Artigo De: orcid, cienciavitae, scopus
Algorithms for Projection - Pursuit robust principal component analysis
Chemometrics and Intelligent Laboratory Systems
2007 — Elsevier
—Informações chave
Autores:
Publicado em
15/06/2007
Resumo
The results of a standard principal component analysis (PCA) can be affected by the presence of outliers. Hence robust alternatives to {PCA} are needed. One of the most appealing robust methods for principal component analysis uses the ProjectionxPursuit principle. Here, one projects the data on a lower-dimensional space such that a robust measure of variance of the projected data will be maximized. The ProjectionxPursuit-based method for principal component analysis has recently been introduced in the field of chemometrics, where the number of variables is typically large. In this paper, it is shown that the currently available algorithm for robust ProjectionxPursuit {PCA} performs poor in the presence of many variables. A new algorithm is proposed that is more suitable for the analysis of chemical data. Its performance is studied by means of simulation experiments and illustrated on some real data sets.
Detalhes da publicação
Autores da comunidade :
Versão da publicação
AO - Versão original do autor
Editora
Elsevier
Ligação para a versão da editora
https://www.sciencedirect.com/science/article/abs/pii/S016974390700007X
Título do contentor da publicação
Chemometrics and Intelligent Laboratory Systems
Primeira página ou número de artigo
218
Última página
225
Volume
87
Fascículo
2
Domínio Científico (FOS)
mathematics - Matemática
Idioma da publicação (código ISO)
eng - Inglês
Identificador alternativo (URI)
https://doi.org/10.1016/j.chemolab.2007.01.004
Acesso à publicação:
Acesso apenas a metadados