Dissertação de Mestrado
DERAIL-ML: DEtecting RAilway Cyber-physicaL Attacks using Machine Learning
2025
—Informações chave
Autores:
Orientadores:
Publicado em
30/06/2025
Resumo
Modern railway systems extend far beyond trains, stations, and tracks. They are now digitalised, utilising sensors and actuators, tracking train positions, and controlling track switches. Operations centres coordinate these systems, managing schedules, passenger information, and speed limits, enhancing productivity and reducing human error-related accidents. However, this increasing digitalisation has introduced vulnerabilities that make railways liable to cyber-attacks. Effective log monitoring is crucial for detecting cyber-physical attacks in critical infrastructures. Logs can document operations and identify anomalies. The challenge lies in distinguishing real threats from false alarms caused by sensor noise and inconsistencies. Anomalies can be detected by establishing sequential relationships between sensor data and actuator actions and then monitoring the system for unexpected behaviour. This work explores machine learning methods to automate the detection of anomalies.
Detalhes da publicação
Autores da comunidade :
João Maria Lopes Inverno
ist195601
Orientadores desta instituição:
Carlos Nuno da Cruz Ribeiro
ist13499
Domínio Científico (FOS)
electrical-engineering-electronic-engineering-information-engineering - Engenharia Eletrotécnica, Eletrónica e Informática
Idioma da publicação (código ISO)
eng - Inglês
Acesso à publicação:
Acesso Embargado
Data do fim do embargo:
29/03/2026
Nome da instituição
Instituto Superior Técnico