
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Modeling Structure with Deep Neural Networks
for Natural Language Processing

Tsvetomila Borisova Mihaylova

Supervisor: Doctor André Filipe Torres Martins

Co-Supervisor: Doctor Vlad Niculae

Thesis approved in public session to obtain the PhD Degree in

Electrical and Computer Engineering

Jury final classification: Pass with Distinction

2022

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Modeling Structure with Deep Neural Networks
for Natural Language Processing

Tsvetomila Borisova Mihaylova

Supervisor: Doctor André Filipe Torres Martins

Co-Supervisor: Doctor Vlad Niculae

Thesis approved in public session to obtain the PhD Degree in

Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Doctor Isabel Maria Martins Trancoso, Instituto Superior

Técnico, Universidade de Lisboa

Members of the Committee:

Doctor Mário Alexandre Teles de Figueiredo, Instituto Superior Técnico,

Universidade de Lisboa

Doctor Caio Filippo Corro, Université Paris-Saclay, France

Doctor André Filipe Torres Martins, Instituto Superior Técnico, Universidade de

Lisboa

Doctor Ivelina Mircheva Nikolova-Koleva, Institute of Information and

Communication, Bulgarian Academy of Sciences, Bulgaria

2022

Abstract

Many natural language processing (NLP) problems have underlying structure,
which expresses relations and constraints. The majority of the modern approaches
to solving NLP problems rely on large pretrained language models, which in many
cases serve as monolith black-boxes and do not allow the practitioner to be aware
of the underlying structure.

In this thesis, we propose new models, interpret and combine existing ap-
proaches related to modeling and predicting structure in language in deep learning
models. We experiment with several natural language processing tasks, such as
machine translation, natural language inference, sentiment classification and de-
pendency parsing. We address structure as a model output, as a latent variable in
the middle of the model, and we propose a new model which allows flexible ways
of modeling relations between variables.

First, we address an important limitation of auto-regressive sequence-to-sequence
models, exposure bias: at training time, models maximize the likelihood of the
next word given the gold target prefix, but at inference time, they condition on
their own previous predictions, which may lead to error propagation. To avoid
this, we propose adapting a technique, scheduled sampling, to transformer-based
models.

Then, we address modeling structure with discrete latent variable models. A
challenge with these models is that they often require computing an arg-max for
the latent structure, but this operation has null gradient, precluding the use of the
gradient backpropagation for training the model end to end. We propose a family
of structured straight-through gradient methods based on the SPIGOT algorithm,
developing a framework which allows designing new surrogate gradient methods
based on the observations.

Lastly, we propose undirected neural networks – a new energy-based model
which combines the strengths of factor graphs and neural networks, allowing dif-
ferent directions and orders of computation. We show how undirected neural
networks subsume many existing architectures. We prove that any feed-forward
neural network can be presented as an undirected neural network and we demon-
strate the effectiveness of undirected neural networks with specific examples on
several problems involving language and vision.

Keywords: machine learning, structure, structured prediction, neural networks,
natural language processing, latent structures, scheduled sampling, factor
graphs, modularity

iii

Resumo
Muitos problemas de processamento de linguagem natural (PLN) têm estrutura

subjacente, que expressa relações e restrições. A maioria das abordagens existen-
tes emprega modelos de linguagem pré-treinados com uma grande quantidade de
parâmetros, consistindo em caixas pretas monolíticas que escondem do utilizador
a estrutura subjacente ao problema.

Nesta tese, propomos novos modelos que generalizam e combinam várias abor-
dagens para modelação e previsão de estrutura em linguagem, empregando mo-
delos de aprendizagem profunda. Experimentamos com os modelos propostos
em várias tarefas de processamento de linguagem natural, incluindo tradução au-
tomática, inferência em linguagem natural, classificação de sentimentos e análise
sintáctica de dependências. Abordamos a estrutura de duas formas: como uma
saída do modelo e como uma variável latente intermédia, culminando num novo
modelo que permite formas flexíveis de modelizar as relações entre as variáveis.

Em primeiro lugar, abordamos uma importante limitação dos modelos auto-
regressivos para sequências, o viés de exposição: durante o treino, os modelos
maximizam a probabilidade da próxima palavra dado o prefixo de referência, po-
rém, depois de treinados e durante o processo de inferência, eles condicionam
as previsões ao prefixo que o próprio modelo gerou, o que pode levar à propa-
gação de erros. Para evitar este problema, adaptamos uma técnica, amostragem
programada, para modelos baseados em transformadores.

Em seguida, abordamos a estrutura de modelação para modelos com variáveis
latentes discretas. Um desafio com estes modelos é que normalmente exigem
o cálculo de um maximizador para a estrutura latente, uma operação que apre-
senta gradiente nulo, impossibilitando o uso do algoritmo da retropropagação do
gradiente para treinar o modelo de ponta a ponta. Para colmatar esta lacuna, pro-
pomos uma família de métodos de gradientes directos estruturados baseados no
algoritmo SPIGOT.

Por fim, propomos redes neuronais não direccionadas – um novo modelo ba-
seado em funções de energia que combina os pontos fortes dos gráficos de fac-
tores e das redes neuronais, permitindo diferentes direcções e ordens de com-
putação. Mostramos como as redes neuronais não direccionadas incluem várias
arquiteturas existentes e provamos que qualquer rede neuronal “feed-forward”
pode ser representada como uma rede neural não direccionada. Demonstramos
a eficácia das redes neuronais não direccionadas emdiversos problemas envol-
vendo linguagem e visão.

Palavras-Chave: aprendizagem automática, estrutura, previsão estruturada,
redes neuronais, processamento de linguagem natural

v

Acknowledgements
Going through my PhD has been such a challenging journey and I am grateful

I have been around so many people who have supported me through it.

I am very grateful to my supervisors André Martins and Vlad Niculae and I
hope to some day be able to pay all their support forward. I thank Andre for
believing in me at the beginning of this PhD, for not giving up on me when I was
not at my best, for giving me the space to work on things that were hard and
it was not clear whether they would turn into a success. Also, I thank him for
putting together a team of such amazing people. I thank Vlad for being always
available and supportive, for explaining different concepts in accessible ways, for
showing by example that people matter much more than results and that teaching
and supervision can be inclusive and professional at the same time.

If it had not been for the people in my master studies in Sofia University, I
probably would not have even applied for this PhD. I am grateful to my master
thesis supervisors Preslav Nakov and Ivan Koychev. I thank Preslav for giving so
much to the Bulgarian NLP community, for encouraging me to do research and
publish papers even though I had no experience, for being so friendly, supportive
and a really inspiring mentor. I thank Prof. Koychev for all the support during
and after my master studies and for giving me the opportunity to teach in the
university. I thank Ivelina Nikolova for supervising me and my colleagues when we
participated in our first shared task. I really enjoyed the discussions and running
the endless experiments and when she told me that this is what PhD students
do all day, I decided I wanted to pursue a PhD. I also thank my other colleagues
from the university – Pepa, Georgi, Yasen, Martin, Vladislav – with whom I have
written my first papers, participated in NLP competitions, have had interesting
and thought-provoking discussions and who I am always happy to talk to and meet
at a conference somewhere in the world.

Before my PhD, I worked as a software developer for ten years and during that
time, I have had the opportunity to learn, to travel and to work with great people –
mentors and peers – who also became my friends. I thank Todor, Marian Vigenin,
Marian Mitov, Evgeni, Dimitar, Stoyan, Daria, Margarita, Valentina, Simeon, Kiril,
Bozhidar, Vasil, Lubomir and all my other colleagues throughout the years. I thank
the people from ABLE for being such an inspiration.

During my PhD I have been through hard times and I am happy to have had
my friends around me. Huge thanks to Krasimira, Ina, Krasimira and Nikolay,
Dilyana and Plamen for being there for me when I needed their support. I thank
my neighbours from my hometown, Tsvetelina and Krasimira, for spending the
last few summers in Bulgaria together.

vii

This PhD would not have been the same without my colleagues from Deep-
SPIN. They were very supportive when I needed it, we have shared great time
during conferences, classes in the university, celebrations. I thank Gonçalo for
being my guide in everything Portuguese, especially for showing me the garden
of Arco do Cego, Ben – for always been available for a beer, Erick for remember-
ing we had oranges for Christmas in Eastern Europe, Marcos for always being so
kind and Pedro for being so down-to-earth. I am also very happy to know and to
have had meetings with the rest of the SARDINEs - Taya, Chryssa, Nuno, Patrick,
António.

During our stay in Portugal, the people from the Bulgarian school in Lisbon
have provided me and my family with great support. I thank Eva, Bobi and Rumyana
for taking care of our son every Saturday morning while we were living in Portugal,
for celebrating Bulgarian holidays together, for helping me with moving out.

I am immensely grateful for having my family and their love and support. My
parents Mariela and Boris have always, unconditionally, been there for me. They
have struggled a lot to give me, my brother and my sister a good education. They
have taught us to work hard, to be patient and to fight for what we believe is right.
I thank my mom for always be ready to take care of my son, especially for the times
when she flew to Portugal when I needed her. I thank my brother Todor for the
long discussions about our shared interest in programming and for telling me about
the master program in Information Retrieval, where my academic journey began.
I am so grateful to have my little sister Mihaela, I thank her for so many things
– for being such an inspiration, for sharing hard and joyful moments, for being
there for me whenever I need someone to talk to. I am grateful for my carefree
childhood in my hometown in Northwestern Bulgaria, for my grandparents, my
uncle and aunt, for my cousins Gergana and Yanina.

This PhD would not have been possible if my husband Svetlin had not decided
to selflessly support me in it by moving to Portugal with me and our one-year-old
son. Making it work with a new job in a foreign country with a small child has
been quite a challenge and I am really grateful for him being there, for sharing the
hard times, for sharing the work at home, for taking care of our son when I was
traveling for conferences. This thesis would not have been written if it weren’t for
him.

I dedicate this thesis to my amazing son Leon who has taught me what are
the things in life that really matter. Watching him grow up to becoming such an
incredible person is the best thing I have ever experienced and is an infinite source
of strength and motivation.

viii

Contents

List of Tables x

List of Figures xiii

Notation xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work and Contributions . 3

1.2.1 Exposure Bias, Scheduled Sampling, and Transformers . . . 3
1.2.2 Backpropagation through Discrete Latent Structures 5
1.2.3 Structuring Neural Computation and Modularity 7

1.3 Publications . 9
1.4 Thesis Outline . 10

2 Background 11
2.1 Natural Language Processing Tasks 12

2.1.1 Dependency Parsing . 12
2.1.2 Natural Language Inference 13
2.1.3 Sentiment Classification . 13
2.1.4 Machine Translation . 13

2.2 Neural Network Architectures for NLP 14
2.2.1 Recurrent Neural Networks (RNN) 14
2.2.2 Transformers . 16

2.3 Models with Latent Structures . 16
2.3.1 Structured Prediction Preliminaries 16
2.3.2 Latent Structure Models . 18
2.3.3 Straight-Through Estimator 21
2.3.4 SPIGOT . 21

2.4 Energy-Based Learning . 22
2.4.1 Boltzmann Machines . 22
2.4.2 Restricted Boltzmann Machines 23
2.4.3 Deep Boltzmann Machines . 24

3 Scheduled Sampling for Transformers 25
3.1 Introduction . 26
3.2 Related Work . 28
3.3 Scheduled Sampling with Transformers 30

3.3.1 Two-decoder Transformer . 30

ix

3.3.2 Embedding Mix . 32
3.3.3 Decay strategy . 33
3.3.4 Weights update . 35

3.4 Experiments . 35
3.5 Discussion . 37

4 Surrogate Gradients for Latent Structure Learning 39
4.1 Introduction . 40
4.2 Related Work . 42
4.3 SPIGOT as the Approximate Optimization of a Pulled Back Loss . . 44

4.3.1 Intermediate Latent Loss . 44
4.4 New Surrogate Gradient Methods . 47
4.5 Experiments . 49

4.5.1 Categorical Latent Variables 49
4.5.2 Structured Latent Variables . 52

Sentiment Classification . 52
Natural Language Inference 53

4.6 Conclusions . 54

5 Undirected Neural Networks 57
5.1 Introduction . 58
5.2 Undirected Neural Networks . 59
5.3 Image Classification and Visualization 66
5.4 Undirected Attention Mechanism . 70
5.5 Structured UNNs for Dependency Parsing 75
5.6 Related Work . 80
5.7 Conclusions and Future Work . 82

6 Conclusion 85
6.1 Summary of Contributions . 86
6.2 Future Work . 87

Bibliography 91

A Training Details for Experiments with Latent Structures 105

B Examples of Latent Trees 107

C Proof of Lemma 1 111

D Derivation of updates for convolutional UNN 113

x

List of Tables

2.1 Building blocks for latent structure models. 18

3.1 Hyperparameters shared across models 35
3.2 Experiments with scheduled sampling for Transformer. The table

shows BLEU score for the best checkpoint on BLEU, measured on
the validation set. The first group of experiments do not have a
backpropagation pass through the first decoder. The results from
the second group are from model runs with backpropagation pass
through the second as well as through the first decoder. 36

4.1 Discrete latent variable learning on synthetic data: downstream ac-
curacy and clustering V-measure. Median and standard error re-
ported over four runs. We mark stochastic methods with *. 56

4.2 SST and SNLI average accuracy over three runs, with latent depen-
dency trees. Baselines are described in Section 4.5.2. We mark
stochastic methods marked with *. 56

5.1 Examples of regularizers Ψ(h) corresponding to some common ac-
tivation functions, where ϕ(t) = t log t. 63

5.2 MNIST accuracy with convolutional UNN. 67
5.3 MNIST accuracy with convolutional UNN in forward-only mode (i.

e. γ = 0). 69
5.4 Comparison of UNN with an unconstrained model (unc.) with the

same number of layers as the UNN iterations. The number of pa-
rameters of the UNN and the unconstrained model is roughtly the
same. 69

5.5 Comparison of different initialization strategies for the MNIST ex-
periment. 70

5.6 Results from experiments with parsing with structured UNNs. The
columns show the number of UNN iterations. The best result for
each row is rendered in bold. 83

A.1 Training details and other reproducibility information. 106

xi

List of Figures

1.1 Examples of structure in NLP tasks. Top: dependency parsing as
a model output. Middle: dependency parsing as a latent structure
in the middle of the model. Bottom: Machine translation with la-
tent word alignments. The structure is in the input and output (se-
quences) and in the middle of the model (word alignments). 3

1.2 Discrete latent categorical variable in the middle of the computation
graph. 6

2.1 An example of dependency parsing. 12
2.2 An example for natural language inference. 13
2.3 An example for sentiment classification with two classes. 14
2.4 An example for machine translation from English to Portuguese. . . 14
2.5 Recurrent neural network for sequence-to-sequence prediction, such

as machine translation. 15
2.6 Architecture of the Transformer model. From Vaswani et al. (2017). 17

3.1 Example for scheduled sampling with recurrent neural networks (Ben-
gio et al., 2015) for a machine translation task for a language pair. At
each step for word prediction, the gold label or the word predicted
from the previous step are fed with a probability (in this example:
0.7 for the gold label and 0.3 for the model prediction). 28

3.2 Differentiable Scheduled Sampling for Credit Assignment by Goyal
et al. (2017) using continuous approximation or argmax. The weighted
sum of the predictions from the previous step is feeded to the next
time step. 29

3.3 Transformer model adapted for use with scheduled sampling. The
two decoders on the image share the same parameters. The first
pass on the decoder conditions on the gold target sequence and re-
turns the model predictions. The second pass conditions on a mix
of the target sequence and model predictions and returns the re-
sult. The model always backpropagates through the second decoder
pass. Backpropagated through the first decoder pass is performed
only in a part of the experiments. 31

3.4 Teacher forcing decay schedules, showing how the probability of
using the gold token in the next decoding step decreases over the
course of training (in the beginning of the training, the probability of
using the gold token is 100%). The following schedules are shown:
linear (red dashed line), exponential (green dotted line) and inverse
sigmoid (purple line). 34

xiii

4.1 A model with a discrete latent variable z. Given an input x, we as-
sign a score sz = [f(x)]z to each choice, and pick the highest scoring
one, ẑ, to predict ŷ = gθ(ẑ). For simplicity, here gθ does not access x
directly. (a). Since argmax has null gradients, the encoder parame-
ters ϕ do not receive updates. (b). If ground truth supervision were
available for the latent z, ϕ could be trained jointly with an auxiliary
loss. (c). As such supervision is not available, we induce a best-guess
label µ by pulling back the downstream loss. This strategy recovers
the STE and SPIGOT estimators. 42

4.2 Learning curves on synthetic data with 10 clusters. Softmax learns
the downstream task fast, but mixes the clusters, yielding poor V-
measure. SPIGOT fails on both metrics; STE-I and the novel SPIGOT-
CE work well. 50

4.3 Impact of multiple gradient update steps for the pulled-back label,
on the synthetic example with 10 clusters. For each point, the best
step size η is chosen. 52

5.1 Unrolling the computation graph for undirected MLP with a single
hidden layer. Top: MLP with one hidden layer. Bottom: Unrolled
graph for UNN with k = 3 iterations. 63

5.2 Factor graphs for: (a) network without intermediate layers, (b-c)
undirected MLPs with one or two layers, (d) undirected biaffine de-
pendency parser, (e) undirected self-attention. Energy labels om-
mitted for brevity with the exception of (d). 64

5.3 Digit prototypes generated by convolutional UNN. (a) best UNN (k =
5, α = .1), (b) single iteration UNN (k = 1, α = .1), (c): standard con-
vnet (k = 1, α = 0). 68

5.4 Example of the self-attention weights for models trained with k = 1
(left) and k = 2 after one iteration (middle) and two iterations (right).
For k = 2, the model is more like an unrolled two-layer attention
mechanism, with the first step identifying an off-diagonal pattern
and the latter pooling information into an arbitrary token. 73

5.5 Learning curves for random number of variable update passes - for
“forward-backward” (top) and random (bottom) order of operation
updates. 74

5.6 Comparison of the test accuracy) for models with random and “forward-
backward” order of variable updates. Markers indicate one full iter-
ation. 75

5.7 “Packed” matrix representation of a dependency tree (left) and de-
pendency arc marginals (right). Each element corresponds to an
arc h→m, and the diagonal corresponds to the arcs from the root,
*→m. The marginals, computed via the matrix-tree theorem, are the
structured counterpart of softmax, and correpond to arc probabili-
ties. 76

xiv

5.8 Examples of dependency trees produced by the parsing model for a
sentence in Portuguese. The baseline model (a) erroneously assigns
the noun aplicações as the syntactic head of the adjective longos.
The UNN with k = 2 iterations (b) matches the gold parse tree for
this sentence, eventually benefiting from the structural information
propagated back from the node Y after the first iteration. 77

B.1 Example of trees. 108
B.2 Example of trees. 109
B.3 Example of trees produced by different models for the sentence “A

taut, intelligent psychological drama.” The majority of the models
produce mostly flat trees. In contrast, SPIGOT-CE identifies the
adjectives describing the keyword “drama” and attaches them cor-
rectly. 110

xv

Notation

Vectors and matrices
a Vector values
A Matrix and tensor values
A Abstract factor graph variables
ek One-hot vector with all zeros except in the kth coordinate
1d d-dimensional vector of ones (or tensor, if d is a tuple)

Sets and functions
Rd

+ {x ∈ Rd : x ≥ 0} Non-negative real numbers

ιX ιX (x) := 0 if x ∈ X , and
ιX (x) := +∞ otherwise

Indicator function

Ψ∗(t) supx∈Rd⟨x, t⟩ −Ψ(x) Fenchel conjugate of a function Ψ :
Rd → R

(∇Ψ∗)(t) argmaxx∈Rd⟨x, t⟩ −Ψ(x) The unique maximizer, when Ψ is
strictly convex and Ψ∗ is differen-
tiable

△d {α ∈ Rd
+, ⟨1d, α⟩ = 1}. (d− 1)-dimensional simplex

∥A∥
√
⟨A,A⟩ Frobenius norm

⟨A,B⟩
∑d1

i1=1 . . .
∑dn

in=1 ai1...inbi1...in Frobenius inner product of two
tensors with matching dimensions
A,B ∈ Rd1×...×dn

⟨a, b⟩ a⊤b Frobenius inner product for vectors

⟨A,B⟩ Tr(A⊤B) Frobenius inner product for matrices

(A⊗B)i1,...,im,j1,...,jn ai1,...,imbj1,...,jm Outer product of two tensors A ∈
Rc1,...,cm , B ∈ Rd1,...,dn

a⊗ b ab⊤ Outer product for vectors

H(y) −
∑

i yi log yi The Shannon entropy of a discrete
distribution y ∈ △d

ΠD(s) argmind∈D ∥s− d∥2 Euclidean projection of s onto a set
D

Ez∼p[h(z)]
∑

z∈Z p(z)h(z) Expectation of a function h : Z → RD

under distribution p ∈ ∆|Z|

conv(Z)
{
Ez∼p[z] | p ∈ ∆|Z|

}
Convex hull of the (finite) setZ ⊆ RK

xvii

CHAPTER 1

Introduction

Contents
1.1 Motivation . 2

1.2 Related Work and Contributions 3

1.3 Publications . 9

1.4 Thesis Outline . 10

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

In recent years, deep learning has led to a breakthrough in natural language pro-

cessing (NLP) applications. Adding attention (Bahdanau et al., 2014) to recurrent

neural networks led to better sequence-to-sequence (Sutskever et al., 2014) mod-

els. Later, the transformer model (Vaswani et al., 2017) builds an encoder-decoder

consisting entirely of attention layers, which significantly improved the perfor-

mance for many tasks and became a state-of-the-art architecture for NLP. The

next leap was the creation of big pretrained transformer-based language models,

the first one such model being BERT (Devlin et al., 2019). As of writing this thesis,

a big part of NLP practice is roughly related to loading a large pretrained model,

fine-tuning it with some existing data, and modeling an output of choice. In most

cases, practitioners cannot easily look at what is inside the big language model

and treat it as a black box.

The approach of treating the models as monolithic black boxes misses the

modeling of linguistic structure. Many interesting NLP problems have underly-

ing structure (Smith, 2011), which expresses relations and constraints. Some ex-

amples for NLP tasks with useful structure are machine translation, dependency

parsing, word alignment, etc. The structure can be in the input, can be predicted

as a model output, or it can be modeled as a latent variable (Fig. 1.1). In some

cases, it might make sense for the end task to be broken down into connected

subtasks.

In this thesis, we address some of the limitations of the monolith neural net-

work models by taking into account linguistic structure. We propose improve-

ments and provide insights about some aspects of how neural networks function.

We make connections between existing concepts to shed light on and improve

some aspects of how neural models work. We next describe the main problems

addressed in the thesis.

2

1.2. RELATED WORK AND CONTRIBUTIONS

Sentence

A fascinating and fun film.
Model

Parse Tree

Sentence

A fascinating and fun film.

Latent Parse Tree
Sentiment

Positive
Negative

✔

Source Sentence

Today is a great day for
writing!

Latent Alignments

(Today, Hoje), (is, é),
(a great day, um ótimo dia),
(for writing, para escrever), (!,!)

Target Sentence

Hoje é um ótimo dia
para escrever!

Figure 1.1: Examples of structure in NLP tasks. Top: dependency parsing as a
model output. Middle: dependency parsing as a latent structure in the middle
of the model. Bottom: Machine translation with latent word alignments. The
structure is in the input and output (sequences) and in the middle of the model
(word alignments).

1.2 Related Work and Contributions

1.2.1 Exposure Bias, Scheduled Sampling, and Transformers

Before the adoption of transformers, the state of the art in many NLP tasks, such as

machine translation, was based on sequence-to-sequence recurrent neural net-

works (RNN) with global attention (Sutskever et al., 2014; Bahdanau et al., 2014).

These models were typically trained with teacher forcing, i.e. the decoder makes

each token prediction conditioned on the preceding elements in the gold target

sequence. This differs from the procedure used at inference time, which predicts

the next token based on the sequence predicted from the model so far. A problem

arising from this type of discrepancy – exposure bias – was noticed by Ranzato

et al. (2015).

A common approach for addressing the problem with exposure bias is using

3

CHAPTER 1. INTRODUCTION

a scheduled strategy for deciding when to use teacher forcing and when to use

the model predictions (Bengio et al., 2015). For a recurrent decoder, applying

scheduled sampling works as follows: for generation of each word, the model de-

cides whether to condition on the gold embedding from the given target (teacher

forcing) or on the model prediction from the previous step. Bengio et al. (2015)

proposed scheduled sampling for sequence-to-sequence RNN models: a method

where the embedding used as the input to the decoder at time step t+1 is picked

randomly between the gold target and the argmax of the model’s output probabil-

ities at step t. The Bernoulli probability of picking one or the other changes over

training epochs according to a schedule that makes the probability of choosing

the gold target decrease across training steps. Goyal et al. (2017) proposed an ap-

proach based on scheduled sampling which backpropagates through the model

decisions. At each step, when model predictions are used, instead of the argmax,

they use a weighted average of all word embeddings, weighted by the prediction

probabilities. With this technique, they achieve better results than the standard

scheduled sampling. Ranzato et al. (2015) took ideas from scheduled sampling

and the REINFORCE algorithm (Williams, 1992) and combined the teacher forc-

ing training with optimization of the sequence level loss. In the first epochs, the

model is trained with teacher forcing and for the remaining epochs they start with

teacher forcing for the first t time steps and then switch to REINFORCE (sampling

from the model) until the end of the sequence. They decrease the time for train-

ing with teacher forcing t as training continues until the whole sequence is trained

with REINFORCE in the final epochs. In addition to the work of Ranzato et al.

(2015), other methods that are also focused on sequence-level training are us-

ing for example actor-critic (Bahdanau et al., 2016) or beam search optimization

(Wiseman and Rush, 2016). These methods directly optimize the metric used

at test time (e.g. BLEU). Another proposed approach to avoid exposure bias is

SEARN (Daumé et al., 2009). In SEARN, the model uses its own predictions at

training time to produce sequence of actions, then a search algorithm determines

4

1.2. RELATED WORK AND CONTRIBUTIONS

the optimal action at each step and a policy is trained to predict that action.

In Chapter 3: Scheduled Sampling for Transformers, we address the prob-

lem of exposure bias in transformers and adapt scheduled sampling to Trans-

former models by using two decoders instead of one.

1.2.2 Backpropagation through Discrete Latent Structures

The high-level language tasks modeled with big deep models would benefit from

uncovering underlying structures such as trees, sequence tags, or segmentations.

The benefits might not necessary be related to improvement on downstream task

metrics, such as accuracy, but could be beneficial for interpretability. Before the

rise of neural networks for NLP, it was common to use pipeline approaches where

an external, pretrained model is used to predict, e.g., syntactic structure. The

benefit of this approach is that the predicted tree is readily available for debug-

ging, but the downside is that the errors can propagate throughout the pipeline

(Finkel et al., 2006; Sutton and McCallum, 2005; Toutanova, 2005). In contrast,

the most common current deep learning approaches do not usually model any

underlying structure, which makes the deep neural models harder to interpret.

The best of both worlds could be modeling structure as latent variables. Since

most linguistic structures are discrete, we are interested in modeling discrete la-

tent variables. For example, in sentiment classification, where the sentiment of

a given text document needs to be predicted, the document topic (categorical)

or the dependency parse tree (structured) could be modeled as a latent variable.

The simplest case for a discrete latent variable is a categorical one, as in the exam-

ple above this is the document topic, which is predicted from a list of predefined

topics. An example of such a variable is shown in Fig. 1.2 – the vector s pre-

dicts a score for each of five categories {1, ..., 5}. One category is selected with

z = argmax(s) and is used in further computations.

Discrete latent variable learning is often tackled in stochastic computation

5

CHAPTER 1. INTRODUCTION

graphs by estimating the gradient of an expected loss. An established method is

REINFORCE, also known as the score function estimator (SFE) (Glynn, 1990;

Williams, 1992; Kleijnen and Rubinstein, 1996). REINFORCE is widely used

in NLP, for tasks including minimum risk training in NMT (Shen et al., 2016;

Wu et al., 2018) and latent linguistic structure learning (Yogatama et al., 2017;

Havrylov et al., 2019). In this thesis, we focus on the alternative strategy of sur-

rogate gradients, which doesn’t require stochasticity and can be applied in de-

terministic cases too. Examples are the straight-through estimator (Hinton, 2012;

Bengio et al., 2013) and the structured projection of intermediate gradients opti-

mization technique (SPIGOT; Peng et al. 2018). A popular alternative is to relax

an argmax into a continuous transform such as softmax or sparsemax (Martins

and Astudillo, 2016b), as seen for instance in soft attention mechanisms (Bah-

danau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), or structured at-

tention networks (Kim et al., 2017; Maillard et al., 2017; Liu and Lapata, 2018;

Mensch and Blondel, 2018; Niculae et al., 2018a). In between surrogate gradients

and relaxation is Gumbel softmax, which uses the Gumbel-max reparametriza-

tion to sample from a categorical distribution, applying softmax either to relax

the mapping or to induce surrogate gradients (Jang et al., 2017; Maddison et al.,

2016). Gumbel-softmax has been successfully applied to latent linguistic structure

as well (Choi et al., 2018; Maillard and Clark, 2018; Corro and Titov, 2019a,b).

z = 1

Input

x
output

ŷ

s z

z = 2

z = 3
z = 4

z = 5

z = 2

Figure 1.2: Discrete latent categorical variable in the middle of the computation
graph.

6

1.2. RELATED WORK AND CONTRIBUTIONS

In Chapter 4: Surrogate Gradients for Latent Structure Learning, we ad-

dress the problem of backpropagation through discrete latent structures. We focus

on one of the approaches for overcoming this problem – using surrogate gradi-

ents. We give an explanation of how SPIGOT (Peng et al., 2018) – a method

using surrogate gradients for structure works. Based on that explanation, we pro-

pose a framework from which we derive modifications of SPIGOT, which we call

SPIGOT-CE and SPIGOT-EG.

1.2.3 Structuring Neural Computation and Modularity

Before neural networks became the dominating paradigm, structured prediction

problems in vision or natural language processing were often represented as fac-

tor graphs (Bakır et al., 2007; Smith, 2011; Nowozin et al., 2014). In recent years,

neural networks have become the model of choice for working with these ap-

plications. Unlike factor graphs – which emphasize the modularity of the prob-

lem – neural networks typically work end-to-end, relying on rich representations

captured at the encoder level (often pretrained), which are then propagated to a

task-specific decoder and are usually monolithic mappings from inputs to out-

puts, with a fixed computation order. This limitation prevents neural networks

from capturing different directions of computation and interaction between the

modeled variables.

The idea of modular training of neural networks has a long history. Bottou and

Gallinari (1991) propose a framework for training architecture composed of sev-

eral modules. The modular neural network approach has been used in robotics

(Bradley, 2010), where many modules interact and each module would be respon-

sible for a specific task, such as object recognition, processing information from

sensors, movement, etc. Neural module networks have been used for NLP ap-

plications, such as visual question answering (Andreas et al., 2016) or reasoning

(Gupta et al., 2019). Neural Module Networks (Andreas et al., 2016) were applied

7

CHAPTER 1. INTRODUCTION

to visual question answering and provide fine-grained modules for different parts

of the task (in the case for VQA, for example, there are modules for a specific color,

for recognizing a specific object, etc.). This architecture has been applied to rea-

soning over text (Gupta et al., 2019). Another line of work (Kirsch et al., 2018)

proposes a model that flexibly chooses neural modules based on the data to be

processed. They treat the choice of module as a latent variable in a probabilistic

model and learn both the decomposition and module parameters end-to-end by

maximizing a variational lower bound of the likelihood.

The modular training approach can be related to multi-task learning (Caruana,

1997). For example, a syntax module can be used for predicting several higher

level tasks, such as natural language inference (NLI), sentiment analysis, machine

translation. In hierarchical multi-task learning, the lower layers of the model learn

low-level NLP tasks and the later layers learn higher-level NLP tasks, which de-

pend on the representations of the low-level tasks (Hashimoto et al., 2016; Sanh

et al., 2019). The greedy layer-wise training of neural networks (Hinton et al.,

2006) trains layers sequentially starting from bottom (input) layer in an unsuper-

vised way – each layer learns a higher-level representation of the layer below.

Bengio et al. (2007) study the algorithm empirically and extend it to cases where

the inputs are continuous or where the variable cannot be predicted in a super-

vised task. The Infomax principle, developed by Linsker (1988) argues that the

brain learns to process its perceptions by maximally preserving the information of

the input activities in each layer. Recent work uses this principle to create mod-

els based on maximizing the mutual information between the input and learned

higher-level representations of modules in the model (Oord et al., 2018; Hjelm

et al., 2018; Löwe et al., 2019). This work uses modular approach and trains each

module to maximally preserve the information of its inputs using the InfoNCE

loss.

The idea of deriving new neural network architectures from the inference pro-

cess of a graphical model has been explored in work such as mean-field networks

8

1.3. PUBLICATIONS

(Li and Zemel, 2014) and deep unfolding (Hershey et al., 2014). Some work uses

the neural network as a scorer for the structure components and then an out-

put layer calculates the optimal structure (Durrett and Klein, 2015; Fonseca and

Martins, 2020; Corro and Titov, 2019b).

In Chapter 5: Undirected Neural Networks, we propose undirected neural

networks (UNN) – a novel energy-based framework in which neural computation

is specified with factor graphs instead of directed computation graphs and allows

flexibility in defining relations between the model variables. We show how this

framework subsumes or relates to many existing neural network architectures. We

prove that every feed-forward network can be presented as an undirected neural

network, and demonstrate examples of different UNN architectures, including

undirected attention.

While our models are targeting NLP applications, they can easily be applied

to other domains, as we show in Chapter 5. In this chapter, we demonstrate

how undirected neural networks can be used for an NLP problem, but also for

sequence completion and image classification and generation.

1.3 Publications

During my PhD, I have co-authored the following work:

• Scheduled Sampling for Transformers (Mihaylova and Martins, 2019). In

this paper, we explore a way to apply scheduled sampling, a method used in

training recurrent neural networks (Bengio et al., 2015) to the Transformer model

(Vaswani et al., 2017). The paper was published in the proceedings of the ACL

Student Research Workshop 2019. Chapter 3 is based on this work.

• I am one of the authors of the tutorial Latent Structured Models for Natural

Language Processing which was presented at ACL 2019 (Martins et al., 2019)

and RANLP 2019. The work in Chapter 4 is inspired by and builds on parts of

9

CHAPTER 1. INTRODUCTION

this tutorial.

• The paper Understanding the SPIGOT Mechanics: Surrogate Gradients

for Latent Structure Learning has been accepted to EMNLP 2020 (Mihaylova

et al., 2020). It explores into more details training of models with latent struc-

tures using gradient surrogate methods, gives insights into such methods and

proposes extensions. Chapter 4 is based on this work.

• The paper Modeling Structure with Undirected Neural Networks was ac-

cepted to ICML 2022. Chapter 5 is based on this work.

1.4 Thesis Outline

• Chapter 2: Background introduces the basic concepts needed for understand-

ing the contributions explained in this thesis, such as neural network architec-

tures and NLP tasks used in the thesis; models with latent structures, exposure

bias, energy-based models.

• Chapter 3: Scheduled Sampling for Transformers presents out work on ap-

plying scheduled sampling (Bengio et al., 2015) to the Transformer (Vaswani

et al., 2017) architecture.

• Chapter 4: Surrogate Gradients for Latent Structure Learning presents

our work on surrogate gradients for latent structure learning, which sheds light

on the mechanics of SPIGOT (Peng et al., 2018) – a method for learning latent

structures.

• Chapter 5: Undirected Neural Networks presents our proposed energy-based

model which combines neural networks and factor graphs to allow flexibility in

expressing the relationship between the model variables.

• In Chapter 6: Conclusion we summarize our contributions and provide sug-

gestions for future development of the ideas in this thesis.

10

CHAPTER 2

Background

Contents
2.1 Natural Language Processing Tasks 12

2.2 Neural Network Architectures for NLP 14

2.3 Models with Latent Structures 16

2.4 Energy-Based Learning . 22

11

CHAPTER 2. BACKGROUND

This chapter reviews previous work related to the main ideas of the thesis.

First, in Section 2.1, we describe the main NLP tasks we use throughout the

thesis. Section 2.2 give an overview of two main such architectures, in order to

provide background for the work in Chapter 3. Section 2.3 describes the nec-

essary background for understanding our recent work, described in Chapter 4.

Section 2.4 background revisits some models which motivate our work on Undi-

rected Neural Networks, described in Chapter 5.

2.1 Natural Language Processing Tasks

We provide short descriptions of the Natural Language Processing (NLP) tasks we

use throughout the thesis.

2.1.1 Dependency Parsing

Dependency parsing is a structured prediction NLP task that, given a sentence,

predicts a directed tree structure which defines the grammatical dependencies

between the words in the sentence (Jurafsky and Martin, 2014). Fig. 2.1 shows an

example of a dependency tree. In this thesis, we predict dependency parse trees

in Chapter 5. In Chapter 4 we do not predict the dependency trees in a supervised

way, but we are interested in finding latent dependency trees for a downstream

task, such as sentiment analysis, natural language inference or machine transla-

tion.

Sentence

A fascinating and fun film. Model

Parse Tree

Figure 2.1: An example of dependency parsing.

12

2.1. NATURAL LANGUAGE PROCESSING TASKS

2.1.2 Natural Language Inference

Natural Language Inference (NLI) is a classification NLP task which takes as an

input two sentences, called a premise and a hypothesis and classifies the relation-

ship between those two sentences: entailment (the truth of the premise implies

the truth of the hypothesis), contradiction (the truth of the premise implies the

falsity of the hypothesis) or neutral (the premise neither entails nor contradicts

the hypothesis) (Eisenstein, 2018), see Fig. 2.2. We use NLI for the experiments

in Chapter 4.

Premise

We saw a great movie.

Model

Label

Contradiction
Entailment
Neutral

Hypothesis

The movie was good.

✔

Figure 2.2: An example for natural language inference.

2.1.3 Sentiment Classification

Sentiment classification is an NLP task (Fig. 2.3) which, provided a text sequence,

predicts the sentiment of this sequence. The predicted sentiment can have dif-

ferent granularity. It can be a number (for example, from 1 to 5, where higher

number means more positive sentiment) or can be binary - positive or negative.

We use sentiment classification as downstream task in Chapter 4.

2.1.4 Machine Translation

Machine Translation (MT) is a sequence-to-sequence NLP task which translates

an input sequence in a source language to an output sequence in a target language

13

CHAPTER 2. BACKGROUND

Sentence

The movie was very good. Model

Sentiment

Positive
Negative

✔

Figure 2.3: An example for sentiment classification with two classes.

(Eisenstein, 2018), as shown on Fig. 2.4. Word alignment can be useful for train-

ing the MT models or can be extracted from the trained model. The alignments

match words or phrases from the source sentence to words or phrases in the tar-

get sentence, as shown on Fig. 2.4. We use machine translation for experimenting

with scheduled sampling for transformers in Chapter 3.

Source Sentence

Today is a great day for writing! Model

Target Sentence

Hoje é um ótimo dia para escrever!

Figure 2.4: An example for machine translation from English to Portuguese.

2.2 Neural Network Architectures for NLP

2.2.1 Recurrent Neural Networks (RNN)

Recurrent neural networks - RNN (Rumelhart et al., 1986; Werbos, 1990) are

neural networks in which the computation is done in steps and the output from

the previous step is fed to the next one. This allows modeling output with arbitrary

length, the weights of the states are shared, therefore parameter count does not

grow with sequence length. A downside is that the computation can be too slow.

In the scope of this thesis, we are interested in RNNs for sequence-to-sequence

tasks, where an input sequence x1, ..., xn is transformed into an output sequence

y1, ..., ym (Cho et al., 2014; Sutskever et al., 2014). In the encoder of the RNN,

the hidden states are represented as ht = f(xt, ht−1) and the representation of the

input sequence is compressed into a vector c = q(h1, ..., hn). Then, in the decoder,

14

2.2. NEURAL NETWORK ARCHITECTURES FOR NLP

the probability of modeling the output sequence is optimized:

p(y) =
m∏
i=1

p(yt|y1, ..., yt−1, c) (2.1)

A common building block for the hidden state is the long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997).

Adding attention - a mechanism that allows the output to focus on different

parts of the input (Bahdanau et al., 2014) greatly improves the performance of

these models. In the attention mechanism, the vector c is calculated as

ci =
n∑

i=1

αijhj (2.2)

where αij are the attention weights showing the probability with which each out-

put element i attends to the input element j.

αij =
exp(aij)∑n
k=1 exp(aik)

(2.3)

where aij = a(si−1, hj) is a scorer for the hidden state in the decoder si−1 for the

output yi and the hidden state of the decoder hj for input xj.

a nice day

um diabom

Figure 2.5: Recurrent neural network for sequence-to-sequence prediction, such
as machine translation.

15

CHAPTER 2. BACKGROUND

2.2.2 Transformers

Introducing the Transformer (Vaswani et al., 2017) led to new state of the art re-

sults in sequence-to-sequence prediction and became the model of choice for

these models. Its key is that its encoder and decoder are composed of multiple

attention layers. It models self-attention on the input sequence in the encoder

and the output sequence in the decoder and cross-attention between the output

and the input sequence in the decoder. The architecture of the transformer model

is shown in Fig. 2.6. In the transformer, all the positions are predicted simulta-

neously, therefore self-attention is masked so that each element in the sequence

attends only to the elements before it. Positional embeddings added to the ele-

ment embeddings ensure the order of the sequence is kept. A common attention

is the scaled dot-product attention:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.4)

where Q,K, V are queries, keys and values and dk is the dimension of the queries

and keys.

2.3 Models with Latent Structures

2.3.1 Structured Prediction Preliminaries

We assume a general latent structure model involving input variables x ∈ X ,

output variables y ∈ Y, and latent discrete variables z ∈ Z. We assume that

Z ⊆ {0, 1}K, where K ≤ |Z| (typically, K ≪ |Z|): i.e., the latent discrete vari-

able z can be represented as a K-th dimensional binary vector. This often results

from a decomposition of a structure into parts: for example, z could be a depen-

dency tree for a sentence of L words, represented as a vector of size K = O(L2),

indexed by pairs of word indices (i, j), with zij = 1 if arc i→ j belongs to the tree,

16

2.3. MODELS WITH LATENT STRUCTURES

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Input Embedding

Position Encoding

Output Embedding

Position Encoding

Inputs Outputs (Gold Target)

Linear

Generator
Function

Output Probabilities

Add & Norm

Multi-Head
Attention

Figure 2.6: Architecture of the Transformer model. From Vaswani et al. (2017).

and 0 otherwise. This allows us to define the score of a structure as the sum of

the scores of its parts. Given a vector s ∈ RK, containing scores for all possible

parts, we define

score(z) := s⊤z. (2.5)

Background. In the context of structured prediction, the set M := conv(Z) is

known as the marginal polytope, since any point inside it can be interpreted as

some marginal distribution over parts of the structure (arcs) under some distribu-

tion over structures. There are three relevant problems that may be formulated

in a structured setting:

• Maximization (MAP inference): finds a highest scoring structure, MAP(s) = argmax
z∈Z

s⊤z.

• Marginal inference: finds the (unique) marginal distribution induced by the scores

s, corresponding to the Gibbs distribution where p(z) ∝ exp
(
score(z)

)
. The so-

17

CHAPTER 2. BACKGROUND

lution maximizes the entropy-regularized objective

Marg(s) = argmax
µ∈M

s⊤µ+ H̃(µ), (2.6)

where H̃ is the maximum entropy among all distributions over structures that

achieve marginals µ (Wainwright and Jordan, 2008a):

H̃(µ) = max
p∈△|Z|
Ep[z]=µ

−
∑
z∈Z

p(z) log p(z). (2.7)

• SparseMAP: finds the (unique) sparse marginal distribution induced by the scores

s, given by a Euclidean projection onto the marginal polytope: (Niculae et al.,

2018a)

SparseMAP(s) = ΠM(s)

= argmax
µ∈M

s⊤µ− 1

2
∥µ∥2.

(2.8)

Unstructured setting. As a check, we consider the encoding of a categorical

variable with K distinct choices, encoding each choice as a one-hot vector ek and

setting Z = {e1, . . . , eK}. In this case, conv(Z) = △K . The optimization problems

above then recover some well known transformations, as described in Table 2.1.

unstructured structured
vertices ek zk

interior points p µ
maximization argmax MAP

expectation softmax Marg

Euclidean projection sparsemax SparseMAP

Table 2.1: Building blocks for latent structure models.

2.3.2 Latent Structure Models

Throughout, we assume a classifier parametrized by ϕ and θ, which consists of

three parts:

18

2.3. MODELS WITH LATENT STRUCTURES

• An encoder function fϕ which, given an input x ∈ X , outputs a vector of

“scores” s ∈ RK, as s = fϕ(x);

• An argmax node which, given these scores, outputs the highest-scoring struc-

ture:

ẑ(s) = argmax
z∈Z

s⊤z. (2.9)

• A decoder function gθ which, given x ∈ X and z ∈ Z, makes a prediction ŷ ∈ Y

as ŷ = gθ(x, z). We will sometimes write ŷ(z) to emphasize the dependency on

z. For reasons that will be clear in the sequel, we must assume that the decoder

also accepts average structures, i.e., it can also output predictions gθ(x, µ) where

µ ∈ conv(Z) is a convex combination (weighted average) of structures.

Thus, given input x ∈ X , this network predicts:

ŷ = gθ

x,

ẑ(s)︷ ︸︸ ︷
argmax

z∈Z
fϕ(x)

⊤z

 . (2.10)

To train this network, we minimize a loss function L(ŷ, y), where y denotes the

target label; a common example is the negative log-likelihood loss.

The gradient w.r.t. the decoder parameters, ∇θL(ŷ, y), is easy to compute us-

ing automatic differentiation on gθ. The main challenge is propagate gradient in-

formation through the argmax node into the encoder parameters. Indeed, we

have:

∇ϕL(ŷ, y) =
∂fϕ(x)

∂ϕ

∂ẑ(s)

∂s︸ ︷︷ ︸
=0

∇zL(ŷ(ẑ), y) = 0, (2.11)

so no gradient will flow to the encoder. We list below the three main categories

of approaches that tackle this issue.

Introducing stochasticity. Replace the argmax node by a stochastic node where

z is modeled as a random variable Z parametrized by s (e.g., using a Gibbs distri-

bution). Then, instead of optimizing a deterministic loss L(ŷ(ẑ), y), optimize the

19

CHAPTER 2. BACKGROUND

expectation of the loss under the predicted distribution:

EZ∼p(z;s)[L(ŷ(Z), y)]. (2.12)

The expectation ensures that the gradients are no longer null. This is sometimes

referred to as minimum risk training (Smith and Eisner, 2006; Stoyanov et al.,

2011), and typically optimized using the score function estimator (SFE; Glynn,

1990; Williams, 1992; Kleijnen and Rubinstein, 1996).

Relaxing the argmax. Keep the network deterministic, but relax the argmax

node into a continuous function, for example replacing it with softmax or sparse-

max (Martins and Astudillo, 2016b). In the structured case, this gives rise to struc-

tured attention networks (Kim et al., 2017) and their SparseMAP variant (Niculae

et al., 2018a). This corresponds to moving the expectation inside the loss, opti-

mizing L
(
ŷ(EZ∼p(z;s)[Z]︸ ︷︷ ︸

µ

), y
)
.

Inventing a surrogate gradient. Keep the argmax node and perform the usual

forward computation, but backpropagate a different, non-null gradient in the back-

ward pass. This is the approach underlying straight-through estimators (Hinton,

2012; Bengio et al., 2013) and SPIGOT (Peng et al., 2018). This method intro-

duces a mismatch between the measured objective and the optimization algo-

rithm. In Chapter 4 of this thesis, we propose a novel, principled justification for

inducing surrogate gradients. In what follows, we assume that:

• We can compute the gradient

γ(µ) := ∇µL(ŷ(µ), y) (2.13)

for any µ, e.g., by using automatic differentiation on the decoder;1

1This gradient would not exist if the decoder gθ were defined only at vertices z ∈ Z and not
mean points µ ∈M.

20

2.3. MODELS WITH LATENT STRUCTURES

• We want to replace the null gradient ∇sL(ŷ(ẑ), y) by a surrogate ∇̃sL(ŷ(ẑ), y).

2.3.3 Straight-Through Estimator

The straight-through estimator was introduced in a lecture (Hinton, 2012), where

it was described as a way to backpropagate through a step function. A multilayer

neural network consisting of logistic units p(s = 1) = 1
1+e−z is trained with back-

propagation. In the forward pass, a binary value is sampled and the backward

pass is done as if in the forward pass no sampling was done. They report an un-

published result where this kind of training does worse on the training set but

performs significantly better on the test set.

We use the same intuition for backpropagating through nodes which have an

argmax on the forward pass z = argmax(s) during training and use the identity

matrix as the derivative ∂z
∂s

.

The straight-through estimator was described also in Bengio et al. (2013).

2.3.4 SPIGOT

The structured projection of intermediate gradients optimization technique (SPIGOT),

is a method for backpropagating through neural networks that include hard-decision

structured predictions (e.g., parsing) in intermediate layers (Peng et al., 2018). Un-

like STE’s gradient proxy, SPIGOT aims to respect the constraints in the argmax

problem.

SPIGOT introduces a projection step that aims to keep the "updated" ẑ in the

feasible set. Of course, we do not directly update ẑ; backpropagation continues

through s and onward to the parameters. But the projection step alters the pa-

rameter updates in the way that the proxy for∇sL is defined.

∇sL = ẑ − projP (ẑ − η∇ẑL) (2.14)

In Chapter 4, we give a more intuitive explanation of this update.

21

CHAPTER 2. BACKGROUND

2.4 Energy-Based Learning

Another set of methods relevant for this thesis is Energy-based learning. The

background in this section provides the necessary preliminaries for Chapter 5.

Energy-based models, in contrast to predicting an output y from an input x,

model an energy function of both x and y, denoted as E(x, y) and aim to mini-

mize this fundtion. The energy can be viewed as a measure of compatibility be-

tween the variables - the more compatible the values of the variables, the lower

the energy. On inference, the observed variables are given and the values of the

unobserved variables are assigned so that minimize the model energy. Training

the model means finding an energy function which outputs low energies when

correct values are assigned to the unobserved variables and high energies when

incorrect values are assigned to the unobserved variables (LeCun et al., 2006).

For example, for the observed input x, values of y are searched that minimize the

model energy. The goal is to find y∗, chosen from a set Y , for which E(x, y) is the

smallest: y∗ = argminyE(x, y).

2.4.1 Boltzmann Machines

A Boltzmann Machine (Ackley et al., 1985) is a network of symmetrically con-

nected, neuronlike units that make stochastic decisions about whether to be on

or off. Boltzmann machines have a simple learning algorithm that allows them to

discover interesting features in datasets composed of binary vectors. The learning

algorithm is intractable in networks with many layers of features. (Hinton, 2007)

Boltzmann machines are pairwise fully connected networks with N visible units

x ∈ {0, 1}N and M hidden units x ∈ {0, 1}M . They define the following energy

function:

E(x, h) = −xTV x− hTWx− hTUh− aTx− bTh (2.15)

22

2.4. ENERGY-BASED LEARNING

The probability of a configuration is defined as:

P (x, h) =
exp(−E(x, h))

Z
(2.16)

(where Z is the partition function) and maximizing the probability corresponds to

minimizing the energy. Bilinear factor energy is defined as:

Ex,h(x, h) = −hTWx (2.17)

and unary energies are defined as:

Ex(x) = −xTV x− aTx+ ι{0,1}N (x) (2.18)

Eh(h) = −hTUh− bTh+ ι{0,1}M (h) (2.19)

2.4.2 Restricted Boltzmann Machines

Restricted Boltzmann machines are special cases of Boltzmann machines where

the connections between visible and hidden units form a bipartite graph. In this

case, we have:

EX,H(x, h) = −hTWx (2.20)

EX(x) = −aTx+ ι{0,1}N (x) (2.21)

EH(h) = −bTh+ ι{0,1}M (h) (2.22)

23

CHAPTER 2. BACKGROUND

2.4.3 Deep Boltzmann Machines

Deep Boltzmann machines are similar to restricted Boltzmann machines, but with

more layers. Here the energies are defined as follows:

EX,H1(x, h1) = −hT
1W1x (2.23)

EHk−1,Hk
(hk−1, hk) = −hT

kWkx (2.24)

EX(x) = −aTx+ ι{0,1}N (x) (2.25)

EHk
(hk) = −bTk hk + ι{0,1}Mh (hk) (2.26)

24

CHAPTER 3

Scheduled Sampling for

Transformers

Contents
3.1 Introduction . 26

3.2 Related Work . 28

3.3 Scheduled Sampling with Transformers 30

3.4 Experiments . 35

3.5 Discussion . 37

25

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

Scheduled sampling is a technique for avoiding one of the known problems in

sequence-to-sequence generation: exposure bias. It consists of feeding the model

a mix of the teacher forced embeddings and the model predictions from the pre-

vious step in training time. The technique has been used for improving the model

performance with recurrent neural networks (RNN) (Bengio et al., 2015). In the

Transformer model, unlike the RNN, the generation of a new word attends to the

full sentence generated so far, not only to the last word (see Section 2.2.2), and it is

not straightforward to apply the scheduled sampling technique. We propose some

structural changes to allow scheduled sampling to be applied to Transformer ar-

chitecture, via a two-pass decoding strategy. Experiments on two language pairs

achieve performance on par with a teacher-forcing baseline and show that this

technique is promising for further exploration.

3.1 Introduction

Before the transformers (Vaswani et al., 2017) became adopted, neural machine

translation (NMT) relied on a sequence-to-sequence model with global attention

(Sutskever et al., 2014; Bahdanau et al., 2014), trained with maximum likelihood

estimation (MLE). These models are typically trained by teacher forcing, in which

the model makes each decision conditioned on the gold history of the target se-

quence. This tends to lead to quick convergence but is dissimilar to the procedure

used at decoding time, when the gold target sequence is not available and deci-

sions are conditioned on previous model predictions.

Ranzato et al. (2015) point out the problem that using teacher forcing means

the model has never been trained on its own errors and may not be robust to

them—a phenomenon called exposure bias. This has the potential to cause prob-

lems at translation time, when the model is exposed to its own (likely imperfect)

predictions.

A common approach for addressing the problem with exposure bias is using

26

3.1. INTRODUCTION

a scheduled strategy for deciding when to use teacher forcing and when not to

(Bengio et al., 2015). For a recurrent decoder, applying scheduled sampling is

trivial: for generation of each word, the model decides whether to condition on

the gold embedding from the given target (teacher forcing) or the model prediction

from the previous step.

In the Transformer model (Vaswani et al., 2017), the decoding is still autore-

gressive, but unlike the RNN decoder, the generation of each word conditions

on the whole prefix sequence and not only on the last word and in training time,

the whole output sequence is predicted using one decoder pass with masking.

While we can still use the standard approach where at each step we predict one

word conditioning on the prefix from the gold sequence or the model prediction,

this would significantly slow down the computation, because for the prediction

of each word, we would have one decoder pass. Since the Transformer achieves

state-of-the-art results and has become a default choice for many natural language

processing problems, it is interesting to adapt and explore the idea of scheduled

sampling for it, and, to our knowledge, no way of doing this had been proposed

when we started working on this idea. Our approach allows to apply scheduled

sampling for transformers while keeping the parallelization of the decoder for-

ward pass on GPU during training using masking.

Our contributions in this chapter are:

• We propose a new strategy for using scheduled sampling in Transformer models

by making two passes through the decoder in training time.

• We compare several approaches for conditioning on the model predictions when

they are used instead of the gold target.

• We test the scheduled sampling with transformers in a machine translation task

on two language pairs and achieve results on par with a teacher forcing baseline

(with a slight improvement of up to 1 BLEU point for some models).1

1The source code is on: https://github.com/deep-spin/scheduled-sampling-transformers

27

https://github.com/deep-spin/scheduled-sampling-transformers

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

3.2 Related Work

Bengio et al. (2015) proposed scheduled sampling for sequence-to-sequence RNN

models: a method where the embedding used as the input to the decoder at time

step t+1 is picked randomly between the gold target and the argmax of the model’s

output probabilities at step t. The Bernoulli probability of picking one or the other

changes over training epochs according to a schedule that makes the probability

of choosing the gold target decrease across training steps. The authors propose

three different schedules: linear decay, exponential decay and inverse sigmoid

decay. Fig. 3.1 shows an example of how this model works.

Eu mănânc pizza

<start>

eats pizza <eos>He

I 0.7

He 0.3

eat 0.7

eats 0.3

pizza 0.7

pizza 0.3

Figure 3.1: Example for scheduled sampling with recurrent neural networks (Ben-
gio et al., 2015) for a machine translation task for a language pair. At each step
for word prediction, the gold label or the word predicted from the previous step
are fed with a probability (in this example: 0.7 for the gold label and 0.3 for the
model prediction).

Goyal et al. (2017) proposed an approach based on scheduled sampling which

backpropagates through the model decisions. At each step, when the model de-

cides to use model predictions, instead of the argmax, they use a weighted av-

erage of all word embeddings, weighted by the prediction probabilities. They

experimented with two options: a softmax with a temperature parameter, and

a stochastic variant using Gumbel Softmax (Jang et al., 2016) with temperature.

With this technique, they achieve better results than the standard scheduled sam-

pling. Fig. 3.2 shows an example of how this model works.

28

3.2. RELATED WORK

hi
hi-1

argmax

ypred = eats

𝛼-soft argmax ēi-1

e(eats)

e(likes)

e(hates)

si-1(eats)

si-1(likes)

si-1(hates)

Figure 3.2: Differentiable Scheduled Sampling for Credit Assignment by Goyal
et al. (2017) using continuous approximation or argmax. The weighted sum of
the predictions from the previous step is feeded to the next time step.

Our work extends Bengio et al. (2015) and Goyal et al. (2017) by adapting their

frameworks to Transformer architectures.

Ranzato et al. (2015) took ideas from scheduled sampling and the REINFORCE

algorithm (Williams, 1992) and combine the teacher forcing training with opti-

mization of the sequence level loss. In the first epochs, the model is trained with

teacher forcing and for the remaining epochs they start with teacher forcing for

the first t time steps and use REINFORCE (sampling from the model) until the

end of the sequence. They decrease the time for training with teacher forcing

t as training continues until the whole sequence is trained with REINFORCE in

the final epochs. Other methods that are also focused on sequence-level training

are using for example actor-critic (Bahdanau et al., 2016) or beam search opti-

mization (Wiseman and Rush, 2016). These methods directly optimize the metric

used at test time (e.g. BLEU). Another proposed approach to avoid exposure bias

is SEARN (Daumé et al., 2009). In SEARN, the model uses its own predictions at

training time to produce sequence of actions, then a search algorithm determines

the optimal action at each step and a policy is trained to predict that action. The

main drawback of these approaches is that the training becomes much slower.

The method we focus on in this chapter is comparable in training time with a

force-decoding baseline.

29

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

3.3 Scheduled Sampling with Transformers

With recurrent neural networks (RNN), in the training phase we generate one

word at each time step, and we feed the previous word as an input in the next

time step. This sequential decoding makes it simple to apply scheduled sampling

- at each time step, with some probability, instead of using the previous word in

the gold sequence, we use the word predicted from the model on the previous

step.

The Transformer model (Vaswani et al., 2017), which achieves state-of-the-art

results for many natural language processing tasks, is also an autoregressive model.

The generation of each word attends to all previous words in the sequence, not

only to the last generated word. The model is based on multiple self-attention

layers, which directly model relationships between all words in the sentence, re-

gardless of their respective position. The order of the words is encoded through

position embeddings, which are summed with the corresponding word embed-

dings. Using position masking in the decoder ensures that the generation of each

word depends only on the previous words in the sequence and not on the follow-

ing ones. Because generation of a word in the Transformer attends to all previous

words in the sequence and not just the last word, it is not trivial to apply sched-

uled sampling to it, where, in training time, we need to choose between using the

gold target word or the model prediction. In order to allow usage of scheduled

sampling with the Transformer model, we needed to make some changes in the

Transformer architecture.

3.3.1 Two-decoder Transformer

The model we propose for applying scheduled sampling in transformers makes

two passes on the decoder. Its architecture is illustrated on Fig. 3.3. We make no

changes in the encoder of the model. The decoding of the scheduled transformer

30

3.3. SCHEDULED SAMPLING WITH TRANSFORMERS

Encoder Decoder 1 Decoder 2

Inputs Outputs (Gold Target) Outputs (Gold Target) +
Model Predictions

Figure 3.3: Transformer model adapted for use with scheduled sampling. The two
decoders on the image share the same parameters. The first pass on the decoder
conditions on the gold target sequence and returns the model predictions. The
second pass conditions on a mix of the target sequence and model predictions and
returns the result. The model always backpropagates through the second decoder
pass. Backpropagated through the first decoder pass is performed only in a part
of the experiments.

has the following steps:

1. First pass on the decoder: get the model predictions. On this step, the

decoder conditions on the gold target sequence and predicts scores for each

position as a standard transformer model. Those scores are passed to the next

step.

2. Mix the gold target sequence with the predicted sequence. After obtain-

ing a sequence representing the prediction from the model for each position,

we imitate scheduled sampling by mixing the target sequence with the model

predictions: For each position in the sequence, we select with a given prob-

ability whether to use the gold token or the prediction from the model. The

probability for using teacher forcing (i.e. the gold token) is a function of the

training step and is calculated with a selected schedule. We pass this “new ref-

erence sequence” as the reference for the second decoder. The vectors used

from the model predictions can be either the embedding of the highest-scored

31

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

word, or a mix of the embeddings according to their scores. Several variants of

building the vector from the model predictions for each position are described

below.

3. Second pass on the decoder: the final predictions. The second pass of the

decoder uses as output target the mix of words in the gold sequence and the

model predictions. The outputs of this decoder pass are the actual result from

the models.

It is important to mention that the two decoders are identical and share the

same parameters. We use the same decoder for the first pass, where we condi-

tion on the gold sequence and the second pass, where we condition on the mix

between the gold sequence and the model predictions. Also, it is important to

mention that the input and the output embeddings of the decoder are shared, in

order to allow feeding the output of the first decoder as an input to the second

decoder pass.

3.3.2 Embedding Mix

For each position in the sequence, the first decoder pass gives a score for each

vocabulary word. We explore several ways of using those scores when the model

predictions are used.

• The most straight-forward case is to not mix the embeddings at all and pass the

argmax from the model predictions, i.e. use the embedding of the vocabulary

word with the highest score from the decoder.

• We also experiment with mixing the top-k embeddings. In our experiments,

we use the weighted average of the embeddings of the top-5 scored vocabulary

words. As weights we use the output probabilities from the first decoder pass

and normalize them to sum to one for the top five words.

32

3.3. SCHEDULED SAMPLING WITH TRANSFORMERS

• Inspired by the work of Goyal et al. (2017), we experiment with passing a mix

of the embeddings with softmax with temperature. Using a higher temperature

parameter makes a better approximation of the argmax:

ēi−1 =
∑
y

e(y)
exp(αsi−1(y))∑
y′ exp(αsi−1(y′))

(3.1)

where ēi−1 is the vector which will be used at the current position, obtained by

a sum of the embeddings of all vocabulary words, weighted by a softmax of the

scores si−1.

• An alternative of using argmax is sampling an embedding from the softmax dis-

tribution. Also based on the work of Goyal et al. (2017), we use the Gumbel

Softmax (Maddison et al., 2016; Jang et al., 2016) approximation to sample the

embedding:

ēi−1 =
∑
y

e(y)
exp(α(si−1(y)) +Gy)∑
y′ exp(α(si−1(y′) +Gy′))

(3.2)

where U ∼ Uniform(0, 1) and G = − log(− logU).

• Finally, we experiment with passing a sparsemax mix of the embeddings (Martins

and Astudillo, 2016a).

3.3.3 Decay strategy

With the scheduled sampling method, the teacher forcing probability continu-

ously decreases over the course of training according to a predefined function

of the training steps. The training starts with all teacher forcing, i.e. all tokens

from the gold sequence are fed to the next step, and then as training processes,

the probability of using a gold token decreases in favor of increasing the proba-

bility of feeding a token predicted by the model. The decrease of the probability

33

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

is being calculated with the so called decay strategy. The decay strategy deter-

mines the teacher forcing ratio t for training step i, that is, the probability of doing

teacher forcing at each position in the sequence. The following decay strategies

have been proposes (also illustrated in Fig. 3.4):

• Linear decay: t(i) = max{ϵ, k − ci}, where 0 ≤ ϵ < 1 is the minimum teacher

forcing probability to be used in the model and k and c provide the offset and

slope of the decay.

• Exponential decay: t(i) = ki, where 0 ≤ k < 1 is a hyperparameter used to adjust

the decay.

• Inverse sigmoid decay: t(i) = k
k+exp i

k

, where k ≥ 1 is a hyperparameter used to

adjust the decay.

Figure 3.4: Teacher forcing decay schedules, showing how the probability of using
the gold token in the next decoding step decreases over the course of training (in
the beginning of the training, the probability of using the gold token is 100%).
The following schedules are shown: linear (red dashed line), exponential (green
dotted line) and inverse sigmoid (purple line).

Among the decay strategies proposed for scheduled sampling, we found that

linear decay is the one that works best for our data.

34

3.4. EXPERIMENTS

3.3.4 Weights update

We calculate Cross Entropy Loss based on the outputs from the second decoder

pass. For the cases where all vocabulary words are summed (Softmax, Gumbel

Softmax, Sparsemax), we try two variants of updating the model weights.

• Only backpropagate through the decoder which makes the final predictions,

based on mix between the gold target and the model predictions. This is marked

in Table 3.2 as No backprop.

• Backpropagate through the second, as well as through the first decoder pass

which predicts the model outputs. This setup resembles the differentiable sched-

uled sampling proposed by Goyal et al. (2017). This is marked in Table 3.2 as

Backprop through model decisions.

3.4 Experiments

Encoder model type Transformer
Decoder model type Transformer
Enc. & dec. layers 6
Heads 8
Hidden layer size 512
Word embedding size 512
Batch size 32
Optimizer Adam
Learning rate 1.0
Warmup steps 20,000
Maximum training steps 300,000
Validation steps 10,000
Position Encoding True
Share Embeddings True
Share Decoder Embeddings True
Dropout 0.2 (DE-EN)
Dropout 0.1 (JA-EN)

Table 3.1: Hyperparameters shared across models

We report experiments with scheduled sampling for Transformers for the task

of machine translation. We run the experiments on two language pairs:

35

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

Experiment DE−EN JA−EN
Dev Test Dev Test

Teacher Forcing Baseline 35.05 29.62 18.00 19.46
No backprop
Argmax 23.99 20.57 12.88 15.13
Top-k mix 35.19 29.42 18.46 20.24
Softmax mix α = 1 35.07 29.32 17.98 20.03
Softmax mix α = 10 35.30 29.25 17.79 19.67
Gumbel Softmax mix α = 1 35.36 29.48 18.31 20.21
Gumbel Softmax mix α = 10 35.32 29.58 17.94 20.87
Sparsemax mix 35.22 29.28 18.14 20.15
Backprop through model decisions
Softmax mix α = 1 33.25 27.60 15.67 17.93
Softmax mix α = 10 27.06 23.29 13.49 16.02
Gumbel Softmax mix α = 1 30.57 25.71 15.86 18.76
Gumbel Softmax mix α = 10 12.79 10.62 13.98 17.09
Sparsemax mix 24.65 20.15 12.44 16.23

Table 3.2: Experiments with scheduled sampling for Transformer. The table
shows BLEU score for the best checkpoint on BLEU, measured on the validation
set. The first group of experiments do not have a backpropagation pass through
the first decoder. The results from the second group are from model runs with
backpropagation pass through the second as well as through the first decoder.

• IWSLT 2017 German−English (DE−EN, Cettolo et al. (2017)).

• KFTT Japanese−English (JA−EN, Neubig (2011)).

We use byte pair encoding (BPE; (Sennrich et al., 2016)) with a joint segmentation

with 32,000 merges for both language pairs.

Hyperparameters used across experiments are shown in Table 3.1. All models

were implemented in a fork of OpenNMT-py (Klein et al., 2017). We compare

our model to a teacher forcing baseline, i.e. a standard transformer model,

without scheduled sampling, with the hyperparameters given in Table 3.1. We did

hyperparameter tuning by trying several different values for dropout and warmup

steps, and choosing the best BLEU score on the validation set for the baseline

model.

We used linear decay schedule throughout the training, i.e. the probability of

choosing the gold token at each position is starting from 1 at the beginning of

the training and going to 0 at the end of the training. We experimented also with

36

3.5. DISCUSSION

inverse sigmoid decay schedule, but the steeper decrease in the usage of the gold

target token was leading to the model performance degrading very quickly.

The results from our experiments are shown In Table 3.2. The scheduled sam-

pling which uses only the highest-scored word predicted by the model does not

have a very good performance. The models which use mixed embeddings (the

top-k, softmax, Gumbel softmax or sparsemax) and only backpropagate through

the second decoder pass, perform slightly better than the baseline on the valida-

tion set, and one of them is also slightly better on the test set. The differentiable

scheduled sampling (when the model backpropagates through the first decoder)

have much lower results. The performance of these models starts degrading too

early, therefore the lower results in Table 3.2. We expect that using more training

steps with teacher forcing at the beginning of the training would lead to better

performance.

3.5 Discussion

In this chapter, we presented our approach to applying the scheduled sampling

technique to Transformers. Because of the specifics of the decoding, applying

scheduled sampling is not straightforward as it is for RNN and required some

changes in the way the Transformer model is trained, by using a two-step de-

coding. We experimented with several schedules and mixing of the embeddings

in the case where the model predictions were used. We tested the models for

machine translation on two language pairs. The experimental results showed that

our scheduled sampling strategy gave better results on the validation set for both

language pairs compared to a teacher forcing baseline and, in one of the tested

language pairs (JA−EN), there were slightly better results on the test set.

The case where we backpropagate through the second as well through the

first decoder, gives worse results than when we only backpropagate through the

second decoder. This finding suggests that our current approaches to backprop

37

CHAPTER 3. SCHEDULED SAMPLING FOR TRANSFORMERS

through discrete choices may not always work well and are not sufficiently under-

stood.

Slightly after this work was published, another paper proposed the idea of par-

allel scheduled sampling (Duckworth et al., 2019) which is very similar to this

work. They are more focused on the theoretical explanation of the problem,

while we looked at it from a more practical point of view. There have also been

follow-ups to our work. For example, Liu et al. (2021) improve the scheduled

sampling for transformers by using the confidence of prediction of the target to-

ken to decide whether to feed it or the gold one. Korakakis and Vlachos (2021)

show that even though scheduled sampling addresses exposure bias by increasing

model reliance on the input sequence, it also leads to output degradation due to

catastrophic forgetting, both in RNN and transformers. They mitigate the prob-

lem by using Elastic Weight Consolidation (Kirkpatrick et al., 2016).

38

CHAPTER 4

Surrogate Gradients for Latent

Structure Learning

Contents
4.1 Introduction . 40

4.2 Related Work . 42

4.3 SPIGOT as the Approximate Optimization of a Pulled Back

Loss . 44

4.4 New Surrogate Gradient Methods 47

4.5 Experiments . 49

4.6 Conclusions . 54

39

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

Latent structure models are a powerful tool for modeling language data: they

can mitigate the error propagation and annotation bottleneck in pipeline systems,

while simultaneously uncovering linguistic insights about the data. One challenge

with end-to-end training of these models is the argmax operation, which has null

gradient. We focus on surrogate gradients, a popular strategy to deal with this

problem. We explore latent structure learning through the angle of pulling back

the downstream learning objective. In this paradigm, we discover a principled

motivation for both the straight-through estimator (STE) as well as the recently-

proposed SPIGOT—a variant of STE for structured models. Our perspective leads

to new algorithms in the same family. We empirically compare the known and the

novel pulled-back estimators against the popular alternatives, yielding new insight

for practitioners and revealing intriguing failure cases.

4.1 Introduction

Natural language data is rich in structure, but most of the structure is not visible

at the surface. Machine learning models tackling high-level language tasks would

benefit from uncovering underlying structures such as trees, sequence tags, or

segmentations. Traditionally, practitioners turn to pipeline approaches where an

external, pretrained model is used to predict, e.g., syntactic structure. The ben-

efit of this approach is that the predicted tree is readily available for inspection,

but the downside is that the errors can easily propagate throughout the pipeline

and require further attention (Finkel et al., 2006; Sutton and McCallum, 2005;

Toutanova, 2005). In contrast, deep neural architectures tend to eschew such

preprocessing, and instead learn soft hidden representations, not easily amenable

to visualization and analysis.

The best of both worlds would be to model structure as a latent variable,

combining the transparency of the pipeline approach with the end-to-end unsu-

pervised representation learning that makes deep models appealing. Moreover,

40

4.1. INTRODUCTION

large-capacity model tend to rediscover structure from scratch (Tenney et al.,

2019), so structured latent variables may reduce the required capacity.

Learning with discrete, combinatorial latent variables is, however, challenging,

due to the intersection of large cardinality and null gradient issues. For example,

when learning a latent dependency tree, the latent parser must choose among an

exponentially large set of possible trees; what’s more, the parser may only learn

from gradient information from the downstream task. If the highest-scoring tree is

selected using an argmax operation, the gradients will be zero, preventing learn-

ing.

One strategy for dealing with the null gradient issue is to use a surrogate gra-

dient, explicitly overriding the zero gradient from the chain rule, as if a different

computation had been performed. The most commonly known example is the

straight-through estimator (STE; Bengio et al., 2013), which pretends that the

argmax node was instead an identity operator. Such methods lead to a funda-

mental mismatch between the objective and the learning algorithm. The effect of

this mismatch is still insufficiently understood, and the design of successful new

variants is therefore challenging. For example, the recently-proposed SPIGOT

method (Peng et al., 2018) found it beneficial to use a projection as part of the

surrogate gradient.

In this chapter, we study surrogate gradient methods for deterministic learning

with discrete structured latent variables. Our contributions are:

• We propose a novel motivation for surrogate gradient methods, based on opti-

mizing a pulled-back loss, thereby inducing pseudo-supervision on the latent

variable. This leads to new insight into both STE and SPIGOT.

• We show how our framework may be used to derive new surrogate gradient

methods, by varying the loss function or the inner optimization algorithm used

for inducing the pseudo-supervision.

• We experimentally validate our discoveries on a controllable experiment as well

41

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ ×
(a)

x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ
ℓ(ẑ, z)

(b)

x s ẑ ŷ L(ŷ, y)
fϕ argmax gθ

θ

ϕ
ℓ(ẑ, µ)

(c)

Figure 4.1: A model with a discrete latent variable z. Given an input x, we assign
a score sz = [f(x)]z to each choice, and pick the highest scoring one, ẑ, to predict
ŷ = gθ(ẑ). For simplicity, here gθ does not access x directly. (a). Since argmax has
null gradients, the encoder parameters ϕ do not receive updates. (b). If ground
truth supervision were available for the latent z, ϕ could be trained jointly with
an auxiliary loss. (c). As such supervision is not available, we induce a best-guess
label µ by pulling back the downstream loss. This strategy recovers the STE and
SPIGOT estimators.

as on English-language sentiment analysis and natural language inference, com-

paring against stochastic and relaxed alternatives, yielding new insights, and

identifying noteworthy failure cases.1

While the discrete methods do not outperform the relaxed alternatives using

the same building blocks, we hope that our interpretation and insights would trig-

ger future latent structure research.

4.2 Related Work

Discrete latent variable learning is often tackled in stochastic computation graphs,

by estimating the gradient of an expected loss. An established method is the score

function estimator (SFE) (Glynn, 1990; Williams, 1992; Kleijnen and Rubinstein,

1The source code is on: https://github.com/deep-spin/understanding-spigot.

42

https://github.com/deep-spin/understanding-spigot

4.2. RELATED WORK

1996). SFE is widely used in NLP, for tasks including minimum risk training in

NMT (Shen et al., 2016; Wu et al., 2018) and latent linguistic structure learning

(Yogatama et al., 2017; Havrylov et al., 2019). We focus on the alternative strat-

egy of surrogate gradients, which allows learning in deterministic graphs with

discrete, argmax-like nodes, rather than in stochastic graphs. Examples are the

straight-through estimator (STE) (Hinton, 2012; Bengio et al., 2013) and the

structured projection of intermediate gradients optimization technique (SPIGOT;

Peng et al. 2018). Recent work focuses on studying and explaining STE. Yin et al.

(2019) obtained a convergence result in shallow networks for the unstructured

case. Cheng et al. (2018) show that STE can be interpreted as the simulation

of the projected Wasserstein gradient flow. STE has also been studied in binary

neural networks (Hubara et al., 2016) and in other applications (Tjandra et al.,

2019). Other methods based on the surrogate gradients have been recently ex-

plored (Vlastelica et al., 2020; Meng et al., 2020).

A popular alternative is to relax an argmax into a continuous transform such

as softmax or sparsemax (Martins and Astudillo, 2016b), as seen for instance in

soft attention mechanisms (Vaswani et al., 2017), or structured attention networks

(Kim et al., 2017; Maillard et al., 2017; Liu and Lapata, 2018; Mensch and Blon-

del, 2018; Niculae et al., 2018a). In-between surrogate gradients and relaxation

is Gumbel softmax, which uses the Gumbel-max reparametrization to sample

from a categorical distribution, applying softmax either to relax the mapping or

to induce surrogate gradients (Jang et al., 2017; Maddison et al., 2016). Gumbel-

softmax has been successfully applied to latent linguistic structure as well (Choi

et al., 2018; Maillard and Clark, 2018). For sampling from a structured variable

is required, the Perturb-and-MAP technique (Papandreou and Yuille, 2011) has

been successfully applied to sampling latent structures in NLP applications (Corro

and Titov, 2019a,b).

43

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

4.3 SPIGOT as the Approximate Optimization of a

Pulled Back Loss

We next provide a novel interpretation of SPIGOT as the minimization of a “pulled

back” loss. SPIGOT uses the surrogate gradient:

∇̃sL(ŷ(ẑ), y) = ẑ − ΠM (ẑ − ηγ)

= ẑ − SparseMAP(ẑ − ηγ),

(4.1)

highlighting that SparseMAP (Niculae et al., 2018a) computes an Euclidean pro-

jection (Eq. (2.8)).

4.3.1 Intermediate Latent Loss

To begin, consider a much simpler scenario: if we had supervision for the la-

tent variable z (e.g., if the true label z was revealed to us), we could define an

intermediate loss ℓ(ẑ, z) which would induce nonzero updates to the encoder

parameters. Of course, we do not have access to this z. Instead, we consider the

following alternative:

Definition 1 (Pulled-back label). A guess µ ∈ M = conv(Z) for what the un-

known z ∈ Z should be, informed by the downstream loss.

Fig. 4.1 provides the intuition of the pulled-back label and loss. We take a moment

to justify picking µ ∈ M rather than directly in Z. In fact, if K = |Z| is small, we

can enumerate all possible values of z and define the guess as the latent value

minimizing the downstream loss, µ = argminz∈Z L(ŷ(z), y). This is sensible, but

intractable in the structured case. Moreover, early on in the training process,

while gθ is untrained, the maximizing vertex carries little information. Thus, for

44

4.3. SPIGOT AS THE APPROXIMATE OPTIMIZATION OF A PULLED BACK LOSS

robustness and tractability, we allow for some uncertainty by picking a convex

combination µ ∈M so as to approximately minimize

µ ≈ argmin
µ∈M

L(ŷ(µ), y). (4.2)

For most interesting predictive models ŷ(µ) (e.g., deep networks), this optimiza-

tion problem is non-convex and lacks a closed form solution. One common strat-

egy is the projected gradient algorithm (Goldstein, 1964; Levitin and Polyak,

1966), which, in addition to gradient descent, has one more step: projection of the

updated point on the constraint set. It iteratively performs the following updates:

µ(t+1) = ΠM
(
µ(t) − ηtγ(µ

(t))
)
, (4.3)

where ηt is a step size and γ is as in Eq. (2.13). With a suitable choice of step

sizes, the projected gradient algorithm converges to a local optimum of Eq. (4.2)

(Bertsekas, 1999, Proposition 2.3.2). In the sequel, for simplicity we use constant

η. If we initialize µ(0) = ẑ = argmaxz∈Z s⊤z, a single iteration of projected gradient

yields the guess:

µ(1) = ΠM
(
ẑ − ηγ(ẑ)

)
. (4.4)

Treating the induced µ as if it were the “ground truth” label of z, we may train the

encoder fϕ(x) by supervised learning. With a perceptron loss,

ℓPerc(ẑ(s), µ) = max
z∈Z

s⊤z − s⊤µ

= s⊤ẑ − s⊤µ , (4.5)

a single iteration yields the gradient:

∇sℓPerc(ẑ, µ
(1)) = ẑ − µ(1) , (4.6)

which is precisely the SPIGOT gradient surrogate in Eq. (4.1). This leads to the

45

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

following insight into how SPIGOT updates the encoder parameters:

SPIGOT minimizes the perceptron loss between z and a pulled back target

computed by one projected gradient step on min
µ∈M

L(ŷ(µ), y) starting at ẑ =

MAP(s).

This construction suggests possible alternatives, the first of which uncovers a

well-known algorithm.

Relaxing the M constraint. The constraints in Eq. (4.2) make the optimization

problem more complicated. We relax them and define µ ≈ argminµ∈RK L(ŷ(µ), y).

This problem still requires iteration, but the projection step can now be avoided.

One iteration of gradient descent yields µ(1) = ẑ−ηγ. The perceptron update then

recovers a novel derivation of straight-through with identity (STE-I), where the

backward pass acts as if ∂ẑ(s)
∂s

!
= Id (Bengio et al., 2013),

∇sℓPerc(ẑ, µ
(1)) = ẑ − (ẑ − ηγ) = ηγ. (4.7)

This leads to the following insight into straight-through and its relationship to

SPIGOT:

Straight-through (STE-I) minimizes the perceptron loss between z and a

pulled back target computed by one gradient step on min
µ∈RK

L(ŷ(µ), y) starting

at ẑ = MAP(s).

From this intuition, we readily obtain new surrogate gradient methods, which we

explore below.

46

4.4. NEW SURROGATE GRADIENT METHODS

4.4 New Surrogate Gradient Methods

Multiple gradient updates. Instead of a single projected gradient step, we could

run multiple steps of Eq. (4.3). We would expect this to yield a better approxima-

tion of µ. This comes at a computational cost: each update involves running a

forward and backward pass in the decoder gθ with the current guess µ(t), to obtain

γ(µ(t)) := ∇µL
(
ŷ(µ(t)), y

)
.

Different initialization. The projected gradient update in Eq. (4.4) uses µ(0) =

ẑ = argmaxz∈Z s⊤z as the initial point. This is a sensible choice, if we believe the

encoder prediction ẑ is close enough to the optimal µ, and it is computationally

convenient, because the forward pass uses ẑ, so γ(ẑ) is readily available in the

backward pass, thus the first inner iteration comes for free. However, other ini-

tializations are possible, for example µ(0) = Marg(s) or µ(0) = 0, at the cost of an

extra computation of γ(µ(0)). We do not consider alternate initializations for their

own sake; they are needed for the following two directions.

Different intermediate loss: SPIGOT-CE. For simplicity, consider the unstruc-

tured case whereM = △, and use the initial guess µ(0) = softmax(s). Replacing ℓPerc

by the cross-entropy loss ℓCE(µ
(0), µ(1)) = −

∑K
k=1 µk log µ

(0)
k yields

∇sℓCE(µ
(0), µ(1)) = µ(0) − Π△(µ

(0) − ηγ). (4.8)

In the structured case, the corresponding loss is the CRF loss (Lafferty et al., 2001),

which corresponds to the KL divergence between two distributions over struc-

tures. In this case, we initialize µ(0) = Marg(s) and update

∇sℓCE(µ
(0), µ(1)) = µ(0) − ΠM(µ(0) − ηγ). (4.9)

Exponentiated gradient updates: SPIGOT-EG. In the unstructured case, op-

timization overM = △ can also be tackled via the exponentiated gradient (EG)

47

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

algorithm (Kivinen and Warmuth, 1997), which minimizes Eq. (4.2) with the fol-

lowing multiplicative update:

µ(t+1) ∝ µ(t) ⊙ exp(−ηt∇µL(ŷ(µ
(t)), y)), (4.10)

where⊙ is elementwise multiplication and thus each iterate µ(t) is strictly positive,

and normalized to be inside△. EG cannot be initialized on the boundary of△, so

again we must take µ(0) = softmax(s). A single iteration of EG yields:

µ(1) ∝ µ(0) ⊙ exp(−ηγ)

= softmax(log µ(0) − ηγ)

= softmax(s− ηγ). (4.11)

It is natural to use the cross-entropy loss, giving

∇sℓCE(µ
(0), µ(1))=µ(0) − softmax(s− ηγ), (4.12)

i.e., the surrogate gradient is the difference between the softmax prediction and a

“perturbed” softmax. To generalize to the structured case, we observe that both

EG and projected gradient are instances of mirror descent under KL divergences

(Beck and Teboulle, 2003). Unlike the unstructured case, we must iteratively keep

track of both perturbed scores and marginals, since Marg−1 is non-trivial. This

leads to the following mirror descent algorithm:

s(0) = s, µ(0) = Marg(s(0)) ,

s(t+1) = s(t) − ηγ(µ(t)) ,

µ(t+1) = Marg(s(t)) .

(4.13)

48

4.5. EXPERIMENTS

With a single iteration and the CRF loss, we get

∇sℓCE = Marg(s)− Marg(s− ηγ) . (4.14)

Algorithm 1 sketches the implementation of the proposed surrogate gradients for

the structured case. The forward pass is the same for all variants: given the scores

s for the parts of the structure, it calculates the MAP structure z. The surrogate gra-

dients are implemented as custom backward passes. The function GradLoss uses

automatic differentiation to compute γ(µ) at the current guess µ; each call involves

thus a forward and backward pass through gθ. Due to convenient initialization, the

first iteration of STE-I and SPIGOT come for free, since both µ(0) and γ(µ(0)) are

available as a byproduct when computing the forward and, respectively, backward

pass through gθ in order to update θ. For SPIGOT-CE and SPIGOT-EG, even with

k = 1 we need a second call to the decoder, since µ(0) ̸= ẑ, so an additional de-

coder call is necessary for obtaining the gradient of the loss with respect to µ(0).

The unstructured case is essentially identical, with Marg replaced by softmax.

4.5 Experiments

Armed with a selection of surrogate gradient methods, we now proceed to an ex-

perimental comparison. For maximum control, we first study a synthetic unstruc-

tured experiment with known data generating process. This allows us to closely

compare the various methods, and to identify basic failure cases. We then study

the structured case of latent dependency trees for sentiment analysis and natural

language inference in English. Full training details are described in Appendix A.

4.5.1 Categorical Latent Variables

For the unstructured case, we design a synthetic dataset from a mixture model

z ∼ Categorical(1/K), x ∼ Normal(mz, σI), y = sign(w⊤
z x+ bz), where mz are randomly

49

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

0 2000 4000 6000 8000 10000
epoch

50

60

70

80

90
va

lid
. a

cc
ur

ac
y

0 2000 4000 6000 8000 10000
epoch

0

20

40

60

80

100

va
lid

. v
-m

ea
su

re

Linear
Gold clusters
Softmax
STE-I

SPIGOT
SPIGOT-CE
SPIGOT-EG

Figure 4.2: Learning curves on synthetic data with 10 clusters. Softmax learns the
downstream task fast, but mixes the clusters, yielding poor V-measure. SPIGOT
fails on both metrics; STE-I and the novel SPIGOT-CE work well.

placed cluster centers, and wz, bz are parameters of a different ground truth linear

model for each cluster. Given cluster labels, one could learn the optimal linear

classifier separating the data in that cluster. Without knowing the cluster, a global

linear model cannot fit the data well. This setup provides a test bed for discrete

variable learning, since accurate clustering leads to a good fit. The architecture,

following Section 2.3.2, is:

• Encoder: A linear mapping from the input to a K-dimensional score vector:

s = fϕ(x) = Wfx+ bf , where ϕ = (Wf , bf) ∈ RK×dim(X) × RK are parameters.

• Latent mapping: ẑ = ρ(s), where ρ is argmax or a continuous relaxation such

as softmax or sparsemax.

• Decoder: A bilinear transformation, combining the input x and the latent vari-

able z:

ŷ = gθ(x, ẑ) = ẑ⊤Wgx+ bg, (4.15)

where θ = (Wg, bg) ∈ RK×dim(X) × R are model parameters. If ẑ = ek, this selects

the kth linear model from the rows of Wg.

We evaluate two baselines: a linear model, and an oracle where gθ(x, z) has ac-

cess to the true z. In addition to the methods discussed in the previous section,

50

4.5. EXPERIMENTS

we evaluate softmax and sparsemax end-to-end differentiable relaxations, and

the STE-S variant which uses the softmax backward pass while doing argmax in

the forward pass. We also compare stochastic methods, including score function

estimators (with an optional moving average control variate), and the two Gum-

bel estimator variants (Jang et al., 2017; Maddison et al., 2016): Gumbel-Softmax

with relaxed softmax in the forward pass, and the other using argmax in the style of

STE (hence dubbed ST-Gumbel).

Results. We compare the discussed methods in Table 4.1. Knowledge of the

data-generating process allows us to measure not only downstream accuracy, but

also clustering quality, by comparing the model predictions with the known true

z. We measure the latter via the V-measure (Rosenberg and Hirschberg, 2007), a

clustering score independent of the cluster labels, i.e., invariant to permuting the

labels (between 0 and 100, with 100 representing perfect cluster recovery). The

linear and gold cluster oracle baselines confirm that cluster separation is needed

for good performance. Stochastic models perform well across both criteria. Cru-

cially, SFE requires variance reduction to performs well, but even a simple control

variate will do.

Deterministic models may be preferable when likelihood assessment or sam-

pling is not tractable. Among these, STE-I and SPIGOT-{CE,EG} are indistin-

guishable from the best models. Surprisingly, the vanilla SPIGOT fails, especially

in cluster recovery. Finally, the relaxed deterministic models perform very well

on accuracy and learn very fast (Fig. 4.2), but appear to rely on mixing clusters,

therefore they remarkably fail to recover cluster assignments.2 This is in line with

the structured results of Corro and Titov (2019b). Therefore, if latent structure

recovery is less important than downstream accuracy, relaxations seem prefer-

able.

2With relaxed methods, the V-measure is always calculated using the argmax, even though gθ
sees a continuous relaxation.

51

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

1 5 10
n. pull-back updates

70

75

80

85

va
lid

. a
cc

ur
ac

y
1 5 10
n. pull-back updates

40

60

80

100

va
lid

. v
-m

ea
su

re

STE-I
SPIGOT
SPIGOT-CE
SPIGOT-EG

Figure 4.3: Impact of multiple gradient update steps for the pulled-back label,
on the synthetic example with 10 clusters. For each point, the best step size η is
chosen.

Impact of multiple updates. One possible explanation for the failure of SPIGOT

is that SPIGOT-CE and SPIGOT-EG perform more work per iteration, since they

use a softmax initial guess and thus require a second pass through the decoder.

We rule out this possibility in Fig. 4.3: even when tuning the number of updates,

SPIGOT does not substantially improve. We observe, however, that SPIGOT-CE

improves slightly with more updates, outperforming STE-I. However, since each

update step performs an additional decoder call, this also increases the training

time.

4.5.2 Structured Latent Variables

For learning structured latent variables, we study sentiment classification on the

English language Stanford Sentiment Treebank (SST) (Socher et al., 2013), and

Natural Language Inference on the SNLI dataset (Bowman et al., 2015).

Sentiment Classification

The model predicts a latent projective arc-factored dependency tree for the sen-

tence, then uses the tree in predicting the downstream binary sentiment label.

The model has the following components:

• Encoder: Computes a score for every possible dependency arc i → j between

52

4.5. EXPERIMENTS

words i and j. Each word is represented by its embedding hi,3 then processed

by an LSTM, yielding contextual vectors
←→
hi . Then, arc scores are computed as

si→j = v⊤ tanh
(
W⊤[
←→
hi ;
←→
hj] + b

)
. (4.16)

• Latent parser: We use the arc scores vector s to get a parse ẑ = ρ(s) for the sen-

tence, where ρ(s) is the argmax, or combination of trees, such as Marg or SparseMAP.

• Decoder: Following Peng et al. (2018), we concatenate each
←→
hi with its pre-

dicted head
←→
h head(i). For relaxed methods, we average all possible heads, weighted

by the corresponding marginal:
←→
h head(i) :=

∑
j µi→j

←→
hj . The concatenation is

passed through an affine layer, a ReLU activation, an attention mechanism, and

the result is fed into a linear output layer.

For marginal inference, we use pytorch-struct (Rush, 2020). For the SparseMAP

projection, we use the active set algorithm (Niculae et al., 2018a). The baseline

we compare our models against is a BiLSTM, followed by feeding the sum of all

hidden states to a two-layer ReLU-MLP.

Results. The results from the experiments with the different methods are shown

in Table 4.2. As in the unstructured case, the relaxed models lead to strong down-

stream classifiers. Unlike the unstructured case, SPIGOT is a top performer here.

The effect of tuning the number of gradient update steps is not as big as in the

unstructured case and did not lead to significant improvement. This can be ex-

plained by a “moving target” intuition: since the decoder gθ is far from optimal,

more accurate µ do not overall help learning.

Natural Language Inference

We build on top of the decomposable attention model (DA; Parikh et al., 2016).

Following the setup of Corro and Titov (2019b), we induce structure on the premise
3Pretrained GloVe vectors (Pennington et al., 2014).

53

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

and the hypothesis. For computing the score of the arc from word i to j, we con-

catenate the representations of the two words, as in Eq. (4.16). In the decoder,

after the latent parse tree is calculated, we concatenate each word with the av-

erage of its heads. We do this separately for the premise and the hypothesis. As

baseline, we use the DA model with no intra-attention.

Results. The SNLI results are shown in Table 4.2. Here, the straight-through

(argmax) methods are outperformed by the more stable relaxation-based meth-

ods. This can be attributed to the word-level alignment in the DA model, where

soft dependency relations appear better suited than hard ones.

4.6 Conclusions

In this chapter, we provide a novel motivation for straight-through estimator (STE)

and SPIGOT, based on pulling back the downstream loss. We derive promising

new algorithms, and novel insight into existing ones. Unstructured controlled ex-

periments suggest that our new algorithms, which use the cross-entropy loss in-

stead of the perceptron loss, can be more stable than SPIGOT while accurately

disentangling the latent variable. Differentiable relaxation models (using softmax

and sparsemax) are the easiest to optimize to high downstream accuracy, but they

fail to correctly identify the latent clusters. On structured NLP experiments, re-

laxations (SparseMAP and Marginals) tend to overall perform better and be more

stable than straight-through variants in terms of classification accuracy. However,

the lack of gold-truth latent structures makes it impossible to assess recovery per-

formance. We hope that our insights, including some of our negative results, may

encourage future research on learning with latent structures.

54

4.6. CONCLUSIONS

Algorithm 1: Surrogate gradients pseudocode: common forward pass,
specialized backward passes.

Parameters: step size η, n. iterations k

Function Forward(s, x, y):
return ẑ ← MAP(s) // Eq. (2.9)

Function GradLoss(µ, x, y):
return γ ← ∇µL(ŷ(µ), y) // Eq. (2.13)

Function BackwardSPIGOT(s, x, y):
µ(0) = MAP(s)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ) // Eq. (4.3)

return µ(0) − µ(k) // Eq. (4.6)

Function BackwardSTE-I(s, x, y):
µ(0) = MAP(s) // Eq. (4.7)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← µ(t−1) − ηγ

return µ(0) − µ(k)

Function BackwardSPIGOT-CE(s, x, y):
µ(0) ← Marg(s) // Eq. (4.9)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ)

return µ(0) − µ(k)

Function BackwardSPIGOT-EG(s, x, y):
(s(0), µ(0))← (s, Marg(s)) // Eq. (4.13)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
s(t) ← s(t−1) − ηγ
µ(t) ← Marg(s(t))

return µ(0) − µ(k)

55

CHAPTER 4. SURROGATE GRADIENTS FOR LATENT STRUCTURE LEARNING

(3 clusters) (10 clusters)
Model Accuracy V-measure Accuracy V-measure

Baselines
Linear model 68.05±0.09 0.00±0.00 60.00±0.06 0.00±0.00
Gold cluster labels 92.40±0.06 100.00±0.00 88.50±0.10 100.00±0.00

Relaxed
Softmax 93.15±0.33 66.88±0.97 86.45±0.33 75.07±1.18
Sparsemax 92.95±0.38 71.35±16.60 83.75±1.32 76.13±3.89
*Gumbel-Softmax 94.25±3.42 100.00±6.80 80.45±0.77 89.68±1.10

Argmax
*ST-Gumbel 93.85±3.25 100.00±6.80 81.25±0.68 91.52±1.46
*SFE 68.45±0.33 47.73±17.65 59.80±0.58 55.56±3.30
*SFE w/ baseline 94.20±0.08 100.00±0.00 84.70±0.97 96.83±0.85
STE-S 86.95±4.01 84.44±11.61 75.95±1.10 82.83±2.75
STE-I 92.60±0.23 100.00±0.00 84.50±1.43 94.48±1.35
SPIGOT 77.90±1.26 20.53±1.85 68.80±1.02 29.24±2.24
SPIGOT-CE 93.40±2.64 97.08±13.92 83.50±0.87 94.88±1.39
SPIGOT-EG 92.70±3.04 100.00±8.27 79.40±2.03 82.29±2.15

Table 4.1: Discrete latent variable learning on synthetic data: downstream ac-
curacy and clustering V-measure. Median and standard error reported over four
runs. We mark stochastic methods with *.

Model SNLI SST

Relaxed
Marginals 83.45 85.01
SparseMAP 83.61 85.35

Argmax
*Perturb-and-MAP 82.92 83.80
STE-S 83.32 81.10
STE-I 83.17 81.00
SPIGOT 84.80 83.52
SPIGOT-CE 83.01 79.20
SPIGOT-EG 82.88 84.84

Table 4.2: SST and SNLI average accuracy over three runs, with latent depen-
dency trees. Baselines are described in Section 4.5.2. We mark stochastic meth-
ods marked with *.

56

CHAPTER 5

Undirected Neural Networks

Contents
5.1 Introduction . 58

5.2 Undirected Neural Networks . 59

5.3 Image Classification and Visualization 66

5.4 Undirected Attention Mechanism 70

5.5 Structured UNNs for Dependency Parsing 75

5.6 Related Work . 80

5.7 Conclusions and Future Work 82

57

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

Neural networks are powerful function estimators, leading to their status as a

paradigm of choice for modeling structured data. However, unlike other struc-

tured representations that emphasize the modularity of the problem – e.g., factor

graphs – neural networks are usually monolithic mappings from inputs to outputs,

with a fixed computation order. This limitation prevents them from capturing dif-

ferent directions of computation and interaction between the modeled variables.

In this chapter, we combine the representational strengths of factor graphs

and of neural networks, proposing undirected neural networks (UNNs): a flexi-

ble framework for specifying computations that can be performed in any order.

For particular choices, our proposed models subsume and extend many existing

architectures: feed-forward, recurrent, self-attention networks, auto-encoders,

and networks with implicit layers. We demonstrate the effectiveness of undi-

rected neural architectures, both unstructured and structured, on a range of tasks:

tree-constrained dependency parsing, convolutional image classification, and se-

quence completion with attention. By varying the computation order, we show

how a single UNN can be used both as a classifier and a prototype generator, and

how it can fill in missing parts of an input sequence, making them a promising field

for further research.

5.1 Introduction

Factor graphs have historically been a very appealing toolbox for representing

structured prediction problems (Bakır et al., 2007; Smith, 2011; Nowozin et al.,

2014), with wide applications to vision and natural language processing applica-

tions. In the last years, neural networks have taken over as the model of choice

for tackling these applications. Unlike factor graphs – which emphasize the mod-

ularity of the problem – neural networks typically work end-to-end, relying on

rich representations captured at the encoder level (often pretrained), which are

then propagated to a task-specific decoder.

58

5.2. UNDIRECTED NEURAL NETWORKS

In this chapter, we combine the representational strengths of factor graphs and

neural networks by proposing undirected neural networks (UNNs) – a frame-

work in which outputs are not computed by evaluating a composition of func-

tions in a given order, but are rather obtained implicitly by minimizing an energy

function which factors over a graph. For particular choices of factor potentials,

UNNs subsume many existing architectures, including feedforward, recurrent,

and self-attention neural networks, auto-encoders, and networks with implicit

layers. When coupled with a coordinate-descent algorithm to minimize the en-

ergy, the computation performed in an UNN is similar (but not equivalent) to a

neural network sharing parameters across multiple identical layers. Since UNNs

have no prescribed computation order, the exact same network can be used to

predict any group of variables (outputs) given another group of variables (inputs),

or vice-versa (i.e., inputs from outputs). Our contributions are:

• We present UNNs and show how they extend many existing neural architec-

tures.

• We provide a coordinate descent inference algorithm, which, by an “unrolling

lemma” (Lemma 1), can reuse current building blocks from feed-forward net-

works in a modular way.

• We develop and experiment with multiple factor graph architectures, tackling

both structured and unstructured tasks, such as natural language parsing, image

classification, and image prototype generation. We develop a new undirected

attention mechanism and demonstrate its suitability for sequence completion.1

5.2 Undirected Neural Networks

Let G = (V, F) be a factor graph, i.e., a bipartite graph consisting of a set of variable

nodes V and a set of factor nodes F , where each factor node f ∈ F ⊆ 2V is linked

1The source code is available on: https://github.com/deep-spin/unn

59

https://github.com/deep-spin/unn

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

to a subset of variable nodes. Each variable node X ∈ V is associated with a rep-

resentation vector x ∈ RdX. We define unary energies for each variable EX(x), as

well as higher-order energies Ef (xf), where xf denotes the values of all variables

linked to factor f . Then, an assignment defines a total energy function

E(x1, . . . , xn) :=
∑
i

EXi
(xi) +

∑
f

Ef (xf). (5.1)

For simple factor graphs where there is no ambiguity, we may refer to factors

directly by the variables they link to. For instance, a simple fully-connected factor

graph with only two variables X and Y is fully specified byE(x, y) = EX(x)+EY(y)+

EXY(x, y) .

The energy function in Eq. (5.1) induces preferences for certain configurations.

For instance, a globally best configuration can be found by solving argminx,y E(x, y),

while a best assignment for Y given a fixed value of X can be found by solving

argminy E(x, y).2 We may think of, or suggest using notation, that X is an input

and Y is an output. However, intrinsically, factor graphs are not attached to a

static notion of input and output, and instead can be used to infer any subset of

variables given any other subset.

In our proposed framework of UNNs, we define the computation performed

by a neural network using a factor graph, where each variable is a representation

vector (e.g., analogous to the output of a layer in a standard network). We design

the factor energy functions depending on the type of each variable and the de-

sired relationships between them. Inference is performed by minimizing the joint

energy with respect to all unobserved variables (i.e., hidden and output values).

For instance, to construct a supervised UNN, we may designate a particular vari-

able as “input” X and another as “output” Y, alongside several hidden variables Hi,

2We only consider deterministic inference in factor graphs. Probabilistic models are a promis-
ing extension.

60

5.2. UNDIRECTED NEURAL NETWORKS

compute

ŷ = argmin
y

min
h1,...,hn

E(x, h1, . . . , hn, y) , (5.2)

and train by minimizing some loss ℓ(ŷ, y). However, UNNs are not restricted to

the supervised setting or to a single input and output, as we shall explore.

While this framework is very flexible, Eq. (5.2) is a non-trivial optimization

problem. Therefore, we focus on a class of energy functions that renders infer-

ence easier:
EXi

(xi) = −⟨bXi
, xi⟩+ΨXi

(xi) ,

Ef (xf) = −

〈
Wf ,

⊗
Xj∈f

xj

〉
,

(5.3)

where each ΨXi
is a strictly convex regularizer, ⊗ denotes the outer product, and

Wf is a parameter tensor of matching dimension. For pairwise factors f = {X,Y},

the factor energy is bilinear and can be written simply as EXY(x, y) = −x⊤Wy. In

factor graphs of the form given in Eq. (5.3), the energy is convex in each variable

separately, and block-wise minimization has a closed-form expression involving

the Fenchel conjugate of the regularizers. This suggests a block coordinate de-

scent optimization strategy: given an order π, iteratively set:

xπj
← argmin

xπj

E(x1, . . . , xn) . (5.4)

This block coordinate descent algorithm is guaranteed to decrease energy at ev-

ery iteration and, for energies as in Eq. (5.3), to converge to a Nash equilibrium

(Xu and Yin, 2013, Thm. 2.3); in addition, it is conveniently learning-rate free. For

training, to tackle the bi-level optimization problem, we unroll the coordinate de-

scent iterations, and minimize some loss with standard deep learning optimizers,

like stochastic gradient or Adam (Kingma and Ba, 2014).

The following result, proved in Appendix C, shows that the coordinate de-

scent algorithm (Eq. (5.4)) for UNNs with multilinear factor energies (Eq. (5.3)),

corresponds to standard forward propagation on an unrolled neural network.

61

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

Lemma 1 (Unrolling Lemma). Let G = (V, F) be a pairwise factor graph, with mul-

tilinear higher-order energies and strictly convex unary energies, as in Eq. (5.3).

Then, the coordinate descent updates (5.4) result in a chain of affine transfor-

mations (i.e., pre-activations) followed by non-linear activations, applied in the

order π, yielding a traditional computation graph.

We show next an undirected construction inspired by (directed) multi-layer

perceptrons.

Single pairwise factor The simplest possible UNN has a pairwise factor con-

necting two variables X,H. We may interpret X as an input, and H either as an

output (in supervised learning) or a hidden representation in unsupervised learn-

ing (Fig. 5.2(a)). Bilinear-convex energies as in Eq. (5.3) yield:

EXH(x, h) = −⟨h,Wx⟩ ,

EX(x) = −⟨x, bX⟩+ΨX(x) ,

EH(h) = −⟨h, bH⟩+ΨH(h) .

(5.5)

This resembles a Boltzmann machine with continuous variables (Smolensky, 1986;

Hinton, 2007; Welling et al., 2004); however, in contrast to Boltzmann machines,

we do not model joint probability distributions, but instead use factor graphs as

representations of deterministic computation, more akin to computation graphs.

Given x, the updated h minimizing the energy is:

h⋆ = argmin
h∈RM

−(Wx+ bH)
⊤h+ΨH(h)

= (∇Ψ∗
H)(Wx+ bH),

(5.6)

where ∇Ψ∗
H is the gradient of the conjugate function of ΨH. Analogously, the up-

date for X given H is:

x⋆ = (∇Ψ∗
X)(W

⊤h+ bX) . (5.7)

62

5.2. UNDIRECTED NEURAL NETWORKS

Ψ(h) (∇Ψ∗)(t)

1
2∥h∥

2 t

1
2∥h∥

2 + ιR+(h) relu(t)∑
j

(
ϕ(hj) + ϕ(1− hj)

)
+ ι[0,1]d(h) sigmoid(t)∑

j

(
ϕ
(
1+hj

2

)
+ ϕ

(
1−hj

2

))
+ ι[−1,1]d(h) tanh(t)

−H(h) + ι∆(h) softmax(t)

Table 5.1: Examples of regularizers Ψ(h) corresponding to some common acti-
vation functions, where ϕ(t) = t log t.

X H Y

X H* Y* H* Y* H*
Y*
=Y

Figure 5.1: Unrolling the computation graph for undirected MLP with a single
hidden layer. Top: MLP with one hidden layer. Bottom: Unrolled graph for UNN
with k = 3 iterations.

Other than the connection to Boltzmann machines, one round of updates of H

and X in this order also describe the computation of an auto-encoder with shared

encoder/decoder weights.

Table 5.1 shows examples of regularizers Ψ and their corresponding ∇Ψ∗, In

practice, we never evaluateΨorΨ∗, but only∇Ψ∗, which we choose among commonly-

used neural network activation functions like tanh, relu, and softmax.

Undirected multi-layer perceptron (MLP) Fig. 5.2(b) shows the factor graph

for an undirected MLP analogous to a feed-forward one with input X, output Y,

and a single hidden layer H. As in Eq. (5.3), we have bilinear pairwise factors

EXH(x, h) = −⟨h,Wx⟩ , EHY(h, y) = −⟨y, V h⟩ , (5.8)

63

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

X

Q K

V S

H

(e)

EXH(X,H)

EX(X) X

HM

Y

EHMY(H,M,Y)

(d)

EXM(X,M)

EH(H)

EY(Y)

X

H

(a)

X

H

Y

(b)

X

H1

H2

Y

(c)

Figure 5.2: Factor graphs for: (a) network without intermediate layers, (b-c) undi-
rected MLPs with one or two layers, (d) undirected biaffine dependency parser,
(e) undirected self-attention. Energy labels ommitted for brevity with the excep-
tion of (d).

and linear-plus-convex unaries EZ(x) = −⟨x, bZ⟩ + ΨZ(x) for Z ∈ {X,H,Y}. If x is

observed (fixed), coordinate-wise inference updates take the form:

h⋆ = (∇Ψ∗
H)(Wx+ V ⊤y + bH) ,

y⋆ = (∇Ψ∗
Y)(V h+ bY) .

(5.9)

Note that EX does not change anything if X is always observed. The entire algo-

rithm can be unrolled into a directed computation graph, leading to a deep neural

network with shared parameters (Fig. 5.1).

The regularizers ΨH and ΨY may be selected based on what we want ∇Ψ∗ to

look like, and the constraints or domains of the variables. For instance, if Y is

a multiclass classification output, we may pick ΨY such that ∇Ψ∗
Y be the softmax

function, and ΨH to induce a relu nonlinearity. Initializing y(0) = 0 and performing

a single iteration of updating H followed by Y results in a standard MLP with a

single hidden layer (see also Fig. 5.1). However, the UNN point of view lets us

decrease energy further by performing multiple iterations, as well as use the same

model to infer any variables given any other ones, e.g., to predict x from y instead

of y from x. We demonstrate this power in Sections 5.3 to 5.5.

The above constructions provide a flexible framework for defining UNNs. How-

64

5.2. UNDIRECTED NEURAL NETWORKS

ever, UNNs are more general and cover more popular deep learning architectures.

The following constructions illustrate some such connections.

Feed-forward neural networks Any directed computation graph associated

with a neural network is a particular case of an UNN. We illustrate this for a simple

feed-forward network, which chains the functions h = f(x) and y = g(h), where

x ∈ Rm, h ∈ Rd, y ∈ Rn are input, hidden, and output variables, and f : Rm → Rd

and g : Rd → Rn are the functions associated to each layer (e.g., an affine transfor-

mation followed by a non-linearity). This factor graph is illustrated in Fig. 5.2(b).

To see this, let V = {X,H,Y} and F = {XH,HY} and define the energies as follows.

Let d : Rd × Rd → R+ be any distance function satisfying d(a, b) ≥ 0, with equal-

ity iff a = b; for example d(a, b) = ∥a − b∥. Let all the unary energies be zero and

define the factor energies EXH(x, h) = d(h, f(x)) and EHY(h, y) = d(y, g(h)). Then

the total energy satisfies E(x, h, y) ≥ 0, with equality iff the equations h = f(x) and

y = g(h) are satisfied – therefore, the energy is minimized (and becomes zero)

when y = g(f(x)), matching the corresponding directed computation graph. This

can be generalized for an arbitrary deterministic neural network. This way, we

can form UNNs that are partly directed, partly undirected, as the whole is still an

UNN. We do this in our experiments in Section 5.5, where we fine-tune a pre-

trained BERT model appended to a UNN for parsing.

Implicit layers UNNs include networks with implicit layers (Duvenaud et al.,

2020), a paradigm which, in contrast with feed-forward layers, does not specify

how to compute the output from the input, but rather specifies conditions that

the output layer should specify, often related to minimizing some function, e.g.,

computing a layer hi+1 given a previous layer hi involves solving a possibly difficult

problem argminh f(hi, h). Such a function f can be directly interpreted as an energy

in our model, i.e., EHiHi+1
= f .

65

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

5.3 Image Classification and Visualization

Unlike feed-forward networks, where the processing order is hard-coded from

inputs X to outputs Y, UNNs support processing in any direction. We can thus use

the same trained network both for classification as well as for generating proto-

typical examples for each class. We demonstrate this on the MNIST dataset of

handwritten digits (LeCun et al., 1998), showcasing convolutional UNN layers.

The architecture is shown in Fig. 5.2(c) and has the following variables: the

image X, the class label Y and two hidden layer variables H{1,2}. Unlike the previous

examples, the two pairwise energies involving the image and the hidden layers are

convolutional, i.e., linear layers with internal structure:

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,
(5.10)

where C1,2 are linear cross-correlation operators with stride two and filter weights

W1 ∈ R32×1×6×6 and W2 ∈ R64×32×4×4. The last layer is fully connected:

EH2Y(H2, y) = −⟨V, y ⊗H2⟩ . (5.11)

The unary energies for the hidden layers contain standard (convolutional) bias

term along with the binary entropy term Ψtanh(H) such that ∇Ψ∗
tanh(t) = tanh(t)

(see Table 5.1). Note that X is no longer a constant when generating X given Y,

therefore it is important to specify the unary energy EX. Since pixel values are

bounded, we set EX(x) = Ψtanh(x). Initializing H1, H2, and y with zeroes and updat-

ing them once blockwise in this order yields exactly a feed-forward convolutional

neural network. As our network is undirected, we may propagate information in

multiple passes, proceeding in the orderH1,H2,Y,H2 iteratively. The update forH1

involves a convolution of X and a deconvolution of H2; we defer the other updates

66

5.3. IMAGE CLASSIFICATION AND VISUALIZATION

Iterations Accuracy

k = 1, γ = 0 (baseline) 98.80
k = 1 98.75
k = 2 98.74
k = 3 98.83
k = 4 98.78
k = 5 98.69

Table 5.2: MNIST accuracy with convolutional UNN.

to Appendix D:

(H1)⋆= tanh(C1(X;W1) + C⊤2 (H2;W2) + b1 ⊗ 1d1) , (5.12)

where b1 ∈ R32 are biases for each filter, and d1 = 12 × 12 is the convolved im-

age size. To generate digit prototype X from a given class c ∈ {1, . . . , 10}, we

may set y = ec, initialize the other variables at zero (including X), and solve X̂ =

argminX minH1,2 E(X,H1, H2, y) by coordinate descent in the reverse orderH2,H1,X,H1

iteratively.

We train our model jointly for both tasks. For each labeled pair (X, y) from the

training data, we first predict ŷ given X, then separately predict X̂ given y. The

incurred loss is a weighted combination ℓ(x, y) = ℓf (y, ŷ) + γℓb(X, X̂), where ℓf is a

10-class cross-entropy loss, and ℓb is a binary cross-entropy loss averaged over all

28× 28 pixels of the image. We use γ = .1 and an Adam learning rate of .0005.

The classification results are shown in Table 5.2. The model is able to achieve

high classification accuracy, and multiple iterations lead to a slight improvement.

This result suggests the reconstruction loss for X can also be seen as a regular-

izer, as the same model weights are used in both directions. The more interesting

impact of multiple energy updates is the image prototype generation. In Fig. 5.3

we show the generated digit prototypes after several iterations of energy mini-

mization, as well as for models with a single iteration. The networks trained as

UNNs produce recognizable digits, and in particular the model with more iter-

67

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

t = 1 t = 2 t = 3 t = 4 t = 5

(a)

t = 1

(b)

t = 1

(c)

Figure 5.3: Digit prototypes generated by convolutional UNN. (a) best UNN (k =
5, α = .1), (b) single iteration UNN (k = 1, α = .1), (c): standard convnet (k = 1, α =
0).

ations learns to use the additional computation to produce clearer pictures. As

for the baseline, we may interpret it as an UNN and apply the same process to

extract prototypes, but this does not result in meaningful digits (Fig. 5.3c). Note

that our model is not a generative model – in that experiment, we are not sam-

pling an image according to a probability distribution, rather we are using energy

minimization deterministically to pick a prototype of a digit given its class.

Results for forward-only UNN In addition to the results for forward-backward

training of the UNN, we also report results from training the UNN only in forward

mode with γ = 0, i.e. when the model is trained for image classification only. The

results are in Table 5.3.

Comparison of UNN to Unconstrained Model As per Fig. 5.1, an unrolled

UNN can be seen as a feed-forward network with a specific architecture and with

weight tying. To confirm the benefit of the UNN framework, we compare against

68

5.3. IMAGE CLASSIFICATION AND VISUALIZATION

Iterations Accuracy

k = 1, γ = 0 (baseline) 98.80
k = 2 98.82
k = 3 98.75
k = 4 98.74
k = 5 98.69

Table 5.3: MNIST accuracy with convolutional UNN in forward-only mode (i.e.
γ = 0).

an unconstrained model, i.e., with the same architecture but separate, untied

weights for each unrolled layer. We use as a base the model described in forward-

only mode and train a model with 2 to 5 layers with different weights instead of

shared weights as in the case with the UNN. Depending on the number of layers,

we cut the number of parameters in each layer, in order to obtain models with

the same number of parameters as the UNN for fair comparison. The results from

the experiment are described in Table 5.4.

k = 1 k = 2 k = 3 k = 4 k = 5

Accuracy UNN 98.80 98.82 98.75 98.74 98.69

Accuracy unc. 98.76 98.45 98.32 97.39

params unc. 50026 51220 51651 53608 51750

Table 5.4: Comparison of UNN with an unconstrained model (unc.) with the same
number of layers as the UNN iterations. The number of parameters of the UNN
and the unconstrained model is roughtly the same.

Analysis of Alternative Initialization Strategies In addition to the zero ini-

tialization for the output variable y, we also experiment with two more initializa-

tion strategies - random and uniform initialization. For the random initialization,

we initialize y with random numbers from a uniform distribution on the inter-

val [0, 1) and apply softmax. For the uniform initialization, we assign equal values

summing to one. We compare to the zero initialization strategy on the MNIST

forward-backward experiment with γ = .1. The results are presented in Table 5.5.

Random initialization shows promise, but the differences are small, and zero-init

69

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

has the advantage of clearer parallels to the feed-forward case, so we report that

and use it throughout all other experiments. The alternative initialization strate-

gies can be further explored in further work.

Initialization k = 1 k = 2 k = 3 k = 4 k = 5

zero 98.75 98.74 98.83 98.78 98.69
random 98.77 98.83 98.90 98.85 98.70
uniform 98.76 98.74 98.83 98.78 98.68

Table 5.5: Comparison of different initialization strategies for the MNIST exper-
iment.

5.4 Undirected Attention Mechanism

Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is a key component that

enables neural networks to handle variable-length sequences as input. In this

section, we propose an undirected attention mechanism (Fig. 5.2(e)). We demon-

strate this model on the task of completing missing values in a sequence of dy-

namic length n, with the variable X serving as both input and output, taking val-

ues X ∈ Rd×n, queries, keys and values taking values Q,K, V ∈ Rn×d, and attention

weights S ∈ (△n)
n, where d is a fixed hidden layer size. Finally, H is an induced

latent sequence representation, with values H ∈ Rn×d. The only trainable pa-

rameters are WQ,WK,WV ∈ Rd×d, and the input embeddings. We model scaled

dot-product attention given with softmax(d−
1
2QK⊤)V . For all variables except S,

we set E·(·) = 1
2
∥ · ∥2. For the attention weights, we use ES(S) = −

√
d
∑n

i=1H(Si).

70

5.4. UNDIRECTED ATTENTION MECHANISM

The higher-order energies are:

EXQ(X,Q) = −⟨Q,WQ(X + P)⟩ ,

EXK(X,K) = −⟨K,WK(X + P)⟩ ,

EXV(X, V) = −⟨V,WV(X + P)⟩ ,

EQKS(Q,K, S) = −⟨S,QK⊤⟩ ,

EVSH(V, S,H) = −⟨H,SV ⟩ ,

(5.13)

where P is a matrix of sine and cosine positional embeddings of same dimensions

as X Vaswani et al. (2017).

Minimizing the energy yields the blockwise updates:

Q⋆ = WZ(X + P) + SK ,

K⋆ = WK(X + P) + S⊤Q ,

V⋆ = WV(X + P) + S⊤H ,

S⋆ = softmax
(
d−1/2(QK⊤ + V H⊤)

)
,

H⋆ = SV ,

X̄⋆ = V̄ WV + Q̄WQ + K̄WK,

(5.14)

where X̄ denotes only the rows of X corresponding to the masked (missing) en-

tries.

Provided zero initialization, updating in the order (V/Q/K), S,H corresponds

exactly to a forward pass in a standard self-attention. However, in an UNN, our

expressions allow backward propagation back toward X, as well as iterating to an

equilibrium. To ensure that one round of updates propagates information through

all the variables, we employ the “forward-backward” orderQ,K,V, S,H, S,V,K,Q, X̄.

We evaluate the performance of the undirected attention with a toy task of

sequence completion. We generate a toy dataset of numerical sequences between

1 and 64, of length at least 8 and at most 25, in either ascending or descending

71

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

consecutive order. We mask out up to 10% of the tokens and generate all possible

sequences, splitting them into training and test sets with around 706K and 78K

instances. Undirected self-attention is applied to the input sequence. Note that

because of the flexibility of the architecture, the update of the input variable X

does not differ from the updates of the remaining variables, because each variable

update corresponds to one step of coordinate descent. The model incurs a cross-

entropy loss for the missing elements of the sequence and the parameters are

updated using Adam with learning rate 10−4. The hidden dimension is d = 256,

and gradients with magnitude beyond 10 are clipped.

Undirected attention is able to solve this task, reaching over 99.8% test accu-

racy, confirming viablity.

Figure 5.4 show examples of the weights of the undirected self-attention. The

attention weights are the values of the variable S calculated in the forward and

backward pass.

We next analyze how the order of variable updates and the number of update

passes during training affect the model performance.

Order of variable updates. We showed that one pass of the “forward-backward”

order or variable updates (Q,K,V, S,H, S,V,K,Q, X̂) performs well enough for the

of sequence completion. Since the flexibility of our model does not limit us to

a specific order, we compare it to a random order of updating the variables (a

permutation of Q,K,V, S,H; X̂ is always updated last). One pass over the “forward-

backward” order performs nine variable updates, and one pass over the random

order - five. In Fig. 5.6 we show how the two ways of order perform for different

number of variable updates (for example, 2 passes over the “forward-backward”

model equal 18 variable updates, and over the random model - 10). The “forward-

backward” order performs best, but the random order can achieve similar perfor-

mance after enough number of updates.

72

5.4. UNDIRECTED ATTENTION MECHANISM

27 26 ? 24 23 22 ? 20 19 18 17 ? 15 14 13 12 11 10 9 8 7

27
26

?
24
23
22

?
20
19
18
17

?
15
14
13
12
11
10

9
8
7

27 26 ? 24 23 22 ? 20 19 18 17 ? 15 14 13 12 11 10 9 8 7

27
26

?
24
23
22

?
20
19
18
17

?
15
14
13
12
11
10

9
8
7

27 26 ? 24 23 22 ? 20 19 18 17 ? 15 14 13 12 11 10 9 8 7

27
26

?
24
23
22

?
20
19
18
17

?
15
14
13
12
11
10

9
8
7

? 42 43 44 ? 46 47 48 49 50 51 52 53 54 ? 56 57 58 59 60 61 62 63

?
42
43
44

?
46
47
48
49
50
51
52
53
54

?
56
57
58
59
60
61
62
63

? 42 43 44 ? 46 47 48 49 50 51 52 53 54 ? 56 57 58 59 60 61 62 63
?

42
43
44

?
46
47
48
49
50
51
52
53
54

?
56
57
58
59
60
61
62
63

? 42 43 44 ? 46 47 48 49 50 51 52 53 54 ? 56 57 58 59 60 61 62 63

?
42
43
44

?
46
47
48
49
50
51
52
53
54

?
56
57
58
59
60
61
62
63

30 29 28 ? ? 25 24 23 22 21 20
30

29

28

?

?

25

24

23

22

21

20

30 29 28 ? ? 25 24 23 22 21 20

30

29

28

?

?

25

24

23

22

21

20

30 29 28 ? ? 25 24 23 22 21 20

30

29

28

?

?

25

24

23

22

21

20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.4: Example of the self-attention weights for models trained with k = 1
(left) and k = 2 after one iteration (middle) and two iterations (right). For k = 2,
the model is more like an unrolled two-layer attention mechanism, with the first
step identifying an off-diagonal pattern and the latter pooling information into an
arbitrary token.

Number of Energy Update Iterations In addition to comparing the number of

energy update iterations k, we also try setting a random number of updates during

training. Instead of specifying a fixed number of iterations k, we take a random

k between 1 and 5 and train the model with it. We evaluate the performance on

inference with k = 3 (the average value). In Fig. 5.5 we compare the performance

of the best model trained with random number of iterations k with the best per-

forming models trained with fixed k. As the plots show, the model trained with a

73

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

Step

Te
st

 a
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125

k=2 k=rand

Forward-backward order

Step

Te
st

 a
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125

k=4 k=rand

Random order

Figure 5.5: Learning curves for random number of variable update passes - for
“forward-backward” (top) and random (bottom) order of operation updates.

random number of iterations performs on par with the best models with fixed k,

but takes more time to train.

74

5.5. STRUCTURED UNNS FOR DEPENDENCY PARSING

5 10 15 20 25 30 35 40 45
N. variable updates

30
40
50
60
70
80
90

100
Te

st
 a

cc
ur

ac
y

Random order
"Forward-backward"

Figure 5.6: Comparison of the test accuracy) for models with random and
“forward-backward” order of variable updates. Markers indicate one full itera-
tion.

5.5 Structured UNNs for Dependency Parsing

The concept of UNN can be applied to structured tasks – all we need to do is to

define structured factors, as shown next.

We experiment with a challenging structured prediction task from natural lan-

guage processing: unlabeled, non-projective dependency parsing (Kübler et al.,

2009). Given a sentence with n words, represented as a matrix X ∈ Rr×n (where

r is the embedding size), the goal is to predict the syntactic relations as a depen-

dency tree, i.e., a spanning tree which has the words as nodes. The output can be

represented as a binary matrix Y ∈ Rn×n, where the (i, j)th entry indicates if there

is a directed arc i → j connecting the ith word (the head) and jth word (the modi-

fier). Fig. 5.8 shows examples of dependency trees produced by this model. We

use a probabilistic model where the output Y can more broadly represent a prob-

ability distribution over trees, represented by the matrix of arc marginals induced

by this distribution (illustrated in Fig. 5.7).

Biaffine parsing. A successful model for dependency parsing is the biaffine one

(Dozat and Manning, 2016; Kiperwasser and Goldberg, 2016). This model first

75

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

0

1

0

1

0

0 0

0

1

undirected→
neural→

net→

*→ un
di
re
ct
ed

ne
ur
al

ne
t

.43

.55

.02

.85

.07

.08 .03

.07

.90

un
di
re
ct
ed

ne
ur
al

ne
t

Figure 5.7: “Packed” matrix representation of a dependency tree (left) and de-
pendency arc marginals (right). Each element corresponds to an arc h→m, and the
diagonal corresponds to the arcs from the root, *→m. The marginals, computed
via the matrix-tree theorem, are the structured counterpart of softmax, and cor-
repond to arc probabilities.

computes head representations H ∈ Rd×n and modifier representations M ∈ Rd×n,

via a neural network that takes X as input – here, d denotes the hidden dimension

of these representations. Then, it computes a score matrix as Z = H⊤VM ∈ Rn×n,

where V ∈ Rd×d is a parameter matrix. Entries of Z can be interpreted as scores

for each candidate arc. From Z, the most likely tree can be obtained via the Chu-

Liu-Edmonds maximum spanning arborescence algorithm (Chu and Liu, 1965;

Edmonds, 1967), and probabilities and marginals can be computed via the matrix-

tree theorem (Koo et al., 2007; Smith and Smith, 2007; McDonald and Satta, 2007;

Kirchhoff, 1847).

UNN for parsing. We now construct an UNN with the same building blocks as

this biaffine model, leading to the factor graph in Fig. 5.2(d). The variable nodes

are {X,H,M,Y}, and the factors are {XH,XM,HMY}. Given parameter weight ma-

trices V,WH,WM ∈ Rd×d and biases bH, bM ∈ Rd, we use bilinear and trilinear factor

energies as follows:

EXH(X,H) = −⟨H,WHX⟩ ,

EXM(X,M) = −⟨M,WMX⟩ ,

EYHM(Y,H,M) = −⟨Y,H⊤VM⟩ .

(5.15)

76

5.5. STRUCTURED UNNS FOR DEPENDENCY PARSING

(a) Baseline (biaffine attention)

Abre a perspectiva de aplicações por prazo mais longos .

1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0 1.0

(b) UNN, k=2 (and gold tree)

Abre a perspectiva de aplicações por prazo mais longos .

1.0

1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0

Figure 5.8: Examples of dependency trees produced by the parsing model for
a sentence in Portuguese. The baseline model (a) erroneously assigns the noun
aplicações as the syntactic head of the adjective longos. The UNN with k = 2
iterations (b) matches the gold parse tree for this sentence, eventually benefiting
from the structural information propagated back from the node Y after the first
iteration.

For H and M, we use the ReLU regularizer,

EH(H) = −⟨bH ⊗ 1n, H⟩+
1

2
∥H∥2 + ι≥0(H)

EM(M) = −⟨bM ⊗ 1n,M⟩+
1

2
∥M∥2 + ι≥0(M) .

(5.16)

For Y, however, we employ a structured entropy regularizer:

EY(Y) = −HM(Y) + ιM(Y) , (5.17)

where M = conv(Y) is the marginal polytope (Wainwright and Jordan, 2008b;

Martins et al., 2009), the convex hull of the adjacency matrices of all valid non-

projective dependency trees (Fig. 5.7), andHM(Y) is the maximal entropy over all

distribution over trees with arc marginals Y :

HM(Y) := max
α∈△|Y|

H(α) s.t. EA∼α[A] = Y . (5.18)

77

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

Derivation of block coordinate descent updates. To minimize the total en-

ergy, we iterate between updating H, M and Y k times, similar to the unstructured

case.

The updates for the heads and modifiers work out to:

H⋆ = relu(WHX + bH ⊗ 1n + VMY ⊤) ,

M⋆ = relu(WMX + bM ⊗ 1n + V ⊤HY) .

(5.19)

For Y, however, we must solve the problem

Y⋆ = argmin
Y ∈M

−⟨Y,H⊤VM⟩ − HM(Y) . (5.20)

This combinatorial optimization problem corresponds to marginal inference (Wain-

wright and Jordan, 2008b), a well-studied computational problem in structured

prediction that appears in all probabilistic models. While generally intractable,

for non-projective dependency parsing it may be computed in time O(n3) via the

aforementioned matrix-tree theorem, the same algorithm required to compute

the structured likelihood loss.3

With zero initialization, the first iteration yields the same hidden representa-

tions and output as the biaffine model, assuming the updates are performed in the

order described. The extra terms involving VMY ⊤ and V ⊤HY enable the current

prediction for Y to influence neighboring words, which leads to a more expressive

model overall.

Experiments. We experiment with the UNN for parsing described above. We

test the architecture on several datasets from Universal Dependencies 2.7 (Ze-

man et al., 2020), covering different language families and dataset size: Afrikaans

(AfriBooms), Arabic (PADT), Czech (PDT), English (Partut), Hungarian (Szeged),

Italian (ISDT), Persian (Seraji), Portuguese (Bosque), Swedish (Talbanken), and

3During training, the matrix-tree theorem can be invoked only once to compute both the update
to Y as well as the gradient of the loss, since ∇ log p(Y = Ytrue) = Ytrue − Ŷ .

78

5.5. STRUCTURED UNNS FOR DEPENDENCY PARSING

Telugu (MTG). Performance is measured by three metrics:

• Unlabeled attachment score (UAS): a fine-grained, arc-level accuracy metric.

• Modifier list accuracy: the percentage of head words for which all modifiers

were correctly predicted. For example, in Fig. 5.8, the baseline correctly pre-

dicts all modifiers for the words perspectiva, abre, longos, but not for the words

aplicações, prazo.

• Exact match: the percentage sentences for which the full parse tree is correctly

predicted: the harshest of the metrics.

The latter, coarser measures can give more information whether the model is

able to learn global relations, not just how to make local predictions correctly

(i.e., when only prediction of the arcs is evaluated).

Our architecture is as follows: First, we pass the sentence through a BERT

model (bert-base-multilingual-cased, fine-tuned during training, as directed net-

works can be added as components to UNNs, as mentioned in Section 5.2) and

get the word representations of the last layer. These representations are the in-

put x in the UNN model. Then, we apply the parsing model described in this

section. The baseline (k = 1) corresponds to a biaffine parser using BERT fea-

tures. The learning rate for each language is chosen via grid search for highest

UAS on the validation set for the baseline model. We searched over the values

{0.1, 0.5, 1, 5, 10}× 10−5. In the experiments, we use 10−5 for Italian and 5× 10−5 for

the other languages. We employ dropout regularization, using the same dropout

mask for each variable throughout the inner coordinate descent iterations, so that

dropped values do not leak.

The results from the parsing experiments are displayed in Table 5.6. The num-

bers in the table show results on the test set for the highest validation accuracy

epoch. We see that some of the languages seem to benefit from the iterative pro-

cedure of UNNs (CS, HU, TE), while others do not (EN, AF), and little difference

79

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

is observed in the remaining languages. In general, the baseline (k = 1) seems to

attain higher accuracies in UAS (individual arcs), but most of the languages have

overall more accurate structures (as measured by modifier list accuracy and by

exact match) for k > 1. Fig. 5.8 illustrates with one example in Portuguese.

5.6 Related Work

Besides the models mentioned in Section 5.2 which may be regarded as particular

cases of UNNs, other models and architectures, next described, bear relation to

our work.

Probabilistic modeling of joint distributions Our work draws inspiration from

the well-known Boltzmann machines and Hopfield networks (Ackley et al., 1985;

Smolensky, 1986; Hopfield, 1984). We consider deterministic networks whose

desired configurations minimize an energy function which decomposes as a fac-

tor graph. In contrast, many other works have studied probabilistic energy-based

models (EBM) defined as Gibbs distributions, as well as efficient methods to learn

those distributions and to sample from them (Ngiam et al., 2011; Du and Mor-

datch, 2019). Similar to how our convolutional UNN can be used for multiple pur-

poses in Section 5.3, Grathwohl et al. (2020a) reinterprets standard discriminative

classifiers p(y|x) as an EBM of a joint distribution p(x, y). Training stochastic EBMs

requires Monte Carlo sampling or auxiliary networks (Grathwohl et al., 2020b);

in contrast, our deterministic UNNs, more aligned conceptually with determin-

istic EBMs (LeCun et al., 2006), eschew probabilistic modeling in favor of more

direct training. Moreover, our UNN architectures closely parallel feed-forward

networks and reuse their building blocks, uniquely bridging the two paradigms.

Structured Prediction Energy Networks (SPENs) We saw in Section 5.5 that

UNNs can handle structured outputs. An alternative framework for expressive

structured prediction is given by SPENs (Belanger and McCallum, 2016). Most

80

5.6. RELATED WORK

SPEN inference strategies require gradient descent, often with higher-order gra-

dients for learning (Belanger et al., 2017), or training separate inference networks

(Tu et al., 2020). UNNs in contrast, are well suited for coordinate descent infer-

ence: a learning-rate free algorithm with updates based on existing neural net-

work building blocks. An undirected variant of SPENs would be similar to the

MLP factor graph in Fig. 5.2(b), but with X and Y connected to a joint, higher-

order factor, rather than via a chain X− H− Y.

Universal transformers and Hopfield networks In Section 5.4 we show how

we can implement self-attention with UNNs. Performing multiple energy updates

resembles – but is different from – transformers (Vaswani et al., 2017) with shared

weights between the layers. Our perspective of minimizing UNNs with coordi-

nate descent using a fixed schedule and this unrolling is similar (but not exactly

the same due to the skip connections) to having deeper neural networks which

shared parameters for each layer. Such an architecture is the Universal Trans-

former (Dehghani et al., 2018), which applies a recurrent neural network to the

transformer encoder and decoder. Recent work (Ramsauer et al., 2020) shows

that the self-attention layers of transformers can be regarded as the update rule

of a Hopfield network with continuous states (Hopfield, 1984). This leads to a

“modern Hopfield network” with continuous states and an update rule which en-

sures global convergence to stationary points of the energy (local minima or sad-

dle points). Like that model, UNNs also seek local minima of an energy function,

albeit with a different goal.

Deep models as graphical model inference. This line of work defines neural

computation via approximate inference in graphical models. Domke (2012) de-

rives backpropagating versions of gradient descent, heavy-ball and LBFGS. They

require as input only routines to compute the gradient of the energy with re-

spect to the domain and parameters. Domke (2012) studies learning with unrolled

81

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

gradient-based inference in general energy models. UNNs, in contrast, allow effi-

cient, learning rate free, block-coordinate optimization by design. An exciting line

of work derives unrolled architectures from inference in specific generative mod-

els (Hershey et al., 2014; ?; Lawson et al., 2019)—a powerful construction at the

cost of more challenging optimization. The former is closest to our strategy, but

by starting from probabilistic models the resulting updates are farther from con-

temporary deep learning (e.g., convolutions, attention). In contrast, UNNs can

reuse successful implementations, modular pretrained models, as well as struc-

tured factors, as we demonstrate in our parsing experiments. We believe that our

UNN construction can shed new light over probabilistic inference models as well,

uncovering deeper connections between the paradigms.

5.7 Conclusions and Future Work

We presented UNNs – a structured energy-based model which combines the

power of factor graphs and neural networks. At inference time, the model en-

ergy is minimized with a coordinate descent algorithm, allowing reuse of existing

building blocks in a modular way with guarantees of decreasing the energy at each

step. We showed how the proposed UNNs subsume many existing architectures,

conveniently combining supervised and unsupervised/self-supervised learning, as

demonstrated on the three tasks.

We hope our first steps in this chapter will spark multiple directions of future

work on undirected networks.

82

5.7. CONCLUSIONS AND FUTURE WORK

Language k = 1 k = 2 k = 3 k = 4 k = 5

Unlabeled attachment score

AF 89.09 88.98 88.40 87.77 88.46
AR 85.62 84.94 84.22 83.69 83.63
CS 93.79 93.83 93.82 93.60 93.77
EN 91.96 91.86 91.09 91.99 91.51
FA 83.41 83.27 82.95 83.37 83.27
HU 85.11 85.77 84.47 85.13 84.09
IT 94.76 94.43 94.35 94.59 94.45
PT 96.99 97.00 96.83 97.06 96.90
SW 91.42 90.92 91.30 91.08 90.98
TE 89.72 89.72 90.00 88.45 87.75

Modifier list accuracy

AF 74.10 72.60 72.90 71.78 72.01
AR 70.44 69.29 68.41 68.08 68.19
CS 84.46 84.82 84.93 84.12 84.49
EN 79.08 77.73 75.20 78.90 79.44
FA 64.80 66.75 65.28 66.67 65.85
HU 64.13 66.07 64.37 62.91 64.13
IT 85.32 83.59 83.71 83.94 84.05
PT 90.10 90.69 90.39 90.66 90.49
SW 79.07 78.37 78.52 78.60 78.24
TE 72.87 72.87 73.68 66.80 65.99

Exact match

AF 37.70 33.88 34.43 33.88 32.79
AR 19.44 19.29 18.36 19.91 18.36
CS 59.17 60.76 60.92 59.42 59.84
EN 48.59 44.37 40.14 43.66 44.37
FA 21.52 22.15 22.78 24.68 23.42
HU 21.13 23.40 24.15 23.40 21.51
IT 64.93 63.54 62.85 63.89 64.24
PT 73.24 74.86 73.89 74.43 74.11
SW 54.62 52.38 54.13 53.94 52.67
TE 75.69 77.08 79.17 71.53 70.14

Table 5.6: Results from experiments with parsing with structured UNNs. The
columns show the number of UNN iterations. The best result for each row is
rendered in bold.

83

CHAPTER 5. UNDIRECTED NEURAL NETWORKS

84

CHAPTER 6

Conclusion

Contents
6.1 Summary of Contributions . 86

6.2 Future Work . 87

85

CHAPTER 6. CONCLUSION

In this chapter, we summarize our contributions and conclusions and suggest

some directions for future work.

6.1 Summary of Contributions

In this thesis, we have contributed to three main areas related to modeling and

predicting structure in deep neural models for natural language processing.

Exposure Bias, Scheduled Sampling and Transformers We address the prob-

lem of exposure bias in the transformer model. Scheduled sampling has been pro-

posed for recurrent neural network architectures to address exposure bias, but

in transformers applying it is not straight-forward. We proposed a two-decoder

transformer architecture which addresses the problem with exposure bias for the

transformer model. In the first decoder pass, the output sequence is predicted

as usual. Then, a mix of the model output and the gold target sequence is passed

and the final model output is predicted based on this mix with the second decoder

call. This method has been further extended and improved by other researchers.

Discrete Latent Structures In NLP models, modeling structure as a latent vari-

able, can combine the transparency of the pipeline approach with the end-to-end

unsupervised representation learning and make deep models appealing. Learn-

ing with discrete, combinatorial latent variables is, however, challenging, due to

the intersection of large cardinality and null gradient issues. In this thesis we stud-

ied surrogate gradient methods for deterministic learning with discrete structured

latent variable. We propose a novel motivation for surrogate gradient methods,

based on optimizing a pulled-back loss, thereby inducing pseudo-supervision on

the latent variable. This leads to new insight into STE and SPIGOT. We show

how our framework may be used to derive new surrogate gradient methods, by

varying the loss function or the inner optimization algorithm used for inducing

the pseudo-supervision. We experimentally validate our discoveries on a con-

86

6.2. FUTURE WORK

trollable experiment as well as on English language sentiment analysis and natural

language inference, comparing against stochastic and relaxed alternatives, yield-

ing new insights, and identifying noteworthy failure cases.

Undirected Neural Networks and Modularity We combine the representa-

tional strengths of factor graphs and neural networks and we propose undirected

neural networks (UNNs) – a framework in which outputs are not computed by

evaluating a composition of functions in a given order, but are rather obtained

implicitly by minimizing an energy function which factors over a graph. We show

how, for particular choices of the factor potentials, the UNNs subsume many ex-

isting neural architectures. We provide a coordinate descent inference algorithm,

which can reuse current building blocks from feed-forward networks in a modular

way. We develop and experiment with multiple factor graph architectures, tack-

ling both structured and unstructured tasks, such as natural language parsing, im-

age classification, and image prototype generation. We develop a new undirected

attention mechanism and demonstrate its suitability for sequence completion.

6.2 Future Work

Modular training of neural networks As we described in Chapter 1, natural

language is rich in structure and many NLP tasks can be composed into smaller

and well-defined subtasks. It makes sense to train those subtasks as separate mod-

ules, which can be plugged-in to models solving different more complex tasks. For

example, in the case with sentiment classification with latent dependency pars-

ing in Chapter 4, the parsing can be trained as a separate smaller neural network

module which could be plugged-in to a model for sentiment classification, natural

language inference (as in Chapter 4), machine translation, or any other task, for

which parsing the sentence makes sense for the downstream task. Methods for

training of models with discrete latent structures, as in Chapter 4 can be used to

87

CHAPTER 6. CONCLUSION

allow training the subtask modules as part of the bigger model. The undirected

neural networks approach in Chapter 5 could allow flexible composition of mod-

ules and enable various configurations of combining modules, not just for NLP,

but also in other domains.

Semi-Supervised Learning with Discrete Latent Structures In Chapter 4,

we used no supervision about the latent structure. It is intuitive to think of train-

ing these models when we have full or partial supervision of the latent variable. It

would be interesting to explore how the models behave when partial supervision

is available. For example, when training a model with latent syntax, information

about the gold syntax tree could be present or predicted one from external parser

and this information can be used on training time. If partial supervision on the

latent variable leads to improvement of the performance on a downstream task,

this would open possibilities to include linguistic and other kind of knowledge

to models for which we have partial supervision for some components indirectly

related to the downstream task. Including such external knowledge would hope-

fully guide the model to learn faster and with less computation resources. This is

an intuitive extension of our work on latent structures described in Chapter 4.

Modules with Discrete Output In our work with discrete latent structures, we

define the update of the latent variable as a result of optimizing the pulled-back

loss on the downstream task. This led to the idea that we can use this formula-

tion to pretrain modules which output this latent variable and combine several

such modules to train a bigger model. In this concept of modularity, having the

option of a module/component with discrete output is important, because it al-

lows flexibility of the choice of modules. Training of modules with latent output

is closely related to our work on latent structures in Chapter 4. The insights about

the formulation of updating the latent variable as a pullback loss can be used to

find clever ways to backpropagate through the modules with discrete output and

88

6.2. FUTURE WORK

include them more easily in the overall model. The challenge is that it needs to

be defined how such modules could be pretrained without supervision or with

only partial supervision. The main goal of such work would be to enable training

of separate modules which output a discrete result, in order to use these mod-

ules as building blocks of a multi-modular architecture. Modules trained with this

approach could be plugged-in in the UNN model described in Chapter 5. In the

Greedy Infomax paper (Löwe et al., 2019), each module outputs representations

of the input. A possible direction for self-supervised training of modules with dis-

crete output is to use their framework as a base and explore the possibilities for

extending it to cases where the output is discrete. This kind of modular train-

ing and unsupervised training of modules with discrete output would allow use of

semi-supervision for modules for which we have information as part of training

the whole system. The goal would be to allow easy module organization and re-

placement, as well as exploration which modules are important for training the

system for a downstream task.

Extensions and Applications of Undirected Neural Networks In Chapter 5,

we defined undirected neural networks, showed how they subsume existing ar-

chitectures, trained them with gradient descent by unrolling the factor graph and

demonstrated several possible architectures. We hope our first steps will spark

multiple directions of future work on undirected networks. One promising direc-

tion is on probabilistic UNNs with Gibbs sampling or mean field theory (Saul et al.,

1996; Henderson and Titov, 2010), which have the potential to bring our modu-

lar architectures to generative models. Another direction is to consider alternate

training strategies for UNNs. Our strategy of converting UNNs to unrolled neural

networks, enabled by Lemma 1 in Chapter 5, makes gradient-based training easy

to implement, but alternate training strategies, perhaps based on equilibrium con-

ditions or dual decomposition, hold promise. The flexibility of the model allows

it to be applied to various problems. There could be opportunities to apply this

89

CHAPTER 6. CONCLUSION

model to real-world problems. In particular, the model can be used for modular

training of problems which can be broken down into smaller components which

should be optimized together for solving the larger task. This kind of modular

training can be applied not only to NLP, but also to other domains, such as vi-

sion and speech. Undirected neural networks could also be applied for multitask

learning and training with missing data. For example, if we train the model to pre-

dict several related tasks and have missing data for some of the tasks for part of

the data, performing multiple iterations could allow the model to be trained with

partially missing data.

90

Bibliography

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltz-
mann machines. Cognitive science, 9(1):147–169, 1985.

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 39–48, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learn-
ing to align and translate. arXiv preprint arXiv:1409.0473, 2014.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and
Y. Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

G. Bakır, T. Hofmann, A. J. Smola, B. Schölkopf, and B. Taskar. Predicting struc-
tured data. MIT press, 2007.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization. Operations Research Letters, 31(3):
167–175, 2003. URL https://www.sciencedirect.com/science/article/abs/pii/

S0167637702002316.

D. Belanger and A. McCallum. Structured prediction energy networks. In Inter-
national Conference on Machine Learning, pages 983–992. PMLR, 2016.

D. Belanger, B. Yang, and A. McCallum. End-to-end learning for structured pre-
diction energy networks. In International Conference on Machine Learning,
pages 429–439. PMLR, 2017.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179, 2015.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. In Advances in neural information processing systems, pages
153–160, 2007.

91

https://www.sciencedirect.com/science/article/abs/pii/S0167637702002316
https://www.sciencedirect.com/science/article/abs/pii/S0167637702002316

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gra-
dients through stochastic neurons for conditional computation. preprint
arXiv:1308.3432, 2013.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.

L. Bottou and P. Gallinari. A framework for the cooperation of learning algo-
rithms. In Advances in neural information processing systems, pages 781–788,
1991.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus
for learning natural language inference. In Proc. EMNLP. Association for Com-
putational Linguistics, 2015. URL https://www.aclweb.org/anthology/D15-1075/.

D. M. Bradley. Learning in modular systems. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA ROBOTICS INST, 2010.

R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

M. Cettolo, M. Federico, L. Bentivogli, N. Jan, S. Sebastian, S. Katsuitho,
Y. Koichiro, and F. Christian. Overview of the iwslt 2017 evaluation campaign.
In International Workshop on Spoken Language Translation, pages 2–14, 2017.

P. Cheng, C. Liu, C. Li, D. Shen, R. Henao, and L. Carin. Straight-through esti-
mator as projected Wasserstein gradient flow. In Third workshop on Bayesian
Deep Learning (NeurIPS 2018), 2018. URL http://bayesiandeeplearning.org/

2018/papers/53.pdf.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

J. Choi, K. M. Yoo, and S.-g. Lee. Learning to compose task-specific tree struc-
tures. In Proc. AAAI, 2018.

Y.-J. Chu and T.-H. Liu. On the shortest arborescence of a directed graph. Science
Sinica, 14:1396–1400, 1965.

C. Corro and I. Titov. Differentiable Perturb-and-Parse: Semi-Supervised Parsing
with a Structured Variational Autoencoder. In Proc. ICLR, 2019a.

C. Corro and I. Titov. Learning latent trees with stochastic perturbations and
differentiable dynamic programming. In Proc. ACL, 2019b. URL https://

aclanthology.org/P19-1551/.

92

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
http://www.athenasc.com/nonlinbook.html
https://www.aclweb.org/anthology/D15-1075/
http://bayesiandeeplearning.org/2018/papers/53.pdf
http://bayesiandeeplearning.org/2018/papers/53.pdf
https://arxiv.org/abs/1707.02786
https://arxiv.org/abs/1707.02786
https://arxiv.org/abs/1807.09875
https://arxiv.org/abs/1807.09875
https://aclanthology.org/P19-1551/
https://aclanthology.org/P19-1551/

H. Daumé, J. Langford, and D. Marcu. Search-based structured prediction. Ma-
chine learning, 75(3):297–325, 2009.

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser. Universal trans-
formers. In International Conference on Learning Representations, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. NAACL-HLT,
2019. URL https://www.aclweb.org/anthology/N19-1423.

J. Domke. Generic methods for optimization-based modeling. In Artificial Intel-
ligence and Statistics, pages 318–326. PMLR, 2012.

T. Dozat and C. D. Manning. Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734, 2016.

Y.-l. Du and I. Mordatch. Implicit generation and modeling with energy based
models. In NeurIPS, 2019.

D. Duckworth, A. Neelakantan, B. Goodrich, L. Kaiser, and S. Bengio. Parallel
scheduled sampling, 2019.

G. Durrett and D. Klein. Neural CRF parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 302–312, Beijing, China, July 2015. Association for Computa-
tional Linguistics. doi: 10.3115/v1/P15-1030. URL https://aclanthology.org/

P15-1030.

D. Duvenaud, J. Z. Kolter, and M. Johnson. Deep implicit layers tutorial-neural
odes, deep equilibirum models, and beyond. Neural Information Processing
Systems Tutorial, 2020.

J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Stand., 71B:233–240, 1967.

J. Eisenstein. Natural language processing, 2018.

J. R. Finkel, C. D. Manning, and A. Y. Ng. Solving the problem of cascading errors:
Approximate bayesian inference for linguistic annotation pipelines. In Proc.
EMNLP, 2006. URL https://dl.acm.org/doi/pdf/10.5555/1610075.1610162.

93

https://www.aclweb.org/anthology/N19-1423
https://aclanthology.org/P15-1030
https://aclanthology.org/P15-1030
https://doi.org/10.6028%2Fjres.071b.032
https://dl.acm.org/doi/pdf/10.5555/1610075.1610162

E. Fonseca and A. F. T. Martins. Revisiting higher-order dependency parsers.
In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 8795–8800, Online, July 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.acl-main.776. URL https://

aclanthology.org/2020.acl-main.776.

P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Com-
mun. ACM, 33(10):75–84, Oct. 1990. ISSN 0001-0782. doi: 10.1145/84537.
84552. URL http://doi.acm.org/10.1145/84537.84552.

A. A. Goldstein. Convex programming in hilbert space. Bulletin of the American
Mathematical Society, 70(5):709–710, 1964.

K. Goyal, C. Dyer, and T. Berg-Kirkpatrick. Differentiable scheduled sampling
for credit assignment. arXiv preprint arXiv:1704.06970, 2017.

W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, M. Norouzi, and
K. Swersky. Your classifier is secretly an energy based model and you should
treat it like one. In International Conference on Learning Representations,
2020a.

W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, and R. Zemel. Learning
the stein discrepancy for training and evaluating energy-based models without
sampling. In ICML. PMLR, 2020b.

N. Gupta, K. Lin, D. Roth, S. Singh, and M. Gardner. Neural module networks
for reasoning over text. arXiv preprint arXiv:1912.04971, 2019.

K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task
model: Growing a neural network for multiple nlp tasks. arXiv preprint
arXiv:1611.01587, 2016.

S. Havrylov, G. Kruszewski, and A. Joulin. Cooperative learning of disjoint
syntax and semantics. In Proc. NAACL: Volume 1 (Long and Short Papers),
pages 1118–1128, Minneapolis, Minnesota, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1115. URL https://www.aclweb.org/

anthology/N19-1115.

J. Henderson and I. Titov. Incremental sigmoid belief networks for grammar
learning. Journal of Machine Learning Research, 11(12), 2010.

J. R. Hershey, J. L. Roux, and F. Weninger. Deep unfolding: Model-based
inspiration of novel deep architectures. CoRR, abs/1409.2574, 2014. URL
http://arxiv.org/abs/1409.2574.

94

https://aclanthology.org/2020.acl-main.776
https://aclanthology.org/2020.acl-main.776
http://doi.acm.org/10.1145/84537.84552
https://www.aclweb.org/anthology/N19-1115
https://www.aclweb.org/anthology/N19-1115
http://arxiv.org/abs/1409.2574

G. Hinton. Neural networks for machine learning. In Coursera video lectures,
2012.

G. E. Hinton. Boltzmann machine. Scholarpedia, 2(5):1668, 2007.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio. Learning deep representations by mutual infor-
mation estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

J. J. Hopfield. Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proceedings of the national academy of
sciences, 81(10):3088–3092, 1984.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks. In Proc. NeurIPS, 2016. URL https://arxiv.org/abs/1602.

02830.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

E. Jang, S. Gu, and B. Poole. Categorical reparametrization with Gumbel-
Softmax. In Proc. ICLR, 2017.

D. Jurafsky and J. H. Martin. Speech and language processing. vol. 3, 2014.

Y. Kim, C. Denton, L. Hoang, and A. M. Rush. Structured attention networks. In
Proc. ICLR, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

E. Kiperwasser and Y. Goldberg. Simple and accurate dependency parsing using
bidirectional LSTM feature representations. Transactions of the Association
for Computational Linguistics, 4:313–327, 2016. doi: 10.1162/tacl_a_00101.
URL https://www.aclweb.org/anthology/Q16-1023.

G. Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der un-
tersuchung der linearen vertheilung galvanischer ströme geführt wird. Annalen
der Physik, 148(12):497–508, 1847.

95

https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1702.00887
https://www.aclweb.org/anthology/Q16-1023

J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell. Overcoming catastrophic forgetting in neural net-
works. CoRR, abs/1612.00796, 2016. URL http://arxiv.org/abs/1612.00796.

L. Kirsch, J. Kunze, and D. Barber. Modular networks: Learning to decompose
neural computation. In Advances in Neural Information Processing Systems,
pages 2408–2418, 2018.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors. Information and Computation, 132(1):1–63, 1997.

J. P. Kleijnen and R. Y. Rubinstein. Optimization and sensitiv-
ity analysis of computer simulation models by the score function
method. European Journal of Operational Research, 88(3):413–427,
1996. URL https://research.tilburguniversity.edu/en/publications/

optimization-and-sensitivity-analysis-of-computer-simulation-mode-2.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source
Toolkit for Neural Machine Translation. ArXiv e-prints, 2017.

T. Koo, A. Globerson, X. Carreras Pérez, and M. Collins. Structured prediction
models via the matrix-tree theorem. In Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 141–150, 2007.

M. Korakakis and A. Vlachos. Mitigating catastrophic forgetting in scheduled
sampling with elastic weight consolidation in neural machine translation. CoRR,
abs/2109.06308, 2021. URL https://arxiv.org/abs/2109.06308.

S. Kübler, R. McDonald, and J. Nivre. Dependency parsing. Synthesis lectures on
human language technologies, 1(1):1–127, 2009.

J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. ICML, 2001.

J. Lawson, G. Tucker, B. Dai, and R. Ranganath. Energy-inspired models:
Learning with sampler-induced distributions. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

28659414dab9eca0219dd592b8136434-Paper.pdf.

96

http://arxiv.org/abs/1612.00796
https://doi.org/10.1006/inco.1996.2612
https://doi.org/10.1006/inco.1996.2612
https://research.tilburguniversity.edu/en/publications/optimization-and-sensitivity-analysis-of-computer-simulation-mode-2
https://research.tilburguniversity.edu/en/publications/optimization-and-sensitivity-analysis-of-computer-simulation-mode-2
https://arxiv.org/abs/2109.06308
https://proceedings.neurips.cc/paper/2019/file/28659414dab9eca0219dd592b8136434-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/28659414dab9eca0219dd592b8136434-Paper.pdf

Y. LeCun, C. Cortes, and C. J. Burges. MNIST handwritten digit database. 1998.
URL http://yann.lecun.com/exdb/mnist/.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Com-
putational mathematics and mathematical physics, 6(5):1–50, 1966.

Y. Li and R. S. Zemel. Mean-field networks. CoRR, abs/1410.5884, 2014. URL
http://arxiv.org/abs/1410.5884.

R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117,
1988.

Y. Liu and M. Lapata. Learning structured text representations. TACL, 6:63–75,
2018.

Y. Liu, F. Meng, Y. Chen, J. Xu, and J. Zhou. Confidence-aware scheduled sam-
pling for neural machine translation. In Findings of the Association for Compu-
tational Linguistics: ACL-IJCNLP 2021, pages 2327–2337, Online, Aug. 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.
205. URL https://aclanthology.org/2021.findings-acl.205.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. preprint
arXiv:1711.05101, 2018. URL https://arxiv.org/abs/1711.05101.

S. Löwe, P. O’Connor, and B. S. Veeling. Putting an end to end-to-end: Gradient-
isolated learning of representations. arXiv preprint arXiv:1905.11786, 2019.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, 2015.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continu-
ous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712,
2016.

J. Maillard and S. Clark. Latent Tree Learning with Differentiable Parsers: Shift-
Reduce Parsing and Chart Parsing. In Proc. ACL, 2018.

J. Maillard, S. Clark, and D. Yogatama. Jointly learning sentence embeddings and
syntax with unsupervised tree-LSTMs. preprint arXiv:1705.09189, 2017.

97

http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1410.5884
https://arxiv.org/abs/1705.09207
https://aclanthology.org/2021.findings-acl.205
https://arxiv.org/abs/1711.05101
http://aclweb.org/anthology/W18-2903
http://aclweb.org/anthology/W18-2903
https://arxiv.org/abs/1705.09189
https://arxiv.org/abs/1705.09189

A. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of at-
tention and multi-label classification. In International Conference on Machine
Learning, pages 1614–1623, 2016a.

A. F. Martins and R. F. Astudillo. From softmax to sparsemax: A sparse model of
attention and multi-label classification. In Proc. ICML, 2016b.

A. F. Martins, N. A. Smith, and E. P. Xing. Polyhedral outer approximations with
application to natural language parsing. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pages 713–720, 2009.

A. F. T. Martins, T. Mihaylova, N. Nangia, and V. Niculae. Latent structure models
for natural language processing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts, pages 1–
5, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-4001. URL https://www.aclweb.org/anthology/P19-4001.

R. McDonald and G. Satta. On the complexity of non-projective data-driven de-
pendency parsing. In Proceedings of the Tenth International Conference on
Parsing Technologies, pages 121–132, 2007.

X. Meng, R. Bachmann, and M. E. Khan. Training binary neural networks using
the bayesian learning rule. Proc. ICML, 2020. URL https://arxiv.org/abs/2002.

10778.

A. Mensch and M. Blondel. Differentiable dynamic programming for structured
prediction and attention. In Proc. ICML, 2018.

T. Mihaylova and A. F. T. Martins. Scheduled sampling for transformers. In Pro-
ceedings ACL SRW, 2019.

T. Mihaylova, V. Niculae, and A. F. T. Martins. Understanding the spigot me-
chanics: Surrogate gradients for latent structure learning. In under review for
ACL, 2020.

G. Neubig. The kyoto free translation task, 2011.

J. Ngiam, Z. Chen, P. W. Koh, and A. Y. Ng. Learning deep energy models. In
ICML, 2011.

V. Niculae, A. F. Martins, M. Blondel, and C. Cardie. SparseMAP: Differentiable
sparse structured inference. In Proc. ICML, 2018a.

98

https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://www.aclweb.org/anthology/P19-4001
https://arxiv.org/abs/2002.10778
https://arxiv.org/abs/2002.10778
https://arxiv.org/abs/1802.03676
https://arxiv.org/abs/1802.03676
https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1802.04223

V. Niculae, A. F. Martins, and C. Cardie. Towards dynamic computation graphs
via sparse latent structure. In Proc. EMNLP, 2018b.

S. Nowozin, P. V. Gehler, J. Jancsary, and C. H. Lampert. Advanced Structured
Prediction. MIT Press, 2014.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

G. Papandreou and A. L. Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In Proc. ICCV. IEEE,
2011.

A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention
model for natural language inference. Proc. EMNLP, 2016. URL https://arxiv.

org/abs/1606.01933.

H. Peng, S. Thomson, and N. A. Smith. Backpropagating through structured
argmax using a SPIGOT. In Proc. ACL, 2018.

J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word rep-
resentation. In Proc. EMNLP, 2014. URL https://www.aclweb.org/anthology/

D14-1162/.

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner,
M. Pavlović, G. K. Sandve, V. Greiff, et al. Hopfield networks is all you need.
arXiv preprint arXiv:2008.02217, 2020.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based exter-
nal cluster evaluation measure. In Proc. EMNLP-CoNLL, 2007. URL https:

//www.aclweb.org/anthology/D07-1043/.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

A. M. Rush. Torch-struct: Deep structured prediction library, 2020.

V. Sanh, T. Wolf, and S. Ruder. A hierarchical multi-task approach for learning
embeddings from semantic tasks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6949–6956, 2019.

99

https://arxiv.org/abs/1809.00653
https://arxiv.org/abs/1809.00653
https://arxiv.org/abs/1606.01933
https://arxiv.org/abs/1606.01933
https://arxiv.org/abs/1805.04658
https://arxiv.org/abs/1805.04658
https://www.aclweb.org/anthology/D14-1162/
https://www.aclweb.org/anthology/D14-1162/
https://www.aclweb.org/anthology/D07-1043/
https://www.aclweb.org/anthology/D07-1043/

L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief
networks. Journal of artificial intelligence research, 4:61–76, 1996.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909, 2016.

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu. Minimum risk train-
ing for neural machine translation. In Proc. ACL: Volume 1 (Long Papers), pages
1683–1692, Berlin, Germany, 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1159. URL https://www.aclweb.org/anthology/P16-1159.

D. A. Smith and J. Eisner. Minimum risk annealing for training log-linear models.
In Proc. COLING/ACL, 2006.

D. A. Smith and N. A. Smith. Probabilistic models of nonprojective dependency
trees. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 132–140, 2007.

N. A. Smith. Linguistic structure prediction. Synthesis lectures on human lan-
guage technologies, 4(2):1–274, 2011.

P. Smolensky. Information processing in dynamical systems: Foundations of har-
mony theory. Technical report, Colorado Univ at Boulder Dept of Computer
Science, 1986.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Re-
cursive deep models for semantic compositionality over a sentiment treebank.
In Proc. EMNLP, 2013. URL https://www.aclweb.org/anthology/D13-1170/.

V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure.
In Proc. AISTATS, 2011.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

C. Sutton and A. McCallum. Joint parsing and semantic role labeling. In Proc.
CoNLL, 2005. URL https://www.aclweb.org/anthology/W05-0636/.

100

https://www.aclweb.org/anthology/P16-1159
https://www.aclweb.org/anthology/papers/P/P06/P06-2101/
https://www.aclweb.org/anthology/D13-1170/
http://proceedings.mlr.press/v15/stoyanov11a.html
http://proceedings.mlr.press/v15/stoyanov11a.html
https://www.aclweb.org/anthology/W05-0636/

I. Tenney, D. Das, and E. Pavlick. BERT rediscovers the classical NLP pipeline.
In Proc. ACL, pages 4593–4601, Florence, Italy, 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1452. URL https://www.aclweb.org/

anthology/P19-1452.

A. Tjandra, S. Sakti, and S. Nakamura. End-to-end feedback loss in speech chain
framework via straight-through estimator. In Proc. ICASSP. IEEE, 2019. URL
https://arxiv.org/abs/1810.13107.

K. N. Toutanova. Effective statistical models for syntactic and semantic disam-
biguation. Stanford University, 2005.

L. Tu, R. Y. Pang, and K. Gimpel. Improving joint training of inference networks
and structured prediction energy networks. In Proceedings of the Fourth Work-
shop on Structured Prediction for NLP, pages 62–73, Online, Nov. 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.spnlp-1.8. URL
https://aclanthology.org/2020.spnlp-1.8.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017. URL https://papers.neurips.cc/

paper/7181-attention-is-all-you-need.pdf.

M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek. Differentiation of
blackbox combinatorial solvers. In Proc. ICLR, 2020. URL https://openreview.

net/forum?id=BkevoJSYPB.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn., 1(1–2):1–305, 2008a.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Now Publishers Inc, 2008b.

M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with
an application to information retrieval. In Proceedings of the 17th International
Conference on Neural Information Processing Systems, 2004.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560, 1990.

A. Williams, A. Drozdov, and S. R. Bowman. Do latent tree learning models
identify meaningful structure in sentences? TACL, 6:253–267, 2018. URL
https://arxiv.org/abs/1709.01121.

101

https://www.aclweb.org/anthology/P19-1452
https://www.aclweb.org/anthology/P19-1452
https://arxiv.org/abs/1810.13107
https://aclanthology.org/2020.spnlp-1.8
https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
https://arxiv.org/abs/1709.01121

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search
optimization. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1296–1306, 2016.

L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu. A study of reinforcement learning
for neural machine translation. In Proc. EMNLP, pages 3612–3621, Brussels,
Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1397. URL https://www.aclweb.org/anthology/D18-1397.

Y. Xu and W. Yin. A block coordinate descent method for regularized multi-
convex optimization with applications to nonnegative tensor factorization and
completion. SIAM Journal on Imaging Sciences, 6(3):1758–1789, 2013.

P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin. Understanding straight-through
estimator in training activation quantized neural nets. In Proc. ICLR, 2019. URL
https://arxiv.org/abs/1903.05662.

D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling. Learning to
compose words into sentences with reinforcement learning. In Proc. ICLR,
2017.

D. Zeman, J. Nivre, M. Abrams, E. Ackermann, N. Aepli, H. Aghaei, Ž. Agić,
A. Ahmadi, L. Ahrenberg, C. K. Ajede, G. Aleksandravičiūtė, I. Alfina, L. An-
tonsen, K. Aplonova, A. Aquino, C. Aragon, M. J. Aranzabe, �H. Arnardót-
tir, G. Arutie, J. N. Arwidarasti, M. Asahara, L. Ateyah, F. Atmaca, M. At-
tia, A. Atutxa, L. Augustinus, E. Badmaeva, K. Balasubramani, M. Ballesteros,
E. Banerjee, S. Bank, V. Barbu Mititelu, V. Basmov, C. Batchelor, J. Bauer, S. T.
Bedir, K. Bengoetxea, G. Berk, Y. Berzak, I. A. Bhat, R. A. Bhat, E. Biagetti,
E. Bick, A. Bielinskienė, K. Bjarnadóttir, R. Blokland, V. Bobicev, L. Boizou,
E. Borges Völker, C. Börstell, C. Bosco, G. Bouma, S. Bowman, A. Boyd,
K. Brokaitė, A. Burchardt, M. Candito, B. Caron, G. Caron, T. Cavalcanti,
G. Cebiroğlu Eryiğit, F. M. Cecchini, G. G. A. Celano, S. Čéplö, S. Cetin,
Ö. Çetinoğlu, F. Chalub, E. Chi, Y. Cho, J. Choi, J. Chun, A. T. Cignarella,
S. Cinková, A. Collomb, Ç. Çöltekin, M. Connor, M. Courtin, E. Davidson, M.-
C. de Marneffe, V. de Paiva, M. O. Derin, E. de Souza, A. Diaz de Ilarraza,
C. Dickerson, A. Dinakaramani, B. Dione, P. Dirix, K. Dobrovoljc, T. Dozat,
K. Droganova, P. Dwivedi, H. Eckhoff, M. Eli, A. Elkahky, B. Ephrem, O. Erina,
T. Erjavec, A. Etienne, W. Evelyn, S. Facundes, R. Farkas, M. Fernanda,

102

https://www.aclweb.org/anthology/D18-1397
https://arxiv.org/abs/1903.05662
https://arxiv.org/abs/1611.09100
https://arxiv.org/abs/1611.09100

H. Fernandez Alcalde, J. Foster, C. Freitas, K. Fujita, K. Gajdošová, D. Gal-
braith, M. Garcia, M. Gärdenfors, S. Garza, F. F. Gerardi, K. Gerdes, F. Gin-
ter, I. Goenaga, K. Gojenola, M. Gökırmak, Y. Goldberg, X. Gómez Guino-
vart, B. González Saavedra, B. Griciūtė, M. Grioni, L. Grobol, N. Grūzı̄tis,
B. Guillaume, C. Guillot-Barbance, T. Güngör, N. Habash, H. Hafsteinsson,
J. Hajič, J. Hajič jr., M. Hämäläinen, L. Hà Mỹ, N.-R. Han, M. Y. Hanifmuti,
S. Hardwick, K. Harris, D. Haug, J. Heinecke, O. Hellwig, F. Hennig, B. Hladká,
J. Hlaváčová, F. Hociung, P. Hohle, E. Huber, J. Hwang, T. Ikeda, A. K. Inga-
son, R. Ion, E. Irimia, O. . Ishola, T. Jelínek, A. Johannsen, H. Jónsdóttir, F. Jør-
gensen, M. Juutinen, S. K, H. Kaşıkara, A. Kaasen, N. Kabaeva, S. Kahane,
H. Kanayama, J. Kanerva, B. Katz, T. Kayadelen, J. Kenney, V. Kettnerová,
J. Kirchner, E. Klementieva, A. Köhn, A. Köksal, K. Kopacewicz, T. Korkiakan-
gas, N. Kotsyba, J. Kovalevskaitė, S. Krek, P. Krishnamurthy, S. Kwak, V. Laip-
pala, L. Lam, L. Lambertino, T. Lando, S. D. Larasati, A. Lavrentiev, J. Lee,
P. Lê Hồng, A. Lenci, S. Lertpradit, H. Leung, M. Levina, C. Y. Li, J. Li, K. Li,
Y. Li, K. Lim, K. Lindén, N. Ljubešić, O. Loginova, A. Luthfi, M. Luukko, O. Lya-
shevskaya, T. Lynn, V. Macketanz, A. Makazhanov, M. Mandl, C. Manning,
R. Manurung, C. Mărănduc, D. Mareček, K. Marheinecke, H. Martínez Alonso,
A. Martins, J. Mašek, H. Matsuda, Y. Matsumoto, R. McDonald, S. McGuin-
ness, G. Mendonça, N. Miekka, K. Mischenkova, M. Misirpashayeva, A. Mis-
silä, C. Mititelu, M. Mitrofan, Y. Miyao, A. Mojiri Foroushani, A. Moloodi,
S. Montemagni, A. More, L. Moreno Romero, K. S. Mori, S. Mori, T. Morioka,
S. Moro, B. Mortensen, B. Moskalevskyi, K. Muischnek, R. Munro, Y. Mu-
rawaki, K. Müürisep, P. Nainwani, M. Nakhlé, J. I. Navarro Horñiacek,
A. Nedoluzhko, G. Nešpore-Bērzkalne, L. Nguyễn Thi., H. Nguyễn Thi. Minh,
Y. Nikaido, V. Nikolaev, R. Nitisaroj, A. Nourian, H. Nurmi, S. Ojala, A. K. Ojha,
A. Olúòkun, M. Omura, E. Onwuegbuzia, P. Osenova, R. Östling, L. Øvrelid,
Ş. B. Özateş, A. Özgür, B. Öztürk Başaran, N. Partanen, E. Pascual, M. Pas-
sarotti, A. Patejuk, G. Paulino-Passos, A. Peljak-Łapińska, S. Peng, C.-A. Perez,
N. Perkova, G. Perrier, S. Petrov, D. Petrova, J. Phelan, J. Piitulainen, T. A. Piri-
nen, E. Pitler, B. Plank, T. Poibeau, L. Ponomareva, M. Popel, L. Pretkalnin, a,
S. Prévost, P. Prokopidis, A. Przepiórkowski, T. Puolakainen, S. Pyysalo, P. Qi,
A. Rääbis, A. Rademaker, T. Rama, L. Ramasamy, C. Ramisch, F. Rashel, M. S.
Rasooli, V. Ravishankar, L. Real, P. Rebeja, S. Reddy, G. Rehm, I. Riabov,
M. Rießler, E. Rimkutė, L. Rinaldi, L. Rituma, L. Rocha, E. Rögnvaldsson,
M. Romanenko, R. Rosa, V. Ros, ca, D. Rovati, O. Rudina, J. Rueter, K. Rúnars-
son, S. Sadde, P. Safari, B. Sagot, A. Sahala, S. Saleh, A. Salomoni, T. Samardžić,
S. Samson, M. Sanguinetti, D. Särg, B. Saulı̄te, Y. Sawanakunanon, K. Scan-

103

nell, S. Scarlata, N. Schneider, S. Schuster, D. Seddah, W. Seeker, M. Seraji,
M. Shen, A. Shimada, H. Shirasu, M. Shohibussirri, D. Sichinava, E. F. Sigurds-
son, A. Silveira, N. Silveira, M. Simi, R. Simionescu, K. Simkó, M. Šimková,
K. Simov, M. Skachedubova, A. Smith, I. Soares-Bastos, C. Spadine, S. Ste-
ingrímsson, A. Stella, M. Straka, E. Strickland, J. Strnadová, A. Suhr, Y. L.
Sulestio, U. Sulubacak, S. Suzuki, Z. Szántó, D. Taji, Y. Takahashi, F. Tam-
burini, M. A. C. Tan, T. Tanaka, S. Tella, I. Tellier, G. Thomas, L. Torga,
M. Toska, T. Trosterud, A. Trukhina, R. Tsarfaty, U. Türk, F. Tyers, S. Ue-
matsu, R. Untilov, Z. Urešová, L. Uria, H. Uszkoreit, A. Utka, S. Vajjala, D. van
Niekerk, G. van Noord, V. Varga, E. Villemonte de la Clergerie, V. Vincze,
A. Wakasa, J. C. Wallenberg, L. Wallin, A. Walsh, J. X. Wang, J. N. Washing-
ton, M. Wendt, P. Widmer, S. Williams, M. Wirén, C. Wittern, T. Wolde-
mariam, T.-s. Wong, A. Wróblewska, M. Yako, K. Yamashita, N. Yamazaki,
C. Yan, K. Yasuoka, M. M. Yavrumyan, Z. Yu, Z. Žabokrtský, S. Zahra, A. Zeldes,
H. Zhu, and A. Zhuravleva. Universal dependencies 2.7, 2020. URL http:

//hdl.handle.net/11234/1-3424. LINDAT/CLARIAH-CZ digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

104

http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424

APPENDIX A

Training Details for Experiments

with Latent Structures

We trained all models with AdamW optimizer (Kingma and Ba, 2014; Loshchilov

and Hutter, 2018). The embeddings for the SST and SNLI experiments are initial-

ized with Glove embeddings of size 300 (Pennington et al., 2014), available from

https://nlp.stanford.edu/projects/glove/. The training details for all experiments

in Chapter 4 are described in Table A.1.

Computing Infrastructure Each experiment was run on a single GPU. The

setup of the computers we used is as follows:

• GPU: Titan Xp - 12GB

CPU: 16 x AMD Ryzen 1950X @ 3.40GHz - 128GB

• GPU: RTX 2080 Ti - 12GB

CPU: 12 x AMD Ryzen 2920X @ 3.50GHz - 128GB

105

https://nlp.stanford.edu/projects/glove/

Synthetic Data SST SNLI

Data
Where to get it Generation script in-

cluded
https://nlp.

stanford.edu/

sentiment/

https://nlp.

stanford.edu/

projects/snli/

Preprocesing §4.5.1; attached
code.

Neutral instances re-
moved.

Dataset size
Training set 5000 6920 570K
Validation set 1000 872 10K
Test set 1000 1821 10K
Labels 2 2 3

Fixed hyperparameters
Hidden size 100 100 200
Dropout 0 0 .2
Batch size one batch 32 64
Number of epochs 10K 40 40

Optimized hyperparameters (maximizing validation accuracy)
Learning rate (×10−3) {.1, 1, 2} {.01, .02, .05, .1, .5, 1, 2} {.01, .1, .3, 1, 3, 10}

(keeping η = 1)
Pullback step size η {.1, 1, 2} {.1, 1, 10} {.001, .01, .1, 1, 10}

(for best learning
rate)

Number of model parameters
Baseline 2K 150K 340K
Model with latent structure 3K 180K 420K

Runtime (minutes)
Baseline < 1 / 1000 steps < 1 / epoch 1 / epoch
Softmax / Marginals 1 3 4
Sparsemax / SparseMAP 1 3 25
Gumbel Softmax / Perturb-and-MAP 1 5 7
STE-Softmax / STE-Marginals 1 4 6
STE-Identity 1 2 5
SPIGOT 1 3 15
SPIGOT-CE 2 4 30
SPIGOT-EG 2 5 7

Best learning rate (and pullback step size, where applicable)
Baseline .001 .00002 .0001
Softmax / Marginals .002 .0001 .0001
Sparsemax / SparseMAP .001 .00005 .0003
Gumbel Softmax / Perturb-and-MAP .002 .00005 .0001
STE-Softmax / STE-Marginals .002 .00005 .0003
STE-Identity .001 .0001 .0001
SPIGOT .002 (.1) .0001 (.1) .0003 (1)
SPIGOT-CE .001 (.1) .00005 (.1) .0001 (.1)
SPIGOT-EG .001 (.1) .00005 (.1) .0001 (.001)

Table A.1: Training details and other reproducibility information.

106

https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/

APPENDIX B

Examples of Latent Trees

We performed a manual analysis of the trees output from the different models. We

notice that, on the SST dataset, most latent trees produced by most models are

flat. This agrees with related work (Williams et al., 2018; Niculae et al., 2018b).

The notable exception is SPIGOT-CE, where the average tree depth on the test

set is around 5 and trees seem more informative, suggesting benefits of the cross-

entropy loss. Figs. B.1, B.2 and B.3 show examples of the trees produced from

different models.

107

(SPIGOT-CE)

An intelligent , moving and invigorating film .

1.0

1.0

1.0

1.0
1.0

1.0

1.0

(SPIGOT)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0

1.0
1.0

1.0

(SPIGOT-EG)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals, SparseMAP):

An intelligent , moving and invigorating film .

1.0
1.0

1.0
1.0

1.0 1.0
1.0

Figure B.1: Example of trees.

108

(SPIGOT-CE)

A fascinating and fun film .

1.0
1.0

1.0
1.0

1.0

(SPIGOT)

A fascinating and fun film .
1.0 1.0 1.0

1.0

(SPIGOT-EG)

A fascinating and fun film .
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals)

A fascinating and fun film .
1.0 1.0

1.0
1.0

1.0

(SparseMAP)

A fascinating and fun film .

1.0
1.0

1.0 1.0
1.0

Figure B.2: Example of trees.

109

(SPIGOT-CE)

A taut , intelligent psychological drama .

1.0
1.0

1.0
1.0

1.0
1.0

(SPIGOT)

A taut , intelligent psychological drama .

1.0 1.0
1.0

1.0

1.0
1.0

(all others)

A taut , intelligent psychological drama .

1.0 1.0
1.0

1.0
1.0

1.0

Figure B.3: Example of trees produced by different models for the sentence “A
taut, intelligent psychological drama.” The majority of the models produce mostly
flat trees. In contrast, SPIGOT-CE identifies the adjectives describing the key-
word “drama” and attaches them correctly.

110

APPENDIX C

Proof of Lemma 1

We provide a more general proof for multilinear factor potentials, of which bi-

linear potentials are a special case. Let G = (V, F) be the factor graph underly-

ing the UNN, with energy function E(x1, . . . , xn) =
∑

i EXi
(xi) +

∑
f Ef (xf). We

assume EXi
(xi) = −b⊤i xi + ΨXi

(xi) for each Xi ∈ V , with ΨXi
convex, and Ef (xf) =

−⟨Wf ,⊗j∈fxj⟩ for each higher order factor f ∈ F (multilinear factor energy), where

⊗ is the outer product, and Wf is a parameter tensor of matching dimension. For

pairwise factors f = {Xi,Xj}, the factor energy is bilinear and can be written sim-

ply as Ef (xi, xj) = −x⊤
i Wfxj.

The (block) coordinate descent algorithm updates each representation xi ∈ V

sequentially, leaving the remaining representations fixed. Let F (Xi) = {f ∈ F :

Xi ∈ f} ⊆ F denote the set of factors Xi is linked to. The updates can be written

111

as:

(xi)⋆ = argmin
xi

EXi
(xi) +

∑
f∈F (Xi)

Ef (xf)

= argmin
xi

ΨXi
(xi)−b⊤i xi −

∑
f∈F (Xi)

⟨Wf ,
⊗
j∈f

xj⟩︸ ︷︷ ︸
−z⊤i xi

= (∇Ψ∗
Xi
)(zi), (C.1)

where zi is a pre-activation given by

zi =

 ∑
f∈F (Xi)

ρi(Wf)
⊗

j∈f,j ̸=i

xj

+ bi, (C.2)

and ρi is the linear operator that reshapes and rolls the axis of Wf corresponding

to xi to the first position. If all factors are pairwise, the update is more simply:

(xi)⋆ = (∇Ψ∗
Xi
)

 ∑
f={Xi,Xj}∈F (Xi)

ρi(Wf)xj + bi

 , (C.3)

where ρi is either the identity or the transpose operator. The update thus al-

ways consists in applying a (generally non-linear) transformation∇Ψ∗
Xi

to an affine

transformation of the neighbors of Xi in the graph (that is, the variables that co-

participate in some factor).

Therefore, given any topological order of the variable nodes in V , running k

iterations of the coordinate descent algorithm following that topological order

is equivalent to performing forward propagation in an (unrolled) directed acyclic

graph, where each node applies affine transformations on input variables followed

by the activation function ∇Ψ∗
Xi

.

112

APPENDIX D

Derivation of updates for

convolutional UNN

The two-layer convolutional UNN is defined by the pairwise energies

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,

EH2Y(H2, y) = −⟨y, V H2⟩ ,

(D.1)

and the unary energies

EX(X) =
1

2
∥X∥22 ,

EH1(H1) = −⟨H1, b1 ⊗ 1d1⟩+Ψtanh(H1) ,

EH2(H2) = −⟨H2, b2 ⊗ 1d2⟩+Ψtanh(H2) ,

EY(y) = −⟨b, y⟩ − H(y) .

(D.2)

113

Above, C1 and C2 are are linear cross-correlation (convolution) operators with

stride two and filter weights W1 ∈ R32×1×6×6 and W2 ∈ R64×32×4×4, and b1 ∈ R32 and

b2 ∈ R64 are vectors of biases for each convolutional filter. The hidden activations

have dimension H1 ∈ R32×(d1) and H2 ∈ R64×(d2), where d1 and d2 are tuples that

depend on the input image size; for MNIST, X ∈ R1×28×28 leading to d1 = 12 × 12

and d2 = 5× 5.

To derive the energy updates, we use the fact that a real linear operator A

interacts with the Frobenius inner product as:

⟨P,A(Q)⟩ = ⟨Q,A⊤(P)⟩ , (D.3)

whereA⊤ is the transpose, or adjoint, operator.1 If C is a convolution (i.e., torch.conv2d)

then C⊤ is a deconvolution (i.e., torch.conv_transpose2d) with the same filters. We

then have

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ = −⟨X, C⊤1 (H1;W1)⟩ ,

EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ = −⟨H1, C⊤2 (H2;W2)⟩ .
(D.4)

1This generalizes the observation that p⊤Aq = q⊤A⊤p.

114

Adding up all energies and ignoring the constant terms in each update, we get

X⋆ = argmin
X
−⟨X, C⊤1 (H1,W1)⟩+Ψtanh(X)

= tanh(C⊤1 (H1,W1)) ,

(H1)⋆ = argmin
H1

−⟨H1, C1(X,W1)⟩ − ⟨H1, C⊤2 (H2,W2)⟩ − ⟨H1, b1 ⊗ 1d1×d1⟩+Ψtanh(H1)

= tanh(C1(X,W1) + C⊤2 (H2,W2) + b1 ⊗ 1d1×d1) ,

(H2)⋆ = argmin
H2

−⟨H2, C2(H1,W2)⟩ − ⟨H2, σy(V)y⟩ − ⟨H2, b2 ⊗ 1d2×d2⟩+Ψtanh(H2)

= tanh(C2(H1,W2) + σy(V)y + b2 ⊗ 1d2×d2) ,

y⋆ = −⟨y, V H2⟩ − ⟨y, b⟩ − Hy

= softmax(V H2 + b) .

(D.5)

Note that in our case, H2 ∈ R64×5×5, V ∈ R10×64×5×5 and thus V H2 ∈ R10 is a ten-

sor contraction (e.g., torch.tensordot(V, H_2, dims=3)). The σy linear operator –

opposite of ρ from Lemma 1 – rolls the axis of V corresponding to y to the last

position, such that σy(V) ∈ R64×5×5×10, the tensor analogue of a transposition (e.g.,

torch.permute(V, (1, 2, 3, 0))).

115

	List of Tables
	List of Figures
	Notation
	Introduction
	Motivation
	Related Work and Contributions
	Exposure Bias, Scheduled Sampling, and Transformers
	Backpropagation through Discrete Latent Structures
	Structuring Neural Computation and Modularity

	Publications
	Thesis Outline

	Background
	Natural Language Processing Tasks
	Dependency Parsing
	Natural Language Inference
	Sentiment Classification
	Machine Translation

	Neural Network Architectures for NLP
	Recurrent Neural Networks (RNN)
	Transformers

	Models with Latent Structures
	Structured Prediction Preliminaries
	Latent Structure Models
	Straight-Through Estimator
	SPIGOT

	Energy-Based Learning
	Boltzmann Machines
	Restricted Boltzmann Machines
	Deep Boltzmann Machines

	Scheduled Sampling for Transformers
	Introduction
	Related Work
	Scheduled Sampling with Transformers
	Two-decoder Transformer
	Embedding Mix
	Decay strategy
	Weights update

	Experiments
	Discussion

	Surrogate Gradients for Latent Structure Learning
	Introduction
	Related Work
	SPIGOT as the Approximate Optimization of a Pulled Back Loss
	Intermediate Latent Loss

	New Surrogate Gradient Methods
	Experiments
	Categorical Latent Variables
	Structured Latent Variables
	Sentiment Classification
	Natural Language Inference

	Conclusions

	Undirected Neural Networks
	Introduction
	Undirected Neural Networks
	Image Classification and Visualization
	Undirected Attention Mechanism
	Structured UNNs for Dependency Parsing
	Related Work
	Conclusions and Future Work

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Training Details for Experiments with Latent Structures
	Examples of Latent Trees
	Proof of lemma:unrolling
	Derivation of updates for convolutional UNN

