Conferência De: orcid, cienciavitae
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
2021 — IEEE
—Informações chave
Autores:
Publicado em
Junho 2021
Resumo
Low-precision formats have proven to be an efficient way to reduce not only the memory footprint but also the hardware resources and power consumption of deep learning computations. Under this premise, the posit numerical format appears to be a highly viable substitute for the IEEE floating-point, but its application to neural networks training still requires further research. Some preliminary results have shown that 8-bit (and even smaller) posits may be used for inference and 16-bit for training, while maintaining the model accuracy. The presented research aims to evaluate the feasibility to train deep convolutional neural networks using posits. For such purpose, a software framework was developed to use simulated posits and quires in end-to-end training and inference. This implementation allows using any bit size, configuration, and even mixed precision, suitable for different precision requirements in various stages. The obtained results suggest that 8-bit posits can substitute 32-bit floats during training with no negative impact on the resulting loss and accuracy.
Detalhes da publicação
Autores da comunidade :
Gonçalo Eduardo Cascalho Raposo
ist424985
Pedro Filipe Zeferino Tomás
ist146645
Nuno Filipe Valentim Roma
ist14359
Versão da publicação
SMUR - Versão submetida a revisão
Editora
IEEE
Ligação para a versão da editora
https://ieeexplore.ieee.org/document/9413919
Título do contentor da publicação
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Local da conferência
Canada
Data de início conferência
06/06/2021
Data de término da conferência
11/06/2021
ISBN
978-1-7281-7605-5
ISSN
1520-6149
Domínio Científico (FOS)
electrical-engineering-electronic-engineering-information-engineering - Engenharia Eletrotécnica, Eletrónica e Informática
Palavras-chave
- Posit numerical format
- low-precision arithmetic
- deep neural networks
- training
- inference
Idioma da publicação (código ISO)
eng - Inglês
Acesso à publicação:
Acesso Aberto