Artigo
Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression
IEEE Geoscience and Remote Sensing Letters
2012
—Informações chave
Autores:
Publicado em
2012
Resumo
In this letter, we propose a new semisupervised learning (SSL) algorithm for remotely sensed hyperspectral image classification. Our main contribution is the development of a new soft sparse multinomial logistic regression model which exploits both hard and soft labels. In our terminology, these labels respectively correspond to labeled and unlabeled training samples. The proposed algorithm represents an innovative contribution with regard to conventional SSL algorithms that only assign hard labels to unlabeled samples. The effectiveness of our proposed method is evaluated via experiments with real hyperspectral images, in which comparisons with conventional semisupervised self-learning algorithms with hard labels are carried out. In such comparisons, our method exhibits state-of-the-art performance.
Detalhes da publicação
Autores da comunidade :
Jun Li
ist33043
José Manuel Bioucas Dias
ist12287
Título do contentor da publicação
IEEE Geoscience and Remote Sensing Letters
Primeira página ou número de artigo
318
Última página
322
Volume
10
Fascículo
2
Domínio Científico (FOS)
electrical-engineering-electronic-engineering-information-engineering - Engenharia Eletrotécnica, Eletrónica e Informática
Idioma da publicação (código ISO)
eng - Inglês
Acesso à publicação:
Acesso apenas a metadados