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Resumo

Nos últimos anos, a poluição e os transtornos causados pelo tráfego em àreas urbanas tem vindo

a aumentar. Neste sentido, várias medidas têm sido adotadas para publicitar a utilização de meios

de transportes mais sustentáveis, como as bicicletas. Para fortalecer esta tendência e projectar novas

infra-estruturas surge a necessidade de criar ferramentas que permitam realizar uma avaliação dos

trajectos para bicicletas.

Neste projecto, propõe-se um método baseado na avaliação de sequências de imagens de modo

a identificar manobras de ultrapassagem realizadas nas proximidades dos ciclistas e estimar a veloci-

dade dos veı́culos envolvidos. Os dados obtidos forneceram informações importantes que poderão ser

utilizadas por planeadores urbanos na caracterização de vias para circulação de bicicletas.

A abordagem escolhida foi testada em imagens capturadas por uma câmara em zonas urbanas

distintas. Os resultados obtidos foram promissores, tendo permitido comparar diferentes zonas quanto

à caracterização das mesmas para circulação de bicicletas tendo em conta a rapidez com que os

veı́culos ultrapassam os ciclistas.

Palavras-chave: Ciclista, Manobra de ultrapassagem, Reconhecimento de matrı́culas, Rapi-

dez.
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Abstract

The traffic pollution is a scourge of urban areas and several transportation policies have been

adopted to increase the use of sustainable transportation, such as bicycles. To develop this desirable

trend and design new infrastructures, policy makers require tools for cyclists’ risk assessment. In this

work, a video-based method to estimate overtaking maneuvers and vehicles’ speed is proposed. It was

possible to geo-reference these stressful events for riders, providing a framework for path characteriza-

tion concerning roads’ suitability and safety for cyclists.

From action camera sequences of images and smartphone’s GPS data, the proposed method is

based on license plate recognition and tracking of approaching vehicles near cyclist surroundings.

A new dataset with realistic bicycle scenarios in urban roads is made available and used as case of

study. It was possible to compare distinct streets and differentiate different urban areas based on the

speed of detected overtaking maneuvers.

Keywords: Cyclist, Overtaking Manuever, License plate recognition, Vehicle Speed.
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Chapter 1

Introduction

Big city traffic problems have increased in the last years, which leaded to the need of finding alter-

native solutions and transportation policies. The seriousness of the situation has led to the search for

healthier and less expensive options, such as bicycles. However, the lack of conditions and streets’

planning, turns choose a safe route an impossible task. In order to design new infrastructures, new tools

for streets characterization and cyclists’ risk assessment are required.

In [1, 2] new approaches have been proposed concerning cyclists path characterization, presenting a

system able to process image sequences, gather important information and provide specific descriptors

to characterize roads and assist cyclists on travel path decision. Based on image processing, Vieira et

al. [1] proposed an automatic classification of cyclists’ maneuvers, like turn right and left, or interactions

between cyclists and vehicles. This previous work also shown the correlation between these interactions

and stressful events. In [2], a new descriptor to access the route risk from the cyclist perspective was

proposed, taking into account the type of obstacles (people, cars, etc.) on the route.

Several methods have been proposed to classify roads suitability regarding bicycles circulation, in

[3] and [4]. Lane width, vehicles speed and traffic flow are the most used parameters.

To access bicycle suitability, several methods have been developed over the years. Methods take

into account different attributes of the cyclist’s environment, ranking to each with a certain number of

points. These points are then used to compute a score for the cycle lanes to determine desirability or

undesirability and to make comparison between cycle lanes. Which attributes a method uses and what

weights each have vary from method to method.

One such example is the Bicycle Level of Service (BLOS), as defined by the High Capacity Manual

[5]. Intersections and roads are characterized by giving a value to each relevant attribute, and then

combining all with the respective weights as the BLOS score. For example, in the case of a road sec-

tion without intersections, the relevant attributes are: vehicle traffic volume, vehicle speed and cyclists’

operating space.

Besides the BLOS, other metrics have been defined in the literature. According to [6] and [7] some

examples of the literature where selected, as presented in Table B.1. A comparison of the variables

used in each method can be seen in Table B.3, in which it is possible to highlight vehicle speed in every
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bicycle suitability estimation. This being said, vehicle speed and overtaking maneuver occurrences, as

evidenced in [8], are very important parameters to take into account for cyclist path’s suitability evalua-

tion.

Further, the importance of speed estimation for bicycle suitability assessment is also mentioned in

[9] and [10]. The main goal of the presented work is the estimation of vehicle’s speed in order to identify

overtaking maneuvers performed in the cyclist’s surroundings. In order to compute vehicles’ proximity

with one single camera is necessary to know the dimensions of the objects. Since vehicles’ sizes vary,

there was the need to choose an object with known dimensions that could be used to identify vehicles.

In this sense a new option emerged, using license plates recognition as a tool for vehicles detection.

A new approach to estimate vehicle proximity and speed is proposed based on license plate detection

and tracking from data provided by a camera located at the bicycle’s handlebar.

Accurately identify overtaking maneuvers occurrences and estimate the corresponding vehicle speed

in each specific track section is very important to correctly characterize streets. Therefore, these two

modules will be the main focus of the present work. With data gathered from specific streets it will be

possible to build a data set based on up to date bicycle data.

This development, together with previous works of [2] and [1], aims to provide a more reliable risk

assessment system for street characterization aimed at bicycle circulation. Also in these works, a smart-

phone application was developed and used to gather data from a smartphone device, which allowed to

identify events location and map the occurences, as ilustrated in Fig.1.1.

Figure 1.1: Occurrences mapping based on GPS data and speed estimation for overtaking maneuvers performed
near cyclists. In this image two distinct scenarios are represented, a car performing an overtaking maneuver over
40 km/h and below 20 km/h, highlighted with red and green marks in the map, respectively.
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1.1 Cyclists Numbers

In the last few years the number of cyclists has increased and this circumstance has given rise to

the develop of systems to improve bicycle users’ safety. Recent reports from Department for Transport

from United Kingdom have revealed that in 2014 more than 20,000 cyclists were injured in reported road

accidents. In Fig.1.2 the numbers regarding cyclist casualties are highlighted.

(a) (b)

Figure 1.2: Reported road casualties (estimates) in UK, annual totals. Statistical release form the Department for
Transport. (a) Number of casualties from 2006 to 2015; (b) Number of casualties by severity from 2006 to 2015.

Based on this report [11] from Department for Transport and analyses performed by The Royal

Society for the Prevention of Accidents (RoSPA) [12] it is possible to emphasize the following statements:

• Most of the accidents take place in urban areas;

• Approximately two thirds of cyclists involved in accidents that lead to death or serious injuries were

involved in collisions at, or near, a road junction;

• 80% of the accidents occur during daylight;

• Most of collisions involved a car.

Beside these general conclusions, it was also possible to pinpoint the most common cycling ac-

cidents, which may be taken into account for danger assessment. The casualties era presented as

follows:

• Motor vehicle emerging into cyclist’s path;

• Motor vehicle turning across cyclist’s path;

• Cyclist riding into the path of a motor vehicle;

• Both vehicles moving straight ahead;

• Cyclist turning right from a major road and from a minor road;

Concerning Portugal, Autoridade Nacional Seguranca Rodoviaria (ANSR) [13] published reports on

accidents from 2007 to 2016, which show an increase in number, as it is possible to conclude from

Fig.1.3. However, this data is not representative due to the small sample of data regarding cyclists.
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(a) (b)

Figure 1.3: Reported road casualties (estimates) in Portugal, Statistical release from Autoridade Nacional
Segurança Rodoviária. (a) Number of casualties from 2007 to 2016; (b) Number of casualties by severity from
2007 to 2016.

Since the reports on collision with cyclists in Portugal are too scarce to draw reliable conclusions

from, the studies from the Department for Transport were used instead to find specific events that may

be important to take into account and consider latter in future approaches.

Due to the lack of statistical data, classifying roads for cyclists with regard to safety has proved to

be a major challenge. Even so, the numbers presented earlier in this chapter showed that the amount

of bicycle’s users have risen in recent years and that the amount of casualties have followed the same

tendency. In this context, the need to create a system that may provide safer alternative paths in order

to avoid dangerous situations from happening.

1.1.1 Mapping cyclists experience

In the last years, driving systems using smartphones as sensor platform have been developed. A list

of the existing systems is presented bellow, as well as a brief description of its main features and goals.

• Toronto Cycling App [14]: Smartphone application that allows the users to gather data using a

smartphone camera, together with GPS data, in order to performs an offline data examination that

may be used for planning new transport facilities, namely cycle lanes.

• Cyber-Physical bike [15]: A system that aims to prevent dangerous situations and alerts the

driver of proximity risks if a vehicle approaches from behind. A camera films the cyclist’s rear and

analyses how far the vehicle is from the cyclist and if this distance is less that a specified value the

cyclist is alerted.

• BikeCOM [16]: Application prototype that relies on bicycle-to-vehicle communication to exchange

safety relevant information and alerts the users to the presence of potential threats. With GPS

data on position, speed and heading obtained through drivers’ and cyclists’ devices is possible to

estimate the time-to-stop (TTS).

Other option is to diverge from accident prevention and instead focus on accident responsiveness.

Such is the case of notification systems, tasked to immediately contact the emergency service in case an
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accident happen. An example of this is eCall [17], a crash notification service for portable and nomadic

devices, among others.

In our previous developments, in [2] and [1], event detection (overtaking, turning, stopping etc.), was

performed based on the orientation of optical flow vectors in order to estimate direction and orientation

of the surrounding objects [1]. Besides this, a new approach on how to identify maneuvers based on

image processing techniques was presented concerning bicycles’ environment.

With the same goal a proximity perception of the surrounding objects has been developed in [2].

This, together with the knowledge of cyclist trajectory based on the estimation of the focus of expansion,

is used in order to predict potential collisions.

The proposed approach aims to add complementary information to the existing developed system,

presented in Fig. 1.4, on the left side of the figure, the proposed module is highlighted. Combine

previous systems results, [1] and [2], with this new module results will provide a more complete road

characterization system.

Outside of bicycle specific studies, several approaches have been developed to analyze driving be-

havior. An important portion of them use multiple sensor systems to gather data, as in [18].

Others noteworthy studies follow different strategies, such as: detect risky driving patterns [19];

introduce a driver training system to prevent road accidents due to unsafe driving [20]; and provide

driver assistance systems [21].

1.1.2 Data Acquisition

A smartphone application has been developed in previous works,[1] and [2], which allows to collect

data from each cyclist’s ride (Inertial Measurment Unit(IMU), video and audio). In this work, the following

data acquired with the app will be used: date and time of the measurement; GPS coordinates (latitude

and longitude); and speed from GPS (m/s).

The full scheme of all the features of the project are presented in Fig. 1.4. The Cardio Stress Analysis

and Road Surface Analysis branchs are here represented for completeness, but its usage is out of scope

of this work.

Figure 1.4: System Architecture
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The resources available for video processing are very plain. The video images taken from either

GoPro or smartphone camera, together with the use of the other sensors, are not enough to overcome

low data quality due to unpredictable image variation, as a consequence of the erratic movement of the

camera’s support (bicycle handlebar).

1.2 General goals

The main goal of the presented work is the estimation of vehicles’ speed in order to identify overtaking

maneuvers performed in the cyclist’s surroundings. Based on image processing and knowing the camera

intrinsic parameters, a new approach to estimate vehicle proximity and speed is proposed based on

license plate detection and tracking from data provided by a camera located at the bicycle’s handlebar.

Several methods have been proposed to classify roads suitability regarding bicycles circulation, in [3]

and [4], and lane width, vehicles speed and traffic flow are the most used parameters as well as events

with vehicles are among the most risky situations [8]. As they are onmipresent indicators, the number of

overtaking maneuvers and speed limit represent very important parameters in order to evaluate cyclist

path’s suitability.

1.3 Thesis Outline

The main goal of the presented work is the estimation of vehicle proximity and speed in order to

identify dangerous maneuvers performed in cyclist’s surroundings. A new approach to estimate vehicle

proximity and speed is proposed based on license plate detection and tracking from data provided by a

camera located at the bicycle’s handlebar.

The document is organized in the following order. In the next chapter, an overall review concerning

vehicles detection and tracking techniques is presented, in the context of driving systems. As well as a

brief overview on license plate recognition techniques. In Chapter 3 the approach is explained in detail,

being the most important steps presented as follows.

1. Vehicles detection and tracking based on license plate recognition.

2. Speed estimation.

3. Maneuver classification.

Experimental results are evaluated in Chapter 4, as well as speed error measurments. Final results al-

lowed to geo-reference occurrences and perform an overall comparison between different roads. Finally,

conclusions and future work are draw in Chapter 5.
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Chapter 2

Maneuver Identification System

2.1 State-of-the-Art

In recent years, several studies in the areas of Autonomous Driving have been developed, with

special focus on vehicles detection, maneuvers evaluation and tracking. Playing a special role for traffic

surveillance systems, they provide useful information for traffic flow control and evaluation.

Concerning vehicle detection and tracking, the use of a non-static camera represents a real challenge

to estimate its pose and speed. Existing traffic surveillance systems are able to compute vehicles

speed processing image from static camera records, based on motion vehicle detection techniques

supplemented with lane and object detection techniques.

Streets classification systems concerning bicycles safety require complex systems and are still lim-

ited, once they require an investment in hardware to acquire information.

2.1.1 Vehicle Detection and Tracking

Object detection represents a challenge in the field of image processing such as traffic flow con-

trol, automatic accident detectors and vehicles counting, among others. A lot of methods have been

proposed, from background subtraction methods to more complex ones, based on motion estimation

techniques.

Occluded vehicles, obstacles, or different lightning conditions are some of the challenges that could

affect vehicles’ detection.

Some advanced approaches of background subtraction methods, in [22] have been proposed in the

last years combining statistical and parametric based techniques, with Gaussian probability distribution

models, or feature detection for complex scenes, which has proven to improve its performance under

poor illumination conditions and overcrowded scenes, as is presented in [23], in which a vehicle detection

approach based on local features is proposed.

In [24] an adaptive background extraction algorithm based on Kalman filter and support vector ma-

chine (SVM) is proposed. In [25], an algorithm for vehicle recognition and tracking Gaussian mixture
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models and blob detection model is presented, in order to count tracked objects for a traffic surveillance

system.

To address the need of improving autonomous driving systems several benchmarks have been de-

veloped, such as KITTI [26] focus on object scene flow, estimating 3D motion fields, using two high

resolution camera systems (grayscale and color), a laser scanner, and a localization system. A bench-

mark composed by mid-size-city environments, rural areas and highways with the aim of providing new

challenges and difficulties to the computer vision community.

2.1.2 Vehicle Speed Estimation

In the field of driving systems, vehicle velocity estimation represents a topic of research and studies .

In order to detect or predicted possible dangerous situations is necessary to compute a relative velocity

of a vehicle that appears in the field of view.

Traffic surveillance systems have been developed in order to estimate vehicles’ velocity, using sta-

tionary cameras. In [27], a Kalman filter based tracking system is applied in order to predict vehicles

future location and velocity after an image segmentation process, which suffers a rectification process

based on lane detection.

Similar approaches, as in [28] estimate vehicle speed considering a flat surface as a geometric

constraint, background subtraction methods are applied for object detection, followed by Lucas-Kanade

optical flow approach for tracking. Both apply projective transformations to original images in order to

rectify them.

In [29], lighter computationally image processing techniques are applied to detect and track vehicles.

A low-level license plate recognition is performed base on color information. Moving objects are detected

based on background subtraction methods.

Tracking is performed based on the difference between vehicles’ bounding box coordinates, and

speed is estimated through a predefined imaginary lines cross space with known distances and size,

if speed’s values exceeds its limit, the extracted license plate is immediately transmitted to a remote

station.

More recently, in [30] vehicle velocity estimation is performed with an average error of 1.12 m/s by

resorting to deep learning architectures for depth and motion estimation and features extraction based

on vehicle tracks, depth and motion.

In contrast to traffic surveillance systems that are under a fixed camera pose restriction, this approach

observer is located on a moving platform, which increases problem’s complexity due to the lack of

information such as camera pose, ego-motion and foreground-background segmentation.

2.1.3 Events Detection

Several studies have been developed to analyze driving behavior. An important portion of them uses

multiple sensor systems to gather data, as in [18]. Others noteworthy studies follow different strategies:
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detect risky driving patterns [19]; introduce a driver training system to prevent road accidents due to

unsafe driving [20]; and provide driver assistance systems [21].

In [17], a notification system immediately contact the emergency service in case of an accident

occurrence, consisting of a crash notification service for portable and nomadic devices. Due to the

seriousness of injuries caused in bicycle-car collisions and the need of immediately medical support,

adapting these systems for cycling may offer benefits and better handle real life situations where emer-

gency services must be contacted.

2.1.4 Previous developments

In previous developments of BikeMonitor, events estimation were performed based on the orientation

of optical flow vectors in order to estimate the direction of the surrounding objects, [1]. A proximity

perception of the surrounding objects has been developed in [2], together with the knowledge of cyclist

trajectory based on the estimation of the focus of expansion, in order to evaluate potential collisions.

2.1.5 License Plate Recognition

Concerning traffic surveillance and security control systems, license plate recognition represents an

important tool, making possible to identify traffic violation, tracking cars for urban surveillance systems,

among others.

Due to environment variations, such as non-uniform illumination conditions, vehicle motion, viewpoint

changes, and complex backgrounds scenes, license plate recognition has proven to be a real challenge.

Existing approaches work under restricted conditions, for instance stationary backgrounds or limited

vehicle speed. Dynamic scenes with various working conditions, where plates appear with different

sizes, orientations and positions combined with complex backgrounds increase the challenge’s com-

plexity.

Typically, license plate recognition involves two main stages: 1) license plate region detection and

2) license number recognition. Process all the pixels of an image, searching for specific characteristics

is not feasible, since it would increase processing time, therefore some approaches based on specific

features have been developed, focus on color, rectangular shape or texture in order to identify plates’

region.

Since 1990, this topic has been a matter of study, from simple approaches based on color based

methods, in [31] and [29], or edge based methods, as in [32] and [33], to more complex ones involving

machine-learning methods.

Edge features methods are simpler and faster than more complex methods, however its performance

highly depend on edges continuity.

Texture feature methods such as Haar-like features, which make the classifier invariant to brightness,

color, size and position of license plates, or Gabor filters in [34], that allow to analyze texture in unlim-

ited orientation and scales has proven to obtain good results, even in the presence of license plates’

deformation, however these methods are computationally heavy.
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Color feature methods are able to detect deformed plates with different inclination angles, however

methods based on HSV color space are very sensitive to noise and RGB representation depends highly

on illumination conditions.

An automatic recognition system is proposed, in [35], based on Convolutional Neural Networks

(CNNs), trained over synthetic data, which recreates a wide range of illumination and perspective con-

ditions.

In order to find a compromise between computational cost and results, some approaches combine

more than one feature and different methods, such as in [24], in which a combination between Haar-like

features and edge-based methods is proposed.

Recently, an open source Automatic License Plate Recognition library, OpenALPR [36], has been re-

leased. Detection module is performed with local binary patterns (LBP) algorithm, followed by possible

license region identification and optical character recognition (OCR) techniques for character segmen-

tation.

Also, regarding android application an automatic license plate recognition using a mobile device has

been proposed in [37], license plate numbers are extracted in machine-encoded text type from images

captured with devices’ camera, applying two OCR methods [38], Tesseract engine and Neural Networks.
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Chapter 3

Proposed Approach

The developed work is a vision-based vehicle detection and tracking system. It focuses on a vehicle’s

license plate, processing real-world data from cycling through the streets of Lisbon obtained with a

camera located at the bicycle handlebar.

One of the main challenges of this problem has to do with the quality of the analysis data. This

handicap is due both to the simplicity of available hardware (a non-static camera)and poor image quality,

due to trepidation. This is a characteristic of bicycle trips not easily solvable, resulting in less stable and

more noisy footage than of a vehicle’s dash cam, for example.

The system has 4 main modules: 1) Vehicles Detection, 2) Vehicle Tracking, 3) Speed estimation,

and finally 4) Maneuvers classification. In Fig. 3.1 the implementation process is presented.

Figure 3.1: Implementation process from a vehicle’s detection to maneuver identification.

All acquired data is uploaded through the app to the servers to be processed offline. During pro-

cessing, each license plate vehicle is detected and tracked. An optimization problem is considered to

match new detections with existing vehicles, and for each vehicle homography matrices are computed,

between all detections of the same vehicle in sequences of images, in order to estimate speed. Based

on speed values estimations is possible to identify overtaking maneuvers, and with GPS data provided

by the app, map the occurences.

Each module works independently from each other, for example the approach performed in the

first stage for vehicle detection with license plate recognition could be replaced for any other detection
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strategy, as long as the outputs maintain the same structure.

3.1 Data Set

The previous developed app [2] allows users to film their bicycle trips and upload them together with

matching global positioning system (GPS) and inertial measurement unit (IMU) information to the server.

The data set includes road trips taken by different cyclists around Lisbon, in which the camera is

located on the bicycle handlebar. In this work, GoPro acquired data was added to the existing data

set for more street diversity. The following data acquired with the app will be used: date and time of

measurements; GPS coordinates (latitude and longitude); and speed (m/s).

The resources available for video processing are very plain. The video images taken from either

GoPro or smartphone camera, together with the use of the other sensors, are not enough to overcome

low data quality due to unpredictable image variation, as a consequence of the erratic movement of the

camera’s support (bicycle handlebar) and trepidation.

3.2 Detection

Vehicles detection is performed using OpenALpr software in [36], which will provide both license

plate corners coordinates and license plate character sequence. OpenAlpr’s image based process can

be divided in two main steps: 1) Low level features analysis, in which a search of corners and edges

is performed and 2) Character Analysis. The input elements correspond to an image or a video file. In

Fig.3.2 the input and output image of this method are illustrated.

(a) (b)

Figure 3.2: License Plate Recognition. (a) Input image; (b) Output image.

By imputing a frame of real-life footage, Fig. 3.2(a), OpenALpr outputs a license character combina-

tion and corresponding set of corner coordinates, Fig.3.2(b). These outputs will be used in the tracking

module.

Each image is distorted, as shown in Fig. 3.3 taking into account a set of predefined homography

parameters. This process improves detection accuracy and detect plates that could not be recognize

due to the angles from where images were taken. This feature improves results for cameras filming at
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close distance, from a fixed point and for scenarios where all plates that generally are seen at the same

angle.

Once a specific maneuver is being analyze, it is possible to define an interval of values for orientation

and position of plates and use this feature to identify plates of overtaking vehicles. An example is

illustrated as follows.

(a) (b)

Figure 3.3: Homography distortion applied to an image. (a) Original image; (b) Distorted image.

OpenAlpr’s software is able to locate several license plates in a single image, and for each detection

identify a subset of possible character combinations with corresponding confidence levels. In the first

phase possible plate regions are identified with LBP algorithm [39].

After this, a character region identification is performed, if no possible regions are identified, the

process begins for another image, otherwise another process begin. This first phase is responsible for

identifying a possible region, that will be analyzed in the second phase in order to determine the most

suitable edge, based on plate’s ideal dimensions and a list of possible horizontal and vertical lines (width

and height), which are represented bellow, in Fig. 3.5.

(a)

(b)

Figure 3.4: License Plate Region estimation. (a) Hough Lines; (b) Winning Lines.

The second phase is divided in four steps: 1) Plate edges identification, as explained above, 2)

Deskew, 3) Character Segmentation and analyze and 4) Post processing.

After plate edges identification each image plate is remapped, removing distortion angles, and a

character segmentation is performed based on vertical histogram analyses to find gaps between plate

characters and discard edge regions that could lead to false identifications as well as dismiss regions

with lack of information.

Each character is independently processed in OCR [38] stage, in which all possible characters and

13



(a)

(b)

Figure 3.5: Character Segmentation. (a) Character Segmentation Input; (b) Character Segmentation Output.

correspondent confidences are determined.

Finally, possible plate character combinations are determined, all characters bellow certain thresh-

olds are disqualified. Besides this, a region validation is possible taking into account license plate format

to perform a match between results and plate format, allowing to discard results that do not correspond to

the expected format. The final output correspond to a license character combination and corresponding

set of coordinates, that will be used in the next step.

Through a configuration file, it is possible to define a set of homography parameters that could con-

tribute to improve detection module performance, images suffer homography transformations based on

these parameters.

In this context, define a good set of parameters that cover all the cases represented a major chal-

lenge. Therefore, 21 images with vehicles in different environments (lightning conditions, orientation,

position, among other) were processed with different sets of configuration files. For each configuration

file the number of successful detections were taken into account. The set of 3 configuration files able to

successfully detect license plates on this specific data set were chosen has the final configuration set

and applied in detection module.

Each video file was processed with 3 different configuration files, with this approach the number of

detections increased in almost 1/3 of the number obtain if only one configuration file was used.

License’s Plate sequence identification represents an advantage in order to detect and track specifc

vehicles. Therefore, its performance had to be taken into account in the tracking module. A brief analysis

to letters sequence recognition have been performed, in which 335 detections were evaluated and re-

sults are presented in Table3.1.

Table 3.1: License character sequence recognition performance.

Number of characters correctly identified %

6 37.26

5 30.34

4 22.88

3 5.42

2 4.11

For instances, lets consider that a vehicle has been detected, in which the license plate sequence
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is correctly identified in 8 frames. It is important to notice that these detections could have been taken

in consecutive or spread moments of time. In 5 detections, only 4 letters have been correctly identified.

Sequences with 4 and 3 characters have been identified in 5 and 3 frames, respectively. The tracking

module must be prepared to deal with this small variations in order to considered a larger number of

detections.

For this reason the cost variables defined in the tracking module, were determined taking into account

not only license plate character sequence similarity as time and distance between detections contribu-

tion, in order to penalize the decision based not only on the number of similar letters, that may discard

possible correct matches.

3.2.1 Outliers

One of the main challenges relied on discard possible outliers. Advertising in vehicles due to its

characteristics lead to misleading detections, represented in Fig. 3.6. Identify outliers of specific events

with few detections and evaluate them correctly represented a real challenge. For instances, the number

of detections to parked cars vary from around 4 to 6 detections per vehicle, an error in one detection or

more could lead to misleading results and influence events identification.

Figure 3.6: Other sequence of numbers is identified on the vehicles rare.

3.3 Vehicles Tracking

Based on licenses plate features and their location in the images it is possible to track vehicles in

consecutive frames. The correspondence between detected plates in the current frame F and previous

ones is computed solving the following linear program:

x∗ = argminx cT x (3.1)

s. t. Ax≤ b (3.2)

Aeqx = beq (3.3)

x≥ 0 (3.4)
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where x is the stacked vector of matrix X , presented in (3.5) and represents the optimization variable,

and c is the stacked vector of matrix C. Considering m vehicles in frame F−1 and n detections in frame

F , matrix C and X are given by

X =



x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
...

...

xn1 xn2 · · · xnm

xn+1,1 xn+1,2 · · · xn+1,m


(3.5)

C =



c11 c12 · · · c1m

c21 c22 · · · c2m
...

...
...

...

cn1 cn2 · · · cnm

cn+1,1 cn+1,2 · · · cn+1,m


(3.6)

Each element, cnm, represents the final cost of associating a new detection, n, with the previous

vehicle, m. For instance, if xnm is equal to the value one than the cost, cnm, of associating a new detection,

n, with a previous vehicle, m, will be selected. Since matrices A (3.2) and Aeq (3.3) are totally unimodular,

the solution of this convex optimization problem is integer [40].

In order to improve method robustness concerning possible errors of license plate detection (e.g.

characters and location misleading), the last detections of a vehicle m occurred at frames F , F −1 and

F−2 were considered as the following expression shows,

cnm = wb1cnmF +wb2cnmF−1 +wb3cnmF−2 (3.7)

The cost of associating a new element n to a specific detection of a vehicle m in a certain frame F is

given by cnmF , which depends on the number of similar letters, distance between license’s centroids in

consecutive frames and lapsed time.

cnmF = lnmF −w1 log( δd
dnmF

)−w2 log( δr
rn−rv

) (3.8)

The term lnmF quantifies how many similar letters a new license plate n and a tracked license plate

mF have in common. Since character recognition output results for the same license plates varies in

different instance, there was the need to add more variables, taking into account the difference between

centroids and time intervals.

The term dnmF expresses the difference between centroids of licenses mF and a new detection n.

Here, logarithm function is used in order to penalize the part of the cost function associated with lnmF

values. For values above the defined threshold δd , the cost value increases. Otherwise, when the

distance between the centroids is small, the cost function decreases, which contributes for a possible

matching.
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A time contribution part has to be taken into account, once an overtaking maneuver is performed

at short instances of time. Time intervals above a certain threshold δr penalize the final cost value

cnmF . The variables rn and rv, represent current time instance and the last time vehicle m was detected,

respectively. The influence of time and distance between licenses centroids is determined by a set of

weights = [w1,w2], which were tuned empirically.

Finally, the set that includes all active tracked vehicles is given by V = {v1,v2, ...,vm}, which includes

for each vehicle a subset of mF detections of the same vehicle. If there is no possible correspondence

between a new detection n and tracked vehicles in V , a new vehicle is added to V and in the next

iteration a new column will be added to the cost matrix. In order to deal with new detections without

correspondences, we add an extra row to C in Equation (3.6) where each entry - cn+1,1, · · · ,cn+1,m - has

the same value γ.

In this stage, all tracked vehicles in the subset V are obtained by solving the optimization problem

(3.1-3.4) for each frame.

A simple problem instance is represented in 3.9 , in order to illustrate these concepts, where matrix

C represents the cost matrix and cnm correspond to the cost of associating a new detection n to a

previous vehicle m. The number of columns of C represents the number of previous detected vehicles

(max{m}= 4), with which the new detection must be compared.

C =

c11 c12 c13 c14

γ γ γ γ

 (3.9)

In this example when a new detection n is processed, there are 4 vehicles on the tracking set V that

can be a possible match with the new vehicle. Here, each entry - cn+1,1, · · · ,cn+1,m - has been substitute

with the value γ. If no match is found, i.e. c1m > γ, for each value of m = {1,2,3,4}.

When more than one license plate is identified per frame, for instances n = {1,2}, a new line is added

to the Cost Matrix, represented in 3.10.

C =


c11 c12 c13 c14

c21 c22 c23 c24

γ γ γ γ

 (3.10)

If there is no possible correspondence between a new detection n and tracked vehicles in V , a new

vehicle is added to V and in the next iteration a new column will be added to the cost matrix. In the other

hand, if a match is found, the new element n will be introduced on the subset mF of the corresponding

vehicle in the set V .

This stage is completed when all the elements of detection output are analyzed. The final output is

a matrix with all tracked vehicles V , in which for each element vm a subset mF with license sequence,

corners coordinates and time instance information is associated.

Since overtaking maneuvers occur in small instances of time, i.e. between several detections of the

same vehicle performing an overtaking maneuver the time difference between consecutive detections

correspond to 3-5 frames (0.12-0.4 seconds). There is no advantage of comparing new detections with
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old detected vehicles, therefore a set of active vehicles in V is taken into account to compare with a new

detection n. In other words, a current detection n is compared with all previous detected vehicles inside

a time window, as illustrated in Fig.3.7.

Figure 3.7: Scheme representing the subset of active vehicles to compare with a new detection n, defined by a time
window [ rn− rw , rn] .

In summary, for each new detection n only a subset V ‘, with the most recent tracked vehicles, will be

considered. It is worthy to note that even if this time window was not applied these old detections would

be discarded in Equation (3.8), since a time parcel is taken into account. The value of the cost cnm will

increase to infinite for old detections, that would be automatically discard as possible matches.

Once tracking module has finished, a matrix with all detections for each vehicle is generated. Each

element of tracked vehicles contains information concerning time instance and license plate coordinates.

3.4 Vehicle Speed Estimation

In order to estimate the transformation and rotation of a planar object in two images it is necessary to

compute and decompose the homography matrix, which allows to map an object in the first image into

the second image and vice-versa. In image processing field, this is a common technique to estimate

pose, compute 3D objects’ reconstruction with several 2D images and perspective correction, among

others.

The camera displacement can be extracted through an homography decomposition process. The

relationship between two corresponding points q (qx, qy) and q′ (u,v) can be described as:

λ


qx

qy

1

= H


u

v

1

 (3.11)

where λ represents a scalar factor and H is a 3 x 3 homography matrix, given by H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

.

Solving equation (3.11), it is possible to obtain the following equations:
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−h11qx−h12qy−h13 +(h31qx +h32qy +h33)u = 0 (3.12)

−h21qx−h22qy−h23 +(h31qx +h32qy +h33)v = 0 (3.13)

These equations can be represented in a matrix form

Aih = 0 (3.14)

where Ai is a 2 x 9 matrix, and h is a vector with 9 elements with the entries of matrix H.

Ai =

−qx −qy −1 0 0 0 uqx uqu u

0 0 0 −qx −qy −1 vqx vqu v

 ,

h =
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
,h33 = 1

(3.15)

Each point correspondence provides two independent equations. Since H has 8 degrees of freedom,

given a set of four corresponding points, it is possible to find a solution. From this set of points we can

define a set of equations Ah = 0, in which A is formed by the elements of each matrix Ai, for each

corresponding points, and h is the vector of unknown entries of matrix H. Final A matrix will have

dimension 8×9 and a 1-dimensional null-space that corresponds to the solution space for h.

Pose Estimation

Considering Pi as the reference plate coordinates in the 3D world and pi the points on the image of

the reference frame, it is possible to write the following map


u′i

v′i

λi

= K
[
R t

]
·


px

i

py
i

pz
i

1

 , i ∈ {1,2,3,4} (3.16)

where K is the intrinsic camera matrix, R a rotation matrix, t a translation vector and α a scalar factor.

Regarding to the reference plate, Pi =
[

px
i py

i pz
i

]
is the 3D location of corner i. Since the camera

observes a planar object, it is possible to consider the reference plate at the plane pz = 0 and estimate

the homography matrix, presented as follows.

λi


ui

vi

1

= K
[
R′ t

]
︸ ︷︷ ︸

H

·


px

i

py
i

1

 (3.17)

where the pair (ui,vi) represent the 2D projection of corner i and R′ contains the two first columns of R.

With à prior knowledge of license plate dimensions ( px
i and py

i are known), together with the detection
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of license’s 4 corners in the image it is possible to compute homography matrix H, defining for each

license plate corner the values Ai of Equation (3.15), consequently determine the set of equation Ah = 0

for all points and compute the solution space for h.

Since it is possible to compute H and the intrinsic camera matrix K is known, R′ matrix and translation

vector t are estimated according to

K−1H︸ ︷︷ ︸
G

= α

[
R′ t

]
(3.18)

Given matrix G′ composed by the first two columns of G, R′ is the closest orthogonal matrix closest to G′

as the following optimization problem states

R′ = argminX ||G′−X ||2F (3.19)

s. t. XT X = I (3.20)

Although this problem is non-convex due to the constraint, it has a closed-form solution. Computing

the singular value decomposition (SVD) of G′,

G′ =U

λ1 0

0 λ2

V ∗, (3.21)

R′ is given by

R′ =UV ∗, (3.22)

Estimating R′, the translation vector t and the scalar factor α are computed according to the following

expressions

α =
λ1 +λ2

2
, (3.23)

t =
G′′

α
(3.24)

where G′′ is the last column of G.

For each vehicle, rotation Rm = {Rm
(c1,l1)

,Rm
(c2,l2)

, ...,Rm
(cF ,lF )

)} matrices and translation tm = {tm
(c1,l1)

,

tm
(c2,l2))

},. . . , tm
(cF ,lF )

) vectors are computed between several license plates for the same vehicle m. Consid-

ering that each Rm and tm correspond to the transformation applied to the camera coordinates in order to

see all license plate in pz=0, i.e. the camera moves in relation to the reference plate (lm
1 = lm

2 = . . . = lm
F ).

This approach is described in Fig. 3.8.

Notice that tci j is equivalent to ti j once the translation between camera coordinates ci and c j will be

the same as between license coordinates li and l j, therefore from now on the most simplified notation

will be used, where i and j represent two license plates of the same vehicle detected in diferent time

instances.

The translation vector between license plates in two different frames (i,j) can be computed as tm
(i, j) =

tm
j − tm

i . In F frames, we have the set of translation vectors between consecutive license plates of a

vehicle m given by, tm = tm
(1,2), ..., t

m
(1,F), ..., t

m
(F−1,F).
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𝑐2
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o = (0,0,0)

Figure 3.8: Rotation matrices and translation vectors estimation between two detections.

This being said, it is possible to compute translation vectors between all camera coordinates, tm =

{tm
c12

, tm
c13

, ..., tm
cbF

)}, where b represents the number of possible combinations of mF elements taken 2 at a

time, b = mF !
(mF−2)!2! .

In this case, we can compute the speed for each translation vector, based on the translation values

tm
(i, j) and corresponding time intervals. A new set spm = {spm

(1,2), ...,spm
(1,F), ...,spm

(F−1,F)} is defined, where

spm
(i, j) = ||t

m
(i, j)||/(r j − ri) and ∆dist(i, j) = ||tm

(i, j)||. This values, together with corresponding time intervals

allow to compute speed final values sp = {sp1,sp2, ...,spb}, given by

spm
i =

∆distm
(i, j)

ri−r j
(3.25)

where variables ri and r j, represent detection’s time instance, and ∆dist(i, j) represents the distance

between the coordinates of camera ci and c j. Distance estimation between two license plates detected

at different time instances is represented in Fig.3.9. For simplicity reasons, in the example presented

the camera moves only along z-axis (no variation along x-axis and y-axis), and as a consequence

∆distm
(i, j) = ∆zm

(i, j).
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(a) (b)

Figure 3.9: Distance measurement between two detections, l1 and l2 represent two license plates detected at differ-
ent instances of time. (a) Vehicle performing an overtaking maneuver, z2 > z1; (b) Cyclist performing an overtaking
maneuver, z2 < z1.

3.5 Maneuver Identification

This being said, it is possible to distinguish if the camera is approaching or moving away, which is

equal to determine if the vehicles (license plates) are moving away or approaching respectively and

consequently determine if the cyclist is being overtaken by a vehicle or if it is performing an overtaking

maneuver to a vehicle, as it is illustrated in Fig. A.1.

An overtaking maneuver is illustrated in Fig. 3.10, in which a vehicle is detected and tracked for

0.6 seconds, 15 successful detections were performed, and the final value of speed computed (31.49

km/h.) Based on Fig.3.11, it is possible to conclude that the vehicle travels approximately 3 meters and

(a) (b)

Figure 3.10: Overtaking maneuver example. (a) Vehicle detected performing an overtaking maneuver; (b) 2D
Representation of all detections of the same vehicle with respect to time.

that the measurements become irregular with distance, which is expected since detection performance

decreases with distance. A different perspective is presented in Fig. A.2, in which it is possible to
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observe that the vehicle moves not only on the z-axis (straight line) but also on the x-axis, describing the

expected behavior of an overtaking maneuver performed at a left turn.

Figure 3.11: 3D Representation of all detections of a vehicle performing an overtaking maneuver.

In the other hand, when a cyclist overtakes a vehicle (parked or moving) the values along the z-

axis decrease. An example of an overtaking maneuver performed by a cyclist to a parked vehicle is

presented in Fig. 3.12. Once the vehicle is approaching vehicles speed is expected to be negative in

the bicycle reference frame, and null in the world reference plan.

(a) (b)

Figure 3.12: Cyclist overtakes parked vehicle. (a) Vehicle parked at the right side of the road; (b) 2D Representation
of all detections of a parked vehicle with respect to time.

In this case cyclist is slowly approaching the vehicle, 9 detections were performed, which allowed to

estimate vehicle speed (≈-16 km/h) with respect to the bicycle reference frame and conclude that an

overtaking maneuver is performed by the cyclist. A 3D reconstrution of the scene is presented in Fig.

3.13, the values along the z-axis decrease as the cyclist approaches the vehicle. In Fig.A.3 a different

perspective is presented.

Theoretically, it would be possible to define a set of four line that intersect the cornes of each license

plate on the 3D image, however due to detection errors this is not possible and the error will influence 3D
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Figure 3.13: 3D Representation of all detections of a parked vehicle.

reconstrution results. Small variations of detected points on the 2D image represented in Fig. 3.10(b)

could lead to misleading results on the 3D reconstruction in Fig. 3.11. In Fig. 3.12(b), from the 6th to

the 7th detection license plate area incorrectly decreases, which will afect the 3D reconstruction and

lead to misleading results, as it is represented in Fig.3.13 and in Fig.A.3 , the reconstruction of detection

number 7 is incorrect.

3.6 Mapping

Detection and tracking results together with GPS data gathered with a smartphone, allowed to iden-

tify where the overtaking maneuvers occurred, and characterize specific streets and neighborhoods. For

each trip, an occurrences map has been created, in Fig. 3.14 an example is presented. A color range

was defined in order to represent certain speed intervals, presented as follows.

Table 3.2: Color range representation for speed intervals

Speed Color

sp ≤ 20 green

20 < sp ≤ 30 yellow

30 < sp ≤ 40 orange

40 < sp ≤ 50 red

sp > 50 black
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Figure 3.14: Georeference of overtaking maneuvers detected for a single trip.
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Chapter 4

Results

4.1 Overtaking Maneuver Identification

More than 7 hours of bicycle trips were processed, with almost 120 kilometers traveled at differ-

ent times of the day. Results analysis allowed to conclude that detection performance decreased with

distance. Therefore, 3 types of overtaking maneuvers were considered in order to perform a detailed

evaluation based on lane delimitation. Identifying overtaking maneuvers performed near cyclists is ex-

tremely important in order to assess the potential danger and characterize roads concerning bicycles

suitability. Results analysis concerning each type of maneuver are presented in Table 4.1.

Figure 4.1: Overtaking zones based on lane division. (a) Overtaking type 3; (b) Overtaking type 2; (c) Overtaking
type 1.

A scheme of the predefined zones is illustratted in Fig. 4.1, which aims to represent several possible

scenarios, in which the tests have been performed, such as roads inside neighborhoods with only one

lane to share to more complex environments (increased traffic flow, number of lanes, parking areas,

among others).

Determine detection’s performance for overtaking maneuvers of type 1 and estimate vehicles’ speed

error will be the main focus of this evaluation. Each time a vehicle overtakes a cyclist sharing the same

lane it is considered as an overtaking of type 1. Overtaking maneuvers performed for more than three

lanes apart from the cyclist were considered as type 3, in Fig. 4.1(a) , and will not be considered for
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results analysis, once it is not possible to identify license plates above 2 lanes apart from the cyclist.

Table 4.1: Detection results for each type of overtaking maneuver.

Overtaking Maneuver Detected (%) Total

Type 1 187 78.9 237

Type 2 143 47.9 298

A total of 187 overtaking maneuvers of type 1 over 237 were correctly identified. False positives (FP)

correspond to misleading results due to incorrect detection or tracking of vehicles. Tracking of parked

vehicles and advertising areas correspond to 5.71 % of the total number of identified maneuvers.

All overtaking maneuvers of type 1 that failed to be identified have been considered as false negatives

(FN), 21.1%. However, it is worthy to differentiate possible maneuvers that failed to be identified in Fig.

4.2(b) from others that are not possible to identify due to poor image quality or lightning conditions, in

Fig.4.2(a). Considering this, 2 types of false negatives have been defined. For 50 missed detections,

74% of overtaking maneuvers were considered to be failed and 26% could not be identified. In summary,

from the total number of detections, 15.61% were not correctly identified, in which 5.49% were not

possible to identify with this approach.

(a) (b)

Figure 4.2: False negatives representation. (a) Overtaking maneuver missed due to trepidation, it is not possible
to identify a license plate.; (b) Overtaking maneuver missed, lightning conditions and reflections influence detection
performance.

Since the performance of this approach depends strongly on detection performance, which de-

creases with distance, failed detections of overtaking maneuvers performed at more than 2 lanes apart

from the cyclist were not considered for this evaluation.

Poor lightning conditions and poor image quality due to the natural trepidation caused by bicycle

movement, makes this detection a real challenge once license plate identification depends heavily on

lightning condition and image stabilization. Speed estimation is based on the coordinates of detected

license plates, which if not correctly estimated could lead to incorrect speed estimation measurements.

Analyzing the results presented in Table 4.1 it is possible to take the following conclusions concerning

overtaking of type 1:
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• 78.9% of overtaking maneuvers were correctly identified.

• 5.71% of the detections performed are false positives.

Regarding, overtaking maneuvers of type 2, only 47.9% were identified, which emphasizes how

overtaking maneuver detection performance decreases with distance.

4.2 Speed Estimation Error

As far as the authors are aware, there is no available data set with ground truth values concern-

ing vehicle’s speed estimation moving at bicycles surrounding, and with image sequences taken on a

bicycle.

This being said, in order to compute speed estimation error, 95 overtaking maneuvers were ana-

lyzed. The real license plate coordinates were determined by hand and the correspondent speed values

computed. Final results were determined for two distinct events: 1) vehicle overtakes bicycle and, 2)

bicycle overtakes vehicle, with 4.5 km/h and 6.34 km/h of error, respectively.

The significant difference between the error of being overtaken and be the one that overtakes, is

due to the fact that mostly of the overtaken vehicles associated with a large error correspond to parked

cars. In this cases, the cars emerge at the right side of the road and a small number of detections is

performed for each vehicle. Few detections to a vehicle hinder outliers identification performed in the

tracking module.

The parameters defined in vehicle detection module, were chosen to identify licenses for overtaking

maneuvers performed at bicycle’s left side, in detriment to the right side. Therefore an increased error

for vehicles merging at bicycles’ right side is expected.

4.3 Application

The traveled areas were segmented into 7 zones, as shown in Fig.4.3. For each area a subset of

roads were selected to perform a detailed comparison and possible conclusions. A brief description of

each area is presented as follows.

• Area A: represents a small neighborhood (Campo de Ourique) with roads with only one lane and

parking areas.

• Area B: roads with more than 2 lanes, where the average speed and traffic flow increase.

• Areas C: roads with one to two lanes, cycle lanes and mixed traffic zones (speed limit above 30

km/h).

• Area D: roads with one to three lanes and large roundabouts.

• Area E: roads with one to two lanes, cycle lanes and large roundabouts.

• Area F: main avenue that connects to the historical center.
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• Area G: historical center, requested area that is under restricted circulation laws, due to the over-

load vehicles circulation. Cycle lane areas.

A

B

E F

C

D

G

Figure 4.3: Representation of traveled areas segmented into 7 different zones.

A total of 288 overtaking maneuvers have been identified in these areas, final results are presented

in table 4.2. Based on the results obtained it was possible to draw the following conclusions.

More than 70% of overtaking maneuvers that occurred inside neighborhoods are performed below

30 km/h. This values are highlighted in Table 4.2 for areas A and C. In the other hand, areas with

roads with increased number of lanes and traffic flow, as in area B present more than 60% of overtaking

maneuvers performed above 30 km/h.

In area D, results seem to be distributed in all ranges, this suggests that this area could be divided into

two different area in order to obtain more conclusive results. In area E, 75% of overtaking maneuvers

were detected at less than 30 km/h. Similar to area A, area G is by far the area where overtaking

maneuvers were performed with the lowest speed, 85.71% of overtaking maneuvers were performed

under 30km/h, fact that could be explained by the existence of several cycle lanes on this area.

Finally, area F represents a main street, that connects to the historical center of the city, and as a

consequence is the street with less video samples and more overtaking maneuvers detection (28%)

over the total number of overtaking maneuver detections for the entire data set, which emphasizes how

requested this street is compared with others. In this street, 60% of the overtaking maneuvers were

performed above 30 km/h. In this particular street, represented in Fig. 4.7(b) it is worthy to notice that

vehicles speed decrease close to the intersections, at the beginning and the end of the path highlighted
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in Fig.4.7(a).

Table 4.2: Overtaking maneuvers detections results with area and speed range specification.

`````````̀Speed(sp) [km/h]
Area A B C D E F G Total

sp ≤ 20 59.09% 12.20% 50% 22.41 % 27.78% 24.36 % 66.67% 84

20 < sp ≤ 30 18.18% 21.95% 18.75% 15.52% 47.22% 15.38% 19.05% 61

30 < sp ≤ 40 13.64% 43.90% 18.75% 25.86% 19.44 % 24.36% 9.52% 69

sp > 40 9.09% 21.95% 12.50% 36.21% 5.56% 35.90% 4.76% 66

Total 22 41 32 58 36 78 21 288

4.3.1 Characterization

For each area, a set of main roads were chosen for evaluation purposes. These roads are possible

candidates to suffer changes in order to increase the network of bike lanes [41]. In Table 4.3, for each

road the main characteristics are highlighted.

Area A: Campo de Ourique

In this residencial area with streets with only one lane and parking areas 77% of detected maneuvers

were performed under 30 km/h, with 59% above 20 km/h. Besides this, compared with the results of

other areas presented in Table.4.2, only 7.6% of the total number of detected overtaking maneuvers

occured in this area. This can be explained by the fact that in this area each street has only one lane

and parking areas in both sides of the road which may hamper drivers to perform overtaking maneuvers.

Figure 4.4: Representation of all overtaking maneuvers detected in Campo de Ourique.

Area B: Avenida Conselheiro Fernando de Sousa and Rua Carlos Alberto da Mota Pinto

In this area represented in Fig. 4.5(a) the traffic flow increases ( 14%) comparatively to area A (7.6%),

once the streets covered in this area, present completely different characteristics. Avenida Conselheiro
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Fernando de Sousa highlighted in Fig.4.5(a) has 3 lanes for each direction, parking areas on the right

side of the road and ends at a complex intersection. The results reflect these characteristics with 93%

of overtaking maneuvers performed above 30 km/h.

After the intersection Rua Carlos Alberto da Mota Pinto emerges with only 2 lanes, connected with

Avenida Conselheiro Fernano de Sousa through a complex intersection. The number of detected over-

taking maneuvers has remain the same for the two streets, however a difference between the values

for speed is noticed. In Rua Carlos Alberto da Mota Pinto 43% of overtaking maneuvers were detected

below 30 km/h, in contrast to Avenida Conselheiro Fernano de Sousa, in which 40% of the overtaking

maneuvers were detected above 40 km/h.

(a) (b)

Figure 4.5: Representation of all overtaking maneuvers detected in several trips in 2 specific streets. (a) Avenida
Conselheiro Fernando de Sousa and Rua Carlos Alberto da Mota Pinto highlighted; (b) Georeference results.

Area C: Avenida 5 de Outubro and Avenida António Serpa

This two streets, represented in Fig.4.6 give access to main streets with large traffic flow along the

day. Although Av. António Serpa have been recently changed to a mixed traffic road, in which a cycle

lane is integrated and a speed limit of 30 km/h is posted, 75% of the overtaking maneuvers exceeded

30 km/h. In the other hand, in Av. 5 de Outubro 69.23% of overtaking maneuvers occurred at less than

30 km/h.
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(a) (b)

Figure 4.6: Representation of all overtaking maneuvers detected in several trips in 2 specific streets. (a) Av. António
Serpa and Av. 5 de Outubro highlighted; (b) Georeference results.

Area F: Avenida Almirante Reis

In Avenida Almirante Reis 25% of the total number of overtaking maneuvers were identified, proving

that this main street has an increased traffic flow compared with other as Area A, where only 6.67% of

the total number of overtaking maneuvers were identified. Concerning speed, the results prove to be

inconclusive since the values spread equally for all intervals, which suggest that new sections could be

considered. The overall results obtained for each street concerning overtaking maneuvers speed are

presented in Table. 4.3.

(a) (b)

Figure 4.7: Representation of all overtaking maneuvers detected in several trips in a specific section of a street (Av.
Alm. Reis). (a) Av. Almirante Reis highlighted; (b) Georeference results.
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Table 4.3: Overtaking maneuvers detections results. Street and speed range specification.

````````````Streets
Speed (sp) sp ≤ 20 20 < sp ≤ 30 30 < sp ≤ 40 sp > 40

Campo de Ourique 59.09% 18.18% 13.64% 9.09%

Av. Conselheiro Fernando
de Sousa 0 6.67% 53.33% 40%

Rua Carlos Alberto
da Mota Pinto 7.14% 42.86% 35.71% 14.29%

Av. 5 de Outubro 53.85% 15.38% 30.77% 0

Av. António Serpa 25% 0 50% 25%
Av. Almirante de Reis 24.36% 15.38% 24.36% 35.90%
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Chapter 5

Conclusions

5.1 Conclusions

A new method for speed estimation is proposed in this work, based on license plate detection and

tracking, in order to identify and classify overtaking maneuvers performed by vehicles in the cyclists’

surroundings. A method to estimate overtaking maneuvers speed has been presented, together with

an occurrences map creation, providing a framework for later path characterization concerning bicycles’

suitability and safety.

Furthermore, the proposed approach is suitable for implementation in real time systems, through an

adaptation of detection module that requires an off line process for the presented approach. The results

achieved can be used to complement existing approaches to assess risk of approaching vehicles as

in [15] and alert the drivers, contribute to path characterization, as in ([1] and [2]), and provide useful

information for classifying roads concerning bicycle suitability accordingly to the criteria mentioned in

Table B.3.

It was possible to distinguish different urban areas based on the speed of detected overtaking ma-

neuvers. Besides this, the results obtained matched the expected results, based on static classification

of specific urban areas, concerning traffic flow and speed limits. It was possible to characterize calm

neighborhoods ( area A and G) where at least 60% of detected overtaking maneuvers were performed

under 20 km/h, to more requested areas, where almost 60% of overtaking maneuvers were detected

with speed values above 30 km/h.

The developed method works with independent modules, which represents an advantage since dif-

ferent strategies can be considered to each module in order to improve results.

5.2 Future Work

In this problem context, Portuguese’s license plate were being identified as generic European license

plate. Character recognition module could be adapt to identify sequences of symbols with a known

structure, or other approaches could be applied, focus on specific features to more complex methods.
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License Plate recognition performance depends heavily on lightning conditions and poor image

quality, caused by the natural trepidation caused by bicycle movement. An improved mechanism to

hold the camera could be considered in order to acquire more data and achieve more robust results,

once speed estimation is based on the coordinates of detected license plates, which if not correctly

estimated could lead to incorrect speed estimation measurements.

The proposed approach can be improved by defining new sets of parameters to handle more specific

events, such as bicycle overtaking moving cars, which represent an important information to characterize

roads concerning traffic flow. It would also be worthwhile to identify parking areas, which may influence

the bicycle suitability of a road. Besides the detailed approach, collecting more data in different areas

at different hours of the day using cyclists with different experience would provide a more complete data

set.
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Appendix A

Figures

A.1 Overtaking Maneuvers Identification

Figure A.1: Distance measurement between two detections, ln and ln+1 represent two license plates detected at
different instances of time. Vehicle performing an overtaking maneuver, zn+1 > zn; Cyclist performing an overtaking
maneuver, zn+1 < zn.
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Figure A.2: 3D Representation of all detections of a vehicle performing an overtaking maneuver.
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Figure A.3: 3D Representation of all detections to a parked vehicle.
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Appendix B

Tables

B.1 Streets Characterization

Table B.1: Bicycle suitability methods, acronym, reference, citation and date.

Method Acronym Reference Date

Bicycle safety index rate BSIR Davis [42] 1987

Bicycle Stress Level BSI Sorton and Walsh [43] 1994

Road Condition Index RCI Epperson [44] 1994

Interaction Hazard Score IHS Landis [45] 1994

Bicycle Compatibility Index BCI Harkey et al [46] 1998

Bicycle Suitability Assessment BSA Emery and Crump [9] 2003

Bicycle Environmental Quality index BEQI Fehr and Peers [7] 2009

Bicycle Level of Stress BLOS HCM2010 [5] 2010

Level of traffic stress LTS Mekuria [47] 2012

Multi-modal Level of Service MMLOS HCM6 [48] 2017
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Table B.3: Specific streets characterization.

`````````̀Street Name
Feature Area Number of lanes Speed limit [km/h] Parking areas Intersections Roundabouts

Av. António Serpa C 2 30 Yes Yes No

Av. 5 de Outubro C 2 50 Yes Yes No

Av. Almirante de Reis E 2 50 Yes Yes No

Av. Conselheiro Fernando de Sousa B 3 50 Yes Yes No

Rua Carlos Alberto da Mota Pinto B 2 50 No Yes No

Av. Afonso Costa F 3-4 50 No No Yes
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