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Abstract

Passwords are still the go-to method to provide efficient user authentication in web applications, despite

research showing that users usually choose weak passwords and reuse them across different services.

Security experts advocate the usage of password managers. These tools can improve account security

by enabling the utilization of unique and robust passwords, simultaneously improving the usability and

convenience of text password authentication.

However, these tools are not prepared to deal with overly restrictive password composition policies,

which many websites employ. These policies pose challenges to password managers and may impact

their usage: users become frustrated when generated passwords do not comply with such policies.

We aim to solve this problem by 1) combining a language capable of describing password rules and

a widely used password manager — Bitwarden —, and 2) expanding said language to express policies

suggested by experts, which combine security and usability.

We generated compliant passwords for every policy tested with our prototype, and Bitwarden ac-

cepted our solution to incorporate in their final product. These results are encouraging and suggest that

password managers benefit from this ability to interpret password policies, which is a further step to

increase the adoption of password managers.
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Resumo

As palavras-chave são o método mais utilizado de autenticação em aplicações na internet, ainda que

estudos mostrem que, normalmente, os utilizadores escolhem palavras-chave fracas e reutilizam-nas

em vários sites. Os especialistas em segurança recomendam a utilização de gerenciadores de palavras-

chave. Estas ferramentas podem melhorar a segurança das contas dos utilizadores através da utilização

de palavras-chave que são únicas e robustas, enquanto melhoram ainda a usabilidade e conveniência

da autenticação com palavras-chave.Todavia, estas aplicações não estão preparadas para lidar com

polı́ticas de palavras-chave demasiado restritivas, utilizadas por diversos sites.

Este tipo de polı́ticas impõem desafios acrescidos e podem impactar a sua utilização: os utilizadores

dos gerenciadores ficam frustrados quando palavras-chave geradas aleatoriamente não cumprem os

requisitos de tais polı́ticas.Pretendemos resolver este problema através da 1) combinação de uma lin-

guagem capaz de descrever polı́ticas de passwords com um gerenciador de palavras-chave bastante

utilizado — Bitwarden —, e da 2) expansão desta mesma linguagem para expressar polı́ticas sugeridas

pelos especialistas, que combinam segurança e usabilidade.

Para cada polı́tica testada com o nosso protótipo, conseguimos gerar palavras-chave que cumpriam

essas polı́ticas e a empresa Bitwarden aceitou a nossa solução para ser incorporada no produto final.

Estes resultados são encorajadores e sugerem que os gerenciadores de palavras-chave beneficiam

desta habilidade de interpretar as regras de composição de palavras-chave, sendo mais um passo para

aumentar a adopção destes.

Palavras Chave

Palavras-Chave; Gestor de Palavras-Chave; Usabilidade; Polı́ticas de Palavras-Chave;
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Throughout the years, and still, to this day, passwords have been seen as a double-edged sword:

on the one hand, they were — and still are — the go-to method to provide efficient authentication in

web applications, not only due to its simplicity in implementation, or the low cost in maintenance but

also because users have been using them for quite a while, making password-based login forms almost

second nature to the general user.

On the other hand, users tend to choose weak passwords that are easy to crack [4, 5]. Most of

the time, they have an incomplete mental model of how password-based security works, or worse, do

not have one at all. This lack of knowledge leads users to commit to erroneous behaviors, like choosing

easily guessable passwords or patterns (e.g., qwerty or 1qaz2wsx) and, since they consider them strong

passwords, they eventually reuse them in multiple accounts, as demonstrated by various studies [4–8].

Password managers are recommended [6, 9] to safely manage user credentials, but they still have

some obstacles that prevent mass adoption by the users. Most users face a common problem when

using password managers: the generated passwords are often not compliant [10,11] with the password

composition policies stipulated by the websites they use [12]. This leads to frustrated users and therefore

possible cease of use of password managers. However, users are not to blame. As Stajano et al. [2]

identified, this problem arises due to very restrictive password composition policies that services usually

have [13]. These policies present a greater challenge to password managers since randomly generated

passwords have a higher chance of being non-compliant with more restrictive policies (e.g., “at least

eight characters, at least one digit, and one symbol”): there is a smaller subset of accepted characters,

yet the password manager does not take that into account.

1.1 Work Objectives

Our main goal is to explore methods that enable password managers to generate compliant passwords

according to each service’s password requirements.

There are two possible solutions to this problem:

1. Let the user configure the password generator’s parameters. This option may appear to be the

most trivial but it puts the burden back on the user, negating one of the advantages of a password

manager: remove the password generation burden. Another problem with this approach may

present itself when websites do not explicitly express their password policies. The user will become

frustrated and probably resort to password reuse.

2. Provide a Domain System Language (DSL) that services can use to specify their required pass-

word composition policies and password managers use it to interpret the policies expressed and

generate compliant passwords. This method allows for seamless and transparent integration with

3



password managers, fulfilling their purpose. This approach has minor impacts in user’s efforts but

great impact on password manager’s usability.

The first option is the status quo, being present in all password managers nowadays. In our work we

delve into the second option because it has greater potential to improve password manager’s usability

since it makes the whole process transparent to the user.

Various academic studies already emphasize this approach: Stajano et al. proposed the creation

of HyperText Markup Language (HTML) semantic labels [2] and Horsch et al. proposed the Password

Policy Markup Language [14]. Oesch and Ruoti [15] recently reinforced this idea, suggesting that this

type of annotations could help users adopting password managers, as well as increase the accuracy of

the password generator.

While investigating a way to achieve this with modern password managers, we found that Apple has

also developed a DSL to express Password Autofill Rules [16]. The idea is to add a specification to

the HTML code, in the form of annotations. Google has also done something of this nature [17], in the

form of an Application Program Interface (API) which could be called by a password manager when

generating a password for a given web domain.

Having both Apple and Google — two tech giants — trying to solve this problem reinforces the

importance of the problem and the solution. It shows that even the tech industry is striving to help users

adopt password managers by making them more usable.

In this project we propose to:

• Review the state-of-the-art and any relevant solutions to this problem, studying the extent to which

the recommendations made by researchers are being incorporated into today’s password man-

agers and password-rules-expressing DSL’s.

• Explore whether existing DSL’s are capable of effectively describing a website’s password policy

in a readable format for any password manager, rendering the generation of random, compliant

passwords seamless and efficient.

• Extend existing DSL’s with constructs that might overcome current limitations. For example, Ap-

ple’s DSL mentioned above seems to be increasingly adopted, but it is still unable to express

policies recommended by the academic literature, such as the policies recommended in Shay et

al.’s or Tan et al.’s [18,19] studies.

• Implement software packages that facilitate the adoption and integration of our proposals.

1.2 Contributions

In summary, our contributions are:

4



• A survey on existing state-of-the art languages that can be used to express password composition

policies and that can be used as annotations for (online) password generators.

• SmartPasswords, a new feature in the popular password manager Bitwarden [20]1 that integrates

Apple’s Password Autofill rules, allowing Bitwarden to only generate compliant passwords. This

feature has already been approved by the Bitwarden team and it will be adopted by Bitwarden

(after going through their code review process).

• Integration of the SmartPasswords feature into the prototype password manager being developed

in the PassCert project2, which uses a formally verified password generator different from Bitwar-

den’s password generator. This demonstrates that our proposal can be integrated with various

products.

• Extension of Apple’s DSL with three new features:

– The minclasses rule, that allows to set a minimum number of character classes present in

the password.

– The blocklist rule, that allows to check the password against a list of previously breached

passwords.

– The character range feature, that allows to specify a minimum and maximum for a given

character or character class.

• Creation of a Node Package Manager (npm) package that contains our extension of Apple’s DSL,

allowing other researchers and developers to use and integrate our extended DSL into their prod-

ucts.

This project is part of the PassCert [21] research project, a CMU-Portugal exploratory project that

aims to build an open-source, proof-of-concept password manager that through the use of formal verifi-

cation, is guaranteed to satisfy properties on data storage and password generation. Our main contri-

bution is on improving the usability of PassCert’s password manager.

Research Paper. Parts of the work presented in this thesis were used in the following research pa-

per [22]:

• Miguel Grilo, João Campos, João F. Ferreira, José Bacelar Almeida, and Alexandra Mendes.

Verified Password Generation from Password Composition Policies. Submitted for publication.
1Bitwarden is an Open-Source password manager, “used by millions of individuals and businesses” - https://bitwarden.

com/help/article/security-faqs/ - Point #4 of question ”Why should I trust Bitwarden with my passwords?”
2PassCert is a CMU Portugal Exploratory Project funded by Fundação para a Ciência e Tecnologia (FCT), with reference

CMU/TIC/0006/2019
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1.3 Document Structure

This work is structured in the following way: Chapter 2 collects and briefly describes relevant studies

about passwords, passwords managers and how this authentication method can be improved, not only in

terms of security but also usability; Chapter 3 describes our work regarding extending Apple’s Password

Autofill Rules; Chapter 4 details the incorporation of Apple’s DSL with Bitwarden’s browser extension;

Chapter 5 and Chapter 6 go through the evaluation process and the conclusion of our work, respectively.

6



2
Background Work

Contents

2.1 Password-Based Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Password Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Password Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7



8



In this chapter, we explore previous work done on password managers and how they respond to

password-based authentication security and usability problems. We also discuss studies involving users

and their behaviour regarding password usage. Given our goals, we focus on aspects related to pass-

word generation and password autofill.

2.1 Password-Based Authentication

Passwords are still the most common method of authentication in web applications. They are simple to

implement, have low maintenance and users are accustomed to them.

Even though the possible substitutes for this authentication mechanism appear promising and better

security-wise, passwords seem to come up ahead when considering deployability. In 2012, Bonneau et

al. [23] evaluated and compared passwords to other types of web authentication, like hardware tokens

or biometric authentication. This evaluation was based on Usability, Deployability, and Security benefits.

They concluded that all of the studied methods are far from perfect and that none of the alternatives was

able to surpass passwords, i.e., to be better on one or more benefits and be as good as passwords on

all the others. This means that despite most of the options do better on some criteria they are all worse

in some other. The authors also make the case that for high-value accounts, this trade-off might be

worth the cost. For instance, a company that deals with high risk and sensitive data may find that using

a hardware token — that is preferred to passwords regarding security benefits — is worth the extra

cost and may bring more benefits than traditional passwords. For websites, it seems that passwords

are enough since most of these sites view the accounts as lower value accounts and the ones that do

not, like banking accounts, force users to use some form of Multi-Factor Authentication. As the authors

state, “Thus, the current state of the world is a Pareto equilibrium. Replacing passwords with any of the

schemes examined is not a question of giving up an inferior technology for something unarguably better,

but of giving up one set of compromises and trade-offs in exchange for another” [23].

This equilibrium seems to be too strong to disrupt, whether because it would imply that service

providers adapt their services to alternative authentication methods, changing all their architecture and

infrastructures or simply because users probably would not take the change lightly, since they are too

accustomed to passwords and the cost per user is usually low — a user just needs to reuse a password

or modify it slightly. Consequently, it appears to be a fair statement that passwords are here to stay.

However, this method is not without its flaws. Password reuse is evidently a major predicament

regarding password security, which can be aggravated by Cross-Site Scripting (XSS) attacks. These

attacks leverage weaknesses in websites that allow attackers to inject malicious code and grant the

attacker the ability to steal sensitive data, like login credentials, a session token or cookies. This data

can later be leaked to the internet.
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We can imagine the possible perils that await a user that reuses a password on a vulnerable website.

Whenever an attacker gets access to the user’s credentials, a domino effect [24] takes place: all the

sites where the user has this revealed password are no longer protected — it is only a matter of time

to guess the user’s username. Ives et al. [24] are very clear: “Users who reuse passwords often fail to

realize their most well-defended account is no more secure than the most poorly defended account for

which they use that same password.”.

2.2 Password Reuse

The number of services and applications in the internet that require a user to authenticate has grown

at an incredible pace [25]. To cope with this increasing number of accounts, users tend to reuse pass-

words across multiple websites. This behaviour allows for greater flexibility and less effort memorizing

passwords, since users can cling to a set of passwords and constantly reutilize them across multiple

accounts, introducing little to no variations to these passwords. Like a key that opens multiple doors

facilitates the task of opening doors but is dangerous if lost, the same principle applies to reused pass-

words when a malicious user gets hold of these passwords — the attacker can now unlock multiple

accounts with the same password.

In 2007, Florêncio et al. [4] found that the average user has 6.9 passwords and each of which is

shared across 3.9 different sites; the big majority of these users choose passwords that contain only

lower case letters. These users maintained about 25 accounts each, and entered 8.11 passwords on a

daily basis.

Stobert and Biddle [8], in 2014, found that the participants in their study had between 2 and 20 unique

passwords, with the median being 5 unique passwords. From the total of 27 participants, 26 reported

reusing passwords between accounts, with 88% of these users claiming they reused more than one

password.

Das et al. [6], also in 2014, observed that a substantial portion of their user universe, 43%, directly

reuse passwords between sites and use small modifications to these passwords to make them distinct

across the different webpages. The authors demonstrated that many of these users also share the same

algorithm for introducing these modifications, which can certainly be a problem: if an attacker is aware

of these common algorithms, which are quite simple, it is fairly easy to take advantage of them and

therefore get a more efficient attack with improved guessing capabilities.

In 2016, Wash et al. [26] performed a study with 134 participants over the course of six weeks, and

found that people tend to reuse their passwords on 1.7-3.4 different websites and visit an average of

118 pages per day with an average of 3.2 passwords entered per day. The subjects of the study used

a median of 12 distinct passwords, which is not a big number, given how frequently subjects need to
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enter a password into a webpage. About 85% of the participants had fewer unique passwords than they

did websites that they entered passwords into. The authors found that a median user had 6 unique

passwords and inserted each of these passwords in a median of 3 websites. Each subject’s most used

reused password was used on an average of 9 different websites.

In 2017, Pearman et al. [7] conducted a study with 154 participants and found that most of them (122

users, 79.2%) adopted hybrid strategies incorporating both exact and partial reuse in order to manage

their passwords. They also found that passwords that contain digits and symbols are more likely to

be reused, possibly due to the greater probability of compliance with the various policies enforced by

different websites.

In a more recent study with 30 participants, including users who use no password-specific tools at

all, those who use password managers built into browsers or operating systems, and those who use

separately installed password managers, Pearman et al. [9] found that users of built-in password man-

agers may be driven more by convenience, while users of separately installed tools appear more driven

by security. This helps explain why past findings conclude that there are higher levels of password reuse

among users of built-in password managers. The authors also identify new obstacles for password man-

ager adoption, such as confusion about the source of password prompts or the meaning of ”remember

me” options.

Users are regularly regarded as lazy and unmotivated on security questions, especially regarding

passwords. Herley [27] argues that this is both unfair and untrue: users view security guidance from a

different perspective than security researchers — an economical one. Users consider adopting these

pieces of advice and usually end up discarding them. This occurs because there is no clear advantage

in doing otherwise: the benefits of adopting these measures do not outweigh the cost that comes as

a consequence — the time that a user will spend following and adapting to comply with the advice.

This antagonistic view occurs because users only care about the average or actual harm of an attack;

nevertheless, security researchers frequently present guidelines with a worst-case scenario in mind.

Herley formulates a rough draft about the cost of the user’s time, commonly assumed to have no cost

at all: $2.6 billion. With this number, we treat the “user as a professional who bills at $2.6 billion an

hour” [27], which allows for a better understanding of why users ignore security policies.

Other authors [26] also view password reuse as a possible good practice, from a cost/benefit per-

spective, claiming that if strong passwords — like the ones enforced by companies — are reused it might

be a benefit security-wise. However, this behaviour can also be dangerous if these stronger passwords

are reused in lower-security websites, making the password vulnerable and therefore, the company.
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2.3 Password Managers

Since passwords continue to be the most used security mechanism in terms of web-authentication,

and in order to mitigate these vulnerabilities that are intrinsic to them, password managers present

themselves as the missing piece of this intricate puzzle. They allow the generation of randomly strong

passwords, and they relieve users from the burden of remembering the credentials to the multitude

of web applications that an average user has accounts in. Notwithstanding, password managers also

have some vulnerabilities. While it is true that they can randomly generate strong passwords, there is a

big overhead for users to manually change passwords for all their accounts, which is seen as a big cost

from the user’s perspective. Ultimately, this translates to users not using this software or just storing their

original passwords in password managers — as is hypothesised by Pearman’s and Wash’s work [7,26]

—, which may provide a false sense of security to a less security-savvy user. This is a big usability

obstacle against wide-spread usage of password managers.

Security vulnerabilities also shadow password managers, ranging from occasionally generating eas-

ily guessable random passwords, to storing private information in clear-text and auto-filling information

into possible endangered websites [15]. Despite all these setbacks, password managers are still rec-

ommended by security researchers [6, 9] as the best companion to brave through the abundance of

applications that require password-based authentication.

During the last 16 years, there were multiple proposals to mitigate most of the risks associated with

password-based authentication.

In 2005, Dhamija and Tygar [28] suggest a new way for a remote web server to authenticate itself,

easier for humans to verify and hard for an attacker to emulate: Dynamic Security Skins. Aside from be-

ing based in the Secure Remote Password (SRP) protocol [29], meaning that the password is never sent

to the server, this interesting browser extension provides a secure and trusted window in the browser

that is dedicated to input sensitive data from the user, namely, the username and the password. To

prevent eventual spoofing of this window by an attacker, a photographic image is used. This scheme

also allows the server to generate unique abstract images for each user and each transaction, creating a

skin that automatically customizes the browser window or the user-data inputs on a given website. This

images permit the user to independently compute the image that he expects to receive from the server.

Web Wallet, created by Wu et al. [30], prevents phishing by displaying a sidebar and instantly blocking

any input from the user to a sensitive form, forcing the user to use the app to fill the form. It also does

some checks to verify if the site the user wants to access is a legitimate one or if it was somehow spoofed

or tampered with. This is done by asking the user to indicate, from a list of websites, what website he is

trying to access. If the site the user is trying to access is different than the one he wants to access, then

a warning is issued and Web Wallet provides a legitimate and safe link for the website.

oPass, developed by Sun et al. [31] emerges with the premise that it is impossible to thwart password
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reuse attacks from any scheme where the users have to remember something. Thus, oPass mitigates

this by relieving users from having to remember or type any passwords into conventional computers for

authentication, using a cellphone, which is needed to generate one-time passwords, as a method to

achieve this user authentication, transmitting the information over a different communication channel,

Short Message Service (SMS). This is identical to Token Based Authentication, where the token is the

SMS received and is used nowadays as an extra layer of protection for most applications.

LoginInspector [32] leverages the security advantages of password hashing techniques but it does

not inherit their usability disadvantages, e.g., requiring users to migrate their original passwords to

hashed passwords. When a user types its login credentials, LoginInspector intercepts this information.

Then, it will inspect whether there is a corresponding successful login record for this website account

in the database. If there is a corresponding login record, LoginInspector will submit the intercepted

information to the server. If no record is found or the login credentials inserted do not match the record

found, the user will see a warning mentioning that there is no record saved or that the record saved does

not match the intercepted information, respectively. It is now up to the user whether or not to submit the

intercepted login data to the server or cancel the submission.

Each successful login record is uniquely identified by a recordHmac value. Each record also has a

domainHmac that identifies the domain for which the record is valid. These two values are calculated

using formulas 2.1 and 2.2, respectively:

recordHmac = HMAC(key, d||u||p) (2.1)

domainHmac = HMAC(key, d) (2.2)

where key is a secret key either randomly generated by the extension or directly specified by a user

when LoginInspector is installed; HMAC is the Hash-Based Message Authentication Code (HMAC)

mechanism together with the SHA-256 cryptographic hash function; d, u, and p represent the domain

name, username and password, respectively; ”||” is the string concatenation operator. The secret key is

securely stored in the password manager of a browser.

This extension also allows reports to be sent to administrators, to assess overall security across an

enterprise or a university campus.

McCarney et al. [1] evaluate the security of dual-possession authentication, that offers encrypted

storage of passwords and theft-resistance without the use of a master password and furthermore, pro-

pose Tapas, a browser extension which takes advantage of this authentication method to provide a

password manager that does not require server side changes, nor a master password whilst protecting

all the stored data in the eventuality that the primary or secondary device is compromised. This dual-

possession authentication involves two applications, a Manager and a Wallet, on different devices. The
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Manager will initially generate a QR Code to establish a unidirectional authenticated and secret out-of-

band (AS-OOB) with the Wallet. There are three main protocols: Pair (Figure 2.1), Store (Figure 2.2),

and Retrieve (Figure 2.3).

Protocol 1: Pairing Manager and Wallet

User action: Upon a user choosing to set-up a new Wallet, the following protocol is initiated by the Manager.

Communication channel: A one-way authenticated and secret out-of-band (AS-OOB) channel from the Manager to
the Wallet.

1. The Manager generates an authentication key pair for itself hpkm, skmi and sends its public key pkm to the Wallet.
2. The Manager generates an authentication key pair for the Wallet hpkw, skwi and sends the pair to the Wallet.
3. The Manager generates a secret key k for a symmetric key authenticated encryption scheme Enck().

Output: The Manager stores hpkm, pkw, skm, ki and erases skw. The Wallet stores hpkm, pkw, skwi.

Protocol 2: Storing a Password

User action: Upon a user choosing to save a password pi, the following protocol is initiated by the Manager.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Manager takes user password pi (entered by user) and site information si and computes ci = Enck(piksi).
2. The Manager sends hci, sii to the Wallet.
3. The Wallet prompts the user to create a tag ti for referencing the site, using si to suggest a value for the tag.

Output: The Manager erases hpi, si, cii. The Wallet stores hti, cii and erases si.

Protocol 3: Retrieving a Password

User action: Upon a user choosing a password for retrieval, the following protocol is initiated by the Wallet.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Wallet retrieves the ci value associated with the tapped ti, and sends ci to the Manager.
2. The Manager decrypts and authenticates ci to retrieve si and pi.
3. The Manager checks that si matches the site information for the current site that the browser is visiting.
4. The Manager transfers the user password pi to the site.

Output: The Manager erases hpi, si, cii.

pre-register with the service to obtain an API authentica-
tion token allowing access to the service. In order to avoid
embedding a C2DM API token into the Manager extension
we defer C2DM pushes to the Rendezvous Server, allowing
the Manager to send a push message to a device through it.
Tapas relies on C2DM strictly as a means of launching the
Wallet application automatically without requiring a long-
running listener service on the smartphone.

4.1 Setup
To set up Tapas, the user installs the Firefox extension

and the Android app using the standard software installation
procedure for each respective platform. Once installed, the
devices are paired using Protocol 1. The Manager computes
the authentication key pairs and generates a self-signed TLS
certificate for both public keys. It embeds networking in-
formation (IP address and port number), a fingerprint of
its own certificate, and the Wallet’s certificate and corre-

Tapas
App

Manager WalletPairing Code

✓

Figure 1: Setting up an out-of-band communication
channel initiated (depicted by the checkmark) by
the Manager, for pairing the devices.

sponding secret key into a QR code. The generated code is
displayed on the computer screen, forming a unidirectional
AS-OOB channel (Figure 1).

Figure 2.1: Protocol 1 - Pairing Manager and Wallet. From McCarney et al.’s [1] work.

Protocol 1: Pairing Manager and Wallet

User action: Upon a user choosing to set-up a new Wallet, the following protocol is initiated by the Manager.

Communication channel: A one-way authenticated and secret out-of-band (AS-OOB) channel from the Manager to
the Wallet.

1. The Manager generates an authentication key pair for itself hpkm, skmi and sends its public key pkm to the Wallet.
2. The Manager generates an authentication key pair for the Wallet hpkw, skwi and sends the pair to the Wallet.
3. The Manager generates a secret key k for a symmetric key authenticated encryption scheme Enck().

Output: The Manager stores hpkm, pkw, skm, ki and erases skw. The Wallet stores hpkm, pkw, skwi.

Protocol 2: Storing a Password

User action: Upon a user choosing to save a password pi, the following protocol is initiated by the Manager.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Manager takes user password pi (entered by user) and site information si and computes ci = Enck(piksi).
2. The Manager sends hci, sii to the Wallet.
3. The Wallet prompts the user to create a tag ti for referencing the site, using si to suggest a value for the tag.

Output: The Manager erases hpi, si, cii. The Wallet stores hti, cii and erases si.

Protocol 3: Retrieving a Password

User action: Upon a user choosing a password for retrieval, the following protocol is initiated by the Wallet.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Wallet retrieves the ci value associated with the tapped ti, and sends ci to the Manager.
2. The Manager decrypts and authenticates ci to retrieve si and pi.
3. The Manager checks that si matches the site information for the current site that the browser is visiting.
4. The Manager transfers the user password pi to the site.

Output: The Manager erases hpi, si, cii.

pre-register with the service to obtain an API authentica-
tion token allowing access to the service. In order to avoid
embedding a C2DM API token into the Manager extension
we defer C2DM pushes to the Rendezvous Server, allowing
the Manager to send a push message to a device through it.
Tapas relies on C2DM strictly as a means of launching the
Wallet application automatically without requiring a long-
running listener service on the smartphone.

4.1 Setup
To set up Tapas, the user installs the Firefox extension

and the Android app using the standard software installation
procedure for each respective platform. Once installed, the
devices are paired using Protocol 1. The Manager computes
the authentication key pairs and generates a self-signed TLS
certificate for both public keys. It embeds networking in-
formation (IP address and port number), a fingerprint of
its own certificate, and the Wallet’s certificate and corre-
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Figure 1: Setting up an out-of-band communication
channel initiated (depicted by the checkmark) by
the Manager, for pairing the devices.

sponding secret key into a QR code. The generated code is
displayed on the computer screen, forming a unidirectional
AS-OOB channel (Figure 1).

Figure 2.2: Protocol 2 - Storing a Password. From McCarney et al.’s [1] work.

Protocol 1: Pairing Manager and Wallet

User action: Upon a user choosing to set-up a new Wallet, the following protocol is initiated by the Manager.

Communication channel: A one-way authenticated and secret out-of-band (AS-OOB) channel from the Manager to
the Wallet.

1. The Manager generates an authentication key pair for itself hpkm, skmi and sends its public key pkm to the Wallet.
2. The Manager generates an authentication key pair for the Wallet hpkw, skwi and sends the pair to the Wallet.
3. The Manager generates a secret key k for a symmetric key authenticated encryption scheme Enck().

Output: The Manager stores hpkm, pkw, skm, ki and erases skw. The Wallet stores hpkm, pkw, skwi.

Protocol 2: Storing a Password

User action: Upon a user choosing to save a password pi, the following protocol is initiated by the Manager.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Manager takes user password pi (entered by user) and site information si and computes ci = Enck(piksi).
2. The Manager sends hci, sii to the Wallet.
3. The Wallet prompts the user to create a tag ti for referencing the site, using si to suggest a value for the tag.

Output: The Manager erases hpi, si, cii. The Wallet stores hti, cii and erases si.

Protocol 3: Retrieving a Password

User action: Upon a user choosing a password for retrieval, the following protocol is initiated by the Wallet.

Communication channel: A mutually-authenticated secure channel with perfect forward secrecy between the Manager
and the Wallet. The participants, respectively, identify themselves with pkm and pkw.

1. The Wallet retrieves the ci value associated with the tapped ti, and sends ci to the Manager.
2. The Manager decrypts and authenticates ci to retrieve si and pi.
3. The Manager checks that si matches the site information for the current site that the browser is visiting.
4. The Manager transfers the user password pi to the site.

Output: The Manager erases hpi, si, cii.

pre-register with the service to obtain an API authentica-
tion token allowing access to the service. In order to avoid
embedding a C2DM API token into the Manager extension
we defer C2DM pushes to the Rendezvous Server, allowing
the Manager to send a push message to a device through it.
Tapas relies on C2DM strictly as a means of launching the
Wallet application automatically without requiring a long-
running listener service on the smartphone.

4.1 Setup
To set up Tapas, the user installs the Firefox extension

and the Android app using the standard software installation
procedure for each respective platform. Once installed, the
devices are paired using Protocol 1. The Manager computes
the authentication key pairs and generates a self-signed TLS
certificate for both public keys. It embeds networking in-
formation (IP address and port number), a fingerprint of
its own certificate, and the Wallet’s certificate and corre-
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Figure 1: Setting up an out-of-band communication
channel initiated (depicted by the checkmark) by
the Manager, for pairing the devices.

sponding secret key into a QR code. The generated code is
displayed on the computer screen, forming a unidirectional
AS-OOB channel (Figure 1).

Figure 2.3: Protocol 3 - Retrieving a Password. From McCarney et al.’s [1] work.

These protocols are built in a way that if data from either the Manager or the Wallet is stolen, the

attacker cannot determine the stored password for any given account with any greater success than

attacking the account directly. This is achieved by encrypting each password with a key held by the

Manager and storing the resulting ciphertext on the Wallet. Thus, by stealing the Manager, the adversary

obtains the decryption key but not the ciphertext to decrypt, and by stealing the Wallet, the adversary

only has a set of ciphertexts resistant to offline attacks.
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Mayer et al. [33] present an interesting feature that some password managers already employ 1:

automatic password change. This extension allows the users to record the actions taken to change their

passwords on a given website, store them as a blueprint and then share it with other users. For this,

a user would first need to go to a website, use the extension’s option to record a blueprint, and then

add the form fields necessary to change the password. This blueprint would also ask the user for the

password policy of the website if the website was not using a standardized way of expressing it like the

ones suggested by [2, 14]. There is a possibility for multiple trust authorities, but the simplest would be

the developer of the password manager. The authors propose that the trust authorities should digitally

sign all crowdsourced information to ensure its authenticity.

Recently, Oesch and Ruoti [15] revisited previous work done on password managers’ security and

usability. All the work related to security issues of autofill and data storage [34–37] is more than five

years old. Even though some of the vulnerabilities exposed have been fixed, some still remain to this day,

such as autofill in a website with an invalid Hypertext Transfer Protocol Secure (HTTPS) certificate or a

significant amount of unencrypted metadata being stored, like a page Uniform Resource Locator (URL),

a user’s username or information about the creation and last access of a given account.

Oesch and Ruoti study eleven browser-based password managers and two desktop password man-

agers, and, according to them, their work is the first to consider all three stages of a password manager

lifecycle — password generation, password storage, and password autofill. The next subsections con-

cern each one of these stages, the vulnerabilities that the authors found, and the past work developed

on the subject.

2.3.1 Password Generation

Password generation is the first stage of a password manager lifecycle, and it concerns the generation

of strong, random and unique passwords, such that these generated passwords are very difficult to be

cracked by guessing attacks and are nearly impossible for a regular user to memorize them.

Oesch and Ruoti’s [15] work discovered that not all studied password managers include the same

character set, which can be misleading for a user when generating an allegedly unique and random

password. It also concludes that passwords containing 12 or more characters generated by the analyzed

password managers are, generally, resilient against online and offline guessing attacks. Still, there were

some discrepancies in the strength of generated passwords, specially with length 8, which significantly

impacted the percentage of passwords that were secure against offline guessing attacks — almost every

password was secure against online guessing attacks. These differences in strength can be justified

by the different sets of characters used to generate a password. There is also a problem related to

the randomness of these generated passwords: they can be randomly weak passwords, even when

1https://www.dashlane.com/features/password-changer
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containing letters, digits, and symbols, e.g., d@rKn3s5 or Tz5a5a5a.

Ross et al. [38] suggest PwdHash, a browser extension that creates a different password for each

site, which defends against password phishing and improves general security. These passwords are

generated using cryptographic hash functions, in combination with the actual plaintext password, some

basic information of the website, and an optional private salt stored in the client machine. It is fairly

simple to understand that, if an attacker gets access to the password of a given site, he just got the

hashed value of the password, and not the password itself, leaving other user login information that

shares the same password protected.

Halderman et al. developed Password Multiplier [39], which relies only on a strengthened cryp-

tographic hash function that computes secure passwords for an arbitrary number of accounts. This

browser extension runs only in the client-side, and requires no server-side adaptation. The authors

claim that previous work [38] is primarily intended to defend against phishing and spoofing attacks,

whilst their solution includes protection against offline brute force attacks, by using the key stretching

technique presented by Kelsey et al. [40]. Password Multiplier avoids password reuse entirely while

requiring the user to memorize only a single master password, offering greater convenience, since the

account passwords are generated deterministically, allowing the users to run the software on different

machines to access their information data.

Also related to password hashing, Yee and Sitaker [41] present a browser extension, Passpet, with

the premise that a user should only have to memorize one secret, instead of many, and still have a unique

password at each site, in order to reduce user’s vulnerability. Passpet allows users to create labels for

each website, making it easier for the user to recognize the website. The extensions associates the site

label entered by the user with a site identifier consisting of (root key, field name, field value). For Secure

Sockets Layer (SSL) sites, root key is the fingerprint of the root certificate authority’s public key. If the

site’s SSL certificate has an Organization Name field, then field name is ”O” and field value contains the

Organization Name. Otherwise, field name is ”CN” and field value contains the certificate’s Common

Name instead. If the user assigns the label ”my bank” to a bank’s SSL site, another site can only cause

the site label ”my bank” to appear if it can obtain a certificate with a certificate chain ultimately signed

by the same root authority and which yields the same identifier. Thus, Passpet guarantees that the user

is on the desired website, rather than a fake website. This works like a nickname, or a petname, hence

the extension’s name.

2.3.2 Password Storage

The second stage of the lifecycle is password storage. It concerns the safe storage of the generated

passwords and all the user details that help a password manager identify the website in question.

With their analysis, Oesch and Ruoti [15] discovered that the vulnerabilities exposed by Gasti and
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Rasmussen [34], which allowed an attacker to either gain read access or read and write access to

the password manager’s database, were mostly mitigated, resulting in better storage of the password

manager’s metadata. Even so, there are still some password managers that store relevant metadata

in plaintext, either by default or as a last resource. This metadata can be the manager’s settings or

information that allows to identify a user like website URL, website icons or the username of the user in

a particular website.

A study conducted in 20192 also found that most of the password managers were not encrypting

passwords written in memory, making it relatively easy for an attacker to extract passwords from the

password vault even when not in use.

2.3.3 Password Autofill

Autofill is the third and last step of the lifecycle. Autofill is the ability that a password manager has

to fill login forms automatically. It is a useful tool for users since they can skip the trouble of having

to type passwords or skim through their list of credentials stored in the manager, but it is not without

security concerns. For most applications, autofill is still done automatically, not requiring user interaction.

However, as pointed out by some authors, this is dangerous [36,37].

With their work, Oesch and Ruoti [15] found that, of the studied browser-based password managers,

only Safari’s would require user interaction always. Firefox’s manager defaults to autofill without any user

interaction, even if there is an available option to revert this. Chrome always autofills user credentials

and does not have an option to change this setting. However, Chrome does not autofill for sites with a

bad HTTPS certificate, whilst Firefox maintains its regular behaviour of autofilling, endangering the user.

Regarding iframes, autofill is very dangerous, whether user interaction is required or not [36, 37]. A

user is vulnerable, mainly, to two attacks: clickjacking — which consists in tricking users into providing

the necessary user interaction to autofill their passwords for vulnerable websites loaded in an iframe

(same-origin or cross-origin) — and harvesting attack — where the attacker can programatically har-

vest the user’s credentials for all vulnerable websites where the user has an account, by loading these

compromised websites into iframes (cross-origin only). For these attacks to work, the user must first

visit a malicious website, that launches the attacks [15]. The authors found that Chrome would require

user interaction before autofilling passwords into a cross-origin iframe but not into a same-origin iframe

— making them vulnerable to clickjacking attacks on both scenarios. Firefox defaults to its regular be-

haviour: not requiring user interaction to autofill passwords, leaving users vulnerable to the harvesting

attack.

To verify that the form that will be filled is not compromised, password managers employ some checks

regarding the security and integrity of that same form. Oesch and Ruoti [15] expose that if the password

2https://www.ise.io/casestudies/password-manager-hacking/ - Last access: 30 October 2021
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was saved on a form served over HTTPS, Chrome will refuse to fill the credentials in a form served with

a bad HTTPS certificate or served over Hypertext Transfer Protocol (HTTP). Firefox will also refuse to

fill it if the form is served over HTTP, but ignores the bad certificate scenario. Upon the page first load,

if there is a contradiction in the form’s action property — the URL to which the form will be submitted to

— Firefox will display a warning and will refuse to autofill the form. However if this URL is changed after

the first load, i.e., dynamically, Firefox will display a warning to the user, but will still autofill the form.

Gonzalez et al. [42] developed Lupin, an extension that can steal all the credentials that a user has

stored in a browser-based password manager. It does so by taking advantage of the autofill policy

of the password manager: if no user interaction is required, then most likely the attack will succeed,

since this attack’s success depends on the ability to deceive the password manager to autofill the user’s

credentials into a web page that has been tampered by an attacker.

Stock and Johns [37] present a solid approach to mitigate most XSS attacks to browser-based pass-

word managers. They make a case that most password managers automatically fill out the forms with

the passwords in clear-text, making these passwords accessible to client-side code. The authors come

up with a solution: fill the password fields with a placeholder value which will be converted to the real

passwords only when the request is sent to the server. The authors claim that their implementation

“effectively hinders an attacker who utilizes XSS attacks against victims.”. However, man-in-the-middle

attacks can still be successful if the password data is transmitted in clear-text to the server. The exten-

sion developed has strict integrity checks related to the password’s form context and only exchanges the

placeholder for the real password if the origins and names of both URL and saved password match.

Both Stajano et al.’s [2] and Horch et al.’s [14] work proposes similar solutions to the problem of

password managers not being able to know the password composition rules that a given website has in

place. We take a closer look in subsection 2.3.3.A.

2.3.3.A Password Rules Annotations

Stajano et al. [2] propose adding HTML semantic labels, or annotations, to facilitate and normalize the

work done by password managers. These labels allow for a standardized way for password managers to

extract the semantics from the HTML form, to better understand the type of form that is being addressed

— a login form, a password change form or a regular form, which, in this case, would not have such

labels. This minimizes the percentage of false positives — the password manager offers to save a wrong

password, either from a wrong form or a wrong field in the form — and false negatives — the password

manager does not offer to save the correct password, inserted in the correct password field — that users

may face with password managers. So, in a register form, the password manager could offer to save

the password but not the username, leaving this entry incomplete and putting the effort on the user to

remember the username.
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1 <form action="/change" method="POST" class="pmf-change-password">

2 <input type="hidden" class="pmf-username" value="jimbojones"/>

3 <p>

4 Current password:

5 <input type="password" name="current" class="pmf-password"/>

6 </p>

7 <p>

8 New password:

9 <input type="password" name="new" class="pmf-new-password"/>

10 </p>

11 <p>

12 Confirm new password:

13 <input type="password" name="confirm" class="pmf-new-password"/>

14 </p>

15 <p>

16 <input type="submit" value="Change password"/>

17 </p>

18 </form>

Figure 2.4: An example of the HTML annotations that allow a password manager to infer the different types of forms.
Example based on the work of Stajano et al. [2] and extracted from the project’s git repository [3].

Figure 2.4 demonstrates an example of a form to change an account’s password using these anno-

tations.

The authors also suggest that most password policies are too restrictive, which can be a sign of

passwords not being hashed [43], and argue that passwords, if salted and hashed, the hash to be

stored will have fixed length, no matter the length of the password itself. Thus, they advocate the use of

a simple heuristic:

1 # we are sure it is not a human-generated pw

2 if (pw length >= t):

3 accept password();

Even though this seems like a good policy, there is a trade-off: it is troublesome to retype such a

big password, but the password should not be so short that transcription becomes the preferred modus

operandi. The authors suggest t=50 base-64 characters, ensuring that the machine-generated pass-

words will be strong, random and too long to be memorized or transcribed. If a user decides that a

certain password needs to be shorter than that, he can change the length, being subjected to the web-

site’s password policies.

Horch et al. [14] put forward a Password Policy Markup Language, that allows websites to describe

their policies regarding passwords. This permits the password manager to better help the user and

automate the whole password lifecycle: create, login, change, and reset passwords. For this, it is only
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necessary that the web developers expose a service detailing password policies and a URL for the

respective actions.

2.3.3.B Google’s Password Requirements API

Google has also implemented a solution regarding this problem [17]. They implemented an API which

could be called by a password manager when generating a password for a given web domain. This

way, the generator can learn the password requirements of that particular website — if the API has any

information regarding it. The data is returned as Procotol Buffers (protobuf) 3. As of February of 2021,

this API includes password requirements for 237 websites4.

2.3.3.C Apple’s Password Autofill Rules

Apple created the Password Autofill Rules [16]. These rules are described using an HTML annotation

— passwordrules — that lets the web admin define the rules for creating a valid password. These rules

can later be parsed by any password manager to generate compliant password.

We found that Apple’s approach is more straightforward: it is easier to use, from the webadmin’s

perspective, the code is open-source, and there is more support for developers. Plus, it is closely

related to previous research suggestions. Thus, we will base our solution on these annotations. We

explain further details in Chapter 3.

3Protobuf - https://github.com/protocolbuffers/protobuf/releases/tag/v3.19.0
4https://github.com/apple/password-manager-resources/issues/427
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In this chapter we present our work to extend Apple’s DSL to make it capable of expressing password

policies suggested by researchers.

Initially we had planned to create a new DSL to accommodate suggestions made by Stajano et al.’s

work [2] and reinforced by Oesch and Ruoti’s research [15]. However, during the development phase of

this project, we found that Apple had already made efforts in this direction [16], and that their browser,

Safari, and most of the applications in macOS and iOS take advantage of this. Thus, in order to maximize

the possible impact of our work, we decided that we could start our work building off of these Password

Autofill Rules.

3.1 Apple’s Password Autofill Rules

Apple’s Password Autofill Rules [16] are a DSL that can be used to express password composition

policies. The goal is to provide a standardized way for applications to generate strong passwords that

comply with a specified policy.

Apple’s DSL is based on five properties — required, allowed, max-consecutive, minlength, and

maxlength — and some identifiers that describe character classes — upper, lower, digit, special, ascii-

printable, and unicode. These are the elements that allow the description of the password rules. It is

also possible to specify a custom set of characters by surrounding it with square brackets (e.g., [abcd]

denotes the lowercase letters from a to d). For example, to require a password with at least eight char-

acters consisting of a mix of uppercase letters, lowercase letters, and numbers, the following rules can

be used:

required: upper; required: lower; required: digit; minlength: 8;

A more formal description of the grammar is shown in Figure 3.1.

3.1.1 Properties description

The required property is used when the restrictions must be followed by all generated passwords. The

allowed property is used to specify a subset of allowed characters, i.e., it is used when a password is

permitted to have a given character class, but it is not mandatory.

If allowed is not included in the rule, all the required characters are permitted. If both properties

are specified, the subspace of all required and allowed is permitted. For example, to have a password

that contains at least one lowercase letter, minimum size of 8 and can have uppercase and digits, these

rules can be used:

minlength: 8; required: lower; allowed: upper, digit;
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1 <rule> ::= (<required> | <allowed> | <length reqs> | <max consecutive>)*
2 <required> ::= "required: " <list ids classes> "; "
3 <allowed> ::= "allowed: " <list ids classes> "; "
4 <length reqs> ::= "minlength: " <non negative integer> "; "
5 | "maxlength: " <non negative integer> "; "
6 <max consecutive> ::= "max-consecutive: " <non negative integer> "; "
7 <id class> ::= (<identifier> | <character class>)
8 <list ids classes> ::= <id class> | <id class> ", " <list ids classes>
9 <identifier> ::= "lower" | "upper" | "digit" | "special"

10 | "ascii-printable" | "unicode"
11 <character class> ::= "[" (<upper> | <lower> | <special> | <digit>)+ "]"
12 <digit> ::= <non negative integer>
13 <non negative integer> ::= [0-9]+
14 <lower> ::= [a-z]
15 <upper> ::= [A-Z]
16 <special> ::= "-" | "~" | "!" | "@" | "#" | "$" | "%"
17 | "ˆ" | "&" | "*" | " " | "+" | "=" | "`" | " |" | "("
18 | ")" | "{" | "}" | "[" | ":" | ";" | """ | "'" | "<"
19 | ">" | "," | "." | "?" | " " | "]"

Figure 3.1: Grammar used by Apple’s Password Autofill Rules. The * means repeated application of 0 or more
rules. The + means repeated application of 1 or more rules.

This rule will allow passwords like abcdefghi, aBCDEFGHI, a1234567 or aBC12345. If neither required

nor allowed is specified, every ASCII character is permitted.

The max-consecutive property represents the maximum length of a run of consecutive identical

characters that can be present in the generated password, e.g., the sequence aah would be possible

with max-consecutive: 2, but aaah would not. If multiple max-consecutive properties are specified,

the value considered will be the minimum of them all.

The minlength and maxlength properties denote the minimum and maximum number of characters,

respectively, that a password can have to be accepted. Both numbers need to be greater than 0 and

minlength has to be at most maxlength; otherwise, the default length of the password manager will be

used.

3.1.2 Identifiers

Next to the allowed or required properties, we can use any of the default identifiers, which describe

conventional character classes. The identifier upper describes the character class that includes all

uppercase letters, i.e., [A-Z] ; the identifier lower describes the character class that includes all lowercase

letters, i.e., [a-z] ; the digit identifier describes the character class that includes all digits, i.e., [0-9] ; and

the special identifier describes the character class that includes -˜!@#$%ˆ&* +=‘|(){}[:;”’<>,.?] and .

The identifiers ascii-printable and unicode describe the character classes that include all ASCII

printable characters and all the unicode characters, respectively.
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Additionally, users of the DSL can choose to describe their custom character classes by surrounding

the characters with squared brackets — [] — e.g., to require a password to have at least one lowercase

vowel, minimum length of 8, and to allow digits and uppercase letters, the following rule can be used:

minlength: 8; required: [aeiou]; allowed: upper, digit;

The rule required: [aeiou]; requires that at least one of the characters in this custom set must be

present in the password.

The default password rule when no rule is defined is allowed: ascii-printable;.

3.1.3 Weaknesses

Apple’s DSL is an effort from password manager’s developers to augment usability and reduce users’

frustration when a generated password fails to comply with a website’s password policy [12]. With it, it

is possible to achieve a great set of password policies with all these rules. Apple has even provided a

website that allows a web admin to test password policies and view passwords that comply with such

policies [44]. However, it appears there are some incoherences, either with the official documentation or

with the password generator itself.

For example, in the official documentation [16], one can read “To require at least one digit or one

special character, but not both, add this to your markup”:

required: upper; required: lower; required: digit, [-().&\@?’#,";+];

max-consecutive: 2; minlength: 8;

From our understanding, these rules would accept passwords like ABcd56eF or like ABcd-#eF, but

not like ABcd56-#. That is to say that these rules restrict the required characters: the password must

have upper, lower, and either digit or [-().&\@?’#,";+], but not both. Still, this is not the case in the

official generator [44], which generates passwords like &z,#Iu5( and id3LYk+H for the same rules: they

both have digits and special characters.

Another shortcoming of this DSL is the fact that some password policies studied and suggested

by recent research literature on password composition policies are not possible to describe (e.g. the

policies used by Tan et al.’s and Shay et al.’s work [18, 19], which are displayed in Table A.2 and Table

A.1, respectively.). In particular, it is not possible to express the blocklist constraints or the restraints

on the minimum number of classes that a password should have. It is also impossible to restrict the

frequency of a character — the required rule only guarantees that the character will appear once. Such

was the motivation that led us to extend Apple’s DSL, as described in the following section.
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3.2 Extending Apple’s DSL

In order to improve Apple’s DSL to be compatible with password policies suggested in academic re-

search [18,19,45], we added three new functionalities:

1. The blocklist rule;

2. The minclasses rule;

3. The possibility to add a range for any given character class.

The new grammar can be seen in Figure 3.2 and a comparison can be seen in Table A.3. Notice the

new rules <blocklist> and <minclasses> and the addition of the ranged rule in both <identifier>

and <character_class>.

1 <rule> ::= (<required> | <allowed> | <length reqs> | <max consecutive>
2 | <blocklist> | <minclasses> )*
3 <required> ::= "required: " <list ids classes> "; "
4 <allowed> ::= "allowed: " <list ids classes> "; "
5 <length reqs> ::= "minlength: " <non negative integer> "; "
6 | "maxlength: " <non negative integer> "; "
7 <max consecutive> ::= "max-consecutive: " <non negative integer> "; "
8 <blocklist> ::= "blocklist: " <blocklist values> "; "
9 <minclasses> ::= "minclasses: " <non negative integer> "; "

10 <id class> ::= (<identifier> | <character class>)
11 <list ids classes> ::= <id class> | <id class> ", " <list ids classes>
12 <identifier> ::= ( <ident range> | <ident no range>)
13 <ident range> ::= ("lower" | "upper" | "digit" | "special"
14 | "ascii-printable" | "unicode")
15 "(" <non negative integer> ", "
16 <non negative integer> ")"
17 <ident no range> ::= "lower" | "upper" | "digit" | "special"
18 | "ascii-printable" | "unicode"
19 <character class> ::= ( <cc range> | <cc no range>)
20 <cc range> ::= "[" (<upper> | <lower> | <special> | <digit>)+ "]"
21 "(" <non negative integer> ", "
22 <non negative integer> ")"
23 <cc no range> ::= "[" (<upper> | <lower> | <special> | <digit>)+ "]"
24 <blocklist values> ::= "hibp" | "default"
25 <digit> ::= <non negative integer>
26 <non negative integer> ::= [0-9]+
27 <lower> ::= [a-z]
28 <upper> ::= [A-Z]
29 <special> ::= "-" | "~" | "!" | "@" | "#" | "$" | "%"
30 | "ˆ" | "&" | "*" | " " | "+" | "=" | "`" | " |" | "("
31 | ")" | "{" | "}" | "[" | ":" | ";" | "\"" | "'" | "<"
32 | ">" | "," | "." | "?" | " " | "]"

Figure 3.2: Grammar of extended Apple’s DSL. The rules blocklist and minclasses were added, as well as the
possibility to add character ranges (see highlighted items).
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Blocklist Rule The blocklist rule was added to inform the password manager that the website per-

forms a hash verification of the password against a blocklist, i.e., a list containing the most commonly

used passwords. This is reinforced by Tan et al’s work “(...) minimumlength or blocklist requirements,

can strengthen passwords with less negative impact on usability (...)” [19].

Thus, to generate a compliant password, the password manager needs to perform a check against

a blocklist. Usually, these lists are built by compiling data breaches that end up being public. A great

resource that collects and compiles these data breaches is ’Have I Been Pwned (HIBP)’1, where anyone

can check if a given password matches any of all the 613 584 246 exposed passwords2 present in the

HIBP list. HIBP offers an API that lets developers perform these kinds of verifications.

This rule takes one of two values:

• blocklist: hibp;

• blocklist: default;

The value hibp indicates that the website will be checking the password with HIBP and the password

manager should also check the generated password with this tool by using the available API. All pass-

words within HIBP’s collection are hashed using Secure Hash Algorithm 1 (SHA-1). Thus, to utilize this

tool, the password must be hashed, using SHA-1, and then only the first 5 characters of the resulting

hash are passed to the API, since the service implements a k-Anonimity model, which enables a pass-

word to be searched for by a partial hash, never revealing the complete hash of the password. When a

password hash that has the same first 5 characters is found, the API will respond with the suffix of all

the passwords that start with the specified prefix, as well as the number of times each appears in the

data set. The check will be complete when the developer verifies all the found suffixes, returned by the

API, and searches to find the suffix of the generated password: if it is not present, the password has not

been found in any data breaches (yet!).

As an example, suppose we want to search the HIBP data set for the password hello world. For

this, we would calculate the SHA-1 of the password, and get the hash:

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

The first 5 digits are 2aae6, which are the ones we send to the API, and we will get the results shown

on Figure 3.3. The last record matches the SHA-1 hash suffix of our test password, which has been

found 136 times in over 500 million passwords, i.e., in all the leaks that this library includes, the password

hello world was found 136 times.

The HIBP tool also offers the possibility of padding the answer with a random number — between

800 and 1000 — of entries, which means that every request will have answers with different sizes,

1https://haveibeenpwned.com/Passwords
2At the time of writting.
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1 GET https://api.pwnedpasswords.com/range/2aae6
2

3 0095F96A5C2C3F33C7ED4B9E33000629B0B:2
4 00E20AB3F9624537DAE8B62E292A70D2799:18
5 0196171953B6E5C30E0EBF35C0062F62A8D:2
6 ...
7 C35C94FCFB415DBE95F408B9CE91EE846ED:136

Figure 3.3: HIBP’s API call for the test password hello world. The last result is the correspondent suffix of the
SHA-1 hash.

even if the query is the same. This is relevant to protect the user from an attacker that may be sniffing

the network3. With this padding, there is a remote possibility that one of the random hashes used for

padding the answer will match with the actual hash of the password.

The value default indicates that the website will have a local list of passwords to be avoided and

the password manager should also check the generated password against a reasonable list of popular

passwords. Whilst the list of the website may follow a logic that is unknown to any password manager,

it is common sense that such a list should contain some very popular password choices, like 123456

and password. There is also the possibility to configure the list at will, allowing developers using our

extension to create and use their own list.

Minclasses Rule The minclasses rule was added to bring more flexibility to the generator. With Ap-

ple’s DSL it is not possible to specify a policy like “Password must contain only characters from 3 different

character classes”. Because in this case there are 4 character classes — uppercase, lowercase, digit

and special —, there are C3(4) = 4 possibilities4 of combinations. On the other hand, if we had the policy

“Password must contain only characters from 2 different character classes”, we would have C2(4) = 6

possibilities. We could write a rule like:

required: upper; required: lower;

However, this rule would always force the password to contain both uppercase and lowercase letters.

Consequently, the creation of passwords would not consider digits and special characters — a total of

41 characters combined —, limiting the randomness of the password; therefore, its strength. There is

also an inability to express academically recommended policies in Apple’s DSL — for example, it is not

possible to express the policy 3c8, which requires a minimum of 8 characters and at least 3 character

classes, nor 2c8, which requires a minimum of 8 characters and at least 2 character classes [18,19,45].

This was the motivation to create this new rule.
3https://github.com/lakiw/pwnedpasswords_padding
4Ck(n) =

(n
k

)
= n!

k!(n−k)!
- A combination of a k-th class of n elements is an unordered k-element group formed from a set of

n elements. The elements are not repeated, and it does not matter the order of the group’s elements.
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In spite of Tan et al.’s experimental results, “Our experimental results provide the first concrete ev-

idence that character-class requirements should be avoided not only because users tend to find them

annoying, but also because they don’t provide substantial benefit against attackers using state-of-the-art

password-cracking tools: an expert attacker can guess 1c8, 3c8, and 4c8 passwords with equal success

rates.” [19], we still think it is beneficial to include this feature in the language, because this DSL should

be as flexible as possible, adjusted to the users’ needs. If there are a lot of websites and services using

this type of policy (and there are!), then the password manager should be able to provide compliant

passwords, every time.

The range of values for minclasses is equivalent to the minimum and maximum number of classes:

1 and 4, respectively. So, to represent two policies suggested in the literature, 3c8 and 2c8, we could

write, respectively:

• minlength: 8; allowed: ascii-printable; minclasses: 3;

• minlength: 8; allowed: ascii-printable; minclasses: 2;

Character Range Aside from greater control over passwords, there is a compatibility aspect to this

feature. As we mentioned before, Google has an API that also provides the password policies for a list

of websites [17]. In an attempt to synchronize the policies gathered by Google with Apple’s list [46], there

was a suggestion to import Google’s list 5. Yet, Google’s API allows for the manipulation of minimum

and maximum values for any given character class. This reinforces the importance of our extension.

The range property for both named and custom character classes is defined by using two integers

inside parenthesis, e.g., <character_class>(minimum, maximum);. The first number represents the

minimum number of occurrences for that character class and the second number represents the max-

imum number of occurrences for that character class. To represent a policy such as “Password must

contain 3 ’a’, at least 3 uppercase letters, and no more than 6 lowercase letters.”, one could write:

minlength: 10; maxlength: 20; required:[a](3,3);

required: upper(3,20); required: lower(1,6);

There are two named character classes which render this property useless, ascii-printable and

unicode, because every character is permitted. With these two character classes, the only range re-

strictions should be minlength and maxlength, i.e., the only range that these two classes will respect

are established by the minlength and maxlength rules. It is possible to mix the ascii-printable or

unicode values and character classes with range, though. The policy “Password must contain at least 8

characters and contain exactly 3 lowercase vowels” can be expressed by:

minlength: 8; required: [aeiou](3,3); allowed: ascii-printable;

5Suggestion here: https://github.com/apple/password-manager-resources/issues/427
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These are the core changes of our extension to Apple’s Password Autofill Rules. We believe they

provide extra flexibility to describe even more password policies. In doing so, we minimize the generation

of non-compliant passwords using password managers. Hence, we can increase usability and, hopefully,

user adoption of password managers.

3.3 The npm package

In order to implement our extension to Apple’s DSL, we based our code on their parser6, which is written

in plain JavaScript. This parser receives an input that contains the password rules and parses them into

an array of rules. As an example, for the rules

required: upper; allowed: upper; allowed: lower; minlength: 12; maxlength: 73;

the parser will return an array containing 4 rules, each with a correspondent name and value, as we can

see in Figure 3.4.

6Apple’s JavasScript parser. https://github.com/apple/password-manager-resources/blob/main/tools/

PasswordRulesParser.js
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1 [

2 {

3 "_name": "required",

4 "value": [

5 {

6 "_name": "upper"

7 }

8 ]

9 },

10 {

11 "_name": "allowed",

12 "value": [

13 {

14 "_name": "upper"

15 },

16 {

17 "_name": "lower"

18 }

19 ]

20 },

21 {

22 "_name": "minlength",

23 "value": 12

24 },

25 {

26 "_name": "maxlength",

27 "value": 73

28 }

29 ]

Figure 3.4: Return value of the parser when given the rules required: upper; allowed: upper; allowed:

lower; minlength: 12; maxlength: 73; as an input.
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We wanted to make the process of using this parser as simple as possible, i.e., one simple install

command and we could use its inherent functionalities. So, we opted to create an npm package. Accord-

ing to their website, npm is “a public collection of packages of open-source code for Node.js, front-end

web apps, mobile apps, robots, routers, and countless other needs of the JavaScript community”.

To create this package, we migrated Apple’s parser code into Typescript7 and implemented our ex-

tension to the parser.

Blocklist Rule When the input rules contain a blocklist rule, there are two possibilities:

• The rule value is hibp. In this case, the value is returned without changes, to let the password

manager know that a check against HIBP’s API must be done.

• The rule value is default. This value will make the parser return the list of the 100 000 most

commonly used passwords [47]. Now the password manager should verify that the generated

password does not contain any of these passwords.

The password blocklist, in our extension, is a Singleton. This means that there is only one point of

access to it, and there is only one instance of this blocklist. Thus, it is possible to substitute the blocklist

by another at will, by assigning a new list to it, e.g.:

1 let blist = PasswordBlocklist.getInstance ();

2 blist.blocklist = ['123', 'password '];

3 // now , the blocklist only contains the passwords '123' and 'password '

There is also a method in our extension, appendToTheBlocklist(newPasswords: string[]), that

grants the possibility to expand the blocklist.

Minclasses Rule The minclasses rule is always present, even when it is unused. Its default value is 1,

i.e., every password must contain at least one character class. For instance, a policy such as “Password

must contain at least 8 characters and at least 1 uppercase letter” can be described as:

minlength: 8; required: upper; allowed: ascii-printable;

Upon giving this set of rules to the parser, the result will include a minclasses rule, with its default

value, as we can see in Figure 3.5.

The possible values for the minclasses rule are the integers 1 through 4. If the rule has a value that

is lower than 1 or greater than 4, the parser will set it to 1 and 4, respectively.
7TypeScript is a strongly typed programming language which builds on JavaScript and provides better tooling at any scale.

https://www.typescriptlang.org/
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1 [

2 {

3 "_name": "required",

4 "value": [

5 {

6 "_name": "upper"

7 }

8 ]

9 },

10 {

11 "_name": "allowed",

12 "value": [

13 {

14 "_name": "ascii-printable"

15 },

16 ]

17 },

18 {

19 "_name": "minlength",

20 "value": 8

21 },

22 {

23 "_name": "minclasses",

24 "value": 1

25 }

26 ]

Figure 3.5: Return value of the parser when given the rules minlength: 8; required: upper; allowed:

ascii-printable; as an input. The minclasses rule is always included, with its default value, 1.

Character Range The character range is an enhancement to the definition of character classes. It is

possible to mix character classes containing range restrictions with character classes that do not contain

these restrictions. These are the restrictions to using this functionality:

• The minimum and maximum values should be greater than or equal to 0.

• The minimum value will be converted to 1 if the value is 0 and is specified in a required rule.

• The minimum value will be converted to 0 if the value is greater than 1 and is specified in an allowed

rule.

• The minimum value should be less than or equal to the maximum.

– The minimum and maximum values can the same — this means that the character class should

have exactly that number of occurrences.

• This functionality must be combined with, at least, the minlength rule.

To maintain coherence and the correct functionality of this extension, there are some edge cases

where the ranges will be discarded. These are those cases:
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• The minlength rule is not present.

• The sum of all required rules’ maximum values is less than the minlength value.

– If a required rule does not have a range, its maximum value will be considered as an integer

greater than 100, forcing this sum to be greater than the minlength value. A requirement for

a password to be at least 100 characters long is practically unreal.

• The sum of all required rules’ minimum values is greater than the maxlength value — if maxlength

is specified.

• The minimum and maximum values are both 0.

• The range is used with values ascii-printable or unicode.

Figure 3.6 shows the results of parsing the following policy:

minlength: 10; maxlength: 20; required:[a](3,3);

required: upper(3,20); required: lower(1,6);

Our package has been published in the npm official repository, under the name pwrules-annotations [48].

We intend to propose our changes to Apple and hopefully have our work integrated with the official

repository. At the time of writing, we have not yet issued a pull request.

3.4 Chapter Overview

In this chapter, we analyzed our extension to Apple’s DSL, i.e., Passcert’s DSL. With this extension, we

created two new rules, blocklist and minclasses, as well as a new option for character classes —

character range. The blocklist rule is used to ensure that once the password is generated, it will be

checked against a list of forbidden passwords: if a substring of the generated password is found in this

list, then the password should be regenerated. The minclasses rule specifies the minimum number of

character classes that must be present in the password. The character range allows for greater flexibility

to specify the minimum and maximum number of times a character or character class should appear in

the password. We also delved deeper into the details of Passcert’s npm package.
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1 [

2 {

3 "_name": "required",

4 "value": [

5 {

6 "_characters": ["a"],

7 "minChars": "3",

8 "maxChars": "3"

9 }

10 ]

11 },

12 {

13 "_name": "required",

14 "value": [

15 {

16 "_name": "upper",

17 "minChars": "3",

18 "maxChars": "20"

19 }

20 ]

21 },

22 {

23 "_name": "required",

24 "value": [

25 {

26 "_name": "lower",

27 "minChars": "1",

28 "maxChars": "6"

29 }

30 ]

31 },

32 {

33 "_name": "allowed",

34 "value": [

35 {

36 "_name": "upper"

37 },

38 {

39 "_name": "lower"

40 }

41 ]

42 },

43 ...

44 ]

45 // omitting the minlength , maxlength and minclasses rules , because they are

trivial and we have seen them previously.

Figure 3.6: Return value of the parser when given the rules minlength: 10; maxlength: 20;

required:[a](3,3); required: upper(3,20); required: lower(1,6); as an input.
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In this chapter, we describe a prototype that incorporates our npm package and thus takes advantage

of the extension to Apple’s DSL to describe password policies. This feature offers great potential in

terms of usability. Some websites implement strict password policies (e.g., Fnac Portugal has a policy

of “Minimum of 8 characters; At least one lowercase letter, one uppercase letter, one digit and one

special ”) , which is not the best practice as Tan et al.’s work suggests [19] — “Although prior work has

repeatedly found that requiring more character classes decreases guessability, researchers have shown

that character-class requirements lead to frustration and difficulty for users. Since other requirements,

e.g., minimum length or blocklist requirements, can strengthen passwords with less negative impact

on usability research has advocated retiring character-class requirements. These recommendations

have been standardized in recent NIST password-policy guidance.”. For users that already take the

extra effort of using a password manager and use its randomly generated passwords, such policies may

cause discontent and frustration towards password managers because a generated password may not

comply with them [12]. This hinders usability, and there is a considerable chance that the user will resort

to password reuse or create an easily guessed password to overcome this obstacle, both undesirable

behaviors.

4.1 Password Manager Choice

Nowadays, there are multiple password managers, all of them with great compatibility between Operating

Systems (OS’s) and devices. To the best of our knowledge, 1Password is the only password manager

that does what we aim to achieve [49]. They use Apple’s DSL and the website quirks1 found in Apple’s

repository [50] containing the password policies of websites specified in Apple’s DSL. These quirks are

crowd-sourced since everyone can contribute to them.

There were two main candidates to become our prototype, Google Chrome’s built-in password man-

ager and Bitwarden [20]. Although Chrome is the browser with the most users, according to a recent

study2, due to being a browser extension, and it presented more clarity in its code, and the fact that this

project was developed in Passcert’s context — which adopted Bitwarden as its base password manager

— Bitwarden felt more suitable to develop our work.

4.2 The Prototype

We started by investigating Bitwarden’s browser extension. Browser extensions communicate using

messages between content scripts and the rest of the extension. Content scripts are files that run in the

1”Quirk” is a term from web browser development that refers to a website-specific, hard-coded behavior to work around an
issue with a website that can not be fixed in a principled, universal way.

2https://gs.statcounter.com/browser-market-share
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context of web pages. These scripts use the Domain Object Model (DOM)3 so they are able to read and

change details of webpages. They can also pass information to their parent extension.

Taking advantage of this, we created a content script that accesses the DOM and searches for the

passwordrules annotation, which Apple’s DSL uses to start describing the password policy rules. Our

extension also uses this annotation. Upon finding the annotation, the content script sends a message

to its parent extension containing the password rules. If no annotation is found, a message is also sent,

with a special value — no-rules. This can be seen in Figure 4.1. We assume that in a given web page

there is only one password policy described: having multiple password policies would be strange from a

usability point of view and could result in a possible crash of this feature.

1 function searchDomForPasswordRules (): void {

2 const policiesFound = document.querySelectorAll('[passwordrules]');
3

4 if (policiesFound.length > 0) {

5 chrome.runtime.sendMessage ({

6 command: 'bgWebsitePasswordRules ',
7 rulesValue: policiesFound [0]. attributes

8 .getNamedItem('passwordrules ').value ,
9 sender: 'websitePasswordRules ',

10 });

11 }

12 else if (policiesFound.length === 0) {

13 chrome.runtime.sendMessage ({

14 command: 'bgWebsitePasswordRules ',
15 rulesValue: 'no-rules ',
16 sender: 'websitePasswordRules ',
17 });

18 }

19 }

Figure 4.1: The content script that searches the DOM for the passwordrules annotation.

Having received a message with the rules, the extension now utilizes our npm package to parse

them. The core of the extension will then use these parsed rules to convert them to a format that

Bitwarden recognizes, allowing it to generate a compliant password.

The general workflow of the generation of passwords can be seen in Figure 4.2.

Because we believe our work to be important in fixing a usability problem and because our solution,

whilst not innovative in contents, brings value to a real-world application, we submitted our changes

to Bitwarden [51]. Bitwarden has internally approved our features and will be going through the code

review process to get them ready to be merged into the product. This is a major accomplishment since

there will be millions of users benefiting from our improvements.

3https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
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Figure 4.2: The general workflow of the generation of passwords in Bitwarden, using our npm package.

4.2.1 Generation and Compliance

Aside from the checks that were already being made by Bitwarden’s extension — password length,

permitted characters, etc. — we created three new compliance checks, each one correlated with each

new feature introduced in our npm package. Thus, after a password is generated, we verify if it is

compliant with the blocklist rule, the minclasses rule and the character range requirement.

Blocklist To verify the compliance of the password with the blocklist rule, we verify if it contains

any word inside the blocklist. So if we have a blocklist containing 3 leaked passwords, e.g., password,

1234, and helloworld, we check for the occurrence of each one of these words in any part of the

generated password. For example, the password 9PHeyEGBg.*aP3 does not contain any of the words in

the blocklist, but the password 9PHeyEGBg.*aP31234 does. Consequently, another password would have

to be generated and evaluated accordingly.

Minclasses To ensure compliance with the minclasses rule, we separate each letter of the password

into its list, according to the character set it belongs to — uppercase, lowercase, digit, or special. Once

the last character of the password is analyzed, we count, out of the 4 lists we created, how many have

elements. If this number is less than the minclasses value, the password is not compliant and must be

regenerated. To exemplify, imagine the minclasses rule value of 3 the password 9pheyegbg12ap3: it

has only lowercase letters and digits. As such, the password is invalid and will be regenerated.

Character Range Much like the minclasses verification, to ensure compliance with the character’s

range, we ascertain that the password contains at least the minimum required characters, according to

their range. For instance, a character range such as required: upper(3, 6);, and omitting the other

rules, would make the password 9PHeyEGBG.*aP3 invalid.
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Our verification for password compliance incurs in a possible non-termination error, i.e., there is a

possibility that the password generated will always be non-compliant with the policies. However, this risk

is low, because the generator uses a Random Number Generator (RNG).

4.3 Bitwarden and Passcert’s Generator

returns 

a password

Jasmin

Password

Generator

interprets 

password policies

Website
Password Generator


Server

requests 

a password

Figure 4.3: Overview of the prototype combining Bitwarden and Passcert’s password generator.

In the context of Passcert’s project, a formally verified password generator is being developed. To

contribute to the goals of PassCert and to demonstrate that our development can be integrated with

different products, we extended Passcert’s password manager with our SmartPasswords feature. Pass-

cert’s password manager is an extension of Bitwarden and Passcert’s generator is written in Jasmin [52]

and follows an algorithm such that, when given a password composition policy, it will generate a random

password. This generator has two verified properties:

• Functional Correctness: Given any password composition policy, the generated password will

always satisfy the policy.

• Security: Given any password composition policy, the password is generated according to a uni-

form distribution. This means that every possible password that satisfies the given policy has the

same probability of being generated.

An overview of our integration of Passcert’s password generator with the Bitwarden browser exten-

sion is shown in Figure 4.3. Bitwarden scans the DOM for the policies and uses our npm package

to parse them. We replaced Bitwarden’s default password generator with Passcert’s Jasmin password

generator. Since in the context of the browser extension it is not possible to directly run local processes,

we exposed our password generator as a RESTful service: the extension sends a POST request, with

the body of the request containing the required password policy. The server then sends a response with

the generated password. The connection between the browser extension and the server uses HTTPS.
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4.4 Overview

In this chapter, we presented the two main candidates to become Passcert’s password manager proto-

type, Google Chrome’s built-in password manager and Bitwarden, which was the chosen one. We also

explained the process that allows Bitwarden’s browser extension to read the password policies from a

website and then, using our npm package, parse these policies and generate a password that is compli-

ant with them. There are three new constraint checks added to Bitwarden’s generator to accomodate the

rules created by Passcert’s DSL — blocklist, minclasses and character range. Lastly, we detail Pass-

cert’s password manager prototype, which uses a verified generator to generate compliant passwords.

This generator is exposed as a service.
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In this chapter, we detail the evaluation methods used on our solution. Since we want to obtain pass-

words that satisfy certain rules, specified by each website, using both Apple’s DSL and our extension,

we propose to measure how many passwords fail to comply with such rules when using the password

managers extended with SmartPasswords.

To ascertain the functional correctness — given any password policy, the generated password will

always satisfy the policy — of every generated password, we created a script1 to automate this process

— policy_compliance_check.py. This script takes as input the path to the test folder as well as a

policy, to which all the passwords will be compared. This policy should be specified using numbers only,

exactly with the order that follows:

length minimumLowercase maximumLowercase minimumUppercase maximumUppercase

minimumNumbers maximumNumbers minimumSpecial maximumSpecial

There is also the possibility to activate the flags for the blocklist and minclasses rules:

--minclasses <minclassesValue> --blocklist

This script verifies that the password contains only characters pertaining to required or allowed char-

acter classes, as well as length constraints. It also has the ability to verify that the blocklist rule, the

minclasses, and the character range constraints are being satisfied by the password.

The tool was first built to test our integration with Passcert’s password generator, which generates a

password with a given length, and not a minimum length. Because of this, the tool only ensures that the

password has said length value. The same goes for the maximum value for each character class: it is

always, at most, the same value as the length of the password, i.e., can take values between 0 and the

length of the password. The usage of the tool is exemplified in Figure 5.1. So, to test the compliance of

a list of passwords against a policy that requires at least one character from each character class and

minimum length of 14, we would write 14 1 14 1 14 1 14 1 14. To test against a policy that requires

length of 14, a minimum of three character classes and the verification against a blocklist, we would

write 14 0 14 0 14 0 14 0 14 --minclasses 3 --blocklist.

This is the methodology we followed:

1. Choose a policy, preferably one that generates conflict with Bitwarden’s default settings, since it is

where the usability problem occurs.

2. Generate a total of 10000 passwords and distribute them across 10 files for greater detail: we can

derive results from the whole lot of generated passwords or from a specific file. This generation is

done using Bitwarden’s current solution via their Command Line Interface (CLI) application , i.e.,

not including the SmartPasswords feature. We have a script that facilitates this process, called

generate_bw_passwords.py.
1GitHub repository: https://github.com/passcert-project/pw_generator_server
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1 # <the_policy_to_check_against > should take this format:

2

3 # length minimumLowercase maximumLowercase minimumUppercase maximumUppercase

minimumNumbers maximumNumbers minimumSpecial maximumSpecial

4

5 # the maximum of each character class can be , at most , the same as the length

6

7 # the <value > should be an int between 1 and 4

8

9 ./ policy_compliance_check.py <path_to_the_folder_with_test_data >

<the_policy_to_check_against > --minclasses <value > --blocklist

Figure 5.1: The usage of the compliance checker tool.

3. Run the policy compliance script we wrote, called policy_compliance_check.py, to find the num-

ber of non-compliant passwords.

4. Generate a total of 1000 passwords using our SmartPasswords feature, i.e., Bitwarden’s generator

and the ability to read Apple’s DSL. This step is done manually, because, at the time of writting,

we were not able to include our SmartPassword feature in Bitwarden’s CLI app. Thus, we need to

open our version of Bitwarden’s browser extension, where our feature is implemented, and manu-

ally copy each SmartPassword generated, which is time-consuming. Hence the lower number of

generated passwords.

5. Run, again, our policy compliance script, regarding the same policy as before.

6. Compare both results of the compliance check to take conclusions of how SmartPasswords com-

pare with regular Bitwarden’s passwords.

All these scripts and test data can be found in one of our GitHub repositories2.

5.1 Evaluating Apple’s DSL Integration with Bitwarden

To test the need for our solution and the impact it can have, we generated 10 test files, each containing

1000 randomly generated passwords using Bitwarden’s generator default settings — 14-character pass-

word with lowercase, uppercase, and numbers. We used the following policy, which is used by British

government services, according to Apple’s quirks [46]:

minlength: 10; required: lower; required: upper; required: digit; required: special;

We checked if the passwords generated by Bitwarden satisfy this policy, using a policy that includes

at least one character of each character class, 14 1 14 1 14 1 14 1 14. All passwords failed this test
2See footnote 1.
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since Bitwarden’s default settings do not include symbols. Granted, to solve this, a simple tick in a

checkbox on the User Interface is enough to include special characters in the password generation. But

even with special characters included, there are some problems. According to the same source [46],

Virgin Mobile’s3 website has this policy:

minlength: 8; required: lower; required: upper; required: digit; required: [!#$@];

We generated again a total of 10000 passwords, distributed by 10 files, using Bitwarden’s generator

and, this time, including symbols.

Since our compliance verification tool checks the special characters by comparing them with Bit-

warden’s special characters set — [!@#$%^&*] —, we had to change this set on our tool, so that the tool

would check only the website’s required special symbols — [!#$@]. In other words, after this change

in the special character set, a password is compliant if and only if it contains one of the four symbols

required (and, of course, follows the other rules as well!).

The results obtained confirm our suspicions that this policy would present challenges to Bitwarden:

2671 passwords — 26,71% — failed. This means that, roughly, one in every four passwords generated

by Bitwarden would not be accepted by this website. We tested again with 14 1 14 1 14 1 14 1 14.

This is an instance of the problem discussed above, regarding users’ frustration with the generation

of non-compliant passwords and it can easily be solved using our solution.

Having confirmed the problem, we generated 1000 passwords, distributed across 10 files, using

our SmartPasswords and we got the expected result: 100% compliance with both the policies seen

previously. We only generated 1000 passwords because this is a manual, time-consuming process. In

a close future, we hope to make this generation easier, by using an adequate generation script.

5.2 Evaluating Passcert’s DSL Integration with Bitwarden

Having justified the need of our SmartPassword solution with a couple of tests, we now aim to analyse

what kind of policies our extension to Apple’s DSL supports. The main objective is to ensure that all

passwords generated are compliant with the specified policy, i.e., how effective our solution is.

We created a new, different version of Bitwarden’s browser extension that supports SmartPasswords,

but with our DSL instead of Apple’s. This version is able to interpret the blocklist and minclasses rules,

as well as the character range feature.

We followed a similar methodology as before, with a few changes:

1. Choose a policy that tests our solution.

3https://virginmobile.ca
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2. Generate a total of 100 passwords using our SmartPasswords feature, i.e., Bitwarden’s generator

and the ability to read Passcert’s DSL. This step is done manually, because, at the time of writting,

we were not able to include our SmartPassword feature in Bitwarden’s CLI app. Thus, we need to

open our version of Bitwarden’s browser extension, where our feature is implemented, and manu-

ally copy each SmartPassword generated, which is time-consuming. Hence the lower number of

generated passwords.

3. Run our policy compliance script, regarding the same policy as before.

4. Assess the results and verify the level of effectiveness of our solution.

We tested four policies, as they appeared to be a fair representation of the new features we intro-

duced. The policies chosen were:

1. minlength: 8; allowed: ascii-printable; minclasses: 3; blocklist:default;

2. minlength: 10; required: upper(4, 10); required: lower(4, 6);

required: digit(4, 8); required: special (4, 10);

3. minlength: 14; required: lower(5, 10); required: digit(5, 10);

allowed: upper(0, 4), special; minclasses: 3;

4. minlength: 14; required: lower(5, 10); required: digit(5, 10);

allowed: upper(0, 4), special; minclasses: 3; blocklist:default;

5. minlength: 14; required: lower(5, 10), digit(5, 10); allowed: upper, special;

Policy 1 This is the description of a classic password rule throughout academic studies [18, 19], 3c8,

“a password that must be at least 8 characters long and must contain at least 3 character classes”.

We used our tool to verify if all 100 passwords were compliant against the policy 8 0 8 0 8 0 8 0 8

--minclasses 3 and only 94 were, leaving 6 generated passwords to be non-compliant. This happens

because Bitwarden has a default value for password length, 14. If the minlength is lower than 14, it

will be changed to 14. Thus, the generator was working with 14 as the maximum capacity for each

character class. All 6 non-compliant passwords failed because they had more than 8 characters of

one class. When we tested again, but using the policy 14 0 14 0 14 0 14 0 14 --minclasses 3, all

passwords were compliant.
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Policy 2 This policy requires that the password has at least 4 characters of each character class. It lets

us test the range property we introduced. We tested this batch of passwords with 16 4 6 4 10 4 8 4 10,

and we got 100% compliance. The minlength of this password will always be 16 in Bitwarden’s gener-

ator due to the restrictions for each character class. Thus, we check that the password has to have 16

characters.

Policy 3 In this case, we use ranges for the allowed rule as well. This means that the password can

have special characters and, at most, 4 uppercase characters. It also must have at least 5 lowercase

characters and at least 5 digits. At least 3 character classes must be present in the password. We

checked these rules against 14 5 10 0 4 5 10 0 14 --minclasses 3 and got, as expected, 100%

compliance. However, we also tested against the same policy, adding the --blocklist verification, and

we got 91% compliance. This means that 9 passwords had some substring that was found in a previous

password leak. These substrings were all composed of 4 digits together, e.g., 2yfpOt31d8995G failed

due to the substring 8995 since 4 digits together are usually a PIN number, and PIN numbers are weak

passwords.

Policy 4 With this policy, we aim to test ranges, minclasses and the blocklist. This policy is built

from Policy 3 with the addition of the blocklist. We tested against the same two policies as Policy 3

and got 100% compliance in both of them.

Policy 5 This policy allows to test disjunctive rules. So, these constraints force the password to contain

either 5 lowercase characters or 5 digits, at least, but not both. The password can also have special

characters and uppercase characters. To test this, we had to do three tests: (1) test if the passwords

had both digits and lowercase letters; (2) test if passwords were containing just lowercase letters and

not digits; (3) test if passwords were containing only digits and no lowercase letters. Thus we tested (1)

with 14 5 10 0 14 5 10 0 14 and got 0% compliance as expected: no password contains both digits

and lowercase letters. After, we tested (2) with 14 5 10 0 14 0 0 0 14 and got 51% compliance: 51

passwords contain lowercase letters and no digits. Lastly, we tested (3) with 14 0 0 0 14 5 10 0 14

and got 49% of compliance, as expected: the rest of the passwords do not contain lowercase letters and

contain digits.

Testing non-termination. As a last test to address the possible non-termination of the password gen-

eration, mentioned in Chapter 4, we generated, manually, 1000 passwords with the following policy:

minlength: 16; blocklist: default; minclasses: 1;
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This policy allows every ascii-printable character and restricts the password to, at least, have 16

characters and checks its substrings against a blocklist. This is suggested as a good behaviour by Tan et

al.: “Since other requirements, e.g., minimumlength or blocklist requirements, can strengthen passwords

with less negative impact on usability research has advocated retiring character-class requirements.”.

Our results, 100% compliance with the policy 16 0 16 0 16 0 16 0 16 --blocklist, help to demon-

strate that the non-termination scenario is indeed rare, as we had suggested. The chances of getting

this non-termination problem increase when greater restrictions are inserted in the policy: more restric-

tions like character ranges or removing permitted characters imply less margin for randomness, and, as

we have seen, this is not advisable.

5.3 Overview

In this chapter, we explained the details of the testing phase of our project. We began by explaining

the somewhat complex nature of the input for the script that verifies the compliance for each generated

password. We also went through the details of the testing methodology used. We proceeded with the

evaluation of Apple’s DSL integration with Bitwarden which yielded very positive results and followed

with the evaluation of Passcert’s DSL and its integration with Bitwarden. Lastly, we reinforced that the

non-termination issue that can arise with our adapted algorithm is rare, although more restricting policies

can augment this probability.
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Conclusion
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Our work aimed to review the current state-of-the-art regarding password managers and password

composition policies and verify if researcher’s recommendations for passwords are being incorporated

in them. Through our analysis, we found multiple languages capable of expressing password policies

and we found that one of these, Apple’s DSL, was more suited for our investigation.

Based on our experiments integrating Apple’s DSL with Bitwarden’s browser extension, there is a

great benefit in websites using this language to express their password policies to password managers:

we achieved great results in generating compliant passwords. Our solution was accepted internally

by Bitwarden and is now going through their code review process in order to be merged into the final

product. This will impact millions of users.

To accommodate recent researcher’s insight [18,19,45] on password policies, we expanded Apple’s

DSL with 3 new features — minclasses, blocklist and character ranges — and created a prototype

with Bitwarden, which also yielded great success rates.

Lastly, our work allowed the creation of a prototype of a password manager with a formally verified

password generator, which is Passcert’s main goal.

The most difficult part of the project was integrating our new rules into Bitwarden’s password gener-

ator. In fact, it is still incomplete, since there is the non-termination problem present.

Future Work

While our work is a concrete solution to a common problem, it can still be enriched. Apple’s DSL can be

further expanded with rules like max-frequency or exclude.

The max-frequency is currently an open issue in Apple’s Github1 and would restrict the frequency of

any character to this value, e.g., for max-frequency: 3;, the password HelloWorld would be compliant,

but the password HellloWorlld would not — notice that the frequency of the l character is greater than

3. This suggestion may be resolved with the character range that we proposed in Chapter 3. To achieve

this, we could specify a rule like allowed: [l](3,3);. In spite of this, such a rule may be relevant:

to restrict the frequency of every character with our character range would be a great burden for the

administrator of the website.

The exclude would exclude a set of custom characters, e.g. exclude:[aeiouAEIOU] would exclude

all vowels from the password.

The tool that verifies password compliance is not equipped to test custom character classes, e.g.,

[aeiou]. This would allow us to test even more combinations and assert if the passwords generated

are effectively compliant with the policies restraining them.

There is also room for improvement regarding the password generation in Bitwarden, when Smart-

1Apple’s Github Issue: https://github.com/apple/password-manager-resources/issues/387
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Passwords are live in production, to completely eliminate the chance of non-termination of the generation

algorithm.

Lastly, our feature needs to be able to read from Apple’s quirks [46] to be effective. However, our

improvements must be met halfway by webadmins, who should strive to include password composition

policies in their websites.
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Policy Annotation Policy Description

comp8

At least: 1 lowercase English letter,
1 uppercase English letter,

1 digit and
1 symbol - any character other than a digit or an English letter;

together, the letters must not form a word on a dictionary

basic12 At least 12 characters

basic16 At least 16 characters

basic20 At least 20 characters

2class12 At least 2 character classes

3class12 At least 3 character classes

3class16 At least 3 character classes

2word12 At least 2 words
(letter sequences separated by a nonletter sequence)

2word16 At least 2 words
(letter sequences separated by a nonletter sequence)

2list12

Combines 2class12 with a blacklist:
123!, amazon, character, monkey, number, survey, this, turk;

Any year between 1950 and 2049;
The same character four or more times in a row;
Any four consecutive characters from password;

Any four sequential digits (e.g., 5678);
Any four sequential letters in the alphabet (e.g., wxyz);

Any four consecutive characters on the keyboard (e.g., wsxc)

2s-list12
Combines 2class12 with a blacklist warning:

“Do not include words commonly found in passwords (e.g. password),
keyboard patterns (e.g., qazx), or other common patterns (e.g. 5678).”

2pattern12 Combines 2class12 with the pattern requirement:
“Passwords should start and end with a lowercase letter”

2list-patt12 Combines the 2class12 with the pattern
requirement and the blacklist

2s-list-patt12 Combines the 2class12 with the
pattern requirements and the blacklist warning

Table A.1: Policies described in Shay et al.’s work [18].
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Policy Annotation Policy Description

1c8 At least 1 character class.
At least 8 characters

1c10 At least 1 character class.
At least 10 characters

1c12 At least 1 character class.
At least 12 characters

1c16 At least 1 character class.
At least 16 character

3c8 At least 3 character classes.
At least 8 characters

3c12 At least 3 character classes.
At least 12 characters

4c8 4 character classes.
At least 8 characters

Table A.2: Policies described in Tan et al.’s work [19]. The authors added extra constraints

65



Po
lic

y
A

nn
ot

at
io

n
A

pp
le

’s
D

S
L

P
as

sc
er

t’s
D

S
L

1c
8

m
in

le
ng

th
:

8;
al

lo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
le

ng
th

:
8;

al
lo

w
ed

:
as

ci
i-p

rin
ta

bl
e;

1c
10

m
in

le
ng

th
:

10
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
le

ng
th

:1
0;

al
lo

w
ed

:
as

ci
i-p

rin
ta

bl
e;

1c
12

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
le

ng
th

:
12

;a
llo

w
ed

:
as

ci
i-p

rin
ta

bl
e;

1c
16

m
in

le
ng

th
:

16
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
le

ng
th

:
16

;a
llo

w
ed

:
as

ci
i-p

rin
ta

bl
e;

3c
8

m
in

le
ng

th
:

8;
al

lo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
3;

3c
12

m
in

le
ng

th
:1

2;
al

lo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
3;

4c
8

m
in

le
ng

th
:

8;
re

qu
ire

d:
as

ci
i-p

rin
ta

bl
e;

m
in

le
ng

th
:

8;
re

qu
ire

d:
as

ci
i-p

rin
ta

bl
e;

m
in

cl
as

se
s:

4;

co
m

p8
m

in
le

ng
th

:
8;

re
qu

ire
d:

up
pe

r;
re

qu
ire

d:
lo

w
er

;
re

qu
ire

d:
di

gi
t;

re
qu

ire
d:

sp
ec

ia
l;

m
in

le
ng

th
:

8;
re

qu
ire

d:
up

pe
r;

re
qu

ire
d:

lo
w

er
;

re
qu

ire
d:

di
gi

t;
re

qu
ire

d:
sp

ec
ia

l;

ba
si

c1
2

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;

ba
si

c1
6

m
in

le
ng

th
:

16
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;

ba
si

c2
0

m
in

le
ng

th
:

20
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;

2c
la

ss
12

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
2;

3c
la

ss
12

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
3;

3c
la

ss
16

m
in

le
ng

th
:

16
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
3;

2w
or

d1
2

2w
or

d1
6

2l
is

t1
2

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
2;

bl
oc

kl
is

t:
de

fa
ul

t;

2s
-li

st
12

m
in

le
ng

th
:

12
;a

llo
w

ed
:

as
ci

i-p
rin

ta
bl

e;
m

in
cl

as
se

s:
2;

bl
oc

kl
is

t:
de

fa
ul

t;

2p
at

te
rn

12

2l
is

t-
pa

tt
12

2s
-li

st
-p

at
t1

2

Ta
bl

e
A

.3
:

C
om

pa
ris

on
be

tw
ee

n
A

pp
le

’s
D

S
L

an
d

P
as

sc
er

t’s
E

xt
en

si
on

to
it,

re
ga

rd
in

g
th

e
ab

ili
ty

to
ex

pr
es

s
po

lic
ie

s
fro

m
A

.1
an

d
A

.2
.

W
e

as
su

m
e

th
at

c
o
m
p
8

is
m

os
tly

fu
lfi

lle
d

by
th

e
sp

ec
ifi

ed
ru

le
s

be
ca

us
e

th
e

ra
nd

om
ne

ss
of

th
e

ge
ne

ra
to

r
w

ill
m

ak
e

it
di

ffi
cu

lt
to

fo
rm

an
y

w
or

ds
.

To
be

ex
tra

ca
re

fu
l,

it
co

ul
d

be
de

sc
rib

ed
w

ith
th

e
ex

tra
b
l
o
c
k
l
i
s
t

ru
le

.
W

e
al

so
as

su
m

e
th

at
th

e
w

or
ds

fro
m

th
e

de
fa

ul
tb

lo
ck

lis
tc

on
ta

in
al

lf
or

bi
dd

en
w

or
ds

us
ed

in
S

ha
y

et
al

.’s
w

or
k

[1
8]

.

66


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	Acronyms

	1 Introduction
	1.1 Work Objectives
	1.2 Contributions
	1.3 Document Structure

	2 Background Work
	2.1 Password-Based Authentication
	2.2 Password Reuse
	2.3 Password Managers
	2.3.1 Password Generation
	2.3.2 Password Storage
	2.3.3 Password Autofill
	2.3.3.A Password Rules Annotations
	2.3.3.B Google's Password Requirements API
	2.3.3.C Apple's Password Autofill Rules



	3 Extending Apple's Password Autofill Rules
	3.1 Apple's Password Autofill Rules
	3.1.1 Properties description
	3.1.2 Identifiers
	3.1.3 Weaknesses

	3.2 Extending Apple's DSL
	3.3 The npm package
	3.4 Chapter Overview

	4 SmartPasswords: Integrating Apple's Password Autofill Rules with Bitwarden
	4.1 Password Manager Choice
	4.2 The Prototype
	4.2.1 Generation and Compliance

	4.3 Bitwarden and Passcert's Generator
	4.4 Overview

	5 Evaluation
	5.1 Evaluating Apple's DSL Integration with Bitwarden
	5.2 Evaluating Passcert's DSL Integration with Bitwarden
	5.3 Overview

	6 Conclusion
	Bibliography
	Appendix B

	A Auxiliary Tables

