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Abstract

Many natural language processing (NLP) problems have underlying structure,
which expresses relations and constraints. The majority of the modern approaches
to solving NLP problems rely on large pretrained language models, which in many
cases serve as monolith black-boxes and do not allow the practitioner to be aware
of the underlying structure.

In this thesis, we propose new models, interpret and combine existing ap-
proaches related to modeling and predicting structure in language in deep learning
models. We experiment with several natural language processing tasks, such as
machine translation, natural language inference, sentiment classification and de-
pendency parsing. We address structure as a model output, as a latent variable in
the middle of the model, and we propose a new model which allows flexible ways
of modeling relations between variables.

First, we address an important limitation of auto-regressive sequence-to-sequence
models, exposure bias: at training time, models maximize the likelihood of the
next word given the gold target prefix, but at inference time, they condition on
their own previous predictions, which may lead to error propagation. To avoid
this, we propose adapting a technique, scheduled sampling, to transformer-based
models.

Then, we address modeling structure with discrete latent variable models. A
challenge with these models is that they often require computing an arg-max for
the latent structure, but this operation has null gradient, precluding the use of the
gradient backpropagation for training the model end to end. We propose a family
of structured straight-through gradient methods based on the SPIGOT algorithm,
developing a framework which allows designing new surrogate gradient methods
based on the observations.

Lastly, we propose undirected neural networks – a new energy-based model
which combines the strengths of factor graphs and neural networks, allowing dif-
ferent directions and orders of computation. We show how undirected neural
networks subsume many existing architectures. We prove that any feed-forward
neural network can be presented as an undirected neural network and we demon-
strate the effectiveness of undirected neural networks with specific examples on
several problems involving language and vision.

Keywords: machine learning, structure, structured prediction, neural networks,
natural language processing, latent structures, scheduled sampling, factor
graphs, modularity
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Resumo
Muitos problemas de processamento de linguagem natural (PLN) têm estrutura

subjacente, que expressa relações e restrições. A maioria das abordagens existen-
tes emprega modelos de linguagem pré-treinados com uma grande quantidade de
parâmetros, consistindo em caixas pretas monolíticas que escondem do utilizador
a estrutura subjacente ao problema.

Nesta tese, propomos novos modelos que generalizam e combinam várias abor-
dagens para modelação e previsão de estrutura em linguagem, empregando mo-
delos de aprendizagem profunda. Experimentamos com os modelos propostos
em várias tarefas de processamento de linguagem natural, incluindo tradução au-
tomática, inferência em linguagem natural, classificação de sentimentos e análise
sintáctica de dependências. Abordamos a estrutura de duas formas: como uma
saída do modelo e como uma variável latente intermédia, culminando num novo
modelo que permite formas flexíveis de modelizar as relações entre as variáveis.

Em primeiro lugar, abordamos uma importante limitação dos modelos auto-
regressivos para sequências, o viés de exposição: durante o treino, os modelos
maximizam a probabilidade da próxima palavra dado o prefixo de referência, po-
rém, depois de treinados e durante o processo de inferência, eles condicionam
as previsões ao prefixo que o próprio modelo gerou, o que pode levar à propa-
gação de erros. Para evitar este problema, adaptamos uma técnica, amostragem
programada, para modelos baseados em transformadores.

Em seguida, abordamos a estrutura de modelação para modelos com variáveis
latentes discretas. Um desafio com estes modelos é que normalmente exigem
o cálculo de um maximizador para a estrutura latente, uma operação que apre-
senta gradiente nulo, impossibilitando o uso do algoritmo da retropropagação do
gradiente para treinar o modelo de ponta a ponta. Para colmatar esta lacuna, pro-
pomos uma família de métodos de gradientes directos estruturados baseados no
algoritmo SPIGOT.

Por fim, propomos redes neuronais não direccionadas – um novo modelo ba-
seado em funções de energia que combina os pontos fortes dos gráficos de fac-
tores e das redes neuronais, permitindo diferentes direcções e ordens de com-
putação. Mostramos como as redes neuronais não direccionadas incluem várias
arquiteturas existentes e provamos que qualquer rede neuronal “feed-forward”
pode ser representada como uma rede neural não direccionada. Demonstramos
a eficácia das redes neuronais não direccionadas emdiversos problemas envol-
vendo linguagem e visão.

Palavras-Chave: aprendizagem automática, estrutura, previsão estruturada,
redes neuronais, processamento de linguagem natural
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In recent years, deep learning has led to a breakthrough in natural language pro-

cessing (NLP) applications. Adding attention (Bahdanau et al., 2014) to recurrent

neural networks led to better sequence-to-sequence (Sutskever et al., 2014) mod-

els. Later, the transformer model (Vaswani et al., 2017) builds an encoder-decoder

consisting entirely of attention layers, which significantly improved the perfor-

mance for many tasks and became a state-of-the-art architecture for NLP. The

next leap was the creation of big pretrained transformer-based language models,

the first one such model being BERT (Devlin et al., 2019). As of writing this thesis,

a big part of NLP practice is roughly related to loading a large pretrained model,

fine-tuning it with some existing data, and modeling an output of choice. In most

cases, practitioners cannot easily look at what is inside the big language model

and treat it as a black box.

The approach of treating the models as monolithic black boxes misses the

modeling of linguistic structure. Many interesting NLP problems have underly-

ing structure (Smith, 2011), which expresses relations and constraints. Some ex-

amples for NLP tasks with useful structure are machine translation, dependency

parsing, word alignment, etc. The structure can be in the input, can be predicted

as a model output, or it can be modeled as a latent variable (Fig. 1.1). In some

cases, it might make sense for the end task to be broken down into connected

subtasks.

In this thesis, we address some of the limitations of the monolith neural net-

work models by taking into account linguistic structure. We propose improve-

ments and provide insights about some aspects of how neural networks function.

We make connections between existing concepts to shed light on and improve

some aspects of how neural models work. We next describe the main problems

addressed in the thesis.
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Sentence

A fascinating and fun film.
Model

Parse Tree

Sentence

A fascinating and fun film.

Latent Parse Tree
Sentiment

Positive
Negative

✔

Source Sentence

Today is a great day for 
writing!

Latent Alignments

(Today, Hoje), (is, é), 
(a great day, um ótimo dia), 
(for writing, para escrever), (!,!)

Target Sentence

Hoje é um ótimo dia 
para escrever!

Figure 1.1: Examples of structure in NLP tasks. Top: dependency parsing as a
model output. Middle: dependency parsing as a latent structure in the middle
of the model. Bottom: Machine translation with latent word alignments. The
structure is in the input and output (sequences) and in the middle of the model
(word alignments).

1.2 Related Work and Contributions

1.2.1 Exposure Bias, Scheduled Sampling, and Transformers

Before the adoption of transformers, the state of the art in many NLP tasks, such as

machine translation, was based on sequence-to-sequence recurrent neural net-

works (RNN) with global attention (Sutskever et al., 2014; Bahdanau et al., 2014).

These models were typically trained with teacher forcing, i.e. the decoder makes

each token prediction conditioned on the preceding elements in the gold target

sequence. This differs from the procedure used at inference time, which predicts

the next token based on the sequence predicted from the model so far. A problem

arising from this type of discrepancy – exposure bias – was noticed by Ranzato

et al. (2015).

A common approach for addressing the problem with exposure bias is using
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a scheduled strategy for deciding when to use teacher forcing and when to use

the model predictions (Bengio et al., 2015). For a recurrent decoder, applying

scheduled sampling works as follows: for generation of each word, the model de-

cides whether to condition on the gold embedding from the given target (teacher

forcing) or on the model prediction from the previous step. Bengio et al. (2015)

proposed scheduled sampling for sequence-to-sequence RNN models: a method

where the embedding used as the input to the decoder at time step t+1 is picked

randomly between the gold target and the argmax of the model’s output probabil-

ities at step t. The Bernoulli probability of picking one or the other changes over

training epochs according to a schedule that makes the probability of choosing

the gold target decrease across training steps. Goyal et al. (2017) proposed an ap-

proach based on scheduled sampling which backpropagates through the model

decisions. At each step, when model predictions are used, instead of the argmax,

they use a weighted average of all word embeddings, weighted by the prediction

probabilities. With this technique, they achieve better results than the standard

scheduled sampling. Ranzato et al. (2015) took ideas from scheduled sampling

and the REINFORCE algorithm (Williams, 1992) and combined the teacher forc-

ing training with optimization of the sequence level loss. In the first epochs, the

model is trained with teacher forcing and for the remaining epochs they start with

teacher forcing for the first t time steps and then switch to REINFORCE (sampling

from the model) until the end of the sequence. They decrease the time for train-

ing with teacher forcing t as training continues until the whole sequence is trained

with REINFORCE in the final epochs. In addition to the work of Ranzato et al.

(2015), other methods that are also focused on sequence-level training are us-

ing for example actor-critic (Bahdanau et al., 2016) or beam search optimization

(Wiseman and Rush, 2016). These methods directly optimize the metric used

at test time (e.g. BLEU). Another proposed approach to avoid exposure bias is

SEARN (Daumé et al., 2009). In SEARN, the model uses its own predictions at

training time to produce sequence of actions, then a search algorithm determines

4
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the optimal action at each step and a policy is trained to predict that action.

In Chapter 3: Scheduled Sampling for Transformers, we address the prob-

lem of exposure bias in transformers and adapt scheduled sampling to Trans-

former models by using two decoders instead of one.

1.2.2 Backpropagation through Discrete Latent Structures

The high-level language tasks modeled with big deep models would benefit from

uncovering underlying structures such as trees, sequence tags, or segmentations.

The benefits might not necessary be related to improvement on downstream task

metrics, such as accuracy, but could be beneficial for interpretability. Before the

rise of neural networks for NLP, it was common to use pipeline approaches where

an external, pretrained model is used to predict, e.g., syntactic structure. The

benefit of this approach is that the predicted tree is readily available for debug-

ging, but the downside is that the errors can propagate throughout the pipeline

(Finkel et al., 2006; Sutton and McCallum, 2005; Toutanova, 2005). In contrast,

the most common current deep learning approaches do not usually model any

underlying structure, which makes the deep neural models harder to interpret.

The best of both worlds could be modeling structure as latent variables. Since

most linguistic structures are discrete, we are interested in modeling discrete la-

tent variables. For example, in sentiment classification, where the sentiment of

a given text document needs to be predicted, the document topic (categorical)

or the dependency parse tree (structured) could be modeled as a latent variable.

The simplest case for a discrete latent variable is a categorical one, as in the exam-

ple above this is the document topic, which is predicted from a list of predefined

topics. An example of such a variable is shown in Fig. 1.2 – the vector s pre-

dicts a score for each of five categories {1, ..., 5}. One category is selected with

z = argmax(s) and is used in further computations.

Discrete latent variable learning is often tackled in stochastic computation
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graphs by estimating the gradient of an expected loss. An established method is

REINFORCE, also known as the score function estimator (SFE) (Glynn, 1990;

Williams, 1992; Kleijnen and Rubinstein, 1996). REINFORCE is widely used

in NLP, for tasks including minimum risk training in NMT (Shen et al., 2016;

Wu et al., 2018) and latent linguistic structure learning (Yogatama et al., 2017;

Havrylov et al., 2019). In this thesis, we focus on the alternative strategy of sur-

rogate gradients, which doesn’t require stochasticity and can be applied in de-

terministic cases too. Examples are the straight-through estimator (Hinton, 2012;

Bengio et al., 2013) and the structured projection of intermediate gradients opti-

mization technique (SPIGOT; Peng et al. 2018). A popular alternative is to relax

an argmax into a continuous transform such as softmax or sparsemax (Martins

and Astudillo, 2016b), as seen for instance in soft attention mechanisms (Bah-

danau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), or structured at-

tention networks (Kim et al., 2017; Maillard et al., 2017; Liu and Lapata, 2018;

Mensch and Blondel, 2018; Niculae et al., 2018a). In between surrogate gradients

and relaxation is Gumbel softmax, which uses the Gumbel-max reparametriza-

tion to sample from a categorical distribution, applying softmax either to relax

the mapping or to induce surrogate gradients (Jang et al., 2017; Maddison et al.,

2016). Gumbel-softmax has been successfully applied to latent linguistic structure

as well (Choi et al., 2018; Maillard and Clark, 2018; Corro and Titov, 2019a,b).

z = 1

Input

x
output

ŷ

s z

z = 2

z = 3
z = 4

z = 5

z = 2

Figure 1.2: Discrete latent categorical variable in the middle of the computation
graph.
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In Chapter 4: Surrogate Gradients for Latent Structure Learning, we ad-

dress the problem of backpropagation through discrete latent structures. We focus

on one of the approaches for overcoming this problem – using surrogate gradi-

ents. We give an explanation of how SPIGOT (Peng et al., 2018) – a method

using surrogate gradients for structure works. Based on that explanation, we pro-

pose a framework from which we derive modifications of SPIGOT, which we call

SPIGOT-CE and SPIGOT-EG.

1.2.3 Structuring Neural Computation and Modularity

Before neural networks became the dominating paradigm, structured prediction

problems in vision or natural language processing were often represented as fac-

tor graphs (Bakır et al., 2007; Smith, 2011; Nowozin et al., 2014). In recent years,

neural networks have become the model of choice for working with these ap-

plications. Unlike factor graphs – which emphasize the modularity of the prob-

lem – neural networks typically work end-to-end, relying on rich representations

captured at the encoder level (often pretrained), which are then propagated to a

task-specific decoder and are usually monolithic mappings from inputs to out-

puts, with a fixed computation order. This limitation prevents neural networks

from capturing different directions of computation and interaction between the

modeled variables.

The idea of modular training of neural networks has a long history. Bottou and

Gallinari (1991) propose a framework for training architecture composed of sev-

eral modules. The modular neural network approach has been used in robotics

(Bradley, 2010), where many modules interact and each module would be respon-

sible for a specific task, such as object recognition, processing information from

sensors, movement, etc. Neural module networks have been used for NLP ap-

plications, such as visual question answering (Andreas et al., 2016) or reasoning

(Gupta et al., 2019). Neural Module Networks (Andreas et al., 2016) were applied
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to visual question answering and provide fine-grained modules for different parts

of the task (in the case for VQA, for example, there are modules for a specific color,

for recognizing a specific object, etc.). This architecture has been applied to rea-

soning over text (Gupta et al., 2019). Another line of work (Kirsch et al., 2018)

proposes a model that flexibly chooses neural modules based on the data to be

processed. They treat the choice of module as a latent variable in a probabilistic

model and learn both the decomposition and module parameters end-to-end by

maximizing a variational lower bound of the likelihood.

The modular training approach can be related to multi-task learning (Caruana,

1997). For example, a syntax module can be used for predicting several higher

level tasks, such as natural language inference (NLI), sentiment analysis, machine

translation. In hierarchical multi-task learning, the lower layers of the model learn

low-level NLP tasks and the later layers learn higher-level NLP tasks, which de-

pend on the representations of the low-level tasks (Hashimoto et al., 2016; Sanh

et al., 2019). The greedy layer-wise training of neural networks (Hinton et al.,

2006) trains layers sequentially starting from bottom (input) layer in an unsuper-

vised way – each layer learns a higher-level representation of the layer below.

Bengio et al. (2007) study the algorithm empirically and extend it to cases where

the inputs are continuous or where the variable cannot be predicted in a super-

vised task. The Infomax principle, developed by Linsker (1988) argues that the

brain learns to process its perceptions by maximally preserving the information of

the input activities in each layer. Recent work uses this principle to create mod-

els based on maximizing the mutual information between the input and learned

higher-level representations of modules in the model (Oord et al., 2018; Hjelm

et al., 2018; Löwe et al., 2019). This work uses modular approach and trains each

module to maximally preserve the information of its inputs using the InfoNCE

loss.

The idea of deriving new neural network architectures from the inference pro-

cess of a graphical model has been explored in work such as mean-field networks
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(Li and Zemel, 2014) and deep unfolding (Hershey et al., 2014). Some work uses

the neural network as a scorer for the structure components and then an out-

put layer calculates the optimal structure (Durrett and Klein, 2015; Fonseca and

Martins, 2020; Corro and Titov, 2019b).

In Chapter 5: Undirected Neural Networks, we propose undirected neural

networks (UNN) – a novel energy-based framework in which neural computation

is specified with factor graphs instead of directed computation graphs and allows

flexibility in defining relations between the model variables. We show how this

framework subsumes or relates to many existing neural network architectures. We

prove that every feed-forward network can be presented as an undirected neural

network, and demonstrate examples of different UNN architectures, including

undirected attention.

While our models are targeting NLP applications, they can easily be applied

to other domains, as we show in Chapter 5. In this chapter, we demonstrate

how undirected neural networks can be used for an NLP problem, but also for

sequence completion and image classification and generation.

1.3 Publications

During my PhD, I have co-authored the following work:

• Scheduled Sampling for Transformers (Mihaylova and Martins, 2019). In

this paper, we explore a way to apply scheduled sampling, a method used in

training recurrent neural networks (Bengio et al., 2015) to the Transformer model

(Vaswani et al., 2017). The paper was published in the proceedings of the ACL

Student Research Workshop 2019. Chapter 3 is based on this work.

• I am one of the authors of the tutorial Latent Structured Models for Natural

Language Processing which was presented at ACL 2019 (Martins et al., 2019)

and RANLP 2019. The work in Chapter 4 is inspired by and builds on parts of
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this tutorial.

• The paper Understanding the SPIGOT Mechanics: Surrogate Gradients

for Latent Structure Learning has been accepted to EMNLP 2020 (Mihaylova

et al., 2020). It explores into more details training of models with latent struc-

tures using gradient surrogate methods, gives insights into such methods and

proposes extensions. Chapter 4 is based on this work.

• The paper Modeling Structure with Undirected Neural Networks was ac-

cepted to ICML 2022. Chapter 5 is based on this work.

1.4 Thesis Outline

• Chapter 2: Background introduces the basic concepts needed for understand-

ing the contributions explained in this thesis, such as neural network architec-

tures and NLP tasks used in the thesis; models with latent structures, exposure

bias, energy-based models.

• Chapter 3: Scheduled Sampling for Transformers presents out work on ap-

plying scheduled sampling (Bengio et al., 2015) to the Transformer (Vaswani

et al., 2017) architecture.

• Chapter 4: Surrogate Gradients for Latent Structure Learning presents

our work on surrogate gradients for latent structure learning, which sheds light

on the mechanics of SPIGOT (Peng et al., 2018) – a method for learning latent

structures.

• Chapter 5: Undirected Neural Networks presents our proposed energy-based

model which combines neural networks and factor graphs to allow flexibility in

expressing the relationship between the model variables.

• In Chapter 6: Conclusion we summarize our contributions and provide sug-

gestions for future development of the ideas in this thesis.
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CHAPTER 2. BACKGROUND

This chapter reviews previous work related to the main ideas of the thesis.

First, in Section 2.1, we describe the main NLP tasks we use throughout the

thesis. Section 2.2 give an overview of two main such architectures, in order to

provide background for the work in Chapter 3. Section 2.3 describes the nec-

essary background for understanding our recent work, described in Chapter 4.

Section 2.4 background revisits some models which motivate our work on Undi-

rected Neural Networks, described in Chapter 5.

2.1 Natural Language Processing Tasks

We provide short descriptions of the Natural Language Processing (NLP) tasks we

use throughout the thesis.

2.1.1 Dependency Parsing

Dependency parsing is a structured prediction NLP task that, given a sentence,

predicts a directed tree structure which defines the grammatical dependencies

between the words in the sentence (Jurafsky and Martin, 2014). Fig. 2.1 shows an

example of a dependency tree. In this thesis, we predict dependency parse trees

in Chapter 5. In Chapter 4 we do not predict the dependency trees in a supervised

way, but we are interested in finding latent dependency trees for a downstream

task, such as sentiment analysis, natural language inference or machine transla-

tion.

Sentence

A fascinating and fun film. Model

Parse Tree

Figure 2.1: An example of dependency parsing.
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2.1. NATURAL LANGUAGE PROCESSING TASKS

2.1.2 Natural Language Inference

Natural Language Inference (NLI) is a classification NLP task which takes as an

input two sentences, called a premise and a hypothesis and classifies the relation-

ship between those two sentences: entailment (the truth of the premise implies

the truth of the hypothesis), contradiction (the truth of the premise implies the

falsity of the hypothesis) or neutral (the premise neither entails nor contradicts

the hypothesis) (Eisenstein, 2018), see Fig. 2.2. We use NLI for the experiments

in Chapter 4.

Premise

We saw a great movie.

Model

Label

Contradiction
Entailment
Neutral

Hypothesis

The movie was good.

✔

Figure 2.2: An example for natural language inference.

2.1.3 Sentiment Classification

Sentiment classification is an NLP task (Fig. 2.3) which, provided a text sequence,

predicts the sentiment of this sequence. The predicted sentiment can have dif-

ferent granularity. It can be a number (for example, from 1 to 5, where higher

number means more positive sentiment) or can be binary - positive or negative.

We use sentiment classification as downstream task in Chapter 4.

2.1.4 Machine Translation

Machine Translation (MT) is a sequence-to-sequence NLP task which translates

an input sequence in a source language to an output sequence in a target language

13
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Sentence

The movie was very good. Model

Sentiment

Positive
Negative

✔

Figure 2.3: An example for sentiment classification with two classes.

(Eisenstein, 2018), as shown on Fig. 2.4. Word alignment can be useful for train-

ing the MT models or can be extracted from the trained model. The alignments

match words or phrases from the source sentence to words or phrases in the tar-

get sentence, as shown on Fig. 2.4. We use machine translation for experimenting

with scheduled sampling for transformers in Chapter 3.

Source Sentence

Today is a great day for writing! Model

Target Sentence

Hoje é um ótimo dia para escrever!

Figure 2.4: An example for machine translation from English to Portuguese.

2.2 Neural Network Architectures for NLP

2.2.1 Recurrent Neural Networks (RNN)

Recurrent neural networks - RNN (Rumelhart et al., 1986; Werbos, 1990) are

neural networks in which the computation is done in steps and the output from

the previous step is fed to the next one. This allows modeling output with arbitrary

length, the weights of the states are shared, therefore parameter count does not

grow with sequence length. A downside is that the computation can be too slow.

In the scope of this thesis, we are interested in RNNs for sequence-to-sequence

tasks, where an input sequence x1, ..., xn is transformed into an output sequence

y1, ..., ym (Cho et al., 2014; Sutskever et al., 2014). In the encoder of the RNN,

the hidden states are represented as ht = f(xt, ht−1) and the representation of the

input sequence is compressed into a vector c = q(h1, ..., hn). Then, in the decoder,

14
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the probability of modeling the output sequence is optimized:

p(y) =
m∏
i=1

p(yt|y1, ..., yt−1, c) (2.1)

A common building block for the hidden state is the long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997).

Adding attention - a mechanism that allows the output to focus on different

parts of the input (Bahdanau et al., 2014) greatly improves the performance of

these models. In the attention mechanism, the vector c is calculated as

ci =
n∑

i=1

αijhj (2.2)

where αij are the attention weights showing the probability with which each out-

put element i attends to the input element j.

αij =
exp(aij)∑n
k=1 exp(aik)

(2.3)

where aij = a(si−1, hj) is a scorer for the hidden state in the decoder si−1 for the

output yi and the hidden state of the decoder hj for input xj.

a nice day

um diabom

Figure 2.5: Recurrent neural network for sequence-to-sequence prediction, such
as machine translation.
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2.2.2 Transformers

Introducing the Transformer (Vaswani et al., 2017) led to new state of the art re-

sults in sequence-to-sequence prediction and became the model of choice for

these models. Its key is that its encoder and decoder are composed of multiple

attention layers. It models self-attention on the input sequence in the encoder

and the output sequence in the decoder and cross-attention between the output

and the input sequence in the decoder. The architecture of the transformer model

is shown in Fig. 2.6. In the transformer, all the positions are predicted simulta-

neously, therefore self-attention is masked so that each element in the sequence

attends only to the elements before it. Positional embeddings added to the ele-

ment embeddings ensure the order of the sequence is kept. A common attention

is the scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.4)

where Q,K, V are queries, keys and values and dk is the dimension of the queries

and keys.

2.3 Models with Latent Structures

2.3.1 Structured Prediction Preliminaries

We assume a general latent structure model involving input variables x ∈ X ,

output variables y ∈ Y, and latent discrete variables z ∈ Z. We assume that

Z ⊆ {0, 1}K, where K ≤ |Z| (typically, K ≪ |Z|): i.e., the latent discrete vari-

able z can be represented as a K-th dimensional binary vector. This often results

from a decomposition of a structure into parts: for example, z could be a depen-

dency tree for a sentence of L words, represented as a vector of size K = O(L2),

indexed by pairs of word indices (i, j), with zij = 1 if arc i→ j belongs to the tree,
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Masked 
Multi-Head 
Attention

Add & Norm

Feed 
Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Feed 
Forward

Add & Norm

Input Embedding

Position Encoding

Output Embedding

Position Encoding

Inputs Outputs (Gold Target)

Linear

Generator 
Function

Output Probabilities

Add & Norm

Multi-Head 
Attention

Figure 2.6: Architecture of the Transformer model. From Vaswani et al. (2017).

and 0 otherwise. This allows us to define the score of a structure as the sum of

the scores of its parts. Given a vector s ∈ RK, containing scores for all possible

parts, we define

score(z) := s⊤z. (2.5)

Background. In the context of structured prediction, the set M := conv(Z) is

known as the marginal polytope, since any point inside it can be interpreted as

some marginal distribution over parts of the structure (arcs) under some distribu-

tion over structures. There are three relevant problems that may be formulated

in a structured setting:

• Maximization (MAP inference): finds a highest scoring structure, MAP(s) = argmax
z∈Z

s⊤z.

• Marginal inference: finds the (unique) marginal distribution induced by the scores

s, corresponding to the Gibbs distribution where p(z) ∝ exp
(
score(z)

)
. The so-
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lution maximizes the entropy-regularized objective

Marg(s) = argmax
µ∈M

s⊤µ+ H̃(µ), (2.6)

where H̃ is the maximum entropy among all distributions over structures that

achieve marginals µ (Wainwright and Jordan, 2008a):

H̃(µ) = max
p∈△|Z|
Ep[z]=µ

−
∑
z∈Z

p(z) log p(z). (2.7)

• SparseMAP: finds the (unique) sparse marginal distribution induced by the scores

s, given by a Euclidean projection onto the marginal polytope: (Niculae et al.,

2018a)

SparseMAP(s) = ΠM(s)

= argmax
µ∈M

s⊤µ− 1

2
∥µ∥2.

(2.8)

Unstructured setting. As a check, we consider the encoding of a categorical

variable with K distinct choices, encoding each choice as a one-hot vector ek and

setting Z = {e1, . . . , eK}. In this case, conv(Z) = △K . The optimization problems

above then recover some well known transformations, as described in Table 2.1.

unstructured structured
vertices ek zk

interior points p µ
maximization argmax MAP

expectation softmax Marg

Euclidean projection sparsemax SparseMAP

Table 2.1: Building blocks for latent structure models.

2.3.2 Latent Structure Models

Throughout, we assume a classifier parametrized by ϕ and θ, which consists of

three parts:
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• An encoder function fϕ which, given an input x ∈ X , outputs a vector of

“scores” s ∈ RK, as s = fϕ(x);

• An argmax node which, given these scores, outputs the highest-scoring struc-

ture:

ẑ(s) = argmax
z∈Z

s⊤z. (2.9)

• A decoder function gθ which, given x ∈ X and z ∈ Z, makes a prediction ŷ ∈ Y

as ŷ = gθ(x, z). We will sometimes write ŷ(z) to emphasize the dependency on

z. For reasons that will be clear in the sequel, we must assume that the decoder

also accepts average structures, i.e., it can also output predictions gθ(x, µ) where

µ ∈ conv(Z) is a convex combination (weighted average) of structures.

Thus, given input x ∈ X , this network predicts:

ŷ = gθ

x,

ẑ(s)︷ ︸︸ ︷
argmax

z∈Z
fϕ(x)

⊤z

 . (2.10)

To train this network, we minimize a loss function L(ŷ, y), where y denotes the

target label; a common example is the negative log-likelihood loss.

The gradient w.r.t. the decoder parameters, ∇θL(ŷ, y), is easy to compute us-

ing automatic differentiation on gθ. The main challenge is propagate gradient in-

formation through the argmax node into the encoder parameters. Indeed, we

have:

∇ϕL(ŷ, y) =
∂fϕ(x)

∂ϕ

∂ẑ(s)

∂s︸ ︷︷ ︸
=0

∇zL(ŷ(ẑ), y) = 0, (2.11)

so no gradient will flow to the encoder. We list below the three main categories

of approaches that tackle this issue.

Introducing stochasticity. Replace the argmax node by a stochastic node where

z is modeled as a random variable Z parametrized by s (e.g., using a Gibbs distri-

bution). Then, instead of optimizing a deterministic loss L(ŷ(ẑ), y), optimize the

19



CHAPTER 2. BACKGROUND

expectation of the loss under the predicted distribution:

EZ∼p(z;s)[L(ŷ(Z), y)]. (2.12)

The expectation ensures that the gradients are no longer null. This is sometimes

referred to as minimum risk training (Smith and Eisner, 2006; Stoyanov et al.,

2011), and typically optimized using the score function estimator (SFE; Glynn,

1990; Williams, 1992; Kleijnen and Rubinstein, 1996).

Relaxing the argmax. Keep the network deterministic, but relax the argmax

node into a continuous function, for example replacing it with softmax or sparse-

max (Martins and Astudillo, 2016b). In the structured case, this gives rise to struc-

tured attention networks (Kim et al., 2017) and their SparseMAP variant (Niculae

et al., 2018a). This corresponds to moving the expectation inside the loss, opti-

mizing L
(
ŷ(EZ∼p(z;s)[Z]︸ ︷︷ ︸

µ

), y
)
.

Inventing a surrogate gradient. Keep the argmax node and perform the usual

forward computation, but backpropagate a different, non-null gradient in the back-

ward pass. This is the approach underlying straight-through estimators (Hinton,

2012; Bengio et al., 2013) and SPIGOT (Peng et al., 2018). This method intro-

duces a mismatch between the measured objective and the optimization algo-

rithm. In Chapter 4 of this thesis, we propose a novel, principled justification for

inducing surrogate gradients. In what follows, we assume that:

• We can compute the gradient

γ(µ) := ∇µL(ŷ(µ), y) (2.13)

for any µ, e.g., by using automatic differentiation on the decoder;1

1This gradient would not exist if the decoder gθ were defined only at vertices z ∈ Z and not
mean points µ ∈M.
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• We want to replace the null gradient ∇sL(ŷ(ẑ), y) by a surrogate ∇̃sL(ŷ(ẑ), y).

2.3.3 Straight-Through Estimator

The straight-through estimator was introduced in a lecture (Hinton, 2012), where

it was described as a way to backpropagate through a step function. A multilayer

neural network consisting of logistic units p(s = 1) = 1
1+e−z is trained with back-

propagation. In the forward pass, a binary value is sampled and the backward

pass is done as if in the forward pass no sampling was done. They report an un-

published result where this kind of training does worse on the training set but

performs significantly better on the test set.

We use the same intuition for backpropagating through nodes which have an

argmax on the forward pass z = argmax(s) during training and use the identity

matrix as the derivative ∂z
∂s

.

The straight-through estimator was described also in Bengio et al. (2013).

2.3.4 SPIGOT

The structured projection of intermediate gradients optimization technique (SPIGOT),

is a method for backpropagating through neural networks that include hard-decision

structured predictions (e.g., parsing) in intermediate layers (Peng et al., 2018). Un-

like STE’s gradient proxy, SPIGOT aims to respect the constraints in the argmax

problem.

SPIGOT introduces a projection step that aims to keep the "updated" ẑ in the

feasible set. Of course, we do not directly update ẑ; backpropagation continues

through s and onward to the parameters. But the projection step alters the pa-

rameter updates in the way that the proxy for∇sL is defined.

∇sL = ẑ − projP (ẑ − η∇ẑL) (2.14)

In Chapter 4, we give a more intuitive explanation of this update.
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2.4 Energy-Based Learning

Another set of methods relevant for this thesis is Energy-based learning. The

background in this section provides the necessary preliminaries for Chapter 5.

Energy-based models, in contrast to predicting an output y from an input x,

model an energy function of both x and y, denoted as E(x, y) and aim to mini-

mize this fundtion. The energy can be viewed as a measure of compatibility be-

tween the variables - the more compatible the values of the variables, the lower

the energy. On inference, the observed variables are given and the values of the

unobserved variables are assigned so that minimize the model energy. Training

the model means finding an energy function which outputs low energies when

correct values are assigned to the unobserved variables and high energies when

incorrect values are assigned to the unobserved variables (LeCun et al., 2006).

For example, for the observed input x, values of y are searched that minimize the

model energy. The goal is to find y∗, chosen from a set Y , for which E(x, y) is the

smallest: y∗ = argminyE(x, y).

2.4.1 Boltzmann Machines

A Boltzmann Machine (Ackley et al., 1985) is a network of symmetrically con-

nected, neuronlike units that make stochastic decisions about whether to be on

or off. Boltzmann machines have a simple learning algorithm that allows them to

discover interesting features in datasets composed of binary vectors. The learning

algorithm is intractable in networks with many layers of features. (Hinton, 2007)

Boltzmann machines are pairwise fully connected networks with N visible units

x ∈ {0, 1}N and M hidden units x ∈ {0, 1}M . They define the following energy

function:

E(x, h) = −xTV x− hTWx− hTUh− aTx− bTh (2.15)
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The probability of a configuration is defined as:

P (x, h) =
exp(−E(x, h))

Z
(2.16)

(where Z is the partition function) and maximizing the probability corresponds to

minimizing the energy. Bilinear factor energy is defined as:

Ex,h(x, h) = −hTWx (2.17)

and unary energies are defined as:

Ex(x) = −xTV x− aTx+ ι{0,1}N (x) (2.18)

Eh(h) = −hTUh− bTh+ ι{0,1}M (h) (2.19)

2.4.2 Restricted Boltzmann Machines

Restricted Boltzmann machines are special cases of Boltzmann machines where

the connections between visible and hidden units form a bipartite graph. In this

case, we have:

EX,H(x, h) = −hTWx (2.20)

EX(x) = −aTx+ ι{0,1}N (x) (2.21)

EH(h) = −bTh+ ι{0,1}M (h) (2.22)
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2.4.3 Deep Boltzmann Machines

Deep Boltzmann machines are similar to restricted Boltzmann machines, but with

more layers. Here the energies are defined as follows:

EX,H1(x, h1) = −hT
1W1x (2.23)

EHk−1,Hk
(hk−1, hk) = −hT

kWkx (2.24)

EX(x) = −aTx+ ι{0,1}N (x) (2.25)

EHk
(hk) = −bTk hk + ι{0,1}Mh (hk) (2.26)
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CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

Scheduled sampling is a technique for avoiding one of the known problems in

sequence-to-sequence generation: exposure bias. It consists of feeding the model

a mix of the teacher forced embeddings and the model predictions from the pre-

vious step in training time. The technique has been used for improving the model

performance with recurrent neural networks (RNN) (Bengio et al., 2015). In the

Transformer model, unlike the RNN, the generation of a new word attends to the

full sentence generated so far, not only to the last word (see Section 2.2.2), and it is

not straightforward to apply the scheduled sampling technique. We propose some

structural changes to allow scheduled sampling to be applied to Transformer ar-

chitecture, via a two-pass decoding strategy. Experiments on two language pairs

achieve performance on par with a teacher-forcing baseline and show that this

technique is promising for further exploration.

3.1 Introduction

Before the transformers (Vaswani et al., 2017) became adopted, neural machine

translation (NMT) relied on a sequence-to-sequence model with global attention

(Sutskever et al., 2014; Bahdanau et al., 2014), trained with maximum likelihood

estimation (MLE). These models are typically trained by teacher forcing, in which

the model makes each decision conditioned on the gold history of the target se-

quence. This tends to lead to quick convergence but is dissimilar to the procedure

used at decoding time, when the gold target sequence is not available and deci-

sions are conditioned on previous model predictions.

Ranzato et al. (2015) point out the problem that using teacher forcing means

the model has never been trained on its own errors and may not be robust to

them—a phenomenon called exposure bias. This has the potential to cause prob-

lems at translation time, when the model is exposed to its own (likely imperfect)

predictions.

A common approach for addressing the problem with exposure bias is using
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a scheduled strategy for deciding when to use teacher forcing and when not to

(Bengio et al., 2015). For a recurrent decoder, applying scheduled sampling is

trivial: for generation of each word, the model decides whether to condition on

the gold embedding from the given target (teacher forcing) or the model prediction

from the previous step.

In the Transformer model (Vaswani et al., 2017), the decoding is still autore-

gressive, but unlike the RNN decoder, the generation of each word conditions

on the whole prefix sequence and not only on the last word and in training time,

the whole output sequence is predicted using one decoder pass with masking.

While we can still use the standard approach where at each step we predict one

word conditioning on the prefix from the gold sequence or the model prediction,

this would significantly slow down the computation, because for the prediction

of each word, we would have one decoder pass. Since the Transformer achieves

state-of-the-art results and has become a default choice for many natural language

processing problems, it is interesting to adapt and explore the idea of scheduled

sampling for it, and, to our knowledge, no way of doing this had been proposed

when we started working on this idea. Our approach allows to apply scheduled

sampling for transformers while keeping the parallelization of the decoder for-

ward pass on GPU during training using masking.

Our contributions in this chapter are:

• We propose a new strategy for using scheduled sampling in Transformer models

by making two passes through the decoder in training time.

• We compare several approaches for conditioning on the model predictions when

they are used instead of the gold target.

• We test the scheduled sampling with transformers in a machine translation task

on two language pairs and achieve results on par with a teacher forcing baseline

(with a slight improvement of up to 1 BLEU point for some models).1

1The source code is on: https://github.com/deep-spin/scheduled-sampling-transformers
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3.2 Related Work

Bengio et al. (2015) proposed scheduled sampling for sequence-to-sequence RNN

models: a method where the embedding used as the input to the decoder at time

step t+1 is picked randomly between the gold target and the argmax of the model’s

output probabilities at step t. The Bernoulli probability of picking one or the other

changes over training epochs according to a schedule that makes the probability

of choosing the gold target decrease across training steps. The authors propose

three different schedules: linear decay, exponential decay and inverse sigmoid

decay. Fig. 3.1 shows an example of how this model works.

Eu mănânc pizza

<start>

eats pizza <eos>He

I 0.7

He 0.3

eat 0.7

eats 0.3

pizza 0.7

pizza 0.3

Figure 3.1: Example for scheduled sampling with recurrent neural networks (Ben-
gio et al., 2015) for a machine translation task for a language pair. At each step
for word prediction, the gold label or the word predicted from the previous step
are fed with a probability (in this example: 0.7 for the gold label and 0.3 for the
model prediction).

Goyal et al. (2017) proposed an approach based on scheduled sampling which

backpropagates through the model decisions. At each step, when the model de-

cides to use model predictions, instead of the argmax, they use a weighted av-

erage of all word embeddings, weighted by the prediction probabilities. They

experimented with two options: a softmax with a temperature parameter, and

a stochastic variant using Gumbel Softmax (Jang et al., 2016) with temperature.

With this technique, they achieve better results than the standard scheduled sam-

pling. Fig. 3.2 shows an example of how this model works.
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hi
hi-1

argmax

ypred = eats

𝛼-soft argmax ēi-1

e(eats)

e(likes)

e(hates)

si-1(eats)

si-1(likes)

si-1(hates)

Figure 3.2: Differentiable Scheduled Sampling for Credit Assignment by Goyal
et al. (2017) using continuous approximation or argmax. The weighted sum of
the predictions from the previous step is feeded to the next time step.

Our work extends Bengio et al. (2015) and Goyal et al. (2017) by adapting their

frameworks to Transformer architectures.

Ranzato et al. (2015) took ideas from scheduled sampling and the REINFORCE

algorithm (Williams, 1992) and combine the teacher forcing training with opti-

mization of the sequence level loss. In the first epochs, the model is trained with

teacher forcing and for the remaining epochs they start with teacher forcing for

the first t time steps and use REINFORCE (sampling from the model) until the

end of the sequence. They decrease the time for training with teacher forcing

t as training continues until the whole sequence is trained with REINFORCE in

the final epochs. Other methods that are also focused on sequence-level training

are using for example actor-critic (Bahdanau et al., 2016) or beam search opti-

mization (Wiseman and Rush, 2016). These methods directly optimize the metric

used at test time (e.g. BLEU). Another proposed approach to avoid exposure bias

is SEARN (Daumé et al., 2009). In SEARN, the model uses its own predictions at

training time to produce sequence of actions, then a search algorithm determines

the optimal action at each step and a policy is trained to predict that action. The

main drawback of these approaches is that the training becomes much slower.

The method we focus on in this chapter is comparable in training time with a

force-decoding baseline.
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3.3 Scheduled Sampling with Transformers

With recurrent neural networks (RNN), in the training phase we generate one

word at each time step, and we feed the previous word as an input in the next

time step. This sequential decoding makes it simple to apply scheduled sampling

- at each time step, with some probability, instead of using the previous word in

the gold sequence, we use the word predicted from the model on the previous

step.

The Transformer model (Vaswani et al., 2017), which achieves state-of-the-art

results for many natural language processing tasks, is also an autoregressive model.

The generation of each word attends to all previous words in the sequence, not

only to the last generated word. The model is based on multiple self-attention

layers, which directly model relationships between all words in the sentence, re-

gardless of their respective position. The order of the words is encoded through

position embeddings, which are summed with the corresponding word embed-

dings. Using position masking in the decoder ensures that the generation of each

word depends only on the previous words in the sequence and not on the follow-

ing ones. Because generation of a word in the Transformer attends to all previous

words in the sequence and not just the last word, it is not trivial to apply sched-

uled sampling to it, where, in training time, we need to choose between using the

gold target word or the model prediction. In order to allow usage of scheduled

sampling with the Transformer model, we needed to make some changes in the

Transformer architecture.

3.3.1 Two-decoder Transformer

The model we propose for applying scheduled sampling in transformers makes

two passes on the decoder. Its architecture is illustrated on Fig. 3.3. We make no

changes in the encoder of the model. The decoding of the scheduled transformer
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Encoder Decoder 1 Decoder 2

Inputs Outputs (Gold Target) Outputs (Gold Target) + 
Model Predictions

Figure 3.3: Transformer model adapted for use with scheduled sampling. The two
decoders on the image share the same parameters. The first pass on the decoder
conditions on the gold target sequence and returns the model predictions. The
second pass conditions on a mix of the target sequence and model predictions and
returns the result. The model always backpropagates through the second decoder
pass. Backpropagated through the first decoder pass is performed only in a part
of the experiments.

has the following steps:

1. First pass on the decoder: get the model predictions. On this step, the

decoder conditions on the gold target sequence and predicts scores for each

position as a standard transformer model. Those scores are passed to the next

step.

2. Mix the gold target sequence with the predicted sequence. After obtain-

ing a sequence representing the prediction from the model for each position,

we imitate scheduled sampling by mixing the target sequence with the model

predictions: For each position in the sequence, we select with a given prob-

ability whether to use the gold token or the prediction from the model. The

probability for using teacher forcing (i.e. the gold token) is a function of the

training step and is calculated with a selected schedule. We pass this “new ref-

erence sequence” as the reference for the second decoder. The vectors used

from the model predictions can be either the embedding of the highest-scored
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word, or a mix of the embeddings according to their scores. Several variants of

building the vector from the model predictions for each position are described

below.

3. Second pass on the decoder: the final predictions. The second pass of the

decoder uses as output target the mix of words in the gold sequence and the

model predictions. The outputs of this decoder pass are the actual result from

the models.

It is important to mention that the two decoders are identical and share the

same parameters. We use the same decoder for the first pass, where we condi-

tion on the gold sequence and the second pass, where we condition on the mix

between the gold sequence and the model predictions. Also, it is important to

mention that the input and the output embeddings of the decoder are shared, in

order to allow feeding the output of the first decoder as an input to the second

decoder pass.

3.3.2 Embedding Mix

For each position in the sequence, the first decoder pass gives a score for each

vocabulary word. We explore several ways of using those scores when the model

predictions are used.

• The most straight-forward case is to not mix the embeddings at all and pass the

argmax from the model predictions, i.e. use the embedding of the vocabulary

word with the highest score from the decoder.

• We also experiment with mixing the top-k embeddings. In our experiments,

we use the weighted average of the embeddings of the top-5 scored vocabulary

words. As weights we use the output probabilities from the first decoder pass

and normalize them to sum to one for the top five words.
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• Inspired by the work of Goyal et al. (2017), we experiment with passing a mix

of the embeddings with softmax with temperature. Using a higher temperature

parameter makes a better approximation of the argmax:

ēi−1 =
∑
y

e(y)
exp(αsi−1(y))∑
y′ exp(αsi−1(y′))

(3.1)

where ēi−1 is the vector which will be used at the current position, obtained by

a sum of the embeddings of all vocabulary words, weighted by a softmax of the

scores si−1.

• An alternative of using argmax is sampling an embedding from the softmax dis-

tribution. Also based on the work of Goyal et al. (2017), we use the Gumbel

Softmax (Maddison et al., 2016; Jang et al., 2016) approximation to sample the

embedding:

ēi−1 =
∑
y

e(y)
exp(α(si−1(y)) +Gy)∑
y′ exp(α(si−1(y′) +Gy′))

(3.2)

where U ∼ Uniform(0, 1) and G = − log(− logU).

• Finally, we experiment with passing a sparsemax mix of the embeddings (Martins

and Astudillo, 2016a).

3.3.3 Decay strategy

With the scheduled sampling method, the teacher forcing probability continu-

ously decreases over the course of training according to a predefined function

of the training steps. The training starts with all teacher forcing, i.e. all tokens

from the gold sequence are fed to the next step, and then as training processes,

the probability of using a gold token decreases in favor of increasing the proba-

bility of feeding a token predicted by the model. The decrease of the probability
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is being calculated with the so called decay strategy. The decay strategy deter-

mines the teacher forcing ratio t for training step i, that is, the probability of doing

teacher forcing at each position in the sequence. The following decay strategies

have been proposes (also illustrated in Fig. 3.4):

• Linear decay: t(i) = max{ϵ, k − ci}, where 0 ≤ ϵ < 1 is the minimum teacher

forcing probability to be used in the model and k and c provide the offset and

slope of the decay.

• Exponential decay: t(i) = ki, where 0 ≤ k < 1 is a hyperparameter used to adjust

the decay.

• Inverse sigmoid decay: t(i) = k
k+exp i

k

, where k ≥ 1 is a hyperparameter used to

adjust the decay.

Figure 3.4: Teacher forcing decay schedules, showing how the probability of using
the gold token in the next decoding step decreases over the course of training (in
the beginning of the training, the probability of using the gold token is 100%).
The following schedules are shown: linear (red dashed line), exponential (green
dotted line) and inverse sigmoid (purple line).

Among the decay strategies proposed for scheduled sampling, we found that

linear decay is the one that works best for our data.
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3.3.4 Weights update

We calculate Cross Entropy Loss based on the outputs from the second decoder

pass. For the cases where all vocabulary words are summed (Softmax, Gumbel

Softmax, Sparsemax), we try two variants of updating the model weights.

• Only backpropagate through the decoder which makes the final predictions,

based on mix between the gold target and the model predictions. This is marked

in Table 3.2 as No backprop.

• Backpropagate through the second, as well as through the first decoder pass

which predicts the model outputs. This setup resembles the differentiable sched-

uled sampling proposed by Goyal et al. (2017). This is marked in Table 3.2 as

Backprop through model decisions.

3.4 Experiments

Encoder model type Transformer
Decoder model type Transformer
# Enc. & dec. layers 6
Heads 8
Hidden layer size 512
Word embedding size 512
Batch size 32
Optimizer Adam
Learning rate 1.0
Warmup steps 20,000
Maximum training steps 300,000
Validation steps 10,000
Position Encoding True
Share Embeddings True
Share Decoder Embeddings True
Dropout 0.2 (DE-EN)
Dropout 0.1 ( JA-EN)

Table 3.1: Hyperparameters shared across models

We report experiments with scheduled sampling for Transformers for the task

of machine translation. We run the experiments on two language pairs:
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Experiment DE−EN JA−EN
Dev Test Dev Test

Teacher Forcing Baseline 35.05 29.62 18.00 19.46
No backprop
Argmax 23.99 20.57 12.88 15.13
Top-k mix 35.19 29.42 18.46 20.24
Softmax mix α = 1 35.07 29.32 17.98 20.03
Softmax mix α = 10 35.30 29.25 17.79 19.67
Gumbel Softmax mix α = 1 35.36 29.48 18.31 20.21
Gumbel Softmax mix α = 10 35.32 29.58 17.94 20.87
Sparsemax mix 35.22 29.28 18.14 20.15
Backprop through model decisions
Softmax mix α = 1 33.25 27.60 15.67 17.93
Softmax mix α = 10 27.06 23.29 13.49 16.02
Gumbel Softmax mix α = 1 30.57 25.71 15.86 18.76
Gumbel Softmax mix α = 10 12.79 10.62 13.98 17.09
Sparsemax mix 24.65 20.15 12.44 16.23

Table 3.2: Experiments with scheduled sampling for Transformer. The table
shows BLEU score for the best checkpoint on BLEU, measured on the validation
set. The first group of experiments do not have a backpropagation pass through
the first decoder. The results from the second group are from model runs with
backpropagation pass through the second as well as through the first decoder.

• IWSLT 2017 German−English (DE−EN, Cettolo et al. (2017)).

• KFTT Japanese−English ( JA−EN, Neubig (2011)).

We use byte pair encoding (BPE; (Sennrich et al., 2016)) with a joint segmentation

with 32,000 merges for both language pairs.

Hyperparameters used across experiments are shown in Table 3.1. All models

were implemented in a fork of OpenNMT-py (Klein et al., 2017). We compare

our model to a teacher forcing baseline, i.e. a standard transformer model,

without scheduled sampling, with the hyperparameters given in Table 3.1. We did

hyperparameter tuning by trying several different values for dropout and warmup

steps, and choosing the best BLEU score on the validation set for the baseline

model.

We used linear decay schedule throughout the training, i.e. the probability of

choosing the gold token at each position is starting from 1 at the beginning of

the training and going to 0 at the end of the training. We experimented also with
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inverse sigmoid decay schedule, but the steeper decrease in the usage of the gold

target token was leading to the model performance degrading very quickly.

The results from our experiments are shown In Table 3.2. The scheduled sam-

pling which uses only the highest-scored word predicted by the model does not

have a very good performance. The models which use mixed embeddings (the

top-k, softmax, Gumbel softmax or sparsemax) and only backpropagate through

the second decoder pass, perform slightly better than the baseline on the valida-

tion set, and one of them is also slightly better on the test set. The differentiable

scheduled sampling (when the model backpropagates through the first decoder)

have much lower results. The performance of these models starts degrading too

early, therefore the lower results in Table 3.2. We expect that using more training

steps with teacher forcing at the beginning of the training would lead to better

performance.

3.5 Discussion

In this chapter, we presented our approach to applying the scheduled sampling

technique to Transformers. Because of the specifics of the decoding, applying

scheduled sampling is not straightforward as it is for RNN and required some

changes in the way the Transformer model is trained, by using a two-step de-

coding. We experimented with several schedules and mixing of the embeddings

in the case where the model predictions were used. We tested the models for

machine translation on two language pairs. The experimental results showed that

our scheduled sampling strategy gave better results on the validation set for both

language pairs compared to a teacher forcing baseline and, in one of the tested

language pairs ( JA−EN), there were slightly better results on the test set.

The case where we backpropagate through the second as well through the

first decoder, gives worse results than when we only backpropagate through the

second decoder. This finding suggests that our current approaches to backprop
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through discrete choices may not always work well and are not sufficiently under-

stood.

Slightly after this work was published, another paper proposed the idea of par-

allel scheduled sampling (Duckworth et al., 2019) which is very similar to this

work. They are more focused on the theoretical explanation of the problem,

while we looked at it from a more practical point of view. There have also been

follow-ups to our work. For example, Liu et al. (2021) improve the scheduled

sampling for transformers by using the confidence of prediction of the target to-

ken to decide whether to feed it or the gold one. Korakakis and Vlachos (2021)

show that even though scheduled sampling addresses exposure bias by increasing

model reliance on the input sequence, it also leads to output degradation due to

catastrophic forgetting, both in RNN and transformers. They mitigate the prob-

lem by using Elastic Weight Consolidation (Kirkpatrick et al., 2016).

38



CHAPTER 4

Surrogate Gradients for Latent

Structure Learning

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 SPIGOT as the Approximate Optimization of a Pulled Back

Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 New Surrogate Gradient Methods . . . . . . . . . . . . . . . . . 47

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

39



CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

Latent structure models are a powerful tool for modeling language data: they

can mitigate the error propagation and annotation bottleneck in pipeline systems,

while simultaneously uncovering linguistic insights about the data. One challenge

with end-to-end training of these models is the argmax operation, which has null

gradient. We focus on surrogate gradients, a popular strategy to deal with this

problem. We explore latent structure learning through the angle of pulling back

the downstream learning objective. In this paradigm, we discover a principled

motivation for both the straight-through estimator (STE) as well as the recently-

proposed SPIGOT—a variant of STE for structured models. Our perspective leads

to new algorithms in the same family. We empirically compare the known and the

novel pulled-back estimators against the popular alternatives, yielding new insight

for practitioners and revealing intriguing failure cases.

4.1 Introduction

Natural language data is rich in structure, but most of the structure is not visible

at the surface. Machine learning models tackling high-level language tasks would

benefit from uncovering underlying structures such as trees, sequence tags, or

segmentations. Traditionally, practitioners turn to pipeline approaches where an

external, pretrained model is used to predict, e.g., syntactic structure. The ben-

efit of this approach is that the predicted tree is readily available for inspection,

but the downside is that the errors can easily propagate throughout the pipeline

and require further attention (Finkel et al., 2006; Sutton and McCallum, 2005;

Toutanova, 2005). In contrast, deep neural architectures tend to eschew such

preprocessing, and instead learn soft hidden representations, not easily amenable

to visualization and analysis.

The best of both worlds would be to model structure as a latent variable,

combining the transparency of the pipeline approach with the end-to-end unsu-

pervised representation learning that makes deep models appealing. Moreover,
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large-capacity model tend to rediscover structure from scratch (Tenney et al.,

2019), so structured latent variables may reduce the required capacity.

Learning with discrete, combinatorial latent variables is, however, challenging,

due to the intersection of large cardinality and null gradient issues. For example,

when learning a latent dependency tree, the latent parser must choose among an

exponentially large set of possible trees; what’s more, the parser may only learn

from gradient information from the downstream task. If the highest-scoring tree is

selected using an argmax operation, the gradients will be zero, preventing learn-

ing.

One strategy for dealing with the null gradient issue is to use a surrogate gra-

dient, explicitly overriding the zero gradient from the chain rule, as if a different

computation had been performed. The most commonly known example is the

straight-through estimator (STE; Bengio et al., 2013), which pretends that the

argmax node was instead an identity operator. Such methods lead to a funda-

mental mismatch between the objective and the learning algorithm. The effect of

this mismatch is still insufficiently understood, and the design of successful new

variants is therefore challenging. For example, the recently-proposed SPIGOT

method (Peng et al., 2018) found it beneficial to use a projection as part of the

surrogate gradient.

In this chapter, we study surrogate gradient methods for deterministic learning

with discrete structured latent variables. Our contributions are:

• We propose a novel motivation for surrogate gradient methods, based on opti-

mizing a pulled-back loss, thereby inducing pseudo-supervision on the latent

variable. This leads to new insight into both STE and SPIGOT.

• We show how our framework may be used to derive new surrogate gradient

methods, by varying the loss function or the inner optimization algorithm used

for inducing the pseudo-supervision.

• We experimentally validate our discoveries on a controllable experiment as well
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x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ ×
(a)

x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ
ℓ(ẑ, z)

(b)

x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ
ℓ(ẑ, µ)

(c)

Figure 4.1: A model with a discrete latent variable z. Given an input x, we assign
a score sz = [f(x)]z to each choice, and pick the highest scoring one, ẑ, to predict
ŷ = gθ(ẑ). For simplicity, here gθ does not access x directly. (a). Since argmax has
null gradients, the encoder parameters ϕ do not receive updates. (b). If ground
truth supervision were available for the latent z, ϕ could be trained jointly with
an auxiliary loss. (c). As such supervision is not available, we induce a best-guess
label µ by pulling back the downstream loss. This strategy recovers the STE and
SPIGOT estimators.

as on English-language sentiment analysis and natural language inference, com-

paring against stochastic and relaxed alternatives, yielding new insights, and

identifying noteworthy failure cases.1

While the discrete methods do not outperform the relaxed alternatives using

the same building blocks, we hope that our interpretation and insights would trig-

ger future latent structure research.

4.2 Related Work

Discrete latent variable learning is often tackled in stochastic computation graphs,

by estimating the gradient of an expected loss. An established method is the score

function estimator (SFE) (Glynn, 1990; Williams, 1992; Kleijnen and Rubinstein,

1The source code is on: https://github.com/deep-spin/understanding-spigot.

42

https://github.com/deep-spin/understanding-spigot


4.2. RELATED WORK

1996). SFE is widely used in NLP, for tasks including minimum risk training in

NMT (Shen et al., 2016; Wu et al., 2018) and latent linguistic structure learning

(Yogatama et al., 2017; Havrylov et al., 2019). We focus on the alternative strat-

egy of surrogate gradients, which allows learning in deterministic graphs with

discrete, argmax-like nodes, rather than in stochastic graphs. Examples are the

straight-through estimator (STE) (Hinton, 2012; Bengio et al., 2013) and the

structured projection of intermediate gradients optimization technique (SPIGOT;

Peng et al. 2018). Recent work focuses on studying and explaining STE. Yin et al.

(2019) obtained a convergence result in shallow networks for the unstructured

case. Cheng et al. (2018) show that STE can be interpreted as the simulation

of the projected Wasserstein gradient flow. STE has also been studied in binary

neural networks (Hubara et al., 2016) and in other applications (Tjandra et al.,

2019). Other methods based on the surrogate gradients have been recently ex-

plored (Vlastelica et al., 2020; Meng et al., 2020).

A popular alternative is to relax an argmax into a continuous transform such

as softmax or sparsemax (Martins and Astudillo, 2016b), as seen for instance in

soft attention mechanisms (Vaswani et al., 2017), or structured attention networks

(Kim et al., 2017; Maillard et al., 2017; Liu and Lapata, 2018; Mensch and Blon-

del, 2018; Niculae et al., 2018a). In-between surrogate gradients and relaxation

is Gumbel softmax, which uses the Gumbel-max reparametrization to sample

from a categorical distribution, applying softmax either to relax the mapping or

to induce surrogate gradients (Jang et al., 2017; Maddison et al., 2016). Gumbel-

softmax has been successfully applied to latent linguistic structure as well (Choi

et al., 2018; Maillard and Clark, 2018). For sampling from a structured variable

is required, the Perturb-and-MAP technique (Papandreou and Yuille, 2011) has

been successfully applied to sampling latent structures in NLP applications (Corro

and Titov, 2019a,b).
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4.3 SPIGOT as the Approximate Optimization of a

Pulled Back Loss

We next provide a novel interpretation of SPIGOT as the minimization of a “pulled

back” loss. SPIGOT uses the surrogate gradient:

∇̃sL(ŷ(ẑ), y) = ẑ − ΠM (ẑ − ηγ)

= ẑ − SparseMAP(ẑ − ηγ),

(4.1)

highlighting that SparseMAP (Niculae et al., 2018a) computes an Euclidean pro-

jection (Eq. (2.8)).

4.3.1 Intermediate Latent Loss

To begin, consider a much simpler scenario: if we had supervision for the la-

tent variable z (e.g., if the true label z was revealed to us), we could define an

intermediate loss ℓ(ẑ, z) which would induce nonzero updates to the encoder

parameters. Of course, we do not have access to this z. Instead, we consider the

following alternative:

Definition 1 (Pulled-back label). A guess µ ∈ M = conv(Z) for what the un-

known z ∈ Z should be, informed by the downstream loss.

Fig. 4.1 provides the intuition of the pulled-back label and loss. We take a moment

to justify picking µ ∈ M rather than directly in Z. In fact, if K = |Z| is small, we

can enumerate all possible values of z and define the guess as the latent value

minimizing the downstream loss, µ = argminz∈Z L(ŷ(z), y). This is sensible, but

intractable in the structured case. Moreover, early on in the training process,

while gθ is untrained, the maximizing vertex carries little information. Thus, for
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robustness and tractability, we allow for some uncertainty by picking a convex

combination µ ∈M so as to approximately minimize

µ ≈ argmin
µ∈M

L(ŷ(µ), y). (4.2)

For most interesting predictive models ŷ(µ) (e.g., deep networks), this optimiza-

tion problem is non-convex and lacks a closed form solution. One common strat-

egy is the projected gradient algorithm (Goldstein, 1964; Levitin and Polyak,

1966), which, in addition to gradient descent, has one more step: projection of the

updated point on the constraint set. It iteratively performs the following updates:

µ(t+1) = ΠM
(
µ(t) − ηtγ(µ

(t))
)
, (4.3)

where ηt is a step size and γ is as in Eq. (2.13). With a suitable choice of step

sizes, the projected gradient algorithm converges to a local optimum of Eq. (4.2)

(Bertsekas, 1999, Proposition 2.3.2). In the sequel, for simplicity we use constant

η. If we initialize µ(0) = ẑ = argmaxz∈Z s⊤z, a single iteration of projected gradient

yields the guess:

µ(1) = ΠM
(
ẑ − ηγ(ẑ)

)
. (4.4)

Treating the induced µ as if it were the “ground truth” label of z, we may train the

encoder fϕ(x) by supervised learning. With a perceptron loss,

ℓPerc(ẑ(s), µ) = max
z∈Z

s⊤z − s⊤µ

= s⊤ẑ − s⊤µ , (4.5)

a single iteration yields the gradient:

∇sℓPerc(ẑ, µ
(1)) = ẑ − µ(1) , (4.6)

which is precisely the SPIGOT gradient surrogate in Eq. (4.1). This leads to the
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following insight into how SPIGOT updates the encoder parameters:

SPIGOT minimizes the perceptron loss between z and a pulled back target

computed by one projected gradient step on min
µ∈M

L(ŷ(µ), y) starting at ẑ =

MAP(s).

This construction suggests possible alternatives, the first of which uncovers a

well-known algorithm.

Relaxing the M constraint. The constraints in Eq. (4.2) make the optimization

problem more complicated. We relax them and define µ ≈ argminµ∈RK L(ŷ(µ), y).

This problem still requires iteration, but the projection step can now be avoided.

One iteration of gradient descent yields µ(1) = ẑ−ηγ. The perceptron update then

recovers a novel derivation of straight-through with identity (STE-I), where the

backward pass acts as if ∂ẑ(s)
∂s

!
= Id (Bengio et al., 2013),

∇sℓPerc(ẑ, µ
(1)) = ẑ − (ẑ − ηγ) = ηγ. (4.7)

This leads to the following insight into straight-through and its relationship to

SPIGOT:

Straight-through (STE-I) minimizes the perceptron loss between z and a

pulled back target computed by one gradient step on min
µ∈RK

L(ŷ(µ), y) starting

at ẑ = MAP(s).

From this intuition, we readily obtain new surrogate gradient methods, which we

explore below.
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4.4 New Surrogate Gradient Methods

Multiple gradient updates. Instead of a single projected gradient step, we could

run multiple steps of Eq. (4.3). We would expect this to yield a better approxima-

tion of µ. This comes at a computational cost: each update involves running a

forward and backward pass in the decoder gθ with the current guess µ(t), to obtain

γ(µ(t)) := ∇µL
(
ŷ(µ(t)), y

)
.

Different initialization. The projected gradient update in Eq. (4.4) uses µ(0) =

ẑ = argmaxz∈Z s⊤z as the initial point. This is a sensible choice, if we believe the

encoder prediction ẑ is close enough to the optimal µ, and it is computationally

convenient, because the forward pass uses ẑ, so γ(ẑ) is readily available in the

backward pass, thus the first inner iteration comes for free. However, other ini-

tializations are possible, for example µ(0) = Marg(s) or µ(0) = 0, at the cost of an

extra computation of γ(µ(0)). We do not consider alternate initializations for their

own sake; they are needed for the following two directions.

Different intermediate loss: SPIGOT-CE. For simplicity, consider the unstruc-

tured case whereM = △, and use the initial guess µ(0) = softmax(s). Replacing ℓPerc

by the cross-entropy loss ℓCE(µ
(0), µ(1)) = −

∑K
k=1 µk log µ

(0)
k yields

∇sℓCE(µ
(0), µ(1)) = µ(0) − Π△(µ

(0) − ηγ). (4.8)

In the structured case, the corresponding loss is the CRF loss (Lafferty et al., 2001),

which corresponds to the KL divergence between two distributions over struc-

tures. In this case, we initialize µ(0) = Marg(s) and update

∇sℓCE(µ
(0), µ(1)) = µ(0) − ΠM(µ(0) − ηγ). (4.9)

Exponentiated gradient updates: SPIGOT-EG. In the unstructured case, op-

timization overM = △ can also be tackled via the exponentiated gradient (EG)
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algorithm (Kivinen and Warmuth, 1997), which minimizes Eq. (4.2) with the fol-

lowing multiplicative update:

µ(t+1) ∝ µ(t) ⊙ exp(−ηt∇µL(ŷ(µ
(t)), y)), (4.10)

where⊙ is elementwise multiplication and thus each iterate µ(t) is strictly positive,

and normalized to be inside△. EG cannot be initialized on the boundary of△, so

again we must take µ(0) = softmax(s). A single iteration of EG yields:

µ(1) ∝ µ(0) ⊙ exp(−ηγ)

= softmax(log µ(0) − ηγ)

= softmax(s− ηγ). (4.11)

It is natural to use the cross-entropy loss, giving

∇sℓCE(µ
(0), µ(1))=µ(0) − softmax(s− ηγ), (4.12)

i.e., the surrogate gradient is the difference between the softmax prediction and a

“perturbed” softmax. To generalize to the structured case, we observe that both

EG and projected gradient are instances of mirror descent under KL divergences

(Beck and Teboulle, 2003). Unlike the unstructured case, we must iteratively keep

track of both perturbed scores and marginals, since Marg−1 is non-trivial. This

leads to the following mirror descent algorithm:

s(0) = s, µ(0) = Marg(s(0)) ,

s(t+1) = s(t) − ηγ(µ(t)) ,

µ(t+1) = Marg(s(t)) .

(4.13)
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With a single iteration and the CRF loss, we get

∇sℓCE = Marg(s)− Marg(s− ηγ) . (4.14)

Algorithm 1 sketches the implementation of the proposed surrogate gradients for

the structured case. The forward pass is the same for all variants: given the scores

s for the parts of the structure, it calculates the MAP structure z. The surrogate gra-

dients are implemented as custom backward passes. The function GradLoss uses

automatic differentiation to compute γ(µ) at the current guess µ; each call involves

thus a forward and backward pass through gθ. Due to convenient initialization, the

first iteration of STE-I and SPIGOT come for free, since both µ(0) and γ(µ(0)) are

available as a byproduct when computing the forward and, respectively, backward

pass through gθ in order to update θ. For SPIGOT-CE and SPIGOT-EG, even with

k = 1 we need a second call to the decoder, since µ(0) ̸= ẑ, so an additional de-

coder call is necessary for obtaining the gradient of the loss with respect to µ(0).

The unstructured case is essentially identical, with Marg replaced by softmax.

4.5 Experiments

Armed with a selection of surrogate gradient methods, we now proceed to an ex-

perimental comparison. For maximum control, we first study a synthetic unstruc-

tured experiment with known data generating process. This allows us to closely

compare the various methods, and to identify basic failure cases. We then study

the structured case of latent dependency trees for sentiment analysis and natural

language inference in English. Full training details are described in Appendix A.

4.5.1 Categorical Latent Variables

For the unstructured case, we design a synthetic dataset from a mixture model

z ∼ Categorical(1/K), x ∼ Normal(mz, σI), y = sign(w⊤
z x+ bz), where mz are randomly
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Figure 4.2: Learning curves on synthetic data with 10 clusters. Softmax learns the
downstream task fast, but mixes the clusters, yielding poor V-measure. SPIGOT
fails on both metrics; STE-I and the novel SPIGOT-CE work well.

placed cluster centers, and wz, bz are parameters of a different ground truth linear

model for each cluster. Given cluster labels, one could learn the optimal linear

classifier separating the data in that cluster. Without knowing the cluster, a global

linear model cannot fit the data well. This setup provides a test bed for discrete

variable learning, since accurate clustering leads to a good fit. The architecture,

following Section 2.3.2, is:

• Encoder: A linear mapping from the input to a K-dimensional score vector:

s = fϕ(x) = Wfx+ bf , where ϕ = (Wf , bf ) ∈ RK×dim(X ) × RK are parameters.

• Latent mapping: ẑ = ρ(s), where ρ is argmax or a continuous relaxation such

as softmax or sparsemax.

• Decoder: A bilinear transformation, combining the input x and the latent vari-

able z:

ŷ = gθ(x, ẑ) = ẑ⊤Wgx+ bg, (4.15)

where θ = (Wg, bg) ∈ RK×dim(X ) × R are model parameters. If ẑ = ek, this selects

the kth linear model from the rows of Wg.

We evaluate two baselines: a linear model, and an oracle where gθ(x, z) has ac-

cess to the true z. In addition to the methods discussed in the previous section,
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we evaluate softmax and sparsemax end-to-end differentiable relaxations, and

the STE-S variant which uses the softmax backward pass while doing argmax in

the forward pass. We also compare stochastic methods, including score function

estimators (with an optional moving average control variate), and the two Gum-

bel estimator variants (Jang et al., 2017; Maddison et al., 2016): Gumbel-Softmax

with relaxed softmax in the forward pass, and the other using argmax in the style of

STE (hence dubbed ST-Gumbel).

Results. We compare the discussed methods in Table 4.1. Knowledge of the

data-generating process allows us to measure not only downstream accuracy, but

also clustering quality, by comparing the model predictions with the known true

z. We measure the latter via the V-measure (Rosenberg and Hirschberg, 2007), a

clustering score independent of the cluster labels, i.e., invariant to permuting the

labels (between 0 and 100, with 100 representing perfect cluster recovery). The

linear and gold cluster oracle baselines confirm that cluster separation is needed

for good performance. Stochastic models perform well across both criteria. Cru-

cially, SFE requires variance reduction to performs well, but even a simple control

variate will do.

Deterministic models may be preferable when likelihood assessment or sam-

pling is not tractable. Among these, STE-I and SPIGOT-{CE,EG} are indistin-

guishable from the best models. Surprisingly, the vanilla SPIGOT fails, especially

in cluster recovery. Finally, the relaxed deterministic models perform very well

on accuracy and learn very fast (Fig. 4.2), but appear to rely on mixing clusters,

therefore they remarkably fail to recover cluster assignments.2 This is in line with

the structured results of Corro and Titov (2019b). Therefore, if latent structure

recovery is less important than downstream accuracy, relaxations seem prefer-

able.

2With relaxed methods, the V-measure is always calculated using the argmax, even though gθ
sees a continuous relaxation.
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Figure 4.3: Impact of multiple gradient update steps for the pulled-back label,
on the synthetic example with 10 clusters. For each point, the best step size η is
chosen.

Impact of multiple updates. One possible explanation for the failure of SPIGOT

is that SPIGOT-CE and SPIGOT-EG perform more work per iteration, since they

use a softmax initial guess and thus require a second pass through the decoder.

We rule out this possibility in Fig. 4.3: even when tuning the number of updates,

SPIGOT does not substantially improve. We observe, however, that SPIGOT-CE

improves slightly with more updates, outperforming STE-I. However, since each

update step performs an additional decoder call, this also increases the training

time.

4.5.2 Structured Latent Variables

For learning structured latent variables, we study sentiment classification on the

English language Stanford Sentiment Treebank (SST) (Socher et al., 2013), and

Natural Language Inference on the SNLI dataset (Bowman et al., 2015).

Sentiment Classification

The model predicts a latent projective arc-factored dependency tree for the sen-

tence, then uses the tree in predicting the downstream binary sentiment label.

The model has the following components:

• Encoder: Computes a score for every possible dependency arc i → j between
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words i and j. Each word is represented by its embedding hi,3 then processed

by an LSTM, yielding contextual vectors
←→
hi . Then, arc scores are computed as

si→j = v⊤ tanh
(
W⊤[
←→
hi ;
←→
hj ] + b

)
. (4.16)

• Latent parser: We use the arc scores vector s to get a parse ẑ = ρ(s) for the sen-

tence, where ρ(s) is the argmax, or combination of trees, such as Marg or SparseMAP.

• Decoder: Following Peng et al. (2018), we concatenate each
←→
hi with its pre-

dicted head
←→
h head(i). For relaxed methods, we average all possible heads, weighted

by the corresponding marginal:
←→
h head(i) :=

∑
j µi→j

←→
hj . The concatenation is

passed through an affine layer, a ReLU activation, an attention mechanism, and

the result is fed into a linear output layer.

For marginal inference, we use pytorch-struct (Rush, 2020). For the SparseMAP

projection, we use the active set algorithm (Niculae et al., 2018a). The baseline

we compare our models against is a BiLSTM, followed by feeding the sum of all

hidden states to a two-layer ReLU-MLP.

Results. The results from the experiments with the different methods are shown

in Table 4.2. As in the unstructured case, the relaxed models lead to strong down-

stream classifiers. Unlike the unstructured case, SPIGOT is a top performer here.

The effect of tuning the number of gradient update steps is not as big as in the

unstructured case and did not lead to significant improvement. This can be ex-

plained by a “moving target” intuition: since the decoder gθ is far from optimal,

more accurate µ do not overall help learning.

Natural Language Inference

We build on top of the decomposable attention model (DA; Parikh et al., 2016).

Following the setup of Corro and Titov (2019b), we induce structure on the premise
3Pretrained GloVe vectors (Pennington et al., 2014).
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and the hypothesis. For computing the score of the arc from word i to j, we con-

catenate the representations of the two words, as in Eq. (4.16). In the decoder,

after the latent parse tree is calculated, we concatenate each word with the av-

erage of its heads. We do this separately for the premise and the hypothesis. As

baseline, we use the DA model with no intra-attention.

Results. The SNLI results are shown in Table 4.2. Here, the straight-through

(argmax) methods are outperformed by the more stable relaxation-based meth-

ods. This can be attributed to the word-level alignment in the DA model, where

soft dependency relations appear better suited than hard ones.

4.6 Conclusions

In this chapter, we provide a novel motivation for straight-through estimator (STE)

and SPIGOT, based on pulling back the downstream loss. We derive promising

new algorithms, and novel insight into existing ones. Unstructured controlled ex-

periments suggest that our new algorithms, which use the cross-entropy loss in-

stead of the perceptron loss, can be more stable than SPIGOT while accurately

disentangling the latent variable. Differentiable relaxation models (using softmax

and sparsemax) are the easiest to optimize to high downstream accuracy, but they

fail to correctly identify the latent clusters. On structured NLP experiments, re-

laxations (SparseMAP and Marginals) tend to overall perform better and be more

stable than straight-through variants in terms of classification accuracy. However,

the lack of gold-truth latent structures makes it impossible to assess recovery per-

formance. We hope that our insights, including some of our negative results, may

encourage future research on learning with latent structures.
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Algorithm 1: Surrogate gradients pseudocode: common forward pass,
specialized backward passes.

Parameters: step size η, n. iterations k

Function Forward(s, x, y):
return ẑ ← MAP(s) // Eq. (2.9)

Function GradLoss(µ, x, y):
return γ ← ∇µL(ŷ(µ), y) // Eq. (2.13)

Function BackwardSPIGOT(s, x, y):
µ(0) = MAP(s)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ) // Eq. (4.3)

return µ(0) − µ(k) // Eq. (4.6)

Function BackwardSTE-I(s, x, y):
µ(0) = MAP(s) // Eq. (4.7)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← µ(t−1) − ηγ

return µ(0) − µ(k)

Function BackwardSPIGOT-CE(s, x, y):
µ(0) ← Marg(s) // Eq. (4.9)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ)

return µ(0) − µ(k)

Function BackwardSPIGOT-EG(s, x, y):
(s(0), µ(0))← (s, Marg(s)) // Eq. (4.13)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
s(t) ← s(t−1) − ηγ
µ(t) ← Marg(s(t))

return µ(0) − µ(k)
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(3 clusters) (10 clusters)
Model Accuracy V-measure Accuracy V-measure

Baselines
Linear model 68.05±0.09 0.00±0.00 60.00±0.06 0.00±0.00
Gold cluster labels 92.40±0.06 100.00±0.00 88.50±0.10 100.00±0.00

Relaxed
Softmax 93.15±0.33 66.88±0.97 86.45±0.33 75.07±1.18
Sparsemax 92.95±0.38 71.35±16.60 83.75±1.32 76.13±3.89
*Gumbel-Softmax 94.25±3.42 100.00±6.80 80.45±0.77 89.68±1.10

Argmax
*ST-Gumbel 93.85±3.25 100.00±6.80 81.25±0.68 91.52±1.46
*SFE 68.45±0.33 47.73±17.65 59.80±0.58 55.56±3.30
*SFE w/ baseline 94.20±0.08 100.00±0.00 84.70±0.97 96.83±0.85
STE-S 86.95±4.01 84.44±11.61 75.95±1.10 82.83±2.75
STE-I 92.60±0.23 100.00±0.00 84.50±1.43 94.48±1.35
SPIGOT 77.90±1.26 20.53±1.85 68.80±1.02 29.24±2.24
SPIGOT-CE 93.40±2.64 97.08±13.92 83.50±0.87 94.88±1.39
SPIGOT-EG 92.70±3.04 100.00±8.27 79.40±2.03 82.29±2.15

Table 4.1: Discrete latent variable learning on synthetic data: downstream ac-
curacy and clustering V-measure. Median and standard error reported over four
runs. We mark stochastic methods with *.

Model SNLI SST

Relaxed
Marginals 83.45 85.01
SparseMAP 83.61 85.35

Argmax
*Perturb-and-MAP 82.92 83.80
STE-S 83.32 81.10
STE-I 83.17 81.00
SPIGOT 84.80 83.52
SPIGOT-CE 83.01 79.20
SPIGOT-EG 82.88 84.84

Table 4.2: SST and SNLI average accuracy over three runs, with latent depen-
dency trees. Baselines are described in Section 4.5.2. We mark stochastic meth-
ods marked with *.
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CHAPTER 5. UNDIRECTED NEURAL NETWORKS

Neural networks are powerful function estimators, leading to their status as a

paradigm of choice for modeling structured data. However, unlike other struc-

tured representations that emphasize the modularity of the problem – e.g., factor

graphs – neural networks are usually monolithic mappings from inputs to outputs,

with a fixed computation order. This limitation prevents them from capturing dif-

ferent directions of computation and interaction between the modeled variables.

In this chapter, we combine the representational strengths of factor graphs

and of neural networks, proposing undirected neural networks (UNNs): a flexi-

ble framework for specifying computations that can be performed in any order.

For particular choices, our proposed models subsume and extend many existing

architectures: feed-forward, recurrent, self-attention networks, auto-encoders,

and networks with implicit layers. We demonstrate the effectiveness of undi-

rected neural architectures, both unstructured and structured, on a range of tasks:

tree-constrained dependency parsing, convolutional image classification, and se-

quence completion with attention. By varying the computation order, we show

how a single UNN can be used both as a classifier and a prototype generator, and

how it can fill in missing parts of an input sequence, making them a promising field

for further research.

5.1 Introduction

Factor graphs have historically been a very appealing toolbox for representing

structured prediction problems (Bakır et al., 2007; Smith, 2011; Nowozin et al.,

2014), with wide applications to vision and natural language processing applica-

tions. In the last years, neural networks have taken over as the model of choice

for tackling these applications. Unlike factor graphs – which emphasize the mod-

ularity of the problem – neural networks typically work end-to-end, relying on

rich representations captured at the encoder level (often pretrained), which are

then propagated to a task-specific decoder.
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In this chapter, we combine the representational strengths of factor graphs and

neural networks by proposing undirected neural networks (UNNs) – a frame-

work in which outputs are not computed by evaluating a composition of func-

tions in a given order, but are rather obtained implicitly by minimizing an energy

function which factors over a graph. For particular choices of factor potentials,

UNNs subsume many existing architectures, including feedforward, recurrent,

and self-attention neural networks, auto-encoders, and networks with implicit

layers. When coupled with a coordinate-descent algorithm to minimize the en-

ergy, the computation performed in an UNN is similar (but not equivalent) to a

neural network sharing parameters across multiple identical layers. Since UNNs

have no prescribed computation order, the exact same network can be used to

predict any group of variables (outputs) given another group of variables (inputs),

or vice-versa (i.e., inputs from outputs). Our contributions are:

• We present UNNs and show how they extend many existing neural architec-

tures.

• We provide a coordinate descent inference algorithm, which, by an “unrolling

lemma” (Lemma 1), can reuse current building blocks from feed-forward net-

works in a modular way.

• We develop and experiment with multiple factor graph architectures, tackling

both structured and unstructured tasks, such as natural language parsing, image

classification, and image prototype generation. We develop a new undirected

attention mechanism and demonstrate its suitability for sequence completion.1

5.2 Undirected Neural Networks

Let G = (V, F ) be a factor graph, i.e., a bipartite graph consisting of a set of variable

nodes V and a set of factor nodes F , where each factor node f ∈ F ⊆ 2V is linked

1The source code is available on: https://github.com/deep-spin/unn
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to a subset of variable nodes. Each variable node X ∈ V is associated with a rep-

resentation vector x ∈ RdX. We define unary energies for each variable EX(x), as

well as higher-order energies Ef (xf ), where xf denotes the values of all variables

linked to factor f . Then, an assignment defines a total energy function

E(x1, . . . , xn) :=
∑
i

EXi
(xi) +

∑
f

Ef (xf ). (5.1)

For simple factor graphs where there is no ambiguity, we may refer to factors

directly by the variables they link to. For instance, a simple fully-connected factor

graph with only two variables X and Y is fully specified byE(x, y) = EX(x)+EY(y)+

EXY(x, y) .

The energy function in Eq. (5.1) induces preferences for certain configurations.

For instance, a globally best configuration can be found by solving argminx,y E(x, y),

while a best assignment for Y given a fixed value of X can be found by solving

argminy E(x, y).2 We may think of, or suggest using notation, that X is an input

and Y is an output. However, intrinsically, factor graphs are not attached to a

static notion of input and output, and instead can be used to infer any subset of

variables given any other subset.

In our proposed framework of UNNs, we define the computation performed

by a neural network using a factor graph, where each variable is a representation

vector (e.g., analogous to the output of a layer in a standard network). We design

the factor energy functions depending on the type of each variable and the de-

sired relationships between them. Inference is performed by minimizing the joint

energy with respect to all unobserved variables (i.e., hidden and output values).

For instance, to construct a supervised UNN, we may designate a particular vari-

able as “input” X and another as “output” Y, alongside several hidden variables Hi,

2We only consider deterministic inference in factor graphs. Probabilistic models are a promis-
ing extension.
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compute

ŷ = argmin
y

min
h1,...,hn

E(x, h1, . . . , hn, y) , (5.2)

and train by minimizing some loss ℓ(ŷ, y). However, UNNs are not restricted to

the supervised setting or to a single input and output, as we shall explore.

While this framework is very flexible, Eq. (5.2) is a non-trivial optimization

problem. Therefore, we focus on a class of energy functions that renders infer-

ence easier:
EXi

(xi) = −⟨bXi
, xi⟩+ΨXi

(xi) ,

Ef (xf ) = −

〈
Wf ,

⊗
Xj∈f

xj

〉
,

(5.3)

where each ΨXi
is a strictly convex regularizer, ⊗ denotes the outer product, and

Wf is a parameter tensor of matching dimension. For pairwise factors f = {X,Y},

the factor energy is bilinear and can be written simply as EXY(x, y) = −x⊤Wy. In

factor graphs of the form given in Eq. (5.3), the energy is convex in each variable

separately, and block-wise minimization has a closed-form expression involving

the Fenchel conjugate of the regularizers. This suggests a block coordinate de-

scent optimization strategy: given an order π, iteratively set:

xπj
← argmin

xπj

E(x1, . . . , xn) . (5.4)

This block coordinate descent algorithm is guaranteed to decrease energy at ev-

ery iteration and, for energies as in Eq. (5.3), to converge to a Nash equilibrium

(Xu and Yin, 2013, Thm. 2.3); in addition, it is conveniently learning-rate free. For

training, to tackle the bi-level optimization problem, we unroll the coordinate de-

scent iterations, and minimize some loss with standard deep learning optimizers,

like stochastic gradient or Adam (Kingma and Ba, 2014).

The following result, proved in Appendix C, shows that the coordinate de-

scent algorithm (Eq. (5.4)) for UNNs with multilinear factor energies (Eq. (5.3)),

corresponds to standard forward propagation on an unrolled neural network.
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Lemma 1 (Unrolling Lemma). Let G = (V, F ) be a pairwise factor graph, with mul-

tilinear higher-order energies and strictly convex unary energies, as in Eq. (5.3).

Then, the coordinate descent updates (5.4) result in a chain of affine transfor-

mations (i.e., pre-activations) followed by non-linear activations, applied in the

order π, yielding a traditional computation graph.

We show next an undirected construction inspired by (directed) multi-layer

perceptrons.

Single pairwise factor The simplest possible UNN has a pairwise factor con-

necting two variables X,H. We may interpret X as an input, and H either as an

output (in supervised learning) or a hidden representation in unsupervised learn-

ing (Fig. 5.2(a)). Bilinear-convex energies as in Eq. (5.3) yield:

EXH(x, h) = −⟨h,Wx⟩ ,

EX(x) = −⟨x, bX⟩+ΨX(x) ,

EH(h) = −⟨h, bH⟩+ΨH(h) .

(5.5)

This resembles a Boltzmann machine with continuous variables (Smolensky, 1986;

Hinton, 2007; Welling et al., 2004); however, in contrast to Boltzmann machines,

we do not model joint probability distributions, but instead use factor graphs as

representations of deterministic computation, more akin to computation graphs.

Given x, the updated h minimizing the energy is:

h⋆ = argmin
h∈RM

−(Wx+ bH)
⊤h+ΨH(h)

= (∇Ψ∗
H)(Wx+ bH),

(5.6)

where ∇Ψ∗
H is the gradient of the conjugate function of ΨH. Analogously, the up-

date for X given H is:

x⋆ = (∇Ψ∗
X)(W

⊤h+ bX) . (5.7)
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Ψ(h) (∇Ψ∗)(t)

1
2∥h∥

2 t

1
2∥h∥

2 + ιR+(h) relu(t)∑
j

(
ϕ(hj) + ϕ(1− hj)

)
+ ι[0,1]d(h) sigmoid(t)∑

j

(
ϕ
(
1+hj

2

)
+ ϕ

(
1−hj

2

))
+ ι[−1,1]d(h) tanh(t)

−H(h) + ι∆(h) softmax(t)

Table 5.1: Examples of regularizers Ψ(h) corresponding to some common acti-
vation functions, where ϕ(t) = t log t.

X H Y

X H* Y* H* Y* H*
Y*
=Y

Figure 5.1: Unrolling the computation graph for undirected MLP with a single
hidden layer. Top: MLP with one hidden layer. Bottom: Unrolled graph for UNN
with k = 3 iterations.

Other than the connection to Boltzmann machines, one round of updates of H

and X in this order also describe the computation of an auto-encoder with shared

encoder/decoder weights.

Table 5.1 shows examples of regularizers Ψ and their corresponding ∇Ψ∗, In

practice, we never evaluateΨorΨ∗, but only∇Ψ∗, which we choose among commonly-

used neural network activation functions like tanh, relu, and softmax.

Undirected multi-layer perceptron (MLP) Fig. 5.2(b) shows the factor graph

for an undirected MLP analogous to a feed-forward one with input X, output Y,

and a single hidden layer H. As in Eq. (5.3), we have bilinear pairwise factors

EXH(x, h) = −⟨h,Wx⟩ , EHY(h, y) = −⟨y, V h⟩ , (5.8)
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X

Q K

V S

H

(e)

EXH(X,H)

EX(X) X

HM

Y

EHMY(H,M,Y)

(d)

EXM(X,M)

EH(H)

EY(Y)

X

H

(a)

X

H

Y

(b)

X

H1

H2

Y

(c)

Figure 5.2: Factor graphs for: (a) network without intermediate layers, (b-c) undi-
rected MLPs with one or two layers, (d) undirected biaffine dependency parser,
(e) undirected self-attention. Energy labels ommitted for brevity with the excep-
tion of (d).

and linear-plus-convex unaries EZ(x) = −⟨x, bZ⟩ + ΨZ(x) for Z ∈ {X,H,Y}. If x is

observed (fixed), coordinate-wise inference updates take the form:

h⋆ = (∇Ψ∗
H)(Wx+ V ⊤y + bH) ,

y⋆ = (∇Ψ∗
Y)(V h+ bY) .

(5.9)

Note that EX does not change anything if X is always observed. The entire algo-

rithm can be unrolled into a directed computation graph, leading to a deep neural

network with shared parameters (Fig. 5.1).

The regularizers ΨH and ΨY may be selected based on what we want ∇Ψ∗ to

look like, and the constraints or domains of the variables. For instance, if Y is

a multiclass classification output, we may pick ΨY such that ∇Ψ∗
Y be the softmax

function, and ΨH to induce a relu nonlinearity. Initializing y(0) = 0 and performing

a single iteration of updating H followed by Y results in a standard MLP with a

single hidden layer (see also Fig. 5.1). However, the UNN point of view lets us

decrease energy further by performing multiple iterations, as well as use the same

model to infer any variables given any other ones, e.g., to predict x from y instead

of y from x. We demonstrate this power in Sections 5.3 to 5.5.

The above constructions provide a flexible framework for defining UNNs. How-
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ever, UNNs are more general and cover more popular deep learning architectures.

The following constructions illustrate some such connections.

Feed-forward neural networks Any directed computation graph associated

with a neural network is a particular case of an UNN. We illustrate this for a simple

feed-forward network, which chains the functions h = f(x) and y = g(h), where

x ∈ Rm, h ∈ Rd, y ∈ Rn are input, hidden, and output variables, and f : Rm → Rd

and g : Rd → Rn are the functions associated to each layer (e.g., an affine transfor-

mation followed by a non-linearity). This factor graph is illustrated in Fig. 5.2(b).

To see this, let V = {X,H,Y} and F = {XH,HY} and define the energies as follows.

Let d : Rd × Rd → R+ be any distance function satisfying d(a, b) ≥ 0, with equal-

ity iff a = b; for example d(a, b) = ∥a − b∥. Let all the unary energies be zero and

define the factor energies EXH(x, h) = d(h, f(x)) and EHY(h, y) = d(y, g(h)). Then

the total energy satisfies E(x, h, y) ≥ 0, with equality iff the equations h = f(x) and

y = g(h) are satisfied – therefore, the energy is minimized (and becomes zero)

when y = g(f(x)), matching the corresponding directed computation graph. This

can be generalized for an arbitrary deterministic neural network. This way, we

can form UNNs that are partly directed, partly undirected, as the whole is still an

UNN. We do this in our experiments in Section 5.5, where we fine-tune a pre-

trained BERT model appended to a UNN for parsing.

Implicit layers UNNs include networks with implicit layers (Duvenaud et al.,

2020), a paradigm which, in contrast with feed-forward layers, does not specify

how to compute the output from the input, but rather specifies conditions that

the output layer should specify, often related to minimizing some function, e.g.,

computing a layer hi+1 given a previous layer hi involves solving a possibly difficult

problem argminh f(hi, h). Such a function f can be directly interpreted as an energy

in our model, i.e., EHiHi+1
= f .
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5.3 Image Classification and Visualization

Unlike feed-forward networks, where the processing order is hard-coded from

inputs X to outputs Y, UNNs support processing in any direction. We can thus use

the same trained network both for classification as well as for generating proto-

typical examples for each class. We demonstrate this on the MNIST dataset of

handwritten digits (LeCun et al., 1998), showcasing convolutional UNN layers.

The architecture is shown in Fig. 5.2(c) and has the following variables: the

image X, the class label Y and two hidden layer variables H{1,2}. Unlike the previous

examples, the two pairwise energies involving the image and the hidden layers are

convolutional, i.e., linear layers with internal structure:

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,
(5.10)

where C1,2 are linear cross-correlation operators with stride two and filter weights

W1 ∈ R32×1×6×6 and W2 ∈ R64×32×4×4. The last layer is fully connected:

EH2Y(H2, y) = −⟨V, y ⊗H2⟩ . (5.11)

The unary energies for the hidden layers contain standard (convolutional) bias

term along with the binary entropy term Ψtanh(H) such that ∇Ψ∗
tanh(t) = tanh(t)

(see Table 5.1). Note that X is no longer a constant when generating X given Y,

therefore it is important to specify the unary energy EX. Since pixel values are

bounded, we set EX(x) = Ψtanh(x). Initializing H1, H2, and y with zeroes and updat-

ing them once blockwise in this order yields exactly a feed-forward convolutional

neural network. As our network is undirected, we may propagate information in

multiple passes, proceeding in the orderH1,H2,Y,H2 iteratively. The update forH1

involves a convolution of X and a deconvolution of H2; we defer the other updates
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Iterations Accuracy

k = 1, γ = 0 (baseline) 98.80
k = 1 98.75
k = 2 98.74
k = 3 98.83
k = 4 98.78
k = 5 98.69

Table 5.2: MNIST accuracy with convolutional UNN.

to Appendix D:

(H1)⋆= tanh(C1(X;W1) + C⊤2 (H2;W2) + b1 ⊗ 1d1) , (5.12)

where b1 ∈ R32 are biases for each filter, and d1 = 12 × 12 is the convolved im-

age size. To generate digit prototype X from a given class c ∈ {1, . . . , 10}, we

may set y = ec, initialize the other variables at zero (including X), and solve X̂ =

argminX minH1,2 E(X,H1, H2, y) by coordinate descent in the reverse orderH2,H1,X,H1

iteratively.

We train our model jointly for both tasks. For each labeled pair (X, y) from the

training data, we first predict ŷ given X, then separately predict X̂ given y. The

incurred loss is a weighted combination ℓ(x, y) = ℓf (y, ŷ) + γℓb(X, X̂), where ℓf is a

10-class cross-entropy loss, and ℓb is a binary cross-entropy loss averaged over all

28× 28 pixels of the image. We use γ = .1 and an Adam learning rate of .0005.

The classification results are shown in Table 5.2. The model is able to achieve

high classification accuracy, and multiple iterations lead to a slight improvement.

This result suggests the reconstruction loss for X can also be seen as a regular-

izer, as the same model weights are used in both directions. The more interesting

impact of multiple energy updates is the image prototype generation. In Fig. 5.3

we show the generated digit prototypes after several iterations of energy mini-

mization, as well as for models with a single iteration. The networks trained as

UNNs produce recognizable digits, and in particular the model with more iter-
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t = 1 t = 2 t = 3 t = 4 t = 5

(a)

t = 1

(b)

t = 1

(c)

Figure 5.3: Digit prototypes generated by convolutional UNN. (a) best UNN (k =
5, α = .1), (b) single iteration UNN (k = 1, α = .1), (c): standard convnet (k = 1, α =
0).

ations learns to use the additional computation to produce clearer pictures. As

for the baseline, we may interpret it as an UNN and apply the same process to

extract prototypes, but this does not result in meaningful digits (Fig. 5.3c). Note

that our model is not a generative model – in that experiment, we are not sam-

pling an image according to a probability distribution, rather we are using energy

minimization deterministically to pick a prototype of a digit given its class.

Results for forward-only UNN In addition to the results for forward-backward

training of the UNN, we also report results from training the UNN only in forward

mode with γ = 0, i.e. when the model is trained for image classification only. The

results are in Table 5.3.

Comparison of UNN to Unconstrained Model As per Fig. 5.1, an unrolled

UNN can be seen as a feed-forward network with a specific architecture and with

weight tying. To confirm the benefit of the UNN framework, we compare against
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Iterations Accuracy

k = 1, γ = 0 (baseline) 98.80
k = 2 98.82
k = 3 98.75
k = 4 98.74
k = 5 98.69

Table 5.3: MNIST accuracy with convolutional UNN in forward-only mode (i.e.
γ = 0).

an unconstrained model, i.e., with the same architecture but separate, untied

weights for each unrolled layer. We use as a base the model described in forward-

only mode and train a model with 2 to 5 layers with different weights instead of

shared weights as in the case with the UNN. Depending on the number of layers,

we cut the number of parameters in each layer, in order to obtain models with

the same number of parameters as the UNN for fair comparison. The results from

the experiment are described in Table 5.4.

k = 1 k = 2 k = 3 k = 4 k = 5

Accuracy UNN 98.80 98.82 98.75 98.74 98.69

Accuracy unc. 98.76 98.45 98.32 97.39

# params unc. 50026 51220 51651 53608 51750

Table 5.4: Comparison of UNN with an unconstrained model (unc.) with the same
number of layers as the UNN iterations. The number of parameters of the UNN
and the unconstrained model is roughtly the same.

Analysis of Alternative Initialization Strategies In addition to the zero ini-

tialization for the output variable y, we also experiment with two more initializa-

tion strategies - random and uniform initialization. For the random initialization,

we initialize y with random numbers from a uniform distribution on the inter-

val [0, 1) and apply softmax. For the uniform initialization, we assign equal values

summing to one. We compare to the zero initialization strategy on the MNIST

forward-backward experiment with γ = .1. The results are presented in Table 5.5.

Random initialization shows promise, but the differences are small, and zero-init
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has the advantage of clearer parallels to the feed-forward case, so we report that

and use it throughout all other experiments. The alternative initialization strate-

gies can be further explored in further work.

Initialization k = 1 k = 2 k = 3 k = 4 k = 5

zero 98.75 98.74 98.83 98.78 98.69
random 98.77 98.83 98.90 98.85 98.70
uniform 98.76 98.74 98.83 98.78 98.68

Table 5.5: Comparison of different initialization strategies for the MNIST exper-
iment.

5.4 Undirected Attention Mechanism

Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is a key component that

enables neural networks to handle variable-length sequences as input. In this

section, we propose an undirected attention mechanism (Fig. 5.2(e)). We demon-

strate this model on the task of completing missing values in a sequence of dy-

namic length n, with the variable X serving as both input and output, taking val-

ues X ∈ Rd×n, queries, keys and values taking values Q,K, V ∈ Rn×d, and attention

weights S ∈ (△n)
n, where d is a fixed hidden layer size. Finally, H is an induced

latent sequence representation, with values H ∈ Rn×d. The only trainable pa-

rameters are WQ,WK,WV ∈ Rd×d, and the input embeddings. We model scaled

dot-product attention given with softmax(d−
1
2QK⊤)V . For all variables except S,

we set E·(·) = 1
2
∥ · ∥2. For the attention weights, we use ES(S) = −

√
d
∑n

i=1H(Si).
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The higher-order energies are:

EXQ(X,Q) = −⟨Q,WQ(X + P )⟩ ,

EXK(X,K) = −⟨K,WK(X + P )⟩ ,

EXV(X, V ) = −⟨V,WV(X + P )⟩ ,

EQKS(Q,K, S) = −⟨S,QK⊤⟩ ,

EVSH(V, S,H) = −⟨H,SV ⟩ ,

(5.13)

where P is a matrix of sine and cosine positional embeddings of same dimensions

as X Vaswani et al. (2017).

Minimizing the energy yields the blockwise updates:

Q⋆ = WZ(X + P ) + SK ,

K⋆ = WK(X + P ) + S⊤Q ,

V⋆ = WV(X + P ) + S⊤H ,

S⋆ = softmax
(
d−1/2(QK⊤ + V H⊤)

)
,

H⋆ = SV ,

X̄⋆ = V̄ WV + Q̄WQ + K̄WK,

(5.14)

where X̄ denotes only the rows of X corresponding to the masked (missing) en-

tries.

Provided zero initialization, updating in the order (V/Q/K), S,H corresponds

exactly to a forward pass in a standard self-attention. However, in an UNN, our

expressions allow backward propagation back toward X, as well as iterating to an

equilibrium. To ensure that one round of updates propagates information through

all the variables, we employ the “forward-backward” orderQ,K,V, S,H, S,V,K,Q, X̄.

We evaluate the performance of the undirected attention with a toy task of

sequence completion. We generate a toy dataset of numerical sequences between

1 and 64, of length at least 8 and at most 25, in either ascending or descending
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consecutive order. We mask out up to 10% of the tokens and generate all possible

sequences, splitting them into training and test sets with around 706K and 78K

instances. Undirected self-attention is applied to the input sequence. Note that

because of the flexibility of the architecture, the update of the input variable X

does not differ from the updates of the remaining variables, because each variable

update corresponds to one step of coordinate descent. The model incurs a cross-

entropy loss for the missing elements of the sequence and the parameters are

updated using Adam with learning rate 10−4. The hidden dimension is d = 256,

and gradients with magnitude beyond 10 are clipped.

Undirected attention is able to solve this task, reaching over 99.8% test accu-

racy, confirming viablity.

Figure 5.4 show examples of the weights of the undirected self-attention. The

attention weights are the values of the variable S calculated in the forward and

backward pass.

We next analyze how the order of variable updates and the number of update

passes during training affect the model performance.

Order of variable updates. We showed that one pass of the “forward-backward”

order or variable updates (Q,K,V, S,H, S,V,K,Q, X̂) performs well enough for the

of sequence completion. Since the flexibility of our model does not limit us to

a specific order, we compare it to a random order of updating the variables (a

permutation of Q,K,V, S,H; X̂ is always updated last). One pass over the “forward-

backward” order performs nine variable updates, and one pass over the random

order - five. In Fig. 5.6 we show how the two ways of order perform for different

number of variable updates (for example, 2 passes over the “forward-backward”

model equal 18 variable updates, and over the random model - 10). The “forward-

backward” order performs best, but the random order can achieve similar perfor-

mance after enough number of updates.
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Figure 5.4: Example of the self-attention weights for models trained with k = 1
(left) and k = 2 after one iteration (middle) and two iterations (right). For k = 2,
the model is more like an unrolled two-layer attention mechanism, with the first
step identifying an off-diagonal pattern and the latter pooling information into an
arbitrary token.

Number of Energy Update Iterations In addition to comparing the number of

energy update iterations k, we also try setting a random number of updates during

training. Instead of specifying a fixed number of iterations k, we take a random

k between 1 and 5 and train the model with it. We evaluate the performance on

inference with k = 3 (the average value). In Fig. 5.5 we compare the performance

of the best model trained with random number of iterations k with the best per-

forming models trained with fixed k. As the plots show, the model trained with a
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Figure 5.5: Learning curves for random number of variable update passes - for
“forward-backward” (top) and random (bottom) order of operation updates.

random number of iterations performs on par with the best models with fixed k,

but takes more time to train.
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Figure 5.6: Comparison of the test accuracy) for models with random and
“forward-backward” order of variable updates. Markers indicate one full itera-
tion.

5.5 Structured UNNs for Dependency Parsing

The concept of UNN can be applied to structured tasks – all we need to do is to

define structured factors, as shown next.

We experiment with a challenging structured prediction task from natural lan-

guage processing: unlabeled, non-projective dependency parsing (Kübler et al.,

2009). Given a sentence with n words, represented as a matrix X ∈ Rr×n (where

r is the embedding size), the goal is to predict the syntactic relations as a depen-

dency tree, i.e., a spanning tree which has the words as nodes. The output can be

represented as a binary matrix Y ∈ Rn×n, where the (i, j)th entry indicates if there

is a directed arc i → j connecting the ith word (the head) and jth word (the modi-

fier). Fig. 5.8 shows examples of dependency trees produced by this model. We

use a probabilistic model where the output Y can more broadly represent a prob-

ability distribution over trees, represented by the matrix of arc marginals induced

by this distribution (illustrated in Fig. 5.7).

Biaffine parsing. A successful model for dependency parsing is the biaffine one

(Dozat and Manning, 2016; Kiperwasser and Goldberg, 2016). This model first
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Figure 5.7: “Packed” matrix representation of a dependency tree (left) and de-
pendency arc marginals (right). Each element corresponds to an arc h→m, and the
diagonal corresponds to the arcs from the root, *→m. The marginals, computed
via the matrix-tree theorem, are the structured counterpart of softmax, and cor-
repond to arc probabilities.

computes head representations H ∈ Rd×n and modifier representations M ∈ Rd×n,

via a neural network that takes X as input – here, d denotes the hidden dimension

of these representations. Then, it computes a score matrix as Z = H⊤VM ∈ Rn×n,

where V ∈ Rd×d is a parameter matrix. Entries of Z can be interpreted as scores

for each candidate arc. From Z, the most likely tree can be obtained via the Chu-

Liu-Edmonds maximum spanning arborescence algorithm (Chu and Liu, 1965;

Edmonds, 1967), and probabilities and marginals can be computed via the matrix-

tree theorem (Koo et al., 2007; Smith and Smith, 2007; McDonald and Satta, 2007;

Kirchhoff, 1847).

UNN for parsing. We now construct an UNN with the same building blocks as

this biaffine model, leading to the factor graph in Fig. 5.2(d). The variable nodes

are {X,H,M,Y}, and the factors are {XH,XM,HMY}. Given parameter weight ma-

trices V,WH,WM ∈ Rd×d and biases bH, bM ∈ Rd, we use bilinear and trilinear factor

energies as follows:

EXH(X,H) = −⟨H,WHX⟩ ,

EXM(X,M) = −⟨M,WMX⟩ ,

EYHM(Y,H,M) = −⟨Y,H⊤VM⟩ .

(5.15)

76



5.5. STRUCTURED UNNS FOR DEPENDENCY PARSING
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Figure 5.8: Examples of dependency trees produced by the parsing model for
a sentence in Portuguese. The baseline model (a) erroneously assigns the noun
aplicações as the syntactic head of the adjective longos. The UNN with k = 2
iterations (b) matches the gold parse tree for this sentence, eventually benefiting
from the structural information propagated back from the node Y after the first
iteration.

For H and M, we use the ReLU regularizer,

EH(H) = −⟨bH ⊗ 1n, H⟩+
1

2
∥H∥2 + ι≥0(H)

EM(M) = −⟨bM ⊗ 1n,M⟩+
1

2
∥M∥2 + ι≥0(M) .

(5.16)

For Y, however, we employ a structured entropy regularizer:

EY(Y ) = −HM(Y ) + ιM(Y ) , (5.17)

where M = conv(Y) is the marginal polytope (Wainwright and Jordan, 2008b;

Martins et al., 2009), the convex hull of the adjacency matrices of all valid non-

projective dependency trees (Fig. 5.7), andHM(Y ) is the maximal entropy over all

distribution over trees with arc marginals Y :

HM(Y ) := max
α∈△|Y|

H(α) s.t. EA∼α[A] = Y . (5.18)
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Derivation of block coordinate descent updates. To minimize the total en-

ergy, we iterate between updating H, M and Y k times, similar to the unstructured

case.

The updates for the heads and modifiers work out to:

H⋆ = relu(WHX + bH ⊗ 1n + VMY ⊤) ,

M⋆ = relu(WMX + bM ⊗ 1n + V ⊤HY ) .

(5.19)

For Y, however, we must solve the problem

Y⋆ = argmin
Y ∈M

−⟨Y,H⊤VM⟩ − HM(Y ) . (5.20)

This combinatorial optimization problem corresponds to marginal inference (Wain-

wright and Jordan, 2008b), a well-studied computational problem in structured

prediction that appears in all probabilistic models. While generally intractable,

for non-projective dependency parsing it may be computed in time O(n3) via the

aforementioned matrix-tree theorem, the same algorithm required to compute

the structured likelihood loss.3

With zero initialization, the first iteration yields the same hidden representa-

tions and output as the biaffine model, assuming the updates are performed in the

order described. The extra terms involving VMY ⊤ and V ⊤HY enable the current

prediction for Y to influence neighboring words, which leads to a more expressive

model overall.

Experiments. We experiment with the UNN for parsing described above. We

test the architecture on several datasets from Universal Dependencies 2.7 (Ze-

man et al., 2020), covering different language families and dataset size: Afrikaans

(AfriBooms), Arabic (PADT), Czech (PDT), English (Partut), Hungarian (Szeged),

Italian (ISDT), Persian (Seraji), Portuguese (Bosque), Swedish (Talbanken), and

3During training, the matrix-tree theorem can be invoked only once to compute both the update
to Y as well as the gradient of the loss, since ∇ log p(Y = Ytrue) = Ytrue − Ŷ .
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Telugu (MTG). Performance is measured by three metrics:

• Unlabeled attachment score (UAS): a fine-grained, arc-level accuracy metric.

• Modifier list accuracy: the percentage of head words for which all modifiers

were correctly predicted. For example, in Fig. 5.8, the baseline correctly pre-

dicts all modifiers for the words perspectiva, abre, longos, but not for the words

aplicações, prazo.

• Exact match: the percentage sentences for which the full parse tree is correctly

predicted: the harshest of the metrics.

The latter, coarser measures can give more information whether the model is

able to learn global relations, not just how to make local predictions correctly

(i.e., when only prediction of the arcs is evaluated).

Our architecture is as follows: First, we pass the sentence through a BERT

model (bert-base-multilingual-cased, fine-tuned during training, as directed net-

works can be added as components to UNNs, as mentioned in Section 5.2) and

get the word representations of the last layer. These representations are the in-

put x in the UNN model. Then, we apply the parsing model described in this

section. The baseline (k = 1) corresponds to a biaffine parser using BERT fea-

tures. The learning rate for each language is chosen via grid search for highest

UAS on the validation set for the baseline model. We searched over the values

{0.1, 0.5, 1, 5, 10}× 10−5. In the experiments, we use 10−5 for Italian and 5× 10−5 for

the other languages. We employ dropout regularization, using the same dropout

mask for each variable throughout the inner coordinate descent iterations, so that

dropped values do not leak.

The results from the parsing experiments are displayed in Table 5.6. The num-

bers in the table show results on the test set for the highest validation accuracy

epoch. We see that some of the languages seem to benefit from the iterative pro-

cedure of UNNs (CS, HU, TE), while others do not (EN, AF), and little difference
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is observed in the remaining languages. In general, the baseline (k = 1) seems to

attain higher accuracies in UAS (individual arcs), but most of the languages have

overall more accurate structures (as measured by modifier list accuracy and by

exact match) for k > 1. Fig. 5.8 illustrates with one example in Portuguese.

5.6 Related Work

Besides the models mentioned in Section 5.2 which may be regarded as particular

cases of UNNs, other models and architectures, next described, bear relation to

our work.

Probabilistic modeling of joint distributions Our work draws inspiration from

the well-known Boltzmann machines and Hopfield networks (Ackley et al., 1985;

Smolensky, 1986; Hopfield, 1984). We consider deterministic networks whose

desired configurations minimize an energy function which decomposes as a fac-

tor graph. In contrast, many other works have studied probabilistic energy-based

models (EBM) defined as Gibbs distributions, as well as efficient methods to learn

those distributions and to sample from them (Ngiam et al., 2011; Du and Mor-

datch, 2019). Similar to how our convolutional UNN can be used for multiple pur-

poses in Section 5.3, Grathwohl et al. (2020a) reinterprets standard discriminative

classifiers p(y|x) as an EBM of a joint distribution p(x, y). Training stochastic EBMs

requires Monte Carlo sampling or auxiliary networks (Grathwohl et al., 2020b);

in contrast, our deterministic UNNs, more aligned conceptually with determin-

istic EBMs (LeCun et al., 2006), eschew probabilistic modeling in favor of more

direct training. Moreover, our UNN architectures closely parallel feed-forward

networks and reuse their building blocks, uniquely bridging the two paradigms.

Structured Prediction Energy Networks (SPENs) We saw in Section 5.5 that

UNNs can handle structured outputs. An alternative framework for expressive

structured prediction is given by SPENs (Belanger and McCallum, 2016). Most
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SPEN inference strategies require gradient descent, often with higher-order gra-

dients for learning (Belanger et al., 2017), or training separate inference networks

(Tu et al., 2020). UNNs in contrast, are well suited for coordinate descent infer-

ence: a learning-rate free algorithm with updates based on existing neural net-

work building blocks. An undirected variant of SPENs would be similar to the

MLP factor graph in Fig. 5.2(b), but with X and Y connected to a joint, higher-

order factor, rather than via a chain X− H− Y.

Universal transformers and Hopfield networks In Section 5.4 we show how

we can implement self-attention with UNNs. Performing multiple energy updates

resembles – but is different from – transformers (Vaswani et al., 2017) with shared

weights between the layers. Our perspective of minimizing UNNs with coordi-

nate descent using a fixed schedule and this unrolling is similar (but not exactly

the same due to the skip connections) to having deeper neural networks which

shared parameters for each layer. Such an architecture is the Universal Trans-

former (Dehghani et al., 2018), which applies a recurrent neural network to the

transformer encoder and decoder. Recent work (Ramsauer et al., 2020) shows

that the self-attention layers of transformers can be regarded as the update rule

of a Hopfield network with continuous states (Hopfield, 1984). This leads to a

“modern Hopfield network” with continuous states and an update rule which en-

sures global convergence to stationary points of the energy (local minima or sad-

dle points). Like that model, UNNs also seek local minima of an energy function,

albeit with a different goal.

Deep models as graphical model inference. This line of work defines neural

computation via approximate inference in graphical models. Domke (2012) de-

rives backpropagating versions of gradient descent, heavy-ball and LBFGS. They

require as input only routines to compute the gradient of the energy with re-

spect to the domain and parameters. Domke (2012) studies learning with unrolled
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gradient-based inference in general energy models. UNNs, in contrast, allow effi-

cient, learning rate free, block-coordinate optimization by design. An exciting line

of work derives unrolled architectures from inference in specific generative mod-

els (Hershey et al., 2014; ?; Lawson et al., 2019)—a powerful construction at the

cost of more challenging optimization. The former is closest to our strategy, but

by starting from probabilistic models the resulting updates are farther from con-

temporary deep learning (e.g., convolutions, attention). In contrast, UNNs can

reuse successful implementations, modular pretrained models, as well as struc-

tured factors, as we demonstrate in our parsing experiments. We believe that our

UNN construction can shed new light over probabilistic inference models as well,

uncovering deeper connections between the paradigms.

5.7 Conclusions and Future Work

We presented UNNs – a structured energy-based model which combines the

power of factor graphs and neural networks. At inference time, the model en-

ergy is minimized with a coordinate descent algorithm, allowing reuse of existing

building blocks in a modular way with guarantees of decreasing the energy at each

step. We showed how the proposed UNNs subsume many existing architectures,

conveniently combining supervised and unsupervised/self-supervised learning, as

demonstrated on the three tasks.

We hope our first steps in this chapter will spark multiple directions of future

work on undirected networks.
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Language k = 1 k = 2 k = 3 k = 4 k = 5

Unlabeled attachment score

AF 89.09 88.98 88.40 87.77 88.46
AR 85.62 84.94 84.22 83.69 83.63
CS 93.79 93.83 93.82 93.60 93.77
EN 91.96 91.86 91.09 91.99 91.51
FA 83.41 83.27 82.95 83.37 83.27
HU 85.11 85.77 84.47 85.13 84.09
IT 94.76 94.43 94.35 94.59 94.45
PT 96.99 97.00 96.83 97.06 96.90
SW 91.42 90.92 91.30 91.08 90.98
TE 89.72 89.72 90.00 88.45 87.75

Modifier list accuracy

AF 74.10 72.60 72.90 71.78 72.01
AR 70.44 69.29 68.41 68.08 68.19
CS 84.46 84.82 84.93 84.12 84.49
EN 79.08 77.73 75.20 78.90 79.44
FA 64.80 66.75 65.28 66.67 65.85
HU 64.13 66.07 64.37 62.91 64.13
IT 85.32 83.59 83.71 83.94 84.05
PT 90.10 90.69 90.39 90.66 90.49
SW 79.07 78.37 78.52 78.60 78.24
TE 72.87 72.87 73.68 66.80 65.99

Exact match

AF 37.70 33.88 34.43 33.88 32.79
AR 19.44 19.29 18.36 19.91 18.36
CS 59.17 60.76 60.92 59.42 59.84
EN 48.59 44.37 40.14 43.66 44.37
FA 21.52 22.15 22.78 24.68 23.42
HU 21.13 23.40 24.15 23.40 21.51
IT 64.93 63.54 62.85 63.89 64.24
PT 73.24 74.86 73.89 74.43 74.11
SW 54.62 52.38 54.13 53.94 52.67
TE 75.69 77.08 79.17 71.53 70.14

Table 5.6: Results from experiments with parsing with structured UNNs. The
columns show the number of UNN iterations. The best result for each row is
rendered in bold.
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In this chapter, we summarize our contributions and conclusions and suggest

some directions for future work.

6.1 Summary of Contributions

In this thesis, we have contributed to three main areas related to modeling and

predicting structure in deep neural models for natural language processing.

Exposure Bias, Scheduled Sampling and Transformers We address the prob-

lem of exposure bias in the transformer model. Scheduled sampling has been pro-

posed for recurrent neural network architectures to address exposure bias, but

in transformers applying it is not straight-forward. We proposed a two-decoder

transformer architecture which addresses the problem with exposure bias for the

transformer model. In the first decoder pass, the output sequence is predicted

as usual. Then, a mix of the model output and the gold target sequence is passed

and the final model output is predicted based on this mix with the second decoder

call. This method has been further extended and improved by other researchers.

Discrete Latent Structures In NLP models, modeling structure as a latent vari-

able, can combine the transparency of the pipeline approach with the end-to-end

unsupervised representation learning and make deep models appealing. Learn-

ing with discrete, combinatorial latent variables is, however, challenging, due to

the intersection of large cardinality and null gradient issues. In this thesis we stud-

ied surrogate gradient methods for deterministic learning with discrete structured

latent variable. We propose a novel motivation for surrogate gradient methods,

based on optimizing a pulled-back loss, thereby inducing pseudo-supervision on

the latent variable. This leads to new insight into STE and SPIGOT. We show

how our framework may be used to derive new surrogate gradient methods, by

varying the loss function or the inner optimization algorithm used for inducing

the pseudo-supervision. We experimentally validate our discoveries on a con-
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trollable experiment as well as on English language sentiment analysis and natural

language inference, comparing against stochastic and relaxed alternatives, yield-

ing new insights, and identifying noteworthy failure cases.

Undirected Neural Networks and Modularity We combine the representa-

tional strengths of factor graphs and neural networks and we propose undirected

neural networks (UNNs) – a framework in which outputs are not computed by

evaluating a composition of functions in a given order, but are rather obtained

implicitly by minimizing an energy function which factors over a graph. We show

how, for particular choices of the factor potentials, the UNNs subsume many ex-

isting neural architectures. We provide a coordinate descent inference algorithm,

which can reuse current building blocks from feed-forward networks in a modular

way. We develop and experiment with multiple factor graph architectures, tack-

ling both structured and unstructured tasks, such as natural language parsing, im-

age classification, and image prototype generation. We develop a new undirected

attention mechanism and demonstrate its suitability for sequence completion.

6.2 Future Work

Modular training of neural networks As we described in Chapter 1, natural

language is rich in structure and many NLP tasks can be composed into smaller

and well-defined subtasks. It makes sense to train those subtasks as separate mod-

ules, which can be plugged-in to models solving different more complex tasks. For

example, in the case with sentiment classification with latent dependency pars-

ing in Chapter 4, the parsing can be trained as a separate smaller neural network

module which could be plugged-in to a model for sentiment classification, natural

language inference (as in Chapter 4), machine translation, or any other task, for

which parsing the sentence makes sense for the downstream task. Methods for

training of models with discrete latent structures, as in Chapter 4 can be used to
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allow training the subtask modules as part of the bigger model. The undirected

neural networks approach in Chapter 5 could allow flexible composition of mod-

ules and enable various configurations of combining modules, not just for NLP,

but also in other domains.

Semi-Supervised Learning with Discrete Latent Structures In Chapter 4,

we used no supervision about the latent structure. It is intuitive to think of train-

ing these models when we have full or partial supervision of the latent variable. It

would be interesting to explore how the models behave when partial supervision

is available. For example, when training a model with latent syntax, information

about the gold syntax tree could be present or predicted one from external parser

and this information can be used on training time. If partial supervision on the

latent variable leads to improvement of the performance on a downstream task,

this would open possibilities to include linguistic and other kind of knowledge

to models for which we have partial supervision for some components indirectly

related to the downstream task. Including such external knowledge would hope-

fully guide the model to learn faster and with less computation resources. This is

an intuitive extension of our work on latent structures described in Chapter 4.

Modules with Discrete Output In our work with discrete latent structures, we

define the update of the latent variable as a result of optimizing the pulled-back

loss on the downstream task. This led to the idea that we can use this formula-

tion to pretrain modules which output this latent variable and combine several

such modules to train a bigger model. In this concept of modularity, having the

option of a module/component with discrete output is important, because it al-

lows flexibility of the choice of modules. Training of modules with latent output

is closely related to our work on latent structures in Chapter 4. The insights about

the formulation of updating the latent variable as a pullback loss can be used to

find clever ways to backpropagate through the modules with discrete output and
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include them more easily in the overall model. The challenge is that it needs to

be defined how such modules could be pretrained without supervision or with

only partial supervision. The main goal of such work would be to enable training

of separate modules which output a discrete result, in order to use these mod-

ules as building blocks of a multi-modular architecture. Modules trained with this

approach could be plugged-in in the UNN model described in Chapter 5. In the

Greedy Infomax paper (Löwe et al., 2019), each module outputs representations

of the input. A possible direction for self-supervised training of modules with dis-

crete output is to use their framework as a base and explore the possibilities for

extending it to cases where the output is discrete. This kind of modular train-

ing and unsupervised training of modules with discrete output would allow use of

semi-supervision for modules for which we have information as part of training

the whole system. The goal would be to allow easy module organization and re-

placement, as well as exploration which modules are important for training the

system for a downstream task.

Extensions and Applications of Undirected Neural Networks In Chapter 5,

we defined undirected neural networks, showed how they subsume existing ar-

chitectures, trained them with gradient descent by unrolling the factor graph and

demonstrated several possible architectures. We hope our first steps will spark

multiple directions of future work on undirected networks. One promising direc-

tion is on probabilistic UNNs with Gibbs sampling or mean field theory (Saul et al.,

1996; Henderson and Titov, 2010), which have the potential to bring our modu-

lar architectures to generative models. Another direction is to consider alternate

training strategies for UNNs. Our strategy of converting UNNs to unrolled neural

networks, enabled by Lemma 1 in Chapter 5, makes gradient-based training easy

to implement, but alternate training strategies, perhaps based on equilibrium con-

ditions or dual decomposition, hold promise. The flexibility of the model allows

it to be applied to various problems. There could be opportunities to apply this
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model to real-world problems. In particular, the model can be used for modular

training of problems which can be broken down into smaller components which

should be optimized together for solving the larger task. This kind of modular

training can be applied not only to NLP, but also to other domains, such as vi-

sion and speech. Undirected neural networks could also be applied for multitask

learning and training with missing data. For example, if we train the model to pre-

dict several related tasks and have missing data for some of the tasks for part of

the data, performing multiple iterations could allow the model to be trained with

partially missing data.
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B. Guillaume, C. Guillot-Barbance, T. Güngör, N. Habash, H. Hafsteinsson,
J. Hajič, J. Hajič jr., M. Hämäläinen, L. Hà Mỹ, N.-R. Han, M. Y. Hanifmuti,
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APPENDIX A

Training Details for Experiments

with Latent Structures

We trained all models with AdamW optimizer (Kingma and Ba, 2014; Loshchilov

and Hutter, 2018). The embeddings for the SST and SNLI experiments are initial-

ized with Glove embeddings of size 300 (Pennington et al., 2014), available from

https://nlp.stanford.edu/projects/glove/. The training details for all experiments

in Chapter 4 are described in Table A.1.

Computing Infrastructure Each experiment was run on a single GPU. The

setup of the computers we used is as follows:

• GPU: Titan Xp - 12GB

CPU: 16 x AMD Ryzen 1950X @ 3.40GHz - 128GB

• GPU: RTX 2080 Ti - 12GB

CPU: 12 x AMD Ryzen 2920X @ 3.50GHz - 128GB
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Synthetic Data SST SNLI

Data
Where to get it Generation script in-

cluded
https://nlp.

stanford.edu/

sentiment/

https://nlp.

stanford.edu/

projects/snli/

Preprocesing §4.5.1; attached
code.

Neutral instances re-
moved.

Dataset size
Training set 5000 6920 570K
Validation set 1000 872 10K
Test set 1000 1821 10K
Labels 2 2 3

Fixed hyperparameters
Hidden size 100 100 200
Dropout 0 0 .2
Batch size one batch 32 64
Number of epochs 10K 40 40

Optimized hyperparameters (maximizing validation accuracy)
Learning rate (×10−3) {.1, 1, 2} {.01, .02, .05, .1, .5, 1, 2} {.01, .1, .3, 1, 3, 10}

(keeping η = 1)
Pullback step size η {.1, 1, 2} {.1, 1, 10} {.001, .01, .1, 1, 10}

(for best learning
rate)

Number of model parameters
Baseline 2K 150K 340K
Model with latent structure 3K 180K 420K

Runtime (minutes)
Baseline < 1 / 1000 steps < 1 / epoch 1 / epoch
Softmax / Marginals 1 3 4
Sparsemax / SparseMAP 1 3 25
Gumbel Softmax / Perturb-and-MAP 1 5 7
STE-Softmax / STE-Marginals 1 4 6
STE-Identity 1 2 5
SPIGOT 1 3 15
SPIGOT-CE 2 4 30
SPIGOT-EG 2 5 7

Best learning rate (and pullback step size, where applicable)
Baseline .001 .00002 .0001
Softmax / Marginals .002 .0001 .0001
Sparsemax / SparseMAP .001 .00005 .0003
Gumbel Softmax / Perturb-and-MAP .002 .00005 .0001
STE-Softmax / STE-Marginals .002 .00005 .0003
STE-Identity .001 .0001 .0001
SPIGOT .002 (.1) .0001 (.1) .0003 (1)
SPIGOT-CE .001 (.1) .00005 (.1) .0001 (.1)
SPIGOT-EG .001 (.1) .00005 (.1) .0001 (.001)

Table A.1: Training details and other reproducibility information.
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APPENDIX B

Examples of Latent Trees

We performed a manual analysis of the trees output from the different models. We

notice that, on the SST dataset, most latent trees produced by most models are

flat. This agrees with related work (Williams et al., 2018; Niculae et al., 2018b).

The notable exception is SPIGOT-CE, where the average tree depth on the test

set is around 5 and trees seem more informative, suggesting benefits of the cross-

entropy loss. Figs. B.1, B.2 and B.3 show examples of the trees produced from

different models.
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(SPIGOT-CE)

An intelligent , moving and invigorating film .

1.0

1.0

1.0

1.0
1.0

1.0

1.0

(SPIGOT)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0

1.0
1.0

1.0

(SPIGOT-EG)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals, SparseMAP):

An intelligent , moving and invigorating film .

1.0
1.0

1.0
1.0

1.0 1.0
1.0

Figure B.1: Example of trees.
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(SPIGOT-CE)

A fascinating and fun film .

1.0
1.0

1.0
1.0

1.0

(SPIGOT)

A fascinating and fun film .
1.0 1.0 1.0

1.0

(SPIGOT-EG)

A fascinating and fun film .
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals)

A fascinating and fun film .
1.0 1.0

1.0
1.0

1.0

(SparseMAP)

A fascinating and fun film .

1.0
1.0

1.0 1.0
1.0

Figure B.2: Example of trees.
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(SPIGOT-CE)

A taut , intelligent psychological drama .

1.0
1.0

1.0
1.0

1.0
1.0

(SPIGOT)

A taut , intelligent psychological drama .

1.0 1.0
1.0

1.0

1.0
1.0

(all others)

A taut , intelligent psychological drama .

1.0 1.0
1.0

1.0
1.0

1.0

Figure B.3: Example of trees produced by different models for the sentence “A
taut, intelligent psychological drama.” The majority of the models produce mostly
flat trees. In contrast, SPIGOT-CE identifies the adjectives describing the key-
word “drama” and attaches them correctly.
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APPENDIX C

Proof of Lemma 1

We provide a more general proof for multilinear factor potentials, of which bi-

linear potentials are a special case. Let G = (V, F ) be the factor graph underly-

ing the UNN, with energy function E(x1, . . . , xn) =
∑

i EXi
(xi) +

∑
f Ef (xf ). We

assume EXi
(xi) = −b⊤i xi + ΨXi

(xi) for each Xi ∈ V , with ΨXi
convex, and Ef (xf ) =

−⟨Wf ,⊗j∈fxj⟩ for each higher order factor f ∈ F (multilinear factor energy), where

⊗ is the outer product, and Wf is a parameter tensor of matching dimension. For

pairwise factors f = {Xi,Xj}, the factor energy is bilinear and can be written sim-

ply as Ef (xi, xj) = −x⊤
i Wfxj.

The (block) coordinate descent algorithm updates each representation xi ∈ V

sequentially, leaving the remaining representations fixed. Let F (Xi) = {f ∈ F :

Xi ∈ f} ⊆ F denote the set of factors Xi is linked to. The updates can be written
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as:

(xi)⋆ = argmin
xi

EXi
(xi) +

∑
f∈F (Xi)

Ef (xf )

= argmin
xi

ΨXi
(xi)−b⊤i xi −

∑
f∈F (Xi)

⟨Wf ,
⊗
j∈f

xj⟩︸ ︷︷ ︸
−z⊤i xi

= (∇Ψ∗
Xi
)(zi), (C.1)

where zi is a pre-activation given by

zi =

 ∑
f∈F (Xi)

ρi(Wf )
⊗

j∈f,j ̸=i

xj

+ bi, (C.2)

and ρi is the linear operator that reshapes and rolls the axis of Wf corresponding

to xi to the first position. If all factors are pairwise, the update is more simply:

(xi)⋆ = (∇Ψ∗
Xi
)

 ∑
f={Xi,Xj}∈F (Xi)

ρi(Wf )xj + bi

 , (C.3)

where ρi is either the identity or the transpose operator. The update thus al-

ways consists in applying a (generally non-linear) transformation∇Ψ∗
Xi

to an affine

transformation of the neighbors of Xi in the graph (that is, the variables that co-

participate in some factor).

Therefore, given any topological order of the variable nodes in V , running k

iterations of the coordinate descent algorithm following that topological order

is equivalent to performing forward propagation in an (unrolled) directed acyclic

graph, where each node applies affine transformations on input variables followed

by the activation function ∇Ψ∗
Xi

.
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APPENDIX D

Derivation of updates for

convolutional UNN

The two-layer convolutional UNN is defined by the pairwise energies

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,

EH2Y(H2, y) = −⟨y, V H2⟩ ,

(D.1)

and the unary energies

EX(X) =
1

2
∥X∥22 ,

EH1(H1) = −⟨H1, b1 ⊗ 1d1⟩+Ψtanh(H1) ,

EH2(H2) = −⟨H2, b2 ⊗ 1d2⟩+Ψtanh(H2) ,

EY(y) = −⟨b, y⟩ − H(y) .

(D.2)
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Above, C1 and C2 are are linear cross-correlation (convolution) operators with

stride two and filter weights W1 ∈ R32×1×6×6 and W2 ∈ R64×32×4×4, and b1 ∈ R32 and

b2 ∈ R64 are vectors of biases for each convolutional filter. The hidden activations

have dimension H1 ∈ R32×(d1) and H2 ∈ R64×(d2), where d1 and d2 are tuples that

depend on the input image size; for MNIST, X ∈ R1×28×28 leading to d1 = 12 × 12

and d2 = 5× 5.

To derive the energy updates, we use the fact that a real linear operator A

interacts with the Frobenius inner product as:

⟨P,A(Q)⟩ = ⟨Q,A⊤(P )⟩ , (D.3)

whereA⊤ is the transpose, or adjoint, operator.1 If C is a convolution (i.e., torch.conv2d)

then C⊤ is a deconvolution (i.e., torch.conv_transpose2d) with the same filters. We

then have

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ = −⟨X, C⊤1 (H1;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ = −⟨H1, C⊤2 (H2;W2)⟩ .
(D.4)

1This generalizes the observation that p⊤Aq = q⊤A⊤p.
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Adding up all energies and ignoring the constant terms in each update, we get

X⋆ = argmin
X
−⟨X, C⊤1 (H1,W1)⟩+Ψtanh(X)

= tanh(C⊤1 (H1,W1)) ,

(H1)⋆ = argmin
H1

−⟨H1, C1(X,W1)⟩ − ⟨H1, C⊤2 (H2,W2)⟩ − ⟨H1, b1 ⊗ 1d1×d1⟩+Ψtanh(H1)

= tanh(C1(X,W1) + C⊤2 (H2,W2) + b1 ⊗ 1d1×d1) ,

(H2)⋆ = argmin
H2

−⟨H2, C2(H1,W2)⟩ − ⟨H2, σy(V )y⟩ − ⟨H2, b2 ⊗ 1d2×d2⟩+Ψtanh(H2)

= tanh(C2(H1,W2) + σy(V )y + b2 ⊗ 1d2×d2) ,

y⋆ = −⟨y, V H2⟩ − ⟨y, b⟩ − Hy

= softmax(V H2 + b) .

(D.5)

Note that in our case, H2 ∈ R64×5×5, V ∈ R10×64×5×5 and thus V H2 ∈ R10 is a ten-

sor contraction (e.g., torch.tensordot(V, H_2, dims=3)). The σy linear operator –

opposite of ρ from Lemma 1 – rolls the axis of V corresponding to y to the last

position, such that σy(V ) ∈ R64×5×5×10, the tensor analogue of a transposition (e.g.,

torch.permute(V, (1, 2, 3, 0))).

115


	List of Tables
	List of Figures
	Notation
	Introduction
	Motivation
	Related Work and Contributions
	Exposure Bias, Scheduled Sampling, and Transformers
	Backpropagation through Discrete Latent Structures
	Structuring Neural Computation and Modularity

	Publications
	Thesis Outline

	Background
	Natural Language Processing Tasks
	Dependency Parsing
	Natural Language Inference
	Sentiment Classification
	Machine Translation

	Neural Network Architectures for NLP
	Recurrent Neural Networks (RNN)
	Transformers

	Models with Latent Structures
	Structured Prediction Preliminaries
	Latent Structure Models
	Straight-Through Estimator
	SPIGOT

	Energy-Based Learning
	Boltzmann Machines
	Restricted Boltzmann Machines
	Deep Boltzmann Machines


	Scheduled Sampling for Transformers
	Introduction
	Related Work
	Scheduled Sampling with Transformers
	Two-decoder Transformer
	Embedding Mix
	Decay strategy
	Weights update

	Experiments
	Discussion

	Surrogate Gradients for Latent Structure Learning
	Introduction
	Related Work
	SPIGOT as the Approximate Optimization of a Pulled Back Loss
	Intermediate Latent Loss

	New Surrogate Gradient Methods
	Experiments
	Categorical Latent Variables
	Structured Latent Variables
	Sentiment Classification
	Natural Language Inference


	Conclusions

	Undirected Neural Networks
	Introduction
	Undirected Neural Networks
	Image Classification and Visualization
	Undirected Attention Mechanism
	Structured UNNs for Dependency Parsing
	Related Work
	Conclusions and Future Work

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Training Details for Experiments with Latent Structures
	Examples of Latent Trees
	Proof of lemma:unrolling
	Derivation of updates for convolutional UNN

