Artigo

Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression

IEEE Geoscience and Remote Sensing Letters

Jun ; José Manuel Bioucas Dias; Antonio  j. Plaza2012

Informações chave

Autores:

Jun (Jun Li); José Manuel Bioucas Dias (José Manuel Bioucas Dias); Antonio  j. Plaza

Publicado em

2012

Resumo

In this letter, we propose a new semisupervised learning (SSL) algorithm for remotely sensed hyperspectral image classification. Our main contribution is the development of a new soft sparse multinomial logistic regression model which exploits both hard and soft labels. In our terminology, these labels respectively correspond to labeled and unlabeled training samples. The proposed algorithm represents an innovative contribution with regard to conventional SSL algorithms that only assign hard labels to unlabeled samples. The effectiveness of our proposed method is evaluated via experiments with real hyperspectral images, in which comparisons with conventional semisupervised self-learning algorithms with hard labels are carried out. In such comparisons, our method exhibits state-of-the-art performance.

Detalhes da publicação

Título do contentor da publicação

IEEE Geoscience and Remote Sensing Letters

Primeira página ou número de artigo

318

Última página

322

Volume

10

Fascículo

2

Domínio Científico (FOS)

electrical-engineering-electronic-engineering-information-engineering - Engenharia Eletrotécnica, Eletrónica e Informática

Idioma da publicação (código ISO)

eng - Inglês

Acesso à publicação:

Acesso apenas a metadados