Artigo

F2G: efficient discovery of full-patterns

ECML/PKDD Workshop on New Frontiers on Mining Complex Patterns at International Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2013)

Henriques, Rui; Madeira, Sara C; Antunes, Cláudia2013

Informações chave

Autores:

Henriques, Rui (Rui Miguel Carrasqueiro Henriques); Madeira, Sara C (Sara Alexandra Cordeiro Madeira); Antunes, Cláudia (Claudia Martins Antunes)

Publicado em

Setembro 2013

Resumo

An increasing number of biomedical tasks, such as patternbased biclustering, require the disclosure of the transactions (e.g. genes) that support each pattern (e.g. expression profiles). The discovery of patterns with their supporting transactions, referred as full-pattern mining, has been solved recurring to extensions over Apriori and vertical-based algorithms for frequent itemset mining. Although pattern-growth alternatives are known to be more efficient across multiple biological datasets, there are not yet adaptations for the efficient delivery of full-patterns. In this paper, we propose a pattern-growth algorithm able to discover full-patterns with heightened efficiency and minimum memory overhead. Results confirm that for dense datasets or low support thresholds, a common requirement in biomedical settings, this method can achieve significant performance improvements against its peers.

Detalhes da publicação

Versão da publicação

AO - Versão original do autor

Título do contentor da publicação

ECML/PKDD Workshop on New Frontiers on Mining Complex Patterns at International Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2013)

Domínio Científico (FOS)

computer-and-information-sciences - Ciências da Computação e da Informação

Idioma da publicação (código ISO)

eng - Inglês

Acesso à publicação:

Acesso apenas a metadados