
Highlights
Assessment of Performance and its Scalability in Microservice Architectures: Systematic Litera-
ture Review
Helena Rodrigues,António Rito Silva,Alberto Avritzer

• The paper answers the following research question: How does current research on microservice architectures,
performance, and scalability address the architectural dimensions used in end-to-end scalability assessment?

• We performed a systematic literature review on the performance and scalability assessment of microservice
architectures, where we screened 801 studies to select 29 primary studies that were used to provide an overview of
the state of the art.

• We introduced a systematic framework for the analysis of performance and scalability assessment methodologies, and
analyzed the 29 primary studies according to this analysis framework.

• We conclude that current research mainly focuses on some of the dimensions of the microservice architecture, namely
the aspects associated with deployment architectures. In addition, it is difficult to compare the different studies because
they address different aspects of the dimensions.

• We report a set of open research trends to guide researchers in the area of microservice-based software architecture
quality assessment.

Assessment of Performance and its Scalability in Microservice
Architectures: Systematic Literature Review
Helena Rodriguesa,∗, António Rito Silvab and Alberto Avritzerc

aCentro Algoritmi/LASI, University of Minho, Campus de Azurém, Av. da Universidade, Guimarães, 4800-058, Portugal
bINESC-ID, Instituto Superior Técnico, University of Lisbon, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
ceSulabSolutions, Inc., Princeton, USA

A R T I C L E I N F O
Keywords:
Microservice Architecture
Performance
Scalability
Quality Assessment
Systematic Literature Review

A B S T R A C T
The microservice architecture structures an application as a collection of small autonomous services,
enhancing development practices and maintainability. It impacts system performance and scalability,
which are influenced by the architectural design, the system deployment, and usage. In this paper, we
present a systematic literature review (SLR) on the assessment of performance and scalability in the
microservice architecture, aiming to identify research gaps and assess the current state of knowledge.
The review protocol screened 801 studies, selecting 29 primary studies for detailed analysis. We
perform comparisons of studies and try to identify the main gaps in current research and suggest
areas for further investigation. The main conclusion is that the current research partially addresses
the dimensions associated with the performance and scalability qualities of microservice systems. In
particular, there is a lack of comparative studies of architectural patterns and styles or comparable
assessment models and methods. Therefore, a systematic approach is lacking and the paper reports a
set of open research trends to guide researchers in the area of microservice-based software architecture
quality assessment.

1. Introduction
Microservice architecture is an architectural style that

structures an application as a collection of small autonomous
services, modeled around a business domain [1, 2, 3].
Each service can be developed independently using a cross-
functional approach, and its modular structure can lead to
better development practices and software that is easier to
understand and maintain.

The architecture of microservices has an impact on the
overall performance of the system and its scalability [4].
In particular, a survey reviewed existing research that com-
pares the performance of monolithic systems to their mi-
croservice architecture equivalents [5], concluding that it
is a multifaceted issue influenced by various factors, such
as architectural design and implementation or operational
profiles. However, this survey focused only on the impacts
of migration to microservice architectures, not performing
an extensive analysis of current research on performance and
scalability assessment in microservice architectures.

Scalability can be characterized as architectural structure
scalability or system load scalability. A system architecture
is considered structurally scalable if its architecture design
does not restrict the number of objects it can hold simul-
taneously (e.g., connections, transactions, or users) [6]. In
contrast, a system is considered load scalable if it is able to
satisfy performance requirements when the offered load is
increased [7]. Offered load can be presented to the system by
active connections, transactions, or users. In addition, elastic
scaling is proposed to increase the architecture structure in
response to an increase in load [8].

∗Corresponding author
helena@dsi.uminho.pt (H. Rodrigues);

rito.silva@tecnico.ulisboa.pt (A. Rito Silva); beto@esulabsolutions.com
(A. Avritzer)

ORCID(s): 0000-0002-8978-8804 (H. Rodrigues); 0000-0001-9840-457X
(A. Rito Silva); 0000-0002-9401-9663 (A. Avritzer)

A performance and scalability end-to-end assessment ap-
proach of microservice architectures consists of the follow-
ing activities: (1) the definition of the service-level objective;
(2) the operational profile definition of load types and their
probability of occurrence; (3) the evaluation of microservice
architecture alternatives; and (4) the identification of the
architecture microservice resources activated in the perfor-
mance and scalability assessment.

Due to the diversity and complexity of these activities, in
this paper, we present a systematic literature review (SLR)
on the assessment of performance and its scalability in
microservice architectures.

The aim of this study is to analyze if the current literature
addresses the impact the microservice architecture has on
system performance and scalability. This is particularly rel-
evant, as the cost and complexity associated with microser-
vice architecture have been reported to be prohibitive, and
some organizations are backtracking and implementing the
system again as a monolith [9]. This research question is
further refined in Section 3, where we describe the literature
review methodology. To our knowledge, there are no other
systematic reviews published in the literature that focus on
the aspects researched in this paper.

This systematic literature review has been carried out
according to a review protocol adapted from [10]. The scope
of the review includes the published literature from 2014 to
the beginning of 2024. We have screened 801 studies and
29 of them were selected as primary studies that we used to
address our research questions.

The key contributions of this paper are:
1. We performed a systematic literature review on the

performance and scalability assessment of microser-
vice architectures, where we screened 801 studies to
select 29 primary studies that were used to provide
an overview of the state of the art. The methodology
used in this systematic literature review is presented in
Section 3;

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 1 of 20

Performance and Scalability Qualities on Microservice Architectures

Component

MicroserviceMiddlewareElement

Extends

Computing
Infrastructure

APIGateway Caches

Extends

ServiceDiscovery

Virtual
Machine

Bare
Machine

Container

Integrates with

1 1

1..n

1..n

1 1..n

LoadBalancer

Connector

Asynchronous
Messaging
Connector

Database
Connector

Synchronous
Communication

Connector

1

1..n

is deployed to

1 1..n

Communicates with other
components using

Extends

Database

Microservice
Application

Extends

Figure 1: Microservice Architecture Architectural Elements

2. We introduced a systematic framework for the analy-
sis of performance and scalability assessment method-
ologies, which is presented in Section 2, and ana-
lyzed the 29 primary studies according to this analysis
framework. The results of this analysis are presented
in Section 4;

3. We conclude that current studies are incomplete, in
terms of the dimensions addressed, incomparable, in
terms of how they realize each one of the dimensions,
and, therefore, we have identified a set of open trends
on the assessment process of the performance and
scalability qualities in the microservice architecture,
which are presented in Subsection 4.4.

The paper is structured as follows. In Section 2, we pro-
vide a detailed definition, with motivating examples, of the
performance and scalability qualities analysis framework for
the assessment of microservice architectures. The Analysis
Framework is detailed in Subsection 2.1 with a reference
model of the microservice architectural elements, and in
Subsection 2.2 with the framework for the assessment of
microservice architecture performance and scalability. Then,
in Section 3, we present the literature review methodology,
including the review protocol, the statement of the research
objectives and questions (Subsection 3.1), the study selection
(Subsection 3.2), the data extraction (Subsection 3.3), and
the data synthesis (Subsection 3.4) procedures. The software
architecture analysis of the identified studies is performed
in Subsection 4.1, and the architecture quality assessment is
done in Section 4.2. Sections 4.3 and 4.4 follow this analysis
with a discussion of the results. Section 5 presents the identi-
fied threats to validity. Section 6 contains an overview of the
related work on systematic literature review on microservice
architectures. Finally, Section 7 contains our conclusions and
guidance for future research.

2. Analysis Framework
In this paper, we focus on the dynamic aspects of mi-

croservice architectures performance and its scalability as-
sessment methodologies. Following this objective, we first
propose a conceptual framework to formally address these
aspects and frame our analysis of selected primary studies.
Therefore, this section is divided into two parts: 1) the
microservice architectural designs (Section 2.1) and 2) the
architecture quality assessment methodology (Section 2.2).
2.1. Microservice Architectural Designs

The process of adopting a microservice-based architec-
ture is complex and influenced by numerous factors, such
as microservices patterns, deployment and infrastructural
patterns, microservices size, cohesion and decoupling, tech-
nical decisions, and consumer-driven contracts [1, 2, 3]. In
this paper, we focus on the qualities of performance and
scalability in microservice-based software architectures. To
do so, we first introduce a reference model. This model will
be the basis for our discussion of open issues concerning
the impact of each of the elements of the reference model
on the mentioned qualities. In addition, it will allow us to
identify the extent to which each of the case studies analyzed
addresses the different architectural aspects of microservice
architecture.

Taking into account our focus on the dynamic aspects
of microservice architecture, Figure 1 presents the architec-
tural elements of the component-and-connector viewtype in
microservice architectural views [11], which can influence
the performance and scalability attributes.

In a component-and-connector view, the microservice
system consists of components bound through connectors.
The reference model considers 3 types of components: Mi-
croservice, Database and Middleware. The Middleware can
correspond to Service Discovery, API Gateway, Load Bal-
ancer, and Caches. The components are bound through

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 2 of 20

Performance and Scalability Qualities on Microservice Architectures

connectors: Database connector, Asynchronous Messaging
connector, and Synchronous Communication connector.

Relevant for the analysis of the performance and scala-
bility of the microservice architecture is how it is deployed in
the communication and computing infrastructure. Therefore,
it is important to describe the mapping between the com-
ponents and connectors and the hardware of the computing
platform on which the software is executed. The reference
model also considers how components are deployed in Bare
Machines, Virtual Machines, and Containers, which is an-
other aspect that has a significant impact on the overall
performance and scalability of microservice systems.

However, these architectural elements are applied using
microservice patterns [12, 13], which combine them to pro-
vide the architectural properties required by microservice
systems. In [14], different features that these patterns provide
are identified. The following are relevant for the qualities of
performance and scalability:

• Data Management and Consistency: Either the mi-
croservices share the database or there is a database
per microservice. Correspond to the relations between
Microservice and Database components in Figure 1
using the Database connector.
When microservices have a Shared Database there
are no data consistency issues because their changes
are atomic, but if there is a Database per Service, data
inconsistency can occur in the presence of distributed
transactions. To cope with this situation, either a Two
Phase Commit Protocol is followed, which supports
ACID transactional behavior but does not scale as
explained by the CAP theorem [15], or a Saga ap-
proach is followed, which supports eventual consis-
tency through the orchestration, or choreography, of
several local transactions that can rollback using com-
pensating transactions [16, 13].
When the Database per Service is followed, it is
also necessary to manage the consistency of the query
results, when the two phase commit protocol is not
followed, because they are split between different mi-
croservices which may not be consistent. This can be
addressed using patterns such as API Composition,
which consolidates the outputs of various microser-
vice queries, or Command Query Responsibility
Segregation (CQRS), which uses database replicas
tailored for specific query types [13]. These two pat-
terns are reported to have significant variations in
terms of performance [13]. In fact, there is a quality
trade-off between consistency and performance.

• Communication Style: Corresponds to the different
styles and patterns that can be used in the communica-
tion between microservices and outside microservices.
Communication Between Microservices: It is im-
plemented by the Synchronous Communication con-
nector and the Asynchronous Messaging connector
in Figure 1. Synchronous Communication describes
a microservice interaction where both microservices
should be alive during the interaction, and the caller
blocks waiting for the response from the callee. In
Asynchronous Messaging the caller and the callee
execute independently and the messages are stored
in a messaging broker that is responsible to ensure

communication reliability on microservices crashes.
Communication Outside Microservices patterns de-
scribe whether there is Direct Client to Microservice,
where the client has a direct access to the microser-
vice, or there is an API Gateway that intermedi-
ates the communication between clients and microser-
vices, providing common services, like authorization.
It corresponds to one of the middleware components
in Figure 1.

• Service Orchestration: Describes the dynamic be-
havior of the microservices associated with their co-
ordination.
The Deployment of microservices can follow differ-
ent strategies, as illustrated in the computing infras-
tructure in Figure 1: Bare Machine Based; Virtual
Machine Based; and Container Based.
There are also microservice coordination strategies to
react to changes in demand: Horizontal, where more
microservice instances are added; and Vertical, where
the capacity of the environment where the microser-
vice is executed increases.
Finally, Load Balancing, which redirects requests to
microservice instances of the same microservice type,
and Service Discovery, which hides the location of
a microservice from its client, are used to decouple
microservices and support autoscaling.

Both, the software architecture elements variations, and
the features that organize those elements to provide quality to
the solution, will be used in evaluation of the selected studies.

Note that some of these distinctions or separations are
a bit blurred, due to the extensive use of development and
deployment frameworks. For instance, if Spring Cloud1 is
used, an API Gateway is considered by default, and if Kuber-
netes2 is used it is difficult to separate load balancing from
service discovery. However, the studies analyzed consider
these distinctions and so we decided to include them in the
analysis framework.
2.2. Architecture Quality Assessment

In this section, we describe the architecture quality as-
sessment framework, whose domains and dimensions frame
our analysis of selected primary studies and provide to the
readers insightful data for the discussion of how microser-
vice architectures, and which architectural alternatives, im-
pact applications performance and scalability qualities. That
is, system scalability evaluation under several load levels
and system performance evaluation and improvement for the
expected production load level. The quality reference model
considers the following domains(adapted from [17]):

1. the definition of the service level objective;
2. the operational profile definition of load types;
3. the quality assessment approach;
4. the test target.
In the following, we provide an example of the method-

ology for each of these assessment domains.
The service level objective defines how the results are

evaluated. The definition of a performance metric objective
1https://spring.io/projects/spring-cloud
2https://kubernetes.io/

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 3 of 20

https://spring.io/projects/spring-cloud
https://kubernetes.io/

Performance and Scalability Qualities on Microservice Architectures

is often expressed as a latency, throughput, or CPU thresh-
old [18]. For example, in [18] the performance requirement
threshold Γ is expressed as Γ = 𝜇 +3× 𝜎, where 𝜇 is the re-
sponse time measurement and 𝜎 is the standard deviation, for
a low load level measurement. The performance requirement
condition 𝑅𝑇 is expressed as 𝑅𝑇 < Γ. On the other hand,
the definition of a scalability service level objective is often
translated into a scalability requirement as described in [19,
20, 7]. An example of a scalability requirement is the formal
specification of the performance non-scalability likelihood
(PNL) metric [7]. It considers the system’s state probabilities
for which the performance requirement is not met. The PNL
metric can be used to support system scalability assessment
as a function of offered load using an analytical performance
model as shown in [7], or using load testing results from the
system under test as described in [17].

The operational profile definition consists of estimat-
ing the probability of occurrence of each load level for a
certain workload (e.g., number of transactions, number of
simultaneous users, number of database connections) under
study. An workload is also defined by the type of request that
may significantly impact the performance of a microservices
architecture. Therefore, it is also important to distinguish be-
tween requests that result in accesses to the database (create,
read, update, and delete) or whether they are computationally
intensive. The operational profile is used to answer two
questions: (i) How do we identify the workload situations
to test? (ii) How representative are the selected tests with
respect to production usage? [17].

The quality assessment approach is supported by sys-
tem performance measurements under varying load lev-
els [17, 19]. For an automated assessment, each microser-
vice scalability requirement is also defined. The scalability
requirement is formulated using load testing results, for each
microservice, for a defined low load level. Using the formally
defined scalability requirement, pass/fail results can be au-
tomatically obtained for every microservice activated in the
load test, and for each load level in the input domain. It can
vary from a simple comparison to the performance require-
ment threshold [17] to more sophisticated approaches. For
example, in [21], the methodology generates a list of pairs
of satisfied/unsatisfied workload intensities/architecture con-
figurations.

The test target can be the system source code itself or
a model of it. The latter allows for a more abstract approach
and a possible generalization of the results. Some examples
of the use of system models for test targets are reported in
the literature, such as, for example, the learned performance
model [21], log model based on runtime information [22],
and queueing network modeling [23].

The main difference between performance and scalabil-
ity assessment is that the performance assessment can be im-
plemented with a more detailed and richer set of workloads
than the scalability assessment, because the performance
assessment is executed at the expected production load level
to validate a defined service level agreement. In contrast,
scalability assessment is executed for a range of load levels
and at a higher-level of abstraction.

3. Literature Survey Methodology
Having the background and rationale defined in Sec-

tion 1, we must define the systematic literature review (SLR)
protocol. A SLR protocol specifies the methods that will be
used to perform a specific systematic review. Our review
protocol includes the following stages, which were defined
in [10]:

• The definition of research questions to be addressed;
• The definition of search and selection processes: the

strategy that will be used to search for primary studies
including search terms and resources to be searched;

• The definition of the study selection criteria and the
evaluation of quality assessment scores: the protocol
should describe how the selection criteria will be
applied;

• Development of data extraction strategy: how the in-
formation required from each primary study will be
obtained.

• Definition of data synthesis phase: defines the synthe-
sis strategy.

3.1. Objective and research questions
The objective of this study is to summarize the state of

the art in the assessment of scalability and performance of
microservice architectures. In the context of this objective,
the initial research question can be divided into the following
two research questions:
Q1 What are the microservice architecture architectural ele-

ments, and respective variations, considered in the as-
sessment of the performance and scalability qualities
of microservice architectures?

Q2 Which are the service level objectives, operational pro-
file definition, quality assessment approaches, test tar-
gets, and respective variations, used in the assessment
of the performance and scalability qualities of mi-
croservice architectures?

3.2. Search, selection and quality assessment
In the study selection process, the objective is to generate

a search strategy and select the relevant primary studies.
Considerable work has been published on how to design
a rigorous search strategy that maximizes the collection of
relevant studies. In particular, the work in [24] points out the
need for search strategies that optimize the retrieval of rele-
vant articles from digital libraries and electronic databases. It
proposes a systematic approach to search in order to improve
the rigor of search processes in SLRs, which consists of five
steps.

In the first step, we have chosen the venues where high-
quality studies are published to conduct a manual search.
In addition, these venues are also used in electronic search
databases to later perform the automated search. The venues
are listed in Table 1. To support automated search, we used
Scopus. This is a comprehensive database of scholarly litera-
ture that is recognized as suitable for a variety of tasks, from
journal and literature selection to large-scale bibliometric
analysis [25]. It also overlaps heavily with the other major

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 4 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 1
High-quality venues.

IEEE Transactions on Software Engineering
IEEE Transactions on Cloud Computing
Empirical Software Engineering
Journal of Systems Architecture
ACM Transactions on Software Engineering and Methodology
Journal of Systems and Software
Software: Practice and Experience
Information and Software Technology
International Conference on Software Engineering (ICSE)
European Software Engineering Conference (ESEC)
International Conference on Software Architectures (ICSA)
European Conference on Software Architectures (ECSA)
International Symposium on Empirical Software Engineering and Measurement (ESEM)
Measurement and Modeling of Computer Systems (SIGMETRICS)
Automated Software Engineering Conference (ASE)
IEEE International Conference on Software Maintenance and Evolution (ICSME)
International Conference on Evaluation and Assessment in Software Engineering (EASE)
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)
International Symposium on Empirical Software Engineering (ISESE)
ACM/SPEC International Conference on Performance Engineering
IEEE International Conference on Software Services Engineering (IEEE SSE)

Table 2
Inclusion/Exclusion criteria.

Criteria type (Inclusion/Exclusion) ID Description

IC1 Title or abstract or keywords include key terms
IC2 The abstract of the study indicates that the study is about microservices’ architecture

Inclusion (IC) IC3 The study addresses scalability or performance assessment
IC4 The study discusses the impact of architecture decisions on the evaluation metrics
IC5 The study is written in the English language
IC6 The study is published in Q1/Q2 journals or CORE A/B conferences
IC7 The study does assess the scalability or performance of microservice architectural or deployment alternatives

EC1 Studies that do not explicitly relate to or discuss microservices
EC2 Studies which main objective is not to assess scalability or performance of microservice architectural

or deployment alternatives (ex: benchmark generators, placement algorithms, etc)
Exclusion (EC) EC3 Studies that discuss a specific application domain

EC3 Documents which are conference proceedings, books, book chapters, or surveys.
EC4 Studies with equivalent authors and that present equivalent results
EC5 Studies where the full text is not available

bibliography indexing databases, including Web of Science
(WoS) [26].

In the second step, we have performed a manual search
in the selected venues before the search query is defined. The
outcomes (primary studies) of the manual search create a
Quasi-gold standard (QGS), which is subsequently utilized
to derive the search strings for the automated search [24].
We analyzed the period between 2014 and the beginning of
2024.

The manual search was conducted by screening all ar-
ticles published in the selected publication venues during
the defined time frame. The title-abstract-keywords fields of
each primary study were analyzed to identify those studies
that could provide evidence about our research questions.
Studies that mentioned the term microservices were selected
and then further analyzed (this means that the complete
text was analyzed) for the application of inclusion (IC) and
exclusion criteria (EC).

IC and EC were defined during the protocol definition,
prior to manual and automated search execution. The inclu-
sion (IC) and exclusion criteria (EC) that we have defined are
listed in Table 2.

The manual search on specific venues resulted in 37
selected studies. Then, 23 studies were eliminated because
they did not address our research questions or meet the
inclusion criteria. As a result, 14 primary studies are selected
to analyze and produce the search query strings.

The third step consists of the definition of search strings.
We used a subjective search string definition [24]. We have
defined a complex search string to perform an automated
search. The keywords have been selected according to the
research questions we want to address, researchers domain
knowledge and past experiences, combined with elicitation
of the recommended search terms and phrases extracted from
title-abstract-keywords from relevant studies on the QGS
(list of papers retrieved from manual search, in the second
step). The resulting search strings are presented in Table 3.

The fourth step consists of conducting the automated
search. The selected digital library, Scopus, is searched using
the proposed search string. Due to overlapping between dig-
ital sources, duplicate papers retrieved from manual search
and Scopus database search are identified and removed in
this step.

Based on the selected keywords, 801 unique papers are
identified using the automatic database search method. Then

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 5 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 3
Search strings.

(((TITLE-ABS-KEY ("software architecture") OR TITLE-ABS-KEY ("microservice* architecture*") OR TITLE-ABS-KEY ("microservice-based
architecture*") OR TITLE-ABS-KEY ("microservice* pattern*") OR TITLE-ABS-KEY ("deployment architecture") OR TITLE-ABS-KEY ("architecture
deployment") OR TITLE-ABS-KEY ("microservice* system*") OR TITLE-ABS-KEY ("microservice-based system*")) AND (TITLE-ABS-KEY (
microservice*) OR TITLE-ABS-KEY (microservice*)) AND (TITLE-ABS-KEY (assess*) OR TITLE-ABS-KEY (test*) OR TITLE-ABS-KEY (evaluati*
) OR TITLE-ABS-KEY (benchmark*) OR TITLE-ABS-KEY (model*) OR TITLE-ABS-KEY (metrics) OR TITLE-ABS-KEY ("operational profile") OR
TITLE-ABS-KEY (workload)) AND (TITLE-ABS-KEY (performance) OR TITLE-ABS-KEY (scalab*))) AND PUBYEAR > 2013)

Table 4
Quality checklist for primary studies.

Quality metric (question) Description

Q1 Are the dimensions used in the study likely to be valid and reliable?
Q2 Is the research process documented adequately?
Q3 Are all the study questions answered?

11 papers are eliminated because they match the manually
selected papers. As a result, 15 primary studies are selected
by applying the inclusion and exclusion criteria in table 2 to
the 790 studies obtained with the automated search, resulting
in a total of 29 primary studies.

During this phase, we have also performed a quality
check adapted from the quality assessment process in [10].
Primary studies were also evaluated according to the quality
checklist presented in Table 4. In this way, we have also
eliminated studies that do not present sound results as a
whole (if they are too short or use toy examples).

The complete study selection process is represented in
Figure 2 and the selected studies are presented in tables 5
and 6.

In the fifth and final step, search performance is evaluated
against QGS to ensure automated search quality. As pro-
posed in [24], we use the quasi-gold standard (from manually
selected venues) to measure a quasi-sensitivity value. We
calculated the number of relevant papers retrieved from the
selected venues (Step 1) through automated search (Step 4).
This number must not be greater than the number of papers
identified in Step 2. The corresponding ‘quasi-sensitivity’ is
calculated by dividing this number by the QGS pool size.
Figure 3 illustrates the result composition of the initial and
final searches and the contributions of the manual search
(QGS) and the automated search. The ‘quasi-sensitivity’
value of our search strategy is 80% (11/14), which is consid-
ered acceptable [24], and the results of the automated search
can be merged with QGS, and the search process is ended.
3.3. Data extraction

We read the full text of the primary studies selected for
data collection. In our work, we specify different dimensions
that address our research questions to effectively and effi-
ciently extract the data from the selected primary studies.
These dimensions are defined according to the variations in
the architectural reference model and the quality architecture
assessment described in Sections 2.1 and 2.2.

In our work, at least two researchers reviewed each
primary study, as recommended in reviews of the software
literature.
3.4. Data synthesis

Data synthesis involves collating and summarizing the
approaches of the included primary studies. This process

summarizes and synthesizes the data extracted from the
primary studies to answer research questions.

In this phase, the primary objective is to classify, analyze,
and understand current research addressing the assessment
of microservice architecture performance and scalability and
to what extent and how architectural issues are considered
in this assessment. We perform a descriptive analysis of the
content of the primary studies and describe how each study
addresses the main dimensions we have identified as relevant
to architecture, scalability, and performance assessment in
microservices systems. These analyses are described in Sec-
tions 4.1 and 4.2.

Following these activities, further qualitative analysis is
carried out on the data obtained as a result of the analysis
of the set of studies as a whole. We perform comparisons of
studies and try to identify the main gaps in the scalability
and performance assessment of microservice systems in the
context of microservices architectures. This discussion is
presented in Section 4.3.

4. Analysis
In this section, results relevant to our research questions

are extracted. For each research question, the data extracted
from the selected studies are presented in a separate subsec-
tion. In Section 4.1 we synthesize data on microservices ar-
chitecture designs; In Section 4.2 we synthesize architecture
quality assessment; In Section 4.3 we present our discussion
on the state-of-the-art; and in Section 4.4 we identify a set
of open trends on the assessment process of the performance
and scalability qualities in the microservice architecture.
4.1. Microservice Architecture Designs

[Q1] What are the architectural elements of the microser-
vice architecture, and the respective variations, considered
in evaluating the performance and scalability qualities of
microservice architectures?

The selected articles cover different aspects of the archi-
tectural elements and concerns identified in Section 2.1. In
the analysis performed, we distinguish whether the archi-
tectural element was used in the design of the experiment
or whether it was also tested with several variations. While
the latter allow us to assess the impact on performance and
scalability due to the presence of the architectural element,
the former does not because it is not possible to compare.

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 6 of 20

Performance and Scalability Qualities on Microservice Architectures

Figure 2: Study selection process

Figure 3: Results from manual and automated search

The studies thoroughly explore variations in deployment
and scaling (Table 7). In particular, P2, P3, P5, P8, S1, S2,
S6, S11, and S13-S15 (11 in total) exercise several deploy-
ment variations of public clouds (Google Cloud Platform,
Oracle Cloud Infrastructure, Azure Spring Cloud and Azure
App Service) and private clouds, technologies (Spring Cloud
and Kubernetes), assignment of microservices to virtual
machines and containers, bare metal, or virtualization. On
the other hand, P3-P9, P12, S1, S2, S6-S8, S11-S17 (20 in
total) analyze variations of horizontal scaling, while P4, P5,
P7, P8, S2, S6, S7, and S15 (8 in total) study the impact of
vertical scaling on performance and scalability. Therefore,
we notice that more studies focus on horizontal scaling than
vertical scaling. In general, scaling, horizontally or verti-
cally, is the main architectural concern (20/29) addressed by
the studies.

Interestingly, although deployment and scaling are the
architectural aspects more thoroughly addressed, there are
few studies that analyze variations in service orchestra-
tion’s architectural components: load balancing and ser-
vice discovery. There are 16 studies (P3-P4, P7-P9, P11,
P12, S2, S3, S6-S8, S12-S14, S16) that use a load balancer,
as a design element, in the experiment, but only 3 studies
actually evaluate its impact on performance and scalability:
P12 evaluates the quality, comparing with and without the
load balancer; S13 compares the location of the load balancer
on the client side, server side, and a hybrid solution; and S14
compares Netflix Ribbon with Kubernetes Service. In terms

of the service discovery component, 12 studies (P4, P7-P9,
P11, S2, S3, S6-S8, S12, S14) include the service discovery
component in their architecture, but only 1 evaluates its
presence through variations: S14 compares Netflix Eureka
with Kubernetes Service.

A similar situation can be observed in terms of the
communication style in Table 8, where only a few ex-
periments actually study the impact of the software archi-
tectural element on the quality. Therefore, concerning the
communication between microservices, 9 studies only use
independent microservices, which do not intercommunicate;
in 13 studies (P4, P6-P9, P11, S2, S4, S5, S7, S8, S12,
S14) the communication is synchronous; in 5 (P10, S1,
S11, S15, S17) is asynchronous; and only 1 study (S16) has
an experiment that includes both types of communication.
However, of the 19 studies that have inter-microservice com-
munication, only 4 analyze the impact of that communication
on performance and scalability: P6 studies variations in
synchronous communication to reduce dependency cycles
between microservices; S11 examines Kafka Streams and
Flink in asynchronous communication; S15 explores the
differences in messaging systems; and S17 compares the use
of polling- and push-based brokers. The same pattern can be
observed with communication outside services, where P10
discusses variations of using aggregation and offloading in
an API Gateway, P12 experiments with an API Gateway that
requests bundle and rate limit, S9 compares an API Gateway
in REST and GraphQl, and S14 studies implementation

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 7 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 5
Performance Assessment Selected Studies.

Study
number

Authors Title Year Source

P1
Catia Trubiani, Anne Koziolek,

Vittorio Cortellessa,

Ralf Reussner [27]

Guilt-based handling of software

performance antipatterns in palladio

architectural models

2014
Journal of Systems and

Software

P2
Amaral M.; Polo J.;

Carrera D.; Mohomed I.;

Unuvar M.; Steinder M. [28]

Performance evaluation of microservices

architectures using containers
2016

IEEE International Symposium

on Network Computing and

Applications

P3

Villamizar M.; Garcés O.;

Ochoa L.; Castro H.;

Salamanca L.; Verano M.;

Casallas R.; Gil S.; Valencia C.;

Zambrano A.; Lang M. [29]

Cost comparison of running web

applications in the cloud

using monolithic, microservice,

and AWS Lambda architectures

2017
Service Oriented Computing

and Applications

P4
Eismann S.; Bezemer C.-P.;

Shang W.; Okanović D.;

Van Hoorn A. [30]

Microservices: A performance tester’s

dream or nightmare?
2020

ACM/SPEC International

Conference on

Performance Engineering

P5
Jha D.N.; Garg S.;

Jayaraman P.P.; Buyya R.;

Li Z.; Morgan G.; Ranjan R. [31]

A study on the evaluation of HPC

microservices in containerized

environment

2021
Concurrency and

Computation:

Practice and Experience

P6
Liu L.; Tu Z.; He X.;

Xu X.; Wang Z. [32]

An Empirical Study on Underlying

Correlations between Runtime

Performance Deficiencies and

’Bad Smells’ of Microservice Systems

2021
IEEE International

Conference

on Web Services

P7
Camilli M.; Janes A.;

Russo B. [21]

Automated test-based learning

and verification of performance

models for microservices systems

2022
Journal of Systems and

Software

P8 Camilli M.; Russo B. [18]

Modeling Performance of

Microservices Systems

with Growth Theory

2022
Empirical Software

Engineering

P9
Cortellessa V.; Di Pompeo D.;

Eramo R.; Tucci M. [22]

A model-driven approach for

continuous performance engineering

in microservice-based systems

2022
Journal of Systems and

Software

P10
Pinciroli R.; Aleti A.;

Trubiani C. [23]

Performance Modeling and

Analysis of Design Patterns

for Microservice Systems

2023
IEEE International

Conference

on Software Architecture

P11
Tariq S.S.M.; Menard L.;

Su P.; Roy P. [33]

MicroProf: Code-level Attribution

of Unnecessary Data Transfer

in Microservice Applications

2023
ACM Transactions on

Architecture

and Code Optimization

P12 Malki A.E.; Zdun U. [34]

Combining API Patterns in Microservice

Architectures: Performance

and Reliability Analysis

2023
IEEE International

Conference

on Web Services

of the API Gateway (Netflix Zuul, Spring Cloud Gateway,
and Ingress). In addition to these 4 studies, only 5 other
studies (P3, S6, S12, S16, S17) had an API Gateway in
their experiments but did not analyze their impact. They are
marked as design elements in the table.

The architectural aspects less addressed by the studies
were the ones related to data management and consistency,
as shown in Table 9. Only 2 studies considered the use of a
shared database. Study P4 uses caches of the shared database
in the microservices, whereas Study P6 discusses the impact
of using a shared database on performance. A single study
addressed data consistency, S13, by using a SAGA choreog-
raphy. Concerning queries, only 4 studies discuss variations:
P10 compares API Composition with CQRS; S4 discusses
implementations of API Composition using choreography,

orchestration and caches; S9 compares request aggregation
and schema stitching in the API Composition; and S12
applies CQRS, replicated databases, and sharding. Another
study (S16) uses API Composition but does not study its
impact.

Finally, Table 10 presents the codebases that are used for
benchmarking. Some codebases are repeatedly used in the
studies: TrainTicket is used in 5 (P6, P9 P11, S12, S13),
SockShop in 5 (P7, P8, S2, S7, S13) and DayTrader in 2
(P11, S5). Then the complexity of the benchmarks varies sig-
nificantly, where some studies use microbenchmarks whose
concern is to test the load of particular elements of the archi-
tecture, e.g. the asynchronous queues (P5, S1, S4, S11, S15)
or CPU load (P2), or the microservice system is a set of sim-
ple independent, non inter-communicating, microservices

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 8 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 6
Scalability Assessment Selected Studies.

Study
number

Authors Title Year Source

S1
M Gotin, F Lösch,

R Heinrich, R Reussner [35]

Investigating Performance Metrics

for Scaling Microservices in Cloud

IoT-Environments

2018
ACM/SPEC International

Conference on

Performance Engineering

S2
Avritzer A.; Ferme V.; Janes A.;

Russo B.; Hoorn A.V.; Schulz H.;

Menasché D.; Rufino V. [17]

Scalability Assessment of Microservice

Architecture Deployment Configurations:

A Domain-based Approach Leveraging

Operational Profiles and Load Tests

2020
Journal of Systems

and Software

S3
Tapia F.; Mora M.A.; Fuertes W.;

Aules H.; Flores E.; Toulkeridis T. [36]

From monolithic systems to microservices:

A comparative study of performance
2020

Applied Sciences

(Switzerland)

S4
Jayasinghe M.;

Chathurangani J.; Kuruppu G.;

Tennage P.; Perera S. [37]

An analysis of throughput and latency

behaviours under microservice

decomposition

2020
International

Conference on

Web Engineering

S5
Nitin V.; Asthana S.;

Ray B.; Krishna R. [38]

CARGO: AI-Guided Dependency Analysis

for Migrating Monolithic Applications to

Microservices Architecture

2022
ACM International

Conference

Proceeding Series

S6
Blinowski G.; Ojdowska A.;

Przybylek A. [39]

Monolithic vs. Microservice Architecture:

A Performance and Scalability Evaluation
2022 IEEE Access

S7
Xu M.; Song C.; Ilager S.;

Gill S.S.; Zhao J.; Ye K.; Xu C. [40]

CoScal: Multifaceted Scaling of Micro-

services With Reinforcement Learning
2022

IEEE Transactions on

Network and

Service Management

S8
Mulahuwaish A.; Korbel S.;

Qolomany B. [41]

Improving datacenter utilization through

containerized service-based architecture
2022

Journal of Cloud

Computing

S9
Vohra N.; Kerthyayana

Manuaba I.B. [42]

Implementation of REST API vs

GraphQL in Microservice Architecture
2022

International Conference

on Information Management

and Technology

S10
Hassan S.; Bahsoon R.;

Buyya R. [20]

Systematic scalability analysis for micro-

services granularity adaptation design

decisions

2022
Software - Practice and

Experience

S11
Sören Henning;

Wilhelm Hasselbring [43]

A configurable method for benchmarking

scalability of cloud-native applications
2022

Empirical Software

Engineering

S12
Camilli M.; Colarusso C.;

Russo B.; Zimeo E. [19]

Actor-Driven Decomposition of Micro-

services through Multi-level Scalability

Assessment

2023
ACM Transactions on

Software Engineering

and Methodology

S13
Filippone G.; Pompilio C.;

Autili M.; Tivoli M. [44]

An architectural style for scalable

choreography-based microservice-oriented

distributed systems

2023 Computing

S14
Wang Y.-T.; Ma S.-P.;

Lai Y.-J.; Liang Y.-C. [45]

Qualitative and quantitative comparison

of Spring Cloud and Kubernetes in

migrating from a monolithic to a micro-

service architecture

2023
Service Oriented

Computing

and Applications

S15 Henning S.; Hasselbring W. [46]

Benchmarking scalability of stream

processing frameworks deployed as micro-

services in the cloud

2024
Journal of Systems

and Software

S16
Faustino D.; Gonçalves N.;

Portela M.; Rito Silva A. [4]

Stepwise migration of a monolith to a

microservice architecture: Performance

and migration effort evaluation

2024 Performance Evaluation

S17
Batista C.; Morais F.; Cavalcante E.;

Batista T.; Proença B.; Rodrigues

Cavalcante W.B. [47]

Managing asynchronous workloads

in a multi-tenant microservice enterprise

environment

2024
Software - Practice and

Experience

(P3, S3, S4, S6, S9). Of course, some studies use complex,
sometimes real, microservice systems as a benchmark (P4,
P8, P9, P11, P12, S7, S8, S12, S14, S16, S17). Note that the

reused benchmarks have inter-microservice communication,
and as such, they are also considered complex.

Overall, as result of the analysis in Tables 7 to 10, we
observe that in most of the studies the key architectural

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 9 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 7
Service Orchestration.

Service Orchestration Application Found in Study

Deployment Variations P2, P3, P5, P8, S1, S2, S6, S11, S13, S14, S15

Design P4, P6, P7, P9, P11, P12, S3, S4, S5, S7, S8, S9, S10, S12, S16, S17

Not applied P1, P10

Scaling Vertical Variations P4, P5, P7, P8, S2, S6, S7, S15

Horizontal Variations P3, P4, P5, P6, P7, P8, P9, P12, S1, S2, S6, S7, S8, S11, S12 S13,

S14, S15, S16, S17

Not applied P1, P2, P10, P11, S3, S4, S5, S9, S10

Load Balancing Variations P12, S13, S14

Design P3, P4, P7, P8, P9, P11, S2, S3, S6, S7, S8, S12, S16

Not applied P1, P2, P5, P6, P10, S1, S4, S5, S9, S10, S11, S15, S17

Service Discovery Variations P12, S14

Design P4, P7, P8, P9, P11, S2, S3, S6, S7, S8, S12

Not applied P1, P2, P3, P5, P6, P10, S1, S4, S5, S9, S10, S11, S13, S15,

S16, S17

Table 8
Communication Style.

Communication Style Application Found in Study

Synchronous Between Microservices Variations P6

Design P4, P7, P8, P9, P11, S2, S4, S5, S7, S8, S12, S14, S16

Not applied P1, P2, P3, P5, P10, P12, S1, S3, S6, S9, S10, S11, S13, S15, S17

Asynchronous Between Microservices Variations S11, S15, S17

Design P10, S1, S16

Not applied P1, P2, P3, P4, P5, P6, P7, P8, P9, P11, P12, S2, S3, S4, S5, S6,

S7, S8, S9, S10, S12, S13, S14

API Gateway Outside Microservices Variations P10, P12, S9, S14

Design P3, S6, S12, S16, S17

Not applied P1, P2, P4, P5, P6, P7, P8, P9, P11, S1, S2, S3, S4, S5, S7, S8,

S10, S11, S13, S15

Table 9
Data Management and Consistency.

Data Management and Consistency Application Found in Study

Shared Database Variations P6

Design P4

Data Consistency Variations S13

Query Variations P10, S4, S9, S12

Design S16

Table 10
Benchmarks.

Benchmark Found in Study

TrainTicket P6, P9, P11, S12, S13

SockShop P7, P8, S2, S7, S13

DayTrader P11, S5

Complex System P4, P8, P9, P11, P12, S7, S8, S12, S14, S16, S17

Simple System P3, S3, S4, S6, S9

Microbenchmarks P2, P5, S1, S4, S11, S15

Not applied P1, P10, S10

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 10 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 11
Metric objectives found in selected studies.

Performance metric objective Found in Study

Response time P1, P2, P3, P4, P6, P8, P9, P10, P11, P12, S3, S5, S7, S8, S9, S10, S13, S16

Throughput P9, P10, S4, S5, S6, S8, S9, S10, S14, S16

CPU utilization P4, P5, P6, P9, P10, S1, S3, S8

Memory P5, P6

IO and Network P5

Continuous stochastic metric P7

Message Queue’s metrics based S1

Probabilistic Domain-based metric S2, S12

Connection time S7

Successful requests S7, S14

Errors S8, S9

Lag trend (load x Resource space) S11, S15

Scalability Gap S12

Scalability Footprint S12

Waiting time S17

elements that are selected for performance and scalabil-
ity assessment are the ones associated to deployment and
scaling alternatives. We also observe that variations of the
service orchestration’s architectural elements, such as Ser-
vice Discovery or Load Balancer are often considered in
the selected studies, on one hand, but few studies actually
evaluate the impact of such elements on performance and
scalability, on the other hand. The less addressed aspects
are those related to data management and its consistency, as
well as the variations of the type of communication between
services and outside services. The lack of analysis of these
two aspects is particularly relevant because distributed trans-
actions (coordination) are considered one of the hardest parts
of microservice architecture, and asynchronous communica-
tion is considered essential for scalability, which is scarcely
addressed in studies [48]. Additionally, it is also interesting
to observe that the chosen codebases for benchmarking are
not justified in terms of their extensive coverage, in terms of
the architectural elements and their variations, but the main
claim is that they are like a real system, which in most of
the cases they are not. This means that they do not have
the necessary requirements to be a benchmark, as defined
in [49, 50], and so, they are closer to a reference microservice
application, although the word benchmarking is recurrently
used, e.g. [51].
4.2. Architecture Quality Assessment

[Q2] Which are the service level objectives, operational
profile definition, quality assessment approaches, test tar-
gets, and respective variations, used in the assessment of
the performance and scalability qualities of microservice
architectures?

The selected studies cover different aspects of the do-
mains and dimensions of the architecture quality assessment
identified in Section 2.2.

Table 11 summarizes the dimensions found in the se-
lected studies for the definition of the service level objective
(SLMO) domain. The response time was used evenly in

performance and scalability studies, while the throughput
was used mainly in scalability studies. However, resource
utilization metrics were prevalent in performance studies.
Paper P7 uses continuous stochastic logic to measure the
performance of the sequence of requests that are executed to
fulfill a functionality, which captures an intrinsic property of
microservice systems: microservice coordination. However,
scalability studies used a more diverse set of metrics to
capture the impact of lack of scalability, such as the number
of errors (S8, S9), the waiting time (S17), and the scalability
gap and footprint (S12). It also considers metrics associated
with the use of message brokers in communication, which
is a fundamental architectural component when there are
scalability requirements. Study S1 uses message queue de-
lay, message queue growth, and message queue length, and
studies S11 and S15 use the lag trend metric that estimates
the rate of change in message queue length [43]. The use
of probabilistic metrics (S2, S12) in scalability reflects the
ability of the architecture deployment configuration to satisfy
the scalability requirement under a given operational profile.
Due to autoscaling solutions for scalability, Study S7 uses
connection time, response time, and successful requests un-
der different scaling techniques (horizontal scaling, vertical
scaling, and brownout), for the same workload. Some scala-
bility studies also address resource utilization (S11, S15), but
associate it with load intensity. Overall, we can observe that
there is more diversity of metrics associated with scalability.

Table 12 summarizes the dimensions found in the se-
lected studies for the operational profile definition (OPD)
domain. Two main variations can be identified, and they
depend on whether they use real system data to define the
profile. When the OPD is inferred from system data: P8
uses a production-based operational profile estimation; in
P9 production operational profile is analyzed at runtime; in
S2 it is obtained based on the analysis of two production
systems (a video streaming application and Wikipedia); S7
derives from a workload trace based on monitoring; and S12
uses automated analysis of historical data. When OPD is not

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 11 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 12
Operational profile definition dimension found in selected studies.

Operational Profile Definition Found in Study

Production P8, P9, S2, S7, S12

Operations impact S6, S9, S16

Model-specific P7

Architecture-specific S11, S15

Benchmarks P5

Ad-hoc P1, P2, P3, P4, P6, P10, P11, P12, S1, S3, S4, S5, S8, S13, S14, S17

Not Applicable S10

Table 13
Quality Assessment Approach dimension found in selected studies.

Assessment Approach Found in Study

Workload P1, P3, P7, P8, S1, S3, S4, S5, S8, S9, S11, S13, S14, S15, S16, S17

Computation P2, P3, P4, S1

Resources P2, P4, P7, P8, S2, S6, S11, S12, S15

Architecture P2, P4, P5, P6, P7, P8, P9, P10, P11, P12,

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S12 S13, S14, S15, S16, S17

inferred from real data it can be ad-hoc (P1-P4, P6, P10, P11,
P12, S1, S3, S4, S5, S8, S13, S14, S17), where the authors do
not present a rationale for OPD. It can also be defined based
on the expected impact due to the type of operation, such as
S16 (number of domain entities, number of microservices,
processing time), S6 (query and data intensive operations),
S9 (POST, PUT, and GET REST operations). In one study,
P7, a model is used, a discrete-time Markov chain that mod-
els the use cases of the system. In some other approaches,
benchmarks are used, like in P5. More specifically, the OPD
can be defined in order to explore the architectural aspects,
like in S11 and S15 which simulate messages generated
by sensors to explore message brokers properties. There
are no significant differences on how OPD is defined when
comparing performance and scalability studies, although the
latter have a greater concern about load levels. In terms
of architectural aspects, few studies considered particular
architectural aspects when defining OPD.

Table 13 summarizes the dimensions found in the se-
lected studies for the quality assessment approach (SA)
domain. The different approaches assess quality by com-
paring different types of variation: workload; computation;
resources; and architecture. The workload variations analyze
the performance and scalability quality of the systems de-
pending on the workload intensity. The computation varia-
tions look at the impact of the type of operation, whether it is
computationally intensive, read, or write database accesses.
The resources variations look at the impact of CPU, memory
and network capabilities. Finally, the architecture variations
experiment with different architectural configuration, be it
deployment configurations or logical configurations, like the
use of different microservices architectural patterns.

The test target dimension is summarized in Table 14.
Most studies perform the tests on the system under test. The
few exceptions occur when there is concern about the design
of a new system or the refactoring of the old one (P8, P9,
P12, S3, S4), where the model is used to reasoning about the

changes to perform. Exceptions are studies P1, P10 and S10,
where the models are created a priori to reasoning about a set
of patterns, in the former, and to do requirements analysis, in
the latter.

Overall, we can verify that there is a high variety of
metrics to assess scalability, whereas the set of metrics
for performance assessment look more stable (Table 11).
In terms of operational profile, there is a diversity of ap-
proaches, including a large number of studies that follow the
definition of ad hoc operational profile (Table 12). Moreover,
only in 2 studies the definition of the operational profile was
driven by the architecture design; it is not clear whether
they are complete in terms of having a good coverage of
the architectural aspects; in general, the use cases generated
use a black-box approach and therefore they do not cover
the architecture elements. However, note that the assessment
approach actually performs variations of the architecture
(Table 13), but it was mainly on the deployment aspects. On
the other hand, a lack of formalization can be observed in
assessment approaches (Table 14), where the target of the
tests is a system, instead of a model.
4.3. Discussion on the State of the Art

In this subsection, we discuss the main goals of the
addressed primary studies that comprise the state-of-the-art
on performance and scalability assessment.

Although the studies address the assessment of perfor-
mance and scalability qualities in microservice architecture,
the goals of each study are diverse. Tables 15, 16, 17 and 18
summarize the goals and results of each of the studies,
while also focusing on the variations explored. In terms
of its objectives, studies can be distinguished in different
categories:

• Studies that perform a classical analysis of the quali-
ties of a particular system or system architecture and

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 12 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 14
Test Target dimension found in selected studies.

Test Target (TT) Found in Study

Annotated UML and Log models P9

KOAS goal oriented modeling S10

Queuing Networks model P1, P10, S4

Growth Theory model P8

Regression model P12, S3

System P2, P3, P4, P5, P6, P7, P8, P9, P11,

S1, S2, S3, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, S15, S16, S17

Table 15
Goals, variations and results of studies P1-P6

Study Goal Variations Results

P1 How can performance antipatterns be
identified and solved?

Architectural design alterna-
tives.

Propose a ranking methodology that identi-
fies, among a set of detected antipatterns,
the antipatterns that more likely contribute
to the violation of specific performance re-
quirements.

P2 What is the performance impact
of using master-slave or nested-
container in the implementation of
the microservice architecture, when
compared with bare metal and virtual
machine?

Deployment strategies (bare
metal vs regular containers vs
nested-containers vs VMs).

All environments display a similar behavior;
no significant performance impact for CPU-
intensive executions when running on con-
tainers or virtual machines compared to bare-
metal.

P3 What is the cost variations of mono-
lith vs. microservice-based architec-
ture, considering different deploy-
ment scenarios?

Deployment startegies: mono-
lithic architecture, microser-
vice architecture operated by
the cloud customer, and mi-
croservice architecture oper-
ated by the cloud provider.

Microservices deployments managed by
cloud customers can reduce infrastructure
costs but come with higher latency compared
to monolithic deployments. Serverless de-
ployments further reduce infrastructure costs
while maintaining latency levels similar to
monolithic deployments.

P4 How stable is the test execution en-
vironment?

Horizontal and vertical au-
toscaling; load variations on
the number of simultaneous
requests.

It is possible to detect performance regres-
sions in microservices applications. Auto-
scalers have no deterministic behavior.

P5 What is the performance impact of
microservices deployed in the intra-
container or the inter-container envi-
ronments?

Container-base (variations in
terms of intra and inter con-
tainer microservice interfer-
ence).

The performance quality given intra and inter
container deployment variations depends on
microservices resource requirements and type
of operations.

P6 What is the performance impact of
three bad smells?

Dependency circle, poor
use of abstract and shared
database smell.

The smells have negative impact, depending
on the smell, on response time, prevent
independent scalability, database load.

their architectural variations (P2, P3, P5, P11, S1, S3,
S6, S7, S8, S9, S13, S14, S15, S16, S17);

• Studies that model well-known microservice patterns
and architectural styles to do a performance and scal-
ability analysis (P10, P12);

• Studies that analyze the microservices design to iden-
tify and fix antipatterns that penalize performance (P1,
P6, P9);

• Studies which are focused on the decomposition of a
system in microservices and that propose microservice
partitions that optimize performance and scalability
(S4, S5, S12);

• A study that evaluates the stability of the test execution
environment for microservice systems (P4);

• Studies that define generic assessment models for the
microservice architecture (P7, P8, S2, S10, S11).

As can be observed, there is more emphasis on studies
of particular systems or system architecture and also a few
studies (3) on the decomposition process. Only 5 studies pro-
pose generic assessment models and one of these is actually
more like a design method (S10). Therefore, only 4 studies
have an analysis perspective. On the other hand, only 2 study
well-known microservice patterns and architectural styles,
but they do not do an extensive coverage of all patterns, [23]
selected 7 patterns, and [34] focused on API patterns only.

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 13 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 16
Goals, variations and results of studies P7-P12

Study Goal Variations Results

P7 How can a model for performance of
microservices be defined?

Horizontal and vertical scal-
ing.

A novel methodology for model learning and
verification of microservice-based systems
under different deployment alternatives.

P8 How can a model for the occurrence
of performance violations of microser-
vices systems be defined?

Horizontal and vertical scal-
ing.

A novel modeling approach for the analysis of
transient performance behavior of microser-
vices.

P9 How can a refactoring method for the
improvement of performance based
on the observation of the operation
of a real system be defined?

Container-base (variations in
terms of intra and inter con-
tainer microservice interfer-
ence).

Refactorings positively impact performance.

P10 What is the impact on performance
of a set of microservices design pat-
terns?

Anti-corruption layer, back-
ends for frontends, command
and query responsibility segre-
gation, gateway aggregation,
gateway offloading, pipe and
filters, static content hosting.

Positive and negative impacts, depending on
the pattern application. Also identify require-
ments for resources, like the need for par-
allelism, and for computation, like optimize
operations.

P11 How to detect unnecessary data
transfer that causes significant per-
formance overhead in Java-based mi-
croservice applications?

Data transfers between mi-
croservices

Microservices enjoy up to 4.59× speedup
in average latency when unnecessary data
transfer on problematic micorservices are
detected and optimized.

P12 What methods can be used to exper-
imentally study and evaluate possible
combinations of microservices API
patterns to improve performance and
scalability?

Request bundle, rate limit,
load balancing.

Propose regression models that could be
used for guidance. Load Balancing pattern
has a clear negative impact on performance.

Therefore, we can conclude that more studies are needed on
these two aspects.

Conversely, if the goals are diverse, then the achieved
results are also different and very difficult to compare. We
could even identify apparently contradictory results, which
reflect the fact that most of the studies do not use the other
studies as related work, and the conditions of experiment
varies widely between studies. In some sense, there is a lack
of a research corpus that researchers can build on, starting
with a rich benchmark, containing the relevant architectural
variations, that is used by the different studies, such that their
results can be compared. As an illustration, performance
evaluation when comparing monolithic and microservice
implementations (S3, S6, S8, S16) shows that performance
and scalability differences are often due to changes in work-
load dimensions. However, differences in architectural de-
sign in various studies also influence outcomes, making
generalization difficult. A similar situation occurs with the
proposals for performance and scalability quality assessment
models, where each study proposes its own, but there is a lack
of comparison between them (P7, P8, S2, S11).

Finally, in terms of variations in software architecture,
we can observe that they occur mainly in aspects of deploy-
ment, such as horizontal vs. vertical scaling and in CPU,
memory, etc., which is already a consequence of similar
research done in cloud systems [52]. Only a few studies have
reported, explicitly, on microservice architecture patterns
and styles (P10, P12).

4.4. Recommendations for Future Research
In the previous subsection, we have found that the ex-

isting literature on performance and scalability assessment
is focused on specific practical domains and lacks a holistic
approach for performance and scalability. Therefore, we
suggest that the body of knowledge on microservice ar-
chitecture, performance, and scalability could benefit from
additional research in these areas:

• Assessment models and methods of performance and
scalability qualities for the microservice architecture,
such that the obtained results can be generalized;

• Comparative studies of microservice architectural pat-
terns and styles, such that in the architecture design
of microservice, systems performance and scalability
can be included in the trade-off behind architectural
decisions;

• Scalability studies, because we observed that these
studies present higher variability of methods, metrics
and models;

• Assessment benchmarks that could be used across
different studies, because we observed that a couple of
reference systems are already being used (Table 10),
like TrainTicket and SockShop, but they do not allow
to compare many architectural variations (Tables 7, 8
and 9).

From the identified topics, we consider that the definition
of a benchmark is core to have a clear scientific progress
on the research on the qualities of performance and scal-
ability of the microservice architecture. For instance, we

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 14 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 17
Goals, variations and results of studies S1-S8

Study Goal Variations Results

S1 What is the suitability of the CPU
utilization for scaling microservices
which are consuming messages from
a message queue?

Autoscaling driven by queue
sizes.

CPU utilization is a suitable metric for
scaling all classes of microservices if they
exhibit constant characteristics. Thresholds
based on message queue metrics are much
more resilient to changes in the microservice
characteristics.

S2 How to define a quantitative ap-
proach for the performance assess-
ment of microservice deployment al-
ternatives?

Bare metal and virtualized
environments. Horizontal and
vertical scaling.

A new quantitative approach and framework
for the assessment of microservice architec-
ture configuration alternatives. Performance
decreases with increasing workload. Horizon-
tal scaling looks like having better results on
virtualized environments.

S3 What is the performance considering
the relationships between different
variables of an application that runs
in a monolithic structure compared to
one of the microservices?

Monolith and microservices. Average latency per request and throughput
is lower and higher, respectively, on the
microservices variation of the application.

S4 What is the impact of service decom-
position on the performance?

Choreography, orchestration
and use of cache.

Decomposed microservices show perfor-
mance degradation under a lower number
of concurrent users. Under higher number
of concurrent users the performance can
degrade or improve depending on workload
characteristics of the individual microservice.

S5 How can a monolith be partitioned
such that the chosen partition opti-
mizes performance?

Monolith partitions. The chosen partition has 11% less latency
and 120% more throughput than the base-
line.

S6 What are the performance and scal-
ability differences of monolithic and
microservice architectures on a refer-
ence web application?

Azure Spring Cloud and Azure
App Service. Horizontal and
vertical scaling.

On a single machine, a monolith performs
better than its microservice-based counter-
part. Scaling up the microservice-based ap-
plication performed well and was more cost-
efficient than horizontal scaling. Java and
C# .NET have different advantages and
drawbacks, there is no winner technology.

S7 What are the trade-offs between the
dominant scaling techniques, includ-
ing horizontal scaling, vertical scal-
ing, and brownout in terms of exe-
cution cost and response time?

Horizontal, vertical and
brownout scaling.

Vertical scaling converges faster to a sta-
ble connection time than horizontal and
brownout scaling. Brownout approach ini-
tially achieves the best connection time.
Horizontal scaling can achieve better connec-
tions than brownout since more resources are
provided regarding the number of nodes.

S8 How performance and computing re-
source waste varies between a single
monolithic codebase deployment and
containerized microservice-based de-
ployments?

Monolith and microservices;
horizontal scaling.

The microservice architecture handled load
increases much better in comparison. When
response time did increase, the microservice-
based architecture quickly added units of
capacity in the form of more replicas of the
service under the most load.

have observed that in the studies that analyze architectural
variations, in addition to deployment variations, the test
target is not a system (Table 14), which may reflect the
limitations of existing reference systems.

Following [49, 50] the benchmark should provide a
rich set of microservices that vary in terms of its business
logic complexity, from read-only microservices to write
microservices and computation intensive ones. The bench-
mark should allow two types of microservice coordination,
orchestration and choreography. Upon this core, the bench-
mark should allow, by configuration, the experimentation of
different architectural variations. In addition, the benchmark

should support the definition of different metrics and opera-
tional profiles.

The implications to professionals working on large in-
dustrial projects concern the selection of methodologies,
tools, and metrics for performance and scalability. The ap-
plication of this methodology can be used to help uncover
problems and guide architectural decisions to correct perfor-
mance and scalability problems found in development and
operations. Ideally, these methods must be integrated into the
DevOps pipelines of the project.

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 15 of 20

Performance and Scalability Qualities on Microservice Architectures

Table 18
Goals, variations and results of studies S9-S17

Study Goal Variations Results

S9 Does performance and scalability of
freelance marketplace system varies
for different inter-service communica-
tion technologies, in particular REST
and GraphQL technologies?

Request aggregation and
schema stitching (API
composition); REST and
GraphQL (API Gateway).

REST compatible gateway performs signifi-
cantly better than the GraphQL gateway es-
pecially when aggregating data from multiple
services.

S10 Is there an approach to systematically
analyse which dimensions and metrics
are important for scalability-aware
granularity adaptation decisions for
microservice-based applications?

Not applicable. It argues that a catalog of microservice-
specific scalability dimensions and metrics is
needed to inform microservices adoption with
scalability in mind.

S11 How to define a benchmarking
method to conduct empirical scalabil-
ity evaluations of cloud-native appli-
cations, frameworks, anddeployment
options?

Asynchronous (Kafka
Streams and Flink);
horizontal scaling; cloud
deployment platforms
(Google Cloud Platform,
Oracle Cloud Infrastructure,
private cloud).

The benchmarking method consists of scal-
ability metrics, measurement methods, and
an architecture for a scalability benchmark-
ing tool, particularly suited for cloud-native
applications.

S12 Do actor-driven decomposition ap-
proaches result into more scalable
microservices and which deployment
architecture alternatives increase or
decrease performance and scalability?

Horizontal scaling; resources
(CPU and RAM); CQRS,
Replicated Databases and
Sharding.

Fine-grained and actor-driven decomposition
approaches can be effectively used to fur-
ther decompose microservices and achieve
scalability improvements by taking proper
architectural choices to better fit the target
operational setting.

S13 How does load-balancing improve
the balance of coordinated requests
of a fully-distributed coordination
layer of a microservice-based archi-
tecture to improve scalability and
user-perceived performance?

Assignment to virtual ma-
chines (deployment); horizon-
tal scaling; load balancing
side.

Load balancing is able to effectively reduce
the loss of user-perceived performance when
the system undergoes high demand rates;
the result is not the same with very low to
medium loads (50–500 concurrent users).

S14 How performance and scalability
of microservices-based architectures
compare for Spring Cloud and Kuber-
netes platforms?

Infrastructure services (API
Gateway, Load Balancer and
Service Discover); horizontal
scaling.

Frameworks and platforms for migration to
a microservice architecture may have some
impact on performance and scalability.

S15 How much variation is found in the
scalability of state-of-the-art stream
processing frameworks in different ex-
ecution environments and regarding
different scalability dimensions?

Horizontal and vertical scal-
ing; container based on vir-
tualized environment (public
and private clouds); Asyn-
chronous messaging.

Linear scalability is achieved generally as long
as sufficient cloud resources are provisioned.
The rate at which resources have to be
added to cope with increasing load varies
significantly.

S16 How performance and scalability of
a monolith and variations of its mi-
croservice architecture implementa-
tion compare?

Horizontal scaling. Microservice architecture improves scalabil-
ity; significant performance degradation on
cloud environments compared to local de-
ployment.

S17 How performance of two communi-
cation methods (pool-based vs push-
based) affects the tenant waiting time
on a microservice based system?

Horizontal and vertical scal-
ing; Asynchronous messaging
(pool-based vs push-based).

Replication of components can positively
affect system performance regarding average
waiting time per tenant. Push-based presents
a better average waiting time for all the
scenarios, although not very significative.

5. Threats of validity
In this section, we discuss four potential threats of valid-

ity based on a standard checklist developed by Wohlin [53].
We discuss internal validity, external validity, construct va-
lidity, and conclusion validity.
Internal validity. One important threat to validity in this
systematic literature review is that the research of scalability
and performance assessment in the context of microservices
architecture variation is in its early phases, and further data

collection is necessary to draw definitive conclusions. There-
fore, results might be affected by dimensions that are not
included in the analyzed data. We have, however, broadened
the scope of the studies selection to studies that address
different architectural aspects of microservice architectures
even without presenting variations on architectural elements.
Construct validity. Another type of threat to validity is that
incomplete or inadequately designed search strategies might
miss relevant studies. Also, search strings may be poorly
defined and relevant studies may be missed. To address this

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 16 of 20

Performance and Scalability Qualities on Microservice Architectures

last issue, we have applied the QGS-based systematic search
approach ([24]) that evaluates the quasi-sensitivity of the
automated search. To mitigate this threat, we used a multi-
step approach to ensure the quality of the automated search.
External validity. Concerning the applicability of the results
of our study in a more general context, we have focused on
the approaches described in the selected studies. Our result
consists of a synthesis of the findings of these primary stud-
ies. For the selected timeframe, we are confident that we have
encompassed a broad range of architectural design elements
and architecture quality assessment domains, along with
their various methods. Additional or emerging approaches
can also be evaluated using the proposed framework of
analysis.
Conclusion validity. The nature of the data from the literature
review is not conducive to the application of statistical analy-
sis to select the performance and scalability dimensions that
are the most appropriate to be integrated into the framework
of analysis. To mitigate this threat, we used performance
engineer expert advise to support the selection of the per-
formance and scalability dimensions.

6. Related Work
Several systematic literature reviews and surveys have

addressed the relation between software architecture and
performance [54, 55, 56, 57, 58].

Balsamo et al. [54] identify that traditional software
development methods do not address performance in the
early stages of software development. Therefore, they review
research in the field of model-based performance prediction
to analyze the feasibility of addressing performance early,
concluding that it can be applied in the architectural phase.
Their focus is on the development process and not the interre-
lationships between performance and software architecture.

Also focusing on software development activities, [55]
analyzes several empirical studies on the evaluation of soft-
ware architectures. They conclude on the importance of
empirical studies, but their focus is not on performance and
do not analyze the impact that architectural variations have
on performance.

Aleti et al. [56] do a systematic review of the research
literature on architecture optimization, defining a classifi-
cation taxonomy. Performance is identified as one of the
most popular constraints addressed by analysis approaches.
However, they do not do a detailed comparison of the dif-
ferent approaches, and the emphasis is more on the methods
and do not address architectural variations. Additionally, the
microservice architecture is not addressed.

The applicability of various performance prediction
methods for the development of component-based systems is
analyzed in [57]. They concluded that queuing networks are
the most commonly used model. Although the architecture
style analyzed is modular, there are significant differences
from the microservice architecture and their variations.

A more recent study [58] on the architectural approaches
to performance analysis also includes the microservice ar-
chitecture. Their research questions are about the purpose of
the analysis and automation of the tools. They conclude that
there is a lack of available tools and benchmark datasets to

support replication, cross-validation and comparison of stud-
ies, and a need for the adoption of modern ML/AI techniques.
Although they discuss some architectural patterns, they do
not provide a systematic framework or a detailed analysis.

The studies that consider the microservice architecture in
particular are scarce, though more recent [59, 60, 61, 62, 63].

Vural et al. [59] present a systematic literature review of
microservice architectures, describing new trends in service-
oriented computing and cloud computing. However, they do
not analyze the impact on performance and scalability nor
the impact of architectural variations.

Waseem et al. [60] have conducted a systematic mapping
study to classify the literature on microservices architecture
in DevOps. Performance is one of the aspects addressed,
where they have identified performance issues due to fre-
quent communication. Since they cover more aspects than
performance and scalability, they lack a detailed analysis
of these quality attributes. Moreover, most of the research
publications that we analyzed are after 2020, indicating the
relevance of the subject and the need for new studies.

The systematic literature survey in [61] identified perfor-
mance and scalability as two of the six quality attributes most
relevant to microservice architecture, which is an excellent
justification for our systematic study.

Almeida and Canedo [62] present a systematic literature
review on the authentication and authorization in microser-
vice architectures, their focus is not on scalability and per-
formance.

We have conducted a literature survey reporting on the
performance of monolithic systems with their microservice
architecture implementations [5]. It analyzes the architec-
tural variations of the studies, but only in the context of
studies that compare monoliths with their refactored mi-
croservice system, and do not provide a holistic assessment
framework.

A more recent systematic mapping study [63] analyzes
systems used in research to test and monitor microservice-
based systems, which is similar to our benchmark dimension.
However, they focus on the research goals of the studies that
use systems. Interestingly, they observe that only two studies
address architecture.

Therefore, with the exception of our previous work,
the related work consists mainly of papers on microservice
architecture, or performance and scalability qualities of mi-
croservice architecture. To our knowledge, this is the first
systematic review of the literature on architecture and per-
formance scalability and scalability qualities of microservice
architectures.

7. Conclusion
In this paper, we introduced an analysis framework to

support a systematic literature review of performance and
scalability qualities assessment of microservice architec-
tures. The analysis framework consists of a microservice
architecture reference model and a quality assessment frame-
work.

We defined a multi-step literature review methodology
that was used to select 29 studies after a systematic analysis
of 801 initial studies. The search period was for papers
published between 2014 and the beginning of 2024. We also

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 17 of 20

Performance and Scalability Qualities on Microservice Architectures

performed a quality check to ensure that the selected papers
comply with the defined quality checklist.

We performed a detailed analysis of the 29 studies using
the two introduced frameworks: architecture and quality
assessment. The analysis created a mapping between the
framework dimensions and each analyzed paper.

We have answered two research questions. The first
research question was addressed by analyzing how the
selected studies cover different aspects of the architectural
elements and concerns described in the microservice ar-
chitecture reference model. The main contribution of this
analysis was the observation that most studies focus on de-
ployment and scaling alternatives for performance and scal-
ability assessment, while variations in service orchestration
elements are considered but rarely evaluated for their impact.
In addition, although there are studies on communication
styles and data management consistency issues in microser-
vice architecture [64, 65], they are not integrated in the
performance and scalability assessment. These integrations
are crucial for the assessment of distributed transactions and
scalability. In addition, the chosen codebases for benchmark-
ing often lack justification for their comprehensive coverage
of architectural elements.

The second research question was answered by ad-
dressing quantitative methodologies for the assessment of
performance and scalability qualities in the literature. Each
of the quality assessment domains defined in the assessment
framework was analyzed. The main contribution of this
analysis was the identification of areas for further research,
as we have encountered possible methodological gaps in the
reviewed literature.

In addition, we analyze the goals and results of each of
the studies while also focusing on the variations explored.
We have performed comparisons of studies and tried to
identify the main gaps in the assessment of microservice
scalability and performance qualities in the context of mi-
croservice architectures. Although most studies focus on
specific systems or system architectures, only a few pro-
pose generic assessment models or evaluate well-known
microservice patterns. In addition, the lack of a standardized
research corpus and the varying experimental conditions
make it difficult to compare the results between studies.

Finally, we have identified a set of open research trends
to guide researchers in the field of microservice architecture
quality assessment.

Acknowledgment
This work was partially supported by eSulabSolutions, Inc. and
the Fundação para a Ciência e Tecnologia (FCT) through projects
UIDB/50021/2020 (INESC-ID) and 2024.07494.IACDC (WELL).

References
[1] Charlene O’Hanlon. A conversation with werner vogels. Queue,

4(4):14–22, May 2006.
[2] Martin Fowler. Microservices. Web page: http://martinfowler.com/

articles/microservices.html, 2014. Accessed: 2023-07-06.
[3] J. Thönes. Microservices. IEEE Software, 32(1):116–116, 2015.
[4] Diogo Faustino, Nuno Gonçalves, Manuel Portela, and António Rito

Silva. Stepwise migration of a monolith to a microservice architecture:
Performance and migration effort evaluation. Performance Evalua-
tion, 164:102411, 2024.

[5] Helena Rodrigues, António Rito Silva, and Alberto Avritzer. Perfor-
mance comparison of monolith and microservice architectures: An
analysis of the state of the art. In 1st International Workshop on
Quality in Software Architecture (QUALIFIER 2023), co-located with
the 17th European Conference on Software Architecture (ECSA) 2023,
Istanbul, Turkey, September 2023. Springer, 2023.

[6] Andre B. Bondi. Characteristics of scalability and their impact on
performance. In Second International Workshop on Software and
Performance, WOSP 2000, Ottawa, Canada, September 17-20, 2000,
pages 195–203. ACM, 2000.

[7] Elaine J. Weyuker and Alberto Avritzer. A metric for predicting the
performance of an application under a growing workload. IBM Syst.
J., 41(1):45–54, 2002.

[8] Ming Yan, XiaoMeng Liang, ZhiHui Lu, Jie Wu, and Wei Zhang.
Hansel: Adaptive horizontal scaling of microservices using bi-lstm.
Applied Soft Computing, 105:107216, 2021.

[9] N. C. Mendonca, C. Box, C. Manolache, and L. Ryan. The monolith
strikes back: Why istio migrated from microservices to a monolithic
architecture. IEEE Software, 38(05):17–22, sep 2021.

[10] Barbara Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. Technical
report, Keele University, UK and Lincoln University, NZ, 2007.

[11] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Docu-
menting Software Architectures: Views and Beyond, Second Edition.
SEI Series in Software Engineering. Addison-Wesley, Upper Saddle
River, NJ, 2010.

[12] Chris Richardson. Developing transactional microservices using
aggregates, event sourcing and cqrs. InfoQ, 2017.

[13] Chris Richardson. Microservices Patterns. Manning Publications Co.,
2019.

[14] Mehmet Söylemez, Bedir Tekinerdogan, and Ayça Kolukısa Tarhan.
Microservice reference architecture design: A multi-case study. Soft-
ware: Practice and Experience, 54(1):58–84, 2024.

[15] Armando Fox and Eric A. Brewer. Harvest, yield, and scalable
tolerant systems. In Proceedings of the The Seventh Workshop on
Hot Topics in Operating Systems, HOTOS ’99, page 174, USA, 1999.
IEEE Computer Society.

[16] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings
of the 1987 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’87, page 249–259, New York, NY, USA, 1987.
Association for Computing Machinery.

[17] Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, An-
dré van Hoorn, Henning Schulz, Daniel Menasché, and Vilc Rufino.
Scalability assessment of microservice architecture deployment con-
figurations: A domain-based approach leveraging operational profiles
and load tests. Journal of Systems and Software, 165:110564, 2020.

[18] Matteo Camilli and Barbara Russo. Modeling performance of mi-
croservices systems with growth theory. Empirical Softw. Engg.,
27(2), mar 2022.

[19] Matteo Camilli, Carmine Colarusso, Barbara Russo, and Eugenio
Zimeo. Actor-driven decomposition of microservices through multi-
level scalability assessment. ACM Trans. Softw. Eng. Methodol.,
32(5), jul 2023.

[20] Sara Osama Hassan, Rami Bahsoon, and Rajkumar Buyya. Systematic
scalability analysis for microservices granularity adaptation design
decisions. Software: Practice and Experience, 52:1378 – 1401, 2022.

[21] Matteo Camilli, Andrea Janes, and Barbara Russo. Automated test-
based learning and verification of performance models for microser-
vices systems. J. Syst. Softw., 187(C), may 2022.

[22] Vittorio Cortellessa, Daniele Di Pompeo, Romina Eramo, and Michele
Tucci. A model-driven approach for continuous performance en-
gineering in microservice-based systems. Journal of Systems and
Software, 183:111084, January 2022.

[23] Riccardo Pinciroli, Aldeida Aleti, and Catia Trubiani. Performance
modeling and analysis of design patterns for microservice systems. In
2023 IEEE 20th International Conference on Software Architecture
(ICSA), pages 35–46, 2023.

[24] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying
relevant studies in software engineering. Information and Software
Technology, 53(6):625–637, 2011.

[25] Raminta Pranckutė. Web of science (Wos) and scopus: The titans of
bibliographic information in today’s academic world. Publications,
9(1), 2021.

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 18 of 20

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

Performance and Scalability Qualities on Microservice Architectures

[26] Martijn Visser, Nees Jan van Eck, and Ludo Waltman. Large-scale
comparison of bibliographic data sources: Scopus, web of science,
dimensions, crossref, and microsoft academic. Quantitative Science
Studies, 2(1):20–41, 2021.

[27] Catia Trubiani, Anne Koziolek, Vittorio Cortellessa, and Ralf Reuss-
ner. Guilt-based handling of software performance antipatterns in
palladio architectural models. Journal of Systems and Software,
95:141–165, 2014.

[28] Marcelo Amaral, Jordà Polo, David Carrera, Iqbal Mohomed, Merve
Unuvar, and Malgorzata Steinder. Performance evaluation of mi-
croservices architectures using containers. In 2015 IEEE 14th Inter-
national Symposium on Network Computing and Applications, pages
27–34, 2015.

[29] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena
Salamanca, Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos
Valencia, Angee Zambrano, et al. Cost comparison of running web
applications in the cloud using monolithic, microservice, and AWS
lambda architectures. Service Oriented Computing and Applications,
11:233–247, 2017.

[30] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović,
and André van Hoorn. Microservices: A performance tester’s dream
or nightmare? In Proceedings of the ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’20, page 138–149, New
York, NY, USA, 2020. Association for Computing Machinery.

[31] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Ra-
jkumar Buyya, Zheng Li, Graham Morgan, and Rajiv Ranjan. A
study on the evaluation of hpc microservices in containerized envi-
ronment. Concurrency and Computation: Practice and Experience,
33(7):e5323, 2021. e5323 cpe.5323.

[32] Lei Liu, Zhiying Tu, Xiang He, Xiaofei Xu, and Zhongjie Wang. An
empirical study on underlying correlations between runtime perfor-
mance deficiencies and “bad smells” of microservice systems. In 2021
IEEE International Conference on Web Services (ICWS), pages 751–
757, 2021.

[33] Syed Salauddin Mohammad Tariq, Lance Menard, Pengfei Su, and
Probir Roy. Microprof: Code-level attribution of unnecessary data
transfer in microservice applications. ACM Trans. Archit. Code
Optim., 20(4), dec 2023.

[34] Amine El Malki and Uwe Zdun. Combining api patterns in microser-
vice architectures: Performance and reliability analysis. In 2023 IEEE
International Conference on Web Services (ICWS), pages 246–257,
2023.

[35] Manuel Gotin, Felix Lösch, Robert Heinrich, and Ralf Reussner. In-
vestigating performance metrics for scaling microservices in cloudiot-
environments. In Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE ’18, page 157–167,
New York, NY, USA, 2018. Association for Computing Machinery.

[36] Freddy Tapia, Miguel Angel Mora, Walter Fuertes, Hernán Aules,
Edwin Flores, and Theofilos Toulkeridis. From monolithic systems
to microservices: A comparative study of performance. Applied
Sciences, 10(17), 2020.

[37] Malith Jayasinghe, Jayathma Chathurangani, Gayal Kuruppu, Pasindu
Tennage, and Srinath Perera. An analysis of throughput and latency
behaviours under microservice decomposition. In Maria Bielikova,
Tommi Mikkonen, and Cesare Pautasso, editors, Web Engineering,
pages 53–69, Cham, 2020. Springer International Publishing.

[38] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna.
Cargo: Ai-guided dependency analysis for migrating monolithic ap-
plications to microservices architecture. In Proceedings of the
37th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’22, New York, NY, USA, 2023. Association for
Computing Machinery.

[39] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Mono-
lithic vs. microservice architecture: A performance and scalability
evaluation. IEEE Access, 10:20357–20374, 2022.

[40] Minxian Xu, Chenghao Song, Shashikant Ilager, Sukhpal Singh Gill,
Juanjuan Zhao, Kejiang Ye, and Chengzhong Xu. Coscal: Multi-
faceted scaling of microservices with reinforcement learning. IEEE
Transactions on Network and Service Management, 19(4):3995–4009,
2022.

[41] Aos Mulahuwaish, Shane Korbel, and Basheer Qolomany. Improving
datacenter utilization through containerized service-based architec-
ture. Journal of Cloud Computing, 11(1):44, 2022.

[42] Naman Vohra and Ida Bagus Kerthyayana Manuaba. Implementation
of rest api vs graphql in microservice architecture. In 2022 Inter-
national Conference on Information Management and Technology
(ICIMTech), pages 45–50, 2022.

[43] Sören Henning and Wilhelm Hasselbring. A configurable method
for benchmarking scalability of cloud-native applications. Empirical
Software Engineering, 27(6):143, 2022.

[44] Gianluca Filippone, Claudio Pompilio, Marco Autili, and Mas-
simo Tivoli. An architectural style for scalable choreography-
based microservice-oriented distributed systems. Computing,
105(9):1933–1956, dec 2022.

[45] Yu-Te Wang, Shang-Pin Ma, Yue-Jun Lai, and Yan-Cih Liang. Qual-
itative and quantitative comparison of spring cloud and kubernetes in
migrating from a monolithic to a microservice architecture. Service
Oriented Computing and Applications, 17(3):149–159, 2023.

[46] Sören Henning and Wilhelm Hasselbring. Benchmarking scalability
of stream processing frameworks deployed as microservices in the
cloud. Journal of Systems and Software, 208:111879, February 2024.

[47] Cesar Batista, Felipe Morais, Everton Cavalcante, Thais Batista,
Bruno Proença, and William Breno Rodrigues Cavalcante. Managing
asynchronous workloads in a multi-tenant microservice enterprise
environment. Software: Practice and Experience, 54(2):334–359,
2024.

[48] Neal Ford, Ford Richards, Pramod Sadalage, and Zhamak Dehghani.
Software Architecture: The Hard Parts. O’Reilly Media, Inc., 2021.

[49] S.E. Sim, S. Easterbrook, and R.C. Holt. Using benchmarking to
advance research: a challenge to software engineering. In 25th In-
ternational Conference on Software Engineering, 2003. Proceedings.,
pages 74–83, 2003.

[50] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter
Lange, John L. Henning, and Paul Cao. How to build a benchmark.
In Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, ICPE ’15, page 333–336, New York, NY,
USA, 2015. Association for Computing Machinery.

[51] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Bren-
don Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy,
Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon
Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark suite for
microservices and their hardware-software implications for cloud &
edge systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, page 3–18, New York, NY,
USA, 2019. Association for Computing Machinery.

[52] Sebastian Lehrig, Hendrik Eikerling, and Steffen Becker. Scala-
bility, elasticity, and efficiency in cloud computing: a systematic
literature review of definitions and metrics. In Proceedings of the
11th International ACM SIGSOFT Conference on Quality of Software
Architectures, QoSA ’15, page 83–92, New York, NY, USA, 2015.
Association for Computing Machinery.

[53] Claes Wohlin. Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In Proceedings
of the 18th International Conference on Evaluation and Assessment
in Software Engineering, EASE ’14, New York, NY, USA, 2014.
Association for Computing Machinery.

[54] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software develop-
ment: A survey. IEEE Trans. Softw. Eng., 30(5):295–310, May 2004.

[55] Davide Falessi, Muhammad Ali Babar, Giovanni Cantone, and
Philippe Kruchten. Applying empirical software engineering to
software architecture: challenges and lessons learned. Empirical
Softw. Engg., 15(3):250–276, June 2010.

[56] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and
Indika Meedeniya. Software architecture optimization methods: A
systematic literature review. IEEE Transactions on Software Engi-
neering, 39(5):658–683, 2013.

[57] Matthias Becker, Markus Luckey, and Steffen Becker. Model-driven
performance engineering of self-adaptive systems: a survey. In
Proceedings of the 8th International ACM SIGSOFT Conference on
Quality of Software Architectures, QoSA ’12, page 117–122, New
York, NY, USA, 2012. Association for Computing Machinery.

[58] Yutong Zhao, Lu Xiao, Chenhao Wei, Rick Kazman, and Ye Yang.
A systematic mapping study on architectural approaches to software

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 19 of 20

Performance and Scalability Qualities on Microservice Architectures

performance analysis. arXiv, 2410.17372, 2024.
[59] Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic

literature review on microservices. In Osvaldo Gervasi, Beniamino
Murgante, Sanjay Misra, Giuseppe Borruso, Carmelo M. Torre,
Ana Maria A.C. Rocha, David Taniar, Bernady O. Apduhan, Elena
Stankova, and Alfredo Cuzzocrea, editors, Computational Science
and Its Applications – ICCSA 2017, pages 203–217, Cham, 2017.
Springer International Publishing.

[60] Muhammad Waseem, Peng Liang, and Mojtaba Shahin. A systematic
mapping study on microservices architecture in devops. Journal of
Systems and Software, 170:110798, 2020.

[61] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang,
Zhihao Shan, Jinfeng Shen, and Muhammad Ali Babar. Understand-
ing and addressing quality attributes of microservices architecture: A
systematic literature review. Information and Software Technology,
131:106449, 2021.

[62] Murilo Góes de Almeida and Edna Dias Canedo. Authentication and
authorization in microservices architecture: A systematic literature
review. Applied Sciences, 12(6), 2022.

[63] Stefan Fischer, Pirmin Urbanke, Rudolf Ramler, Monika Steidl, and
Michael Felderer. An overview of microservice-based systems used
for evaluation in testing and monitoring: A systematic mapping study.
In 2024 IEEE/ACM International Conference on Automation of Soft-
ware Test (AST), pages 182–192, 2024.

[64] Işıl Karabey Aksakalli, Turgay Çelik, Ahmet Burak Can, and Bedir
Tekinerdoğan. Deployment and communication patterns in microser-
vice architectures: A systematic literature review. Journal of Systems
and Software, 180:111014, 2021.

[65] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian
Liu, and Marcos Kalinowski. Data management in microservices:
state of the practice, challenges, and research directions. Proc. VLDB
Endow., 14(13):3348–3361, September 2021.

Helena Rodrigues, António Rito Silva and Alberto Avritzer: Preprint submitted to Elsevier Page 20 of 20

