over several temperatures. Each
combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%
confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the
displayed values.

Table 5. Prompt 3 answer statistics, namely the percentage of correct answers (score equal to 5) and
histogram of scores (0–5) for the tested models over several temperatures. Each combination of model
and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and
gpt-4-0613, are twice the displayed values.

Model
Temperature

0.0 0.2 0.4 0.6 0.8 1.0 Overall

codellama:7b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

deepseek-r1:70b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

deepseek-r1:7b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

deepseek-v3 66.7% 83.3% 100.0% 100.0% 66.7% 83.3% 83.3%

gemma2:2b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

gemma:2b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

gpt-4-0613 100.0% 50.0% 50.0% 0.0% 0.0% 0.0% 33.3%

llama3.2:3b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

llama3.3:70b 50.0% 100.0% 100.0% 83.3% 66.7% 16.7% 69.4%

mistral:7b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

phi4:14b 100.0% 66.7% 66.7% 66.7% 66.7% 66.7% 72.2%

qwen2.5-coder:0.5b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwen2.5-coder:1.5b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwen2.5-coder:3b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwen2.5:0.5b 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qwq:32b 0.0% 0.0% 0.0% 16.7% 0.0% 0.0% 2.8%

Electronics 2025, 14, 1428 17 of 24

co
d

el
la

m
a:

7b

d
ee

p
se

ek
-r

1:
70

b

d
ee

p
se

ek
-r

1:
7b

d
ee

p
se

ek
-v

3

ge
m

m
a2

:2
b

ge
m

m
a:

2b

gp
t-

4-
06

13

ll
am

a3
.2

:3
b

ll
am

a3
.3

:7
0b

m
is

tr
al

:7
b

p
h

i4
:1

4b

q
w

en
2.

5-
co

d
er

:0
.5

b

q
w

en
2.

5-
co

d
er

:1
.5

b

q
w

en
2.

5-
co

d
er

:3
b

q
w

en
2.

5:
0.

5b

q
w

q
:3

2b

co
d

el
la

m
a:

7b

d
ee

p
se

ek
-r

1:
70

b

d
ee

p
se

ek
-r

1:
7b

d
ee

p
se

ek
-v

3

ge
m

m
a2

:2
b

ge
m

m
a:

2b

gp
t-

4-
06

13

ll
am

a3
.2

:3
b

ll
am

a3
.3

:7
0b

m
is

tr
al

:7
b

p
h

i4
:1

4b

q
w

en
2.

5-
co

d
er

:0
.5

b

q
w

en
2.

5-
co

d
er

:1
.5

b

q
w

en
2.

5-
co

d
er

:3
b

q
w

en
2.

5:
0.

5b

q
w

q
:3

2b

codellama:7b

deepseek-r1:70b

deepseek-r1:7b

deepseek-v3

gemma2:2b

gemma:2b

gpt-4-0613

llama3.2:3b

llama3.3:70b

mistral:7b

phi4:14b

qwen2.5-coder:0.5b

qwen2.5-coder:1.5b

qwen2.5-coder:3b

qwen2.5:0.5b

qwq:32b

codellama:7b

deepseek-r1:70b

deepseek-r1:7b

deepseek-v3

gemma2:2b

gemma:2b

gpt-4-0613

llama3.2:3b

llama3.3:70b

mistral:7b

phi4:14b

qwen2.5-coder:0.5b

qwen2.5-coder:1.5b

qwen2.5-coder:3b

qwen2.5:0.5b

qwq:32b

codellama:7b

deepseek-r1:70b

deepseek-r1:7b

deepseek-v3

gemma2:2b

gemma:2b

gpt-4-0613

llama3.2:3b

llama3.3:70b

mistral:7b

phi4:14b

qwen2.5-coder:0.5b

qwen2.5-coder:1.5b

qwen2.5-coder:3b

qwen2.5:0.5b

qwq:32b

Temp = 0.0 Temp = 0.2

Temp = 0.4 Temp = 0.6

Temp = 0.8 Temp = 1.0

p < 0.01 p < 0.05 Not significant

Figure 5. Pairwise significance heatmap of model performance comparisons for the three prompts
across temperatures. Each colored block represents the p-value of a one-sided, rank-based stratified
permutation test between two models (model in row vs. model in column) for a given temperature.
Cells are colored based on statistical significance after Benjamini–Hochberg FDR multiple testing
correction: dark green indicates a significant advantage of the model in the row against the model in
the column (p < 0.01), light green indicates moderate significant advantage (p < 0.05), and light gray
denotes no significant difference. Temperatures for online models, deepseek-v3 and gpt-4-0613, are
twice the displayed values.

Electronics 2025, 14, 1428 18 of 24

Table 6. Number of statistically significant pairwise wins (corrected p < 0.05) per model across
temperature settings. Bold values indicate the highest number of wins for each temperature column
(including ties). Each cell represents how many times a given model significantly outperformed others
at the corresponding temperature. Temperatures for online models, deepseek-v3 and gpt-4-0613, are
twice the displayed values.

Model
Temperature

0.0 0.2 0.4 0.6 0.8 1.0 Overall

codellama:7b 5 5 2 5 9 4 30
deepseek-r1:70b 0 0 0 0 0 0 0
deepseek-r1:7b 0 0 0 0 0 1 1
deepseek-v3 12 12 12 13 13 13 75
gemma2:2b 2 3 2 3 3 3 16
gemma:2b 2 2 2 2 4 3 15
gpt-4-0613 12 12 12 9 0 0 45
llama3.2:3b 5 6 3 4 4 4 26
llama3.3:70b 12 12 12 13 13 13 75
mistral:7b 4 3 2 1 4 4 18
phi4:14b 12 12 12 13 13 13 75
qwen2.5-coder:0.5b 7 6 6 6 6 5 36
qwen2.5-coder:1.5b 7 7 8 8 9 8 47
qwen2.5-coder:3b 5 6 2 4 4 3 24
qwen2.5:0.5b 2 6 2 1 4 3 18
qwq:32b 0 0 0 0 1 1 2

co
de

lla
m

a:
7b

de
ep

se
ek

-r
1:
70

b

de
ep

se
ek

-r
1:
7b

de
ep

se
ek

-v
3

ge
m

m
a2

:2
b

ge
m

m
a:
2b

gp
t-
4-

06
13

lla
m

a3
.2
:3
b

lla
m

a3
.3
:7
0b

m
ist

ra
l:7

b

ph
i4
:1
4b

qw
en

2.
5-

co
de

r:0
.5
b

qw
en

2.
5-

co
de

r:1
.5
b

qw
en

2.
5-

co
de

r:3
b

qw
en

2.
5:
0.
5b

qw
q:

32
b

Model

0

1

2

3

4

5

S
c
o
re

Prompt

1

2

3

Figure 6. Mean answer score for the tested models and the three prompts. Each combination
of model and prompt was tested 36 times (6 seeds × 6 temperatures). Error bars denote a 95%
confidence interval.

Electronics 2025, 14, 1428 19 of 24

5. Discussion
Within the DeepSeek model family, there was a surprising discrepancy between

the well-performing DeepSeek-V3 and the underperforming DeepSeek-R1 models. The
DeepSeek-R1 versions (7B and 70B), despite their larger parameter counts, rarely generated
correct code. Interestingly, the DeepSeek-R1 models, as well as Qwen’s QwQ (32B), tended
to generate answers over five times longer than those from other models, yet without
improved correctness. While these verbose outputs are particularly noticeable, we did
not investigate the reasons behind them because this lies beyond the scope of this study.
Nonetheless, the generated data—as well as further analyses on this matter—are avail-
able on Zenodo (https://doi.org/10.5281/zenodo.14888673) and may be addressed in
future studies.

An important observation is that GPT-4 exhibits essentially random outputs when
operating at higher temperatures. This behavior aligns with OpenAI’s own documentation,
which indicates that temperatures above 1.2 or 1.4 may lead to increasingly stochastic
completions. In contrast, the other top-performing models in this study—DeepSeek-V3,
LLaMA-3.3, and Phi-4—remain relatively robust under higher temperature settings. These
considerations indicate that temperature influences each model differently. Differences in
temperature scaling ranges (0–1 vs. 0–2) further complicate direct comparisons.

Although one might expect a clear correlation between model size and code generation
quality, results support a more involved situation among locally run models. Larger
models such as DeepSeek-R1 (70B) and QwQ (32B) do not necessarily outperform smaller
alternatives: their answers were typically long yet largely incorrect. Conversely, some mid-
to large-scale models, such as Phi-4 (14B) and LLaMA-3.3 (70B), consistently provided
accurate solutions to all prompts. Another example, LLaMA-3.2 (3B), showed reasonable
performance for simpler tasks but struggled with more complex prompts, highlighting a
lower boundary for parameter count beyond which performance degrades. In contrast,
Qwen’s smaller coder models (0.5B, 1.5B, 3B) did not show any clear advantage with
increasing size, confirming that raw parameter counts alone are insufficient to predict
success across different tasks.

Within the Gemini-based lineage, Gemma-2 offered marginal improvements over its
older v1.1 sibling, though neither model consistently produced correct outputs. On the
other hand, LLaMA-3.3 (70B) clearly outperformed the related LLaMA-3.2 (3B), a result
likely driven by its substantially larger parameter count. Phi-4 merits special mention
for delivering accurate code across all tasks, seeds, and temperatures, while requiring
considerably fewer parameters (14B) than the largest competitors. This affords Phi-4 a
strong performance/size ratio among the locally executed models.

To support these observations, a stratified permutation test with FDR correction was
applied across all model pairs and temperatures. The resulting significance heatmap
and win counts showed strong agreement with the descriptive statistics. DeepSeek-V3,
Phi-4, and LLaMA-3.3 consistently achieved the highest number of statistically significant
wins, while GPT-4 also dominated at lower temperatures. These results reinforce that the
observed differences in model performance are statistically meaningful and not artifacts of
randomness or scoring variability.

From a broader perspective, these findings support the notion that carefully tuned,
locally run models can achieve near-state-of-the-art performance in specialized Python code
generation tasks without necessarily relying on proprietary solutions. Specifically, both
Phi-4 and LLaMA-3.3 proved capable of reliably generating correct solutions for the type
of UAV/LoRaWAN planning prompts tested in this work. Their consistency in providing
accurate answers under varying seeds and temperature conditions places them among
the top-performing models overall, comparable to GPT-4 and DeepSeek-V3. These results

https://doi.org/10.5281/zenodo.14888673

Electronics 2025, 14, 1428 20 of 24

address the central research question: lightweight and locally executed LLMs can, in fact,
generate correct Python code for relatively simple LoRaWAN and UAV planning tasks,
provided that their parameter counts and training procedures meet a certain threshold
of quality and scale. The performance of Phi-4 was particularly impressive, especially
considering it is a relatively lightweight model.

6. Limitations
Despite the insights gained from this study, several limitations should be acknowl-

edged. First, the selection of models, while diverse, was not exhaustive. Only a subset of
locally run lightweight models was evaluated, and online testing was limited to GPT-4
and DeepSeek-V3. Several potentially relevant models, such as Claude, Mistral (larger
online versions), and specialized coding models (e.g., Gemma Coder or DeepSeek Coder),
were not included. This restricted scope leaves open the possibility that other models may
perform competitively or even outperform those tested in this study.

Second, model outputs were assessed solely based on functional correctness, with-
out a detailed qualitative analysis of the responses. This introduces the risk that some
answers classified as correct may not have been genuinely derived but instead relied on
unintended memorization, dataset leakage, or other forms of ‘cheating’. While this concern
is most relevant for Prompts 1 and 2, where only an index is returned, Prompt 3 mitigates
this issue by requiring a real-valued output. Nevertheless, a more rigorous analysis of
response quality—including potential hallucinations, redundant reasoning, and incorrect
assumptions—would strengthen future work.

Third, the study relied on a single test case per function, which limits the robustness
of correctness assessments. A more comprehensive evaluation would include multiple test
cases per function, ensuring that responses generalize beyond a specific input scenario.
This is particularly relevant given the stochastic nature of LLM-generated code, where
seemingly minor variations in the prompt or execution conditions can lead to significant
changes in output validity.

Fourth, all evaluations were conducted using zero-shot natural language prompts,
without fine-tuning or explicit prompt engineering. While this choice aligns with practical
use cases where domain experts may rely on straightforward instructions, further experi-
mentation with prompt optimization strategies—such as chain-of-thought prompting or
few-shot learning—could provide deeper insights into model capabilities.

Additionally, the study focused on relatively simple UAV/LoRaWAN planning tasks.
While these scenarios are relevant to real-world applications, they do not necessarily
capture the full complexity of autonomous UAV coordination, network interference, or real-
time decision-making in dynamic environments. The strong performance of top models
suggests they may be capable of handling more complex scenarios, but this remains an
open question for future research.

A final limitation concerns the use of statistical significance testing. While stratified
permutation tests confirmed the robustness of performance differences, they do not ac-
count for the magnitude or practical implications of those differences. Moreover, the use
of discrete, ordinal scores simplifies model outputs and may obscure subtle qualitative
distinctions. Although multiple testing correction was applied to reduce false positives,
this also reduces sensitivity to borderline effects. Additionally, comparisons at non-zero
temperatures should be interpreted with caution, as temperature scaling is handled dif-
ferently across models, potentially resulting in varying degrees of output randomness for
the same nominal value. These tests therefore complement, but do not replace, the broader
descriptive analysis presented earlier.

Electronics 2025, 14, 1428 21 of 24

These limitations do not diminish the validity of the study’s conclusions but high-
light areas for refinement in subsequent investigations. A broader model selection, more
rigorous evaluation metrics, and extended task complexity would further improve the
understanding of LLMs’ capabilities in UAV and LoRaWAN-related computational tasks.

7. Conclusions
This paper analyzed the capabilities of 16 LLMs to generate Python functions for

practical LoRaWAN-related engineering tasks involving UAV placement and signal propa-
gation. By progressively increasing the complexity of prompts, we evaluated each model’s
ability to return valid and correct solutions under a standardized scoring system. The find-
ings indicate that several recent models—particularly DeepSeek-V3, GPT-4, LLaMA-3.3,
and Phi-4—consistently generated accurate and executable functions. Particularly, Phi-4
displayed exceptional performance despite its relatively lightweight architecture, demon-
strating that well-optimized, smaller-scale models can be highly effective for specialized
engineering applications. Models that did not achieve high scores often struggled with
prompt interpretation, code syntax, or domain-specific computations, underlining the need
for careful prompt engineering and model fine-tuning in similar applications.

The demonstrated viability of lightweight and locally executed LLMs for specialized
engineering tasks such as UAV planning in LoRaWAN environments suggests that these
models could significantly lower computational barriers and costs, allowing for broader and
more flexible integration of AI-driven code generation into practical engineering workflows.

While this study highlighted the strong potential of LLMs in engineering work-
flows, certain limitations must be acknowledged, including the constrained model se-
lection, the single test case per function, and the absence of qualitative analysis of re-
sponses. However, these limitations present opportunities for future research. Expanding
test sets, incorporating more complex domain requirements, and evaluating additional
models—particularly other lightweight alternatives—could further enrich our understand-
ing of LLM-driven code generation in wireless communications and related fields. Future
research could also explore the incorporation of reinforcement learning with human feed-
back to further improve the code generation capabilities of lightweight LLMs [49].

Author Contributions: Conceptualization, D.F., J.P.M.-C. and N.F.; methodology, D.F., J.P.M.-C. and
N.F.; software, D.F., J.P.M.-C. and N.F.; validation, D.F., J.P.M.-C. and C.M.F.; formal analysis, N.F.;
investigation, D.F. and C.M.F.; resources, D.F. and J.P.M.-C.; data curation, N.F.; writing—original
draft preparation, D.F., J.P.M.-C., C.M.F. and N.F.; writing—review and editing, D.F., J.P.M.-C.,
C.M.F. and N.F.; visualization, N.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by: Fundação para a Ciência e a Tecnologia (FCT, https://
ror.org/00snfqn58, accessed on 26 March 2025) under Grants Copelabs ref. UIDB/04111/2020, Centro
de Tecnologias e Sistemas (CTS) ref. UIDB/00066/2020, LASIGE Research Unit ref. UIDB/00408/2025,
and COFAC ref. CEECINST/00002/2021/CP2788/CT0001; Instituto Lusófono de Investigação
e Desenvolvimento (ILIND, Portugal) under Project COFAC/ILIND/COPELABS/1/2024; and,
Ministerio de Ciencia, Innovación y Universidades (MICIU/AEI/10.13039/501100011033, https:
//ror.org/05r0vyz12, accessed on 26 March 2025) under Project PID2023-147409NB-C21.

Data Availability Statement: The data generated by this study and respective analysis are available
at https://doi.org/10.5281/zenodo.14888673 under the CC-BY license.

Conflicts of Interest: The authors declare no conflicts of interest.

https://ror.org/00snfqn58
https://ror.org/00snfqn58
https://ror.org/05r0vyz12
https://ror.org/05r0vyz12
https://doi.org/10.5281/zenodo.14888673

Electronics 2025, 14, 1428 22 of 24

Abbreviations and Symbols

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
API Application Programming Interface
BS Base Station
CoT Chain of Thought
FDR False Discovery Rate
GPT Generative Pre-trained Transformer
IoT Internet of Things
LLM Large Language Model
LoRa Long-range
LoRaWAN LoRa Wide Area Network
LPWAN Low-Power Wide-Area Network
MARL Multi-Agent Reinforcement Learning algorithm
TPML Task Planning for Multi-UAV System
UAV Unmaned Aerial Vehicle
VML Visual Language Models

The following symbols are used in this manuscript:

λ Wavelength
c Speed of light
f Frequency
Gr Gain of the receiving antenna
Gt Gain of the transmitting antenna
LF Propagation loss
Pr Received power
Pt Transmit power
r Distance between the antennas

References
1. Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and chan-

nel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications
(ITST), Copenhagen, Denmark, 2–4 December 2015; IEEE: New York, NY, USA, 2015; pp. 55–59. [CrossRef]

2. Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A study of LoRa: Long range & low power networks for the internet of things.
Sensors 2016, 16, 1466. [CrossRef] [PubMed]

3. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Wireless communication using unmanned aerial vehicles (UAVs): Optimal
transport theory for hover time optimization. IEEE Trans. Wirel. Commun. 2017, 16, 8052–8066. [CrossRef]

4. Sanchez-Iborra, R.; Sanchez-Gomez, J.; Ballesta-Viñas, J.; Cano, M.D.; Skarmeta, A.F. Performance evaluation of LoRa considering
scenario conditions. Sensors 2018, 18, 772. [CrossRef] [PubMed]

5. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.;
et al. GPT-4 Technical Report. arXiv 2024, arXiv:2303.08774. [CrossRef]

6. Morgan, J.; Chiang, M. Ollama: Get Up and Running with Large Language Models. GitHub. 2023. Available online:
https://ollama.com/ (accessed on 10 February 2025).

7. Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao, C.; Deng, C.; Zhang, C.; Ruan, C.; et al. DeepSeek-V3 Technical Report.
arXiv 2024, arXiv:2412.19437. [CrossRef]

8. Petukhova, A.; Matos-Carvalho, J.P.; Fachada, N. Text clustering with large language model embeddings. Int. J. Cogn. Comput.
Eng. 2025, 6, 100–108. [CrossRef]

9. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N.,
Tetreault, J., Eds.; Association for Computational Linguistics: Cambridge, MA, USA, 2020; pp. 7871–7880. [CrossRef]

http://doi.org/10.1109/ITST.2015.7377400
http://dx.doi.org/10.3390/s16091466
http://www.ncbi.nlm.nih.gov/pubmed/27618064
http://dx.doi.org/10.1109/TWC.2017.2756644
http://dx.doi.org/10.3390/s18030772
http://www.ncbi.nlm.nih.gov/pubmed/29510524
http://dx.doi.org/10.48550/arXiv.2303.08774
https://ollama.com/
http://dx.doi.org/10.48550/arXiv.2412.19437
http://dx.doi.org/10.1016/j.ijcce.2024.11.004
http://dx.doi.org/10.18653/v1/2020.acl-main.703

Electronics 2025, 14, 1428 23 of 24

10. Alves, D.M.; Pombal, J.; Guerreiro, N.M.; Martins, P.H.; Alves, J.; Farajian, A.; Peters, B.; Rei, R.; Fernandes, P.; Agrawal, S.; et al.
Tower: An Open Multilingual Large Language Model for Translation-Related Tasks. arXiv 2024, arXiv:2402.17733. [CrossRef]

11. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, NeurIPS,
Vancouver, BC, Canada, 8–14 December 2019; pp. 5753–5763.

12. Gu, X.; Chen, M.; Lin, Y.; Hu, Y.; Zhang, H.; Wan, C.; Wei, Z.; Xu, Y.; Wang, J. On the effectiveness of large language models in
domain-specific code generation. ACM Trans. Softw. Eng. Methodol. 2024, 34, 1–22. [CrossRef]

13. Grattafiori, A.; Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.; Vaughan, A.; et al.
The Llama 3 Herd of Models. arXiv 2024, arXiv:2407.21783. [CrossRef]

14. Abdin, M.; Aneja, J.; Behl, H.; Bubeck, S.; Eldan, R.; Gunasekar, S.; Harrison, M.; Hewett, R.J.; Javaheripi, M.; Kauffmann, P.; et al.
Phi-4 technical report. arXiv 2024, arXiv:2412.08905. [CrossRef]

15. Ling, C.; Zhao, X.; Lu, J.; Deng, C.; Zheng, C.; Wang, J.; Chowdhury, T.; Li, Y.; Cui, H.; Zhang, X.; et al. Domain specialization as
the key to make large language models disruptive: A comprehensive survey. arXiv 2024, arXiv:2305.18703. [CrossRef]

16. Javaid, S.; Fahim, H.; He, B.; Saeed, N. Large Language Models for UAVs: Current State and Pathways to the Future. IEEE Open J.
Veh. Technol. 2024, 5, 1166–1192. [CrossRef]

17. Phadke, A.; Hadimlioglu, A.; Chu, T.; Sekharan, C.N. Integrating large language models for UAV control in simulated
environments: A modular interaction approach. arXiv 2024, arXiv:2410.17602. [CrossRef]

18. Aikins, G.; Dao, M.P.; Moukpe, K.J.; Eskridge, T.C.; Nguyen, K.D. LEVIOSA: Natural Language-Based Uncrewed Aerial Vehicle
Trajectory Generation. Electronics 2024, 13, 4508. [CrossRef]

19. Cui, J.; Liu, G.; Wang, H.; Yu, Y.; Yang, J. TPML: Task Planning for Multi-UAV System with Large Language Models. In
Proceedings of the 2024 IEEE 18th International Conference on Control & Automation (ICCA), Reykjavik, Iceland, 18–21 June
2024; IEEE: New York, NY, USA, 2024; pp. 886–891. [CrossRef]

20. de Curtò, J.; de Zarzà, I.; Calafate, C.T. Semantic Scene Understanding with Large Language Models on Unmanned Aerial
Vehicles. Drones 2023, 7, 114. [CrossRef]

21. Zhu, F.; Huang, F.; Yu, Y.; Liu, G.; Huang, T. Task Offloading with LLM-Enhanced Multi-Agent Reinforcement Learning in
UAV-Assisted Edge Computing. Sensors 2024, 25, 175. [CrossRef]

22. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.E.; Yi, Y. QTRAN: Learning to Factorize with Transformation for Cooperative
Multi-Agent Reinforcement Learning. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long
Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 5887–5896.

23. Saraereh, O.A.; Alsaraira, A.; Khan, I.; Uthansakul, P. Performance Evaluation of UAV-Enabled LoRa Networks for Disaster
Management Applications. Sensors 2020, 20, 2396. [CrossRef] [PubMed]

24. Chen, L.Y.; Huang, H.S.; Wu, C.J.; Tsai, Y.T.; Chang, Y.S. A LoRa-Based Air Quality Monitor on Unmanned Aerial Vehicle for
Smart City. In Proceedings of the 2018 International Conference on System Science and Engineering (ICSSE), New Taipei City,
Taiwan, 28–30 June 2018; pp. 1–5. [CrossRef]

25. Pan, M.; Chen, C.; Yin, X.; Huang, Z. UAV-Aided Emergency Environmental Monitoring in Infrastructure-Less Areas: LoRa Mesh
Networking Approach. IEEE Internet Things J. 2022, 9, 2918–2932. [CrossRef]

26. Arroyo, P.; Herrero, J.L.; Lozano, J.; Montero, P. Integrating LoRa-Based Communications into Unmanned Aerial Vehicles for
Data Acquisition from Terrestrial Beacons. Electronics 2022, 11, 1865. [CrossRef]

27. Wong, M.F.; Guo, S.; Hang, C.N.; Ho, S.W.; Tan, C.W. Natural language generation and understanding of big code for AI-assisted
programming: A review. Entropy 2023, 25, 888. [CrossRef]

28. Jain, N.; Vaidyanath, S.; Iyer, A.; Natarajan, N.; Parthasarathy, S.; Rajamani, S.; Sharma, R. Jigsaw: Large language models meet
program synthesis. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29
May 2022; ICSE ’22, pp. 1219–1231. [CrossRef]

29. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. In Proceedings of the 34th Conference on Neural Information Processing Systems,
NeurIPS 2020, Vancouver, BC, Canada, 6–12 December 2020; Volume 33, pp. 1877–1901.

30. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.D.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374. [CrossRef]

31. Vemprala, S.; Bonatti, R.; Bucker, A.; Kapoor, A. ChatGPT for robotics: Design principles and model abilities. arXiv 2023,
arXiv:2306.17582. [CrossRef]

32. Liang, J.; Huang, W.; Xia, F.; Xu, P.; Hausman, K.; Ichter, B.; Florence, P.; Zeng, A. Code as Policies: Language Model Programs for
Embodied Control. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK,
29 May–2 June 2023; IEEE: New York, NY, USA, 2023; pp. 9493–9500. [CrossRef]

33. Luo, H.; Wu, J.; Liu, J.; Antwi-Afari, M.F. Large language model-based code generation for the control of construction assembly
robots: A hierarchical generation approach. Dev. Built Environ. 2024, 19, 100488. [CrossRef]

http://dx.doi.org/10.48550/arXiv.2402.17733
http://dx.doi.org/10.1145/3697012
http://dx.doi.org/10.48550/arXiv.2407.21783
http://dx.doi.org/10.48550/arXiv.2412.08905
http://dx.doi.org/10.48550/arXiv.2305.18703
http://dx.doi.org/10.1109/OJVT.2024.3446799
http://dx.doi.org/10.48550/arXiv.2410.17602
http://dx.doi.org/10.3390/electronics13224508
http://dx.doi.org/10.1109/ICCA62789.2024.10591846
http://dx.doi.org/10.3390/drones7020114
http://dx.doi.org/10.3390/s25010175
http://dx.doi.org/10.3390/s20082396
http://www.ncbi.nlm.nih.gov/pubmed/32340268
http://dx.doi.org/10.1109/ICSSE.2018.8519967
http://dx.doi.org/10.1109/JIOT.2021.3095494
http://dx.doi.org/10.3390/electronics11121865
http://dx.doi.org/10.3390/e25060888
http://dx.doi.org/10.1145/3510003.3510203
http://dx.doi.org/10.48550/arXiv.2107.03374
http://dx.doi.org/10.48550/arXiv.2306.17582
http://dx.doi.org/10.1109/ICRA48891.2023.10160591
http://dx.doi.org/10.1016/j.dibe.2024.100488

Electronics 2025, 14, 1428 24 of 24

34. Amatriain, X. Prompt design and engineering: Introduction and advanced methods. arXiv 2024, arXiv:2401.14423. [CrossRef]
35. Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E.H.; Le, Q.V.; Zhou, D. Chain-of-thought prompting elicits

reasoning in large language models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, New Orleans, LA, USA, 28 November–9 December 2022; Curran Associates Inc.: Newry, UK, 2022; Volume 35,
pp. 24824–24837.

36. Li, Y.; Shi, J.; Zhang, Z. An approach for rapid source code development based on ChatGPT and prompt engineering. IEEE Access
2024, 12, 53074–53087. [CrossRef]

37. Sanguesa, J.A.; Torres-Sanz, V.; Serna, F.; Martinez, F.J.; Garrido, P.; Calafate, C.T. Improving LoRaWAN Connectivity in Smart
Agriculture Contexts Using Aerial IoT. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur,
Malaysia, 4–8 December 2023; IEEE: New York, NY, USA, 2023; pp. 1027–1032. [CrossRef]

38. Raimundo, A.; Fernandes, D.; Gomes, D.; Postolache, O.; Sebastião, P.; Cercas, F. UAV GNSS Position Corrections based on IoT
LoRaWAN Communication Protocol. In Proceedings of the 2018 International Symposium in Sensing and Instrumentation in IoT
Era (ISSI), Shanghai, China, 6–7 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [CrossRef]

39. Ghazali, M.H.M.; Teoh, K.; Rahiman, W. A Systematic Review of Real-Time Deployments of UAV-Based LoRa Communication
Network. IEEE Access 2021, 9, 124817–124830. [CrossRef]

40. Saunders, S.R.; Aragón-Zavala, A. Antennas and Propagation for Wireless Communication Systems, 2nd ed.; J. Wiley & Sons: Hoboken,
NJ, USA, 2024.

41. Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al. DeepSeek-R1: Incentivizing
reasoning capability in llms via reinforcement learning. arXiv 2025, arXiv:2501.12948. [CrossRef]

42. Mesnard, T.; Hardin, C.; Dadashi, R.; Bhupatiraju, S.; Pathak, S.; Sifre, L.; Rivière, M.; Kale, M.S.; Love, J.; Tafti, P.; et al. Gemma:
Open models based on Gemini research and technology. arXiv 2024, arXiv:2403.08295. [CrossRef]

43. Riviere, M.; Pathak, S.; Sessa, P.G.; Hardin, C.; Bhupatiraju, S.; Hussenot, L.; Mesnard, T.; Shahriari, B.; Ramé, A.; Ferret, J.; et al.
Gemma 2: Improving open language models at a practical size. arXiv 2024, arXiv:2408.00118. [CrossRef]

44. Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; Casas, D.d.l.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier,
L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825. [CrossRef]

45. Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.; Yu, B.; Li, C.; Liu, D.; Huang, F.; Wei, H.; et al. Qwen2.5 technical report. arXiv
2025, arXiv:2412.15115. [CrossRef]

46. Hui, B.; Yang, J.; Cui, Z.; Yang, J.; Liu, D.; Zhang, L.; Liu, T.; Zhang, J.; Yu, B.; Lu, K.; et al. Qwen2.5-Coder Technical Report. arXiv
2025, arXiv:2409.12186. [CrossRef]

47. Good, P.I. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses,
3rd ed.; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2004. [CrossRef]

48. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.
Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]

49. Wong, M.F.; Tan, C.W. Aligning Crowd-Sourced Human Feedback for Reinforcement Learning on Code Generation by Large
Language Models. IEEE Trans. Big Data 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/arXiv.2401.14423
http://dx.doi.org/10.1109/ACCESS.2024.3385682
http://dx.doi.org/10.1109/GCWkshps58843.2023.10464655
http://dx.doi.org/10.1109/ISSI.2018.8538179
http://dx.doi.org/10.1109/ACCESS.2021.3110872
http://dx.doi.org/10.48550/arXiv.2501.12948
http://dx.doi.org/10.48550/arXiv.2403.08295
http://dx.doi.org/10.48550/arXiv.2408.00118
http://dx.doi.org/10.48550/arXiv.2310.06825
http://dx.doi.org/10.48550/arXiv.2412.15115
http://dx.doi.org/10.48550/arXiv.2409.12186
http://dx.doi.org/10.1007/b138696
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1109/TBDATA.2024.3524104

	Introduction
	Background
	LLMs for Human–UAV Interaction
	Code Generation with LLMs
	Prompt Design

	Materials and Methods
	Theoretical Context
	Scenarios and Prompts
	LLMs Considered
	Implementation
	Experimental Setup

	Results
	Discussion
	Limitations
	Conclusions
	References

