
Seamless ticketing SDK

Fábio Rafael Gaudino Caetano Pereira Pimenta

Thesis to obtain the Master of Science Degree in

Engenharia Informática e de Computadores

Supervisor: Prof. Alberto Manuel Ramos da Cunha

Examination Committee

Chairperson: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur
Supervisor: Prof. Alberto Manuel Ramos da Cunha

Member of the Committee: Prof. Miguel Filipe Leitão Pardal

October 2021

Acknowledgments

First, I would like to thank Card4B, and in special Eng. João Almeida and Cerriman Lima for all the

support given, the countless meetings of guidance and the trust placed on me during this dissertation.

I am also thankful to my supervisor Professor Alberto Cunha for guiding me during this last year and

sharing his knowledge and experience with me.

To my parents Teresa and Fernando and siblings Catarina and Rúben a harm thanks for all the

emotional support that gave me the strength to complete this journey, without them this dream of mine

would have been impossible.

I would also like to thank all my friends for their friendship during all these years and their words of

encouragement that resonated in me when i needed them the most.

A special thank you to my best of friends Karan and Rodrigo that made this journey with me side by

side and made it the best experience of my life. Will always treasure the sleepless nights of work and

fun we had in the last 6 years.

Last but not least, a big thank you to my girlfriend Joana whom patience and support were tireless

not only during my dissertation but also during my all journey in Técnico.

To each and every one of you – Thank you.

Abstract

The current ticket technologies used in public transportation revolve around smart cards. These smart

cards are widely used but have some inherent faults associated such as easily being transferable be-

tween users, only being rechargeable in specific physical locations, and being required to be printed,

making them not environmentally friendly. Hence, it is essential to develop an alternative. With smart-

phones being more prevalent then ever, it seems fitting to extend their functionalities to replace the

usage of smart cards. In this thesis, the Seamless SDK was developed alongside Card4B Systems, the

Seamless SDK was designed to provide functionalities such as trip management and ticket validation to

applications that integrate the SDK, using technologies like Bluetooth Low Energy for tracking the user

inside the transport, which is crucial for the trip management, and QR code for acquiring the necessary

information for the validation. The Seamless SDK was developed in a cross-platform framework to be in-

tegrated into applications in the two main mobile platforms, iOS, and Android. To guide the development

and evaluate the Seamless SDK, two mobile applications were developed, one in Android and another in

the iOS platform, giving us great insight into how to integrate the Seamless SDK in different applications

and platforms while providing a way to test and evaluate the functionalities of the SDK. Furthermore, it

was evaluated the usefulness of the cross-platform framework in the development of our solution.

Keywords

Public Transportation; Bluetooth Low Energy; QR code; Cross-platform development; Trip management;

Ticket validation;

iii

Resumo

As atuais tecnologias de bilhética usadas nos transportes públicos giram em torno de cartões in-

teligentes recarregáveis. Estes cartões são amplamente utilizados, mas possuem algumas falhas iner-

entes, entre estas destacam-se a facilidade de transferência entre utilizadores, a recarga do cartão

apenas pode ser efetuada em locais fı́sicos especı́ficos e o facto de terem de ser impressos, o que os

torna prejudiciais ao meio ambiente. Torna-se assim evidente que é essencial desenvolver uma alter-

nativa. Com os smartphones mais presentes do que nunca na sociedade, parece adequado estender

suas funcionalidades para substituir o uso de cartões inteligentes. O Seamless SDK foi a solução de-

senvolvido nesta tese em conjunto com a Card4B Systems, SA. O Seamless SDK foi concebido para

fornecer funcionalidades como a gestão de uma viagem e validação de bilhetes às aplicações que

integram o SDK, utilizando tecnologias como Bluetooth Low Energy para puder seguir a viagem do uti-

lizador dentro do transporte, o que é fundamental para a gestão da viagem, e o QR code para adquirir

as informações necessárias para a validação. O Seamless SDK foi desenvolvido numa framework de

cross-platform para poder ser integrado em aplicações nas duas principais plataformas móveis, iOS e

Android. Para orientar o desenvolvimento e avaliar o Seamless SDK, duas aplicações móveis foram

desenvolvidas, uma para Android e outra para iOS. Estas aplicações permitiram-nos descobrir o pro-

cesso necessário para integrar o Seamless SDK em diferentes aplicações e plataformas, fornecendo

também uma maneira de testar e avaliar as funcionalidades do SDK. Além disso, foi avaliada a utilidade

da framework cross-platform utilizada no desenvolvimento de nossa solução.

Palavras Chave

Transportes públicos; Bluetooth Low Energy; QR code; Desenvolvimento cross-platform; Gestão de

viagem; Validação de viagem;

v

Contents

1 Introduction 1

1.1 Objectives of the Work . 4

1.2 Organization of the document . 4

2 State of the Art 5

2.1 Cross-Platform Application Development . 7

2.1.1 Cross-Platform Advantages and Disadvantages 7

2.1.2 Frameworks . 8

2.1.3 Selecting the Framework . 10

2.1.4 Kotlin Multiplatform Mobile . 11

2.1.4.A Architecture of Kotlin Multiplatform Mobile 11

2.1.4.B Integration of Kotlin Multiplatform Mobile 12

2.2 Bluetooth Low Energy . 13

2.2.1 BLE Architecture . 13

2.2.2 How it works . 15

2.2.3 Security . 15

2.2.4 BLE Advantages . 16

3 Architecture 17

3.1 Seamless SDK . 19

3.2 Seamless SDK goals . 19

3.3 Seamless SDK design . 20

3.4 Architecture Layers . 21

3.4.1 View Layer . 22

3.4.2 Presenter Layer . 22

3.4.3 Model Business Layer . 22

3.4.4 Model Persistence Layer . 23

vii

4 Implementation 25

4.1 View Layer . 27

4.2 Presenter Layer . 27

4.3 Model Business Layer . 27

4.3.1 BLE Module . 27

4.3.2 Validation Module . 29

4.3.3 User Module . 30

4.4 Model Persistence Layer . 30

4.4.1 SQLite Module . 30

4.4.2 Backend Module . 31

4.5 Deployment . 32

5 Evaluation 35

5.1 iOS Limitations . 37

5.2 Demo Applications . 38

5.2.1 Android Application . 38

5.2.2 iOS Application . 40

5.3 Shared Code Analysis . 41

6 Conclusions 43

6.1 Future Work . 46

A Appendix A 51

viii

List of Figures

2.1 KMM Architecture . 11

2.2 KMM folder system . 12

2.3 Services, Characteristics and Descriptors . 14

3.1 Seamless SDK Design. 20

3.2 Seamless SDK Architecture . 21

4.1 Eddystone-UID Frame . 28

4.2 UUID Fields . 29

4.3 SQLite Schema . 30

5.1 Demo android application Menu. 38

5.2 Demo android application Users List. 39

5.3 Left: QR code. Center: Bluetooth Low Energy (BLE) list and Trip. Right: Trip Details . . . 40

5.4 Demo iOS application Users List. 40

5.5 Pie Chart of Lines of Code. 42

A.1 Local Database Inspector. 52

ix

x

List of Tables

2.1 Frameworks comparison . 9

5.1 Comparison example of developing a SDK in KMM against Native 42

xi

xii

Acronyms

AAR Android Archive Library

API Application Programming Interface

BLE Bluetooth Low Energy

GAP Generic Access Profile

GATT Generic Attribute Profile

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

JVM Java Virtual Machine

MVP Model View Presenter

NFC Near Field Communication

REST Representational State Transfer

SIG Special Interest Group

SM Security Manager

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

UUID Universally Unique Identifier

UX User Experience

xiii

xiv

1
Introduction

Contents

1.1 Objectives of the Work . 4

1.2 Organization of the document . 4

1

2

Nowadays, technology is part of how society interacts with the world, and public transportation is no

exception. In Portugal, most public transportation uses smart card technology to validate a trip. A few

examples of this application are the Metro de Lisboa 1 and Vimeca 2, which operates many of the buses

and the metro in Lisbon.

Smart cards have two distinctive characteristics, they are rechargeable, meaning that they can be

used multiple times, and they require validation from a stationary validator when starting a trip. These

characteristics have inherent faults, such as easily being transferable between people, which in most

cases is not intended, only being rechargeable in specific physical locations and finally not being en-

vironment friendly since there are millions of cards in circulation which year, Metro of Lisbon reported

selling and printing 6 million smart cards in 2019 (Metropolitano de Lisboa, 2020) .

Smart cards were the right solution for ticketing for several years, but a more efficient solution is

required in our day and age. Smartphones are more prevalent than ever, making them the ideal tool for

ticketing since they can be used to validate and purchase a ticket.

Smartphones surpass most of the limitations of the smart card when applied a ticketing system on

them. Smartphones hinder the transferability of tickets between people, do not require physical selling

points, and finally are substantially more eco-friendly than paper smart cards.

This solution also benefits the service provider by reducing the probability of fraud since it makes the

transferability of tickets between users less prevalent. By reducing the probability of fraud the number

of tickets bought will also potentially increase. Another benefit of this change is reducing drastically the

number of printed smart cards and the cost of printing them.

With so many benefits, many transportation companies invested in developing mobile applications

so that their users would be able to buy and validate their tickets through their application. By creating

mobile applications with validation and ticketing mechanisms, the user can timely plan their trip, buy the

ticket with their preferred payment option, and hold the ticket in their smartphone, ready to be validated.

The validation mechanism and implementation vary, but the most used are Near Field Communication

(NFC) and QR code technologies.

Mobile applications such as Flixbus 3 for the European Bus network, the Metro Transit 4 for the metro

of Minneapolis, and Anda 5 for the metro of Porto apply these concepts and show that the transition to

mobile is becoming more and more prevalent.

With this transition, the demand for the development of applications with ticketing and validation

mechanisms will significantly grow for the two leading mobile platforms, iOS and Android.

1https://www.metrolisboa.pt/
2https://www.vimeca.pt/
3https://play.google.com/store/apps/details?id=de.flixbus.app&hl=pt_PT&gl=US
4https://play.google.com/store/apps/details?id=org.metrotransit.mt.mobiletickets
5https://play.google.com/store/apps/details?id=pt.opt.anda&hl=pt_PT&gl=US

3

https://www.metrolisboa.pt/
https://www.vimeca.pt/
https://play.google.com/store/apps/details?id=de.flixbus.app&hl=pt_PT&gl=US
https://play.google.com/store/apps/details?id=org.metrotransit.mt.mobiletickets
https://play.google.com/store/apps/details?id=pt.opt.anda&hl=pt_PT&gl=US

1.1 Objectives of the Work

This dissertation was developed with the company Card4B Systems 6, having the main objective of

creating a Software Development Kit or SDK for short, that allows transports applications to use it for

ticket validation and trip management in public transportation. This solution has the goal of providing a

set of tools to be integrated into mobile transport applications. The SDK should facilitate the development

of these applications by giving access to ready to use features needed in any ticketing system.

One of the key requirements for the development of this SDK, was that the SDK had to be usable and

easily integrated in applications in both mobile platforms, Android and iOS. To this end, this dissertation

will also have a substantial amount of research, analysis, and testing to cross-platforms capable of

developing a shared SDK for both mobile platforms.

Another requirement was that the SDK uses technologies such as Bluetooth Low Energy, and QR

code. This technologies are built-in on most mobile devices and are widely used in most transport

applications. These technologies will be the cornerstones of the features presented by the SDK.

With this technologies as foundations, the SDK provides ticket validation and trip management in the

following way:

• The validation mechanism will consist of scanning a QR code present at the entrance of transport

and gathering all the necessary information to be able to forward this information to a Card4B

server to validate a ticket.

• The other main functionality is a trip management module capable of tracking the user within the

transport grid by detecting the Bluetooth Low Energy beacons inside the transport, as well as

terminating a trip whenever requested.

1.2 Organization of the document

This thesis is organized as follows: Chapter 2 provides a discussion and selection of the framework

used to developed the SDK and a background about the Bluetooth Low Energy technology.

In Chapter 3 the Seamless SDK is presented with its goals, design, and architecture. Chapter 4

follows the implementation of the SDK and the necessary steps to deploy the Seamless SDK. Chapter

5 presents the limitations found, the results obtained of the integration of the Seamless SDK with two

different mobile environments and a evaluation to the cross-platform framework usefulness. Finally,

Chapter 6 overviews the main conclusions regarding this dissertation and proposes the future work.

6https://www.card4b.pt/index.html

4

https://www.card4b.pt/index.html

2
State of the Art

Contents

2.1 Cross-Platform Application Development . 7

2.2 Bluetooth Low Energy . 13

5

6

This chapter will describe and analyze the frameworks and technologies used to the develop our

solution. The first part of the chapter will describe the type of development used in the solution. This will

be followed by a analysis and selection of the potential frameworks considered for developing the SDK.

The first part of the chapter will be concluded with a detailed introduction to the framework selected. The

second part of this chapter will be a background contextualization for the main technology used in the

SDK.

2.1 Cross-Platform Application Development

When developing a mobile application, there are different device platforms that you must build for, the

more noticeable ones being iOS and Android. Traditionally, applications for each of these platforms must

be constructed separately since each operating system uses a different code language not recognized

by the others, this is called Native development. Cross-Platform Development provides a way to build

an application using a common language, which can be run on both platforms. There are two possible

approaches to Cross-Platform Development, which are Native and Hybrid cross-platform development

(CLEARTECH, 2020). We will focus on the Native approach since Hybrid development is not suited for

our solution. In this approach, the development of the application uses a framework with a common

programming language and translates this development to the different device platforms with the use of

Native Application Programming Interface (API)’s. This results in an application that runs almost as fast

as a Natively developed application and has access to the same elements but is compatible with both

device platforms.

2.1.1 Cross-Platform Advantages and Disadvantages

Cross-platform development has different characteristics in comparison to Native development. This

section will compare both approaches and compose a list of the advantages and disadvantages of

cross platform development in comparison. When analyzing the main advantages of cross-platform

development, the more relevant one is that the developer just needs to write the code once, and it will

run on both mobile platforms. When comparing to native development that the developer needs to write

the code for both platforms. Another advantage associated with the previous one is that a developer

only needs to learn one set of tools for developing a project. This advantage has some limitations

since cross-platform development will sometimes require native code when faced with particular mobile

platforms’ specific characteristics (Lanars, 2020). One crucial advantage is the maintenance of the

code. When using native development, the developer needs to maintain two codebases, and this can

become confusing and difficult to maintain uniform between the two. Cross-platform development takes

7

half the effort to maintain since it uses, in most parts, just one codebase, making it a much more uniform,

consistent, and more straightforward solution in most cases. Finally, one of the essential advantages of

this technology is the development time. By writing the code just once, developers have more time to

focus on perfecting the project being developed. This advantage is also tightly associated with the cost

of development by requiring less time to deliver a project, and fewer resources are needed.

The most prominent disadvantages of cross-platform development are lower performance and lower

quality User Experience (UX) and User Interface (UI) designs (Rishabh, 2020). In terms of performance,

cross-platform technologies are slower than native ones. To make room for adaptability, some overall

application speed was lost. In many cases, this trade-off will not be felt by the end-user when performing

simple operations. This issue will be most prevalent in complex and resource-demanding operations

performed by the application. The other present disadvantage is the lower quality UX and UI designs.

Cross-platform technologies cannot take full advantage of native UI and UX features offered by mobile

platforms. This disadvantage is also related to the adaptability of cross-platform technologies since it

has to be able to adapt to different types of screens and layouts.

Considering both the advantages and the disadvantages of cross-platform technologies and applying

them to the project to be developed in this thesis, it is reached the conclusion that this technology

fits into the panorama of our solution. Since our SDK is more back-end oriented, this means that its

components are less evolve with UI features. We can take advantage of not being involved with some of

the disadvantages of this technology, using cross-platform development in a more suitable and efficient

approach.

2.1.2 Frameworks

Cross-Platform App Development Frameworks are tools to develop applications. It consists of a soft-

ware library that provides a fundamental structure to support development. There are many factors to

consider when choosing a Cross-Platform App Development Framework. These influence the develop-

ment and maintenance of the application. The factors that we will take into account are programming

language, platforms supported, and longevity. We will also take into account the specific SDK properties

of our project. Before looking closer into our factors, it is crucial to choose candidates frameworks to

analyze and select the more appropriate one for our project. After close examination of many cross-

platform frameworks, four primary candidates were selected for final deliberation: React Native 1, Flutter
2, Xamarin 3, Kotlin Multiplatform Mobile 4. We will now look individually at our factors and analyze each

1https://reactnative.dev/
2https://flutter.dev/
3https://dotnet.microsoft.com/apps/xamarin
4https://kotlinlang.org/docs/kmm-overview.html

8

https://reactnative.dev/
https://flutter.dev/
https://dotnet.microsoft.com/apps/xamarin
https://kotlinlang.org/docs/kmm-overview.html

framework by them.

Programming language

In terms of programming language, our main criteria will be time for accommodation to the language

and support from the framework community. React Native is created by Facebook and uses JavaScript,

which is the most used programming language in the world at the current time (Statista, 2021b). Person-

ally, I have some experience with JavaScript, which will make the time for accommodating the language

much shorter. React Native is also the most used framework worldwide. Being the most used framework

also makes for the most significant community, which in return makes for more support from the commu-

nity. Flutter is a reasonably new framework developed by Google that uses Dart programming language.

Dart is a C style language, making it easier to understand someone with C style languages experience,

as is the case. As Flutter, Dart is also rather new to the community, making both have smaller support

than the pre-established frameworks. Xamarin is a framework developed by Microsoft which uses the

C# language. The use of the C# makes for quick accommodation since its syntax is based on C++ and

has influences from Java. Both of these were used in other projects by me. In terms of support, Xamarin

has been active since 2013 and has created a respectful community in terms of numbers since then.

Although not as big as the React Native community, both Xamarin and React Native allow for efficient

use of the community help (Radixweb, 2020).

Kotlin Multiplatform Mobile, or KMM for short, is a recent and promising framework develop by Jet-

Brains that is at the moment still in Alpha, it uses the Kotlin programing language that much like the C++

language, is greatly influenced by Java. Kotlin is also one of the most used languages for native android

development and although KMM is very recent, the Kotlin language was release in 2011, being a fairly

well established language. Due for how new KMM is, the community around Kotlin Multiplatform Mobile

is also very small.

Platforms Supported

In terms of platforms supported, the frameworks support at current time the versions showed in

following table 2.1 (Microsoft, 2020) (React Native, 2020) (Flutter, 2020) Kotlin (2021c).

Framework iOS version supported Android version supported
React Native iOS 10.0 or newer Android 4.1 (API 16) or newer

Xamarin iOS 9.0 or newer Android 5.0 (API 21) or newer
Flutter iOS 8.0 or newer Android 4.1 (API 16) or newer
KMM iOS 7.0 or newer All versions

Table 2.1: Frameworks comparison

In both iOS (Statista, 2020b) and Android (Statista, 2020c), the four frameworks can be used in

more than 99 percent of devices, which means all four give almost perfect compatibility with the mobile

platforms.

Although not a differentiator factor, the version supported for which platform is a critical requirement

9

in any cross-platform framework. The inability to support almost all the versions used leads to many

users not being able to use the SDK developed in this thesis, which in turn makes the selection of a

framework without this characteristic unsatisfactory.

Longevity

When analyzing the possible longevity of a framework, the two main ways to assess it are the number

of users and time since launch. These two will give us some insight on the chance of the framework

being discontinued. React Native leads the way in the number of users in 2020 and 2019 (Statista,

2020a), maintaining a substantial share of cross-platform developers and, as a result, the number of

applications developed. It was released in March 2015, having time to mature as a framework, making

it the least likely to be discontinued in coming years. Flutter has seen a rise in popularity in the last two

years, especially in 2020, reaching a similar percentage to React Native. Flutter was launched in May

2017, making it a relatively recent cross-platform framework. Which could mean that the software did

not have enough time to fix some vital compatibility issues (Github, 2020).

Xamarin is the opposite case of Flutter. It was seen a downfall in use and popularity in the last two

years. Xamarin can develop cross-platform applications since May 2014, making it the oldest framework

of the four (Altexsoft, 2020).

Kotlin Multiplatform Mobile was a similar longevity to Flutter, being released in November 2017. But

contrary to Flutter, it has a much lower usage percentage Statista (2021a), making it the least used

framework of the four.

2.1.3 Selecting the Framework

The selection of the framework took into consideration the above characteristics of the four analyzed

frameworks. The selected framework in the early phase of the project was React Native due for the fact

of excelling in all three of the criteria, longevity, compatibility, and programming language. React Native

seemed the best option by far. This framework was tested thoroughly to see if it had the capabilities to

create an SDK to be used in both Android and iOS systems. After exhaustive tests and research, it was

concluded that the separation of the created SDK and the target application that uses the SDK is not

possible. All the outputs created with React Native need to be executed with a React client. This makes

the integration with other native applications impossible. The only possible way would be creating both

the SDK and target application in React Native, defeating the purpose of creating an SDK that does not

have integration capabilities with other native applications.

This lead to the investigation of other alternatives, Flutter and Xamarim were considered, but their

capabilities and problems were similar to that of React Native. Since this frameworks could not create

the separation needed of an SDK, the focus of the research was switched to KMM. When researching

the capabilities of KMM, it was noticed that this was the only framework that actually generates native

10

binaries for the target mobile platform, this meant that in theory KMM could generate a native SDK to

which one of the mobile platform while maintaining only one codebase and providing the necessary

separation of an SDK. It was at this point that Kotlin Multiplatform Mobile was chosen.

2.1.4 Kotlin Multiplatform Mobile

As said before, Kotlin Multiplatform Mobile is a recent and promising framework for cross-platform de-

velopment released in November 2017. KMM is still in alpha, meaning that its development is growing

rapidly but is not stabilized yet. Although very new, KMM is based on the programming language Kotlin,

which was over a decade of existence and is widely used as a more concise and secure language alter-

native to Java in application development. KMM works by using the multiplatform abilities of Kotlin and

the features designed for mobile development in which specif platform (iOS and Android).

Kotlin Multiplatform Mobile is designed to help develop a single codebase for persistence and busi-

ness layers in Kotlin, leaving the UI and some of the presentation layer for native specific code. This

makes KMM a perfect fit for our project since our SDK functionalities are mainly focused on the persis-

tence and business layer.

2.1.4.A Architecture of Kotlin Multiplatform Mobile

As said before, KMM is a tool that allows sharing a single codebase of business logic and back-end

operations with iOS and Android applications, maintaining the freedom of writing platform-specific code

whenever is needed.

Figure 2.1: KMM Architecture

As we can see in Figure 2.1, the shared code will be used by both iOS and Android applications while

maintaining code specific in the same layer of KMM but separated from shared code. This architecture

11

also maintains a layer between the KMM code and the applications which is why KMM can be integrated

where other frameworks such as React Native could not.

To further clarify the architecture of Kotlin Multiplatform Mobile, we will present the development

environment and the folder system used in the creation of our project, as showed in Figure 2.2.

KMM is divided into three essential folders called Shared, androidApp, and iosApp. As the name

implies, the androidApp and iosApp are the folders of both Android and iOS applications written in

their native languages Kotlin and Swift. The Shared folder is where the common code for both of these

applications can be found. Furthermore, the Shared folder is subdivided into three folders commomMain,

androidMain and iosMain. In the commonMain folder, we can find abstract Kotlin code that does not use

specif dependencies from iOS nor android. This folder is where we can find all of the business logic-

related code. This folder is where most of our work will be done. The androidMain and iosMain folders

fulfill the same purpose for their corresponding platforms. Their purpose is to write platform-dependent

Kotlin code, such as manipulation of platform-specific objects. This code can then be called from the

commonMain folder depending on which platform the shared code is running.

Figure 2.2: KMM folder system

In the process of creating our SDK, both the folders androidApp and iosApp were deleted. The

reason behind this was so that the integration of our SDK was on unrelated applications to KMM. This

provided a much solid understanding of what is required for the integration of our SDK in a ”real world”

application.

2.1.4.B Integration of Kotlin Multiplatform Mobile

Although KMM is very suited for our project is integration took a substantial amount of effort due to the

fact of how recent KMM and the lack of information available about the subject of integration. There

were quite a few steps to complete a fully operational integration of our SDK with a demo application,

but we will take a look into the three major ones.

• Transform a KMM project to a library.

12

• Compile the project to his native binaries.

• Integrating the output into a demo application.

We will describe these three major steps and their platform specif intricacies ahead in the thesis.

2.2 Bluetooth Low Energy

Bluetooth Low Energy, or Bluetooth Low Energy (BLE) for short, is a low power wireless communication

technology used in many areas such as, fitness, Health care, Internet of Things (IoT) (Gupta, 2016)

and mobile applications as is our case. The BLE was invented by Nokia in 2006 with the original

name Wibree (Gupta, 2016), after seeing the potential of the technology the Bluetooth Special Interest

Group (SIG) group negotiated so that Wibree was integrated in the Bluetooth specification, and so in

2009 Wibree was introduced as BLE. The technology was created with focus in low energy consumption

while maintaining a similar range to the original Bluetooth. Nowadays it is implemented in almost every

smartphone and many other devices used on the areas referred before.

2.2.1 BLE Architecture

To explain how the BLE works, we must first define some terms and explain the architecture of the

BLE. Generic Attribute Profile or Generic Attribute Profile (GATT) for short, is used to define a table of

data which represents aspects of our device and their state at any given time and operations which can

be carried out against that data. This data table is called the Attribute Table and is often referred was

“the profile”. The use of GATT allows to have a hierarchical data structure of our state, that is divided in

Services, Characteristics and Descriptors (Bluetooth SIG, 2020).

Services are holders of related characteristics, which operate together to perform a particular func-

tion.

Characteristics expose values as small packets of information that can change over time. They have

a defined type, an associated value and support one or more operations.

Descriptors provides additional information about a specific characteristic and contain metadata like

a textual description for the characteristic.

When a BLE device hosts services, characteristics, and descriptors it is called GATT server. On

the other hand, when a BLE device accesses services, characteristics, and descriptors from other BLE

devices it is called GATT client.

Generic Access Profile (GAP) or Generic Access Profile, is also a key component of BLE architecture,

13

Figure 2.3: Services, Characteristics and Descriptors

is key function is allowing for devices to find each other and to connect and disconnect from other BLE

devices. GAP allows 4 types of roles in a BLE device (Microchip, 2020).

A Peripheral advertises its availability for connection and provides an interface for communication.

’Advertising’ means transmitting regularly small amounts of data which other BLE devices can receive

and act upon if they think the advertising device is of interest.

A Central scans for advertised packets, from peripheral for example, and based on their content, may

decide to connect to the device advertising their services.

A Broadcaster is similar to a peripheral in that it advertises but it does not accept connections, is only

purpose is to advertise.

An Observer scans and processes advertising packets but never tries to connect to another device.

Normally a device can only preform a role at a time, but with right hardware it is possible for a device

to have multiple roles. Additionally, devices that are GAP Peripheral will normally take the role of GATT

server when connected and GAP Central will take the role of GATT clients after connecting to a GAP

Peripheral. Although this normally happens, the GAP and GATT are independent of each other, which

means there are no rules stating that a GAP central can not take the role of GATT server, for example.

Another key component of the BLE architecture is the Attribute Protocol, or ATT for short. This layer

allows communication between a GATT client and a GATT server that are already connected to each

other. ATT allows to a client the discovery of GATT services from a server as well as request the current

value of a certain characteristic, change the value of a characteristic and many other functionalities. ATT

allows the data structure created by GATT to be used over a BLE communication. Normally applications

don’t communicate directly with the ATT layer, they normally use API’s that follow the ATT protocol to

14

communicate efficiently (Woolley, 2020).

2.2.2 How it works

A common interaction pattern of a Central device with a Peripheral device starts with the central

scanning for peripherals advertising services (Mackensen et al., 2012), which service has a universally

unique identifier or Universally Unique Identifier (UUID) for short, a UUID is a 128-bit number that iden-

tifies a unique service.

If the Central wishes to connect to a certain Peripheral, both will use the GAP protocol to establish

a connection. After a connection is established the Central is given the role of client and the Peripheral

will take the role of the server. At this point ATT will handle the communications between both devices,

Central will then proceed to discover the services of the Peripheral and choosing which characteristic

it as an interest on (Decuir et al., 2010).. The Central will operate on that characteristic may that be

reading is value or writing on it. After all operations are completed the two devices disconnect from each

other. (Heydon and Hunn, 2012)

BLE data is sent and received in small packets of data. The data packet has an maximum effective

payload of data of 246 bytes.

2.2.3 Security

The BLE core specification defines rules and algorithms in the Security Manager (Security Manager

(SM)) and Generic Access Profile (GAP) layers to provide secure communications (Woolley, 2020).

When two devices wish to start a secure communication, the devices must first pair. Before pairing

the device that wants to establish a connection will send a pairing-request to the device to which it wants

to communicate with. Both devices will then exchange their requirements for authentication, their Input-

output capabilities, and some requirements for pairing. Based on the data exchanged between both, the

devices will choose the most suitable pairing methods for their Input-output capabilities. There are three

possible security pairing mechanisms Just Works, Passkey and Out of Band (Ryan, 2013).

Just Works is the pairing mechanism in which the devices do not authenticate to one another. This

means that anyone can easily connect to the device.

In Passkey method a device will display a collection of numbers passkey and the other device that

wants to connect to has to enter that displayed key. If both match the pairing will be established and this

key will be used as temporary key.

15

Out of Band is the pairing mechanism in which a temporary key will be shared between the devices

by other wireless technologies for example, Near Field Communication or NFC for short.

The value of the temporary key and its exchange depends on the employed pairing method. This

temporary key is again used to generate a” Short Term Key” shortly known as STK. STK is the key used

to encrypt the connection and messages exchanged.

2.2.4 BLE Advantages

Bluetooth Low Energy technology was several advantages but arguably the biggest advantage is the

low power consumption. Depending on the type of communication established by client and server, and

the throughput necessary, a coin-sized battery can power a server between 2 and half years and 14

years (Gomez et al., 2012). These values are polar extremes, making their average a good assumption

of the real lifetime a BLE device serving as a server has.

Other value advantages of the BLE are latency and compatibility. The BLE technology is aimed at

quick connection and transmission of small packets of data, making latency a cornerstone requirement

for efficient usage (Cho et al., 2015). In average conditions, a connection can be established, and

data transferred in a mere 3 milliseconds (Gomez et al., 2012). Making it ideal for short-range wireless

applications like our own.

Compatibility is also a strong suit of BLE, by making its presence in all most every mobile device in

the world it allows for great flexibility, where in most cases every device can be a client or server. This

compatibility is due to the fact that classic Bluetooth is mandatory in most mobile devices and Bluetooth

4.0 was designed to include BLE. Since BLE uses most of the same hardware as the classic Bluetooth

it comes at almost zero cost for manufacturers and the final consumer.

16

3
Architecture

Contents

3.1 Seamless SDK . 19

3.2 Seamless SDK goals . 19

3.3 Seamless SDK design . 20

3.4 Architecture Layers . 21

17

18

3.1 Seamless SDK

Seamless SDK is a software development kit that offers a collection of functionalities that allows the

development of applications for the seamless usage of public transportation. The integration of the

Seamless SDK in a transport application makes available many ready to use functionalities for the val-

idation and management of a trip. Our Seamless SDK assumes some pre-established physical com-

ponents in public transportation, which are the existence of BLE beacons inside the transport capable

of transmitting information to the user device and an QR code in each entry point of the transporta-

tion infrastructure. The integration of the Seamless SDK can be made in both iOS and Android mobile

systems.

3.2 Seamless SDK goals

We will start by clarifying the system architecture goals by identifying the most important functional

requirements and non-functional requirements of the solution.

In terms of functional requirements, the SDK must:

• FR1 - manage the state of the trip being performed;

• FR2 - provide information about the transportation, such as lines our routes;

• FR3 - yield information about current BLE beacons in range;

• FR4 - validation of a trip.

Considering now the non-functional requirements, the solution must provide:

• NFR1 - availability, the SDK’s functionalities must be operational when required, and it must be

able to recover upon failures;

• NFR2 - usability, the SDK must be able to be used with ease and effectively;

• NFR3 - security, the solution must handle the user and application information safely;

• NFR4 - portability, the SDK must be usable in different transportation scenarios and mobile plat-

forms;

19

3.3 Seamless SDK design

We will now go into an overview of the Seamless SDK usage and surrounding components. We start

with the interaction between the user and the application (a). As shown in the Figure 3.1, the SDK is

a component of the application, which means that all interactions between the user and SDK will be

mediated by the application in the form of requests.

When the application requests some SDK functionality, the Seamless SDK will communicate with the

server/API (b) to either get information, report some event, or store data. If the user requests the start

of a trip, the validation process will be triggered d). The validation mechanism consists of using the user

smartphone camera to read a QR-code present at the transport. The information retrieved will be used

by the SDK for validation.

During the trip, the Seamless SDK will actively listen to the surrounding BLE beacons signal c) to

know in which station the user is present.

Figure 3.1: Seamless SDK Design.

20

3.4 Architecture Layers

The Seamless SDK architecture will be described based on Figure 3.2 and three layers of abstraction

to better understand the architecture, them being the View, Presenter and Model layers. These layers

will contain the various modules and components necessary for the proper behaviour of which level.

These layers are part of a standard architecture pattern called Model View Presenter (MVP). The MVP

architecture was chosen because of its modularity and maintainability. Both of these are vital factors

taking into consideration the nature of our project.

Figure 3.2: Seamless SDK Architecture

Modularity is fundamental for the replacement and integration of modules quickly, which is very com-

mon in an SDK to be implemented in different applications. Maintainability is a must-have in a project

21

that implements Kotlin Multiplatform since platform specif conditions can make the codebase confus-

ing. By implementing an architecture pattern that makes the codebase more clean and maintainable

counterbalances this aspect of KMM.

3.4.1 View Layer

The View layer is responsible for interacting with the user, as described in Figure 3.2, making it a fun-

damental part of our Architecture. This layer is implemented via an interface in the application where

our Seamless SDK runs. It is on this layer where the UI of the application is and where all of the user’s

requests originate. This request is then forwarded to the presenter.

3.4.2 Presenter Layer

The Presenter layer is responsible for the communication between the View and the Model Layer, acting

as the middleman. In this layer, we can found our presentation module. This module will act as an

intermediary between the functionalities of the SDK and the application’s requests. The application will

initialize the module in the View Layer and gain control of the View’s data. Whenever a request is made to

the SDK, it is made through this module that will forward the request to the Model layer. After the request

is processed, the presentation module requests some UI alterations or responds to the application if no

changes are needed in the UI.

3.4.3 Model Business Layer

The second layer is the Model Business layer. This layer is where most of the data manipulation,

business rules and technology specif usage are. In the Model Business layer, we can find three modules,

the BLE module, the validation module, and the user module.

Starting with the BLE module, this module monitors the BLE beacons around the user device. This

monitoring has quite a few usages and tasks associated with it. The first one is making sure that a BLE

device found makes part of the grid of the public transportation devices that the application is inserted.

In that endeavour, the device’s ID is compared to the one the SDK possesses of that particular station,

asserting if the device is valid. Monitoring the BLE devices also has the purpose of maintaining a list of

stations that the user passed on so that the Seamless SDK can return a list of stations passed during a

user trip.

The second module is the validation module. This module starts the camera of the user smartphone

and scans the QR code present at the transportation entrance for the necessary information for the

validation of the trip. This module also makes some confirmations regarding the location of the QR code

with the help of the BLE module.

22

In the BLE and validation modules, there is a division of code related to the usage of the KMM.

This division is necessary due to the fact that the technologies used on these modules are platform-

specif technologies, which means that each has to be coded in their specif platform folder (iosMain or

androidMain). Although some code is written in their platform-specif folders, the modules are created

with a Kotlin shared base that manages all of the data manipulation and requests from other parts of the

Seamless SDK and the module itself.

The third and final module is the user module. This module works closely with the backend module,

which we introduce in the next layer. The primary responsibility of the user module is manipulating the

user data received from the back end module to be handed to the presenter layer.

3.4.4 Model Persistence Layer

The last layer of SDK is the Model persistence layer. On this layer is where we can found the SQLite

module and the Backend module.

The SQLite module is where we perform the operations of storing and retrieving data from our local

database. This module uses SQLite local database, which is a database that is located in the user

smartphone.

The other module present in the persistence layer is the Backend module, where all the calls to

the server are made. The primary purpose of this module is to consume a Representational State

Transfer (REST) API of a list of users and their various information’s. This module works as a proof

of concept in order to see if it is possible to create a shared module of a working Hypertext Transfer

Protocol (HTTP) client for both mobile platforms.

23

24

4
Implementation

Contents

4.1 View Layer . 27

4.2 Presenter Layer . 27

4.3 Model Business Layer . 27

4.4 Model Persistence Layer . 30

4.5 Deployment . 32

25

26

In this chapter we will discuss the approach used to implement the Seamless SDK following the

architecture and design previously described. The implementation will be divided into the layer structure

discussed in the architecture, where will be described the technical behaviour and the main libraries used

in which module of that layer. At the end of this chapter, it will also be described a detailed procedure to

implement the Seamless SDK in native applications.

4.1 View Layer

Although there is no module implemented in the View Layer, the Seamless SDK contains some inter-

faces to be implemented in this layer for the correct interaction between the View and Presenter Layer.

These Interfaces have a set of functions for the manipulation of the UI of the application. After imple-

menting these functions, they will be called from the Presenter Layer when a modification is required.

4.2 Presenter Layer

The presenter module is present in every other module that interacts with the UI of the application. It is a

class that is implemented to which module to interact with the application and requests the modification

of the UI for which individual module. For example, the BeaconListPresenter is a class that is instantiated

in the View layer and then given the view class of the current activity of the application, making the

BeaconListPresenter able to change the current View through the use of the functions implemented in

the view layer described above. So, in this case, the BeaconListPresenter can forward a request from the

user to the BLE module, receive a response from the BLE module, that would be a list of the surrounding

BLE beacons, the presenter can then present it by calling the function ”showBLEDevices” implemented

in the View Layer.

4.3 Model Business Layer

As described in the architecture in Model Business Layer, this is where most of the business rules

and technology implementations can be found. We will now go into an in-depth description of the

implementation of which module of this layer.

4.3.1 BLE Module

The BLE module has the general purpose of monitoring the BLE devices around the user device and

confirms if they are part of the grid of BLE devices of the transport. To this end, it was implemented the

27

android beacon library Altbeacon. With this library, we can assess the beacons that come close to the

user device by maintaining a call to a function with a one-second frequency to estimate new beacons

in the range of the user device. This library also allows setting which type of beacon layout we want to

identify in the search. In our case, the Eddystone UID layout was chosen. As described in section 2.2.1,

a BLE device can take different roles for different purposes. In our system, the roles will be Broadcaster

for the BLE devices found on the transport infrastructure and Observer for the user’s smartphone. This

role pair implements unidirectional, connection-less communications, meaning that all communications

are one-way, from the Broadcaster to the Observer. This also means that a connection is not established

between the devices. Our Broadcaster will periodically send advertising packets with data, following the

Eddystone UID format.

Eddystone is a BLE profile that contains several frame types, including the UID format. This format

can be divided into two parts, as described in Figure 4.1, the first part is the Prefix Data. The prefix is

present in every format to identify the frame as Eddystone format and has a size of 11 Bytes. The UID

frame data has a total of 20 Bytes and is divided into three subsets of data. The first 4 Bytes is where

we can find the Frame type, in this case, the UID, and the Ranging Data that gives us the distance in

meters between the Broadcaster and the Observer. The other two subsets together are, as mention in

section 2.2.2, the universally unique identifier or UUID of the BLE device. As mention before, the UUID

is a 128-bit number or 16 Bytes that uniquely identify a beacon. The UUID is composed of two subsets

of data: the Namespace with 10 Bytes and the Instance with 6 Bytes. These two subsets will allow

obtaining various pieces of information about the transport.

Figure 4.1: Eddystone-UID Frame

28

Since both the Namespace and Instance are customizable, we can place information about the

location of which individual beacon in these fields. The information deemed necessary for the proper

identification of each beacon is described in Figure 4.2. Depending on the type of transport, more data

may be required. With that in mind, the 16 Bytes were not fully used.

For now, the fields to be advertised in the UUID will be the beacon id, the stop in which the beacon

is, and the line id of the stop.

Figure 4.2: UUID Fields

By scanning which beacon the user device passes, the BLE module can collect information from

these fields and create a list of stops that the user passed by. This list will contain the beacons found

sequentially, and which beacon will have the time it was found, creating a detailed route that the user

used during his trip.

This module is responsible for three of our functional requirements, them being FR1 manage the

state of the trip being performed, FR2 provides information about the transportation, such as lines our

routes, and FR3 yield information about current BLE beacons in range.

4.3.2 Validation Module

The validation module is responsible for starting a trip and gathering the necessary information for the

validation of a trip . This module uses the library codescanner. With this library, the module is able to read

the content of a QR-code. The module starts when a user requests the start of a trip, this request is sent

to the validation module, and the module will use the camera of the user device to initialize the scanning

of a QR-code. After the QR-code is scanned, the camera preview will stop. The information present in

the QR-code placed in the transport will be a unique identifier for the QR-code and the station identifier

in which the QR-code is present. This information will then be confirmed against the surrounding BLE

beacons with the help of the BLE module. If the nearest beacon has the same station Id as the QR-code

and the QR-code identifier is part of the corresponding station, the trip will be validated and proceed to

the next step. The functional requirement that the validation module is responsible for is FR4 validation

of a trip.

29

4.3.3 User Module

The user module was implemented to facilitate the processing of the users data that originates from

the backend module. This processing is responsible for mapping the received data to a usable data

class and introduce the necessary attributes to the presenter layer of this module. Since this module is

composed solely of business rules and data classes for the manipulation of data, it is exclusively written

in the commonMain folder, making it a truly shared module.

4.4 Model Persistence Layer

4.4.1 SQLite Module

Figure 4.3: SQLite Schema

30

This module is responsible for creating and managing our local SQLite database. Its main functionali-

ties are fetching and storing all data that requires a certain level of persistence in our local database. Our

implementation relies on the SQLDelight library, which is the standard in our Kotlin Multiplatform Mobile

environment. It has a simple implementation, which requires few lines of code in the platform-specific

folders iosMain and androidMain. The SQLDelight library generates a database class associated with

our Schema, which is a collection of Structured Query Language (SQL) objects such as tables and

queries. The database class can be used to create our local database and run the typesafe functions

generated by SQLDelight. These functions are generated at runtime from the queries defined in our

Schema and can be used directly in Kotlin.

Our Schema consists of two tables and six queries, represented in Figure 4.3.

The queries follow the same logic for each table, the selectAll and selectAllStations retrieve the

tables, the insertItem and insertStation insert an item to those tables, and finally, the deleteAll and

deleteAllStations delete their corresponding tables.

This local database main functionality is allowing to maintain a persistent map of the transport grid,

to be used in the validation and BLE modules.

In a future more complex implementation the transport grid map should have a version associated

with it. This version should then be compared to the version the server has and if necessary the grid

map should be updated to match the version the server has.

4.4.2 Backend Module

As specified in our architecture, the Backend module is responsible for communicating with an API and

consuming a list of users. This module uses ktor, which is a framework for networking. With it, we

can build asynchronous clients and communicate with servers. This framework was selected, much like

SQLDelight, because it is the standard in the Kotlin Multiplatform Mobile environment and is very well

documented.

The implementation of a ktor HTTP client requires no code in the platform specif folders, meaning

that the module is fully implemented in the commonMain folder. To communicate with a server, we create

our HttpClient class and configure it with the JavaScript Object Notation (JSON) features necessary for

our response body’s proper serialization and parsing. After our HttpClient is created and configured,

we can make our GET request to the server. In order to make this request, we first need to create a

coroutine, which is conceptually similar to a thread meaning that it runs a block of code concurrently

with the rest of the code. By executing a coroutine, we can make asynchronous calls, as is the case

with our GET request. The result of our GET request is a list of fifty users, which user is composed

of the following attributes: id, first name, last name, username, email, profile picture Uniform Resource

Locator (URL) and gender. These users are then forwarded to the User module upon request. The API

31

used is a public API that generates a random set of users 1, and the size of this set can be changed

according to the URL provided in the GET request.

4.5 Deployment

As explained in section 2.1.4.B, our deployment follows three significant steps, transforming our KMM

project to a library, compile the project into his native binaries and integrating the output to a native demo

application.

The second and third steps differ depending on which type of platform they are being targeted to. So

with that in mind, these steps will have two subcategories for Android and iOS, respectively.

The first step was to transform our KMM project from a running module to a library. In order to do

this, some alterations were made to the build.gradle file, this file is the build configuration script of our

project. The alterations consisted of changing the task of compiling and building our project from an

application to a library and adding some required dependencies for the libraries used in our project.

Secondly, it was necessary to change the targets to which our SDK was compiled to. This is one of

the KMM functionalities called Kotlin/Native, which compiles Kotlin code to native binaries.

Android:

The second step is relatively straightforward in Android, in the build.gradle file, we add in the library

extension configurations the API level of our system and the target API level we are compiling. After

doing this, we can build our project, creating an Android Archive Library (AAR), which is a bundle usable

in Android applications. This output is our packaged SDK.

iOS:

In iOS, the second step involves a bit more effort. First and foremost, we require an iOS system to

create our binaries, so the project must be transferred to a macOS, for example. After transferring the

project and adjusting the gradle Java Virtual Machine (JVM) to the project, in our case, we used the

corretto 11.

After setting up these configurations, we need to specify to which platform we are compiling our

project too. We can select iOSX64, which is used for iOS simulators, and iOSArm64 used in physical

iOS devices. In our case, we will compile for both, and to each, we give a name to identify that particular

output. Finally, we run the build option, and our binaries are created in the form of a framework. A

framework is a hierarchical directory that encapsulates shared resources, as is the case of our SDK.

The framework folder will have the name structured as follows ”nameGiven”.framework.

In our third and final step, we need to integrate our Seamless SDK in our native application demo.

Android:

1https://randomuser.me/api/?results=50

32

https://randomuser.me/api/?results=50

To add our AAR file to the demo application, we need to copy our AAR file to the libraries folders of

our demo application and add the SDK as one of our dependencies. To use the resources of our SDK in

the application, all we need is to sync our project and import the resource we want from the Seamless

SDK to the code in the application.

iOS:

The third step is quite simple in iOS as well. First, we need to add our framework folder to the

iOS project folder. After adding the framework, we need to go to the xcodeproj file, which is a file that

contains all the information regarding the location of the source code as well as the usage of libraries

and frameworks. In this file, in the frameworks and libraries section, we need to add the folder of our

framework. Doing this will make our Seamless SDK usable by importing it into the code.

With these steps, a successful deployment can be made of the Seamless SDK to both Android and

iOS applications.

33

34

5
Evaluation

Contents

5.1 iOS Limitations . 37

5.2 Demo Applications . 38

5.3 Shared Code Analysis . 41

35

36

In this chapter, it is described the environment used for testing the Seamless SDK. The environment

comprises two applications, one Android application developed in the standard Kotlin programming lan-

guage and a iOS application developed in Swift. Both have the objective of validating our Seamless

SDK by integrating it and using the functionalities described in Section 3. With that being said, the iOS

testing application does not implement the BLE and validation module due to the limitations that will be

referred in the following section 5.1. These applications will play the role of a target transport application

that tries to integrate and use the Seamless SDK.

5.1 iOS Limitations

As mentioned above there are a few limitations regarding the iOS mobile platform that arose during the

development of the BLE and validation modules. This limitations are caused by the Kotlin Multiplatform

mobile framework, as described in section 2.1.4, KMM is a very recent framework making it susceptible

to some limitations to a more specific project like our Seamless SDK. The limitations originate from our

iosMain folder where we write native Kotlin code that is able to run in the iOS environment, this is a really

powerful tool and works perfectly with the main libraries of iOS that have been migrated and adapted

within the KMM framework. The problems start when we require a library outside the scope of the

libraries provided by KMM as is the case with both of our modules. Many hours of research were made

in order to find possible solutions for the external library problem, two possible solutions were found

but due for their complexity and for the time constraint of the dissertation, neither were implemented.

Nevertheless, the two solutions will be described since the future of this project is directly correlated

with overcoming these limitations and a formal description of our founded results will save time in future

developments.

To use a external library in the Seamless SDK there are two possible options:

• Writing native Kotlin code to call functions in Objective C libraries.

• Creating a Kotlin function with a callback from Objective C / Swift that originates from the target

application.

Starting with the first one, we must first import the Objective C library to our project, this in itself has

a level of complexity but Kotlin provides some documentation on the subject Kotlin (2021a), it is also

important to note that only Objective C libraries can be imported, meaning that it is not possible to use

pure Swift libraries in this solution. The next step is creating bindings for the external library, this bindings

work like a bridge between the native Kotlin code and the Objective C library. Although the bindings are

written in native Kotlin they are representations of Objective C classes, meaning that writing these is

almost like learning a new programming language making it a extremely complex and a time demanding

37

process, there is also some documentation regarding this subject Kotlin (2021b). After the last step we

can use the functionalities of the external library.

The second option consists of creating a separated native module written in Swift or Objective C

that uses the external libraries and importing this module to the target application. The SDK will then

communicate with this module via callbacks using the target application as a middle ground between the

two. Although this solution is much simpler, it also has drawbacks, the mains ones being that the SDK is

not encapsulated in just a single fully operational output and that the target applications needs to handle

some integration between the native module and the SDK.

5.2 Demo Applications

In order to test our Seamless SDK functionalities, we first developed the Android application for two main

reasons, them being that android development is within my knowledge scope, and the integration of the

Seamless SDK with the android environment is more straight-forwarded. Initially, it was also presumed

that some limitations could appear in the iOS environment, like the one described in section 5.1, which

was also a factor when deciding which mobile testing environment to develop first.

5.2.1 Android Application

The Android application first screen is showed in Figure 5.1. As depicted in the figure, the application

has two options, the first one with the button with the text ”Fetch Test Users” and the second one, the

button with the text ”QR Code Validation”

Figure 5.1: Demo android application Menu.

38

The first button will go to another screen, as showed in Figure 5.2 where a list of users is showed

and the second button will start the QR Code validation mechanism, Figure 5.3. In the current activity,

which is the code associated with the screen displayed, it is also being initialized the SQLite module,

and the local database’s content is shown in Figure A.1.

Figure 5.2: Demo android application Users List.

In the screen referred to in Figure 5.2, we can see a list of users, which user is composed of is first

and last name and their email. In this screen, the test application calls the user and backend modules.

As described in section 4.4.2, the backend module retrieves a list of users of a public server, and the

user module manipulates and delivers the users to the View layer in a presentable fashion.

On the other hand, if the second button of the first screen is pressed, the application will start the

smartphone camera to validate a QR code, as shown in Figure 5.3 on the left. This screen is where

the validation module is activated and tries to validate the QR code. If the QR code is accepted, the

application will go to the next screen, also showed in Figure 5.3 in the centre. In this screen, the

application initializes the BLE module and requests a list of nearby BLE beacons that are then shown on

the screen. Which beacon presented on-screen displays it BeaconId, StopId and Station Name. At the

bottom of this screen, we can also see the trip being performed. This trip has two buttons, the ”?” and ”X”

buttons. The ”?” button provides extra information about the trip, as we can see in the right of Figure 5.3.

The ”X” button will request the BLE module to stop the trip on the last station added, specified in the

39

Figure 5.3: Left: QR code. Center: BLE list and Trip. Right: Trip Details

extra information about the trip.

5.2.2 iOS Application

The iOS demo application only has one screen that is depicted in Figure 5.4, this screen is the equivalent

to Figure 5.2 in the Android application. The screen shows a list of the fifty generated users, provided

by the Seamless SDK backend and users modules.

Figure 5.4: Demo iOS application Users List.

40

Also in this screen, is where the application initializes and retrieves data from the local database

through the SQLite module.

The two demo applications developed in this dissertation provided some results and insight about

the Seamless SDK and the cross-platform framework we used. The main result extracted is that it is

possible to develop a shared codebase SDK in KMM and distributed it to different applications, this result

is one of the primary goals of this dissertation.

5.3 Shared Code Analysis

The use of Kotlin Multiplatform Mobile in the development of the Seamless SDK brought some questions

during the development of how compatible the shared files would be with the native applications and how

much specific code would have to be written in the androidMain and the iosMain folders. With this in

mind, it was performed a count of how many lines of code were produced in which folder, in order to

analyse the usefulness of the Kotlin Multiplatform Mobile framework in the development of the Seamless

SDK and extrapolate this results for similar projects. Although lines of code are not the most reliable

metric if we require a correlation to time, since defining a proper conversion between the two is practically

impossible, comparing the number of lines of code between two possible projects that achieve the same

result as some merit in identifying the effectiveness and usefulness of a toll in the scope of cross platform

development.

The percentages extracted from the Seamless SDK are displayed in Figure 5.5, the number of lines

for which category was 917 for the shared folder (commomMain), 204 for the android folder (android-

Main), and 114 for the iOS folder (iosMain).

It is important to note that due to limitations of the iOS referred in section 5.1, the line count of

the iOS folder may not fully represent the complete Seamless SDK number of lines. But taking as an

example the android folder percentage, we can presume that the iOS folder would follow the same trend

of percentages since the implemented components are mostly comparable.

With the previous statement we can also assume that the shared percentage would range between

65 to 70 percent. To better comprehend this result, we will make a simple calculation to estimate how

many lines of code would have to be written to create two Seamless SDK’s for their respective mobile

platforms and languages. For the Android SDK, the line count would be the sum of the lines in the

shared and android folder to a total of 1121 lines. As for the iOS SDK the logic applied would be the

same, making the sum of the iOS folder and the shared folder, for the total of 1031 lines. By adding both,

we get a total of 2152 compared to the original 1235 lines, effectively writing more 917 lines of code or

42,6 percent more lines in total, this example is represented in table 5.1. This example demonstrates

how useful the 74 percent of shared code really can be in a project.

41

Figure 5.5: Pie Chart of Lines of Code.

Lines of Code Improvement compared to Seamless SDK Improvement Percentage
Seamless SDK 1235 - -
Android SDK 1121 114 +10,7%

iOS SDK 1031 204 +19,8%
Android + iOS SDK 2152 -917 -42,6%

Table 5.1: Comparison example of developing a SDK in KMM against Native

But not every project follows the exact proportions of business rules to technology implementation

as our Seamless SDK. By analysing our Seamless SDK, it became apparent that the code present

in the iOS and android folders are implementations related to the peripherals, such as the BLE and

QR code, almost exclusively. A project composed predominantly of business rules, such as the user

module, would have a much higher percentage of shared code. A project consisting mainly of peripherals

implementations would have a much lower shared code percentage.

This percentage of shared code also dramatically influences the project’s maintainability since the

higher the percentage of shared code, the lower the likelihood is of a developer maintaining two different

implementations of a feature in the iOS and Android folders.

42

6
Conclusions

Contents

6.1 Future Work . 46

43

44

The approach used nowadays for ticket validation in public transports is largely based in smart card,

and as discussed in our Introduction (1), most of the smart cards shortcomings can be overcome by

adopting new validation and ticketing mechanisms and applying them in the widely used smartphone.

With this in mind, it was idealized the development of an SDK that would be able to provide trip man-

agement and ticket validation functionalities to Android and iOS applications.

This dissertation was developed alongside Card4B Systems, S.A., and began with the research

of the technologies that were used in the development of our solution. The BLE technology explored in

(2.2) was a cornerstone technology for our SDK that was previously used by Card4B and provided a way

to track the smartphone inside the transport grid, to this end we research the various communication

mechanisms so we could use this technology. As mentioned before, one of fundamental goals of the

SDK is to be usable in Android and iOS applications and as suggested by Card4B we started the

research of cross-platform development (2.1), the study of this topic was exhaustive since all of our

solution depended of these findings, four different cross-platform frameworks were analyzed (2.1.2),

and after several tests we selected (2.1.3) the Kotlin Multiplatform Mobile framework (2.1.4).

The Seamless SDK is a software development kit that provides seamless trip management and ticket

validation functionalities to transport applications that integrate it. The Seamless SDK was designed

(3.3) taking into consideration the various possible transport scenarios, making it flexible enough to

be adapted into different contexts. The SDK was architected (3.4) into layers comprised of different

modules, which one with different responsibilities, the modularization of the architecture has the goal of

making the SDK easy to maintain and adapt. After implementing the Seamless SDK (4), we reach a

solution capable of gathering all the information necessary for a ticket validation through the scan of a

QR code, track a user trip by scanning the BLE beacons around the smartphone, manage a trip being

performed, communicate with an external server and storing information in the local database. The

next step was deploying and integrating the Seamless SDK into different applications, to this end we

elaborated a procedure that can be followed (4.5).

To evaluate the Seamless SDK two demo applications were developed, one in Android (5.2.1) and

another in iOS (5.2.2), these applications prove that is possible to integrate the Seamless SDK into both

mobile platforms as well as showing that the SDK functionalities have the proper behaviour. This being

said, it is also described some of limitations of the Seamless SDK in the iOS platform (5.1) that originate

from the KMM framework. It was also evaluated the usefulness of Kotlin Multiplatform Mobile in the

development of the Seamless SDK compared to native development (5.3).

To concluded, the results of the development of Seamless SDK are positive, we successfully created

a solution capable of being integrated in both mobile platforms while only having one codebase and

providing the basic functionalities for trip management and ticket validation for an transport application.

Although not complete due for the limitations referenced previously, it was suggested some possible

45

solutions for this shortcomings that will make the Seamless SDK much closer to implementation in

actively used transport applications.

6.1 Future Work

The developed Seamless SDK, is only a first version prototype, so it can be improved in several aspects

in the future.

Starting with the previously referred iOS limitations, two different paths can be taken, one where we

wait for a improvement in compatibility regarding the external libraries, which is possible since KMM is

still in development and is continuously being improved upon. The second one, is implementing one of

the solutions also described in 5.1.

Another point of improvement that was investigated but not implemented upon, is adding a second

validation mechanism that uses the technology Near Field Communication. This would consist of adding

a secondary module to the validation module. The basic working of this mechanism would be having a

NFC validator in which entry point of the transport and generate a NFC signal with the user smartphone

in order to gather the necessary information to communicate and validate it with the server, much like

the present validation module.

Lastly, at this time the Seamless SDK is communicating with a public API in order to demonstrate

that this type of networking is possible when using KMM, but in future it will be necessary a Card4B

server capable of providing confirmation for the ticket validation and updating the transport map to the

Backend and validation modules.

46

Bibliography

Altexsoft (2020). The Good and The Bad of Xamarin Mobile Development. https://www.altexsoft.

com/blog/mobile/pros-and-cons-of-xamarin-vs-native/. Online; accessed 26 December 2020.

Bluetooth SIG (2020). Developer study guide an introduction to bluetooth® low energy development.

Bluetooth SIG: Kirkland, WA, USA.

Cho, K., Park, W., Hong, M., Park, G., Cho, W., Seo, J., and Han, K. (2015). Analysis of latency

performance of bluetooth low energy (ble) networks. Sensors, 15(1):59–78.

CLEARTECH (2020). What is Cross Platform Development? https://www.cleart.com/

what-is-cross-platform-development.html. Online; accessed 21 December 2020.

Decuir, J. et al. (2010). Bluetooth 4.0: low energy. Cambridge, UK: Cambridge Silicon Radio SR plc, 16.

Flutter (2020). What devices and OS versions does Flutter run on? https://flutter.dev/docs/

resources/faq. Online; accessed 22 December 2020.

Github (2020). Flutter Issues. https://github.com/flutter/flutter/issues. Online; accessed 26

December 2020.

Gomez, C., Oller, J., and Paradells, J. (2012). Overview and evaluation of bluetooth low energy: An

emerging low-power wireless technology. Sensors, 12(9):11734–11753.

Gupta, N. K. (2016). Inside Bluetooth low energy. Artech House.

Heydon, R. and Hunn, N. (2012). Bluetooth low energy. CSR Presentation, Bluetooth SIG https://www.

bluetooth. org/DocMan/handlers/DownloadDoc. ashx.

Kotlin (2021a). Add dependencies to KMM modules. https://kotlinlang.org/docs/

kmm-add-dependencies.html#ios-dependencies. Online; accessed 27 September 2021.

Kotlin (2021b). Interoperability with C, Bindings. https://kotlinlang.org/docs/native-c-interop.

html#bindings. Online; accessed 27 September 2021.

47

https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.cleart.com/what-is-cross-platform-development.html
https://www.cleart.com/what-is-cross-platform-development.html
https://flutter.dev/docs/resources/faq
https://flutter.dev/docs/resources/faq
https://github.com/flutter/flutter/issues
https://kotlinlang.org/docs/kmm-add-dependencies.html#ios-dependencies
https://kotlinlang.org/docs/kmm-add-dependencies.html#ios-dependencies
https://kotlinlang.org/docs/native-c-interop.html#bindings
https://kotlinlang.org/docs/native-c-interop.html#bindings

Kotlin (2021c). Supported platforms. https://kotlinlang.org/docs/kmm-overview.html#

supported-platforms. Online; accessed 14 September 2021.

Lanars (2020). Cross-Platform Mobile Development Pros and Cons. https://lanars.com/blog/

cross-platform-mobile-development-pros-and-cons. Online; accessed 21 December 2020.

Mackensen, E., Lai, M., and Wendt, T. M. (2012). Bluetooth low energy (ble) based wireless sensors. In

SENSORS, 2012 IEEE, pages 1–4. IEEE.

Metropolitano de Lisboa (2020). Metro em números. https://www.metrolisboa.pt/institucional/

conhecer/metro-em-numeros/. Online; accessed 20 December 2020.

Microchip (2020). Bluetooth® Low Energy GAP Roles. https://microchipdeveloper.com/wireless:

ble-gap-roles. Online; accessed 2 December 2020.

Microsoft (2020). Xamarin.Forms supported platforms. https://docs.microsoft.com/en-us/

xamarin/get-started/supported-platforms?tabs=windows. Online; accessed 22 December 2020.

Radixweb (2020). Choosing the Best Cross Platform Mobile App Development Framework. https:

//radixweb.com/blog/cross-platform-app-development-frameworks. Online; accessed 23 De-

cember 2020.

React Native (2020). Requirements. https://github.com/facebook/react-native#-requirements.

Online; accessed 22 December 2020.

Rishabh (2020). Pros And Cons Of Cross Platform Mobile Application Development. https://www.

rishabhsoft.com/blog/pros-cons-cross-platform-mobile-app-development. Online; accessed

21 December 2020.

Ryan, M. (2013). Bluetooth: With low energy comes low security. In 7th {USENIX} Workshop on

Offensive Technologies ({WOOT} 13).

Statista (2020a). Cross-platform mobile frameworks used by software develop-

ers worldwide in 2019 and 2020. https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/. Online; accessed 26 December 2020.

Statista (2020b). Mobile Android operating system market share by version worldwide

from January 2018 to January 2020. https://www.statista.com/statistics/921152/

mobile-android-version-share-worldwide/. Online; accessed 23 December 2020.

Statista (2020c). Mobile Apple iOS operating system market share by version world-

wide from January 2018 to April 2020. https://www.statista.com/statistics/1118925/

mobile-apple-ios-version-share-worldwide/. Online; accessed 23 December 2020.

48

https://kotlinlang.org/docs/kmm-overview.html#supported-platforms
https://kotlinlang.org/docs/kmm-overview.html#supported-platforms
https://lanars.com/blog/cross-platform-mobile-development-pros-and-cons
https://lanars.com/blog/cross-platform-mobile-development-pros-and-cons
https://www.metrolisboa.pt/institucional/conhecer/metro-em-numeros/
https://www.metrolisboa.pt/institucional/conhecer/metro-em-numeros/
https://microchipdeveloper.com/wireless:ble-gap-roles
https://microchipdeveloper.com/wireless:ble-gap-roles
https://docs.microsoft.com/en-us/xamarin/get-started/supported-platforms?tabs=windows
https://docs.microsoft.com/en-us/xamarin/get-started/supported-platforms?tabs=windows
https://radixweb.com/blog/cross-platform-app-development-frameworks
https://radixweb.com/blog/cross-platform-app-development-frameworks
https://github.com/facebook/react-native#-requirements
https://www.rishabhsoft.com/blog/pros-cons-cross-platform-mobile-app-development
https://www.rishabhsoft.com/blog/pros-cons-cross-platform-mobile-app-development
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/1118925/mobile-apple-ios-version-share-worldwide/
https://www.statista.com/statistics/1118925/mobile-apple-ios-version-share-worldwide/

Statista (2021a). Cross-platform mobile frameworks used by software developers

worldwide from 2019 to 2021. https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/. Online; accessed 15 September 2021.

Statista (2021b). Most used programming languages among developers

worldwide, as of 2021. https://www.statista.com/statistics/793628/

worldwide-developer-survey-most-used-languages/. Online; accessed 12 September 2021.

Woolley, M. (2020). Bluetooth core specification version 5.2 feature overview. Bluetooth SIG: Kirkland,

WA, USA.

49

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

50

A
Appendix A

51

Figure A.1: Local Database Inspector.

52

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Objectives of the Work
	1.2 Organization of the document

	2 State of the Art
	2.1 Cross-Platform Application Development
	2.1.1 Cross-Platform Advantages and Disadvantages
	2.1.2 Frameworks
	2.1.3 Selecting the Framework
	2.1.4 Kotlin Multiplatform Mobile
	2.1.4.A Architecture of Kotlin Multiplatform Mobile
	2.1.4.B Integration of Kotlin Multiplatform Mobile

	2.2 Bluetooth Low Energy
	2.2.1 BLE Architecture
	2.2.2 How it works
	2.2.3 Security
	2.2.4 BLE Advantages

	3 Architecture
	3.1 Seamless SDK
	3.2 Seamless SDK goals
	3.3 Seamless SDK design
	3.4 Architecture Layers
	3.4.1 View Layer
	3.4.2 Presenter Layer
	3.4.3 Model Business Layer
	3.4.4 Model Persistence Layer

	4 Implementation
	4.1 View Layer
	4.2 Presenter Layer
	4.3 Model Business Layer
	4.3.1 BLE Module
	4.3.2 Validation Module
	4.3.3 User Module

	4.4 Model Persistence Layer
	4.4.1 SQLite Module
	4.4.2 Backend Module

	4.5 Deployment

	5 Evaluation
	5.1 iOS Limitations
	5.2 Demo Applications
	5.2.1 Android Application
	5.2.2 iOS Application

	5.3 Shared Code Analysis

	6 Conclusions
	6.1 Future Work

	Bibliography
	Appendix B

	A Appendix A

