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Abstract

Vectorial and Single-Instruction-Multiple-Data (SIMD) instruction-set extensions have gained added at-

tention in the last decade, as a result of an increased prevalence of computational demanding applica-

tion domains, pushing the need to exploit as much data-level parallelism as possible. The numerous

Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) extensions from Intel/AMD

or the NEON and Scalable Vector Extension (SVE) extensions from ARM are some well-known exam-

ples of these Instruction Set Architecture (ISA) extensions. Following these same steps, the well-known

RISC-V ISA has recently established a comparable vectorial extension, known as the RISC-V Vec-

tor (RVV). Other ISA extensions have also been developed to enhance the performance and power/en-

ergy efficiency of computing systems. The extremely successful Unlimited Vector Extension (UVE),

developed at the INESC-ID HPCAS lab, is one of those extensions. Its prime objective is to provide

consolidated support for data-stream processing, alleviating the Central Processing Unit (CPU) from the

memory indexing/addressing tasks, while also simplifying loop control. Spike is recognized as the golden

reference functional RISC-V ISA software simulator. Making justice to its title, Spike already supports a

large collection of extensions including the pertinent RVV extension. However, it still lacks accompany

the recent arise of stream-based ISA extensions. Having what was stated in mind, this Thesis proposal

aims to define a new RISC-V stream-based extension, integrate it with the rest of the RISC-V ISA and

introduce support for the defined extension on the Spike functional simulator. As a result, users will be

able to explore such extension on C/C++ applications.
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Resumo

Extensões de instuções vetoriais e Single-Instruction-Multiple-Data (SIMD) têm ganho atenção adicional

na última década, como resultado de uma prevalência crescente de domı́nios exigentes em termos de

computação, aumentando assim a necessidade de explorar ao máximo a possibilidade de paralelismo

ao nı́vel dos dados. As extensões SSE e AVX da Intel/AMD ou as extensões NEON e SVE da ARM são

dois exemplos conhecidos destas Instruction Set Architecture (ISA) extensões. Da mesma maneira, foi

recentemente estabelecida uma extensão vetorial comparável para o ISA do RISC-V, conhecida como

extensão RISC-V Vector (RVV). Outras extensões também foram desenvolvidas recentemente com o

fim de melhorar o desempenho e a eficiência de energia dos sistemas de computação. A extensão

de instruções Unlimited Vector Extension (UVE) desenvolvida no laboratório HPCAS do INESC-ID, cuja

principal contribuição é fornecer suporte consolidado para processamento de streams de dados, ali-

viando o processador de tarefas de indexação/endereçamento de memória, além de simplificar o con-

trole de ciclos, é um destes casos. O simulador Spike apesar de ser reconhecido como o simulador

de referência para o ISA do RISC-V, ainda não tem acompanhado o recente crescimento de extensões

de instruções baseadas no conceito de stream. Averiguando o relatado, propomos a definição de uma

nova extensão RISC-V baseada no conceito de stream, integração da mesma com o resto do ISA da

RISC-V e introdução de suporte para a extensão definida no simulador Spike. Deste modo, os usuários

poderão simular e testar o desempenho desta nova promissora extensão quando usada em aplicações

de C/C++.

Palavras Chave

Extensões de instuções vetoriais; Stream; RISC-V ISA; RVV; UVE; Spike;
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1.1 Motivation

Since the beginning of the computing area, there is a perpetual competition to maximise processor

performance. There were times when the growth of the processing power would be predictable as the

number of transistors increased, as stated in Moore’s Law [7]. Helping Moore’s Law was the Dennard

Scaling [8] projection, which stated that as transistor density increased, power consumption per transis-

tor would drop, making computers energy efficient. Although, this era has ended [9]. With the emer-

gence of the ”Thermal Wall” problem, the slow down of Dennard scaling and the end of Moore’s Law, the

procedure of shrinking transistors, ensuring even smaller circuits, is reaching its physical boundaries.

One consequence in the computing world was the stagnation of the single core frequency. In an

effort to mitigate this issue, the main focus shifted from exploring Instruction-Level Parallelism (ILP)

to finding ways of combining instruction, task and Data-Level Parallelism (DLP), which constitute the

core of the architecture paradigm present in modern high-performance processors. Furthermore, the

recent proliferation of certain application domains, such as deep learning, with increasing computational

performance demands, has reinforced the need to further exploit DLP. In this scenario, the development

of vectorial and Single-Instruction-Multiple-Data (SIMD) instruction-set extensions, which allow multiple

data elements to be processed at the same time, has been gaining renewed attention.

Traditional concepts of these extensions, such as the numerous extensions from Intel [10–12] and

the NEON [1] extension from ARM are based on apriori fixed-size registers, which despite fulfilling their

purpose, pose questionable issues. First, having a fixed vector length leads to portability issues, since

any modification of the length requires a new instruction set to be defined, and therefore new code

needs to be written, compiled and deployed. Next, since the optimal vector length always depends

on the workload, with a fixed vector length, it is often hard to choose the perfect vector length for a

given application. This problem is addressed by Vector-Length Agnostic (VLA) SIMD extensions that

do not rely on a fixed vector size. In [3], the recognized RISC-V organization denoted the development

of a VLA SIMD extension named RISC-V Vector (RVV), which mainly adds the feature of tuning the

vector length at runtime. In [2], ARM also denoted the development of a VLA SIMD extension named

Scalable Vector Extension (SVE), which mainly relies on predication to drive vectorized loop control flow

decisions. When compared with the typical SIMD extensions, the added overhead, resulting from the

instructions needed to attain a variable vector length, can constrain the application throughput.

Despite parallelism being a solution in terms of performance, by itself, does not solve the challenge

of energy-efficient computation that was exacerbated by the end of Dennard scaling. To tackle the

lack of energy-efficient computation, Domain-Specific Architectures (DSA) and Domain-Specific Lan-

guages (DSL) emerged, which rely on designing architectures tailored to a specific problem domain,

offering significant performance and efficiency. Attached to the growth of DSA, some techniques, such

as memory decoupling, started to gain relevance [13, 14]. By decoupling the memory accesses from
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the computation, it is possible to achieve more performance and efficiency in both domains. This is

mainly attained by allowing data acquisition to occur in parallel with data manipulation. In fact, DSAs

are in most cases related to the use of data-flow and stream-based techniques to improve memory

transactions [15–18].

Based on the growth of DSA, general-purpose processors adopted data streaming techniques to

mainly combat the VonNeumann architecture limitations [5, 19]. These limitations are clear by the fact

that the performance of memory devices has not improved at the same rate as that of processors,

leading to an increase in the gap between Central Processing Unit (CPU) and memory speeds.

Bonded with this adoption, several Instruction Set Architecture (ISA) extensions featuring streaming

techniques were developed. One novel example is the Unlimited Vector Extension (UVE) extension [4],

which by aggregating both VLA SIMD and data streaming approaches promises to reduce the CPU’s

workload associated with memory addressing/indexing in general-purpose RISC-V-based processors.

Despite the considerable number of streaming extensions being developed, there is still not one associ-

ated with the official RISC-V extensions.

Despite the growth of stream-based approaches, there is still little hardware support for such ap-

proaches. By the beginning of this dissertation, there was no hardware support for the stream-based

extension that is going to be proposed. Therefore, the only valid solution to test the proposed exten-

sion is through a functional simulator. Connected with this whole paradigm, Spike [20] is a RISC-V ISA

simulator, which implements a functional model of one or more RISC-V harts. Spike, more known as

the golden reference RISC-V ISA simulator, supports all standard RISC-V instructions as well as a vast

number of extensions, in which the previously mentioned RVV SIMD extension. However, despite its

title, Spike still lacks in providing support for the newly raised stream-based approaches.

1.2 Objectives

In general-purpose processors, the performance is majorly limited by the time spent with memory

addressing/indexing actions. To solve this issue, new streaming techniques have been adopted into

general-purpose processors [5,19], promising to reduce the existent gap between processing and mem-

ory access speed. Despite the considerable number of developed extensions based on streaming, the

RISC-V paradigm still does not have an official stream-based extension. Based on what was stated, this

represents an open chance to propose a new RISC-V stream-based extension.

Moreover, to exploit DLP at maximum in general-purpose processors, the development of SIMD

extensions reached its peak [1, 10–12]. Furthermore, by making use of a variable vector length, VLA

SIMD extensions further enhance the performance and energy efficiency [2, 3]. This opens a chance

to combine the performance enhancement delivered by RVV, with the addition of decreasing the

3



memory access latency by using streaming approaches.

Additionally, Spike, recognized as the golden reference ISA simulator by RISC-V, implements a func-

tional model of one or more RISC-V harts. However, Spike does not support any extension that

denotes streaming techniques.

Following the apriori statements, the main objective of this Thesis is to introduce support for a new

RISC-V stream-based extension, fully compatible with the RISC-V paradigm, despite being more fo-

cused in RVV, on the Spike functional simulator. Moreover, this Thesis goal can be divided into three

major objectives:

• Assess the main requirements to introduce a new RISC-V stream-based extension.

• Investigate the possibility of interaction and interoperability between a stream-based extension and

standard RISC-V extensions, more specifically the RVV extension.

• Validate the defined extension through ISA simulation.

1.3 Contributions

This Thesis work is grounded on previous works [4, 5, 19] that demonstrated that the use of stream-

ing mechanisms is the go-to in order to improve the overall performance in the memory transactions

present in High-Performance Computing applications. Accordingly, this work first specified the nec-

essary requirements to define a new RISC-V stream-based extension. Furthermore, it discussed the

possibility of integrating a full stream-based extension in the RISC-V paradigm. Finally, to give evident

proof of the enhancement delivered by the stream-based extension, this work aimed to provide support

for the defined extension on the Spike Simulator. Therefore, during the development of this thesis, the

following contributions were achieved:

• Definition of a novel stream-based extension, whose main focus is to increase performance in

memory access.

• Integration of the new stream-based extension with the subsets of the RISC-V ISA, more specifi-

cally the RVV extension.

• Deployment of the proposed extension in the Spike Simulator and its functional validation and

interoperability verification with other standard RISC-V extensions.
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1.4 Outline

Apart from this first Introduction chapter, this document is constituted by Chapter 2, which focuses on

covering the evolution of SIMD extensions, beginning with their emergence to enhance performance

for multi-media applications and finishing with the recent adoption of stream-based extensions to fight

the limitations of the Von Neumann architecture on general-purpose processors. It aims to introduce

the necessary concepts and backgrounds in ISA that are necessary to follow the work that was devel-

oped in this thesis. Next, Chapter 3 focuses on defining the stream-based extension being proposed.

First, delves into the core concepts of data streaming and stream representations used in the base of

the proposed extension. Next, it aims to actually provide the definition and behaviour of the actual in-

structions present in the stream-based extension. Following, Chapter 4 focuses on denoting what was

implemented to provide full support for the defined extension in the Spike functional Simulator. First, it

aims to represent the actual streaming components simulated that are the base for the execution of the

instructions. Next, it aims to actually represent the execution behaviour of the instructions. Moreover,

Chapter 5 focuses on providing an overview of the methods used to evaluate the reliability and perfor-

mance of the proposed extension. Finally, Chapter 6 focuses on providing conclusions on the written

document and discussing possible future developments that can expand what was implemented in this

Thesis work.
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To better understand the underlying work of this Thesis, this Chapter discusses general concepts and

background of the RISC-V paradigm. Additionally, an analysis of Single-Instruction-Multiple-Data (SIMD)

technologies is provided, more focused on detailing the evolution of the development of SIMD exten-

sions. Moreover, Vector-Length Agnostic (VLA) SIMD extensions, such as the RISC-V Vector (RVV)

extension [3], and the provided trade-offs in regard to earlier fixed vector-length extensions are tackled.

After, the emergence and evolution of data-flow and stream-based approaches into general-purpose pro-

cessors will be addressed, culminating in the analysis of a novel Instruction Set Architecture (ISA) exten-

sion called Unlimited Vector Extension (UVE) [4], which combines both SIMD techniques and streaming

approaches. Furthermore, a brief discussion of the lack of compilation support for the recent streaming

approaches will be denoted. Finally, the whole paradigm of the Spike simulator will be described.

2.1 Instruction Set Architecture

An ISA is an abstract model of a computer that dictates how the Central Processing Unit (CPU) is

administered by the software. To the programmer or compiler developer, the ISA can be defined as a

manual, since it is the part of the processor that is visible, supplying the only interface via which a user

can communicate with the hardware. The ISA acts as a bridge between the hardware and the software,

establishing both what the processor is capable of doing and how it gets done [21].

In general, an ISA stipulates the supported data types, instructions, registers, main memory man-

agement methods used by the hardware, important features (such as virtual memory and memory

consistency), and the input/output model used by several ISA implementations. Regarding what was

mentioned above, from a developer’s perspective, it is undeniable the importance of understanding the

instruction set’s capabilities and how the compiler uses them in order to write more efficient code.

An ISA may be classified regarding the architectural complexity, where the two main ISA classes

are Reduced Instruction Set Computer (RISC) and Complex Instruction Set Computer (CISC). RISC

architecture makes use of more generalized and simple instructions that in the majority of cases are

executed in a single clock cycle. In contrast, CISC architecture focuses on including more specialized

and complex instructions that take more clock cycles to execute.

2.1.1 RISC-V

RISC-V [22] is an open standard ISA developed by the RISC-V International organization. Concerning

computing architectures, RISC-V processors are based on RISC concepts. Contrary to other ISAs avail-

able, like the ones designed by Intel, AMD and ARM, RISC-V is available under open-source licences

that do not require fees. In fact, since its creation in 2015, RISC-V was designed with the intention of

supporting not only the base ISA and optional standard extensions but also providing support for future
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custom ISA extensions. This flexibility to use extensions to the standard ISA can offer support for spe-

cific applications, which resulted in RISC-V becoming the ISA of choice for innovations. One example

arising from this characteristic is the recently RVV extension.

2.2 Vectorial and SIMD extensions

SIMD systems [1–3, 10–12] enhance, as the name indicates, the execution of the same operation on

multiple elements present in a dataset. This SIMD parallelism is commonly accomplished by resorting

to vectorization, where successive instances of a scalar operation, which operates on a set of single

operands, are transformed into a vector instruction that operates on multiple operands at once.

In the last two decades, an increasing number of processors that adopt SIMD operations have been

developed. This adoption was majority handled by adding extensions to the existing ISA. These exten-

sions have been established as the essential go-to method to potentiate the exploitation of Data-Level

Parallelism (DLP) in High-Performance-Computing (HPC) workloads. Multimedia application’s vast field

is one domain where these extensions are of high importance, mainly because these applications tend

to operate on narrower data types than the native word size. For example, graphics applications use 3

x 8 bits for colours and one 8-bit for transparency, audio applications use 8, 16 or 24-bit samples. To

accommodate narrower data types, carry chains have to be disconnected. For example, a 256-bit adder

can be divided to perform simultaneously 32, 16, 8 or 4 additions on 8, 16, 32 or 64-bit, respectively.

These examples highlight the possible advantage of using SIMD instructions.

To better explain this mechanism, Figure 2.1, denotes the difference between using Single-Instruction-

Single-Data (SISD) or SIMD operations on performing a simple sum between two sets of four elements

each.

(a) SISD (b) SIMD

Figure 2.1: SISD vs SIMD Operations.

When processing large sets of data, one of the major factors limiting performance is the amount of

CPU time that is taken to perform data processing instructions. This CPU time hardly depends on the
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number of instructions it takes to deal with the entire data set. The small example provided in 2.1 shows,

on a small scale, the impact of using SIMD over SISD, where instead of needing four instructions with

SISD, one was enough when using SIMD. This impact significantly grows with the increase of elements

in the data set.

Moreover, in this Chapter, the evolution of the development of SIMD extensions is retracted, specifi-

cally denoting the Multi-Media Extensions (MMX) [10], the Streaming SIMD Extensions (SSE) [11], the

Advanced Vector Extensions (AVX) [12], the NEON [1], the Scalable Vector Extension (SVE) [2], the

RVV [3] and the UVE [4] extensions.

2.2.1 Multi-Media Extensions (MMX)

The first recognised milestone in the development of SIMD extensions was in 1996 with the arrival of

the Multi-Media Extensions (MMX) [10]. Intel’s MMX extensions to the x86 ISA defined four new data

types. The packed byte (8 bytes packed into one 64-bit quantity), the packed word (4 words packed

into one 64-bit quantity), the packed doubleword (2 doublewords packed into one 64-bit quantity) and

the quadword packed (one 64-bit quantity). To support these new data types MMX provided eight 64-bit

general-purpose registers. These registers, named MM0 through MM7, were designed to be random-

access registers and to hold only MMX data. Therefore, one instruction could either be applied to two

32-bit integers, four 16-bit integers, or eight 8-bit integers at once, enhancing the capability to perform

parallel operations on multiple data elements packed into 64 bits.

In [10], the performance of MMX was tested by carrying out a vector dot product and a 16x16 matrix-

vector multiplication with MMX technology, achieving speedups of 6× and 5.8×, respectively, over regular

operations. The work team in [23] evaluated the performance of MMX for several digital signal processing

algorithms and measured a speedup in the range from 0.49× to 5.5× for various applications. In [24], it is

tested the performance of MMX for neural network applications, concluding that on MMX all operations

required for a neural classification with an already trained large network could be accelerated by a factor

of up to 9.8×.

Despite the results, MMX still presents a major weakness. In addition to MMX providing only integer

operations, the MMX registers are aliases for the existing floating-point registers. As a result, operations

involving the floating-point stack might also affect the MMX registers and vice versa, making it almost

impossible to work with floating-point and SIMD operations in the same program.

2.2.2 Streaming SIMD Extensions (SSE)

To solve the bottleneck that existed with MMX, Intel added the Streaming SIMD Extensions (SSE) [11]

to its x86 ISA. Since its emergence in 1999, SSE was followed by multiple generations that ended with
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SSE4 in 2007 [11,25–27].

Contrary to MMX, SSE [11] mainly provided support for floating-point instructions and operated on

a new independent register set. This register set was composed of eight 128-bit registers, named

XMM0 through XMM7, that only used four 32-bit single-precision floating-point numbers as data type.

In addition, SSE also added a few integer instructions that worked on the MMX registers. SSE2 [25],

later introduced, added two major features to the previous generation. SSE2 provided support for 64-bit

double-precision floating-point numbers and allowed the MMX integer operations to be performed on the

XMM registers. Therefore, SSE2 users could benefit from SIMD operations on any data type (from 8-bit

integer to 64-bit float) entirely by using the XMM registers.

SSE3’s [26] main addition was the capability of performing operations between two elements that

were stored in the same register. SSE4’s [27] main purpose was to add instructions not mainly focused

on multimedia applications, for example, the popcnt instruction, which counts the number of bits set to

1, was widely employed in cryptography.

In [28], by using SSE to implement an image processing application, a speedup of 2.49× and 1.74×,

over using regular operations and MMX, respectively, was obtained.

2.2.3 Advanced Vector Extensions (AVX)

The numerous generations of the SSE instructions were a significant improvement over the previous

MMX instructions, helping to accelerate a wide range of applications. Although, as processor speeds

continued to increase and the demand for more powerful vector processing grew, it became clear that

SSE was not sufficient to meet the needs of some applications.

To satisfy these needs, the next step was again accomplished by Intel, which extended its x86 ISA

with the Advanced Vector Extensions (AVX) [12] in 2011. AVX’s core improvement is the support for

256-bit vector operations. AVX defined sixteen 256-bit registers, named YMM0 through YMM15 and

a 32-bit control/status register called MXCSR. The YMM registers alias over the already mentioned

128-bit XMM registers, treating the XMM registers as the lower half of the corresponding YMM register.

Therefore, in addition to allowing any multiple of 32-bit floating-point type that adds to 128 bits (single-

precision), it also allows any multiple of 64-bit floating-point type that adds to 256 bits (double-precision).

It also allows multiples of any integer type that adds up to 128 bits. Furthermore, AVX also featured

three-operand, non-destructive operations.

AVX2 [29], later released in 2013, focused on the expansion of most vector integer instructions to

256 bits and on the introduction of new instructions for packing and unpacking integers and floating-point

values. AVX-512 [30] released in 2016 provided support for 512-bit vector operations, defining thirty-two

512-bit registers, named ZMM0 through ZMM31, that were also alias over the already mentioned YMM

and XMM registers. On top of that, it added eight new opmask registers, named k0 through k7, for
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masking most of the AVX-512 instructions.

In [12], the AVX instructions were tested on computing Mandelbrot set images achieving an average

speedup of 7.14× over expanding the complex types with floats and an average speedup of 2.01×

over using an intrinsic-based SSE version. In [31], the AVX instructions were used to perform N-body

simulation for self-gravitating collisional systems, achieving an overall speedup of 2× and 5× over using

SSE instructions and without using any SIMD instructions, respectively.

2.2.4 NEON Extension

Following the steps of Intel, ARM also introduced its own SIMD extension in 2007 called NEON [1], which

was designed to be fully compatible with the ARMv7 and ARMv8 architectures. Contrarily to the regular

use of the 32-bit ARM register file, NEON instructions and floating-point instructions share a different

register file, referenced in Figure 2.2, which is a collection of registers that can be accessed as 32-bit,

64-bit or 128-bit. The selection of the registers depends on whether the instruction to be performed is a

NEON instruction or a vector floating-point instruction.

Figure 2.2: NEON and floating-point register file. Image from [1].

As seen by Figure 2.2, NEON registers present a valuable difference from the ones presented by

Intel since they can be represented with two different views, covering a greater number of cases. NEON

registers can be represented as thirty-two 64-bit registers, named D0 through D31, or sixteen 128-bit

registers, named Q0 through Q15. NEON instructions work on specific data types varying from 8-bit,
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16-bit, 32-bit or 64-bit signed/unsigned integers to 16-bit or 32-bit floating-point numbers. The contents

of the NEON registers are vectors of elements of the same data type. A vector is divided into lanes and

each lane contains a data value called an element.

Therefore, the number of lanes in a NEON vector depends on the size of the vector and the size of

the data elements in the vector. Summing up, while D registers can keep vectors containing either eight

8-bit, four 16-bit, two 32-bit or one 64-bit element/s, Q registers can keep vectors containing sixteen

8-bit, eight 16-bit, four 32-bit or two 64-bit elements. Nonetheless, NEON instructions always operate on

64-bit or 128-bit vectors.

The numerous SIMD extensions ascribed so far achieved innumerable performance enhancements

in multiple domains. However, all of them were developed to operate with fixed-size registers. Despite

simplifying the implementation and limiting the hardware requirements, since the ideal vector length of-

ten depends on the task being attained, this approach could never reap all the possible performance.

Additionally, any change to the register length normally entails the use of newer instruction-set exten-

sions, leaving earlier implementations of code outdated. In [32], the authors denoted the referenced

problems, exploring dynamically-sized vector operations on SIMD architectures and the potential for

variable-length vector registers to overcome the apriori limitations.

2.3 Vector-Length Agnostic SIMD extensions

To overcome the problems mentioned, a different approach of SIMD extensions denominated Vector-

Length Agnostic (VLA) SIMD extensions started to appear. VLA SIMD extensions are a set of instruc-

tions and data types that allow a processor to perform SIMD operations on vectors of varying lengths.

This way, these extensions allow a programmer to write code that can operate on vectors of any length,

rather than being limited to a fixed set of vector lengths. This can be useful in situations where the

length of the vector is not known at compile time, or when the vector length may vary based on the

input data. Furthermore, these extensions grant more flexibility in terms of the architectures that can

perform SIMD instructions. For example, HPC processors can make use of large vectors to attain high

throughput, while low-power processors can adopt smaller vectors to fulfil power and resource con-

straints. Moreover, these extensions grant portability, as the same code can be re-utilized in processors

with different vectorial architectures without needing to recompile it. Two dominant examples of these

type of extensions are the SVE [2] and the RVV [3].

2.3.1 Scalable Vector Extension (SVE)

The Scalable Vector Extension (SVE) [2] is a VLA SIMD extension to the A64 instruction set of the

ARMv8-A architecture, first introduced in the ARM Cortex-A73 processor and released in 2017. SVE,
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as a VLA SIMD extension, is intended to provide a flexible, scalable solution for vector processing.

Therefore, its primary feature is supporting vector lengths from 128 bits to 2048 bits in 128-bit incre-

ments. SVE introduces a new set of registers, represented in Figure 2.3. In a nutshell, SVE establishes

thirty-two vector registers, named Z0 through Z31, sixteen predicate registers, named P0 through P15,

one special-purpose first-fault register and a set of control registers, named ZCR EL1 through ZCR EL3.

Figure 2.3: SVE registers. Image from [2].

The size of each of the thirty-two Z registers is implementation-dependent (LEN denotes the vector

length to be supported) within the apriori mentioned range, where the low 128 bits overlap with the

already mentioned NEON registers. Therefore, these registers provide scalable containers for 64-bit, 32-

bit, 16-bit and 8-bit data elements. The P registers are based on predicated instructions that determine

which vector elements to process. To do so, P registers hold one bit for each 8-bit data element in the

Z registers, where the value of each individual bit in the P registers represents if the corresponding data

element is or is not active. The first-fault register is a dedicated predicate register that captures the

cumulative fault status of a sequence of SVE vector load instructions. SVE provides a first-fault option

for some SVE vector load instructions. This option suppresses memory access faults if they do not

occur as a result of the first active element of the vector. Instead, the first-fault register is updated to

indicate which of the active vector elements were not successfully loaded. The control registers allow

the virtualization of the effective vector width.

Overall, SVE’s design relies heavily on predication, which is used to drive vectorized loop control flow

decisions. To do so, SVE counts with a family of while instructions that work with scalar count and limit

registers to populate a predicate with the loop iteration controls that would have been calculated by the

corresponding sequential execution of the loop. To better understand this behaviour, Listing 2.1 denotes

an example kernel of the SAXPY algorithm implemented using the SVE extension.
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Listing 2.1: SAXPY kernel implementation using ARM SVE extension.

1

2 mov x4 , #0 ;Initialize iteration counter (i) in r4

3 whilelt p0.d, x4 , x3 ;Set predicate p0 for each r4 element that is lower

than

4

5 ld1rd z0.d, p0/z, [x2] ;Broadcast value A to v0 , with predicate zeroing

6 .loop:

7 ld1d z1.d, p0/z, [x8, x4, lsl #2] ;Loads to v1 the values pointed by X[i]

with a stride of 32-bits elements

8 ld1d z2.d, p0/z, [x9, x4, lsl #2] ;v2:=Y[i]

9 fmla z2.d, p0/m, z1.d, z0.d ;Fused multiply -accumulate Y[i]=A*X[i]+Y[i],

with predicate merging

10 st1d z2.d, p0, [x1, x4, lsl #2] ;Store v2 to memory pointed by Y[i]

11 incs x4 ;Increment i based on the vector size and SP (VL/32)

12 .latch:

13 whilelt p0.d, r4 , r3

14 b.any.loop ;Loop again if all of the predicate elements are 0

As mentioned, the main feature of the SVE execution is performed through the ”whilelt” instruction,

which syntax is represented in Figure 2.4.

Figure 2.4: whilelt instruction syntax.

In simple terms, by executing this instruction, the predicate is filled with ones while the incremented

start value is less than the comparison value. Furthermore, the ”incs” instruction iterates the start value

by the vector size, simplifying the memory addressing calculations and removing more unnecessary

iteration counters. This process is repeated each iteration of the loop. At last, the branch instruction

controls the flow of the loop code, by performing a branch to the .loop tag if the iterator variable does not

meet the finish condition. The condition codes needed for the branch instruction to work correctly are

set by the ”whilelt” instruction each time it is called.

In [33], SVE performance was compared with the NEON extension, concluding that by using SVE

it is achieved a higher vector utilization and speedups of up to 3 times. In [34], the overall number of

auto-vectorized loops and the speedups achieved were compared by using NEON and SVE VLA code,

concluding that, despite SVE achieving better performance for the majority of cases, the overhead of the

predication instructions on SVE resulted in worse performance for some cases.
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2.3.2 RISC-V Vector (RVV)

More recently, another VLA SIMD extension was developed by the recognised RISC-V organization.

RISC-V Vector (RVV) [3] is a vector processing extension for the RISC-V ISA, initially proposed in 2015

and later refined in 2021 as part of the RISC-V Vector 1.0 specification [3]. As a matter of fact of

being a recent extension and RISC-V presenting an open-source nature, more and more RVV is being

used for multiple purposes. In [35], a microarchitectural design of a vector unit compilant with the RVV

extension is introduced. In [36], the use of RVV is being studied under the topic of communications

signal processing. From this point, the focus passes only on describing RVV for the 1.0 specification.

RVV adds thirty-two vector registers, named v0 through v31 and seven unprivileged Control Status

Registers (CSRs) (vstart, vxsat, vxrm, vcsr, vtype, vl, vlenb), which description is referenced in figure

2.5, to a base scalar RISC-V ISA.

Figure 2.5: vector CSRs. Image from [3].

Different from SVE’s predication approach, RVV’s approach to attain VLA is rooted in the dynamic

configuration of a specific vector length (VLEN). VLEN is constrained by the constant ELEN. While

ELEN denotes the maximum size in bits of a vector element that any operation can produce or consume

(must be ≥ 8 and a power of 2), VLEN represents the number of bits in a single vector register (must be

≥ ELEN, a power of 2 and no greater than 216). RVV’s instructions encoding is monomorphic, so there

are specific instructions for each different data type.

Furthermore, RVV uses mask bits to support instruction predication. There is one mask bit per

element in a vector, which, depending on its value, determines if the instruction being executed is/is not

performed in the correspondent element. Different from SVE which had specific registers to hold this

information (P registers), every of the RVV’s thirty-two registers can work as mask registers, in which

the mask bits are sequentially packed one bit after each other, starting from the least significant bit of

the vector register file.

To better understand this whole RVV extension paradigm, Listing 2.2 denotes an example kernel of

the SAXPY algorithm implemented using the RVV extension.
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Listing 2.2: SAXPY kernel implementation using RISC-V V extension.

1

2 saxpy:

3 vsetvli a4 , a0 , e32 , m8 ; Ask for n elements of size 32b and group 8 vector

registers

4 vlw.v v0 , (a1) ; Load data from X to v{0-7}

5 sub a0 , a0 , a4 ; Decrement n with the number of processed elements

6 slli a4, a4, 2

7 add a1 , a1 , a4

8 vlw.v v8 , (a2) ; Load data from Y to v{8-15}

9 vfmacc.vf v8, fa0 , v0 ; Floating -point multiply and acumulate

10 vsw.v v8 , (a2) ; Store data

11 add a2 , a2 , a4

12 bnez a0 , saxpy

13 ret

As mentioned, the RVV extension is dependent on the dynamic configuration of a specific vector

length. This configuration is executed through the use of the ”vsetvli” instruction, which syntax is repre-

sented in Figure 2.6.

Figure 2.6: ”vsetvli” instruction syntax.

The configuration starts with requesting a vector size (in elements) and an element size. Then, the

total requested size (element size * vector size) is compared with the implemented vector length, the

minimum of both is used to configure all the vectors and is written to the destination operand. Moreover,

the operand ”grouping factor ” can be used to group a series of consecutive registers, being particularly

useful when the total requested size is larger than the implemented vector size. In detail, a grouping

factor of 4 will group registers 0 to 3 into register 0 and so on for the remaining vector registers.

Moreover, regarding the SAXPY RVV example, by executing the ”vsetvli” instruction, the information

of the total remaining elements of the loop is predisposed. Then the actual number of processable

elements in the iteration is subtracted to the total remaining elements, ending the loop when there are

no remaining elements.

2.3.3 SVE and RVV wind-up

Despite the crucial improvements delivered by the referenced VLA SIMD extensions, these extensions

also come with issues that limit their performance and range of uses. in [4], the authors were able
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to identify these extensions bottlenecks. While in SVE, its large instruction overhead comes from the

dependence on predication, in RVV this overhead mainly falls on the vector control instructions needed.

Figure 2.7 illustrates the referenced overhead instructions on the saxpy kernel implementations on SVE

and RVV.

Figure 2.7: Saxpy kernel implementation on ARM SVE and RISC-V V. Image from [4].

Overall, both SVE and RVV can impose a significant amount of instruction overhead (shaded instruc-

tions in both figures), which is caused by memory indexing, loop control, and even memory access, none

of which directly increase the throughput of data processing. The majority of the loop code frequently

consists of these overhead instructions, wasting CPU resources and adversely affecting performance.

2.4 Data-flow and Stream-based approaches

From a different point of view, more recently, in general-purpose processors, the speed at which a

processor can process data is outscaling the speed at which data can be accessed from memory. The

existent gap, known as the ”memory wall” [37], is a major bottleneck in the performance of multiple

systems. For example, the performance of data-parallel applications is no exception to the rule and is

often constrained by this memory hierarchy problem.

Coupled with the emergence of domain-specific architectures, data-flow and stream-based approaches

have been gaining ground. Early concepts of these approaches [15, 16] were often based on accurate

representations of data access patterns to substantially accelerate data acquisition. More recently,

in [17], the authors proposed a stream-dataflow model and architecture, mainly providing abstractions

that balanced the tradeoffs of vector and spatial architectures. These demonstrate it is possible to at-

tain the specialization capabilities of both on an important class of data-processing workloads. In [38],

the authors proposed a domain-specific ISA for Neural Networks, called Cambricon, based on a load-

store architecture that integrates scalar, vector, matrix, data transfer and control instructions. Overall,
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these new approaches lead the way for programmers to investigate various complementary features

to boost throughput, such as memory access decoupling and specialization, data prefetching, and ef-

ficient parallel computation. Owing to these features, data streaming has lately been adopted beyond

domain-specific computing into general-purpose processors to overcome the Von Neumann architec-

ture’s limitations.

In [5], the authors realized a vast and relevant study to find and tune the best configuration to special-

ize memory primitives. The first conclusion was that the best way of exposing rich semantic information

about memory operations at fine grain at the ISA level was done by using streams as the structure for

memory accesses. Streams denote repeated patterns of memory access, occurring due to loops and

nested loops. Thus, given the premise of specialization for streams, the authors enumerated the ways

of using such feature.

Stream-based prefetching: Subject to knowing the access patterns and the relationship to the

core’s control flow, an effective stream-based programmable prefetcher can deep prefetch for regular

and irregular memory accesses, allowing stream requests to be decoupled from the core’s instruction

window. Decoupling has the main advantage of minimising the latency of memory accesses.

Stream-decoupling: The main idea of stream decoupling is to create a direct and fast interface

between the data that is prefetched, and the core instructions. This interface can be obtained using

a specialized memory access engine, which could generate stream requests, and pseudo-registers,

which could keep the stream data. The principal advantages of stream-decoupling are the removal

of address generation instructions from the general core pipeline and the capability of vectorization

of memory on traditionally non-vectorizable code.

Cache-Awareness: Since streams are precise definitions of an access pattern, cache policies could

take advantage of that knowledge. A possible stream engine, which has information about the

streams and the access pattern, could make requests to the cache in a way that is aware of stream

behaviours. Furthermore, cache could bypass streams based on the expected footprint of the stream,

avoiding cache pollution.

Figure 2.8 denotes a stream paradigm developed by the authors making use of the referenced designs

in comparison to a conventional out-of-order paradigm.
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Figure 2.8: Overview of Decouplcd-Stream Paradigm vs Conventional Out-of-Order. Image from [5].

Moreover, complementary to its design, the authors described a new decoupled-stream ISA with

Stream-ISA extensions.

In [19] a new stream-based extension to boost utilization and increase energy efficiency was also

proposed. The proposed Stream Semantic Register (SSR) is a lightweight, non-invasive RISC-V ISA

extension, which implicitly encodes memory accesses as register read/writes, eliminating a large number

of loads/stores. SSR extension is possible based on the evolution of the previously mentioned stream

approach. This evolution is grounded by the full extension of stream specializations to the processor

pipeline, configuring all memory access patterns in the loop preamble and automatically streaming data

directly to the processor’s registers.

2.4.1 Unlimited Vector Extension (UVE)

Up to this point, VLA SIMD and stream-based extensions were tackled apart from each other, both

proving to enhance the performance of general-purpose processors. In this circumstance, Unlimited

Vector Extension (UVE) [4] combines VLA processing with data streaming in RISC-V-based modern

general-purpose processors.

In addition, UVE counts with a streaming interface that enables an effective prefetch of data, while

facilitating the vectorization by linearizing non-coalesced memory accesses. UVE associates each data

stream to a vector register, empowering instructions to directly use the corresponding stream. By doing

so, the progression/iteration of streams is always guaranteed, happening after each interaction with the

vector. Therefore, loop control is performed with a reduced and basic set of stream-conditional branches.

Thus, UVE stream model is described by using a hierarchical descriptor-based representation.

UVE supports all common data types, from byte to double-word and the standard set of RISC-V

operations. UVE includes 32 vector registers, named through u0 to u31, each one with a length that

only has a minimum value defined corresponding to the width of the supported data types: byte (8-bits),

half-word (16-bits), word (32-bits), and double-word (64-bits). To allow VLA processing, UVE counts

with 32 predicate registers, named p0 through p31, which similarly to the ones presented in SVE allow
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per-lane execution control. As such, boundary conditions of vector processing are automatically solved

by disabling the out-of-bounds elements.

The presented characteristics allow UVE to significantly mitigate the instruction overhead presented

in the SVE and RVV extensions. Figure 2.9 represents the saxpy kernel implementation on UVE. In

comparison to the saxpy kernel implementations on SVE and RVV presented in Figure 2.7, the reduction

of instructions overhead with UVE is evident, needing only a single branch instruction for control.

Figure 2.9: Saxpy kernel implementation on UVE. Image from [4].

In terms of microarchitecture, UVE principally adds a dedicated Streaming Engine, which is responsi-

ble for managing the state of the streams and issuing memory requests to the processor’s pipeline. In [4]

it was concluded that for vectorized benchmarks the UVE extension provides an average performance

advantage of 2.4× over SVE. The major features that led to a better performance from UVE were the

significant code reductions and the streaming infrastructure, which successfully reduced the load-to-use

latency and increased the effective memory hierarchy utilization.

2.4.2 Compilation Support

As previously mentioned, a new age of computing acceleration was achieved by the recent return of

data streaming and data-flow paradigms in general-purpose processors. However, as a consequence

of being recent approaches, their execution model is typically incompatible with the internal Static Sin-

gle Assignment (SSA) form employed by contemporary compilers, turning the propagation of steam

paradigms constrained by the absence of compilation support.

To get over this restriction, [6] suggested a new alternative compilation flow that is fully implemented

as an LLVM Intermediate Representation (IR) analysis and transformation pass. In short, the compila-

tion flow works by first making use of the LLVM IR to examine data-flow graphs and memory access

patterns in loops. Following, using the gathered information, a high-level data streaming representation

is created. At last, the respective created representation can be directly compiled for stream-based vec-

tor extensions and linked to conventional machine code. Figure 2.10 represents this compilation flow, in
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specific to compile UVE code.

Figure 2.10: Compilation flow for stream-based vector extensions. Image from [6].

2.5 Simulation tools

In this Section, the going-through that culminated in the choice of the Spike [20] simulator as the principal

and required tool for the development of this Thesis work will be explained. It will tackle Instruction Set

Simulators (ISSs), architectural simulators and a brief overview of some of the most salient tools and

frameworks that can be used for RISC-V simulation.

First, it is important to separate ISSs from architectural simulators. While ISSs are focused on emu-

lating the execution of individual instructions for software development, architectural simulators provide

a broader view of the entire computer system and are used for architectural exploration and performance

evaluation during hardware design. One of the principal milestones of this Thesis is to propose a new

ISA extension. However, there is no available hardware support. As such, the only option is to rely on

validation with ISSs. RISC-V counts with a worldwide thriving community that has gone through strong

efforts to create top-notch simulation tools. As a result, since the initial versions of the RISC-V ISA were

released, numerous simulators have been released. These simulators employ many methodologies

and tools to fulfil a wide range of different purposes. Some of these are high performance, transparent

processor visualisation and architectural exploration.

Gem5 [39], despite being developed by ARM and not by the RISC-V community, is a well-known

standard open-source tool for execution-driven simulation in academic matters. Although it has excellent

modelling capabilities, it still lacks simulation throughput, adding to the fact that it is a tool hard to

extend. Imperas offers riscvOVPsim [40] which despite being a simulator that allows the development

and debugging of code for the target RISC-V processor on an x86 host computer, is not yet fully open

source. Coyote [41] is a recent open-source, execution-driven simulation tool, based on the canonical

RISC-V ISA, that has a focus on the movement of data throughout the memory hierarchy. QEMU [42]
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from RISC-V international, is a generic and open source machine emulator and virtualizer, which offers

an excellent simulation throughput. RV8 [43] is a high-speed simulator that primarily focuses on CPU

simulations and uses just-in-time compilation techniques to enhance execution performance. R2VM [44]

is also a simulator that targets CPU simulations by making use of binary translation techniques. It can

vary between fast and accurate simulations to handle a variety of use scenarios. Renode [45] is a

simulation system that supports multi-node networks of embedded systems in a distributed simulation.

RISC-V VP [46], RISC-V-TLM [47], HIFIVE1-VP [48] are examples of recent RISC-V ISSs based in

SystemC TLM.

Despite the widespread of RISC-V simulation environments, the Spike simulator still holds the title

of being the golden reference functional RISC-V ISA software simulator. Adding to that, Spike is a

decent choice for CPU simulations, providing a significant simulation throughput. Furthermore, Spike

is a completely open-source and extendable simulator that provides support for the standard RISC-V

ISA and a vast collection of extensions. More relevant to the proposed work, Spike is one of the few

simulators that already provide support for the RVV extension. The combining of these advantages led

to Spike being the principal key to validate this Thesis work.

2.6 Spike Simulator

As mentioned, part of this Thesis work relies on the usage of the Spike Simulator tool [20]. Due to the

lack of documentation related to Spike, a vast study was made to acknowledge the whole behaviour

of this simulator. As so, in this Section, the whole paradigm of the Spike Simulator will be described,

beginning with a brief overview of the tool, together with a summary of the various modules present in

its constitution.

2.6.1 Overview

Spike [20], the golden reference RISC-V ISA Simulator is an open-source simulator whose principal

feature is to implement a functional model of one or more RISC-V processor cores. Spike in addition

to using a combination of C++ language features and design patterns to implement its functionality,

also uses object-oriented programming techniques to represent the various components of a simulated

processor, such as the registers, memory, and pipeline. Spike provides support for all standard base

integer and floating point RISC-V instructions as well as a vast number of extensions.

Spike presents a modular design which eases its modification, its extendability, and the capability

of performing ISA testing. Moreover, Spike provides a rich interactive debug mode, allowing one to

visualize run-time contents of integers and floating point registers, contents of a physical/virtual address

memory position and slide-through instructions. Furthermore, Spike can also be used with other tools
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in the RISC-V toolchain, such as the GCC compiler, the GDB debugger and the RISC-V Proxy Kernel.

Spike is also widely used by developers working with RISC-V processors.

2.6.2 Main Functional Modules

Figure 2.11 portrays a straightforward view of the Spike Simulator, depicting its most relevant simulated

components.

Figure 2.11: Spike main modules Overview.

For the purpose of the following description, every directory mentioned has per base the riscv-isa-sim

root directory.

The processor-dependent code is located in the riscv/processor.h and riscv/processor.cc directories.

The whole processor simulation is realized under the processor t class, in which the connections with

the other simulated components are also established. Inside the processor t class, the state t structure

denotes the whole state of the processor cores, defining all the registers (reg t structures). Moreover,

the definition of the instructions is located in the riscv/insns folder. Related to the instructions, all their

MATCH and MASK attributions are under the riscv/encoding.h directory. In addition, Spike holds a

sizeable amount of Macros related to the execution of the instructions under the riscv/decode.h and

riscv/decode macros.h directories.
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Furthermore, the memory-management code is under the riscv/mmu.h and riscv/mmu.cc directories.

The whole Memory Management Unit mechanism simulation is realized under the mmu t class. Finally,

other important components, such as the Data Bus (bus t class), the Read Only Memory (rom device t

class), the Main Memory (mem t class) and the Interrupt Controller (clint t class) code is under the

riscv/devices.h and riscv/devices.cc directories.

Apart from the main simulated components, Spike also owns a vast collection of modules and in-

struction Macros connected to the whole set of instruction extensions that it supports. In particular, it

already provides support for the RVV extension. This support is obtained through the code located in

the riscv/vector unit.h and riscv/vector unit.cc directories, which mainly simulate all modules present in

the vector unit needed to execute RVV instructions. Figure 2.12 denotes the addition of the vector unit

in the constitution of Spike’s main functional modules. Furthermore, Spike keeps all the Macros related

to the execution of RVV instructions under the riscv/v ext macros.h directory.

Figure 2.12: Spike Overview with the addition of the vector unit.

2.7 Discussion

To tackle the performance limitation and portability issues caused by regular SIMD extensions that make

use of apriori fixed-size registers, VLA SIMD extensions like the mentioned RVV began to rise. However,
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such extensions present major bottlenecks, mostly because of the added instruction overhead needed

to attain the runtime variation of the vector lengths. Besides, stream-based extensions started to appear

to mitigate the existing gap between the processor computation speed and the data movement latency.

Based on that, this work aims to introduce a RISC-V stream extension fully compatible with RVV.

This extension has the vision of keeping the already performance enhancement delivered by the RVV

extension, adding a way to mitigate the RVV’s instruction overhead and decrease the memory access

latency with the help of stream-based approaches. Since UVE is a successful stream-based SIMD

RISC-V extension that tackled this same goal, the proposed solution follows some of the main ideas

present in the UVE model.

2.8 Summary

This Chapter aimed to discuss general concepts and background related to the proposed work. The

denoted concepts needed to be apriori-defined to understand the work that will be presented next. In

summary, first, the whole RISC-V paradigm was tackled. Furthermore, the evolution of the development

of SIMD extensions was discussed. Moreover, the concept of VLA SIMD extensions was presented,

referencing some of the top-notch examples. Next, the emergence and evolution of stream-based

and data-flow approaches into general-purpose processors were presented. The novel UVE exten-

sion, which combines both SIMD and streaming approaches, was examined. Finally, the main RISC-V

simulation tools were discussed, culminating in the analysis of the Spike functional simulator.
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3.1 Overview

In this Chapter it is presented the proposed RISC-V stream-based extension. To do so, first, it is de-

scribed the underlying memory access descriptor representation. Following, it is discussed the archi-

tectural state by defining the necessary architecture features and mechanisms to support the proposed

extension. Finally, it is presented the set of proposed instructions for stream configuration, manipulation

and stream-based control flow.

3.2 Memory Access Pattern Description

In the context of this Thesis, a stream is defined as a continuous flow of data that often exhibits a

predictable or constant pattern as soon as it starts executing. Because of this, even though the pattern,

length, or data type may not be known at compile time, they must be defined through a collection of

variables whose values may be determined when the stream is generated. Furthermore, sequential and

orderly processing (loading and storing) of the streams must be guaranteed.

To represent a stream of data, the concept of a descriptor is herein used. An access pattern to

memory must be described by a descriptor, which in most cases specifies a starting address, word length

(in bits), and size. To express more complex patterns, such as multidimensional strides, extra fields might

be added. Descriptors may also be made dependent or hierarchical to reflect advanced memory access

patterns (such as hexagonal and diagonal patterns). However, there is a natural equilibrium between a

descriptor’s complexity and its ability to simply represent various patterns.

3.2.1 Multidimensional Access Encoding

Based on what was stated, in the extension being defined, a similar solution to the one successfully

demonstrated at the Unlimited Vector Extension (UVE) extension [4] is proposed. The authors stated

that by using a descriptor composed of a three-element tuple {offset, size, stride}, all the straightforward

single-dimension patterns can be described. Furthermore, multidimensional access patterns can be

described by chaining these descriptors. The formal function for calculating each memory address is

defined as seen in the following equation:

y(X) = offset + x0 +

n∑
k=n

xk × stridek, xk ∈ {0, . . . , sizek} (3.1)

To describe straightforward patterns, a single three-element tuple is needed, constituted namely by

an offset, a size and a stride. In a single dimension, the offset represents the starting memory location

of the pattern that is being described. However, for multidimensional descriptions, the starting memory

28



location is dependent on the offsets and strides of every dimension. The size indicates how many com-

ponents to produce in a particular dimension. The stride denotes the location of the following element

inside the same dimension. These parameters are what makes a descriptor, the minimal representation

for a stream. Based on that, to represent a simple stream, a descriptor constituted with an offset, a size

and a stride is defined. This introduced descriptor is called dimension. Moreover, since the data type

of the stream only affects the stream’s calculated addresses and not the pattern itself, the element size

of the stream is included in the instruction names and not in the instruction arguments. This means that

the parameter data type is also present in the first dimension of any description.

3.2.2 Imperfect Loop Access Encoding

Although it is possible to describe a decent amount of memory access patterns relying only on the

previously introduced descriptor, a vast amount of examples are still not possible to be represented.

Listing 3.1 denotes the C code of one memory access pattern that is impossible to be represented by

simply using the dimension descriptor explained before.

Listing 3.1: Lower Triangular Memory Acces Pattern C code

1 int i = 0, j = 0, k = 0;

2

3 for (; i < Nr; i++) {

4 k++;

5 for (j = 0; j < k; j++) {

6 A[i*Nc + j];

7 }

8 }

By analyzing the Listing 3.1 C code, it is observed that for each outer loop iteration, the inner loop

parameters are modified. To provide the described functionality, a new descriptor type called modifier

is introduced. This new descriptor has the ability to change a dimension descriptor’s parameter. This

modifier is represented by a tuple comprised of four parameters. The first parameter is the target, which

serves as an identifier of the descriptor parameter to edit (offset, size or stride). The second parameter

is the behaviour, which specifies the operation to be carried out (increment or decrement). The third is

the displacement, which is the constant value utilised by the operation to update the parameter value.

The final value of the tuple is the size of the modifier and it specifies the total number of iterations for

which the modification should occur.
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3.2.3 Indirect Memory Access Encoding

In some applications, it is common to find the use of indirect memory accesses. Listing 3.2 denotes the

C code of one example of an indirect memory access pattern. The denoted memory access pattern

cannot be represented by the use of the previously introduced descriptors.

Listing 3.2: Indirect Memory Acces Pattern C code

1 int i = 0;

2

3 for (; i < Nc; i++) {

4 B[A[i]];

5 }

Despite by coupling both memory accesses together, it is simple to describe the indirect pattern

(the access B[A[i]] can be described as ∗(B + A[i])), the description needs to use the values of A[i]

to modify the parameter offset of the pattern B dynamically. To be able to represent such a pattern,

it can be re-utilised the idea of the already explained modifier with the slight chance that the source

value (displacement) needs now to be dynamic. In addition, the incrementation and decrementation

behaviours would restrict the description’s potential given that the displacement value is now taken via

a stream. Therefore, a modified descriptor called dynamic modifier is introduced. This modifier is still

represented by a tuple of four parameters. Two of them, the target and the size, still hold the same

behaviour as in the already explained modifier descriptor. The last two parameters are the behaviour

and the source. The behaviour still has the same functionality with the addition that it has a total of five

possible etiquettes: Add, Sub, Inc, Dec and Set. The source acts like the displacement but in this case,

is dynamic.

Linear Patterns Description Examples

Listing 3.3 denotes a C code of a simple array access pattern and figure 3.1 denotes the correspondent

stream representation. To represent this simple array access, it is only needed the starting memory

location of the pattern (offset set to the base address of the A array), the number of elements to generate

(size of N) and how to proceed to go to the next element within the same dimension (stride of 1).
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Listing 3.3: Simple Array access C Code

1 float A[N * N];
2 for (int i = 0; i < N; i++) {
3 A[i];
4 }

Figure 3.1: Stream Representation

Listing 3.4 denote another scenario of a simple array access pattern and the correspondent stream

representation in Figure 3.2. In this case, the starting memory location remains the same, the number

of elements to generate is reduced by half and some of the elements present in the A array are meant

to be bypassed. For that, in the stream representation, the size (N/2) and the stride (2) values were

changed.

Listing 3.4: Simple Array access with Stride C Code

1 float A[N * N];
2 for (int i = 0; i < N/2; i+=2) {
3 A[i];
4 }

Figure 3.2: Stream Representation with
Stride of 2

By the apriori examples, it is clear that by using the dimension descriptor, such simple single-

dimension patterns are represented with ease. However, there are obviously memory access patterns

that are multidimensional such as 2-D or 3-D patterns. Representing such patterns is acquired by adding

more dimensions to the stream representation. In detail, each additional dimension can be configured

by adding one descriptor on top, composed of the three aforementioned regular parameters (offset, size

and stride). Listing 3.5 denotes a C code of a 2-dimensional Array access pattern and figure 3.3 denotes
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the correspondent stream representation.

Listing 3.5: 2-Dimensional Array access C code

1 float A[Nr][NC];
2

3 for (int j = 0; j < Nr; j++) {
4 for (int i = 0; i < Nc; i++) {
5 A[j][i];
6 }
7 }

Figure 3.3: 2-Dimensional Stream Rep-
resentation

In this case, the starting memory location of the second dimension is dependent on the base address

of the previous dimension. As so, the offset of the second dimension is set to 0 because the access is

well-bounded within the array’s limits. If this value was set to 1, all horizontal accesses (based on figure

3.3) would be offset by one position to the right. The size of the second dimension corresponds to the

elements intended to be processed in this transformation. In the denoted example, this translates to

value Nr as this is the total iterations the outermost loop performs. The stride of the second dimension

is the distance between two sequential elements in the same dimension. It is observed that the distance

between the elements, in the outermost dimension, corresponds to the full width of the array or, in our

example, value Nc.

Listing 3.6 denotes another scenario of 2-dimensional array access and the correspondent stream

representation in figure 3.4. It is observed that by messing with the stride value of the descriptor, 2-

dimensional streams can also represent more twisted patterns.

Listing 3.6: 2-Dimensional Strided Array access C code

1 float A[Nr][NC];
2

3 for (int j = 0; j < Nr; j+=2) {
4 for (int i = 0; i < d; i+=2) {
5 A[j][i];
6 }
7 }

Figure 3.4: 2-Dimensional Strided
Stream Representation
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In summary, to achieve more intricate memory patterns, it is possible to cascade up dimension

descriptors. In the proposed solution, the maximum number of dimensions that can be described is 8.

Complex Patterns Description Examples

Listing 3.1, previously referenced, denotes the complex lower triangular memory access pattern. This

memory access pattern can only be described by the use of the modifier descriptor. Relying on this new

descriptor type the example denoted in figure 3.5 is now possible to be represented. Figure 3.6 denotes

the full representation of the Lower Triangular memory access pattern, making use of the dimension and

the modifier descriptor types.

Figure 3.5: Lower Triangular Memory Access Pat-
tern Figure 3.6: Lower Triangular Memory Access Pat-

tern Representation.

In detail, in this case, the modifier for any outer loop iteration will modify the size parameter of the

inner loop. Since the behaviour is in increment mode and the displacement is one, in each iteration of it

(In this case the modifier will act a total of Nr times), the size of the first dimension will be incremented by

one. The modifier will be applied every time dimension 1 (outer) is iterated, and the first time it is applied

right before the inner dimension iteration. This is in agreement with a for-loop mechanism. Take note

that there is a first configuration pass on the outer dimensions before the start of the inner dimension.

Each modifier is tied to a single dimension, so it is iterated along with that dimension. The modifier will,

however, change the dimension that is immediately below it.

In the solution proposed, there can only be one modifier associated with each dimension, so the

maximum-sized description can have 8 dimensions and 7 modifiers. Due to the lack of a lower dimen-

sion, the first dimension cannot have a modifier.

Listing 3.2, previously referenced, denotes an indirect memory access pattern. This memory access

pattern can only be described by the use of the dynamic modifier descriptor. Relying on this new
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descriptor type the example denoted in figure 3.7 is now possible to be represented. Figure 3.8 de-

notes the full representation of the Indirect memory access pattern, making use of the dynamic modifier

descriptor.

Figure 3.7: Indirect Memory Access
Pattern

Figure 3.8: Indirect Memory Access Pattern Representation.

3.3 Architectural State

The process of designing the Instruction Set Architecture (ISA) extension is the most crucial part of

the work, as the supporting microarchitectures will be affected by any mistake in the ISA definition.

Therefore, before going to the actual definition of the proposed extension, it is important to understand

a brief overview of the architectures that will support this extension. As so, this Section tackles the

architectural components that will support the behaviour specified by the stream-based extension.

3.3.1 Microarchitecture Overview

Streaming is a complex process that traditional Central Processing Unit (CPU) pipelines are not ready

to support. Consequently, the CPU pipeline needs to be embedded with a streaming mechanism that

handles all actions denoted by the stream paradigm. Figure 3.9 denotes a Microarchitecture overview

of a CPU pipeline extended with a Stream Unit.
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Figure 3.9: Microarchitecture Overview with a Stream Unit

To understand the behaviour of the Stream Unit denoted in Figure 3.9, the main actions in the

operation of streams will be, in resume, described:

Stream Configuration: Whenever a new stream configuration instruction reaches rename, it is reg-

istered on a stream configuration reordering structure, which is part of the Stream Unit. This engine,

similar to a re-order buffer, processes the configuration instructions in order, and as soon as the corre-

sponding operands are available. Upon completion of the configuration, the Stream Unit immediately

starts processing the stream, either by pre-loading data (for input streams), or by calculating store ad-

dresses (on output streams), and waiting for the commit of store data.

Stream Iteration: A stream iteration process is logically performed by reading/writing from/to an in-

put/output stream. This is performed at rename, by signalling the Stream Unit to iterate the speculative

stream state. For an output stream, this also implies reserving space in the Stream Store First-In First-

Out (FIFO) buffers and then waiting for both data and commit signals to arrive, to complete the operation.

On input streams, the devised solution attempts to minimize the load-to-use latency, by allocating the

head of input streams to physical registers. As a consequence, when a stream-consuming instruction

reaches rename, the operand is immediately read and a new data element is pre-loaded to a different

physical register.

Stream Termination: The termination of a Stream is achieved at commit, either through an explicit ter-

mination instruction or by committing an instruction that signals the completion of the streaming pattern.

When such an event occurs, all the structures in the Stream Unit are released, allowing the resources

to be allocated to a new stream configuration.

Memory Coherence: On the core, stream and non-stream operations are kept coherent by matching

the stream load/store state with the core load/store queues and by solving possible stream load/store

dependencies through typical request delay, replay, or squash mechanisms. Hence, data written by the

conventional pipeline can be immediately read by a newly configured input stream, and data written by

an output stream can be loaded using a conventional load instruction. This ensures a reliable transition
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between sequential code and stream loops.

3.3.2 Available registers

The stream-based extension being defined is integrated with the rest of the subsets of the RISC-V ISA.

As so, in the set of instructions that will be presented, there are no arithmetic or data-transfer instructions.

The only instructions are associated with stream configuration, manipulation and control flow. The vision

of this extension is to cooperate the configured streams with the arithmetic and data transfer instructions

present in the RISC-V subsets. Therefore, a set of new registers is not needed. The only addition

needed is to integrate the rest of the RISC-V registers with mechanisms to identify streams.

When cooperating with the Standard RISC-V ISA, the proposed extension will make use of the scalar

and floating point registers defined. As so, these registers will be integrated with mechanisms to identify

whether a load/store stream is associated with them.

When cooperating with the RISC-V Vector (RVV) extension, the proposed extension will make use

of the RVV vector registers. As so, these registers will also be integrated with mechanisms to identify

whether a load/store stream is associated with them. Furthermore, in the specific case of the vector

registers, these will also be integrated with mechanisms that will identify stream loop tails.

3.4 Instructions Design

This Section will describe in detail all the instructions present in the stream-based extension being de-

fined. It is important to note that despite this extension being focused on the streaming paradigm, it

also contains other mechanisms that were adopted to make it an updated and reliable extension. One

example is the possible integration with Single-Instruction-Multiple-Data (SIMD) behaviour, so deeply

exploited in Chapter 2. Furthermore, before going to the definition of the actual instructions, it is impor-

tant to reference that since this Thesis goal is to create an extension based on RISC-V, the names of the

instructions pretend to follow this same label. Therefore, inspired by the instructions present on the RVV

extension, since this extension is mainly based on streaming mechanisms, all the instructions present

on this extension have as a prefix the letter ”s” (Stream). Following the concept present in the RISC-V

instructions, the rest of the instruction’s name reflects the nature of the instruction.

3.4.1 Stream Configuration Instructions

In this subsection, the subset of stream configuration instructions is examined. After defining the memory

pattern descriptors in Section 3.2, it is now important to create the instructions that can efficiently yet
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simply represent those patterns. To create the instructions for stream configuration, this subsection

makes reference to the previously established pattern descriptors.

First, let’s start by describing single-dimension streams. Remembering image 3.1, to describe a

simple pattern with one dimension, only a dimension descriptor denoting the offset, the size and the

stride is needed. Therefore, to describe a one-dimension stream, the related configuration instruction

must provide the offset, the size and the stride parameters. Additionally, this configuration instruction

must also set the data width. Furthermore, the instruction also needs to set the transaction direction

of the stream, differentiating whether it is a continuous flow of data meant to be loaded from memory

or a continuous flow of data meant to be stored in memory. Hence, the proposed stream configuration

instruction has the following format:

scrt.<dir>.<width> Vd, Rs1, Rs2, Rs3

The mnemonic name ”scrt” references ”Stream Create”. The ”dir” parameter sets the transaction

direction of the stream, where ”ld” is for a continuous flow of data meant to be loaded from memory and

”st” is for a continuous flow of data meant to be stored in memory. Furthermore, the ”width” parameter

sets the data width, whether possibilities are ”d” (8 bytes), ”w” (4 bytes), ”s” (2 bytes) and ”b” (1 byte).

Finally the actual instruction parameters ”Vd”, ”Rs1”, ”Rs2” and ”Rs3” denote respectively the destination

register, the offset, the size and the stride.

One dimension can completely describe a stream, the previous stream configuration instruction

starts and ends the stream description. However, as already explained, there are examples like 3-

dimensional memory accesses that require a chain of descriptors to represent the whole of the 3 di-

mensions. Therefore, the starting stream configuration instruction can have the ”sta” field to denote that

other dimension descriptors will be chained up.

Thus, let’s now describe multi-dimension streams. Remembering image 3.3, it is known that to

describe this 2-dimensional access pattern, 2 dimension descriptors are needed. To describe the first

dimension of the stream, the previously explained configuration instruction is used. In this case, since

the stream is multi-dimensional, the first stream configuration instruction will have the ”sta” field.

With the first dimension configuration done, to add a higher level configuration, it is necessary to

describe the remaining configuration. Notice that, a dimension that is defined after another, is implicitly

an outer dimension. With that stated, to define the second dimension, it is simply needed another in-

struction that targets the same destination register. Additionally, since it is a 2-dimensional stream, the

complete description of the stream is supposed to terminate with the next stream configuration instruc-

tion. With this, the proposed configuration instruction that intends to add a dimension representation

and terminate the stream description has the following format:
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send Vd, Rs1, Rs2, Rs3

In this case, the source registers contain the configuration data of the second dimension. It is impor-

tant to note that when adding a configuration, the direction of the transaction and the element width are

not needed anymore, this information is only necessary for the first configuration.

Up to this point, with the two stream configuration instructions presented, the description of a 2-

dimensional stream can be denoted. However, in other cases, it might be necessary to represent up to

8-dimensional streams. To provide the description of another dimension, another instruction that targets

the same destination register needs to be provided. Consequently, to represent the middle dimensions

of the stream, another configuration instruction that at the same time is supposed to add a dimension

description and not terminate the full stream description is needed. Therefore, the proposed stream

configuration instruction that follows this behaviour has the following format:

sapp Vd, Rs1, Rs2, Rs3

In this case, the source registers contain the configuration data of the dimension that is being ap-

pended to the full stream description.

To better understand the instructions described so far, let us analyze the 3-dimensional stream rep-

resentation denoted in figure 3.10.

Figure 3.10: 3-Dimensional Stream Representation.

As described, to make the full description of this 3-dimensional stream, three configuration instruc-

tions, each describing one dimension are needed. Therefore, the full description of this stream is done

by sequentially executing the following instructions:

scrt.sta.ld.w Vd, a1, a2, a3

sapp Vd, a4, a5, a6

send Vd, a7, a8, a9
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With the first stream configuration instruction the stream description starts by configuring the first

dimension. In this case, it is assumed that is intended to load a continuous flow of data from memory

and that the data is word size. It is also assumed that the registers a1-3 contain the configuration data

of the first dimension (A,5,1). With the second instruction, another dimension is being appended to the

stream description, also assuming that the registers a4-6 contain the configuration data of the second

dimension (0,5,5). Finally, with the third instruction, the final dimension description is added ending the

full stream description, also assuming that the registers a7-9 contain the configuration data of the third

and last dimension (0,5,25).

Summing up, with the stream configuration instructions denoted so far, the descriptors for all the

linear patterns presented in the previous section can be represented. However, as represented in the

previous section, two more types of descriptors were developed to represent more complex patterns,

namely the modifier descriptor and the dynamic modifier descriptor. Therefore, it is also needed instruc-

tions that can configure these descriptions into a stream description.

Starting with the normal modifier. Remembering the lower triangular pattern denoted in figure 3.5

and the correspondent stream representation in figure 3.6, the two dimensions are represented with the

stream configuration instructions presented. However, to constrain the stream to only fetch the lower

triangle, an instruction denoting the modifier behaviour must be introduced before ending the stream

description. Thus, the configuration instruction must provide the mode, the size, the target and the

displacement parameters. Additionally, this instruction also needs to specify if it ends or not the full

stream description. Hence, the configuration instruction for the modifier has the following format:

smod.<type>.<target>.<mode> Vd, Rs1, Rs2

The mnemonic name ”smod” references ”Stream Modifier”. The ”type” parameter represents if the

modifier ends the stream description (”end”) or not (”app”). Furthermore, The ”target” as already ex-

plained sets the parameter that the modifier will edit (”size”, ”offset” or ”stride”) and the ”mode” sets the

operation to be carried out (”inc” or ”dec”). Finally, the actual instruction parameters ”Vd”, ”Rs1” and

”Rs2” denote respectively the destination register, the size and the displacement value.

Having the instruction that configures the normal modifier behaviour, it is easy to describe an in-

struction for the dynamic modifier based on the apriori. The only chances are that, in this case, the

displacement value is traded with the source and there are more options for the mode selection. There-

fore, the proposed configuration instruction for the dynamic modifer has the following format:

sdmod.<type>.<target>.<mode> Vd, Rs1, Vs2
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The mnemonic name ”sdmod” references ”Stream Dynamic Modifier”. The ”type” and ”target” param-

eters set the same as in the normal modifier instruction. The ”mode” parameter also sets the operation

to be carried out, but in this case there are more options (”add”, ”sub”, ”inc”, ”dec” or ”set”). Once again

the ”Vd” and ”Rs1” parameters denote respectively the destination and the size value. Finally, the ”Vs2”

parameter denotes the register associated with the source stream.

3.4.2 Stream Control Instructions

During execution, the processor may need to switch context (for example, exception handling), which

might limit the use of streams in those circumstances. To allow the momentary freeing/restoring of

streams, authorizing concurrent execution of multiple processes without interfering with the stream con-

figuration, a set of control instructions is provided. These instructions enable the configuration of each

stream’s state at any point in the code. Table 3.1 denote the available instructions and the correspondent

behaviour.

Instructions Behaviour

s.suspend Momentarily disable the automatic iteration of a stream until the resume in-
struction is executed. During the suspended period, the streaming register
will work as if no stream was configured.

s.resume Enables again the automatic iteration of a stream.

s.terminate Cease completely the stream configuration. The streaming register will work
as if no stream was configured.

Table 3.1: Stream Control Instructions

3.4.3 Flow Control Instructions

In this subsection, the subset of the instructions that somehow change the flow of the execution is

examined. The first instructions that without a doubt change the complete execution, are the branch

instructions. Regarding the extension being defined, the only branch instructions that make sense are

the ones that provide the programmer a way to conditionally jump regarding a correspondent stream

state. In this case, knowing if a stream is already terminated or not is the only condition needed to know

when to jump or not out of a looping situation. Taking what is stated into account, this extension defines

two branch instructions. One instruction jumps when a correspondent-referenced stream is terminated

and the other jumps when the stream is still not yet terminated. Both of the instructions format is the

following:
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sb.<condition > Vd, <jump label >

The ”condition” parameter can be either ”nc” jumping to the label if the stream is not completed yet,

or ”c” jumping to the label if the stream is completed. The ”Vd” parameter specifies the stream on which

the conditions are going to be checked.

Moreover, it is usual for a code to process data in an inner for loop and then only write to mem-

ory at the end of that loop. Listing 3.7 denotes one of these examples and figure 3.11 denotes the

correspondent behaviour being executed.

Listing 3.7: inner loop processing with outer loop memory access C
Code

1 register float aux = 0;
2 for(int i=0; i<N; i++){
3 for(int j=0; j<M; j++){
4 aux += X[i][j];
5 }
6 Y[i] = aux;
7 aux = 0;
8 }

Figure 3.11: inner loop processing with outer
loop memory access Represen-
tation.

In this case, despite being able to describe both the X and Y memory access patterns with the

stream configuration instructions, it is not possible to distinguish the terminations of the loop ”j”. To

describe such behaviour, it requires Y to be configured as a single element store stream, where the

accumulation instruction output would be written to. Additionally, for this example to work as expected,

the vector length must be a multiple of the innermost loop access size (M), otherwise, data from iteration

”i+1” would be loaded and processed in iteration ”i”, leading to incorrect behaviour and data loss. To

get around this, a vector-coupled behaviour that can be enabled for any dimension of any stream was

introduced. This vector-coupled behaviour allows a multi-dimensional stream to be logically divided into

multiple streams with lower dimensionality, for example, it automatically converts a 2-dimensional stream

(with dimensions ”i” and ”j”) into multiple ”i” linear dimensions ”j” while keeping the stream processing

unchanged. Figure 3.12 shows the difference between using or not this behaviour.
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Figure 3.12: Normal Streaming versus Vector-coupled Streaming.

To activate this behaviour, the correspondent instruction has the following format:

scfgvec Vd

This instruction needs to be put after the target dimension configuration. The fundamental principle

of the vector coupling instruction is that the last vector of the vector coupled dimension will be flagged

to represent its dimension termination. To capture this same flag, one new branch instruction with

two possible behaviours was defined. Despite both behaviours being able to capture the dimension

termination flag, one instruction will jump if the dimension ends and the other when the dimension does

not end. This proposed instruction format is the following:

sb.<dimension condition >. <dimension number > Vd, <jump label >

The ”dimension condition” parameter can be either ”ndc” jumping to the label if the stream dimension

is finished, or ”dc” jumping to the label if the stream dimension is completed. The ”dimension number”

parameter specifies the dimension on which the flag termination is set.

3.5 Instruction Set Overview

Table 3.2 denotes all the instructions presented in the proposed RISC-V stream-based extension.
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Table 3.2: Stream-based extension Instructions

Instruction Description

scrt.ld.[width] Simple Load Stream

scrt.st.[width] Simple Store Stream

scrt.sta.ld.[width] Start load stream configuration

scrt.sta.st.[width] Start store stream configuration

sapp Append dimension descriptor to stream in configuration

send Add dimension descriptor and end configuration of stream

smod.[type].[target].[mode] Append modifier descriptor to stream in configuration

sdmod.[type].[target].[mode] Append dynamic modifier descriptor to stream in configuration

s.suspend Momentarily disable the automatic iteration of a stream

s.resume Enables again the automatic iteration of a stream

s.terminate Cease completely the stream configuration

sb.nc Branch if stream not finished

sb.c Branch if stream finished

sb.ndc.x Branch if dimension x not finished

sb.dc.x Branch if dimension x finished

scfgvec Configure vector-coupled Streaming

To understand the defined stream-based extension and its integration with the rest of the RISC-V

ISA, Listing 3.8 and Listing 3.9 denote the C code of the famous SAXPY benchmark, the first using only

scalar RISC-V instructions, the second cooperating the defined RISC-V stream based extension with

the scalar RISC-V instructions.
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Listing 3.8: SAXPY benchmark with Scalar RISC-V in-

structions

1 asm volatile (

2 "mv x5, %[n]\n"

3 "fsgnj.s f1, f1, f1\n"

4 "1:\n"

5 "fld f2, 0(%[src1])\n"

6 "fld f3, 0(%[src2])\n"

7 "fmul.s f2, f2, %[a]\n"

8 "fadd.s f1, f1, f2\n"

9 "fadd.s f3, f3, f1\n"

10 "fsw f3, 0(%[src3])\n"

11 "addi %[src1], %[src1], 4\n"

12 "addi %[src2], %[src2], 4\n"

13 "addi %[n], %[n], -1\n"

14 "bnez %[n], 1b\n"

15 :

16 : [src1] "r" (src1), [src2]

17 "r" (src2), [a] "f"

18 (a), [n] "r" (n)

19 );

Listing 3.9: SAXPY benchmark with the stream-based

extension and Scalar RISC-V instructions

1 asm volatile(

2 "scrt.ld.w f1, %[src1], %[y], %[z] \t\n"

3 "scrt.ld.w f2, %[src2], %[y], %[z] \t\n"

4 "scrt.st.w f3, %[src2], %[y], %[z] \t\n"

5 :

6 : [src1] "r"(src1),

7 [src2] "r"(src2), [y] "r"(size),

8 [z] "r" (1), [A] "r" (A)

9 );

10 asm volatile(

11 "fLoop1: \t\n"

12 "fmul.s f2, f2, %[a] \n\t"

13 "fadd.s f1, f1, f2 \n\t"

14 "fadd.s f3, f3, f1 \n\t"

15 "sb.nc f1, fLoop1 \n\t"

16 :: [a] "f" (a)

17 );

Comparing both kernels, when using the proposed stream-based extension, since the memory ac-

cesses are pre-configured with the stream configuration instructions, the principal processing loop does

not need the load and store instructions. Moreover, the indexing instructions also disappear.

Referencing Listing 3.9, first, the streams needed are configured with the stream configuration in-

structions. Next, in the principal processing loop, by making use of the floating point RISC-V scalar

instructions, the streams are iterated until termination. As previously mentioned, the floating point regis-

ters have information on whether a load/store stream is associated with them.

3.6 Summary

This Chapter presented the proposed RISC-V stream-based extension. First, the memory access de-

scriptor representation was described. Following, the architectural state, defining the necessary archi-

tecture features to support the proposed extension, was discussed. Next, the set of all the proposed

extension instructions was presented. Finally, a brief overview of the ISA extension was done.
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4.1 Overview

In this chapter, it is described the implementation of the RISC-V stream-based extension, detailed in

Chapter 3, on the Spike functional Simulator. Since the Spike simulator does not inherently support

a streaming paradigm, to denote the stream-based extension’s behaviour, it is necessary to first add

simulated streaming mechanisms into the Spike architecture. To do so, first, the simulated components

added to Spike will be described, that support the streaming mechanisms of the defined extension. Next,

it is detailed the inclusion of the proposed set of instructions and their integration with the remaining

RISC-V paradigm.

4.2 Stream Unit Implementation

As mentioned, Spike does not inherently support stream-based mechanisms. Therefore, the first task

was to introduce a streaming mechanism into the Spike architecture. As such, a new simulated com-

ponent was created, namely the Stream Unit, whose function is to provide the streaming mechanisms

to support the defined extension. Figure 4.1 denotes how the Stream Unit is integrated into the actual

Spike architectural overview.

Figure 4.1: Spike Overview with the addition of the Stream Unit.

The following paragraphs describe how the Stream Unit is added to the Spike environment. From this

point, every directory mentioned has per base the riscv-isa-sim/riscv local root directory, which denotes
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the location of the Spike components code. To do so, it was added to this local directory two new code

files, namely the stream unit.cc and the stream unit.h, which respectively denote the actual Stream

Unit simulation code and its correspondent header. Referencing first the stream unit.h header code,

a new class was implemented, called ”streamUnit t”, that fully denotes all the components present in

the Stream unit representation. Listings 4.1 and 4.2 denote the full code that represents the referenced

Stream Unit class.

Listing 4.1: Stream Unit Class (Part 1)

1 class streamUnit t

2 {

3 public:

4 processor t* p;

5 int stream type[NSR];

6 stream streams[NSR];

7 bool scalar cooperation;

8 bool rvv enabled;

Listing 4.2: Stream Unit Class (Part 2)

1 public:

2 streamUnit t():

3 p(0),

4 stream type{0},

5 scalar cooperation(true),

6 rvv enabled(true) {

7 }

8 void init stream unit();

9 };

In the Stream Unit class, first, a pointer ”p” is declared, which later will be associated with the proces-

sor class, denoting their association. Next, the ”stream type” array is defined. The ”stream type” array

represents the actual type of each defined stream, denoting whether it is a loading or a storing stream.

Since in the majority of the Instruction Set Architectures (ISAs) the number of provided registers is 32

and a stream will always need to be associated with a register, the ”stream type” array is composed

of 32 elements. Moreover, an array of 32 ”stream” structures is defined, which will be later detailed

and explained. Finally, two booleans are defined, the ”scalar cooperation” and the ”rvv enabled”, whose

function is to respectively represent, if the stream unit class can be associated with the RISC-V scalar

instructions and the RISC-V Vector (RVV) extension’s instructions.

Referencing now the stream unit.cc code, a function called ”init stream unit” was implemented,

which will initiate all the necessary components for the stream class to work as the streaming mech-

anism. Listing 4.3 denotes the referenced function.

Listing 4.3: Stream Unit Init Function

1 void streamUnit t::streamUnit t::init stream unit()

2 {

3 for(int i=0 ; i<NSR; i++){

4 for(int j=0; j<8; j++){
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5 streams[i].dimensions[j].offset = 0;

6 streams[i].dimensions[j].size = 0;

7 streams[i].dimensions[j].stride = 0;

8 streams[i].dimensions[j].dim elements counter = 0;

9 streams[i].dimensions[j].total dim elements = 0;

10 streams[i].modifiers[j].target = 5;

11 streams[i].modifiers[j].behavior = 0;

12 streams[i].modifiers[j].displacement = 0;

13 streams[i].modifiers[j].size = 0;

14 }

15 streams[i].dimension counter = 0;

16 streams[i].elements counter = 0;

17 }

18 }

Up to this point, although the definition of the stream unit component is done, the rest of the spike

simulation environment still needs to be connected with this streaming mechanism. Therefore, an in-

stance of the stream unit class needs to be created inside of the spike processor class structure. To do

so, the following line was added to the structure of the processor class, implemented in the processor.h

header code:

streamUnit t SU;

By doing so, an instance of the stream unit class was created under the actual processor class.

To make sure that whenever the processor class is created and initiated, the stream unit class is also

created and initiated, a function called pinit stream unit was also added in the processor constructor

class in the processor.cc code. Listing 4.4 denotes the actual code inside of this function.

Listing 4.4: Processor Function initiating the Stream Unit

1 void processor t::pinit stream unit()

2 {

3 SU.p = this;

4 SU.init stream unit();

5 }

With the first line of the function, the connection between the stream unit and the processor is done,

since by executing it, the stream unit instance will always have access to the actual processor class
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instance. With the second line, the stream unit class instance is being initiated by calling the already

referenced function in Listing 4.3.

4.2.1 Streams Implementation

Now that the structure of the stream unit class developed was explained and the process of linking the

stream unit with the actual Spike processor simulation was denoted, the way the actual streams were

simulated can be explained. In the defined extension, a stream is always associated with a respective

register. Remembering the code in Listing 4.1, the stream unit class defined an array composed of 32

”stream” structures. Each one of these structures represents an actual stream. Since the majority of the

ISAs provide 32 registers and a stream will always be associated with a register, the maximum number

of streams that can be represented is 32. Listing 4.5 denotes the actual code of the ”stream” structure.

Listing 4.5: Stream Structure Code

1 struct stream

2 {

3 std::vector<uint64 t> addresses;

4 std::variant<

5 std::vector<uint32 t>,

6 std::vector<uint16 t>,

7 std::vector<uint8 t>,

8 std::vector<uint64 t>

9 > values;

10 dimension dimensions[8];

11 modifier modifiers[8];

12 int dimension counter;

13 int elements counter;

14 };

Examining the Stream structure code, first an array called ”addresses” is defined, which later will

be composed of unsigned elements of 64 bits. This array holds the various memory positions that

constitute the correspondent stream being defined. Depending on which memory access pattern the

stream is representing, this array will hold the respective necessary memory positions. Therefore, this

array is not composed of a fixed number of elements. Moreover, the array ”values” is defined, which,

like the previous one, is not composed of a fixed number of elements. This array can be constituted of

four different types of elements. Each one of these types represents one of the possible element widths

representations of the defined extension, namely the 8-bit for the Byte type (B), the 16-bits for the Half-
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Word type (H), the 32-bits for the Word type (W) and the 64-bits for the Double-Word type (D). Therefore,

the array ”values” will hold the respective values of the memory positions of the stream. Although the

values are being kept in this stream structure, since the defined extension is integrated with the rest of

the RISC-V ISA, depending on if the defined extension is cooperating with RVV or with the standard

scalar instructions, these values will also be outputted to the correspondent registers.

Up to this point, in the stream representation, the simulated components that will denote the actual

stream memory access positions and the respective values were already explained. However, there is

still a need to simulate the various descriptors, defined in Section 3.2, that allow to arrive at the memory

positions that constitute the stream. The ”dimension counter” and the ”elements counter” variables,

which are lastly defined in the Stream structure code, will respectively hold the number of dimensions

and the number of total elements present in the correspondent stream.

As denoted in Subsection 3.4.1, to represent some streams, a lot of descriptors (each denoted by

one stream configuration instruction) are needed. In the defined extension, there are three possible

descriptors, the simple three-element tuple descriptor that represents a dimension, the four-element

tuple that represents a modifier and the other four-element tuple that represents a dynamic modifier. To

simulate the referenced descriptors that constitute a stream, two arrays of ”dimension” and ”modifier”

structures were defined. In the defined extension, the maximum dimensions and modifiers a stream can

have are respectively eight and seven. Therefore, the ”dimensions” array will have eight ”dimension”

structures, and to simplify, the ”modifiers” array will also have eight ”modifier” structures. Listing 4.6 and

4.7 denote respectively the actual code of the ”dimension” and the ”modifier” structure.

Listing 4.6: Dimension Structure Code

1 struct dimension

2 {

3 uint64 t offset;

4 uint64 t size;

5 uint64 t stride;

6 int dim elements counter;

7 int total dim elements;

8 };

Listing 4.7: Modifier Structure Code

1 struct modifier

2 {

3 uint64 t target;

4 uint64 t behavior;

5 uint64 t displacement;

6 uint64 t size;

7 };

In the defined extension, to define a stream dimension three elements are needed, the offset, the

size and the stride. Therefore, in the dimension structure, these same elements are defined. Moreover,

since there are examples where the number of elements present in each dimension of a stream needs

to be tracked, two integer variables are defined. While the ”total dim elements” variable will hold the

total number of elements the dimension holds, the ”dim elements counter” will track, at some point of

execution, the number of remaining dimension elements left to process.
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To define a modifier four elements are needed, the target, the behaviour, the size and the displace-

ment. Therefore, in the modifier structure, these same elements are defined. In this case, the target

variable will have three possible values, zero denoting a size modification, one denoting a stride modi-

fication and two denoting an offset modification. The behaviour variable will have two possible values,

zero denoting an increment behaviour and one denoting a decrement behaviour.

There is no specific structure to define the dynamic modifier because, at the time of this Thesis work,

the dynamic modifier descriptor was not simulated.

With that stated, the Stream Unit Innit function referenced in the Listing 4.3 can now be fully ex-

plained. This function simply initiates all the dimensions and modifiers of all the possible streams with

empty values. For example, regarding the dimensions, the ”total dim elements” variable is being set to

zero. Moreover, when a definition of a dimension occurs by executing the respective stream configuration

instruction, this value will be changed to the actual number of elements of the correspondent dimension.

The same occurs for the modifiers. For example, the ”target” variable is being set to five when the only

possible combinations for this variable are zero, one or two. Furthermore, when a definition of a modifier

occurs, this value will be changed to the actual target of the modifier descriptor.

4.3 Instruction Macros

With the streaming mechanisms simulated and explained, this section will explain how the referenced

components are used to actually describe the behaviour of the instructions present in the defined exten-

sion. First, all the steps needed to actually make sure that the Spike simulator recognizes the extension’s

instructions and behaviour is denoted. Next, the Macros elaborated to simulate the full behaviour of the

instructions will be described.

To include a new instruction to the Spike simulator, the following three guidelines need to be fulfilled:

• Spike does not hold specifically the opcodes of the instructions. These are in fact kept at another

repository, the riscv-opcodes repository [49]. Therefore, the actual opcode of the instruction needs

to be added to the respective riscv-opcodes local repository.

• Next, the actual name of the instruction needs to be added to the list of instructions in the riscv.mk.in

file. By doing so, the added instruction is now declared under Spike.

• Finally, an instruction name.h needs to be added under the insns folder. The insns folder holds all

the definitions of Spike’s supported instructions. The added instruction name.h code needs to de-

fine the instruction behaviour, as is this respective code that will be executed when the instruction

is called for execution.
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Since a new instruction set extension is going to be included, a new folder called rv stream was

created in the riscv-opcodes local repository, which holds all the opcodes of the instructions present in

the defined extension. For example, the first two stream configuration instructions previously defined in

Subsection 3.4.1, have the following opcodes:

scrt.ld.w vd rs1 rs2 rs3 26..25=3 14=1 13..12=2 6..2=0x2 1..0=3

scrt.sta.ld.w vd rs1 rs2 rs3 26..25=2 14=1 13..12=2 6..2=0x2 1..0=3

Now that is known how to add the actual extension to the Spike simulator, the behaviour of each

instruction, denoted in the instruction name.h code file, needs to be defined. Since the majority of the

already supported instructions are defined with a set of Macros, a file code called stream ext macros.h

was added, which holds all the Macros denoting the behaviour of the instructions. Moreover, describing

all the implemented vast code would be redundant. Therefore, to simply understand the used imple-

mentation techniques, only the code that simulates the ”scrt.sta.ld.w” instruction will be explained.

First, in the actual scrt sta ld w.h code file the Macro, named ”STREAM START LOAD”, that will

actually hold all the code denoting this instruction behaviour will be called. Listing 4.8 denotes the

referenced code.

Listing 4.8: scrt.sta.ld.w instruction Macro code

1 #define STREAM START LOAD \

2 STREAM TYPE SIZE \

3 STREAM GET PARAMS \

4 P.SU.stream type[rd num] = 1; \

5 STREAM ASSIGN TYPE(size) \

6 STREAM UPDATE DIMENSIONS

From Listing 4.8, it is observed that by unfolding the main Macro, more Macros are executed.

These Macros together hold the sequence of code that simulates the respective instruction. Listing

4.9 and Listing 4.10 denote respectively the unfolded code present in the ”STREAM TYPE SIZE” and

”STREAM GET PARAMS” Macros.

Listing 4.9: STREAM TYPE SIZE Macro Code

1 #define STREAM TYPE SIZE \

2 uint64 t streamTypeSize =

3 insn.stream type size(); \

4 int size = 0; \

5 if(streamTypeSize == 0) size = 1; \

6 else if(streamTypeSize == 1) size = 2; \

7 else if(streamTypeSize == 2) size = 4; \
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8 else if(streamTypeSize == 3) size = 8; Listing 4.10: STREAM GET PARAMS Macro Code

1 #define STREAM GET PARAMS \

2 reg t rd num = insn.rd(); \

3 uint64 t rs1 num = RS1; \

4 uint64 t rs2 num = RS2; \

5 uint64 t rs3 num = RS3;

First, regarding the code present in Listing 4.9, this Macro execution retrieves from the instruction’s

opcode, the width of the element. In this case, since the instruction denotes that the respective element

width is 32 bits corresponding to a word, the ”streamTypeSize” variable will hold the value two. Therefore,

the ”size” variable will hold the value four, denoting the number of bytes the correspondent element width

has. This ”size” variable is needed when retrieving the actual memory positions of the stream. Regarding

the code present in Listing 4.10, by executing this Macro, the parameters of the instruction are being

retrieved from the instruction’s opcode. These parameters are the destination register and the three

source registers. To get the values of the offset, size and stride, the values present in the denoted

source registers are outputted. Therefore, the ”rd num”, the ”rs1 num”, the ”rs2 num” and the ”rs3 num”

will respectively be composed of the number of the destination register, the offset value, the size value

and the stride value.

Next, by executing the following line of the First Macro code, the ”stream type” variable is set to one.

By doing so, the destination register is associated with a load stream.

Moreover, Listing 4.11 and 4.12 denote the code present in the final Macros.

Listing 4.11: STREAM ASSIGN TYPE Macro Code

1 #define STREAM ASSIGN TYPE(size) \

2 if(size == 4){ \

3 P.SU.streams[rd num].values =

4 std::vector<uint32 t>(); \

5 } \

6 else if(size == 1){ \

7 P.SU.streams[rd num].values =

8 std::vector<uint8 t>(); \

9 } \

10 else if(size == 2){ \

11 P.SU.streams[rd num].values =

12 std::vector<uint16 t>(); \

13 } \

14 else if(size == 8){ \

15 P.SU.streams[rd num].values =

16 std::vector<uint64 t>(); \

17 }
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Listing 4.12: STREAM UPDATE DIMENSIONS Macro

Code

1 #define STREAM UPDATE DIMENSIONS \

2 P.SU.streams[rd num].dimension counter += 1; \

3 int aux dim index =

4 P.SU.streams[rd num].dimension counter - 1; \

5 P.SU.streams[rd num].dimensions[aux dim index]

6 .offset = rs1 num; \

7 P.SU.streams[rd num].dimensions[aux dim index]

8 .size = rs2 num; \

9 P.SU.streams[rd num].dimensions[aux dim index]

10 .stride = rs3 num;

Referencing the code in Listing 4.11, by executing this Macro, the ”values” array elements type is set

with the element width apriori obtained. For example, regarding the instruction being defined, since the

apriori ”size” parameter was set to four, the ”values” array of the correspondent stream will be composed

of elements of 32 bits denoting words. Finally, regarding the code in Listing 4.12, by executing this

Macro, the actual parameters of the denoted dimension are saved.

This Macros behaviour is pretty similar for all the stream configuration instructions, where the final

goal is to save all the dimensions and modifiers descriptions parameters in the correspondent stream

structure. Therefore, by the end, when the configuration of the full stream is done, all the parameters

required to actually access and manipulate the memory positions present in the correspondent stream

are saved.

4.3.1 Integration with RISC-V Paradigm

The defined stream-based extension is integrated with the rest of the RISC-V paradigm. More specifi-

cally, the defined extension can cooperate with both the scalar RISC-V instructions and the RVV exten-

sion instructions. In both cases, the process of integrating the defined extension is very similar. When

cooperating with the scalar instructions, it is important that the integer and floating point registers are

able to iterate through the defined streams. By doing so, it will be possible to first retrieve the source

stream values and then save the output value in the correspondent memory position denoted by the

destination stream. Moreover, when cooperating with RVV, it is important that the vector registers are

able to also iterate through the defined streams. The only difference regarding both cooperations is that

while with scalar instructions each stream iteration consumes only one element, with RVV instructions,

each stream iteration consumes more than one element. Due to the similarities presented, only the

integration with RVV will be discussed.

As mentioned, to integrate the defined extension with RVV, the RVV instructions need to make use

of the streams defined by the stream configuration instructions. To do so, Spike’s RVV instructions were

extended to couple with the streaming behaviour. As mentioned, Spike works with a set of Macros to

define the instructions. As so, all the RVV’s instructions code is present in the v ext macros.h code

file. To specifically describe how the RVV Macros were extended, all the changes made to the Vadd
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instruction code will be described. Listing 4.13 and 4.14 respectively denote the unchanged code in the

actual vadd.h code file and the correspondent Macro code called.

Listing 4.13: vadd.h file Code

1 // vadd.vv vd, vs1, vs2, vm

2 VI VV LOOP

3 ({

4 vd = vs1 + vs2;

5 })

Listing 4.14: Vadd Macro Code

1 #define VI VV LOOP(BODY) \

2 VI CHECK SSS(true) \

3 VI LOOP BASE \

4 if (sew == e8) { \

5 VV PARAMS(e8); \

6 BODY; \

7 } else if (sew == e16) { \

8 VV PARAMS(e16); \

9 BODY; \

10 } else if (sew == e32) { \

11 VV PARAMS(e32); \

12 BODY; \

13 } else if (sew == e64) { \

14 VV PARAMS(e64); \

15 BODY; \

16 } \

17 VI LOOP END

The code referenced in Listing 4.14 describes the processing execution of the arithmetic add opera-

tion. In the RVV extension, this instruction needs to be antecedent by the actual Load instructions that

transfer the data to the vector source registers. In this case, the Load instructions are substituted by the

streams configured with the stream configuration instructions. Therefore, in terms of the RVV instruction

referenced, only the mechanism of iterating through the streams needs to be added. Listing 4.15 and

4.16 denote the Vadd Macro code with the modifications needed for streaming.

Listing 4.15: Vadd Modified Macro Code (Part 1)

1 #define VI VV LOOP(BODY) \

2 if(P.SU.rvv enabled){ \

3 ADD ITERATE LOAD STREAMS \

4 } \

5 VI CHECK SSS(true) \

6 VI LOOP BASE \

7 if (sew == e8) { \

8 VV PARAMS(e8); \

9 BODY; \

10 if(P.SU.rvv enabled){ \

11 ADD VALUE DEST STREAM \

12 } \

13 } else if (sew == e16) { \

14 VV PARAMS(e16); \

15 BODY; \
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16 if(P.SU.rvv enabled){ \

17 ADD VALUE DEST STREAM \

18 } \

Listing 4.16: Vadd Modified Macro Code (Part 2)

1 } else if (sew == e32) { \

2 VV PARAMS(e32); \

3 BODY; \

4 if(P.SU.rvv enabled){ \

5 ADD VALUE DEST STREAM \

6 } \

7 } else if (sew == e64) { \

8 VV PARAMS(e64); \

9 BODY; \

10 if(P.SU.rvv enabled){ \

11 ADD VALUE DEST STREAM \

12 } \

13 } \

14 VI LOOP END \

15 if(P.SU.rvv enabled) { \

16 ITERATE STORE STREAMS \

17 }

Referencing the previous code, it is important to mention that the streaming mechanisms are only

executed with the condition that in the Stream unit class, the cooperation with the RVV is enabled.

Examining the code, first in order to populate the source registers with the data, the correspondent

streams need to be iterated. This is done by executing the ”ADD ITERATE LOAD STREAMS” Macro,

which code is denoted in Listing 4.17

Listing 4.17: ADD ITERATE LOAD STREAMS Macro Code

1 #define ADD ITERATE LOAD STREAMS \

2 int vec len = P.VU.vl->read(); \

3 if(P.SU.stream type[rs1 num] == 1){ \

4 CHECK VECTOR DIM COUPLING(rs1 num) \

5 if(isVecDimCoupled){ \

6 EXECUTE ITERATE LOAD DIM STREAM(rs1 num) \

7 } \

8 else{ \

9 EXECUTE ITERATE LOAD STREAM(rs1 num) \

10 } \

11 EXECUTE RVV COOPERATION FILL V REGISTER(rs1 num); \

56



12 } \

13 if(P.SU.stream type[rs2 num] == 1){ \

14 CHECK VECTOR DIM COUPLING(rs2 num) \

15 if(isVecDimCoupled){ \

16 EXECUTE ITERATE LOAD DIM STREAM(rs2 num) \

17 } \

18 else{ \

19 EXECUTE ITERATE LOAD STREAM(rs2 num) \

20 } \

21 EXECUTE RVV COOPERATION FILL V REGISTER(rs2 num); \

22 }

Examining the code present in Listing 4.17, the ”vec len” variable is defined. This variable is set to

have the actual vector length defined by the RVV extension. This is the variable that will denote in each

iteration of the stream, how much data is going to be retrieved to the source registers. Next, the actual

iteration through the streams is executed by the ”EXECUTE ITERATE LOAD STREAM” Macro, which

is performed in both the source streams. A different case is present if Vector Couple Streaming is set, but

only the normal example will be demonstrated. Listing 4.18 denote the ”EXECUTE ITERATE LOAD STREAM”

Macro code.

Listing 4.18: EXECUTE ITERATE LOAD STREAM Macro Code

1 #define EXECUTE ITERATE LOAD STREAM(stream number) \

2 int total number elements = P.SU.streams[stream number].addresses.size(); \

3 for(int i = 0; i < vec len; i ++){ \

4 if(P.SU.streams[stream number].elements counter == 0) break; \

5 int addr idx = total number elements - P.SU.streams[stream number].elements counter; \

6 STREAM GET VALUE(addr idx,stream number); \

7 P.SU.streams[stream number].elements counter -= 1; \

8 }

Examining the code present in Listing 4.18, the total number of elements present in the stream

is counted. Next, depending on the ”vec len” variable, the corresponding number of elements will be

retrieved from the stream to the associated vector register. This is done by the ”STREAM GET VALUE”

Macro. Finally, the number of elements processed is discounted from the ”elements counter” variable,

which denotes the number of elements that are still to be processed in the stream.

Going back to the code present in Listing 4.15 and Listing 4.16, now that the source streams were

iterated, so that the vector source registers were populated with the corresponding data, the rest of

the code executing the actual add operation was not changed. The only addition is that by executing
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the ”ADD VALUE DEST STREAM” Macro, the add operation result is also saved to the stream struc-

ture. Finally, with the add operation result in the destination register, the destination stream needs

to be iterated to save the outputted results to the memory. This is done by executing the ”ITER-

ATE STORE STREAMS” Macro, which is the final Macro code and the last modification made to the

RVV ”Vadd” code.

Summing up, it was possible to integrate the defined stream-based extension with the RVV extension

by defining streams and letting the RVV processing instructions iterate through the defined streams to

retrieve and output the results.

4.4 Summary

This Chapter described the implementation of the defined stream-based extension on the Spike func-

tional Simulator. First, it was described how Spike was extended to simulate the streaming mechanisms.

Next, it was detailed the inclusion of the proposed set of instructions and their integration with the re-

maining RISC-V paradigm.
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5.1 Overview

This Chapter provides a comprehensive validation of the proposed RISC-V stream-based extension.

First, it is described the validation methodology, including the adopted toolchains. Then it is presented a

detailed breakdown and characterization of the set of benchmarks used in the validation steps. Finally,

the proposed extension is evaluated in terms of code efficiency in comparison with the standard RISC-V

scalar and vector extensions.

5.2 Methodology

As mentioned, in this section all the tools that helped in the development of this Thesis work will be

exposed. Moreover, it will be explained how they were used to achieve the pretended milestones. This

section will specifically tackle the Spike Simulator, the RISC-V Opcodes repository, the RISC-V Proxy

Kernel, the compiler with assembler support for stream approaches and a set of benchmarks that were

used in the validation of the proposed extension.

5.2.1 Spike Simulator

As already denoted throughout the presentation of this work, the Spike simulator was the principal

tool that led to the viability of this Thesis. Therefore, the Spike simulator does not need any further

presentations. Section 2.6 describes the vast study made during this work to fully understand how this

tool worked. Moreover, the whole Chapter 4 is focused on how the streaming mechanisms, denoted in

the stream-based extension, were simulated under the Spike simulator.

5.2.2 RISC-V Opcodes

The RISC-V Opcodes repository [49] not only holds all the standard RISC-V instructions opcodes but

also all the opcodes of the instructions present in the official RISC-V extensions. As already stated, the

Spike simulator does not hold the opcodes of the instructions itself. In fact, the RISC-V opcodes repos-

itory works alongside the Spike simulator providing the opcodes of the instructions supported in Spike.

In the Thesis work, this repository was of extreme importance since it was extended to accommodate

all the opcodes of the instructions present in the defined extension.

5.2.3 RISC-V Proxy Kernel

The RISC-V Proxy Kernel [50] is a lightweight application execution environment that can host statically-

linked RISC-V ELF binaries. Moreover, it mimics an Operating System’s Kernel and overviews and
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registers information of an execution of a given binary. In the Thesis work, this tool was essential to test

the extension’s instructions benchmarks that will be denoted later in this document. The benchmarks ran

did not simulate bare-metal executions because targeting these would be an extremely complex issue to

deal with in the available time frame. The Proxy Kernel itself didn’t need to understand the instructions

of the proposed extension as it relays their execution to the Spike simulator.

5.2.4 Compiler

At the start of the project, it was given access to resources built during the development of the Unlimited

Vector Extension (UVE) extension. One of these resources was a customized version of the LLVM com-

piler with assembler support for the UVE extension. The customized compiler is a version of the LLVM

compiler, that can assemble UVE instructions into the equivalent opcodes. This project cannot directly

generate UVE code from C source code and, instead, must translate from inline assembly instructions.

Due to the similarities between the UVE extension and the defined extension, this tool can be re-

purposed to compile the stream-based extension’s instructions as if they were UVE instructions, but

keeping the stream-based extension’s instructions execution behaviour. This compiler was modified to

provide assembler support for the defined stream-based extension. Therefore, the modified compiler

can translate from inline assembly instructions the defined extension’s instructions.

5.2.5 Benchmarks

Another of the resources provided by the UVE repository was a repository with several hand-made ker-

nels that used UVE for their implementation. The repository with the kernels is based on the Polybench

suite [51] and contains two versions of each benchmark: one with the original C source code and another

with the corresponding UVE version. The Polybench project is a benchmark suite with 30 algorithms

based on mathematical utilities to evaluate applications and their capabilities. Most of the provided algo-

rithms include complex memory access patterns that showcase the UVE’s potential. These benchmarks

were modified in order to respect the defined stream-based extension instructions and were of extreme

importance to validate the results that will be further explained in this document.

5.3 Results

In this section, all the results obtained during the work of this Thesis will be showcased. One of the major

milestones of this work was to define a stream-based extension and prove its functional behaviour by

adding it to the Spike Simulator. Another goal was to make sure that the defined extension’s streaming

mechanisms could cooperate with the RISC-V Vector (RVV) extension. Moreover, it was also wanted
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that the streaming mechanisms simulated could cooperate with the standard scalar RISC-V operations.

As so, this section will be divided into two major subsections. Subsection 5.3.1 will focus on the results

obtained in terms of implementation. It will demonstrate how it was acted to prove that the defined

extension was successfully defined and extended to the Spike Simulator. Moreover, in Subsection 5.3.2,

the focus is on showing, with relevant benchmark code examples, the improvements delivered by the

stream-based extension. A vast analysis will be done, discussing whether the extension’s mechanisms

are an asset in terms of performance delivery.

5.3.1 Implementation Results

Despite having the extension instructions code already in the Spike Simulator, a testing process was

needed to validate the proposed extension. The testing protocol denoted in figure 5.1 was adopted.

Figure 5.1: Testing Protocol used to validate the modified Spike with the defined Stream-based Extension.

This testing protocol is defined by sequentially performing the following steps:

• Implement a C code denoting a benchmark. The benchmark is executed with the use of the defined

stream-based extension’s instructions and the RVV’s instructions, the C code will be implemented

by using the ASM [52] mechanism that allows reading and writing of C variables using assembly

code.

• By using the modified version of the LLVM compiler that has assembly support for stream and

RVV instructions, compile the benchmark created, which will give the correspondent benchmark

executable.

• With the help of the RISC-V Proxy Kernel tool, execute the benchmark under the Spike simulator.

By doing so, the respective benchmark will be executed by the simulated functional model of the

proposed stream-based extension.

• Finally, check the outputted results by executing the benchmark with the stream-based instructions

and confirm if it corresponds to the expected results. If it is confirmed, it can be assumed that

the correspondent instructions used in the benchmark were successfully simulated in the Spike

environment.

It is important to note that, to test the stream instructions defined in Chapter 3, there is a need to

make use of the RVV or the standard scalar RISC-V processing instructions. The instructions defined
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in the proposed stream-based extension only configure and control the actual streams. To make use of

the configured streams, for example, the arithmetic instructions present in the RVV extension need to

be used, which will iterate through the load/store streams consuming their data. Therefore, the compiler

used also has assembler support for the RVV extension. In order to test that all the instructions present in

the defined stream-based extension were successfully added, the denoted testing process was repeated

to a lot of benchmarks. Table 5.1 denotes all the benchmarks that were tested, the correspondent

behaviour being tested, information about the benchmarks and if the expected results were able to be

obtained. The behaviour column denotes a brief explanation of what the correspondent benchmark

consists of. The information column gives more detailed information about the number of streams, the

maximum loop nesting and the type of memory access pattern present in the correspondent benchmark.

Table 5.1: Benchmarks Executed with the defined Stream-based Extension

Benchmarks Behaviour Information Spike Support

# streams Loop Nesting Mem Acc Pattern

SimpleStre-

amWordExe

Memory Copy to test the correct configuration

of simple single-dimension streams with Word

data width

2 1 1D ✓

SimpleStre-

amHalfExe

Memory Copy to test the correct configuration

of simple single-dimension streams with Half-

Word data width

2 1 1D ✓

SimpleStre-

amDouble-

Exe

Memory Copy to test the correct configura-

tion of simple single-dimension streams with

Double-Word data width

2 1 1D ✓

SimpleStrea-

mByteExe

Memory Copy to test the correct configuration

of simple single-dimension streams with Byte

data width

2 1 1D ✓

1DimStream-

StrideExe

Memory Copy to test the correct configuration

of single-dimension streams with stride differ-

ent than one

2 1 1D ✓

SignedAdd-

Exe

Signed addition to test the configuration and

iteration of single-dimension streams

3 1 1D ✓

FloatingPoint-

AddExe

Floating point addition to test the configuration

and iteration of single-dimension streams

3 1 1D ✓

2DimStream-

Exe

Memory Copy to test the correct configuration

of simple 2-Dimensional streams

2 2 2D ✓

Continued on the next page
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Continuation

Benchmarks Behaviour Information Spike Support

# streams Loop Nesting Mem Acc Pattern

2DimStream-

RectScatter-

Exe

Memory Copy to test the correct configuration

of 2-Dimensional streams denoting the com-

plex Rectangular-Scattered Pattern

2 2 2D ✓

3DimStream-

Exe

Memory Copy to test the correct configuration

of 3-Dimensional streams

2 3 3D ✓

SimpleDim-

CoupleExe

Inner loop processing with outer loop memory

access to test Vector-Coupled Streaming

2 2 2D ✓

LowerTrian-

gularExe

Memory Copy to test the correct configuration

of modifiers denoting the complex Lower Tri-

angular Pattern

2 2 2D + MOD ✓

ComplexDim-

CoupleExe

Inner loop processing with outer loop memory

access in conjunction with Lower Triangular

access pattern to test Vector-Coupled Stream-

ing with modifier

2 2 2D + MOD ✓

3mm 3 Matrix Multiplications using streams 3 3 4D ✓

covariance Covariance Computation using streams 7 3 4D + MOD ✓

jacobi-1d 1-D Jacobi stencil computation using streams 4 1 1D ✓

jacobi-2d 2-D Jacobi stencil computation using streams 6 2 2D ✓

gemm Matrix-multiply C=alpha.A.B+beta.C using

streams

4 2 4D ✓

gemver Vector Multiplication and Matrix Addition using

streams

16 2 2D ✓

mvt Matrix Vector Product and Transpose using

streams

8 2 2D ✓

saxpy Single Precision A times X plus Y using

streams

3 1 1D ✓

seidel-2d 2-D Seidel stencil computation using streams 10 2 2D ✓

trisolv Triangular solver using streams 5 2 2D + MOD ✓

5.3.2 Benchmark Results

Spike is deterministic in its executions, meaning that either the code is successfully executed and the

outputted results match the expected, or the code is unsuccessfully executed and the final results do
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not match the expected. This characteristic was rather useful in the previous subsection to prove that

the defined stream-based extension was successfully extended on the Spike Simulator. However, to test

the actual performance enhancements brought by the defined stream-based extension, Spike does not

give enough details to work around. As so, the only inherent way to prove the improvements in using the

defined extension is to analyse the reduction of instructions needed to execute certain benchmarks. As

mentioned, the goal of the defined extension is to increase performance in memory access, by reducing

the processor’s workload associated with memory addressing/indexing. Therefore, a simple analysis of

the number of instructions needed to attain the total number of memory addressing/indexing actions in

a respective benchmark already provides enough conclusions to measure performance enhancement.

Based on what was stated, a decent amount of benchmarks were analysed to count the number

of executed instructions needed with and without the use of the defined stream-based extension. As

so, two benchmark analyses will be denoted. In the first analysis, the number of instructions needed

to execute the Memory Copy benchmark will be compared between using only the RVV extension and

using the RVV extension plus the defined steam-based extension. In the second analysis, the number

of instructions needed to execute the Memory Copy benchmark will be compared between using only

the scalar RISC-V instructions and using the scalar RISC-V instructions plus the defined steam-based

extension.

Starting by the first analysis, Listing 5.1 and Listing 5.2 respectively denote the Memory Copy kernel

using only the RVV extension and the Memory Copy kernel using the RVV extension and the stream-

based extension.

Listing 5.1: Memory Copy Kernel with RVV

1 asm volatile (

2 "mv %[dest], %[result]\n"

3 "loop:\n"

4 "vsetvli t0, %[n], e8, m1, ta, ma\n"

5 "vle8.v v0, (%[src])\n"

6 "add %[src], %[src], t0\n"

7 "sub %[n], %[n], t0\n"

8 "vse8.v v0, (%[dest])\n"

9 "add %[dest], %[dest], t0\n"

10 "bnez %[n], loop\n"

11

12 :: [result] "=r" (result),

13 [src] "+r" (src), [dest] "+r" (dest),

14 [n] "+r" (n)

15 );

Listing 5.2: Memory Copy Kernel with RVV and the

stream-based extension

1 asm volatile(

2 "li s10, 8 \t\n "

3 "scrt.ld.b v1, %[src], %[sn], %[one] \t\n"

4 "scrt.st.b v30, %[dest], %[sn], %[one] \t\n"

5

6 :: [src]"r"(src), [dest]"r"(dest),

7 [sn]"r"(n), [one]"r"(1)

8 );

9 asm volatile(

10 "loop: \t\n"

11 "vsetvli t0, s10, e8, m1, ta, ma \t\n "

12 "vmv.v.v v30, v1 \t\n"

13 "sb.nc v1, loop \n\t"

14 );
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Comparing both kernels, while in Listing 5.1 the memory accesses are done inside the loop by

executing the load and store instructions, in Listing 5.2 the memory accesses are pre-configured by the

use of the stream-based extension before the loop. Imagine that the vector length used is 8 and that

the number of elements to be copied is 64. To copy all elements from the source to the destination, in

both kernels the loop needs to be executed 8 times. Since in Listing 5.1, the loop has 7 instructions

including the branch, the total number of instructions needed to execute the code would be 1 + 8× 7 =

57. On the other hand, in Listing 5.2, the loop has 3 instructions including the branch, so the total

number of instructions would be 3 + 8 × 3 = 27. From this simple made-up example, the enhancement

delivered by the defined stream-based in terms of executed instructions is already being highlighted.

Figure 5.2 denotes the real number of instructions executed in Spike when executing two of the studied

benchmarks. In this case, the numbers show the difference between executing the benchmarks using

only the RVV extension and using the RVV extension plus the defined stream-based extension. The

numbers represented make reference to an execution where the vector length was 8 and the number of

elements to be processed was 256.

Figure 5.2: RVV versus RVV + Stream.

Comparing the numbers presented in Figure 5.2, the efficiency delivered in terms of the number

of executed instructions from using the defined stream-based extension in conjunction with the RVV

extension is clearly highlighted.

Moving on to the second analysis, Listing 5.3 and Listing 5.4 respectively denote the Memory Copy

kernel using only scalar RISC-V instructions and the Memory Copy kernel using scalar RISC-V instruc-

tions and the stream-based extension.
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Listing 5.3: Memory Copy Kernel with scalar RISC-V in-

structions

1 asm volatile (

2 "1:\n"

3 "lb %[a0], 0(%[src])\n"

4 "sb %[a0], 0(%[dest])\n"

5 "addi %[src], %[src], 1\n"

6 "addi %[dest], %[dest], 1\n"

7 "addi %[n], %[n], -1\n"

8 "bnez %[n], 1b\n"

9 :: [n] "+r" (n), [src] "+r" (src),

10 [dest] "+r" (dest)

11 );

Listing 5.4: Memory Copy Kernel with scalar RISC-V in-

structions and the stream-based extension

1 asm volatile(

2 "scrt.ld.b a1, %[src], %[sn], %[one] \t\n"

3 "scrt.st.b a30, %[dest], %[sn], %[one] \t\n"

4

5 :: [src]"r"(src), [dest]"r"(dest),

6 [sn]"r"(n), [one]"r"(1)

7 );

8 asm volatile(

9 "loop: \t\n"

10 "mv a30, a1 \t\n"

11 "sb.nc a1, loop \n\t"

12 );

Comparing both kernels, once again, while in Listing 5.3 the memory accesses are done inside the

loop by executing the load and store instructions, in Listing 5.4 the memory accesses are pre-configured

by the use of the stream-based extension before the loop. Imagine that the number of elements to be

copied is 64. To copy all elements from the source to the destination, in both kernels the loop needs

to be executed 64 times. Since in Listing 5.3, the loop has 6 instructions including the branch, the

total number of instructions needed to execute the code would be 64 × 6 = 384. On the other hand, in

Listing 5.4, the loop has 2 instructions including the branch, so the total number of instructions would

be 2 + 64 × 2 = 130. Once more, from this simple made-up example, the enhancement delivered by

the defined stream-based in terms of executed instructions is denoted. Figure 5.3 denotes the real

number of instructions executed in Spike when executing two of the studied benchmarks. In this case,

the numbers show the difference between executing the benchmarks using only the scalar RISC-V

instructions and using the scalar RISC-V instructions plus the defined stream-based extension. The

numbers represented make reference to an execution where the number of elements to be processed

was 64.

Comparing the numbers presented in Figure 5.3, the efficiency delivered in terms of the number

of executed instructions from using the defined stream-based extension in conjunction with the scalar

RISC-V instructions is clearly highlighted.
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Figure 5.3: Scalar versus Scalar + Stream.

Regarding the examples referenced so far, it is obvious that the defined stream-based extension

delivers a real enhancement in terms of code efficiency, as the number of executed instructions in a

correspondent benchmark is significantly reduced by the use of the defined extension. Moreover, it is

also stated that with the increase in the number of elements to be processed, the delivered enhance-

ment also increases. This statement is based on the fact that by using the stream-based extension,

the instructions associated with memory addressing/indexing are successfully removed from the loop

processing code.
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6.1 Conclusions

Recently, the number of data streaming techniques implemented into general-purpose processors has

increased considerably [5, 19]. This is due to the fact that the performance of memory devices has not

improved at the same rate as that of processors, leading to an increase in the gap between Central

Processing Unit (CPU) and memory speeds. Recent works show that data streaming applied to a

processor memory structure improves memory access performance, both in latency and bandwidth.

Moreover, streaming is an excellent opportunity to decouple the memory access procedures from the

computational operations.

This work defines a new stream-based extension, whose goal is to increase performance in memory

access. This extension counts with a set of specialized stream configuration and manipulation instruc-

tions. By decoupling the memory access from the core processing, the defined stream-based extension

can remove the instructions associated with control and memory indexation.

Additionally, on the computational side, Single-Instruction-Multiple-Data (SIMD) extensions are be-

coming predominant in general-purpose processors [1,10–12]. This is due to the proliferation of certain

application domains, such as deep learning and artificial intelligence, with increasing computational per-

formance demands, leaning on the need to further exploit Data-Level Parallelism (DLP). Furthermore,

with the emergence of Vector-Length Agnostic (VLA) SIMD extensions [2,3], each processor implemen-

tation can be tuned to achieve any desired SIMD behaviour. One example of these extensions is the

recent RISC-V Vector (RVV) extension developed by the RISC-V organization.

The proposed stream-based extension is integrated with the subsets of the RISC-V Instruction Set

Architecture (ISA), which means it can interact and interoperate with the RVV extension. By doing so,

it is possible to combine the performance enhancement delivered by RVV, adding a way to decrease

the memory access latency by using the defined stream-based extension. Furthermore, the defined

stream-based extension can also cooperate with the scalar RISC-V instructions.

Attached with the RISC-V paradigm, Spike is a RISC-V ISA simulator, which implements a functional

model of one or more RISC-V harts. Despite being recognized as the golden reference ISA simulator by

RISC-V, Spike still does not support any extension that accommodates streaming techniques.

This work extended Spike with the defined stream-based extension. By doing so, the functional

behaviour of the defined extension was validated.
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6.2 Future Work

The defined stream-based extension and the correspondent extended support on the Spike simulator

can already be used in the future to enhance certain applications’ performance. However, due to the

time constraints of the developed work, there were still some possible improvements that were not

implemented and are kept for future work. Therefore, further improvements that can be developed into

the base of the developed work are:

• To further improve the proposed stream-based extension, it is important to further tune essential

characteristics such as the number of configurable descriptors and the available descriptors.

• To make the defined stream-based extension more reliable, it is important to create full compilation

support for the extension.

• In the extended Spike Simulator, there were still a few instructions present in the defined extension

that were not supported. One example is the support for the dynamic modifier descriptor. It is

important to further extend Spike with such modifications to have a fully functional model of the

defined extension.

• Spike is a deterministic tool, which does not provide enough details to measure the full enhance-

ments delivery by the defined extension. It is important to further extend the defined extension in

other simulation tools.
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