Article In: scopus, orcid, cienciavitae

Extracting information from interval data using symbolic principal component analysis

Austrian Journal of Statistics

Maria do Rosário De Oliveira Silva; Pacheco A.; Valadas R.2017

Key information

Authors:

Maria do Rosário De Oliveira Silva (Maria do Rosário De Oliveira Silva); Pacheco A. (António Manuel Pacheco Pires); Valadas R. (Rui Jorge Morais Tomaz Valadas)

Published in

01/01/2017

Abstract

<jats:p>We introduce generic definitions of symbolic variance and covariance for random interval-valued variables, that lead to a unified and insightful interpretation of four known symbolic principal component estimation methods: CPCA, VPCA, CIPCA, and SymCovPCA. Moreover, we propose the use of truncated versions of symbolic principal components, that use a strict subset of the original symbolic variables, as a way to improve the interpretation of symbolic principal components. Furthermore, the analysis of a real dataset leads to a meaningful characterization of Internet traffic applications, while highligting similarities between the symbolic principal component estimation methods considered in the paper.</jats:p>

Publication details

Authors in the community:

Publication version

AO - Author's Original

Title of the publication container

Austrian Journal of Statistics

First page or article number

79

Last page

87

Volume

46

Issue

3-4SpecialIssue

ISSN

1026-597X

Fields of Science and Technology (FOS)

mathematics - Mathematics

Publication language (ISO code)

eng - English

Alternative identifier (URI)

http://dx.doi.org/10.17713/ajs.v46i3-4.673

Rights type:

Only metadata available