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Abstract

Vision is one of the most important sensing modalities in nature
because of the valuable, thorough information it can provide about
the environment. Vision sensing can come in different flavors
ranging from human vision, where images are perspective views
that follow the pinhole model, to insect vision where compound
eyes with ommatidia design enable the acquisition of multiview
images of nearby objects which are highly effective to live and
navigate in fast changing 3D environments. Recent technologi-
cal advances allow mimicking this natural, multiview vision using
plenoptic cameras. This thesis approaches plenoptic vision for the
case of cameras that combine a single high-definition imaging sen-

sor, a microlens array and a main lens.

The plenoptic camera does not follow the pinhole model that is
broadly used in computer vision to describe the projection in con-
ventional cameras that mimic the human eye. The plenoptic cam-
era can be understood as a human eye where the retina is replaced
by a compound eye, and where geometric and depth perception as-
pects deviate from what is taught in classical 3D computer vision.
In this thesis is taken the constructive approach of leveraging clas-

sical projection models to represent plenoptic cameras as camera
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arrays that are familiar and intuitive to the average practitioner.
State of the art calibration tools for plenoptic cameras are incor-
porated based on the proposed representation. New functionalities
are added such as estimating disparities with differential operators.

The contributions of this work comprise (i) models that describe
both standard and multifocus designs of the plenoptic camera in a
common framework, (i1) a seminal study that analyzes the depth
reconstruction capabilities of the standard plenoptic camera, (ii1)
new calibration methods that build on the proposed representation
of the plenoptic camera as a camera array to estimate the cali-
bration parameters in a linear, intuitive manner, and (iv) improve-
ments on existing single image reconstruction methods based on

intrinsic depth cues and on the concept of affine Lightfield (LF).

Keywords: Plenoptic Cameras, Camera Arrays, Calibration, 3D

Reconstruction, Affine LF
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Resumo

A visdo € um dos sensores mais importantes na Natureza devido
a valiosa e detalhada informagao que fornece acerca do ambiente
circundante. Esta capacidade sensorial abrange diversos sistemas
visuais desde a visdo humana, que adquire imagens de perspec-
tiva seguindo o modelo pinhole, até a visao de insecto onde os
olhos compostos por omatideos permitem a aquisicao de imagens
multiview para objetos proximos que tornam eficaz a navegagao
num mundo 3D em constante mudanca. Os recentes avangos tec-
noldgicos permitem simular esta visao multiview usando camaras
plendticas. Esta tese foca-se na visdo plendtica para o caso de
camaras que incluem um sensor de imagem, um array de micro-

lentes e uma lente principal.

A camara plendtica nao segue o modelo pinhole que € larga-
mente utilizado em visao por computador para descrever a projecao
de camaras convencionais que simulam o olho humano. A cidmara
plenética pode ser interpretada como um olho humano no qual a
retina € substituida por um olho composto, € onde a geometria €
a percecao de profundidade se desviam do que € classicamente
ensinado em visao por computador. Nesta tese € seguida uma

abordagem construtiva que parte de modelos de projecao classicos
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para representar camaras plendticas como arrays de camaras que
sao familiares e intuitivos. Usando a representacdo de array de
camaras, sao propostos novos métodos de calibracdo para camaras
plendticas. Adicionalmente, sdo apresentadas novas funcionali-
dades tais como a estimag¢ao de disparidade usando operadores
diferenciais.

As contribui¢oes deste trabalho compreendem (i) modelos que
permitem descrever as variantes standard e multi-foco das camaras
plendticas sob uma framework comum, (i1) um estudo seminal que
analisa as capacidades de recons-tru¢ao da camara plenoética stan-
dard, (ii1) novas metodologias de calibracdo tendo por base o ar-
ray de camaras proposto para representar a camara plenotica e que
permitem estimar os parametros de calibracao de forma linear e
intuitiva, e (iv) melhorias aos métodos de reconstru¢ao baseando-
se em caracteristicas de profundidade intrinsecas e no conceito de
lightfield afim.

Palavras-Chave: Camaras Plenoticas, Sistemas de Camaras, Calibragao,
Re-construcao 3D, LF Afim
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Chapter 1

Introduction

The valuable information about the surrounding environment provided
by vision makes it one of the most important sensors in Nature. Namely,
it is estimated that three-quarters of the information in the human brain
comes through the eyes [118]. Natural selection also exhibits the im-
portance of vision, eyes (simple or complex) are present in almost 90
percent of all animal species [ 18] and evolved independently several
times [85, ]. This explains the diversity and highly specialized visual
systems observed in Nature.

Human vision is extremely effective for the human life but, in various
aspects, is surpassed by the vision of other animals. The mantis shrimp
perceives 12 colors, as opposed to the three colors of the human visual
system, some outside the visible spectrum of the electromagnetic radia-
tion. This is a consequence of the 16 different types of photoreceptors
in the mantis shrimp retina [94]. There are other visual systems special-
ized for low light conditions or for seeing more detail. More specifically,
the shark has ten times better vision than humans in dark conditions due
to a mirror like layer at the base of the retina that reflects the incoming
rays [ | 1 8]. The peregrine falcon, on the other hand, sees up to five times
more detail than humans as a result of having two foveas in each eye
[118].

The highly specialized visual systems in Nature and the advances in
digital camera technology, optical fabrication and computational pro-
cessing motivated the appearance of new types of cameras, like hyper-
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spectral [24], event-based [45] or plenoptic cameras [ 11, ], that ex-
ploit some particular property of the biological systems to improve man
made systems. These cameras do not follow the computer vision con-
ventional camera imaging that replicates the human visual system expe-
rience, i.e. capture a trichromatic two dimensional image.

In this thesis, one objective is leveraging our understanding of nec-
essary brain functions for insects like flies effectively perceive the 3D
world. This is aligned with the Robotics, Brain and Cognition program
goals '. Our approach is based on studying a recent type of camera, the
plenoptic camera [ 3, ].

1.1 Motivation

The compound eyes found in insects and crustaceans are composed of
multiple simple and tiny units called ommatidia (Figure 1.1). Each unit
consists of a cornea, a lens and a small number of photoreceptors [ 19,

] that observe a small region of the scene and generates images of low
spatial resolution and high temporal resolution when compared to the
human visual system [138]. Optical setups replicate the compound eye
by placing a microlens array in front of the sensor [1 16]. The plenoptic
cameras (Figure 1.1) studied in this thesis differ from these setups by
presenting an additional main lens in front of the microlens array. In
Nature, no animal has been discovered to possess such visual system
[85], instead these cameras can be interpreted as a human eye in which
the retina is replaced by a compound eye [ 13].

In insects such as dipterans (flies), understanding distance vision and
depth perception is still insufficiently resolved [98]. Although stere-
oscopy has been found to be used by the praying mantis [124], it is
still unclear if this system is also present in flies [19]. Namely, the two
outward pointing compound eyes have almost no overlap and stereopsis
requires a substantial overlap between the Field of View (FOV) of the
two eyes [23]. The more frontal ommatidia have overlapping FOV's but

"Portuguese Roadmap of Research Infrastructures FCT 01/SAICT/2016 SAICT Proj. 22084.
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Figure 1.1: Black Soldier Fly Head with two compound eyes and detail of their ommatidia (left) (photo
captured by Thomas Shahan and released under the Creative Commons License). The ommatidia of the
compound eye resemble the MlIs formed in the sensor of a plenoptic camera (right).

no neurons have been found to receive information from the two eyes,
which would be how neural circuits process depth information as in the
case of primates [6, 70, 121]. Additionally, the small distance between
neighboring ommatidia of the individual eyes makes stereo not meaning-
ful [19]. Therefore, other strategies must be in place for flies to perceive
depth.

Plenoptic cameras allow to perceive the scene in different ways by
reorganizing the pixels captured by each microlens [29, 112]. The com-
pound eyes in flies, on the other hand, have a complex wiring such that
all photoreceptors looking at the same point in visual space send infor-
mation that converges upon the same synaptic unit. Consequently, even
if the ommatidia are separate entities, the information is intermingled
at the immediate next step in visual processing (neural superposition)
[33, 81]. This allows to hypothesize that the information in different
ommatidia can be combined to extract information of the scene as in
plenoptic cameras. Indeed, in the work of Bitsakos and Fermiiller [19], a
first attempt i1s made to explain depth perception in flies using the Light-
field (LF). Thus, one hopes that the findings presented in this thesis can
give new insights to process depth information and in this way allow
neurophysiology, biology and engineering to grow together.

Despite having relevance in biology, in the recent years, LF has also
gained importance in industry. The awareness of LF is being followed
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by the appearance of startups that develop optical setups for LF acqui-
sition like Raytrix and K-Lens, LF displays for 3D-TV like Holografika
or augmented reality like Creal3D. More mature industries and compa-
nies are starting to use LF to improve their products. Namely, in the
mobile industry it is common to see nowadays multiple cameras on the
rear of a mobile phone. These cameras are used together to improve
the resolution, focus and lighting conditions of the final rendered image.
Nonetheless, LF and plenoptic cameras require specific knowledge that
limits their usability. More specifically, these cameras are described by
camera models that are not built based on computer vision knowledge
from decades ago. Hence, in this thesis, one additional, principal, objec-
tive is establishing the connection between the specific plenoptic camera
knowledge and computer vision knowledge to make these cameras ac-
cessible to a broader range of users and applications.

1.2 Contributions

This thesis moves away from the mainstream by addressing imagery
in which the projection model has multiple projection centers (non-central
cameras). More specifically, are studied plenoptic cameras.

The composition of optical elements in a plenoptic camera allows to
obtain interesting effects like a dynamic parallax. In a plenoptic camera,
objects farther away from the camera can exhibit large parallax while
closer objects can exhibit no parallax. This is contradictory to our stan-
dard notion of parallax that objects farther away exhibit almost no par-
allax. In commercial plenoptic cameras, this notion of parallax can be
changed after the LF is acquired by resampling the rays collected. One
specific objective of this thesis is the formalization of models and tech-
niques to deal with this type of imagery.

Throughout the thesis and with the goal of making plenoptic cam-
eras more accessible to a broader audience, focus is placed on answer-
ing: (1) which optical setups can be represented by the plenoptic cam-
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era model, (i1) what is an equivalent representation for plenoptic cam-
eras, and (ii1) how can one use this equivalent representation to improve
plenoptic camera applications.

The contributions achieved throughout the course of this thesis are
four-fold:

 Unification of Geometric Projection Models. There are different
optical setups that can capture the LF [120), , ]. Each differ-
ent optical setup has its corresponding geometric projection model
and even for the same optical setup there are different projection
models [21, 41]. In this thesis, is shown that the camera arrays and
the different plenoptic cameras can be represented using the same
geometric projection model. The unifying model allows studying
similarities and equivalences of plenoptic camera models proposed
in the literature.

* Camera Array-based Representation of Plenoptic Cameras. The
first acquisitions of LFs were obtained using a single moving cam-
era [57, 86] or an array of cameras [144]. The type of images ob-
tained by plenoptic cameras also allow to conveniently view them as
camera arrays [ |40]. In this thesis, are studied the Standard Plenop-
tic Camera (SPC) and Multifocus Plenoptic Camera (MPC) and are
proposed representations for these cameras based on the viewpoint
or the microlens array, respectively. These representations are used
to define new calibration methodologies and study the properties of
the camera arrays.

e In Depth Study of SPCs. SPCs, as other plenoptic cameras, allow
to obtain depth from a single image. Additionally, these cameras
provide some interesting metadata parameters regarding their opti-
cal setup with the acquired images. Nonetheless, the depth capa-
bilities of these cameras have not been evaluated and the metadata
parameters provided are only used to initialize the decoding process
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[32, 41]. In this thesis, is presented a first study regarding the SPC
depth capabilities and a detailed analysis of the metadata parame-
ters.

* Depth Estimation Boosting and Refinement. There are several
strategies to recover the 3D information of the scene from LFs, usu-
ally based on correspondences and defocus cues [129, , ].
However, these strategies only recover disparity information for the
central viewpoint and can only retrieve reliable estimates on partic-
ular regions of the LF. Furthermore, the conversion between dispar-
ity and depth that is normally used for LF [22] cannot be applied to
plenoptic cameras. In this thesis, are improved several disparity esti-
mation techniques by considering the geometry of the camera arrays
defined and by introducing the concept of affine LF.

1.3 Outline of the Thesis

In terms of structure, Chapter 2 overviews the major concepts behind
plenoptic cameras. In Chapter 3, is described the mapping between rays
in the image space and rays in the metric space found in the literature
for plenoptic cameras, and is defined a ray-based projection model using
this mapping.

The ray mapping has no connection with the pinhole projection matrix
and the definition of their entries is rather complex. Hence, in Chapters
4 and 5, 1s defined the connection of the ray mapping with an array of
viewpoint and microlens cameras described based on the pinhole projec-
tion matrix, respectively. The representation of the viewpoint cameras is
used to propose calibration methodologies for SPCs while the represen-
tation of the microlens cameras is used to propose a calibration method-
ology for MPCs. In Chapter 4, are also evaluated the depth capabilities
of SPCs.

The camera arrays described in Chapters 4 and 5 represent images
whose ray collections can be readily obtained from plenoptic cameras.
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Nonetheless, there are other ray collections that can be obtained from the
rays acquired. In Chapter 6, one generalizes the camera array geometry
to consider the different ray collections. Additionally, is extended the
ray mapping to consider an array of plenoptic cameras. The camera
array equivalent representation of an array of plenoptic cameras is used
to propose a calibration methodology for this setup.

In Chapter 7, are explored depth reconstruction methodologies for
plenoptic cameras and is introduced the concept of affine LF. This con-
cept allows to define improvements and limitations of current method-
ologies found in the literature. In this chapter, is also proposed a dense
reconstruction methodology to efficiently recover a depth estimate for
each ray in the LF.

The major contributions and conclusions are summarized in Chapter
8. In this chapter, are also discussed some future lines of research for LF
analysis and processing.
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Chapter 2

Plenoptic Concepts

In this chapter, are overviewed the major concepts behind plenoptic cam-
eras. More specifically, the chapter starts by describing the function that
explains the distribution of light in space followed by the optical setups
capable of sampling part of this function. The additional information
captured by these optical setups opens new possibilities like refocusing
or single image depth estimation as detailed in the next chapters.

2.1 Plenoptic Function

Cameras are capable of capturing the radiance of the light rays propa-
gating from the scene. More specifically, these optical setups transform
or acquire part of the information in the plenoptic funtion. The plenoptic
function

L(s,t,2,0,¢,\,t) (2.1)

introduced by Adelson and Bergen [2] describes the total geometric dis-
tribution of light rays in space (Figure 2.1.a). This function gives the
radiance of a light ray with wavelength )\ and direction defined by the
spherical coordinates (6, ¢) that passes through a point with spatial coor-
dinates (s, t, z), viewer or camera projection center position, at an instant
t. The direction of the light ray can be represented alternatively with the
cartesian coordinates (u, v) defined by an imaginary plane at a unit dis-
tance from the viewer (Figure 2.1.b).

9



CHAPTER 2. PLENOPTIC CONCEPTS 2.2. LIGHTFIELD

(a) Plenoptic Function (b) Parameterization

Figure 2.1: Plenoptic function representing the flow of light through space towards two observer loca-
tions (a) (adapted from [2]). The plenoptic function can be parameterized using spherical or cartesian
coordinates (b).

The plenoptic function is normally described using 7 parameters. While,
the plenoptic function can be described using more parameters like po-
larization [3 1, 53], in this thesis, are considered only geometrical optics,
i.e. rays are the fundamental elements for conveying light.

2.2 Lightfield

The acquisition of the full dimensionality of the plenoptic function
is unfeasible, so one needs to consider some assumptions to reduce the
dimensions being acquired. Nowadays, digital cameras allow to capture
three independent color channels and acquire video. Hence, in prac-
tice, one is capable of acquiring six dimensions of the plenoptic function
[120, ]. In this thesis is considered a 4D function, the Lightfield (LF).
The concept of the photic field [109], the lumigraph [57] or the LF [86]
1s similar to the concept of epipolar volumes [2”] and can be traced back
to the work of Gershun [55] describing the light radiometric properties
in space.

The LF is a simplification of the 7D plenoptic function to a 4D func-
tion that describes the radiance of a light ray in its spatial and directional
dimensions. Namely, considering static monochromatic light rays, the
plenoptic function can be reduced to 5 dimensions, L(s, ¢, z, u, v). Con-
sidering that the rays are not attenuated or scattered and the viewer is
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outside the convex hull of the scene, i.e. in a region without a medium
and occluders (free space), the plenoptic function can be further reduced
to 4 dimensions L(s,?,u,v) since the radiance along the ray remains
constant (Figure 2.2).

e b

(a) LF acquisition (b) Rays propagated from scene
Sl b
L ]
:U
dl’[—»l"
[I r
(c) Ray parameterization (d) Ray-space for (b)

Figure 2.2: LF acquisition, representation and parameterization using two parallel planes, and corre-
sponding ray-space representation. (a) The spatial and directional information from the scene is acquired
using an array of spoons while imaging a toy duck. (b) The LF assigns a radiance to each of the rays
propagating from the scene and that are captured by the optical system. The boundary ‘B corresponds to
the convex hull of the scene of interest. This boundary separates the free space that does not affect the
light propagation from the scene of interest. (¢) The intersection of a ray with the two planes II and I'
define a geometry that allows to determine the direction of the ray. (d) Ray-space representation of the
colored rays in (b). Notice that a line in ray-space define rays that intersect at a point in space.

The conditions to reduce the plenoptic function to the LF can also be
considered inside the camera body [ | | 2]. The space inside the camera is
considered a space free of a medium and occluders, so the rays inside the
camera can be described solely using their intersection with the aperture
inside the lens and the sensor plane (microlens plane considering lentic-
ular array based plenoptic cameras).

In the following, is considered that the spatial dimension of the LF
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is associated with the different directions that are captured by a viewer
(number of pixels in a camera) while the directional dimension is asso-
ciated with the different viewer positions (number of camera positions).
The LF, similarly to the plenoptic function, can have several parameter-
izations associated. The LF parameterization that is going to be used
throughout this thesis is presented in Section 2.2.1. Additionally, a use-
ful 2D representation of the LF, the ray-space, is described in Section
2.2.2.

2.2.1 Parameterization

The common parameterization for the LF describes the rays by their
intersection with two parallel planes [57, 86] (Figure 2.2.b). This param-
eterization is obtained propagating the rays from the convex hull of the
scene (boundary *B). Hence, a light ray intersects the first plane II at co-
ordinates (s,%,0) and then intersects a second plane I at (4, v, d_r)
(global two-plane parameterization). Considering that the planes are
separated by a unitary distance (d,r = 1) and that the coordinates
in plane I" are defined relatively to (s, %), the ray (s,t,u,v) is defined
as (s,t,u =u — s,v =0 — t). This parameterization is denoted as local
two-plane parameterization and is equivalent to parameterizing the ray
by a point (s, t) defined on plane IT and a direction (u,v) [71, 107] (Fig-
ure 2.2.c). This will be the parameterization considered throughout this
thesis.

There are other representations that parameterize the rays on the sur-
face of objects [30] (orange circles in Figure 2.2.b) but they are more
complex and computationally expensive [ 1 12].

2.2.2 Ray-Space Representation

The cartesian ray-space is a two-dimensional space gathering infor-
mation of a spatial (u) and a directional dimension (s) of the LF. In this
space, a ray is represented by a point (s,u) and a set of rays is repre-
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sented by a region. In particular, a line in ray-space represents the set of
rays through a point in space [57] (Figure 2.2.d).

The illustration of the LF in two dimensions (s, u) makes analysis
easier and straightforward. These analysis can be normally generalized
to the complete LF in 4D (s, ¢, u, v).

The ray-space is useful as a tool to evaluate the LF sampling density
[86] and the trade-off between spatial and directional resolution [54, 57].
Namely, a ray is only represented by a point (s, u) considering an in-
finitesimal pinhole and a non-discrete sensor. However, the rays are
acquired by finite size pinhole apertures As and the corresponding ra-
diance is recorded in sensors with finite size pixels Au. Hence, a ray is
represented by a sheared rectangle centered at (s, u) that describes the
directional and spatial sampling of the LF (Figure 2.3).

(a) Ray-space with finite pixels (b) Ray-space with finite pixels
and pinhole apertures

Figure 2.3: LF sampling in ray-space representation considering finite size pixels (a) and finite size
pinhole apertures (b).

2.3 Lightfield Acquisition

In a conventional camera, the contribution of the light rays emanating
from a given point in the scene is not distinguishable since they are av-
eraged on a single pixel [133], i.e. the directional dimension of the LF is
lost. The optical setups for acquiring the LF prevent the loss of informa-
tion by describing the radiance of the light rays in the scene in its spatial
and directional dimensions. This allows to discriminate the contribution
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of each of the point’s light rays. The first idea of a device to capture the
LF was illustrated by Mario Bettini [15] (Figure 2.4) and dates back to
1642. The illustration can be interpreted as a LF camera obscura.

Figure 2.4: LF camera obscura by Mario Bettini [ | 5]. Top of head and tip of one foot ray traced through
an array of pinholes towards a projection plane, an indoor wall.

The devices for LF capture rely on multiple sensors or on a single
sensor augmented by spatial or temporal multiplexing (Figure 2.5). The
temporal multiplexing approach consists in a single moving camera tak-
ing pictures of a static scene from different viewpoints in different time
instants [57, 86]. The camera can be moved along a planar surface or
along a spherical surface always pointing at the center of the sphere [36].
One can also move the camera arbitrarily but this requires the camera
pose to be estimated at each frame [57]. Instead of moving the camera,
one may keep the camera static and move the objects in the scene ac-
cordingly [86], or one may keep the camera and scene static and rotate
a planar mirror [/2]. One of the difficulties with this approach is main-
taining the same illumination conditions throughout the acquisition of
the LF [86].

On the other hand, the spatial multiplexing approach consists in a sin-
gle camera taking pictures of a scene from different viewpoints at the
same time instant. This approach, contrarily to temporal multiplexing,
allows to capture dynamic scenes. The equivalent setup relying on mul-
tiple sensors is the camera array [ 144, ]. Nonetheless, camera arrays
are expensive and require a complex positioning, alignment and synchro-
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(a) Planar acquisition (b) Circular acquisition

Figure 2.5: Example of LF acquisitions. The planar (a) and the circular (b) acquisitions of the LF can
be performed using a single moving camera (temporal multiplexing) or using multiple cameras.

nization of the cameras to reduce the post-processing steps. Thus, using
a single sensor augmented with spatial multiplexing is a good alternative
for LF acquisition.

The idea of capturing the LF using a single sensor can be traced back
to Lippmann in 1908 [50]. Lippman [50] proposed a sensitized plate
with small spherical pieces of glass or other transparent material, resem-
bling a rudimentary microlens array. Ives [75] proposed a similar setup
using paralax barriers that act as multiple pinholes close to the sensor.
Each of these cameras (lenses or pinholes) produce a small perspective
view of the scene observed from that position of the array.

Adelson and Wang [3] coined the term plenoptic camera for their
camera prototype, which was further enhanced to a portable hand-held
plenoptic camera consisting of a sensor, microlens array, and main lens
by Ng et al. [113]. This setup differs from the camera array by the nar-
row baseline and smaller spatial resolution [ 104]. These works extended
the integral photography of Lippman [50] and the parallax panorama-
gram of Ives [/4] to spatially multiplex the 4D LF onto a 2D image
sensor. The limited size of the image sensor, limits the spatial and direc-
tional sampling defining a trade-off between the two types of information
[54, ]. For a more comprehensive explanation of the optical setups
for LF acquisition, see Wetzstein et al. [143].
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2.4 Plenoptic Cameras

In Section 2.3 were presented some of the different setups that can
be used to acquire the LF. Although one can call the previous setups as
plenoptic cameras, since they capture part of the plenoptic function, in
this thesis, the setups consisting of a lenticular array [3, 91, 113, 120]
are the ones termed as plenoptic cameras.

A lenticular array based plenoptic camera consists of a main lens,
one single high-definition imaging sensor, and a microlens array. There
are three types of lenticular array based plenoptic cameras, the Standard
Plenoptic Camera (SPC), the Focused Plenoptic Camera (FPC) and the
Multifocus Plenoptic Camera (MPC). These cameras differ on the mi-
crolenses and main lens’ focal planes positioning and on the microlenses
optical properties. The focal planes positioning influences the trade-off
between spatial and directional information and the type of images pro-
duced by the microlenses.

(b) SPC raw image and zoom of microlenses
Image Space | Object Space

Microlens Main World
Array Lens Focal Plane

e e B e

Sensor

(a) SPCs (c) SPC geometry

Figure 2.6: SPC raw image and geometry. (a) Comercially available SPCs. (b) Image captured on the
sensor of an SPC with detail of the MIs formed in the sensor. (¢) Geometry of an SPC whose main lens
focal plane corresponds to plane ).
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The SPC [113] generates unfocused MIs by placing the main lens
focal plane on the microlens array plane [52] (Figure 2.6). This allows
to capture the radiance of the different directions, originating at a given
point in the world focal plane of the main lens, in a microlens (orange).
Similarly, the pixels beneath a microlens define the radiance of the point
light rays observed from multiple viewpoints in the main lens aperture
(gray) [54], considering the main lens to be at the optical infinity of
the microlenses !. Hence, the optical configuration of an SPC allows to
maximize the directional sampling of the LF arranging this information
in the microlens pixels [ | 2] (Figure 2.7.b).
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(a) Ray-space for camera array (b) Ray-space for SPC (c) Ray-space for FPC

Figure 2.7: Ray-space discretization and possible arrangements of the LF spatial and directional dimen-
sions in the cameras’ pixels (highlighted in green). In (a), one represents the ray-space discretization for
a camera array. The pixels sample the spatial dimension (u) while the cameras sample the directional
dimension (s) of the LF. In (b), the LF is sampled in the complete opposite way, i.e. the pixels and
microlens cameras sample the directional and spatial dimension, respectively. This corresponds to the
sampling performed on an SPC. In (¢), the sampling of an FPC is illustrated. These cameras offer a
flexible trade-off between spatial and directional dimension by capturing in each pixel different spatial
and directional information.

On the other hand, the FPC introduced by Lumsdaine and Georgiev
[91] generates focused MIs by placing the focal plane of the microlenses
on the main lens focal plane (Figure 2.8). Namely, a point in focus by
the main lens will appear once in the microlens array while points out of
focus will appear in more than one microlens [90]. Additionally, the out

"The microlenses are focused at infinity due to the positioning of the image sensor at their focal distance (f). The smaller
size of the microlenses relatively to the distance between the microlens array and the main lens allows to assume that the
main lens is at the optical infinity of the microlenses [112].
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of focus points will appear blurred since the microlenses only focus on
a single plane.

Image Space | Object Space

Microlens Main World
Array Lens Focal Plane

’ . . Sensor
PP r

(a) FPC raw image and zoom of microlenses (b) FPC geometry
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Figure 2.8: FPC raw image and geometry. (a) Image captured on the sensor of an FPC with detail of the
MIs formed in the sensor. (b) Geometry of an FPC whose main lens focal plane corresponds to plane §2.

The microlenses in an FPC act as micro-cameras (gray) sampling an
image of the scene formed by the main lens inside the camera (orange).
The FPC geometrical arrangement defines a flexible trade-off between
the spatial and directional information of the LF [52, 1127], capturing
both dimensions intertwined on the microlens pixels (Figure 2.7.c). This
allows to have a denser sampling of the LF spatial dimension relatively
to the SPC [54, 91, 112].

The SPC and FPC comprise a microlens array with a single type of
microlens. A different type of setup corresponds to the MPC [120] that
has the same geometry of an FPC with a microlens array composed of
different types of microlenses differing on their focal plane, i.e. focal
length. Thus, the same scene point is imaged on each microlens type
with different degrees of defocus (Figure 2.9).

2.5 Image Types

The light rays and the additional information captured in the LF allow
to collect subsets of rays, one more straightforward than others, that de-
fine different images with different types of information and purposes. In
this section, are described some of the image types that can be obtained
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(b) MPC raw image and zoom of three microlenses
Image Space I Object Space

Imaged Point Microlens Main World
in Microlenses Array Lens Focal Plane
4

Sensor

(a) MPCs (c) MPC geometry, microlenses with three focal lengths

Figure 2.9: Mutifocus effect present in images acquired with MPCs (a). (b) Image acquired by an MPC
[5]. Small region is augmented to show microlens borders and focusing. MlIs, 1 and 2 are blurred, 3 is
focused. (¢) MPC geometry illustrating the focused and blurred image formation.

from the LF.

2.5.1 Spatial and Directional Images

The independent sampling of the spatial and directional LF dimen-
sions (Figure 2.7.a-b) allows to represent the acquired LF either as a col-
lection of perspective images exhibiting a spatial view of the LF (high-
lighted in cyan in Figure 2.7) or as a collection of perspective images
exhibiting the directional view of the LF (highlighted in red in Figure
2.77) [86]. Figure 2.10 shows the LF acquired by a planar camera array
considering the two image collections described. Namely, one depicts
the images obtained by each camera in the array positioned at plane 11
(spatial view in Figure 2.10.a-b), and the reflectance map like images of
the virtual cameras at plane I' (directional view in Figure 2.10.c-d).

In lenticular array based plenoptic cameras, the LF is acquired on a
single sensor. The image recorded on the sensor is denoted as raw image
(Figure 2.11.a) and displays the images formed by each microlens in the
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t
(c) Viewer at I (d) Multiple images from viewer at ['

Figure 2.10: LF image types using the Table dataset [68]. The LF can interpreted as a sequence of
images obtained from a viewer at II (a-b) or from a viewer at I' (c-d).

physical microlens array placed in front of the sensor. The contents of
the Mls depend on the geometrical configuration presented in Section
2.4. The different geometrical configurations change the position of the
LF parameterization planes Il and I' inside the camera. Namely, in an
FPC the plane II corresponds to the microlens array and the plane I’
corresponds to the image sensor. On the other hand, in an SPC the plane
[T corresponds to the main lens aperture and the plane I' to the microlens
array.

In an SPC, as in the camera array, one can define another arrange-
ment of pixels that exhibits the spatial view of the LF. These images
are denominated as viewpoint or sub-aperture images and are obtained
by selecting and combining the same pixel position relatively to the mi-
crolens center for each microlens [ 2] (Figure 2.11). Thus, considering
a microlens array having P x P microlenses with N x N pixels beneath
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each microlens, one can define N X N Viewpoint Images (VIs) having
P x P pixels. This rearrangement defines a virtual camera array with
coplanar projection centers and with a very narrow baseline [ 1 04]. These
type of images are normally not considered for FPCs.

2.5.2 Epipolar Plane Images

The collection of images, microlens or viewpoints, define coplanar
projection centers that are displaced horizontally and vertically between
each other [21, ]. Considering a subset of images, from one of the
collections, such that the projection centers are equally spaced and de-
fine a linear path, one can define an Epipolar Plane Image (EPI) (Figure
2.12.b) like Bolles et al. [22] defined for a dense sequence of images
acquired with a single moving camera.

The spatiotemporal nature of the EPIs described by Bolles ef al. [22]
is equivalently represented by the subset of images of the LF considering
the spatial and the directional (temporal) dimensions placed on the hori-
zontal and vertical axis, respectively. The EPI consists in collecting and
stacking the epipolar lines from the subset of images on a single image.
The process of creating EPIs is straightforward considering horizontal or
vertical linear paths since the epipolar lines correspond to scan lines on
the images. This is even more readily from the LF representation since
the EPIs correspond to 2D slices, i.e. they can be obtained either fixing
the coordinates (s, u) or (¢, v).

In the EPIs, a point in the scene is projected onto a line whose slope
describes the parallax and corresponds to the disparity of the point. This
information can be used for reconstructing the scene from a LF (Figure
2.12.c-f). The approximately continuous baseline in plenoptic cameras
allows computing the disparity using gradient operators in the EPIs [22,

, ] instead of using feature correspondences which improve the
reconstruction process.
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(a) Raw Image with 7728 X 5368 pixels
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(e) Raw image and VIs schematics

Figure 2.11: Raw image (a) conversion to VIs (d). The same pixel position in the different Mls is used
to define a VI (e). The hexagonal tiling (b) of the microlenses do not allow to fill all the pixels in a VI,
therefore, during the decoding process [4 1], the missing pixels are interpolated (lighter colored pixels)
and a rectangular tiling is obtained (c).
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O B |
(c) Estimated (d) Estimated (e) Depth for
disparity depth pixels in A

(f) Reconstructed point cloud

Figure 2.12: Depth reconstruction from the LF acquired by an SPC. The raw image allows to obtain
11 x 11 VIs with 378 x 379 pixels (a). Considering an horizontal linear path, one can obtain the EPI
(b). Using gradient operators and regularization one can estimate disparities (c¢) that can be transformed
to depth (d) and point cloud (f) in metric units using the camera intrinsic parameters. The depth values
for the pixels in area A are shown in (e) sorted by column pixel number.

2.5.3 Surface Camera Images

The additional information provided by the LF allows to define other
not so straightforward reorganization of pixels. This rearrangement of
light rays allows to synthesize images considering arbitrary scene po-
sitions for the viewer [57, 86] (Figure 2.13). These images, denomi-
nated as Surface Camera Images (SCams), collect rays that can be used
to identify correspondences, detect occlusions or surface characteristics
[29, 147]. Namely, these rays emanate from different points if the in-
tersection point (viewer) is located in free space (camera A of Figure
2.13.b) or is located on a surface point which is partially occluded (cam-
era B of Figure 2.13.b). On the other hand, the rays emanate from a com-
mon point if the intersection point is defined on a surface point (camera
C of Figure 2.13.b).

2.54 Refocused Images

The LF also allows to obtain images focused at different depths con-
sidering synthetic aperture photography [73, 86]. This approach simu-
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(a) SCam from LF (b) SCam types (adapted from Yu et al. [147])

Figure 2.13: SCams from LF. The additional information in the LF allows to rearrange the captured rays
and define new views from arbitrary scene positions (yellow circle) (a). According to the position of the
rays’ intersection points relatively to the surfaces in the scene, one can define several SCam types (b).

lates the defocus blur by back-projecting the rays onto a real or virtual
focal plane on the scene, and computing their average. The resulting im-
age depicts sharp features for objects’ surface points that intersect this
plane (points in focus) while the surface points that do not intersect this
plane are blurred (points out of focus) (Figure 2.14).

Considering the real focus plane, one can recover the image of the
scene as if it was acquired by a conventional camera (Figure 2.14.a).
More specifically, the conventional camera image can be obtained inte-
grating the directional dimensions (s, t) of the LF in a process denom-
inated as refocusing. The virtual focal plane is obtained applying the
shearing operation in the LF before doing the refocusing of the LF [112]
(Figure 2.14.b-c). The shearing operation allows to resample the EPIs
in the original LF assuming a constant disparity (slope) at each pixel.
The pixels on this disparity line of the original LF are considered to have
disparity zero in the sheared LF (Figure 2.14.e-f).

The sampling of the LF determines the spatial resolution of the con-
ventional camera image. The sampling performed by the SPC (Figure
2.7.b) determines that each microlens contributes with a single pixel for
the conventional camera image [54]. Therefore, the size of the rendered
image depends on the number of microlenses and will have a final reso-
lution much lower than that of the image sensor [54, 91, ]. Namely,
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Figure 2.14: The LF allows to change the world focal plane by shearing the LF followed by refocusing.
These images exhibit the original world focal plane (a) and two virtual focal planes. The virtual focal
planes are placed at the planar checkerboard (b) and in the region of the cubes (¢). The EPIs (d-f) at rows
130 (blue), 180 (red) and 215 (green) for the different focal planes are depicted to highlight the shearing
of the LF. The regions with vertical lines in the EPIs will appear focused while the other regions will
appear blurred.

considering a Lytro Illum camera with 15 x 15 pixels in each microlens,
one has 225 pixels in the sensor devoted to the directional sampling of
the LF that can be used to obtain only one pixel in the rendered image.

On the other hand, the FPC (Figure 2.7.c) has a finer spatial sampling
of the LF. More specifically, each microlens can contribute to the con-
ventional camera image with a patch of pixels which allows to obtain a
rendered image with higher spatial resolution [52]. The spatial resolu-
tion of the rendered image depends on the pixels in the MIs and their
overlap [91]. However, the refocusing process is more complex involv-
ing integration across MIs since the directional samples of a spatial point
are in different microlenses [52].

2.6 Chapter Summary

In this chapter was described the 7D plenoptic function and its simpli-
fication to the 4D LF. The LF defines a set of rays that are parameterized
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by a position (s,t) and a direction (u,v). These rays can be acquired
using multiple cameras or a single camera augmented by temporal or
spatial multiplexing. In this last approach, one incorporates the lenticu-
lar array based plenoptic cameras that can be divided in three different
types: the SPC, the FPC and the MPC.

The spatial and directional dimensions of the LF allows to rearrange
the rays captured into new images that enable applications like refocus-
ing or depth estimation.

In the next chapters, are described in more detail the mapping of the
captured light rays and the geometry of the different types of images that
can be obtained from the LF captured by a plenoptic camera.
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Chapter 3

Plenoptic Ray Geometry

This chapter details the geometry and the mapping of the rays captured
by a Standard Plenoptic Camera (SPC) and a Focused Plenoptic Camera
(FPC) and the rays in the object (metric) space. Using this mapping and
the representation of a ray in the object space, is defined a ray-based
projection model for a plenoptic camera.

3.1 Lightfield Intrinsic Matrix

In Chapter 2, were described the rays in the Lightfield (LF) using a
point (s, t) defined on a parameterization plane II and a direction (u, v)
in metric units (Figure 3.1), i.e. the LF in the object space. However,
the raw 1images obtained by plenoptic cameras exhibit pixels distributed
by the corresponding microlens cameras (Figure 2.11.a-b). Hence, one
can define an equivalent LF describing the rays using pixels (7, j) and
microlens (k, [) indices, i.e. the LF in the image space. In this section, is
presented the mapping between the LF in the object (metric) space and
the LF in the image space defined by Dansereau et al. [41].

The mapping proposed by Dansereau et al. [41] is obtained by prop-
agating the rays from the sensor to the object space using ray transfer
matrices considering the main lens as a thin lens and the microlenses as
pinholes (Section 3.5). In formal terms, the 5 x 5 matrix H is a map-
ping of back-projection rays ® = 8,7, k, 1, 1]T in the image space to rays
U = [s,t,u,, 1]T in the object space (Figure 3.1):
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Figure 3.1: Mapping from the LF in the image space to the LF in the object space. The LF in image space
is parameterized by microlens and pixel indices while the LF in object space is parameterized by a point
and a direction. The mapping proposed by Dansereau et al. [41] defines an arbitrary position for the
parameterization plane II. Hence, different pixels in a microlens define different points and directions.
If the parameterization plane is appropriately chosen, for example different pixels in a microlens can
have a common point and define different directions (planes II and €2 coincide).

U-—HP (3.1)

where (-) denotes the vector (-) in homogeneous coordinates. In the
following, this mapping will be denominated as the Lightfield Intrinsic
Matrix (LFIM) ! and consists of 12 non-zero parameters (10 free intrinsic
parameters since hg and h; are fixed):

hsi 0 hsk: 0 hs
0 hy O hy he
H=|h,; 0 hy 0 hy, (3.2)
0 hy O hy h
0O 0 0 0 1

3.2 Related Work

The several works on plenoptic cameras consider the microlenses as
pinholes and the main lens as a thin lens regardless of the type of plenop-
tic camera. One can divide the camera models in the literature in 2D-

'Note that LFIM is a simplified term, as H effectively contains intrinsic parameters information, however, it also contains
baseline information, as detailed in [104] and [108]. Conventional extrinsic parameters, as found in pinhole camera models,
defining a world coordinate system, are in fact not contained in H.
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based and 4D-based mappings. The 2D-based mappings describe the
projection of a point in the object space on a particular camera, i.e. give
the relationship between a point and a pixel. The 4D-based mappings
describe the projection of the rays originating at a point in the object
space onto a collection of 4D rays in the image space.

2D-based Mappings. Johannsen et al. [77] and Zeller et al. [148] pro-
posed a Multifocus Plenoptic Camera (MPC) camera model using a sin-
gle microlens type. In these works, the Microlens Image (MI) center is
assumed to lie on the optical axis of the corresponding microlens which
causes inaccuracy on the reconstructed points [60]. Additionally, Strobl
et al. [132] noticed that the camera model of an MPC should consider
the different microlens types. Heinze et al. [60] used a similar model
to [77] accounting for the tilt-shift of the main lens and the different
microlens types but not considering an end-to-end image formation.

Bok et al. [21] proposed an SPC camera model that describes a
microlens camera using a projection matrix with 6 parameters and the
knowledge of the corresponding microlens center in the raw image. Nou-
sias et al. [115] showed that [2 1] can be extended to an FPC and consid-
ered this to describe an MPC as a collection of three independent FPCs.
Nousias et al. [115] acknowledged the existence of common extrinsics
among the microlens types but has not proposed a camera model com-
bining these parameters which lead to a model with a high number of
parameters to estimate.

4D-based Mappings. The mapping of rays defined in pixels (i, j) and
microlenses (&, [) indices to rays defined by a position (s, t) and a direc-
tion (u,v) in metric units was first proposed by Dansereau et al. [41]
for SPCs. More specifically for a virtual plenoptic camera whose mi-
crolenses define a rectangular tiling instead of the actual hexagonal tiling
in the raw 1mage (Figure 3.6.b). This virtual plenoptic camera is ob-
tained after a decoding process to transform the 2D raw image into a 4D
LF that is out of the scope of this thesis. For a better understanding of
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this process, the reader should refer to [4 1, 44]. This mapping considers
a 5 X 5 matrix, the LFIM, with 10 free intrinsic parameters that is ob-
tained by propagating the rays from the sensor to the object space using
ray transfer matrices. In this thesis, one represents the LFIM with 8 free
intrinsic parameters by shifting the rays parameterization plane along the
optical axis of the camera [ | 7] to the plane containing the viewpoint pro-
jection centers and removing the parameters redundant with the extrinsic
parameters (Chapter 4) [104]. A similar representation can be obtained
by considering the rays parameterization plane on the plane containing
the microlens projection centers (Chapter 5) [108].

The LFIM was then generalized for FPCs [150]. Namely, Zhang et al.
[150] proposed a generalized model that considers a LFIM with 6 free
intrinsic parameters that is capable of representing the virtual SPC and
the FPC. In this thesis, one shows that the model proposed by Zhang et
al. [150] in fact corresponds to a 4D mapping with 8 free intrinsic param-
eters with 2 intrinsic parameters included in the radial distortion model
(Appendix A). In the FPC, the LFIM describe the hexagonal tiling of the
microlenses keeping the same structure of the SPC considering different
sampling basis for the microlens coordinates [ 1 08] (Section 3.5).

The models presented in the literature for the 4D mapping only con-
sider one microlens type. In this thesis, a 4D-based mapping is comple-
mented with a blur model to describe the defocus behavior of each mi-
crolens type in an MPC (Chapter 5). This allows to extend the LFIM to
an MPC and consider common intrinsic and extrinsic parameters among
the microlenses types. Moreover, in this thesis, is extended the 4D-based
mapping to a 6D-based mapping to represent a coplanar plenoptic cam-
era array with the same world focal plane (Chapter 6).

Different plenoptic camera designs gave rise to various, specialized,
geometric camera models [21, 41, ]. Works [115, ] and this thesis
generalized these models to the different plenoptic cameras but almost
no works established relationships between the different camera mod-
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els and more specifically between the 2D-based and the 4D-based map-
pings. In this thesis, the different models are studied under a common
framework (general model). This general model allows to represent a

plenoptic camera despite the different calibration procedures for SPCs,
FPCs and MPCs.

The definition of the projection matrices for the microlens and the
viewpoint cameras of a plenoptic camera appeared in the work of Bok
et al. [21]. The geometry of the camera arrays is described using the
parameters of the optical setup and the knowledge of the corresponding
microlenses centers in the raw image but no relationship with the original
LFIM [41] is provided. Additionally, the geometry proposed for the
viewpoint cameras assumes identical cameras which does not explain
the zero disparity for points in the world focal plane of the main lens.

Marto et al. [95] (Appendix B) established a first connection between
the mappings by representing a coplanar camera array composed of cam-
eras with identical intrinsic parameters using a LFIM identical to the one
from Zhang et al. [150]. Nonetheless, the camera arrays defined by an
SPC or an FPC are not composed of identical cameras. More specifi-
cally, in this thesis, is shown that the 4D mapping of a plenoptic camera
can be transformed to a 2D mapping to represent the virtual viewpoint
camera array (Chapter 4) [104] and the physical microlens camera array
(Chapter 5) [108]. These camera arrays consider coplanar cameras with
a shifted principal point among the different cameras. Conversely, one
shows that the model proposed by Bok er al. [2 1] can be represented by a
4D-based mapping constraining the microlenses centers coordinates on
the raw image to be regularly spaced. This gives further confirmation
that a 4D mapping can be extended to model an FPC and MPC.

Finally, 1s extended the characterization of the 2D-based mappings of
the microlens and viewpoint camera arrays from the LFIM [2 1, , ]
and detailed the geometry of the several cameras that can be defined by
collecting the rays captured by a plenoptic camera that intersect in an
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arbitrary point in the object space (Chapter 6).

3.3 Ray Parameterization

Let us consider a LF in the object space L1 (q,r,u,v) acquired by
a plenoptic camera with the plane () in focus (Figure 3.2). The LF
Lt (g, u,v) collects a set of rays where each ray ¥ = [g, 7, u, v, 1]T
is parameterized using a point (¢, ) defined on a parameterization plane
[T and a direction (u, v) defined in metric units [107]. This parameteri-
zation allows to propagate the position in the ray originated at [q, r, O]T
to an arbitrary plane at a distance \ using [q, 7, O]T + Alu, v, I]T, A e R,

Image Space Object Space

()] =

Sensor ; S :
R (R ol

World
Focal Plane

Microlens ‘

Array dl‘laf

Figure 3.2: Ray parameterization in an SPC. The LF in the object space can be parameterized on an
arbitrary plane regardless of the original plane 2 in focus.

3.3.1 Ray Re-Parameterization

The LF in the object space Ly (¢, r, u,v) can be redefined on another
plane I'" by shifting the parameterization plane IT along the optical axis of
the plenoptic camera, i.e. along the normal to the plane IT (Figure 3.2).
Assuming that I" is at a distance dp_.r from II, the re-parameterization
[17] is defined as

U =D, ¥y (3.3)
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where ~ _
1 0dpsr O O
01 0 dpor O
D.=100 1 0 O (3.4)
00 0 1 0
00 O 0 1

Note that D, maps a ray Wy to a ray W = [s,¢,u,v,1]" representing
a ray passing through a point (s,t) on plane ' with a direction (u, v).
Notice that D, changes the camera coordinate system origin but does
not change the directions (u, v).

3.3.2 Ray Parameterization Conversion

The LF in the object space considers rays parameterized using a point
and a direction. However, one can represent the ray by its intersection
with two planes (Section 2.2.1). Namely, defining the ray in the object

= T . : .
space ¥rr = [q,7,s,t,1]" using a point (g, ) on plane II and a point
(s,t) on plane I', the parameterization change from the rays Wy is de-
fined as

U =D,y (3.5)
where
(10 0 0 0]
01 0 0 0
D,=|10dysr 0 Of . (3.6)
01 0 dg.r O
00 0 0 1

Contrarily to the re-parameterization (3.3), the matrix D, does not change
the camera coordinate system origin. Notice that the point (s, ) is de-
fined considering a global coordinate system whose origin is defined on
plane II.
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The ray parameterization of the LF in the object space \ilmp can be
changed back to a parameterization using a point and a direction, as-
suming that the distance di;_.r between the planes is known, considering

Uy =D, "Wy r (3.7)
where
[ 0 0 0 0]
0 1 0 0 0
D'=|-1/dusr 0 1/dpsr 000 0 (3.8)
0 0 0 0 1

Mapping the LF in the object space Ly (q,r,u,v) to the LF in the
image space L (¢, j, k, ) using the LFIM Hy; by (3.1), one has

¥, =D, Hy® (3.9)

The LFIM H) = D(, Hy; maps the LF in the image space L (¢, j, k, [)
to the re-parameterized LF in the object space Ly (s,t,u,v) (3.4) or to
the LF in the object space L1 (¢, 7, s,t) (3.6) where rays in the object
space are parameterized using two points.

3.4 Ray-based Projection Model

One ray W = [s, 1, u, v]T in the object space parameterized by a point
(s,t) on plane IT and a direction (u, v) (Figure 3.1) can be represented as

one parametric 3D line [58], namely
_:l:- _3_ _u_
yl = |t + A ., A€ (3.10)
z 0 1
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This equation allows to propagate the position in the ray originated at
s,t,0] to an arbitrary plane at distance A from the origin of the camera
coordinate system. Note that (3.10) generalizes a normalized pinhole
camera: by setting s = 0, ¢ = 0 and (u,v) € IR* one obtains a pencil of
lines. Therefore, by allowing (s,t) € IR?, one can represent an infinite
number of normalized pinhole cameras.

Mapping the ray in the object space using (3.1), one defines the re-
lationship between an arbitrary point m = [z, y, z]T in the object space
and the ray ® in the image space [107] as

BRCIARE

where the LFIM H (3.2) is partitioned in four 2 X 2 diagonal sub-matrices

k

l —l_ hUU

k uv Z uv

(3.11)

a0 he 0
st St st sk
H;j = 0 htj] , Hyy = [ 0 htl] : (3.12)
uv -hui O uv hukz O
sz | h@j] , Ky = [ 0 hvl] , (3.13)
and two 2 x 1 vectors hy = |hs, ht]T and h,, = [h,, hU]T. Equation

(3.11) shows that given one ray in image coordinates, the LFIM H allows
defining a back-projection ray in the object space or, equivalently, one
3D point at a specific depth z.

Rewriting (3.11) relatively to (k,[), one can represent the ray-based
projection model for a point m by
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"1 e 1 [ hsitehu | o —he—zhy]
k f(z,m, H) ¢ hsi + 2 oy hsk + 2 hyp,
_ _ . (3.14)
. . hyi 4 2y —hy—2zh
l m. H L tj v) Y t— 2y
7] _g (]7 Y )_ i ] htl+2h1)l —|_ htl+2h1)l i

Note that f (¢; m, H) and g (j; m, H) are mappings from R — IR, affine
on the variables i and j. Since the point m € IR® and the LFIM H €
R® x IR®, the coordinates of the LF in the image space (i, ], k,[), in
general cannot be all integers. Equation (3.14) shows that a point in
the object space defines lines on the ray-spaces defined by each pair of
coordinates (7, k) and (7, /) (Section 2.2.2).

Unlike common projection problems, as in the pinhole camera model,
in a plenoptic camera a point m in the object space can have multiple
projections. In other words, the camera samples rays of the plenoptic
function by having multiple projection centers. Thus, one wants to max-
imize the number of projections obtained from the projection model.

3.4.1 Set of Imaged Rays

A point in the object space projects into a line (projection line) in
the ray-spaces (i, k) and (7,[) (blue line in Figure 3.3). The projection
defined in (3.14) has 4 unknowns (i, j, k, [) and 2 equations, which is not
enough to define the rays ® on the sensor plane without any knowledge
of the LF. Thus, one assumes that the LF size 1s known. In a real camera
one has a finite LF size that implies a finite number of rays ® obtained
for the projection of a point m.

Using the LF size and considering the discretization that occurs at the
image sensor, one can assume integer values for the microlenses and de-
termine the corresponding pixels. Nonetheless, according to the slope of
the projection lines one can skip some projections since the coordinates
(k,1) are restricted to be integers (red pixels in Figure 3.3.a). The same
occurs if one assumes integer values for the pixels and determine the
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Figure 3.3: Rasterization method used to obtain the projections of a point m for the (7, k) coordinates
for different slopes of the projection line i = f~! (k; m, H). The red pixels correspond to the projections
skipped by assuming integer values for the microlenses k.

corresponding microlenses. Since it is desired to maximize the number
of projections, one should evaluate the slope of the projection lines to
determine which coordinates are more discriminative, the pixels or the
microlenses.

Considering the affine mappings k£ = f (i;m,H) = my i + b; and
| = g(jim,H) = m; j+ b, the slope of the projection lines m.)
corresponds to the disparity between Viewpoint Images (VIs), and its
inverse corresponds to the disparity between MIs. Slope m.) can be
identified in (3.14) as the factor multiplying ¢ or j, namely

. hsz' + z huz
hsk‘ + z huk:

_htj + Z hv]’
htl + Zz hvl

(3.15)

my = 3 my
Notice that the slope is constant for points at the same depth. b(.) 18
the k- or [-intercept. To simplify, in the following, consider that the
optical setup is point symmetric, i.e. the setup has square pixels and
equally spaced microlenses in both vertical and horizontal directions.
This implies that f (i;m, H) = g (j; m, H). Hence, if ‘m<.)| < 1, the
pixels are more discriminative (Figure 3.3.a) and the microlens are given
by the set Py,
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{lij. k0" k=f(mH), I =g(im H), i €N, jEN, |

(3.16)
where N; = {0,...,N; =1} C NJ, N; = {O,...,Nj—l} C N{, and
N; and N; correspond to the number of pixels of the sensor in each of
the dimensions ¢ and j. This is the case where a point m projects to
more than one pixel within each microlens. This occurs, for example, in
an SPC, for points in the object space near the focal plane or in focus by
the main lens (Figure 3.4).

Image Space | Object Space %
|
Main i o) .

(i) %
o)

Microlens X
Array ~y- i World
Focal Plane

Sensor "’[
|l S

(a)

Figure 3.4: Calibration grid placed on the main lens focal plane €2 for an SPC (a). (b) shows the raw
image of the calibration grid and (c) exhibits the details of the microlenses in red box A. Notice that the
microlenses do not define a sharp corner.

On the other hand, if ‘m(.) ‘ > 1, the microlenses are more discrimina-
tive (Figure 3.3.b) and the pixels are given by the set P;;

{[z’,j,kz,l]T: i=t 1 (kmH), j=g  (mH), ke Ny, [ Nl}
(3.17)

where Ny, = {0,..., N, —1} ¢ Ni, N, = {0,...,N,—1} C N,
and N, and N, correspond to the number of microlenses in each of the
dimensions £ and [. Since the camera might deviate from this point
symmetric behavior, one should consider a correction using a mixture of
the sets P;; and Py;. For example, by considering £ = f (¢;m, H) and
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7 = ¢ '(l;m, H). The sets P;; and Py, describe a rasterization method
for representing the lines defined in (3.14) for each of the coordinate
pairs (i, k) and (j,[) in terms of discretized indices for pixels and mi-
crolenses. This process allows to implicitly overcome the limitations,
detailed in Section 3.4.2, of the projection (3.14).

The conditions described previously to apply each of the projection
sets do not directly relate with the depth of a point in the object space.
Redefining the conditions relatively to the depth z of a point leads to
projection rays defined by the projection set P;; (3.17) whenever z € x

N hsi + hsk hgi — hsk‘ 1 1 1
where y = o T har | The projection set Py; (3.16) is used

whenever z ¢ .

The depth limits of the set y are not easily interpretable expanding
the entries of the LFIM with the parameters introduced in Section 3.5.
Thus, in Figure 3.5, one relates the projection sets with the depth of a
point z for the publicly available Datasets D and F of Monteiro et al.
[107]. The depth of the point in the world coordinate system is defined
as the distance to the encasing of the camera. This figure depicts that the
projection set defined by Py, is used for points farther from the camera
while the projection set P;; 1s used for points near the camera. Notice
that the projection set Py, is applied whenever the blue line is below the
red line in Figure 3.5.

In summary, the complete ray-based projection model comprises the
two sets, P;; (3.17) and Py, (3.16), nonetheless, for most depth values
the projection rays are obtained using the set P;;. The set P;; is only
used for points near the camera. The ray-based projection model can
be defined using Algorithm 1. For simplicity, is presented the algorithm
assuming that the optical system is point symmetric. C' corresponds to
the number of projection rays obtained.
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Figure 3.5: Evolution of slope |my| (blue dots) with the depth of the points in the object space for
Datasets D (a) and F (b). The red line |m;| = 1 defines the projection set that will be used to obtain the
projection rays. For points below the red line, the set Py, is used. For points above the red line, the set
Pij is used.

Algorithm 1: Project scene point m

Input : Scene point: m = [z, y, z|"
Parameters: H, N;, N;, Ni, N

Output: Projection Rays: {®;,..., P}
1 Compute the slope my from equation (3.15)
2 if |my| < 1 then
3 ‘ Rasterize ®,, = (i, j, k, 1) according to set Py, (3.16)
4 else
5 ‘ Rasterize ®,, = (i, j, k, ) according to set P;; (3.17)
¢ end

3.4.2 Analysis of Singularities

The projection (3.14) has singularities. These singularities imply that
some points in the object space have undefined projection rays (un-
observed in the image). More precisely, i = ! (k;m,H) or k =
f (¢; m, H) are infinite for some depth values z, continuing with the point
symmetric assumption.

The depth values for which the singularities occur are identified by
zl = —hg/h, and 22 = —hg,/h,.. Extending the definition of the en-
tries h;, hyi, hsi, and hy,; to consider the parameters presented in Section
3.5 for defining the LFIM, the singularities occur at zsl = %, and
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22 = Eié”]; / M ]C(A‘Z@)_( f]?_v _f IE\)JJ},:)%?};]C g}i . Considering that N = N; = N; is the num-
ber of pixels in one dimension for the MI, d,, is the distance between the
microlens plane and the main lens, d, is the distance between the sensor
and the microlens array, and f,; is the focal length of the main lens. f;

and f; are the spatial and directional sampling frequencies.

Looking more deeply into the singularities 2! and 22, it is possible to
see that 2! corresponds to points that lie on the focal plane of the main
lens. This can be derived from the thin lens equation for the main lens
and remembering that the LFIM H propagates the origin of a ray to a
plane that corresponds to the main lens plane (d = 0). The depth of the
singularity z! corresponds to the plane containing the projection centers
of the microlens cameras (Section 5.1.2). This singularity occurs when
the affine mapping ! (k;m, H) is applied. Implicitly, the singularity
implies that the slope m,gl is undefined. Thus, in Section 3.4.1, the set
P (3.16) allows to overcome this limitation.

On the other hand, the singularity z* corresponds to the depth of the
plane containing the projection centers of the viewpoint cameras (Sec-
tion 4.1.2). The depth of the singularity is defined by the optical setup
of the plenoptic camera and depends on several parameters including
the sampling frequencies (see inline equation for z2). This singularity
occurs when one applies the affine mapping f (7; m, H). Implicitly, the
singularity implies that the slope m; is undefined. However, when this
situation occurs, one uses the set P;; (3.17) which avoids this limitation
to occur in the projection model defined.

From these analysis, it is possible to see that, contrarily to a pinhole
camera, a plenoptic camera can have projections even for points in the
object space that are at the depths of the singularities z! and 22.

3.5 Generalized LFIM

The LFIM appears in the literature to represent the SPC [4 1] and FPC
[150]. The structure of the LFIM (3.2) used to represent both optical
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setups is the same. In this section, one shows the origin of the LFIM and
the underlying assumptions for having the same LFIM structure for the
SPCs and FPCs.

The LFIM proposed by Dansereau et al. [41] (3.2) describes a virtual
plenoptic camera whose microlenses define a rectangular tiling. The
corresponding LF is obtained after a decoding process that comprises
segmentation of the MlIs, alignment of the image sensor relatively to
the microlens array, and hexagonal sampling correction (Figure 3.6.c)
to transform the actual 2D raw 1mage captured by a plenoptic camera.
However, a plenoptic camera has a microlens array with hexagonal tiling
that is not aligned with the image sensor (Figure 3.6.b). Thus, the camera
model for a plenoptic camera should include the decoding transforma-
tions considered for the virtual plenoptic camera.

(d) Axial [67] (e) Zhang et al. [150] (f) Monteiro et al. [108]

Figure 3.6: Real and virtual microlens array structure of a plenoptic camera. The real microlens array (b)
defines an hexagonal tiling that is not aligned with the image sensor by an angle § and can be represented
using an axial coordinate system (d-e) or a cartesian coordinate system (f). The microlens array with the
hexagonal structure can be identified in the raw image of an MPC [5] (a). The virtual microlens array
(c) created by Dansereau et al. [41] defines a rectangular tiling that is aligned with the image sensor.
The virtual microlens array is obtained after a decoding process whose rays of the missing microlenses
(in orange) are estimated by interpolation.
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Figure 3.7: Geometry of a plenoptic camera considering the microlenses as pinholes and the main lens
as a thin lens.

The LFIM that describes a plenoptic camera and maps the rays in the
image space to the rays in the object space (Figure 3.7) is obtained by
applying a series of seven transformations

H=H"""HYH""H) H'H, H" (3.18)

resulting in a 5 X 5 matrix H with 20 non-zero entries

hsz' hsj hsk: hsl hs
hii heg P by Ty
H = huz huj huk hul hu
hm' hvj hvk: hvl hv
0O 0 0 0 1

(3.19)

The hexagonal grid of microlenses can be represented by indices (k, [)
using an axial coordinate system [67] whose basis differ from the stan-
dard cartesian coordinate system (Figure 3.6). The transformation be-
tween the two different coordinate systems makes the ray coordinates
dependent, and therefore the LF coordinates should be analyzed simul-
taneously. Thus, starting from a ray P = i, 7, k, 1, 1]T in homogeneous
coordinates, the transformation
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10  —m|[t0 000
01 " —n; | (01 00 0
HY*=10010 0 |00 o 0 (3.20)
0001 0 |foo ™ 0
0000 1 |fo0o00 1
H, H,

converts the LF coordinates using an axial coordinate system to pixel
coordinates using a cartesian coordinate system where (n;,n;) defines
a translational pixel offset. This mapping can describe the hexagonal
sampling of the microlenses in several ways. For example, considering
the width (/V;) and height (/V;) of the microlenses in pixels, the microlens
sampling is defined as

N; 0 1 —2
NA= |7 . SA= 21 (3.21)
' [0 Nj] ' [0 ]

Alternatively, one can consider the distance R between the center of
the hexagon that includes the MI and the hexagon corners, or consider-
ing the horizontal (d;,) and vertical (d,) distances between consecutive
microlenses centers. In these cases, the microlens sampling would be
defined as

] [ _ V3
NB _ \/gR 0 : SB _ \/g 9 or
g 0 2R Z I
. o (3.22)
N/I, [ 0 %dv ’ Su 0 1 ] )

respectively. Additionally, the misalignment of the microlens array rel-
atively to the image sensor introduces more dependencies among the
coordinates of the ray in image space. This misalignment is described
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by the mapping

Ha,

ap

cosf@ sinf 0 0 —ci_
—sinf cost 0 0 —c¢;

0
0
0

0
0
0

10 O
01 0
00 1

(3.23)

that encodes a rotation ¢ and a translation of (ci, cj) pixels of the mi-
crolens array relatively to the image sensor. This transformation obtains
the 2D 1mage sensor coordinates (pixels in the 2D raw image).

In the remaining transformations, the dimensions corresponding to the
coordinates (7, k) and (j,!) are independent, and therefore the series of
transformations can be analyzed separately for each pair of coordinates
without loss of generality [41]. Thus, starting with the homogeneous
coordinates [i’, &, 1]", the transformation

19 %

m /i 1 g]ﬁ;
H'=10 5 -3 (3.24)

0 0 1

converts the 2D image sensor coordinates and microlenses coordinates to
metric coordinates by assuming that there are f.) samples per meter and
an offset o). This allows to define the 4D ray using two points defined
in two planes, the image sensor and the microlens array. On the other
hand, the mapping

1 00
H? = —i i 0 (3.25)
0 01

allows to change the two-plane parameterization of the ray to a point and
a direction defined in the image sensor plane using the distance between
the image sensor and the microlens array (d,). This parameterization
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allows to use ray transfer matrices to propagate the ray to an arbitrary
plane. Namely,

_1 du + dy 0_
H M — |0 1 0 (3.26)
0 0 1

propagates the ray in free space from the image sensor to the main lens
and defines the position of the ray in the main lens. d,; is the distance
between the microlens array and the main lens. Additionally, the map-
ping

1 0 0]
HM = —ﬁ;l@ (3.27)
0 01

describes the refraction that occurs at the main lens with focal length
far. This allows to obtain the direction (u, v) in the object space with-
out being modified by the optics of the plenoptic camera. Finally, the
transformation

(3.28)

O = QL
— O O

1
HM—)H — O
0

defines the origin of the ray in the object space at a point (s,?) in an
arbitrary plane II at a distance d from the main lens. The seven transfor-
mations allow to parameterize the ray in metric units by a point in plane
IT and a direction (Figure 3.7).

The LFIM (3.19) is more complex than the LFIM proposed by Dansereau
etal. [41] (3.2). However, it is possible to simplify (3.19) and reduce the
number of non-zero entries. Normally, the misalignment between the
microlens array and the image sensor is small, and in recent plenoptic
cameras like Raytrix can be ignored. In the virtual plenoptic camera, the

46



3.5. GENERALIZED LFIM CHAPTER 3. PLENOPTIC RAY GEOMETRY

misalignment is also not considered in the camera model since it 1s cor-
rected in the decoding process. Thus, one can consider that H | = I545
where 15,5 1s a 5 x 5 identity matrix which simplifies the LFIM H (3.19)
to 14 non-zero entries

hsi 0 hsk‘ hsl hs
0 hy O hy h
H= |hy 0 huy hyg hy (3.29)
0 hy 0 hy h

1

o 0 0 0

In order to further reduce the number of non-zero entries, one should
choose an appropriate coordinate system for the microlens coordinates
(k,1). Namely, one can incorporate the axial coordinate system basis in
the microlenses coordinates as in Zhang et al. [150] (Figure 3.6.e) con-
sidering the microlens coordinates defined as [k.,l.]" = S, [k,{]" with

S, = \Of ‘f . In the series of transformations that lead to the matrix H

2
(3.18), this is equivalent to separate the contributions of the matrices H,,

and H; in the mapping H" (3.20). More specifically, the matrix H,,
will be used to define the LFIM H, = HY~'"HYH*>YH? H'H} H,
while the matrix Hy will be used to define the ray coordinates in the
image space ®, = H,®. However, this originates non-integer indices
for the microlenses which might difficult the access to a particular mi-
crolens.

Alternatively, one can use a rectangular sampling basis without re-
sorting to a decoding process (Figure 3.6.f) [108]. This allows to rep-
resent the hexagonal structure of the microlens centers in raw image
coordinates (p, g) using integer (k,l) coordinates given by [p,g]" =
N, S, [k, " + [po, 9] where N, = diag(dy, d,), S, = diag(3,1) and
(po, go) correspond to the origin for the (k, ) coordinates in the raw im-
age.

In the virtual plenoptic camera, the decoding process corrects the mi-
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crolens hexagonal sampling by generating a rectangular tiling of the mi-
crolenses [41] which result in a sampling that is described by a rect-
angular basis S, = I.o where Iyyo is the 2 x 2 identity matrix and
considering N, = diag(N;, IV;).

The misalignment simplification and the appropriate choice of the mi-
crolens coordinates allow to model a plenoptic camera (SPC and FPC)
with a LFIM H with 12 non-zero entries (3.2), identical to the one de-
scribed by Dansereau et al. [41].

3.6 Chapter Summary

In this chapter, was introduced the LFIM that maps rays in the image
space ® to rays in the object space W. This mapping was used to de-
scribe a ray-based projection model for a plenoptic camera defined by
the sets P;; (3.17) and Py; (3.16). This projection model is derived from
(3.14) considering the affine mappings f (¢; m, H) and g (j; m, H) and
the goal of maximizing the number of projections.

Additionally, were explained the assumptions that allow to have an
identical LFIM H with 12 non-zero entries (3.2), identical to the one de-
scribed by Dansereau et al. [4 1], for SPCs and FPCs. More specifically,
the same structure is obtained by the appropriate choice of the microlens
coordinates and by assuming that the image sensor is aligned with the
microlens array.

The ray-based projection model relies completely on the LFIM and
on the ray definition. This approach does not try to associate a meaning
to each of the LFIM parameters and does not explain the consequence
of either fixing the coordinates (i, j) or (k, ) to obtain the projections of
a point. Chapters 4 and 5 will deepen the understanding of the LFIM
and of the plenoptic camera projection model by defining the projection
models associated with the viewpoint and microlens cameras.
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Chapter 4

Standard Plenoptic Camera

The geometry model most used for Standard Plenoptic Cameras (SPCs)
is the one proposed by Dansereau ef al. [41] and described in Chap-
ter 3. This model maps rays in the image space indexed by pixels and
microlenses indices to rays in the object space defined in metric units.
The concept of Viewpoint Image (VI) defined by Ng ef al. [112] (Sec-
tion 2.5.1), obtained by selecting the same pixel for each microlens, is
normally used to represent the Lightfield (LF) obtained by an SPC and
allows to conveniently view the SPC as a camera array (Figure 4.1.d).

This chapter starts from the model of Dansereau et al. [41] and has a
derivation of the mapping between the Lightfield Intrinsic Matrix (LFIM)
and the viewpoint camera array that allows to fully formalize the pro-
jection model for a viewpoint camera. Two calibration approaches are
proposed for an SPC based on the geometry of the viewpoint array. The
depth capabilities of an SPC are evaluated for the depth range between
0.05 and 2.00 m.

4.1 Viewpoint Camera Array

In this section, is shown that the LFIM [4 1] can represent an array of
distinct coplanar and parallel cameras (Figure 4.1.d). The VI is obtained
by selecting the same pixel (i, j) of each microlens (k,[). In this case,
the coordinates (i, j) are the indices associated with each VI and the
coordinates (k, [) encode the position of a pixel in the VI. Let us consider
the projection matrix P* to describe a viewpoint camera parameterized
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(c) Reconstructed (d) 3D reconstruction and camera
depth map array (centers spaced 50x)

Figure 4.1: LF parameterization, scene reconstruction and viewpoint camera array. (a) The LF in the
image space is parameterized using pixels and microlenses indices while the LF in the object space is
parameterized using a point and a direction. (b) Image captured on the sensor of an SPC. (¢) depicts the
depth map obtained using [95]. (d) Viewpoint camera array obtained by calibration where the spacing
among projection centers has been scaled 50 times to be perceptible on the 3D plot.

by the indices (i, j) € Z>

Pl — K [ngg tiﬂ'] ‘T, 4.1)

where K" denotes the intrinsic matrix, I3, is a 3 x 3 identity matrix, t/
CRw th
01><3 1
transformation between the world and camera coordinate systems with
rotation ‘R, € SO(3) and translation °t,, € IR®, and 0;,3 corresponds
to the 1 x 3 null matrix.

is the projection center and “T,, defines the rigid body

Note that while “T',, defines one coordinate system for all cameras, the
intrinsic matrix and the projection center are different for each viewpoint
camera (7, j) in the array. In the following, let the camera model (4.1)
for the viewpoint cameras in the array take into account that the principal
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point and the projection center are different for each camera while the
scale factor remains the same:

_ku 0 Uo + 1 AUQ_ _QCO_ _’i AQZ’O_
KV= |0 k, vo+jAvy| and t7= |yo| + |jAuw| 4.2
0 0 1 20 0

where the scalars k, and k, denote focal lengths and conversion from
metric units to pixels (denominated as scale factors in the remainder of
the thesis). The vector [uy, UO]T defines the principal point for the view-
point camera (4, j) = (0, 0), and the vectors [Aug, Avg]! and [Axg, Ayg, 0]F
denote principal point shift and baseline between consecutive cameras in
the array, respectively. The vector [z, 3o, 2] defines the location of the
camera array relatively to the camera coordinate system origin. This
allows to represent the array of cameras using a maximum of 11 param-
eters.

4.1.1 Projection Model

Considering the projection matrix (4.1), one can obtain the multiple
projections for a point m = [z, y, z|* in the object space considering the
available camera indices. More specifically, let us define the projection
matrix of a particular camera (7, j) as

P =P'+ i AP' + j AP/ (4.3)

with
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_ku 0 U T
P'=10 k, vo| [Isxs %o | “Tw .
0 0 1 20
AP = |0, U0 RubrotBuoz o 0 g4
092
_ 01><2
APJ = 03><2 AUO kv Ay()—I-AUO 20 CTw
01><2

In these equations, P" defines a projection matrix that does not have
a dependency on the camera indices, i.e. the projection matrix for the
viewpoint camera (i,j) = (0,0). The incremental matrices AP’ and
AP’ give the contribution of each camera index for defining the projec-
tion matrix P* for an arbitrary viewpoint camera (7, j) and 0,,,, corre-
sponds to the n X m null matrix.

Using (4.3), the projection of a point m to a point in the image plane
q = [k,1,1]" of a particular camera (4, 5) is given by

PO
q ~ [13><3 1 L33 jI3><3] APZ: m 4.5)
~ ~~ - APJ

M L -

where the symbol ~ denotes equal up to a scale factor. The matrix M
provides an easy way to add the several camera indices available for a
plenoptic camera and in this way get the multiple projections for a point
m in the object space.

The projection (4.5) using the viewpoint coordinates (¢, j) is equiva-
lent to the projection set Py; defined in Section 3.4.1.
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4.1.2 Mapping from LFIM to Viewpoint Projection Matrices

In order to obtain the mapping from the LFIM to the camera model
(4.1) let us first define the projection centers of the viewpoint cameras,
and then define the projection equation considering the LFIM H and
(i, j) as parameters.

Viewpoint Projection Centers. Let us consider a LF in the object space
L1 (g, 7, u,v) acquired by a plenoptic camera with the plane 2 in focus
(Figure 4.1.a). Ly (¢, 7, u,v) is a set of rays, where each ray ¥y =
lq, 7, u, v, l]T is parameterized using a point (¢,7) on a plane I and a
direction (u, v) defined in metric units [107]. This LF is mapped to the
LF in the image space L (i, j, k, () by the LFIM Hy:

Uy=H;® . (4.6)

where & = i, 7, k, 1, 1]T corresponds to a ray that is parameterized by
pixels (¢, j) and microlenses (k, ) indices and

(hy 0 hge 0 hy
0 hy 0 hy b
Hy= |hy 0 hg 0 hy| . 4.7)
0 hy O hy hy
00 0 0 1

This mapping allows writing the positions (g, ) and the directions (u, v)
as affine mappings on the pixels (4, j) and microlenses (k, /) indices.

For a viewpoint or sub-aperture camera, the pixel coordinates (i, j) are
fixed and are considered as parameters. Hence, for a viewpoint camera,
the positions (¢, ) and the directions (u, v) are affine mappings only on
the microlens coordinates (k, (), namely
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(k; 4, Hn) = hgp k + hgii + hy
(;; 3, Hp) = hyl+hyjj+ Ry
(k; o, Hp) = hyp k + hyi @ + hy,
(; 3, Hi) = hyl+ hyj g+ hy

(4.8)

q
r
u
v

\
where the LFIM Hy; is also considered as a parameter. To simplify the
notation, the parameters (i, j, Hyy) will not be included in the following
expressions.

A ray captured by a plenoptic camera and parameterized by (i, 7, k, [)
intersects the plane IT at point p (k,1) = [g(k), r(I), 0]' with a direc-
tion n (k,1) = [u(k), v(l), 1]*. This allows to define an arbitrary point
c(k,I,)\) = [z,y, 2]! along the ray [58] as

clk, LN =pkD)+Ankl), AeR . (4.9)

Note that by sweeping the range of (k, 1) in (4.9) with A = 0, one samples
an area of the plane II through which pass all the viewpoint imaging
rays. In addition, by sweeping (¢, j), one obtains all the viewpoints, and
therefore all rays that can be imaged by the plenoptic camera. Finally,
sweeping A, allows representing all world points within the Field of View
(FOV) of the plenoptic camera.

The location of the projection centers of an optical setup is defined
by its caustic surface, which is the loci of singularities in the flux den-
sity [27, 58]. The convergence of the rays captured by a camera at a
single point, i.e. a unique projection center, is considered a degenerate
configuration of the caustic surface (point caustic) [58]. Although there
are many techniques to derive the caustic surface, one will consider the
Jacobian method [27].

The caustic surface is defined at the points in the object space where
the ray to image mapping (4.9) is singular, i.e. the mapping from (k, [, \)
to (x,y, z) is singular. The singularities occur at the set of points where
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the Jacobian matrix of the transformation does not have full rank, i.e.
points that make the determinant of the Jacobian vanish det (J (c (k, L, A))) =
0. Solving the vanishing constraint one obtains two solutions for A:

hqk hrl

A= T Vo A= o (4.10)
Replacing Ay or Xy in (4.9), one identifies the caustic profile for the
viewpoint camera. The caustic profile of a single viewpoint consists of
a line with (i) unique (x, z) and variable y components if A = \; or (ii)
unique (y, z) and variable = components if A = \y. In case A; # A, the
viewpoint is a non-central camera. The viewpoint camera corresponds
to a central camera, i.e. a camera with a unique projection center, if and

only if A\; = A9 which imply the model parameters relation

hqk . hrl

huk— Bul
Assuming this constraint and replacing A in (4.9), expanded by the ex-
pressions in (4.8), the location of the viewpoint projection center for a
viewpoint camera (i, j) is given by

(4.11)

[ hoge . R

Fu
Pe = | hy — 52hy + 5 (hej — 52h0 ) | (4.12)
by,
Tk

Furthermore, considering all viewpoint cameras that can be defined, the
LFIM represents a coplanar grid of equally spaced projection centers.
Notice that the pixels (i, j) only affect the x- and y-components of the
projection centers while the z-component of the projections centers is
always the same.

LFIM Mapping. Considering that the rays of one viewpoint camera
converge to a unique point (4.11), one may set constant the values (7, )
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and solve (3.11) relatively to (k,[). This gives an equation of a view-
point pixel (k, ) imaging the 3D point (x, y, z) that can be rewritten as a
pinhole model like (4.1) with the intrinsic matrix defined as

i 1 o , hui_
» h_uk’ O _huk ! Zuk
[/ 1 hy . Ty
KY=10 it i h_v; : (4.13)
0 0 1
and the projection center as t*/ = —p,. (4.12). This allows to obtain the
mappings to the representations in (4.2). Namely, comparing (4.13) with
(4.2), one identifies a common component [ug, vg]’ = — 7/ Pt B !

and a differential (shift) component [Auy, AUO]T = — [hm [Puks b/ hvl} g

on the principal point. The scale factors are defined as k, = 1/h,; and

k, = 1/hy, and the baseline is defined as [Ax(, Ayj, O]T = — [hqi — i hie/ ok

The position of the viewpoint camera array origin relatively to the cam-

era coordinate system origin is defined as [z, o, ZO]T = — [hq — hy b/ Py By
An example of the pinhole model parameters for a viewpoint camera

array obtained from a calibrated Lytro Illum camera can be found in

Table 4.6. This array 1s configured for a focused depth of about 1.09

meters and describes 15 x 15 (7, j) cameras whose VIs have 625 x 433

(k,1) pixels.

4.1.3 Properties of Viewpoint Projection Matrices

Considering equation (3.11), one can obtain the Epipolar Plane Image
(EPI) geometry that relates the depth of a point with the disparity on the

T
Ak Al
VIs [E’ A_j:|
h h,
Ak hei — 5 th 1 Ry q Al hyj — h_vi vji 1 Py
At R Aj T 2z + % P
l
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The mapping (4.12) and (4.13) allows to rewrite the EPI geometry de-
fined in equation (4.14) as

%—/{ AJJO
JAY) B uZ—f—Z()

Al A
—k, Yo

+ A d = =
wo A A T

LAy . (4.15)

The EPI geometry shows that despite the parallel optical axis, the zero
disparity plane, also known as the optical focal plane [ 12] of the main
lens is at a finite depth due to the principal point shift (box B in Figure
4.2.b). Namely, the zero disparity plane corresponds to the plane ) with
20 = —2) — kuﬁ—ig = —20— ky ﬁ—gg. Contrarily, if one considers the prin-
cipal point shift equal to zero, i.e. cameras with same principal point and
therefore same intrinsic matrix K%, one recovers the EPI geometry de-
fined in [22] that defines points at infinity as the points of zero disparity

[107] (Appendix B).

Looking at the EPIs obtained from a LF in Figure 4.2, one can see
that the lines corresponding to different points in the object space have a
range of positive and negative slopes. Namely, objects in the background
(box A) have a negative slope while objects in the foreground (box C and
D) have a positive slope. The disparity zero, in this scene, corresponds
to the position of the person holding the objects (box B).

Notice also that the FOV is similar for all viewpoint cameras. Scene
regions observed by the different viewpoint cameras change slightly for
depths other than the zero disparity plane depth zo (Figure 4.3.d). This
is a consequence of the array of projection centers and array of principal
points modeling viewpoint cameras. For the zero disparity plane depth
z0 = _h_j; = —%, the influence of the different projection centers is
cancelled by the principal point shift and the scene region observed is
the same for all viewpoint cameras (Figure 4.3.c).
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(a)

[ W W A T T | (b)

D
T I e— )

Figure 4.2: The viewpoint cameras identified in red in Figure 4.1.d are used to obtain EPIs from the LF
at rows 185 (red) (b) and 265 (green) (c¢) on the central viewpoint (a).

4.2 Reducing the Parameters of the LFIM

The LFIM has 12 non-zero entries (4.7) but some parameters can be
avoided by considering them on the extrinsic parameters and choosing
an appropriate camera coordinate system origin. Namely, choosing the
camera coordinate system origin at the plane containing the viewpoint
projection centers.

Considering the parameterization plane II (Figure 4.1.a) for the origin
of the different rays Uy = lq, 7, u,v, 1]T in the object space, an arbitrary
point is defined as [z, y, Z]T = [q,r, O]T + A [u,v, 1]T, A € R [58]. The
re-parameterization of the rays in the object space to the plane I' (3.3)
corresponds to a shift along the z-axis of the camera coordinate system,
which results in [z, ¥, zp]T = [s, 1, O]T+)\ [u, v, 1]T where s = ¢+u di_r,
t =r+wvdnor, and zr = z — dp_p. Thus, the re-parameterization is
redundant with the z-translation of the extrinsic parameters. Assuming
that the plane I' corresponds to the plane containing the viewpoint pro-
jection centers at di_,r = —hgi/hui, one obtains a LFIM Hr = D, Hy
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Figure 4.3: FOV of a Lytro [llum camera analyzed from the viewpoint array model. (a) back-projection
pyramids of the four corner viewpoint cameras, (i,j) = {(1,1),(1,15),(15,1),(15,15)}, where A
represents the array of projection centers, B is at the focus plane at depth zq, and C is at depth z = 10
m. (b) zoom of A in (a), other viewpoint projection centers shown by red lines and blue dots. (¢) zoom
of black rectangle B in (a) showing the region observed at z(, is the same for all viewpoint cameras. (d)
zoom of black rectangle C in (a) shows slight differences of regions observed by the different viewpoint
cameras.

(3.4) with 10 non-zero entries
he 0 0 0 hy
0 hy 0 0 hy
Hr= |hy 0 hy 0 hy : (4.16)
0 hy 0 hy hy
0O 0 0 0 1

Furthermore, extending the definition of the point (s,t) to consider

the rays ® = [i, ], k,, 1}T in the image space (3.1) and redefining x
- T

and y as xr = x — hg and yr = y — hy, one obtains [zr, yr, 2r] =

[hsi i, hij g, O} T u, v, 1]T. Hence, the entries h, and h, are redundant

with the (z, y)-translational components of the extrinsic parameters [4 1,

]. Thus, removing the redundant entries, one obtains a LFIM Hry
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with 8 non-zero entries

Hr = [hy 0 hy u : (4.17)

o 0 0 0 1

Considering this representation for the LFIM, the viewpoint projection
. . . T
centers location (4.12) reduces to p. = [z hsiy 7 huj, O] .
Considering that the SPC is described by the LFIM Hr, one obtains
a pinhole model with the intrinsic matrix (4.13) and with the projection
center defined as

t = |—jhy| . (4.18)

Comparing with (4.2), the baseline is defined as [Axg, Ayp, O]T = [—hsz-, —hyj, O]
and the vector [z, 4o, zO]T = 034 since the plane I" coincides with the

plane containing the viewpoint projection centers. This allows to repre-

sent the viewpoint camera array using 8 parameters.

The geometry described in this section allows to represent a coplanar
camera array of distinct cameras that differ on their principal point. This
representation also allows to represent a coplanar array of identical cam-
eras by setting Auy = Avyy = 0. Considering that the principal point
shift is zero, the EPI geometry reduces to the one presented by Bolles et
al. [22] (Appendix B).

4.3 Corner-based Calibration

The methods to calibrate SPCs normally consider corner features in
VIs. The only work that considers other type of features is the one from
Bok et al. [21] that uses lines in Microlens Images (Mls). However,
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these features are not detectable when the calibration pattern is placed
near the mains lens world focal plane. In this region, the MIs consist
of an image with very small deviations on the intensity values since
these projections correspond to the same point in the scene [ 107] (Figure
3.4.0).

The VI corner-based methods that estimate the LFIM parameters dif-
fer mainly in the linear solution (Table 4.1). More specifically, the linear
solution described in [4 1] estimates an homography for each viewpoint
camera and pose of the calibration pattern. This solution estimates eight
from the ten free intrinsic parameters, being the remaining two param-
eters estimated only in the nonlinear optimization. On the other hand,
Zhang et al. [150] considers a reduced LFIM with 6 parameters similar
to the one obtained for a coplanar array of identical cameras (Appendix
B) [95]. This reduced representation is possible by including two extra-
parameters on the radial distortion model of Brown [25] (Appendix A)
which are only estimated in the nonlinear optimization.

Method Number Homographies | Number LFIM Parameters Features
Dansereau et al. [41] PxC 8 of 10 Corners in VIs
Bok et al. [21] P 3 of 6 Lines in MlIs
Zhang et al. [150] P 6 of 8* Corners in VIs
Monteiro et al. [104] P 8 of 8 Corners in VIs

Table 4.1: State of the art comparison for SPC calibration procedures. P denotes the number of poses
and C denotes the number of viewpoint cameras that can be obtained for an SPC. * Zhang et al. [150]
considers a LFIM with 6 parameters being the other 2 included in the radial distortion model (Appendix
A).

The full formalization of the viewpoint cameras projection model al-
lows adapting methods from mainstream computer vision to plenoptic
cameras. The linear solution of the calibration proposed in this sec-
tion uses the mapping between the viewpoint projection model and the
LFIM parameters to define a more efficient method to estimate the cam-
era model parameters. Namely, one estimates a single generalized ho-
mography per pose of the calibration pattern, and extending techniques
from pinhole camera calibration one recovers the eight free intrinsic pa-
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rameters of the camera model. This is the first calibration procedure that
allows to estimate the full LFIM in the linear solution.

In this section, the calibration proposed considers the corners of a pla-
nar calibration grid of known dimensions as features. In the following,
one assumes that the corners in the world coordinate system have been
matched with the imaged corners. Let us consider a 4D LF obtained
from the raw image (Figure 4.1.b) after the decoding process [41, 44]
(Section 2.5.1). An imaged corner is defined by a ray ® = [, 5, k, []"
in the image space. The (k,[) coordinates correspond to the pixel co-
ordinates of the detected corners on the VIs while the (7, j) coordinates
correspond to the viewpoint coordinates. The (¢, j) coordinates are inte-
gers and the (k, ) coordinates are real since generally a feature detector
has sub-pixel accuracy (Figure 4.4.c).

® e

LI

st

LI

8

! ! ....
(b) MIs l...
9 x 9 pixels ...
o8

® ®

o000
® o

(a) Raw Image
3280 x 3280 pixels (¢) Detail of VI 383 x 381 pixels

(d) VI

Figure 4.4: (a) Debayered raw image from an SPC [4 1] with zoom (b) to show the effect of the microlens
array. The features (k, ) obtained by the feature detector are shown in red for all calibration grid points
(d). The sub-pixel accuracy is depicted in (c¢). The contrast is reduced for display.

4.3.1 Linear Initialization

In this section, is considered the mapping in Section 4.2 to define
a linear solution for the viewpoint array parameters associated with a
plenoptic camera and the extrinsic parameters for each pose of the cal-
ibration grid. The linear solution comprises homography, intrinsic and
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extrinsic parameters estimation steps.

Homography Estimation. Considering the viewpoint projection matrix
P (4.1) with K¥ (4.13) and t¥ (4.18), a point m = [z,y, z]" in the
object space is projected to a point in the image plane q = [k, Z]T by

q~PYm=K" R, °t,+ t”] m (4.19)

where the symbol ~ denotes equal up to a scale factor. The projection
equation (4.19) can be used to estimate the entries of the projection ma-
trix P* using a set of 3D points (Appendix C). Alternatively, the copla-
nar grid points allow to define a world coordinate system such that the
z-coordinate is zero. In this context, denoting m = [z, y, 1]T, one can
redefine the projection (4.19) as g ~ H" m where

HY — K [m ry ‘b, +tw’] (4.20)

is the parametric homography matrix for the viewpoint camera (i, j),
and ‘R, = [ry, ro, r3]. This matrix can be estimated from the point cor-
respondences (m, q) using a Direct Linear Transformation (DLT) [1].
Each point correspondence originates two linearly independent equa-
tions. The homography matrix has 9 entries to estimate but is defined
only up to scale. Thus, H” has 8 degrees of freedom needing at least 4
point correspondences to estimate its entries [63]. Assuming a plenoptic
camera with N pixels within each microlens and considering an indepen-
dent estimation of each of the viewpoint cameras’ homography matrices,
one has 8N unknowns to estimate.

A plenoptic camera introduces restrictions on the viewpoint camera
array that allows to decrease the number of unknowns to estimate. Namely,
the homography matrix H” changes among viewpoints as a result of the
principal point shift and baseline defined in Section 4.1. Let us consider
that H" can be defined from the homography matrix H associated with
the viewpoint coordinates (7, 7) = (0,0) and the homography viewpoint
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change matrix A“ by

.. h(l)l h(%Q h(1]3 1 O O aip arp ais
HY = h(2)1 h82 hgg + (0 ] 0 a1 Qa9 Q93
Ry, Kl K| loo1| o o0 0] 4.21)
HY e

Considering the homography projection of a calibration grid corner m =
[z, y, 1]T in the object space to the image point q for the viewpoint cam-
era (7, j), applying the cross product by q on each side of the projection
equation leads to [q],, H” m = 03,1, where [(-)]  is a skew-symmetric
matrix that applies the cross product. Using the properties of the Kro-
necker product [93] and solving for each of the unknown parameters,
one obtains

= 0341 (4.22)

where

1 00000
070000
O1x6

1 000
0700 : (4.23)
0146

0020
000
0146

.

and h” and a” correspond to vectorizations of the matrix H and A%
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by stacking their columns and removing the zero entries, respectively.
The solution [h°, a" }T for the parametric homography matrix can be
estimated using Singular Value Decomposition (SVD).

The restrictions introduced by a plenoptic camera allow to represent
the parametric homography matrix (4.21) using 15 parameters. Accord-
ing to (4.22), each point correspondence (m, q) originates three equa-
tions with only two being linearly independent. On the other hand, each
point in the object space originates /N image points, one for each view-
point camera, assuming that the point is observed in all viewpoint cam-
eras. These pairs provide 2N equations that, theoretically, are enough
to estimate the parametric homography matrix, assuming that N > &.
Nonetheless, the restrictions on the viewpoint camera array also origi-
nate restrictions on the projections of a point in the object space. Namely,
the ray in the image space ®7 = [i, ], k, Z]T associated with an arbi-
trary viewpoint (4, j) can be described from the ray coordinates ®° =
(0,0, ko, lp]" associated with the viewpoint (i, j) = (0,0) by ® = &° +
i, 7,18, 7 B]T, where 3 corresponds to the disparity of the point defined
on the VIs. This reduces the number of linearly independent equations
originated by a point in the object space to 4. Thus, one needs at least 4
non-collinear points to obtain the entries of the homography matrix H" .

Denoting x = |h’, a"/| " as the unknown parameters of the homog-
raphy matrix H” and M, = (m” ® [q],,) T as the observation matrix
associated with the point correspondence (m, q), the equation (4.22) can
be rewritten as M, x = 03.;. Considering an observation matrix M ob-
tained from stacking the matrices IM,, of each pair (m, q), the solution
corresponds to a non-zero vector in the null space of M. Since the ho-
mography matrix is defined up to a scale factor, one should constraint
the solution to ||x||? = 1 leading to the following optimization problem

argmin [Mx|* st [x[|P=1 . (4.24)

X

In order to obtain an estimate for the homography matrix (4.21), one
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should consider two practical aspects:

(a) Data Normalization: For a DLT it is crucial to normalize the data
in order to improve the condition number of the matrix M™M [64].
Thus, one should consider a translation of the image points and the
points in the object space so that their centroids are at the origin
and the average distances to the origin are equal to /2 and v/3 [63],
respectively.

(b) Computing a Solution in case of a Large Number of Features: In
order to build an over-determined system, having a least squares so-
lution, one should use each projection q observed in each viewpoint
camera for a given point m. Therefore, assuming a plenoptic cam-
era with C' viewpoint cameras, a point in the object space gener-
ates C' point correspondences (m, q), and consequently 2C' equa-
tions, per raw image. Normally, in a calibration procedure, one
uses a calibration grid, with N feature points, that is observed in
P different poses. This leads to a tall observation matrix M with
L =2C x N x P rows and 15 columns, i.e. one has a high number of
observations compared with the number of parameters to estimate.
Consequently, using a SVD to obtain the solution to the optimiza-
tion problem (4.24) is troublesome since this decomposition needs
to compute the square matrix M M’ which requires a prohibitive

storage space. Hence, a solution is to perform a QR-Decomposition
T

[51] of the observation matrix M = Q |V 0(;_15)x15| Where Qs

an orthogonal matrix and V is an upper triangular matrix with size
15 x 15. This allows to rewrite the optimization problem (4.24) as

argmin |[Vx||* st |x[*=1 |, (4.25)

X

which can be solved using SVD.

Intrinsic and Extrinsic Estimation. The structure of the homogra-
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phy matrix (4.20) in conjunction with the orthogonality and identity of
the column vectors of ‘R, allow to define constraints on the intrinsic
parameters as hy'B7hy = 0 and hy'B7h; — hy’BYh, = 0 [151]
where h,, refers to the m-th column vector of H"”, and the symmet-
ric matrix that describes the image of the absolute conic is defined as
B — K 'K#% ™ [92, 151]. These constraints can be used to obtain
the intrinsic parameters independently for each of the viewpoint cameras
[151]. Alternatively, one can use the knowledge of the intrinsic matrix
K" to perform the estimation of a parametric representation of the abso-
lute conic B for a viewpoint camera (4, j) using a minimal number of
parameters.

The intrinsic matrix K% differs on the principal point for each view-
point leading to different images of the absolute conic. The principal
points change regularly between consecutive viewpoints by the princi-

T
: . gy .
pal point shift [Awuy, AUO]T = [—%, —h—”ﬂ which can be used to con-

straint the parametric representation of BY. Namely, considering (4.13),
B% can be defined as

B"=B"+iC' +jD/ +E +j*F (4.26)

with

h2. 0 By P
B'=| 0 £} ool , (4.27)
hohye hohy 14 hi + h%
| 0 0 hyhu | 0
C= 0 0 0 | E=]| OQX;;Q‘] : (4.28)
huz’huk’ 0 2huhuz w
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oo 0 | .
D'= |0 0 hyhy|  and F= | OQX;’LQ ] . (4.29)
0 fojhor 2hoho; | v

This allows to define a representation for B¥ using 11 distinct non-zero
entries b” = [byy, b3, bag, baz, b3, c13, €33, dog, dss3, €33, f33]7 where (+),
represents the entry in row n and column m of the matrix (-). Consid-
ering these parameters, the intrinsic parameters constraints can be rede-
fined as

C huho b’ —ht ]
hiithse + hishar 2 (hiihs — hiohsg)
ha1hag hor” — hay?
hothsy + hashsr 2 (haihsy — hagha)
h31h3o ha1® — hay”
i (h11hso + hiohs1) 2t (hirhg — hiohsg) N
i (haihs2) i (h312 — h322) b¥ =02q.  (4.30)
J (hothsa + haohg1) 25 (haihsr — haohso)
7 (hsihso) J (h312 — h322)
i* (hs1hse) i (h312 — h322)
3% (haihsa) 7 (hs12 — h322)

Normally, each homography generates 2 equations for determining the
matrix of the absolute conic image [151]. The parametric homography
representation (4.21), representing an arbitrary viewpoint (7, j), gener-
ates 6 equations. Nonetheless, only 2 equations are independent regard-
ing the entries of BY, so one needs to acquire at least 3 calibration grid
poses to estimate b* defined up to a scale factor.

The intrinsic matrix parameters can be recovered from B%. More
specifically, rewriting the intrinsic matrix K% (4.13) as
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m T . ha
A L I K h
Ki= |0 & —fl 00| |00 —tu|, @3
0 O 1 001 0
K Gii

one can define B = K "K', This allows to estimate the entries
of K" using the Cholesky decomposition of B and correcting the scale
factor considering kY3 = 1. The principal point shift can be estimated

Ao P 13 hoj da3
nsidering Auy = —74% = —23 and Avyg = —42 = —75.
conside g .uO huk by & d _vo P b _
The extrinsic parameters can be estimated once the intrinsic matrix
K" is known. From (4.20), the rotation matrix ‘R,, = [r,ry,r3] is

recovered considering

ry = )\Kij_lhl , To = )\Ki‘j_lhg , and 's =11 XTIy (432)

with A = 1/ ‘Kij_lth = 1/HKU_1hQH. The translation °t,, and projec-

tion center t“/ are recovered solving the following system of equations

Ahy — [Kﬂ —ik, —jkg] he; 4.33)

where k,, corresponds to the m-th column of the parametric intrinsic
matrix K%,

4.3.2 Nonlinear Optimization

In this section, the linear solution is refined and radial distortion [25]
is considered on the coordinates (u,v). Namely, the undistorted rays in
the object space ¥" = [s, ¢, u", v“]T are defined from distorted rays in
the object space ¥ = [s, ¢, u, v]’ by
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u" 5 4 6\ | U by
" :(1—|—klr + ko1 —i—kgr) |+ (4.34)

v v by
where @ = u" — b,, 0 = v* —b,, r* = v? + %, and d = (ky, ko, k3, b, b,)
defines the distortion vector. In the distortion vector, k1, ko and k3 are the
radial distortion correction coefficients while the vector [b,,, bU]T defines
the distortion center. In the nonlinear optimization, one minimizes the
ray re-reprojection error, i.e. the distance between ray and 3D point as
defined in [41]. This optimization refines the LFIM parameters H, the
extrinsic parameters R, (parameterized by Rodrigues formula [48]) and

t,, p = 1,..., P where P is the number of poses, and the distortion
vector d:
P Ny C
arg min S: S: A(n; (H,d),R, m, +t,) (4.35)

p=1 n=1 c=1

where N, corresponds to the number of corners detected on pose p, C
corresponds to the number of viewpoint cameras, A (-) defines the point-
to-ray distance [41], i, defines the undistorted ray coordinates W* after
mapping the ray in the image space ®; associated with the viewpoint
camera c and corner n to the ray in object space (3.1) followed by dis-
tortion rectification (4.34). m,, defines the 3D corner point in the world
coordinate system. The nonlinear optimization is solved using the trust-
region-reflective algorithm [35], where a sparsity pattern for the Jacobian
matrix is provided. The number of parameters over which one optimizes
is 8 for the intrinsic parameters, 5 for the lens distortion parameters, and
6P for the extrinsic parameters.

4.3.3 Experimental Results

The corner-based calibration methodology proposed is assessed using
calibration datasets acquired with commercially available SPCs: the 1
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generation Lytro camera and the most recent Lytro Illum.

Plenoptic cameras acquire images that have higher storage require-
ments than conventional cameras. Namely, the 1°* generation Lytro has
a raw image with 3280 x 3280 pixels that allows to define 9 x 9 VIs with
a resolution of 383 x 381 pixels after the decoding process described in
[41, 44]. On the other hand, the Lytro Illum has a higher spatial and di-
rectional resolution in consequence of the higher number of microlenses
in the sensor and the higher number of pixels within each microlens.
More specifically, the raw image has 7728 x 5368 pixels that allows to
define 15 x 15 VIs with a resolution of 625 x 433 pixels after the decoding
process described in [4 1, 44].

1% Generation Lytro State of the Art Comparison. The results of the
calibration procedure proposed are compared with the results of the cali-
brations proposed by Dansereau et al. [41] (denoted as Dans13) and Bok
et al. [21] (denoted as Bokl7). The calibration procedures are applied to
publicly available calibration datasets [4 1] that were obtained using a 1%
generation Lytro camera. For this comparison, one considered the Root
Mean Square (RMS) of the re-projection error, the ray re-projection er-
ror [41], and the reconstruction error, for three stages of the calibration
process: the linear solution, the nonlinear refinement, with and without
distortion estimation. Three errors are used in this comparison since the
re-projection error is the usual error while evaluating pinhole camera cal-
ibration procedures but, in plenoptic cameras, the error normally used is
the ray re-projection error [21, 41]. In addition, the reconstruction error
is used to assess the quality of the reconstruction at the different stages
of the calibration. The errors are summarized in Tables 4.2, 4.3, and 4 .4.
Notice that the values from Bok ef al. [21] are retrieved directly from
their paper.

Comparing the results of the calibration proposed with the results ob-
tained using Dans13 [41], one can see that the major differences occur at
the linear solution. For a subset of 5 poses of these datasets, in the linear
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RMS Re-Projection Error (pix) | Dataset A | Dataset B | Dataset C | Dataset D | Dataset E

Dansi3 [41] (10) 1.678 | (18) 1.687 | (12) 1.687 | (10) 1.748 | (17) 4.290

Initiad (5)1.673 | (5)1.695 | (5)1.671 | (5)1.714 | (5)4.700
Bok17* [21] : . 5 5 :

Ours (10) 0.838 | (18) 0.856 | (12) 0.950 | (10) 0.965 | (17) 0.840

(5)0.797 | (5)1.035 | (5)0.953 | (5)0.790 | (5)0.627

Dans13 [41] (10) 0.435 | (18) 0.406 | (12) 0.402 | (10) 0.404 | (17) 0.218

Optimized (5)0372 | (5)0.429 | (5)0.392 | (5)0.461 | (5)0.185
Bokl17% [21] - - - - -

Oure (10) 0.427 | (18) 0.405 | (12) 0.420 | (10) 0.389 | (17) 0.219

(5)0.366 | (5)0.435 | (5)0.392 | (5)0.489 | (5)0.177

. (10)0.226 | (18)0.191 | (12)0.161 | (10) 0.150 | (17) 0.190

Opt“f"hzed DansI3 [41] (5)0221 | (5)0.240 | (5)0.164 | (5)0.163 | (5)0.153

Dis(tv(:;tﬁon) Bokl17% [21] (5)0374 | (9)0.259 - - (14)0.274

Ours (10) 0.226 | (18) 0.179 | (12) 0.156 | (10) 0.145 | (17) 0.134

(5)0211 | (5)0.194 | (5)0.159 | (5)0.163 | (5)0.127

Table 4.2: RMS re-projection error in pixels for three stages of the calibration procedure: linear solution,
and nonlinear refinement with and without distortion estimation. The number of poses P considered for
the calibration is denoted as (P). The symbol * indicates that the values reported are retrieved directly

from the corresponding paper.

RMS Ray Re-Projection Error (mm) | Dataset A | Dataset B | Dataset C | Dataset D | Dataset E

Dansi3* [41] (10) 3.200 | (18) 5.060 | (12) 8.630 | (10)5.920 | (17) 13.800

» (10) 0.577 | (18) 0.603 | (12) 1.036 | (10) 1.231 | (17) 8.900

Initial DansI3 [41] (5)0.627 | (5)0.570 | (5)0.974 | (5)1.081 | (5)11.970
Bok17% [21] - 5 5 5 5

Oure (10) 0.307 | (18) 0.341 | (12) 0.609 | (10) 0.640 | (17) 1.657

(5)0314 | (5)0.353 | (5)0.593 | (5)0.478 | (5)1.709

Dans13* [41] (10) 0.146 | (18) 0.148 | (12)0.255 | (10) 0.247 | (17) 0.471

. (10) 0.154 | (18) 0.147 | (12) 0.260 | (10) 0.260 | (17) 0.485

Optimized Dansi3 [41] (5)0.145 | (5)0.139 | (5)0.245 | (5)0.268 | (5)0.546
Bok17% [21] - 5 5 5 5

Oure (10) 0.151 | (18) 0.143 | (12)0.271 | (10)0.251 | (17) 0.489

(5)0.143 | (5)0.139 | (5)0.247 | (5)0.277 | (5)0.532

Optimized DansI3* [41] (10) 0.084 | (18) 0.063 | (12) 0.106 | (10) 0.105 | (17) 0.363

(with Dansi3 [41] (10) 0.085 | (18) 0.066 | (12) 0.104 | (10)0.116 | (17) 0.390

Distortion) (5)0.086 | (5)0.069 | (5)0.102 | (5)0.117 | (5)0.456

Bok17* [21] 50108 | @ 0071 ] ] (14) 0.492

: (5) 0.072 (5) 0.454

Oure (10) 0.085 | (18) 0.066 | (12)0.103 | (10) 0.114 | (17)0.393

(5)0.085 | (5)0.066 | (5)0.103 | (5)0.116 | (5)0.457

Table 4.3: RMS ray re-projection error in mm for three stages of the calibration procedure: linear
solution, and nonlinear refinement with and without distortion estimation. As in Table 4.2, (P) denotes
P poses, and * indicates values retrieved from related work.
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RMS Reconstruction Error (mm) Dataset A Dataset B Dataset C Dataset D Dataset E
Dans13 (1] (10) 2100.536 | (18) 325.215 | (12) 1293.985 | (10) 844.038 | (17) 2702.292
Initial (5)3139.904 | (5)203.736 | (5)1397.874 | (5)517.783 | (5)3370.725
Oure (10)3.039 | (18)6.212 | (12)14.899 | (10)20.751 | (17)79.681
(5) 3.904 (5) 8.023 (5)12.558 | (5)25.316 | (5)102.281
Dansi3 1] (10)3.370 | (18)4367 | (12)10.174 | (10)15.050 | (17)123.728
Optimized (5) 3.627 (5)3.112 (5)10.607 | (5)12.401 | (5)253.959
Oure (10)3.747 | (18)4516 | (12)10.229 | (10) 15.168 | (17) 142.231
(5) 3.682 (5)3.927 (5) 8.277 (5)12.216 | (5) 187.750
- (10)4.408 | (18)4.652 | (12)9.995 | (10)15.425 | (17) 135.851
Opt“fglzed DansI3 [41] (5) 4.283 (5) 4.415 (5) 8.007 (5)13.051 | (5)179.697
Dis(tv(:; tion) Oure (10)4.443 | (18)4706 | (12)9.976 | (10)15.553 | (17) 138.968
(5) 4.256 (5) 4.415 (5)7.932 (5)12.700 | (5)183.037

Table 4.4: RMS reconstruction error in mm for three stages of the calibration procedure: linear solution,
and nonlinear refinement with and without distortion estimation. As in Tables 4.2 and 4.3, (P) denotes
P poses.

solution stage, one can see that the re-projection error of Dansi3 [41] is
at least 1.63 times higher, the ray re-projection error is at least 1.61 times
higher, and the reconstruction error is at least 20.45 times higher. These
differences between the two calibration methods are even greater con-
sidering the complete datasets. This confirms that the proposed method
for the linear solution outperforms the state of the art.

Comparing with Bok er al. [21], the proposed calibration obtains
smaller re-projection and ray re-projection errors using the complete
datasets. Namely, the re-projection error is 1.44 smaller, and the ray
re-projection error is 1.25 times smaller. Only Dataset B presents a sim-
ilar performance to the calibration proposed. Considering a subset of 5
poses, the ray re-projection errors obtained for Bok et al. [21] are similar
with the ones of the calibration proposed with the exception of Dataset
A that exhibits an error 1.26 times higher.

The results obtained show that the reduced LFIM (4.17) does not de-
grade the performance of the calibration procedure. In this represen-
tation, the position (s,t) of the ray can be represented using only the
viewpoint coordinates (7, j) which allows to represent the rays with a

minimal number of sub-camera apertures.
Calibration Precision with Number of Poses. As in the calibration
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of conventional pinhole cameras, the redundancy and accuracy of cali-
bration data is a key factor for attenuating the effect of calibration data
noise into the calibration precision. Dansereau et al. [41] considered
the influence of different sizes of calibration patterns while Bok ef al.
[21] considered the influence of different number of poses for the 1%
generation Lytro camera.

The Lytro Illum camera is more recent than the 1°* generation Lytro
camera, and its specifications indicate improvements in almost all tech-
nical aspects. Thus, one wants to assess the influence of different sizes of
the calibration patterns and different number of poses for a Lytro Illum
camera. For this purpose, one acquired new calibration datasets with
a Lytro Illum camera using two calibration grids with different sizes:
8 x 6 grid of 211 X 159 mm with approximately 26.5 mm cells (denoted
as [llum-1), and 20 x 20 grid of 121.5 x 122 mm with approximately 6.1
mm cells (denoted as [1lum-2). Each dataset acquired is composed of 66
fully observable poses of the calibration pattern. Care was taken to avoid
changing the focal settings of the camera.

The higher number of poses acquired allow to define several subsets
for calibration which allow a statistical analysis of the results. There-
fore, in order to evaluate the precision of the calibration, one repeated 20
times the calibration procedure. Each calibration involves £ = 2, ..., 20
pattern poses, randomly selected from the full calibration dataset. The
calibration procedure proposed is compared with the methodology [4 1]
(denoted as Dansl3).

In Figure 4.5, the mean and Standard Deviation (STD) obtained for
the re-projection error, the ray re-projection error, and the reconstruction
error with the number of poses for Dataset [llum-1 and Illum-2 are de-
picted. This figure shows that the errors are similar for both calibration
methods after nonlinear refinement. However, for the linear solution, the
calibration proposed obtains smaller errors using 3 or more calibration
pattern poses. Additionally, to evaluate the precision associated with the
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estimate of each LFIM parameter with the number of poses, one shows
in Figure 4.6 the mean and STD obtained for each parameter of LFIM
for Datasets Illum-1 and Illum-2. Notice that the calibration Dans13 [41]
obtains a LFIM with 12 non-zero entries while the method proposed ob-
tains LFIM with 8 non-zero entries. For comparing the parameters, one
transformed the LFIM obtained by Dansl3 as defined in Section 4.2.
According to the results, one needs 9 poses using Dansi3 [41] and 8
poses using the proposed calibration for Dataset Illum-1 for having a de-
viation smaller than 3% of the mean value. In Dataset Illum-2, one needs
9 poses using Dans13 [41] and the proposed calibration.
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Figure 4.5: RMS errors obtained using the calibration proposed (in blue and cyan for Dataset Illum-1
and Illum-2, respectively) and the calibration Dans13 [41] (in red and magenta for Dataset Illum-1 and
Illum-2, respectively): re-projection error (a), ray re-projection error (b), and reconstruction error (c).
The first row depicts the errors obtained for the linear solution and the second row depicts the errors
obtained for the nonlinear refinement with distortion estimation.

Let us also consider the statistical analysis of the difference between
the estimates at the initial and final stages of the calibration process for
each of the entries of the LFIM. The mean and STD values for Dataset
[llum-1 and Illum-2 are depicted in Figure 4.7. This figure shows that
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Figure 4.6: Precision of the LFIM parameters after nonlinear refinement with distortion estimation using
the calibration proposed (in blue and cyan for dataset Illum-1 and Illum-2, respectively) and the calibra-
tion Dans13 [41] (in red and magenta for dataset [llum-1 and Illum-2, respectively): hy; (a), hy; (b), hyk
(©), hy, (d), hy; (@), hyj (F), Ry (8), and h,, (h). The mean values are represented by the solid lines and the
STD by the shaded areas.

the calibration proposed allows to obtain an initial solution that is closer
to the solution at the final stage of the calibration procedure. Namely,
the proposed calibration allows to estimate more precisely the entries
related with the baseline and the principal point shift (Figure 4.7.a-b and
4.7.e-f). For the remaining entries, the performance is similar for both
calibration methods.

The calibration proposed is applied to a set of 10 randomly sampled
poses and on a reduced set of 5 poses to evaluate the quality of the cali-
bration. For comparison purposes, these sets of poses are also calibrated
using the calibration described by Dansereau et al. [41]. For this com-
parison, one considered the RMS of the re-projection error, the ray re-
projection error [4 1], and the reconstruction error, for three stages of the
calibration process: the linear solution, the nonlinear refinement, with
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Figure 4.7: Difference between the estimated LFIM parameters at the initial and final stages of the
calibration proposed (in blue and cyan for dataset [llum-1 and Illum-2, respectively) and the calibration
Dans13 [41] (in red and magenta for dataset [llum-1 and Illum-2, respectively): hg; (a), hy; (b), hyx (€),
hy (d), hej (), hy; (F), hy (), and A, (h). The mean values are represented by the solid lines and the
STD by the shaded areas.

and without distortion estimation. The errors are summarized in Table
4.5.

The re-projection, ray re-projection and reconstruction errors are sim-
ilar after the refinement of the linear solution for both calibration meth-
ods. Also, the lower number of poses does not appear to change the
errors significantly after the nonlinear optimization. The accuracy of the
calibration proposed can be seen from the maximum errors obtained at
the final stage of the calibration: the re-projection error has sub-pixel ac-
curacy (below 0.29 pixels), the ray re-projection error is below (.26 mm,
and the reconstruction error is below 12 mm.

For the linear solution, the re-projection and ray re-projection errors
are similar for the Dataset Illum-1. However, for the Dataset Illum-2,
one can see that these errors are smaller for the calibration proposed.
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RMS Re-Projection Mlum-1 | Mum-1 | Hlum-2 | Hlum-2
Error (pix) 10 poses | 5 poses | 10 poses | 5 poses
Initial Dans13 [41] 1.463 1.501 1.480 1.485
Ours 1.659 1.400 0.922 1.249
Optimized Dans13 [41] 0.320 0.428 0.418 0.429
Ours 0.332 0.429 0.421 0.446
Optimized Dans13 [41] 0.235 0.288 0.293 0.288
(with Distortion) Ours 0.249 0.284 0.263 0.270
RMS Ray Re-Projection Mlum-1 | Mum-1 | Hlum-2 | Ilum-2
Error (mm) 10 poses | 5 poses | 10 poses | 5 poses
Initial Dans13 [41] 1.698 1.516 0.965 0.891
Ours 1.813 1.623 0.617 0.776
Optimized Dans13 [41] 0.322 0.342 0.245 0.255
Ours 0.334 0.347 0.247 0.261
Optimized Dans13 [41] 0.241 0.239 0.168 0.173
(with Distortion) Ours 0.254 0.243 0.166 0.172
RMS Reconstruction INlum-1 | INlum-1 | Illum-2 | Illum-2
Error (mm) 10 poses | 5 poses | 10 poses | 5 poses
Initial Dans13 [41] | 3483.898 | 1553.119 | 304.433 | 199.785
Ours 37.594 18.717 7.560 9.626
Optimized Dans13 [41] | 13.625 9.046 8.126 6.496
Ours 13.747 10.563 8.242 6.914
Optimized Dans13 [41] 10.680 10.255 7.070 5.968
(with Distortion) Ours 11.939 10.526 6.850 6.250

Table 4.5: RMS errors for three stages of the calibration procedure: linear solution, and nonlinear
refinement with and without distortion estimation.

Additionally, the reconstruction error is considerably higher for the cali-
bration proposed by Dansereau et al. [41] regardless of the dataset con-
sidered. More specifically, the reconstruction error is at least 20 times
higher than the one obtained using the calibration proposed.

The major difference between Dansli3 [4 1] and the proposed method
corresponds to the linear solution. The linear solution used by Dansereau
et al. [41] does not consider any constraint to obtain the homographies
between each viewpoint and the calibration grid pose, i.e. for a Lytro
[1lum camera one computes P x 15 X 15 homographies where P corre-
sponds to the number of calibration grid poses. On the other hand, the
proposed method exploits the geometry of the viewpoint camera array
to estimate a parametric homography matrix that characterizes the SPC
for each calibration grid pose, i.e. P homographies are computed. Addi-
tionally, in Dansereau et al. [41], the principal point shift is assumed to
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be zero on the linear solution and is only estimated during the nonlinear
refinement. The more accurate representation of the viewpoint camera
array by the calibration proposed allows to obtain an initial solution that
is closer to the final one.

Finally, let us evaluate the quality of the estimated poses and of the
distortion model. For the estimated poses, one considered an image that
corresponds to the mean of the intensity values after warping all VIs
using the homography matrix estimated from LFIM entries for all cal-
ibration grid poses. The images for Dataset Illum-1 for the initial and
final stages of the calibration process are depicted in Figure 4.8. Notice
that in the final stage of the calibration, the edges of the calibration grid
are not blurred.

(a) All imaged (b) Merged after (c) Merged after
chessboard poses linear solution nonlinear solution

Figure 4.8: Mean intensity values for all VIs warped using the homography matrix estimated from LFIM
entries for all 10 calibration grid poses for Dataset Illum-1. (a) depicts the calibration pattern limits for
the different calibration grid poses without homography correction. (b) depicts the images obtained
for the linear solution and (c¢) depicts the images obtained for the nonlinear refinement with distortion
estimation.

For the distortion model, one has rectified the LF of a scene that was
not considered for the calibration using the distortion parameters esti-
mated with the calibration proposed and Dansi3 [41]. The central VI
of the rectified LF considering the results of the calibration on a sub-
set of 10 poses for Dataset Illum-2 is presented in Figure 4.9. The two
approaches behave similarly in rectifying the straight lines in the fore-
ground of the scene (Figure 4.9.b-c). Notice that for Dans13 [41] (Figure
4.9.e), the straight lines in the background are distorted in the rectifica-
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tion. Nonetheless, the rectification using the parameters estimated with
the calibration proposed allows to maintain straight lines in the back-
ground and in the foreground (Figure 4.9.1).

(a) Original VI (b) Rectified VI [41] (c) Rectified VI (Proposed)

1}

qb

(f) Line in box A of (c), lesser visible distortion

Figure 4.9: Distortion rectification using the distortion parameters estimated with Dansi3 [41] ((b) and
(e)) and the calibration proposed ((c¢) and (f)) for the Dataset Illum-2. (a) depicts the original central
VI while (d)-(f) correspond to zooms of the red boxes A. Blue rulings were added to aid in the visual
confirmation of the straight lines after rectification.

Viewpoint Camera Array. The characterization of the viewpoint cam-
era array for a 1% generation Lytro camera (Dataset B [41]) and for a
Lytro Illum camera are presented in Table 4.6. The viewpoint array pa-
rameters are obtained from the LFIM estimated at the final stage of the
calibration procedure. The camera array of the 1°* generation Lytro cam-
era is characterized by a unitary baseline length ||tV = \/Axz3 + Ay?
of 0.37 mm. Considering the 9 x 9 viewpoint cameras, the maximum
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baseline length that can be defined is 2.97 mm. The non-zero principal
point shift shows that the principal point is different for each viewpoint
camera. This gives a zero disparity 3D plane, i.e. the plane in focus (2,
positioned approximately at 0.29 m for Dataset B [41].

Table 4.6 shows that the viewpoint camera array for Lytro Illum has
a scale factor and baseline greater than the 15! generation Lytro. The es-
timated unitary baseline length for the Lytro Illum is 0.52 mm and the
maximum baseline length considering the 15 x 15 viewpoint cameras is
7.33 mm. Thus, the unitary baseline for the Lytro Illum is 1.41 times
higher than the 1°* generation counterpart. If one considers the full cam-
era array, the maximum baseline for the Lytro [llum is 2.46 times higher.
The increased scale factor is justified by the higher spatial resolution of
the raw 1image (assuming the sensor size remains constant). Notice also
the non-zero estimate for the principal point shift that defines a plane
in focus (2 positioned approximately at 1.09 m. This estimate confirms
that the principal point is different for each viewpoint camera and conse-
quently the epipolar geometry for the SPC corresponds to the one defined
in Section 4.1.3.

Pij ku ]CU Uo Vo Al’o Ay() AUO AUO
Dataset B [41] | 545.84 | 547.10 | 188.94 | 189.03 | -0.00027 | -0.00026 | 0.51 | 0.49
Illum-1 10 poses | 841.55 | 840.40 | 310.76 | 214.68 | -0.00036 | -0.00038 | 0.28 | 0.29

Table 4.6: Parameters to describe the viewpoint camera arrays of commercially available SPCs: Lytro
Ilum and 1! generation Lytro cameras.

Notice that the viewpoint cameras are virtual cameras so the prop-
erties associated with the camera arrays like baseline, scale factor and
principal point shift will vary with different zoom and focus settings of
the SPC (Section 4.4.2).

The viewpoint camera array for a Lytro Illum camera 1s depicted in
Figure 4.1.d. Figure 4.1.b-d shows the raw image, reconstructed struc-
ture and the viewpoint camera array that characterizes a Lytro Illum
camera. The reconstruction, Figures 4.1.c and 4.1.d, is obtained from
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disparities estimated with the structure tensor [95], which are converted
to depth values, in metric units, based on the calibration parameters. The
calibration parameters were extracted from the LFIM obtained at the fi-
nal stage of the proposed calibration procedure using a subset of 10 poses
of Illum-1.

4.4 Metadata-based Calibration

The camera models proposed for SPCs [21, 41, ] are approxima-
tions of the real setup by considering the main lens as a thin lens and the
microlenses as pinholes. There can be more complex models to describe
the real setup. The SPC manufacturer provides metadata regarding the
camera optical settings that help describing the camera. Namely, the
metadata provided include the main lens focal length which is consid-
ered in [21, 41] to model the refraction of the rays by the main lens. On
the other hand, the metadata also includes the distance at which a point is
always in focus by the microlenses. Nonetheless, the assumption of pin-
hole like microlenses do not allow to incorporate directly this additional
information on the camera models [2 1, 41, ].

The calibration procedures for SPCs in the literature [2 1, 41, ] and
the one proposed in Section 4.3 do not consider the information provided
by the camera manufacturer as metadata and therefore rely completely
on the acquisition of a dataset with a calibration pattern to estimate the
camera model parameters for a specific zoom and focus settings. Thus,
in this section, one identifies the relationships among the optical param-
eters provided as metadata as well as the relationships between these
optical parameters and the entries of the LFIM H (4.17) for different
zoom and focus settings of the camera. The relationships obtained are
used to estimate the LFIM parameters based on the metadata parameters
for a specific zoom and focus setting without having to acquire a novel
calibration dataset (Figure 4.10).
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Figure 4.10: Representation of an SPC based on meta-parameters provided in the images metadata. In
step A, the affine functions a (f), b (f), c(f), d(f), e(Ax), and g (\,) are estimated using several
calibration datasets with different zoom and focus settings. These datasets are used to relate the entries
of the LFIM H.) and the meta-parameters 1.y (Section 4.4.2). In step B, the LFIM H; is estimated for
an arbitrary zoom and focus settings using only the meta-parameters v/; of a given image and without
acquiring a calibration dataset for that specific zoom and focus settings.

4.4.1 Camera Metadata Parameters

The metadata parameters (meta-parameters), provided by the camera
manufacturer with the images acquired, are retrieved from the camera
hardware. Here, one focus on the information that refers to the im-
age sensor, main lens and microlens array. More specifically, meta-
parameters that change with the zoom and focus settings of the camera,
i.e. the main lens world focal plane [107].

In order to identify and analyze the camera meta-parameters depend-
ing on zoom and focus settings, one compared the camera meta-parameters
with the depth of a target object in the world coordinate system and
computed the Pearson correlation coefficient among the different meta-
parameters [49]. For this experiment, one acquired a set of images by
placing the target object parallel to the encasing of the camera and at
a regular spacing of 0.05 m from the camera. The target object depths
ranged from 0.05 m to 2.00 m. The zoom number (number that appears
on the interface of the camera) was changed also at a regular interval of
0.5 between 1.0 and 8.0. At each of these configurations, i.e. for a fixed
target object depth and fixed zoom number, a total of 5 images were
taken autofocusing on the target object.

In this experimental analysis, one identifies five parameters that vary
with the main lens world focal plane: zoom step (zoom-stepper mo-
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tor position), focus step (focus-stepper motor position), main lens focal
length, infinity lambda, and f-number. The infinity lambda can be asso-
ciated with the focus settings of the microlenses. Namely, the infinity
lambda corresponds to the distance in front of the microlens array that is
in focus at infinity. However, the microlenses optical settings are fixed.
The optical settings are changed by modifying the main lens or the com-
plex of lenses that compose the main lens. Thus, the infinity lambda
describes the combined optical setup of the microlenses and main lens.
On the other hand, the f-number is not used in the definition of the in-
trinsic parameters of a camera and it is normally described as the ratio
f/D where f is the focal length and D is the diameter of the entrance

pupil.

The parameters zoom and focus step represent, up-to an affine trans-
formation, optical parameters information. Namely, the zoom step is
related with the focal length of the main lens (Figure 4.11.a) (correlation
of 93.16%), and the focus step for a fixed zoom is related with the infinity
lambda parameter (Figure 4.11.c) (correlation of 99.54%). In fact, repre-
senting the focal length, infinity lambda and target object depth (Figure
4.12.c), one finds a similar behavior to the one depicted in Figure 4.12.b
that represents the zoom step, focus step and target object depth. This
reduces the relevant metadata parameters to two, the focal length and the
infinity lambda.

Figure 4.11 shows that for a particular focal length (zoom step) con-
figuration, there i1s a depth at which the camera is not able to autofocus
on the target object (the infinity lambda and focus step do not change)
and, consequently, the world focal plane does not change. This failure
in focusing the target object occurs due to poor detail of the features in
the image. The camera is only capable of focusing the target object, i.e.
changing the world focal plane, if the focal length is decreased (zoom
step 1s increased). Additionally, for extreme conditions of the operating
range of the plenoptic camera, for example considering zoom step close
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Figure 4.11: Relationships among camera parameters provided on images metadata. The meta-
parameters were obtained experimentally by fixing the zoom number and autofocusing the camera to
a target object placed at different depths. The zoom step (a) is related with the focal length of the main
lens. The focus step (b) is related with the infinity lambda parameter. The zoom number corresponds to
the number that appears on the interface of the camera.
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Figure 4.12: Meta-parameters vs. Target depth. (a) represents the target object at depth 1.5 m for the
different zoom steps. (b) represents the focus step with the depth of a target object for a selection of
zoom steps. (c¢) represents the infinity lambda with the depth of a target object for a selection of zoom
steps (or equivalently, focal lengths).

to 100 and target object depths smaller than 0.4 m, one can see that the
infinity lambda changes arbitrarily among the several attempts to auto-
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focus on the target object depth. This results in images with no sharp
objects. This situation also corresponds to a failure on focusing the tar-
get object. For focusing at these target object depths, the focal length
should be increased (zoom step should be decreased). This shows that
the world focal plane is defined by a combination of the focal length and
the infinity lambda parameters.

4.4.2 Metadata Parameters vs. LFIM

The LFIM depends on the optical settings of the camera. The deriva-
tion in Section 3.5 indicates that the LFIM parameters change with the
main lens focal length included in the images metadata. However, the
assumption of microlenses as pinholes do not allow to introduce the con-
cept of focus at infinity as a parameter of the LFIM. Thus, let us provide
the relationships between the LFIM parameters and the camera parame-
ters provided on the images metadata.

In order to evaluate these relationships, one needs multiple calibra-
tion datasets acquired under different zoom and focus settings (Section
4.5.1). These datasets were acquired using a 1% generation Lytro cam-
era and are summarized in Table 4.10. For establishing the relation-
ships, were considered 10 poses randomly selected from the acquired
calibration pattern poses to estimate the LFIM H (4.17) and repeated
this procedure 15 times to get the mean and STD values. Representing
the entries of the LFIM and computing their Pearson correlation coeffi-
cients [49] against the focal length and infinity lambda, was found that
the entries h,; and h;;, which are related to the viewpoint camera base-
line, exhibit an affine relationship with the focal length (Figure 4.13.a-b)
with a correlation coefficient of 99.97% and 99.98%, respectively. The
entries h,;, and h,;, which are related with the scale factors, exhibit a
nonlinear relationship with the focal length (Figure 4.13.d-e) with a cor-
relation coefficient of 84.94% and 84.75%, respectively. The remaining
entries do not exhibit a correlation with any of the metadata parameters
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Figure 4.13: Relationships of the LFIM entries with the focal length. The entries related with the
viewpoint camera baseline (a)-(b), and with the scale factors (d)-(e) are represented against the focal
length. The target object is depicted at 1 m with different focal lengths (0.0064 (¢) and 0.0256 (f)).

Alternatively, let us analyze the viewpoint array parameters against
the camera metadata parameters. Considering the entries of the intrin-
sic matrix K% (4.13), one founds that the scale factors k, = 1/h,; and
k, = 1/h, exhibit an affine relationship with the focal length (Figure
4.14.a-b) with a correlation coefficient of 99.82% and 99.81%, respec-
tively. The principal point shifts h,;/h,; and h,;/h, have an affine
relationship with the infinity lambda (Figure 4.14.c-d) with a correla-
tion coefficient of 99.55% and 99.83%, respectively. The principal point
[hu [ hoge,s by / hvl} " continues not having any relationship with the meta-
data parameters. Hence, the transformation of the LFIM to a pinhole like
representation allows to simplify the relationships with the parameters
provided by the manufacturer on the metadata of the images acquired.

In summary, denoting [c,, ¢,]’ as the principal point and ¥ = (f, As)
where f is the main lens focal length and )\ is the infinity lambda, one
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Figure 4.14: Relationships of the intrinsic matrix entries with the focal length and infinity lambda. The
entries corresponding to the scale factors are represented against the focal length (a)-(b). The entries
corresponding to the principal point shifts are represented against the infinity lambda (c)-(d).
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where a (f), b(f), c(f), d(f), e(Ax), and g (A, ) define linear regres-
sion models from the observations of the metadata parameters.

4.4.3 Experimental Results

In this section, one employs the regression model (4.36) to describe
the plenoptic camera for a specific zoom and focus settings.

The relationships a (f), b (f),c(f),d(f), e (M), and g (Ay), in (4.36),
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are estimated using the datasets in Table 4.10 except Dataset B. As in
Section 4.4.2, one considered for each dataset 10 poses randomly se-
lected from the acquired calibration poses to estimate the LFIM parame-
ters and repeated this procedure 15 times to get the mean values. Notice
that the LFIM parameters are mapped to the viewpoint camera array
representation described in Section 4.2 and the mean values refer to the
intrinsic matrix entries. Combining the intrinsic matrix entries with the
observed focal length and infinity lambda, one can estimate the parame-
ters of the affine mappings (Table 4.7) (step A of Figure 4.10).

Aline MappIng | (1) | b() ¢ (f) d(f) | el) | 2000)

Slope 35.1812 | 34.9393 | 85846.9190 | 84853.2935 | 0.0668 | 0.0655
y-Intercept 0.0281 | 0.0157 28.3403 48.7406 | 0.1793 | 0.1580

Table 4.7: Affine mapping parameters estimated for the relationships between the intrinsic matrix entries
and the focal length or the infinity lambda identified in (4.36).

The Dataset B is not included in the previous analysis in order to be
used to evaluate the accuracy of the camera representation (4.36) using
the focal length and the infinity lambda meta-parameters. The camera
representation is obtained by applying the affine mappings using the pa-
rameters identified in Table 4.7 for the focal length and infinity lambda
of Dataset B (step B of Figure 4.10). These entries are compared with
the mean values obtained by repeating 15 times the calibration procedure
[41] using 10 randomly selected poses of Dataset B and are summarized
in Table 4.8. The principal point [c,,¢,|" is assumed to be the center
of the VI since no relationship was found with the metadata parameters.
Table 4.8 shows that the entries obtained from the calibration are similar
to the ones obtained from the metadata. Namely, the maximum deviation
is 7.8% and occurs for the principal point shift /,; /Ay

Additionally, one considered a set of 10 randomly selected pattern
poses of Dataset B to evaluate the re-projection, ray re-projection [41],
and reconstruction errors using the LFIMs obtained from applying the
calibration procedure [4 1] and from the regression model (4.36). The er-
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Source hs; (mm) | hy; (mm) 1/hug 1/hy Poi Pk | Pyj [ P

From Calibration | 0.3702 0.3281 | 858.6118 | 859.7984 | 3.6389 | 3.4056

From Metadata 0.3606 0.3459 | 839.5937 | 850.6042 | 3.3567 | 3.2778
Error (%) 2.6 54 2.2 1.1 7.8 3.8

Table 4.8: Intrinsic matrix entries estimated from focal length and infinity lambda using the affine map-
ping parameters in Table 4.7 and from calibration procedure [4 1] for Dataset B.

rors are summarized in Table 4.9. This table allows to have a more prac-
tical view of the difference between the two approaches considered. The
errors presented are significant but is important to note that the extrinsic
parameters are not explicitly estimated for the 10 poses considered. The
re-projection and ray re-projection errors are similar, being greater for
the representation obtained from the metadata by 0.34 pixels and 0.14
mm, respectively. On the other hand, the reconstruction error for the
metadata based estimation is significantly greater than the one obtained
from calibration [4 1] but still lower than 65 mm. However, note that
the LFIM representation using the focal length and the infinity lambda
is based on a statistical analysis between the metadata parameters pro-
vided by the camera manufacturer and the parameters estimated from a
calibration procedure that are affected by noise.

Source Re-Projection | Ray Re-Projection | Reconstruction
Error (pixels) Error (mm) Error (mm)
From Calibration 5.7718 1.6172 10.0880
From Metadata 6.1162 1.7617 61.3519

Table 4.9: Re-projection, ray re-projection, and reconstruction errors associated with the estimation of
the LFIM H from the regression model (4.36) and from the calibration procedure [41] for a set of 10
pattern poses of Dataset B.

4.5 Depth Capabilities

In an SPC, the multiple projections of a 3D point in a single exposure
allow to recover the point’s depth. In recent years, several works recover
depth and shape from the LF using several cues [39, , , ].
Nonetheless, references regarding the depth capabilities, i.e. the accu-
racy of the reconstructed depth, of an SPC for different zoom and focus
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settings are scarce.

In the literature, one can find works on the depth capabilities of Fo-
cused Plenoptic Cameras (FPCs) [77, ] but not of SPCs. The most
similar studies for SPCs correspond to the works of Hahne ef al. [59, 61].
These studies estimate depth, depth of field and baselines for a simu-
lated and a customized SPC using different optical parameters for the
microlenses and for the main lens. These works require the specific
knowledge of the parameters of the optical setup and are more focused
on assisting the design of an SPC. Thus, in this section, is evaluated the
depth capabilities of an SPC for a depth range between 0.05 and 2.00 m.

4.5.1 Datasets Acquisition and Calibration

The depth estimation using imagery of SPCs depends on the world
plane in focus by the main lens. Hence, to study the depth capabili-
ties, a combination of camera parameters must be analyzed to assess the
reconstruction estimation accuracy (Section 4.4.1). More specifically,
one acquired seven datasets under different zoom and focus settings !
(Figure 4.15) using a 1% generation Lytro camera. The zoom and focus
settings of each dataset are determined by placing a target object at a
pre-determined depth of the encasing of the camera and autofocusing on
this object. This allows to define a plane in focus by the main lens that
is close to the target object. Thus, the focus depth is assumed to be the
depth of the target object.

The datasets acquired encompass images for calibration and depth
range assessment. Namely, each dataset is provided with a set of cal-
ibration raw images since the camera parameters differ among datasets.
Additionally, the calibration raw images are different from the depth raw
images to ensure that the results do not suffer from any type of overfitting
effect.

The calibration raw images are captured using a 19 x 19 calibration

'www.isr.tecnico.ulisboa.pt/~nmonteiro/datasets/plenoptic/cviu2017/
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(a) (b)

(2) (h) (1)

Figure 4.15: VIs with 383 x 381 pixels for grid poses at different depths for Datasets A, D and F. The
VIs for Dataset A correspond to grid poses at 0.05 m (a), 0.55 m (b) and at 1.00 m (¢). The VIs for
Dataset D correspond to grid poses at 0.55 m (d), 1.10 m (e) and at 1.50 m (f). The VIs for Dataset F
correspond to grid poses at 1.10 m (g), 1.50 m (h) and at 2.00 m (i).

grid of 3.18 mm cells placed at different poses and at different depths
near the target object depth bearing in mind that a minimum of 10 poses
are required. On the other hand, the depth raw images are captured us-
ing two different grid sizes: 19 x 19 grid of 6.10 X 6.08 mm cells and
5 x 7 grid of 26.50 x 26.38 mm cells. The grids for the depth raw im-
ages are placed parallel to the encasing of the camera and at a regular
spacing of 0.05 m from the camera for depth values ranging from 0.05
to 2.00 m. The two grid sizes are used for the depth raw images since
the depth range evaluated is wide and it is necessary to have a reason-
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able number of detections to assess the depth accuracy. The smaller grid
size 1s placed up to a maximum depth of 1.0, 1.5 and 2.0 m according to
the focus depth considered 0.05, 0.50 and 1.50 m. The bigger grid size
is placed considering all depth range evaluated. Table 4.10 summarizes
the properties of the datasets acquired.

Dataset Zoom | Focus | Focal Infinity Focus Calibration Calibration | Ray Reprojection | Depth
Step* | Step* | Length* | Lambda* | Depth (m) | Depth Range (m) Poses Error (mm) Poses

A 982 654 0.0064 23.5142 0.05 0.05-0.25 30 0.0993 60 (45)

B 754 941 0.0094 | 47.5966 0.05 0.05-0.35 30 0.1398 60 (37)

C 601 1212 | 0.0129 82.6425 0.05 0.10 - 0.40 14 0.2447 60 (29)

D 600 985 0.0130 8.7502 0.50 0.30-0.70 36 0.1357 70 (51)

E 335 1361 | 0.0258 47.2068 0.50 0.30-0.80 36 0.1267 70 (36)

F 337 1253 | 0.0256 12.8458 1.50 1.00 - 1.70 48 0.1806 80 (48)

G 100 1019 | 0.0513 65.9678 1.50 1.00 - 1.80 51 0.1381 80 (8)

Table 4.10: Information of the datasets acquired under different zoom and focus settings for a 1 gen-
eration Lytro camera. The meta-parameters are identified with the symbol *. The ray reprojection error
[41] corresponds to the error obtained using the full set of calibration raw images. In the last column, the
number of poses with detected features using the feature detector [78] is given within the parenthesis.

The depth ranges considered for the calibration poses are defined rel-
atively to the plane in focus by the main lens and considering the FOV
of the camera. Namely, the depth range is defined relatively to the target
object depth to have sharper VIs which allow to detect more accurately
the calibration grid points. The minimum depth value for the range is
defined in order to have the full calibration grid in the VIs. In Figure
4.16, one can see the blurring that occurs for depths farther from the tar-
get object depth. On the other hand, the depth ranges used for the depth
poses can be outside this range since the grids may fall out of the FOV.

The number of calibration raw images is different among the several
datasets to ensure a ray reprojection error [4 1] below 0.2 mm for each
dataset (Table 4.10). The only dataset that has a ray reprojection error
higher than 0.2 mm is Dataset C. The maximum RMS for the ray repro-
jection error obtained during the calibration of the datasets is 0.2447 mm,
which shows the accuracy of the calibration performed.
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£ \.
(a) Depth 0.05 m (b) Depth 0.50 m (c) Depth 1.50 m

Figure 4.16: VIs obtained from the depth raw images of the smaller grid of Dataset E. (a) VI for smaller
grid placed at 0.05 m. (b) VI for smaller grid placed at 0.50 m. (¢) VI for smaller grid placed at 1.50 m.
The Dataset E has the world focal plane at 0.50 m, which leads to sharper images near the world focal
plane (b) and blurred images as the pattern is farther from the world focal plane (a) and (c).

4.5.2 Depth Range Assessment Datasets Preparation

The evaluation of the depth capabilities requires that the estimated
points are given in the world coordinate system in order to be compara-
ble with the ground truth points. Thus, one needs two steps: (i) detect
the projections of a given grid point and associate the projections with
that 3D point, and (i1) change the coordinate system associated with the
estimated points.

Feature Detection and Correspondences. For the evaluation of the
reconstruction estimation accuracy, besides the LFIM one also needs to
know the imaged points obtained for each pose of the grids captured in
the depth raw images. These imaged points are the projections of each
of the grid points captured by the camera. The corners are detected by
applying a feature detector [/8] to each of the VIs obtained from the
raw image after the decoding process [41]. This is similar to the feature
detection used during the calibration procedure. The major difference is
that, for the depth raw images, the grids may fall out of the FOV and,
therefore, the number of imaged points is not constant throughout all
grid poses.

Although many grid poses are acquired for assessing the depth range
of these cameras, the feature detection procedure discards many of these
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poses since there are no identifiable features (Table 4.10). Furthermore,
for the depth range considered, some of the datasets only have features
for a few number of depth values. The process of feature detection makes
Dataset C unusable for the smaller grid size, and the Dataset G unusable
for both grid sizes used. The correspondences are obtained by grouping
the projection rays obtained from each VI that correspond to the same
grid point in the object space.

Camera to World Coordinate System Transformation. The LFIM
and the set of projection rays associated to a given grid point in the object
space allows to recover the point’s depth in the camera coordinate system
(Section 7.2). Thus, one needs to estimate the rigid body transformations
between the world and the camera coordinate systems defined for each
of the datasets. For each dataset, the transformation is estimated using
a Procrustes analysis [79] between the estimated points in the camera
coordinate system and the ground truth points in the world coordinate
system.

The grids captured for each set of depth raw images are only moved
along the z-axis forming a parallelepiped. This allows to easily obtain
the ground truth points in the world coordinate system. On the other
hand, the estimated points for the grid points detected in the depth raw
images do not form a parallelepiped due to noise and to the reconstruc-
tion capabilities of the camera. Nonetheless, the grid points associated to
a given grid pose form a planar surface that is present in both coordinate
systems. Hence, one can use this knowledge to remove the estimated
points associated with grid depths that deviate from a planar surface.
The estimated points discarded from the Procrustes analysis correspond
to grid depths whose fitting error to a planar surface is above a given
threshold. This threshold is defined as the mean of the planar fitting
errors for all grid depths in the depth raw images for a given dataset.

Figure 4.17 shows the result of applying the estimated rigid body
transformations to convert the estimated points from the camera coor-
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Figure 4.17: The estimated (cyan and yellow) and ground truth (black) grid points obtained for Datasets
D and F using a smaller grid are depicted in (a) and (b). The planar surfaces correspond to grids at the
depth limits of the Datasets D and F and at an intermediate depth value (0.55 m, 1.10 m and 1.50 m for
Dataset D, and 1.10 m, 1.50 m and 2.00 m for Dataset F).

dinate system to the world coordinate system for three depth values of
Datasets D and F using the smaller grid. Although the estimated points
do not lie in a plane (reconstruction is done on a point by point basis),
one can see that the estimated grids are close to planar surfaces. Addi-
tionally, comparing the grid at depth 1.5 m in each of the datasets, one
can see that the estimated points for Dataset F define more accurately a
planar surface (RMS error of 6.6 mm and 3.0 mm for Datasets D and F,
respectively) that is close to the corresponding ground truth grid (RMS
error of 0.2393 m and 0.0448 m for Datasets D and F, respectively). Thus,
is expected that increasing the zoom and focus depth will originate better
estimates for points farther from the camera.

96



4.5. DEPTH CAPABILITIES CHAPTER 4. STANDARD PLENOPTIC CAMERA

4.5.3 Reconstruction Estimation Accuracy

Using the correspondences, the LFIM and the rigid body transforma-
tions, one obtains an estimate for the grid points in the world coordinate
system that can be used to compute the mean reconstruction error

P
1 A
1=1

where P is the number of points, m; is the ground truth point and m; is
the estimated point. The reconstruction errors and the estimated depth
for the datasets are depicted in Figures 4.18 and 4.19. The depth ranges
identified for each of the datasets as well as the mean and STD for the
normalized reconstruction errors are summarized in Table 4.11. The nor-
malized reconstruction errors are obtained by dividing the reconstruction
errors by the corresponding ground truth depths. The depth ranges are
identified by determining the regions where the mean of the normalized
reconstruction errors is lower or equal to 10%.

(4.37)

Dataset Depth Range | Mean + STD Error | Mean + STD
(m) in Depth Range (%) Error (%)
A 0.35-1.30 6.74 £5.13 16.67 + 6.18
B 0.40-1.30 7.89 4+ 5.96 13.72 +£9.73
C 0.05 - 0.05 1.34 +5.93 25.73 £ 18.12
D 0.60 - 2.00 5.13 +£3.20 14.01 £ 5.00
E 0.75-2.00 5.44 +3.30 8.28 +4.19
F 0.90 - 2.00 3.68 + 1.78 5.90 + 2.03
G 1.50 - 1.85 1.93 + 0.60 1.93 + 0.60

Table 4.11: Depth ranges for the datasets acquired. The depth ranges are identified as the regions whose
mean for the normalized reconstruction errors is lower or equal to 10%. The mean and STD for the
normalized reconstruction errors within the depth ranges defined and for all ground truth depths are also
depicted.

Zoom Step Analysis. In Figure 4.18.a-b, the datasets are grouped
by constant focus depths. Namely, the figure conveys information of
datasets with focus depth at 0.05 m. For this focus depth, is possible
to see that the mean reconstruction error for points farther from the
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plane in focus is higher. This is also highlighted by the difference of
the normalized error in the depth range and in the overall depth analyzed
presented in Table 4.11. Additionally, is observed that the increase in
zoom allows to have a lower reconstruction error for points farther from
the focus depth. Table 4.11 shows the normalized error in the whole
depth analyzed decreases while the normalized error in the depth range
is maintained when the zoom is increased (excluding Dataset C due to
the unusually high normalized reconstruction errors).

Focus Depth Analysis. In Figure 4.18.c-d, the datasets are grouped by
similar zoom step (focal length). Namely, the figure conveys information
of datasets with zoom step close to 336. For this zoom step, the focus
depth appears to improve the reconstruction error for points at depths
near the focal plane. In Table 4.11, this is highlighted by the change of
the depth range that has a normalized reconstruction error lower or equal
to 10%.

Zoom Step and Focus Depth Analysis. In Figure 4.19, Datasets A,
D and F are depicted to highlight the reconstruction error by modifying
both zoom and focus settings. This figure shows the reconstruction error
decreasing as the zoom step increases and the depth for which there are
features detected also change. This can also be seen by the decrease on
the normalized error for the whole depth analyzed and by the shift on the
depth range with normalized error lower or equal to 10% in Table 4.11.

The lower reconstruction error with increasing zoom can be explained

by considering the depth error €. of a binocular stereo configuration

22

€. = pytd> where b is the baseline length, f is the focal length, z is
the depth of a point in the object space, and ¢, is the disparity error. The
increase in zoom corresponds to an increase in the focal length f which
leads to a decrease on the depth error, which is in accordance with the
findings in this figure. On the other hand, the focus depth determines the
depth at which the minimum reconstruction error occurs and, implic-
itly, the depth range. This can be explained looking at the ray-spaces.
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Figure 4.18: Reconstruction estimation accuracy with zoom step (first row) and with focus depth (sec-
ond row). The first column depicts the reconstructed depth while the second column depicts the
reconstruction error for the estimated points obtained for datasets A through E. The first row groups the
datasets with focus depth at 0.05 m (Datasets A, B and C) and the second row groups the datasets with

zoom step close to 336 (Datasets E and F).

Namely, a point in the world focal plane corresponds to a vertical line in
this space, which leads to a smaller error due to a smaller discretization
error (smaller ;) that occurs at the image sensor (staircase effect). As
the point moves away from the world focal plane, the line starts to de-
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Figure 4.19: Reconstruction estimation accuracy with zoom step and focus depth. The first column de-
picts the reconstructed depth while the second column depicts the reconstruction error for the estimated
points obtained for datasets with different zoom and focus settings.

viate from this vertical line and the discretization error increases (higher
£4) leading to an increase on the reconstruction error. Notice that the
reconstruction method presented in Section 7.2.1 reduces but does not
eliminate the reconstruction error associated with discretization.

The reconstruction results presented in this section are obtained con-
sidering the radial distortion parameters. The mean difference of the
estimated points normalized by the ground truth depth not considering
radial distortion parameters is less than 1.6% for all datasets analyzed
(Appendix D). This difference does not change significantly the results
presented in Table 4.11. Thus, it is considered that the radial distortion
does not play an important role on the reconstruction estimation accu-
racy.

In summary, the results presented show that SPCs have a reconstruc-
tion estimation accuracy that varies with the zoom and focus settings of
the camera. The zoom is a determinant factor on increasing the recon-
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struction accuracy of these cameras, while the focus depth (as a combi-
nation of zoom and focus steps) plays a role on shifting the depth range.
The depth range analyzed from 0.05 m to 2.00 m can be reconstructed
with accuracy by choosing correctly the zoom and focus settings of the
camera.

4.6 Chapter Summary

In this chapter, was defined the mapping between the LFIM used to
describe an SPC and the viewpoint cameras, and was established the
equivalence between the projection set Pj; (3.16) and the projections of
the viewpoint cameras. The viewpoint cameras define a coplanar array of
cameras that differ on the location of their projection centers and on their
principal points (Section 4.1.2). The different principal points define an
EPI geometry whose zero disparity plane is at a finite depth, the main
lens world focal plane (Section 4.1.3). The EPI geometry (4.15) extends
the geometry defined by Bolles ez al. [22] that considers images acquired
by identical cameras, i.e. same principal point.

The pinhole viewpoint camera constraint (4.11) allows to represent
the LFIM introduced in [4 ] using eight free intrinsic parameters. This
1s accomplished by shifting the rays parameterization plane along the
optical axis of the camera [17] to the plane containing the viewpoint
projection centers and removing redundant parameters with the extrinsic
parameters (Section 4.2).

The viewpoint camera array model derived in Section 4.1 is used to
define a linear solution for the SPC that considers two steps: 1) a DLT
calibration to obtain the parameters that describe the viewpoint paramet-
ric homography matrix from point correspondences (m, q), (ii) and a
strategy to decompose this homography matrix into intrinsic and extrin-
sic parameters based on a parametric representation of the image of the
absolute conic. This is the first work capable of estimating the principal
point shift in the linear solution (Section 4.3) which allows to outperform
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state of the art methods.

Additionally, one shows that an SPC can be represented by the regres-
sion model (4.36) based on the observations of the main lens focal length
and infinity lambda meta-parameters provided by the camera manufac-
turer with the images acquired. This allows to propose a calibration
scheme for an SPC without having to acquire a new calibration dataset
for a specific zoom and focus settings (Section 4.4).

The depth capabilities of an SPC are evaluated for depths ranging
from 0.05 to 2.00 meters. The experimental findings suggest that these
cameras are capable of reconstructing points in the depth range analyzed
by appropriately choosing the zoom and focus settings. Namely, the
zoom increase allows to lower the reconstruction error while the focus
depth determines the depth range of the camera. This is the first work
that studies the depth capabilities of an SPC.

The next chapter defines the geometry of the microlens array and ex-

ploits this geometry to propose a calibration procedure for a Multifocus
Plenoptic Camera (MPC).
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Chapter 5

Multifocus Plenoptic Camera

A Multifocus Plenoptic Camera (MPC) images a world point at multiple
sensor locations due to the array of microlenses behind the main lens.
The multiple focal lengths on the array imply that the same scene point is
imaged in each microlens type with different degrees of defocus (Figure
5.1). However, an MPC allows 3D reconstruction from a single image,
provided the camera is accurately calibrated.

The geometry of an MPC is based on the geometry of a Focused
Plenoptic Camera (FPC) [91, 120] that generates focused Microlens Im-
ages (MlIs) by placing the focal plane of the microlenses on the main lens
focal plane. Hence, this chapter builds from the model of Dansereau et
al. [41] and derives the mapping between the Lightfield Intrinsic Ma-
trix (LFIM) and microlens camera array that allows to fully formalize
the projection model for a microlens camera. Using the geometry of the
microlens array complemented with a blur model associated with each
microlens type, it is proposed a calibration approach for an MPC.

5.1 Microlens Camera Array

The LFIM can represent an array of distinct coplanar and parallel
cameras (Section 4.1). In Section 4.1, one presented the mapping of
the LFIM to a viewpoint array that describes a Standard Plenoptic Cam-
era (SPC). In this section, is shown that an FPC can be modeled by a
microlens array which can be obtained from the LFIM [2 1, ].

The MI (Figure 5.1.a) results from the rays that cross the center of
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a specific microlens. In this case, the coordinates (k,[) are the indices
associated with each MI and the coordinates (7, j) encode the position
of a pixel in the MI. Let the projection matrix P* describe a microlens
camera parameterized by the coordinates (k, 1) € Z*

pi — KM [ngg t’fl} ‘T, (5.1)

where K*' denotes the intrinsic matrix, I5,3 is a 3 x 3 identity matrix, t"'
‘R, “ty
O1><3 1
transformation between the world and camera coordinate systems with
rotation ‘R,, € SO(3) and translation “t,, € IR®, and 0,3 is the 1 x 3
null matrix.

is the projection center and ‘T, = defines the rigid body

Similarly to the viewpoint array, “T',, defines one coordinate system
for all microlens cameras while the intrinsic matrix and the projection
center are different for each microlens camera (k,!). In the following,
let the camera model for the microlens array (5.1) take into account that
the principal point and the projection center are different for each camera
while the scale factor remains the same:

_ku 0 Uy + k AUO_ _ZUQ_ —/{Z ASIZO_
K'Y= 10 k, vo+1Au and t" = [y | + |1 Ayo (5.2)
0 0 1 20 0

where the scalars &, and k, denote scale factors, the vector [uy, UQ]T de-
fines the principal point for the microlens camera (k,l) = (0,0), and
the vectors [Aug, Avgl? and [Azg, Ayg, 07 denote principal point shift
and baseline between consecutive microlens cameras, respectively. The
vector [z, Yo, ZO]T defines the location of the microlens camera array rel-
atively to the camera coordinate system origin. This allows to represent
the microlens camera array using a maximum of 11 parameters.
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(a) MPC raw image, zoom of three microlenses

Image Space Object Space
Imaged Point Microlens Main

in Microlenses Array Lens 1 Q0 r
6, L 1 ‘ . .

I ()] o : : (s,t) |
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(b) MPC geometry, microlenses with three focal lengths

Figure 5.1: Multifocus effect. (a) Image acquired by an MPC [5]. Small region is augmented to show
microlens borders and focusing. Mls, 1 and 2 are blurred, 3 is focused. (b) MPC geometry illustrating
the focused and blurred image formation.

5.1.1 Projection Model

Considering a parametric representation for the the projection matrix
of a microlens camera (k, [), similar to the one presented for a viewpoint
camera (i, j) (4.3), and following the same steps defined in Section 4.1.1,
one defines the projection of a point m = [z,y, z]T to a point in the
image plane q = [i, 7, l]T of a particular camera (k, () as
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P
A~ T ki [Tsg) AP @ (5:3)
- ~- ~ | AP

M L .
where the symbol ~ denotes equal up to a scale factor with

_ku 0 U i)
POI 0 ]fv (o I3><3 Yo CTw )
0 0 1 20
APF = |0y, 2U0 FuBToFAu0Z | ep g (5.4
0252
012
AP! = |03,0 Avg kyAyg+ Avgzp | ‘T
] 012 |

The matrix M provides an easy way to add the several camera indices
available for a plenoptic camera and in this way get the multiple projec-
tions for a point m in the object space.

The projection (5.3) using the microlens coordinates (k,[) is equiva-
lent to the projection set P;; defined in Section 3.4.1.

5.1.2 Mapping from LFIM to Microlens Projection Matrices

In order to obtain the mapping from the LFIM to the camera model
(5.1) let us first define the projection centers of the microlens cameras,
and then define the projection equation considering the LFIM H and
(k,1) as parameters.

Microlens Projection Centers. Following the same steps described in
Section 4.1.2 to compute the caustic surface using the Jacobian method
[27], one obtains two solutions for A\ solving the vanishing constraint
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(see Appendix E for details):

hys hy;
Y VA 5.5
1 h 2 B (5.5)

Notice that for a microlens camera, the microlens coordinates (k, () are
fixed and are considered as parameters. This allows to define the posi-
tions (¢, r) and the directions (u, v) as affine mappings only on the pixel
coordinates (7, ).

The solutions to the vanishing constraint allow to identify the caustic
profile for a single microlens camera. More specifically, the caustic pro-
file consists of a line with (i) unique (, z) and variable y components if
A = \p or (ii) unique (y, z) and variable x components if A = )s. In case
A1 # Ao the microlens is a non-central camera. The microlens camera
corresponds to a central camera, i.e. a camera with a unique projection
center, if and only if \; = Ay which imply the model parameters relation

hgi  hey

— =— . 5.6
huz’ hvj ( )

Assuming this constraint, the location of the microlens projection center
for a microlens camera (k, ) is given by

hy = b+ b (g = 32 )

Pe= | hy— hy 41 (= 2ha) | (5.7)
vj _M v
P

u

Furthermore, considering all microlens cameras that can be defined, the
LFIM represents a coplanar grid of equally spaced projection centers.
Notice that the microlens coordinates (k,[) only affect the z- and y-
components of the projection centers while the z-component of the pro-
jections centers 1s always the same.

LFIM Mapping. Considering that the rays of one microlens camera
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converge to a unique point (5.6), one may set constant the values (k,[)
and solve (3.11) relatively to (7, 7). This gives an equation of a microlens
pixel (i, ) imaging the 3D point (x, y, z) that can be rewritten as a pin-
hole model like (5.1) with the intrinsic matrix defined as

K= 10 & e —ipt| (5.8)
0 1
and the projection center as t* = —p,. (5.7). This allows to obtain the
mappings to the representations in (5.2). Namely, comparing (5.8) with
(5.2), one identifies a common component [, vO]T = — [hu [ By b/ hvj} g

and a differential (shift) component [Auy, AUO]T = — [huk [ hiy B/ hw} g
on the principal point. The scale factors are defined as k, = 1/h,; and
k, = 1/h,;, and the baseline is defined as [Ax, Ayp, O}T = — [hqk — hog P/ i
The position of the microlens camera array relatively to the camera coor-
dinate system origin is defined as [z, yo, 2]} = — [hq — hy hgi/Puiy, by — hy By,

5.1.3 Properties of Microlens Projection Matrices

Considering equation (3.11), one can obtain the Epipolar Plane Image
(EPI) geometry that relates the depth of a point with the disparity on the

Ai Aj
Mis | £, 4

hi hr‘
Ai hge—3thae 1 hye A P asha 1 gy,

Ak hui z4 72 hu AT ho z+Z—‘; hoj
(5.9)

The mapping (5.7) and (5.8) allows to rewrite the EPI geometry defined
in equation (5.9) as
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JAV] ALBQ A] AyO
— =k, A d —= =k,
Ak Z+ 2 Tau an Al Z+ 2

T Av . (5.10)

The EPI geometry shows that the zero disparity plane for the microlens

cameras is at the plane containing the viewpoint projection centers z, =
hqk o _M
Pk B By
the microlens cameras in Section 3.4.2.

. This 1s in accordance with the singularities described for

5.2 Reducing the Parameters of the LFIM

The LFIM has 12 non-zero entries (4.7) but some parameters can be
avoided by considering them on the extrinsic parameters and choosing
an appropriate camera coordinate system origin. Namely, choosing the
camera coordinate system origin at the plane containing the microlens
projection centers.

Repeating the same steps defined in Section 4.2 and assuming that
the plane ' corresponds to the plane containing the microlens projection
centers at dii_,r = —h;/h,;, one obtains [xr, yr, ZF]T = |hsk K, hy L, O]T+
A u, v, 1]T. with xr = 2 — hg, yr = y — hy and zr = z — dp_r. In this
case, the LFIM Hr with 8 non-zero entries is given by

0 0 hg 0 O
0 0 0 hy O
Hr= [hy 0 hy 0 hy| . (5.11)
0 hy O hy hy
00 0 0 1

Considering this representation for the LFIM, the microlens projection
centers location (5.7) reduces to p. = |k hgg, { hy, O]T.

The LFIMs (4.17) and (5.11) map rays in the image space to rays in
the object space defined by a point and a direction considering the cam-
era coordinate system origin either at the plane containing the viewpoint
or the microlens projection centers, respectively. Changing the parame-
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terization of the rays in the object space for their intersection with two
planes using (3.5), one can further reduce the number of parameters used
to define the LFIM. More specifically, considering that the two planes
correspond to the plane I' containing the viewpoint projection centers
((3.3) with dir = —hg/hyi) and the plane © containing the microlens
projection centers at a distance dr_,o = —hy;/hy; (3.5), one obtains a
LFIM with 6 non-zero entries

hg 0O 0 0 0
0 hy 0 0 0
Hro 0 0 droe hu 0 dr—e hy (5.12)
0 0 0 dr—e hy dr—e h,
0 0 0 0 1

5.3 Reducing the Parameters of the Microlens Array

The representation of the LFIM considering the plane with the mi-
crolenses projection centers (5.11) allows to represent the microlens ar-
ray using 8 parameters. Nonetheless, the microlens array can be repre-
sented using fewer parameters.

Considering that the FPC is described by the LFIM with 8 non-zero
parameters and with the parameterization plane corresponding to the
plane containing the viewpoint projection centers (4.17), one obtains a
pinhole model for the microlens camera (k, ) with the intrinsic matrix
(5.8) and with the projection center defined as

wihsi| |k PEhg
th = ﬁym + | 1 5ethy (5.13)
v 0

Comparing with (5.2), the baseline is defined as [Axg, Ayp, O]T = |hsi hug/ i,
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i Bt/ B, O] and the vector (20, Yo, 207 = [hi Tu/Pusis Buj Bo/ gy Psi /o]
The mapping with the entries of the LFIM allows to redefine the trans-
lation vector t*! using the intrinsic parameters in (5.2) as

wby | [k Augb,
t" = wb, | + |1 Avb, | (5.14)
—ky, b, 0
T T .
where [bg;, by, O] = [—hsz-, — Iy, O] corresponds to the baseline be-

tween consecutive viewpoint cameras [ 04] (Section 4.2). This allows
to represent the microlens camera array using 8 parameters. Further-
more, considering the microlens pinhole constraint &, b, = k, b, (5.6),
the microlens camera array can be defined using 7 parameters.

Finally, let us consider the EPI geometry (4.15) defined using the
LFIM Hy (4.17) as

Ak hi 1 ho o AL by 1 hy

E N huk; Zik huk A_] - hvl 2l hvl

(5.15)

where the z-coordinate of the point in the object space is denoted by z;;
and z;;. Notice that the pair of coordinates (¢, k) and (7, !) are assumed
to be independent, so there is no guarantee that the depth of the point
resulting from the EPI geometry will be the same. A point will have an
unique depth if one considers the following constraint

hue Ak hy Al

he Ai hy Aj
assuming that (5.6) is also satisfied. The constraint (5.16) is not directly
applicable to the entries of the LFIM since one should have a set of
corresponding rays in the image space that are associated with the same
point in the object space to compute the disparities % and ﬁ—é. However,
assuming that the disparities on the Viewpoint Images (VIs) are equal,

(5.16)
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ie. % = ﬁ—;, one can redefine (5.16) as
huk hvl
— = 5.17
he G-

This allows to apply the constraint directly to the entries of the LFIM
without needing extra information. This constraint is similar to the one
defined in Zhang et al. [150].

Representing the restriction using the intrinsic parameters in (5.2), one

AUO - AUO . : 1
Fube = T by which can be simplified to

has

A’LLO = AUO (518)

considering the microlens pinhole constraint (5.6). This allows to rep-
resent the microlens camera array using a minimum of 6 parameters: 5
parameters to represent the intrinsic matrix K* and 1 parameter to rep-
resent the translation vector t*.

5.4 Bok et al. Mapping to LFIM

In Section 5.1, one established the mapping between the LFIM and a
microlens camera projection model. In this section, one shows that the
model proposed by Bok er al. [21] can be represented by a projection
matrix, and consequently a LFIM, similar to the one in (4.17), constrain-
ing the microlenses centers coordinates on the raw image to be regularly
spaced. The structure of the projection matrix and LFIM depends on
the sampling basis that is considered for representing the microlenses
coordinates (Section 3.5).

The microlens camera model, defined by Bok er al. [21] and adapted
by Nousias et al. [115] to describe an MPC, represent the projection of a
point in the camera coordinate system on a microlens using 6 parameters
and the knowledge of the microlens center coordinates on the raw image
by
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Ap
Ag

1
_K12+K2

?i:j?l , (5.19)
y c

where K| and K are additional intrinsic parameters to the conventional
pinhole camera model [48], Ap = p — p. and Ag = g — g. with (p, g.)
defining the microlens center coordinates associated with the raw image
coordinates (p, g), and p. = p. — ¢, and g. = g. — ¢,. The (fl«, fys Cas cy)
are the parameters used to convert normalized coordinates to image coor-
dinates. This model can be rewritten to get a pinhole-like representation
by isolating the coordinates of the point [z, 1, z]T. This allows to define
the intrinsic matrix K; and the translation vector t; for the microlens
camera (p,, g.) as

e P K pe
K 0 Kl f[glfx

K,= | 0 ;;_yl —fe | and by = ijﬁ—y . (5.20)
000 1 2

The translation vector t; allows to define the position of the microlens
camera relatively to the camera coordinate system origin which corre-
sponds to the plane containing the viewpoint projection centers [21].
For considering the relationship with the world coordinate system, one
should consider the projection matrix defined as

PV:KﬁhmtJﬂ% (5.21)

where “T',, defines the rigid body transformation between the world and
camera coordinate systems. Representing the raw image coordinates by
the 4D coordinates of the rays in the image space using ¢« = Ap, j = Ag,
and (k, ) using the rectangular sampling basis proposed in Section 3.5,
such that [pc,gC]T = diag (%h, dv> k, Z]T + [po,go]T (Figure 5.4.b), the
intrinsic and translation vector can be redefined as
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[ fz r 1dp ] _ﬁ Cx ld_h |
i J? LY K (h*szx)
— Jy o g dy = | K2 (¢ dy
K, 0 K K l K and ¢ ﬁ (f_z +1 f_y>
0 0 1 %
- - | 1

(5.22)

In this mapping, d;, and d,, correspond to the horizontal and vertical dis-
tances between consecutive microlenses centers, (pg, g,) correspond to
the origin for the (k,[) coordinates in the raw image, and ¢, = py — ¢,
and ¢, = gp — ¢.

Similarly to the microlens intrinsic matrix (5.8), one can obtain the
mapping to the representation in (5.2). For the principal point, one has
[ug, vl = = e/ K1, ¢,/ K1) and [Aug, Avgl” = = [dy /2Ky, dy/ K1)
The scale factors are defined as k, = f,/K; and k, = f,/K;. Fi-
nally, the baseline is [Azg, Ay, 0]' = Ko/Ky [dn/2f, dy/ f,, 0" and
the location of the microlens camera array is [zo, yo, 20]. = Ko/
o/ for Cy/ 1y I}T. Looking at these definitions, one can identifiy the
same relationships as in (5.14) with [bx, by, O}T = [—Kz/fx, — K/ fy, O}T.

The LFIM associated with the camera model of Bok et al. [21], con-

sidering the plane containing the viewpoint projection centers as the ori-
gin of the camera coordinate system, is defined as

'—% 0 0 0 0]

0 —fj—; 0 0 0

_ | KB 1dy (o i
H,= | &+ 0 1% 3 a (5.23)

H1 by Gy

o7 075

0 0 0 0 1

The microlens projection matrix (5.20) allows to identify an incor-

rect definition for the extrinsic parameters when the z-component of the
translation 1s negative in the calibration procedure proposed by Bok et
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al. [21]. Namely, in this situation, one should change the signs of ry, ro,
“t, and K5. K, is related with the scale factors k, and £, in (5.1) and
therefore its sign should not be changed.

5.5 Corner-based Calibration

The methods to calibrate MPCs are scarce and normally consider fea-
tures in MIs. The calibration methods differ mainly in the camera model
(Table 5.1). More specifically, Nousias et al. [115] considered the in-
dependent calibration of each microlens type described by the camera
model proposed by Bok ef al. [21] for SPCs. The independent cali-
bration requires the estimation of a high number of parameters being
the majority of them redundant. Nousias et al. [115] acknowledged the
existence of common extrinsics among the microlens types but did not
proposed a simultaneous calibration of the different microlens types.

In the camera model proposed (Section 5.5.1), one considers common
intrinsic and extrinsic parameters among the microlens types. The differ-
ence among the microlens types is accounted by the blur model that de-
scribes the different defocus behaviors according to the microlens world
focal planes. This allows to represent an MPC with a reduced number
of parameters and perform a simultaneous calibration of the microlens

types.

Method Number LFIM | Number Extrinsic Blur Model Features
Parameters Parameters
Nousias et al. [115] 6M 6PM No Corners in MlIs
. Corners and blur
Monteiro et al. [104] 8 6P Yes radius in MIs

Table 5.1: State of the art comparison for MPC calibration procedures. P denotes the number of poses
and M denotes the number of microlens types.

The accuracy of the camera calibration also relies on the precision of
the detected features in the raw images. The corner detection in the MlIs
of an MPC is particularly challenging given the different microlens types
and defocus blur.
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Different solutions addressing this problem have been explored, usu-
ally exploiting special physical targets or techniques to recreate favourable
conditions for the feature detection. Heinze et al. [66] considered a spe-
cial calibration target with circular patterns to help avoiding incorrect
matches along epipolar lines in the depth estimation process. Bok et al.
[21] claimed that due to the MI small size, corners cannot be accurately
detected, and, therefore, edge features of a checkerboard pattern are de-
tected and used for calibration. This approach cannot handle different
microlens types [| 15]. Nousias et al. [115] operates corners detection
on MIs and is able to categorize different microlens types. Corners are
found at the saddle point between the two regions of maximum and mini-
mum intensity, ensuring more robustness against blurred Mls. Although
outperforming classical state of the art like Harris [62] or FAST [125]
corner detectors, it leaves margin for improvement.

Thus, 1s proposed a detector that separately estimates corner location
and radius blur in pixels (Section 5.5.2). The corner location estimation
is based on intensity analysis of the boundaries of a window centered
around each corner to ensure robustness against different degrees of de-
focus, while the blur calculation makes use of a conventional focus mea-
sure from the literature [| | 9] which is adapted and calibrated for giving
a metric in pixels.

5.5.1 MPC Camera Model

In the previous sections, was described the camera model of the mi-
crolens camera array composed of identical microlenses in an FPC, how-
ever, an MPC has several types of microlenses each with a different focal
length. Strobl ef al. [132] highlighted the need to model the different
microlens types to accurately represent an MPC. Nonetheless, the only
known works that model the different microlens types are [66, ].
Considering the thin lens equation to describe a microlens and a fixed
distance di, one can see that each microlens type has a different focal
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plane. Alternatively, for having a point in the main lens focal plane in
focus, each microlens type needs to have a different spacing between the
image sensor and the microlens array (d/, d,/, and d,’ in Figure 5.1.b).
However, there is only one image sensor so some microlenses produce
blurred images of the point. Additionally,the features extracted from the
MIs refer to the actual single image sensor at distance di in the MPC
and not the virtual image sensors d,/ and d'".

The camera models used for plenoptic cameras consider the microlenses
as pinholes [21, 41, , ]. The pinhole model accurately represents
the chief-ray originating at a given 3D point. This chief-ray does not de-
pend on the microlens focal plane and detecting its position in the blurred
MIs poses a challenge. Thus, in this section, is proposed a camera model
that describes the point projections of a world point in the different mi-
crolenses using a single LFIM (4.17) and the specific defocus behavior
of each microlens type using the blur radius b derived from the models

[11, 18]

1 1

b=k, —
tsm  zq

(5.24)

with k; = w d/2 where w is the distance between the microlens and
the image sensor, d is the microlens aperture and z(, is the depth of the
microlens focal plane in the camera coordinate system. t;m is the depth
of the point m = [z, y, z]T in the camera coordinate system where t;
corresponds to the third row of “T',,. This allows to represent an MPC
using an affine mapping with 7 parameters (not considering the restric-
tion (5.18)) and a blur model with 1 common scale parameter and 1 ad-
ditional parameter for each microlens type (depth of the microlens focal
plane). The camera model proposed allows to define a calibration pro-
cedure for an MPC using corner points and their corresponding blur in
each microlens as features.
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5.5.2 Corner and Blur Radius Detection

In this section, is provided a method capable of detecting and clus-
tering the imaged corner points from conventional checkerboards. The
detection is applied directly on the MIs, avoiding dependencies from
pre-processing or depth information. The proposed algorithm has three
steps: (1) obtain a likelihood map of the corners location using a bound-
ary centered around a pixel candidate similar to the one used in [20], then
(11) create clusters of the imaged points belonging to the same checker-
board corner, and finally (iii) fit lines to estimate the exact position of
the imaged corners within each single cluster. Moreover, one empha-
sizes the importance of accounting for the different microlens types and
the different degrees of defocus in each MI. The proposed solution is to
model this separately from the corner points’ location by means of a blur
radius detector based in the Tenengrad Variance focus measure [ 19].

Likelihood Map Step. The first step of the corner detection consists
in the generation of a likelihood map where each pixel value indicates
the probability of that pixel containing a corner. Such map can be used
to extract the actual corners or as an initial estimation for a refinement
process.

The corner points are searched in the MIs. This requires the knowl-
edge about the microlens centers position but allows to avoid dark areas
between MlIs. This is solved using a white image and the methods de-
scribed in [21, 41] or using the procedure described in [66], common
to Raytrix RxLive software [123] as in [117]. The search operation in
the MIs has a large computational effort due to the large number of Mls
in the raw images. Therefore, a pre-processing step is performed to ob-
tain the probability of the presence of a corner in each MI by looking at
the ratio of dark and white pixels and the presence of lines at different
angles.

The calculation of the pixelwise likelihood map is performed only on
the MlIs classified as possible candidates. The proposed method takes
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inspiration from previous works, namely, Bok et al. [20] analyzed the
circular boundaries assuming a sharp change between black and white
regions that do not happen for blurred images, and Nousias et al. [115]
used lines towards the highest intensity points to overcome this issue.
The likelihood score is computed merging the two ideas, namely select-
ing the boundaries of a squared window around each point and analyzing
the curve of the intensity of its values. Ideally, a linear vector obtained
from the boundary should exhibit a particular shape consisting of two
distinct maxima and minima values approximately at the same distance

between each other, being half of the vector length, as visible in Figure
5.2.

Shapes of Boundary Vectors
\ White Region —Black Region —Edge Region —Corner Region \
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(a) MI (b) Boundary profiles of points in (a)

Figure 5.2: Example of a MI with a corner. Four different regions (a) are analyzed to exhibit their
characteristic shapes (b): white and black textureless areas, an edge and a corner region.

The likelihood score is calculated using two penalty functions that
reduce the score when the vector shape differs from the ideal one:

l(p)=1—pr—pp (5.25)
with

Im — L |Tyr—1
Z‘ i | ‘M”“ | and (5.26)

o)
k=12 LM
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Npma2 = pwa) = 151 1(par2 — para) — %]
oy = +
Odm Od.M

(5.27)

where [(p) denotes the likelihood score of pixel p in the linear vector
and (p], pp) are the two penalty functions calculated using the differ-
ence between the intensity and relative position values of the minima
and maxima and the ideal ones. The m indicates the minima and M the
maxima points, [ the intensity and p the position in the linear vector.
Od.Ms Odm»> OIM, OIm are fixed value variables to control the contribu-
tion of each penalty function. [, and [, are respectively the minimum
and maximum intensity values of the whole image, and %’ 18 half of the
vector length.

Finally, in order to avoid assigning scores to pixels that do not actually
represent a corner, one performs a connected component analysis on a
binary version of the likelthood map where all pixels with likelithood
greater than zero are selected. If there are more than one unconnected
components in the same MI, one evaluates their score as the sum of the
likelihood of their points and keep the highest one.

Clustering Step. In this step, one requires the 2D coordinates of the
imaged corners. Hence, one transforms the likelihood map into points
by selecting for each connected component a weighted average position
of the corresponding pixels using the likelihood scores as weights. Be-
fore the actual clustering, one filters the points by means of a statistical
outliers removal. Outliers are defined as points that do not have enough
neighbors within a predefined range. At the same time, one builds a grid
with a rough guess of where the clusters centers are to facilitate the con-
vergence of the clustering algorithm. This step is not actually required,
yet it significantly reduces the probability of incurring into wrong clus-
tering and the number of iterations needed to reach the final solution.

Following these two steps, one is able to provide as input for the clus-
tering an outlier-free ensemble of points and a rough initial guess of
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the grid centers. The k-means algorithm has been chosen for the final
clustering using the euclidean distance as measure for the clusters clas-
sification.

Line Constraints Refinement. The final step is a region-based process,
repeated for every cluster. The operation explained in this section is per-
formed on points within the same cluster. At this step, one does not need
2D coordinates so the likelihood map is again used to achieve higher
accuracy in the selection of the final points.

(a) Lines drawn on the MlIs (b) Detected corners

Figure 5.3: Example of lines within a single cluster and detected corners. In (a), each epipolar line is
shown in a different color. In (b), the likelihood map is shown in a scale of blues and the corners detected
after the refinement with red crosses.

The epipolar geometry states that the corresponding corners must lie
on three epipolar lines with 0, 60 and 120 deg inclination since the mi-
crolenses are arranged on an hexagonal grid, assuming rectified images.
Lines can be defined by slope and y-intercept. By fixing the slope and
tuning the y-intercept value, a score is calculated accumulating the like-
lihood of the points that lie on each generated line, e.g. a higher score
indicates that a line is crossing more high probability points. Intuitively,
the correct lines should be those lines that cross the pixels with higher
probability. In order to choose the correct lines and avoid false positives,
one must ensure a minimum distance between them to prevent adjacent
lines to be chosen together. This distance is set to be the radius of a MI.
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The corners lie in the intersection of the generated lines. In an ideal
situation, the three lines would intersect in the same point, however, in
the real case, the lines intersect at different points. A corner is detected
if the distance between the different intersection points is smaller than a
predefined tolerance threshold. Here, there is a tradeoff, a larger toler-
ance allows to select more points at the price of reducing the accuracy
while a narrow tolerance increases the accuracy but reduces the number
of selected points.

Blur Calibration and Estimation. In this step, one estimates the blur
radius in pixels for each detected corner. The literature shows different
approaches for the measurement of blur but normally there is no connec-
tion to a precise estimation of the blur radius in pixels. For example, in
[115], the focus measure was only used to classify the microlens type.

The approach consists in first estimating a mapping function from a
focus measure, the Tenengrad Variance [ ! 19], to the blur radius defined
in pixels. Taking inspiration from a similar idea [88], one generates an
ad-hoc dataset of synthetically generated MIs with a corner where one
gradually adds an increasing amount of blur to simulate all possible blur
patterns to reliably map the blur measurements in pixels. A total of 21
images are used considering a blur radius ranging from 0 to 10 pixels
with a step of 0.5 pixels. To emulate real images one also adds Gaussian
noise with zero mean and variance o> = (.0003.

The focus measure is obtained using a small region around the de-
tected corner instead of using the whole MI. The remaining part of the
image should not affect the estimation since corners at the edge of a
microlens may have less texture and thus obtain different focus mea-
surements.

After estimating the mapping function, one uses this function to map
the focus measure associated with a corner to the corresponding blur
radius in pixels.
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5.5.3 Calibration Procedure

The calibration proposed considers the corners of a planar calibration
grid of known dimensions and the corresponding blur radius as features
(Figure 5.4.a). In the following, is assumed that the microlenses centers
and types are known [41], ] and that the corners in the world coor-
dinate system have been matched with the imaged corners. An imaged
corner is defined by aray ® = [i, j, k,[]" in the image space. The (i, j)
coordinates correspond to the pixel coordinates of the detected corners
on the MIs relatively to the corresponding microlens center. The (k)
coordinates correspond to the microlens coordinates considering a rect-
angular sampling to represent the microlens center coordinates in the
raw image (Figure 5.4.b).

-
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X )

" T _(b) T

Figure 5.4: Features of dataset acquired with a Raytrix camera. The corners and blur radius detected on
the raw image and the clustering performed is highlighted in (a). A detail of cluster 40 is shown in the
blue rectangle. The association of the clusters with the 3D points is depicted in the orange rectangle.
The rectangular coordinate system to represent the microlens centers in the raw image is depicted in (b).

5.5.4 Linear Initialization

In this section, is considered the mapping in Section 5.3 to define
a linear solution for the microlens array parameters associated with a
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plenoptic camera and the extrinsic parameters for each pose of the cali-
bration grid. The blur model (5.24) associated with each microlens type
is used to define the microlens focal planes. The linear solution com-
prises homography, intrinsic, extrinsic and blur parameters estimation
steps.

Homography Estimation. Considering the microlens projection matrix
P* (5.1) with K (5.8) and t* (5.13), a point m = [z,y, 2] in the
object space is projected to a point in the image plane q = [i, j|* by

q ~ P — K" [CRw t, + t" | m (5.28)

where the symbol ~ denotes equal up to a scale factor. The coplanar
grid points allow to define a world coordinate system such that the z-

. . . . - T
coordinate is zero. In this context, denoting m = |z,y, 1] , one can
redefine the projection (5.28) as q ~ H"* m where

H" = K" [r; 1y t, + t" (5.29)

is the parametric homography matrix for the microlens camera (k, (), and
ch = [I'l, Iy, 1'3].

The homography matrix H*' like the projection matrix P*' changes
among microlenses as a result of the principal point shift and baseline
defined in Section 5.1. Let us consider that H* can be defined from
the homography matrix H" associated with the microlens coordinates
(k,1) = (0,0) and the homography microlens change matrix A" by

Hkl: hgl h82 hgg +10 10 a1 92 a93
pd, nY, B ool o o o0]- (5.30)
HY N

Considering the homography projection of a calibration grid corner m =
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[z, y, 1]T in the object space to the image point q for the microlens cam-
era (k, ), applying the cross product by q on each side of the projection
equation leads to [q],, H* m = 03, where [(-)]  is a skew-symmetric
matrix that applies the cross product. Using the properties of the Kro-
necker product [93] and solving for each of the unknown parameters,
one obtains

0
(! @la, ) T | | = 0s (5.31)
where
E0OOOOO
070000
O1><6
00 KkKkO0OO
T= [Igug0 0 0 00 : (5.32)
O1><6
000O0&kD© O
0000O0O0
O1><6

and h” and a* correspond to vectorizations of the matrix H® and A"
by stacking their columns and removing the zero entries, respectively.
The solution [ho, akl]T for the parametric homography matrix can be
estimated using Singular Value Decomposition (SVD).

The parametric homography matrix (5.30) is defined using 15 param-
eters. According to (5.31), each point correspondence (m, q) originates
three equations with only two being linearly independent. Nonetheless,
the restrictions on the microlens camera array also originate restrictions
on the projections of a point in the object space. Namely, the ray in
the image space ®*' = [i, j, k Z] associated with an arbitrary microlens
(k,1) can be described from the ray coordinates ®° = [iy, jo, 0,0]" asso-
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ciated with the microlens (k,l) = (0,0) by ®* = ®° + [k3,13, k, l]T,
where (3 corresponds to the disparity of the point defined on the MIs.
This reduces the number of linearly independent equations originated by
a point in the object space to 4. Thus, one needs at least 4 non-collinear
points to obtain the entries of the homography matrix H". In the estima-
tion of the homography matrix H* one should also consider the practical
aspects mentioned in Section 4.3.1.

Intrinsic and Extrinsic Estimation. The structure of the homogra-
phy matrix (5.29) in conjunction with the orthogonality and identity of
the column vectors of ‘R, allow to define constraints on the intrinsic
parameters as hy'B*hy, = 0 and h;"B* h; — hy’B* h, = 0 [151]
where h,, refers to the m-th column vector of H*', and the symmet-
ric matrix that describes the image of the absolute conic is defined as
BY = KM KM [92, 151]. Using the knowledge of the intrinsic ma-
trix K*, one can represent the absolute conic B¥ for a microlens camera
(k,1) using a minimal number of parameters.

The intrinsic matrix K* differs on the principal point for each mi-
crolens leading to different images of the absolute conic. The principal
points change regularly between consecutive microlenses by the princi-

T
pal point shift [Aug, Avg]" = [—%, —%} which can be used to con-
ui V]

straint the parametric representation of B*. Namely, considering (5.8),
B* can be defined as

B"=B'+kC*+ID' +k>E'+ I’ F! (5.33)
with
B2 0 hohoy |
B'=| 0 B  hhy |, (5.34)
hohui hohy; 14 h2 + h2
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i 0 0 huzhuk_ 0
ck=] 0 0 0 |,E= ) OQX;’LQ ] , (5.35)
(0 0 0 | .
D'=|0 0 hyhy|,and F' = 0 0222 ] . (5.36)
0 hyhy 2hohy vl

This allows to define a representation for B using 11 distinct non-zero
entries b = [byy, big, bao, bag, bss, C13, C3, dos, da3, €33, f33 |7 where (),
represents the entry in row n and column m of the matrix (). Consid-
ering these parameters, the intrinsic parameters constraints can be rede-
fined as

- o T
h11h12 h112 - h122
hi1hsa + highsy 2 (hiihsy — highsg)
ho1hao ho1® — hoy?
horhsa + haohst 2 (hothsy — haohss)
hs1hsa hsi? — hao”
k (hi1hss + highs1) 2k (hi1hgy — highsa) N
L (h31h32) L (h312 . h322> b" = 02><1 . (537)
[ (harhsa 4 hoohs1) 21 (hoyhsy — haohss)
[ (ha1hs2) [ <h312 — h322>
k? (hsihss) K (h312 — h322)
I? (ha1hsa) 2 (h312 — h322)

Normally, each homography generates 2 equations for determining the
matrix of the absolute conic image [151]. The parametric representation
(5.30), representing an arbitrary microlens (%, [), generates 6 equations.
Nonetheless, only 2 equations are independent regarding the entries of
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B, so one needs to acquire at least 3 calibration grid poses to estimate
b* defined up to a scale factor.

The intrinsic matrix parameters can be recovered from B*. More
specifically, rewriting the intrinsic matrix K* (5.8) as

ko 0 u| [k o0o0] | Aug
K= 10 ky, vol+10 17 0] |03x0 Auwg |, (5.38)
0 0 1 001 0
IZO (irk:l

one can define B = K "K', This allows to estimate the entries
of K" using the Cholesky decomposition of B" and correcting the scale
factor considering kJ; = 1. The principal point shift can be estimated
considering Awugy = —Lui? = —zi—f and Avy = —Z—Z = —%”.

The extrinsic parameters can be estimated once the intrinsic matrix
K" is known. From (5.29), the rotation matrix ‘R,, = [r, T, 13| is

recovered considering

>

rp = MK 'hy | ry = AK* hy, and =1, X 1 (5.39)

with A = 1/HKM_1h1|| = 1/HKkl_1h2H. The translation “t,, and pro-

jection center t*', considering the microlens pinhole constraint (5.6), are
recovered solving the following system of equations

Ahy = [K’fl KMJ] ;“’ (5.40)
with
[ w4+ kA |
J=|(vo+1Auv) | . (5.41)
—k,
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Blur Estimation. The blur model defines the defocus that occurs in each
microlens depending on the distance of the point to the microlens focal
plane. The depth of the microlens focal plane corresponds to the depth
of the points with blur radius equal to zero (5.24), i.e. zg = tsm for
b = 0. Normally, the blur radius is not zero due to pixel discretization so
one should consider a range for selecting the points with zero blur radius
and take the median of the points depth to estimate the microlens focal
plane. Once the microlens focal plane depth is known, the parameter k,

is estimated simply taking the median of &, = %

5.5.5 Nonlinear Optimization

In this section, the linear solution is refined and radial distortion [25]
is considered on the coordinates (u,v). Namely, the undistorted rays
in the object space " = [s,t, u", v“]T are defined from distorted rays
in the object space ¥ = |s,t, u, U]T by (4.34) that is described by the
distortion vector d = (ky, ks, k3, by, b,). In the nonlinear optimization,
one minimizes the reprojection error © (-) and the blur radius error 7 (-)
simultaneously for all microlens types

argmin  © (KM, th d, R,, tp) + 7T (bm, R, tp) : (5.42)
d

Kkl7tklabmaRp7tp7

This optimization refines the intrinsic parameters K*' and t"', the blur

parameters b,, = [k:s, sz]T, m = 1,..., M where M is the number
of microlens types, the extrinsic parameters R, (parameterized by Ro-
drigues formula [48]) and t,, p = 1,..., P where P is the number of

poses, and the distortion vector d.
The reprojection error [63]
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P Ny

@(Kkl,tkl,d,Rp,tp) :S: ) S‘ Hk[

p=1 n=1 (k;l Exn

(5.43)

defines the error in pixels using the Euclidean distance between the de-
tected corners ¢’ and the projections "' of the world coordinate system
point m,, associated with the corner n in the multiple microlens cameras
Xn» i-e. qff =TI (K", t* R, m, +t,) where I (-) defines the projec-
tion in microlens (k,[) of a point in the camera coordinate system. The
detected corners are not directly the ones obtained from the raw image
but the projections obtained from the reconstructed point after distortion
correction, i.e. g = II (K" t* n(H,d, ®,)) where 1 defines the re-
constructed point after mapping the ray in the image space ®,, associated
with the corner n to the ray in object space (3.1), followed by distortion
rectification (4.34) and reconstruction [107]. Notice that H can be de-
fined from K* and t*' using the mappings defined in Section 5.3. N,
corresponds to the number of corners detected on pose p.

The blur radius

M Ny

7 (bu, Ry t) S‘YY Y

p=1 m=1 n=1 (k,l)ex,

2
— b (5.44)

defines the error in pixels using the Euclidean distance between the de-
tected blur radius b*' and the blur radius b*' estimated for the point m,,
using (5.24) for the multiple microlens cameras.

The nonlinear optimization is solved using the trust-region-reflective
algorithm [35], where a sparsity pattern for the Jacobian matrix is pro-
vided. The number of parameters over which one optimizes is 7 for the
intrinsic parameters, M + 1 for the blur parameters, 5 for the lens distor-
tion parameters, and 6P for the extrinsic parameters.
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5.5.6 Experimental Results

In this section are presented the results of the corner detector and
the calibration procedure proposed. The methodologies proposed are
applied to synthetic datasets obtained using the toolbox [101] and to
a dataset acquired with a commercially available MPC with three mi-
crolens types, the R42 Raytrix with a 50 mm lens.

Synthetic Dataset Results. Synthetic images have successfully proven
to emulate plenoptic cameras [101], so one created a dedicated set of
synthetic raw images with a checkerboard pattern using the Blender en-
gine.

The knowledge of the three-dimensional position of the pattern and
the camera parameters allows to calculate the corners’ positions using
ray tracing. For every pixel, a bundle of rays is emitted and traced to
the scene until they reach the object, fetching its position in the three-
dimensional space. Even in the unfocused case, in which the rays may
not converge to the same point, their positions can be averaged to ro-
bustly recover the coner’s positional information [100]. One way to do
this is to render a positional image along with the colored image and
matching the colored point with its positional information. Rendering
the positional image with a higher resolution and picking the closest
point, one can reach a sub-pixel accuracy close to 0.1 pixels. This infor-
mation allows to create a benchmark and evaluate the performance of the
corner detection algorithm proposed. For this purpose, a set of 11 im-
ages of 3500 x 3500 pixels with 11017 MIs is created. On average, each
image contains 1335.4 corners, for a total of 14689 corners, ensuring the
statistical significance of the analysis.

Standard corner detection methods have shown to fail on MIs so one
compared the method proposed with the state of the art [115] (denoted
as Nousiasl7). Additionally, one shows the proposed method perfor-
mance before and after the refinement step described in Section 5.5.2 to
give a further insight on the corner method proposed. The corner detec-
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tion error is calculated as the difference in pixels between the estimated
corner position and the corresponding ground truth corner. In Figure
5.5.c, the average error for the detected corners in each synthetic image
is shown. The method proposed retains a lower error in all the images,
and it is possible to see that the refinement step improves the estimation,
reducing the detection error in average by 22.05%.

For a meaningful analysis of the error, the number of detected corners
has to be taken into account. In Figure 5.5.b, one reports the number
of corners detected from each algorithm alongside with the number of
ground truth corners for each synthetic image. In Table 5.2, one summa-
rizes the corner detection results indicating the average error between the
estimated and ground truth corners and the average number of corners
detected per pose. The detection ratio gives the percentage of corners
detected with respect to the actual number of corners imaged in the syn-
thetic dataset. The proposed method outperforms the state of the art
[115]. As expected, the initial step before refinement aims at detecting
all corners, reaching almost the full score. The quantity is then traded
with the quality in the refinement step.

Average Results | Error [pix] | Corners Detected | Detection Ratio

Nousiasl7 [115] 0.8842 491.09 36.88%
Proposed 0.5677 1237.8 92.79 %

Proposed Refined 0.4420 731.55 55.29%

Table 5.2: Summary of the average results per pose obtained using the different corner detectors. The
highlighted values indicates the best result for each category.

The error of the corner detection can be divided for each microlens
type since the MPCs has three different microlens types (Figure 5.6).
The corner detection approach used in [ | 15] exhibits a smaller error for
the microlens type 0 while the same microlens type seems to be more
difficult to precisely estimate using the method proposed before the re-
finement step. In fact, this is the only situation for which the approach
proposed does not perform better. After the refinement, however, the
error related with the microlens type 0 is the lowest. Repeating the di-
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(c) Ground truth based average corner location error.

Figure 5.5: Synthetic dataset corner detection results. (a) shows a checkerboard image with examples of
detected corners for different microlens types and different amounts of blur, (b) relates to the number of
corners found and (c) reports the average error in pixels.

vision per microlens type for the number of corners found (Figure 5.7),
one observes a lower number of corners for the microlens type 2 while
the other microlens types show similar values. These results may be re-
lated to the amount of defocus blur and to the particular characteristics
of the optics of each microlens.
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Error of corners detected per lens type
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Figure 5.6: Corner detection error for method proposed before (PbR) and after refinement (PaR) step
and state of the art method [115].
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Figure 5.7: Number of corners found for method proposed before (PbR) and after refinement (PaR) step
and state of the art method [115].

The performance of the corner detectors is evaluated on the estima-
tion of the synthetic MPC parameters considering three different sets of
corners: (i) the ground truth corners provided by the synthetic dataset,
and (i1) the corners detected by the algorithm proposed by Nousias et al.
[115] and (i11) by the proposed algorithm (Section 5.5.2). These corners
are used by the proposed calibration procedure and the state of the art
calibration procedure for MPCs [ 15] (denoted as Nousiasl7). For this
comparison, is considered the Root Mean Square (RMS) of the reprojec-
tion and reconstruction errors for the different stages of the calibration
process: the initial linear solution and the nonlinear refinement with and
without distortion estimation. The results obtained are summarized in
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Tables 5.3 and 5.4.

Reprojection Error [pix] Corner Detector
Calibration Procedure Ground Truth | NousiasI7 [115] | Proposed

Nousiasl7 [115] 7.939 4.684 7.887
Initial Nousias17* [115] 17.155 3.541 12.402
Proposed 0.393 2.249 0.950
Nousiasl7 [115] 0.720 1.202 4.273
Optimized Nousiasl7* [115] 0.197 0.727 0.534
Proposed 0.216 0.748 0.533
(Wiglpgilgfgon) Proposed 0213 0.743 0.528

Table 5.3: RMS reprojection error in pixels for synthetic dataset considering different calibration proce-
dures and corner detectors. The highlighted values correspond to the best result for a given stage of the
calibration. * denotes the calibration procedure defined by Nousias et al. [115] with the correction in

Section 5.4.
Reconstruction Error [mm] Corner Detector
Calibration Procedure Ground Truth | Nousiasl7 [115] | Proposed
Nousiasl7 [115] 3154.9 1795.6 775.9
Initial Nousiasl7 * | 1334 86.8 13.9
Proposed 2.3 18.9 5.0
Nousiasl7 [115] 52.3 55.6 485.5
Optimized Nousiasl7 * [ 39.7 53.9 8.3
Proposed 1.1 6.6 53
Optimized
(withpDistorﬁon) Proposed 1.4 10.6 5.7

Table 5.4: RMS reconstruction error in mm for synthetic dataset considering different calibration pro-
cedures and corner detectors. The highlighted values correspond to the best result for a given stage of
the calibration. * denotes the calibration procedure defined by Nousias ef al. [115] with the correction
in Section 5.4.

In Tables 5.3 and 5.4, the reprojection and reconstruction errors for the
calibration proposed using the ground truth corners attain small values
which shows that the camera model defined in Section 5.5.1 1s suitable
to represent MPCs. The reprojection error is similar to the one obtained
using the correction defined in Section 5.4 for the state of the art calibra-
tion of Nousias et al. [ 1 1 5] while the reconstruction error obtained using
the calibration proposed is significantly smaller. One should highlight
that the proposed camera model does not need to know the position of
the microlenses centers, contrarily to the method of Nousias et al. [115].
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The correction proposed in Section 5.4 to the calibration procedure
of Nousias et al. [115] provides better results than applying directly the
methodology of Nousias et al. [115]. Namely, the reprojection error
decreases by 72.6% and the reconstruction error decreases by 24.1%.

Comparing the proposed corner detector with the one proposed by
Nousias et al. [1 15], one can see that the proposed corner detector allows
to attain smaller reprojection and reconstruction errors in the nonlinear
refinement stage. The smallest errors are obtained using the proposed
corner detector and the proposed calibration procedure. In this case,
the reprojection error attains sub-pixel error in the linear solution and
decreases by 43.9% in the nonlinear refinement to 0.53 pixels. On the
other hand, the reconstruction error is below 6 mm.

Raytrix Dataset Results. A Raytrix camera is used to obtain images
from 10 different poses of a calibration pattern with a 8 x 6 grid of
48.2 x 36.2 mm cells. The estimation of the MPC parameters using the
calibration procedure proposed is performed using the corners identified
with the detector proposed and with the corner detector [115]. The re-
sults are compared with the state of the art calibration procedure [ | 15].
As in the synthetic dataset, the results are compared using the reprojec-
tion and reconstruction errors for the different stages of the calibration.
The results are presented in Table 5.5.

The corners identified using the proposed detector allow to estimate
camera parameters that exhibit consistently smaller errors than the ones
obtained using the corners identified with the detector [ 1 | 5]. More specif-
ically, the reprojection error reduces by 50.1% and the reconstruction er-
ror decreases by 81.3% for the state of the art calibration procedure [ 1 15]
with the correction defined in Section 5.4. For the calibration proposed,
the reprojection error reduces by 34.3% and the reconstruction error de-
creases by 68.2%. The combination that provides the smallest errors cor-
responds to the proposed calibration procedure with the proposed corner
detector, as in the synthetic dataset. In this case, the reprojection error
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. . Corner Detector
Calibration — 8 -
Procedure Reprojection Error [pix] Reconstruction Error [mm]
Nousiasl7 [115] | Proposed | Nousiasl7 [115] | Proposed
Nousiasl7 [115] 9.437 4.899 2158.4 3037.5
Initial Nousiasl7* [115] 2.800 2.287 200.6 56.3
Proposed 18.311 4.621 176.9 14.6
Nousiasl7 [115] 4.063 2.178 621.5 899.4
Optimized Nousias17* [115] 1.165 0.581 245.6 45.9
Proposed 0.791 0.520 10.8 6.3
(Wiglpg?;g;?on) Proposed 0.786 0.514 16.3 8.2

Table 5.5: RMS reprojection and reconstruction errors for Raytrix dataset considering different calibra-
tion procedures and corner detectors. The highlighted values correspond to the best result for a given
stage of the calibration. * denotes the calibration procedure defined by Nousias ef al. [115] with the
correction in Section 5.4.

Blur Error [pix] Overall Microlens Types
Calibration Stage Type 1 | Type 2 | Type 3
Initial 0.424 | 0422 | 0.370 | 0.480
Optimized 0.404 | 0.353 | 0.364 | 0.494
Optimized
(with Distortion) 0.401 0.353 | 0.359 | 0.493

Table 5.6: RMS blur radius error in pixels for Raytrix dataset for the calibration procedure proposed
using the blur radius identified by the detector proposed.

Model k. k., Ug Vg o [m] | yo [m] | 2o [m] | Aug | Avy | Azg [mm] | Ay [mm]
Proposed | 2352.30 | 2336.40 | -257.92 [ -230.20 | 0.13 | 0.11 | -1.16 | 0.90 | 1.54 0.44 0.77
Bok eral. [21] | 2535.38 | 2535.38 | -144.24 [ -208.09 | 0.07 | 0.10 | -1.21 | 0.94 | 1.64 0.45 0.78
\ Ratio [ 108 [ 1.09 | 056 [ 090 | 054 | 087 [ 1.04 [1.05]1.06] 1.01 | 102 |

Table 5.7: Parameters of the camera model proposed in Section 5.1. The parameters are estimated using
the calibration procedure proposed (Section 5.5.3) and by transforming the parameters (camera model
equivalent parameters) estimated using the calibration procedure of Nousias et al. [115] according with
the mappings defined in Section 5.4. The ratio between the camera model equivalent parameters and the
estimated using the proposed calibration is presented in the last row.

decreases to 0.52 pixels (10.5% decrease) and the reconstruction error
decreases to 6.3 mm (86.3% decrease).

The radial distortion present in the Raytrix images acquired is very
small, therefore the decrease in the reprojection error with the estima-
tion of radial distortion is only 1.2%. The previous discussions did not
include the radial distortion because the state of the art method does not
consider distortion estimation during the calibration.
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The results in the synthetic and Raytrix dataset show that besides the
common extrinsic parameters [ 15], the MPC can be described using
common intrinsic parameters among the microlens types. More specif-
ically, considering an intrinsic model with 7 parameters (Section 5.3),
one is able to obtain smaller or similar reprojection and reconstruction
errors with the state of the art calibration procedure [ 1 15] that considers
6 parameters for each microlens type in a total of 18 parameters.

Blur Model. Table 5.6 presents the blur radius error obtained with the
blur model (5.24) used to represent the different microlens types. The
blur model parameters are estimated using the calibration procedure and
detector proposed. The overall blur error obtained after nonlinear refine-
ment is 0.40 pixels. More specifically, the blur error for the microlens
type 1 is 0.35 pixels, for the microlens type 2 is 0.36 pixels and for the
microlens type 3 is 0.49 pixels. The sub-pixel blur radius error shows
that the blur model is suitable to represent the defocus exhibited by the
different microlens types. In Figure 5.8, one can see that the blur ra-
dius estimated is in accordance with the blur radius detected. The blur
model gives us a different focal plane depth for each microlens type as
expected. Namely, there are two microlenses (types 1 and 2) focusing at
depths near the camera (1.19 m and 1.53 m) and one microlens (type 3)
focusing at a depth farther away from the camera (2.66 m).

® Ground Truth

1 ©Estimated

Figure 5.8: Examples of the blur radius estimated using the calibration proposed (cyan circles) and
comparison with the detected blur radius (red circles).
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Bok et al. [2]] Comparison. In Table 5.7, one presents the parameters
obtained for the camera model proposed (Section 5.1). The parameters
are either estimated using the calibration procedure proposed (Section
5.5.3) or by transforming the camera model parameters (denoted as cam-
era model equivalent parameters) of Bok ef al. [21] according with the
mappings defined in Section 5.4.

The camera model parameters of Bok ef al. [2]] are obtained us-
ing the calibration procedure of Nousias et al. [|15] and considering
the same detected corner points as the ones used in the calibration pro-
posed. In the calibration procedure of Nousias er al. [I15], one as-
sumes additionally that there is only one microlens type as considered
for modeling the MPC. The calibration results in the following addi-
tional intrinsic parameters /K| = 18.48 and Ky = —22291.00, and co-
ordinates for converting normalized coordinates to image coordinates
(f2r fy» Cas €y) = (46853.00,46853.00, 2682.10, 3858.00).

Additionally, for transforming the Bok et al. [21] parameters to the
camera model equivalent parameters, one needs to know the origin (pg, go)
and the spacing (dy, d,,) between microlenses. These parameters are ob-
tained by analyzing the microlens centers in the white image during the
process of defining the microlens coordinates (k, ). This analysis gives
an horizontal distance of d;, = 34.89 pixels and a vertical distance of
d, = 30.22 pixels with an origin defined by (py, go) = (16.50,12.63)
pixels.

The camera model parameters estimated and the camera model equiv-
alent parameters are very similar. Namely, most of the parameters are
within a maximum deviation of 10%. The exceptions correspond to the
principal point wug and the (¢, 3y) coordinates for the origin of the cam-
era coordinate system. The different estimates for these parameters can
be caused by the different calibration procedures used and in part can
explain the different results in terms of reprojection and reconstruction
errors.
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5.6 Chapter Summary

In this chapter was defined the mapping between the LFIM and the
microlens cameras, and one establishes the equivalence between the pro-
jection set P;; (3.17) and the projections of the microlens cameras. The
mapping between these models was used to establish a relationship be-
tween the LFIM and the microlens camera model of Bok er al. [21].
In Section 5.4 was shown that the model proposed by Bok et al. [21]
is equivalent to the LFIM constraining the microlenses to be regularly
spaced.

The microlens cameras define a coplanar array of cameras that differ
on the location of their projection centers and on their principal points
(Section 5.1.2). The different principal points define an EPI geometry
whose zero disparity plane is at the plane containing the viewpoint pro-
jection centers (Section 5.1.3).

The pinhole microlens camera constraint (5.6) allows to represent the
LFIM introduced in [4 ] using eight free intrinsic parameters. This is ac-
complished by shifting the rays parameterization plane along the optical
axis of the camera [ 7] to the plane containing the microlens projection
centers and removing redundant parameters with the extrinsic parame-
ters (Section 5.2).

The microlens camera array model derived can be represented with a
minimum of 6 parameters (Section 5.3) by shifting the rays parameteri-
zation plane along the optical axis of the camera [17] to the plane con-
taining the viewpoint projection centers, removing the redundant param-
eters with the extrinsic parameters, and assuming the pinhole microlens
camera constraint and that the depth of a point estimated through the
EPIs is the same.

The microlens camera array model complemented by the blur model
[11, 18] 1S used to define a linear solution for the MPC that considers
three steps: 1) a Direct Linear Transformation (DLT) calibration to ob-
tain the parameters that describe the microlens parametric homography
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matrix from point correspondences (m, q), (ii) a strategy to decompose
this homography matrix into intrinsic and extrinsic parameters based
on a parametric representation of the image of the absolute conic, (iii)
and a method to retrieve the blur model associated with each microlens
type. The calibration procedure proposed for the MPC is based on corner
points and blur radius detected in the MIs using a new detection algo-
rithm that overcomes the defocus blur present in the MIs. The corner
detection algorithm and the calibration proposed outperform the state of
the art showing that the MPC can be described using common intrinsic
and extrinsic parameters among the different microlens types (Section
5.5).

The next chapter will define the geometry associated with other virtual
cameras that can be obtained from the capture Lightfield (LF) and will
present an extension of the LFIM to arrays of camera arrays.
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Chapter 6

Depth-Selected Camera Arrays

The Lightfield Intrinsic Matrix (LFIM) allows to represent a coplanar
camera array of viewpoints (Section 4.1) and microlenses (Section 5.1).
These arrays are obtained either fixing the pixels (¢, j) or the microlenses
(k,1). In this chapter are explored the different combinations of rays cap-
tured by a plenoptic camera to fully formalize the corresponding camera
arrays. In addition, is described the geometry of a coplanar plenoptic
camera array to propose an extension of the LFIM.

6.1 Camera Array Redefinition

The Lightfield (LF) captured by Standard Plenoptic Cameras (SPCs)
can be represented using several types of images by reorganizing the
pixels captured by the camera on the 2D raw image [112]. The raw
image displays the pixels collected by each microlens in the microlens
array (Figure 6.1.a) and represents the images captured by the physi-
cal microlens array placed in front of the sensor (Section 5.1). There
is another arrangement of pixels that is commonly used in SPCs, the
Viewpoint Images (VIs). These images are obtained by selecting the
same pixel position relatively to the microlens center for each microlens
[112]. This rearragement defines a virtual camera array with coplanar
projection centers and with a very narrow baseline [ 1 04] (Section 4.1).

The rays captured by an SPC allow defining alternative cameras with
rays intersecting at an arbitrary point (depth) in the scene [103] either
by applying a shearing operation or creating Surface Camera Images
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Figure 6.1: Raw image and ray parameterization in an SPC. (a) Raw image captured by an SPC with
detail of the hexagonal microlens array tiling. (b) The LF in the image space is parameterized using
pixels and microlenses indices while the LF in the object space is parameterized using a point and a
direction.

(SCams). Although these strategies are commonly used for disparity
estimation [29, ], the geometry associated with the corresponding
cameras has not been defined. In this section, is fully formalized the
geometry of the multiple viewpoint and microlens camera arrays that

can be obtained and are derived the corresponding mappings from the
LFIM H used to model an SPC.

6.1.1 Generalized Camera Arrays

In this section, is shown that one plenoptic camera can define multiple
camera arrays. The multiplicity comes from the fact that one may collect
rays with different combinations of pixel and microlens coordinates. Let
us start by defining the possible combinations of pixel and microlens
coordinates.

Surface Camera Images and Shearing. A SCam (Section 2.5.3) col-
lects rays that intersect at an arbitrary point in the object space. Consid-
ering the LF in the object space Ly (¢, 7, u,v) acquired by a plenoptic
camera (Figure 6.1.b) described by the LFIM Hy; (4.7), one can obtain a
SCam with projection center at point (s, ¢) of plane I" at a distance dyj_,p
of plane II using the re-parameterization of the LF (Section 3.3.1).
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The re-parameterization (3.3) allows to define a constraint to identify
the rays of the LF in the image space L (i, j, k,[) that intersect at an
arbitrary point of the plane I' [103]. Let ®, and ®; be two rays in the
image space with the same coordinates (s, t) on plane I', by taking their
difference one defines a constraint on the LF coordinates in the image

space as
0 IIst
[O] - Y

where A () = (-),—(+),, and Hft) corresponds to 2 x 2 sub-matrices of Hy
obtained from selecting the entries of the first two rows, denoted by st,
and selecting either the entries of the 1% and 2" columns, denoted by i,
or the 3'Y and 4™ columns, denoted by kl. The LFIM Hr maps the rays
in the image space ® = [i, j, k, Z]T to the rays in the object space W =
s, t,u, U]T. Using the constraint (6.1) and considering (i,, j,, k;, ) as
reference coordinates to enforce the constraint, one can define the set of
rays that compose a SCam considering a sampling fixing the viewpoint
coordinates (i, j) as

Ai
Aj

o | Ak
+Hj |y (6.1)

k=ke+ B (0 =) N =1+ B (75— Jjr) (6.2)
D hgit dinor by o _hrj—l- )y
where the parameters 3;, = e and (;; = e

correspond to the disparities considered on the VIs for a point at depth
dr_r (3.15). Alternatively, one can define the set of rays considering a
sampling fixing the microlens coordinates (k, ) as

i =i+ B (k=k) A j=g,+ By (1—1) (6.3)

where the parameters @7@1 and Bj_ll correspond to the disparities consid-
ered on the Microlens Images (MIs) for a point at depth dp;_,r. Assum-
ing that one wants to maximize the number of sampled rays, one should
use (6.2) for absolute disparities lower or equal than one (|5;;| < 1 or
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‘ ﬁjl| < 1) and (6.3) for absolute disparities greater than one (|5;;| > 1
or [8;1| > 1) (Figure 6.2).

|Bir| = 1 ) |18i.k| =1

Bl > 1 (Bl > 1

(a) (b)

Figure 6.2: Sampling of the LF fixing the viewpoint coordinates (a) or fixing the microlens coordi-
nates (b). The sampling fixing the viewpoint coordinates does not allow to maximize the LF sampling
for |B;x] > 1 while the sampling fixing the microlens coordinates does not allow to maximize the LF
sampling for |G| < 1.

The sampling (6.2) is associated with the sampling performed during
the shearing operation defined by Tao ef al. [134]. Shearing (Section
2.5.4) can be interpreted as a resampling of the acquired LF in order to
have the rays that intersect at an arbitrary point (s, t) of the plane I" in the
same virtual microlens (k;, [5), i.e. the rays collected in each microlens
of the sheared LF corresponds to a SCam whose projection center lies on
the plane I'. Considering the sampling (6.2), the rays are mapped to the
same microlens if (ks, [;) = (k,,,;). Assuming that 8;; = (5;; = [ and
denoting the rays in the sheared LF as ®, = [i, j, ks, ZS]T, the relationship
between the rays of the acquired and the sheared LF can be defined as

o, =UydP (6.4)

where
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1 0 00 0
0 1 00 0
Ukl: —ﬁ 0 10 ﬁlr . (65)
0 =801 By
0 0 00 1

On the other hand, the sampling (6.3) can be interpreted as a resam-
pling of the LF L (¢, j, k,1) such that the rays that intersect at an arbi-
trary point (s,t) of the plane I' are collected in the same virtual view-
point (i, js), i.e. each viewpoint corresponds to a SCam. Consider-
ing the sampling (6.3), the rays are mapped to the same viewpoint if
(¢s,Js) = (i, Jr). Assuming that 5;; = B; = [ and denoting the rays
in the resampled LF as ®, = [ig, js, k, Z]T, the relationship between the
rays of the acquired and the resampled LF can be defined as

®, =U;® (6.6)
where
(10 -8' 0 B'k]
01 0 =gt g1y
U,;=1(00 1 0 0 . (6.7)
00 0 1 0
00 0 0 1

The sampling of rays in the acquired LF to define a SCam i1s defined
either by fixing the viewpoint or the microlens coordinates. Thus, let us
now fully formalize the projection model associated with the different
types of cameras defined using the two sampling approaches.

Sampling Fixing Viewpoint Coordinates. Let us start considering the
sampling fixing the viewpoint coordinates (6.2). This sampling is the
one associated with the LF shearing operation. Consider also the LF in
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the object space whose rays are parameterized at a plane I using a point
lq, T, O]T and a direction [u, v, 1]T (Figure 6.1.b). The LFIM

hqz' + [ hqk 0 hqk 0 hq — 0 hqk "

0 hrj + B hrl 0 hrl hr - 5 hrl jr

H;, = HyU,)! = |hy + B hu 0 hu 0 hy — B hy iy

0 hvj -+ 5 hvl 0 hvl hv - 5 hvl jr
0 0 0 0 1

(6.8)

maps the rays in the image space ®, that define a SCam with projection
center at plane I to the rays in the object space Wry.

The caustic surfaces and the constraints defined in Sections 4.1.2 and
5.1.2 are generic for any LFIM H. Thus, let us define the projection
centers associated with the resampled viewpoint cameras (7, j) and the
resampled microlens cameras (ks, [5).

Viewpoint Projection Matrix. Replacing the LFIM entries in (4.10) by
the corresponding entries of Hy; (6.8), one concludes that the solution
for the vanishing constraint is the same. Therefore, the caustic profile for
the resampled viewpoint camera (¢, j), the constraint to ensure a unique
projection center and the location of the projection center are the same
as the ones defined in Section 4.1.2.

The projection matrix associated with the viewpoint that results from
the sampling fixing the viewpoint coordinates is obtained considering
the unique viewpoint projection center constraint (4.11) and solving the
back-projection (3.11) redefined with the LFIM Hj; (6.8) relatively to
(ks,ls). Rewriting the resulting equation as a pinhole model like (4.1),
one obtains an intrinsic matrix defined as
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[ 1 hy huz ]
I i i AU
KY=10 & == =i =80 —J) (6.9)
0 0 1
and the projection center as t* = —p, (4.12). More in detail, the camera

model for the resampled viewpoint camera only differs on the principal
point relatively to the viewpoint camera (4.13) (Figure 6.3.b-c), which is
consistent with the strategy to translate the VIs to perform shearing of the

LF [76, ]. Thus, the mapping with (4.2) only differs in the common
component |y, UO}T = — [hu/hul€ — By, hy/hy — B jr]T and in the
differential component [Awuy, AUO]T = — [hm [l + By D /hor + B]T

of the principal point relatively to the mapping presented in Section
4.1.2.

Microlens Projection Matrix. Replacing the LFIM entries in (5.5) by the
corresponding entries of Hy; (6.8), one concludes that the solution for
the vanishing constraint changes and is given by:

_hqi+5hqk v :_hrj+5hrl
hei + 5 P, 2T hy + Bhy

This results in a caustic profile for the resampled microlens camera (&, [;)
that is similar to the one presented in Section 5.1.2 but with different
spacing in the x- and y- dimensions and with a different z coordinate.
Consequently, the constraint to ensure a unique projection center for the
microlens camera (k, [5) also changes:

Al = (6.10)

hqi +5hqk o hrj +Bhrl

— , 6.11
hui + 6 huk‘ hvj + 5 hvl ( )
and the projection center is defined on a plane at a depth z3 = — qu igzqi

by
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(a) Fixed viewpoint camera (b) Principal points array for (c) Principal points array
array, b refocusing depths refocusing at depth 1 in (a) areas for refocusing
depths in (a)

(d) Refocusing at depth 1, (e) Refocusing at depth 3, (f) Refocusing at depth 5,
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Figure 6.3: Viewpoint camera arrays obtained considering shearing for refocusing at depths z = 0.2, 0.4,
., 1.0 m (a). The spacing among projection centers has been scaled 100 times to be perceptible on the

3D plot. The distribution of the principal points for the viewpoint camera arrays at different refocusing

depths are depicted in (b) and (c). The corresponding refocused images are depicted in (d), (e) and (f).

_hq + 25 h, + (hqk + 23 uk;) ( ﬁ%ﬁ
hr + <p hv + (hrl + <p vl) ( 5]7“) . (612)

~B

Pc

The projection matrix associated with the resampled microlens is ob-
tained considering the unique projection center constraint (6.11) and
solving the back-projection (3.11) redefined with the LFIM Hj; (6.8)
relatively to (i, 7). Rewriting the resulting equation as a pinhole model
like (5.1), one obtains an intrinsic matrix defined as
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1 0 _hu=Bhygie g Tk
Ll hui+ﬁ huk ] Zui"’ﬁﬁhhuk, 5 huz}i‘ﬁ huk
— 1 TPy o Tl
K B O hvj+ﬁ By hvj"‘ﬂ By ls hvj"‘ﬁ B (613)
0 0 1
and the projection center as t*' = —p, (6.12). The camera model of the

resampled microlens camera is completely different from the microlens
camera (5.8). Namely, comparing (6.13) with (5.2), one identifies the

scale factors as k, = m and k£, = m The common compo-

nent of the principal point is defined as [u, ?Jo]T = — [ku (hy — B hug 1), Ky (hy
and the differential component as [Aug, Avl! = — [k, hur, ko hvg}T.

The baseline is defined as [Ax(, Ayo, O]T = —[hgx+25 huk, hrit+2z5 har, 07,
Finally, the location of the resampled microlens camera array relatively

to the camera coordinate system origin is defined as [, yo, zO]T = — |hy+ 23 hy
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(b) Microlens cameras corresponding
to surface points (SCam)

(a) Microlens camera arrays for
different refocused depths

Figure 6.4: Microlens camera arrays obtained considering shearing for refocusing at different depths for
the synthetic Table dataset [68]. Shearing allows to obtain microlens cameras with projection centers
at different depths (a). These cameras obtain relevant information for depth estimation [29] when the
projection center corresponds to a surface point, i.e. a SCam is defined (b). The viewpoint camera array
is represented in blue with the spacing among projection centers scaled by 4 times.

hgit dior by
hgp+ dus huj
depth of the projection center for the resampled microlens camera (k;, [5)

corresponds to the plane I at dyj_, (Figure 6.4).

Notice that replacing § = — in zg, one can see that the
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The SCam considering the sampling fixing the viewpoint coordinates
corresponds to a microlens camera in the resampled LF. Therefore, the
change that occurs only in the microlens camera projection center is in
accordance.

Generalized Epipolar Plane Image (EPI) Geometry. Considering equa-
tion (3.11) and the resampled viewpoint cameras (6.9), one can obtain
the EPI geometry that relates the depth of a point with the disparity on

T
the VIs [MS %} as

NN
B hakg B hap
Akjs ql Ry W 1 hm 6 d Als rJ By 7V 1 hvj
- = — ———p an - = — ——t—
A1 huk e Z_ZZ huk; A] hvl z + Z—Z hvl
(6.14)

The EPI geometry shows that the zero disparity plane, also known as
the optical focal plane [ | 12] of the main lens is affected by the shearing
operation. This is in accordance with the creation of a virtual focal plane

during the refocus operation that implicitly requires a shearing of the LF
[112] (Figure 6.3.d-1).

Sampling Fixing Microlens Coordinates. Now, let us consider the
sampling fixing the microlens coordinates (6.3). Consider also the LF
in the object space whose rays are parameterized at a plane II using a
point [q, r, O]T and a direction [u, v, 1]T (Figure 6.1.b). The LFIM

hqz' 0 hqk + 6_1 hqi 0 hq — 5_1 hqz‘ k
0 hrj 0 h. + 6_1 hrj h, — 5_1 hrj [

H;; = HHUZ'_jl = |hui O hyp+ 87 hy 0 hy — B~  hyi k
0 hvj 0 ho + 5_1 hvj h, — 5_1 hvj [
0 0 0 0 1

maps the rays in the image space ®, that define a SCam with projection
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center at plane I to the rays in the object space Wryy.

Viewpoint Projection Matrix. Similarly to the sampling fixing the view-
point coordinates, let us replace the LFIM entries in (4.10) by the corre-
sponding entries of H;; (6.15). This allows to conclude that the solution
for the vanishing constraint changes and is the same as the one obtained
for the resampled microlens camera (6.10). Therefore, the caustic profile
is similar to the one for the resampled microlens camera. Namely, it has
different z- and y- spacings but has the same z coordinate. Additionally,
the constraint to ensure a unique projection center is the same as the one
obtained for the resampled microlens camera (6.11) and the projection
center 1s defined as

g+ 25 b + (Pgi + 23 has) (is — B k)
)

Pe = |he 4 25 hy + (hej+ 23 hej) (4o — B , (6.16)
- Z/B =
where 25 = —Zq’i—gzq’;

The projection matrix associated with the resampled viewpoint is ob-
tained considering the unique projection center constraint (6.11) and
solving the back-projection (3.11) redefined with the LFIM H;; (6.15)
relatively to (k, ). Rewriting the resulting equation as a pinhole model
like (4.1), one obtains an intrinsic matrix defined as

5 O _Bhu_hui k?‘ o Bhui
huﬁ’ﬁ huk gﬁz‘:%huf bs hm"}f) huk
Z] _ ﬁ v v br V]
K o 0 hvj‘i‘ﬁ hvl - hvj""ﬁ }ivl - ']8 hvj+ﬁjhvl (6 17)
0 0 1
and the projection center as t'/ = —p,. (6.16). The camera model of the

resampled viewpoint camera (i, j5) is different from the viewpoint cam-
era (4.13) and from the resampled microlens camera (6.13). Namely,
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comparing (6.17) with (4.2), one identifies the scale factors as k, =

ﬁ%huk and k, = ﬁ The common component of the principal
point is defined as [ug, vo]" = —[ku(hu+B8"" hui ky), ko(hot B ho; 1))
and the differential component as [Aug, Avg)? = — [k, hy;, ky, hyj]". The

baseline is defined as Az, Ayo, O}T = —[hgi + 25 hui, Prj+ 25 gy 01
Finally, the location of the resampled viewpoint camera array relatively
to the camera coordinate system origin is defined as [z, Yo, 20]" = —[h,+

28 hu—ﬁ_l k, (hqi + 23 hm) , hr—i—Zg hv—ﬁ_l [, (hrj + 25 hvj> , —ZB}T.

Microlens Projection Matrix. Replacing the LFIM entries in (5.5) by the
corresponding entries of H;; (6.15), one concludes that the solution for
the vanishing constraint is the same. Therefore, the caustic profile for
the microlens camera (k, [), the constraint to ensure a unique projection
center and the location of the projection center are the same as the ones
defined in Section 5.1.2.

The projection matrix associated with the microlens that results from
the sampling fixing the microlens coordinates is obtained considering
the unique microlens projection center constraint (5.6) and solving the
back-projection (3.11) redefined with the LFIM H,;; (6.15) relatively to
(i, js). Rewriting the resulting equation as a pinhole model like (5.1),
one obtains an intrinsic matrix defined as

_ . ) .
=0 —%—k@—ﬁ Yk —k,)
Kl _ 1w g1
K"=10 o he [ > Bl —1,) (6.18)
0 0 1
and the projection center as t* = —p,. (5.7). As for the resampled view-

point camera (6.9), the camera model for the resampled microlens cam-
era only differs on the principal point relatively to the microlens camera
(5.8). Thus, the mapping with (5.2) only differs in the common compo-
nent [ug, vo]' = —[hu/hui — B kv, ho/hu; — 71 1,]7 and in the differ-
ential component [Aug, Avg]" = —[hu/hui + 671, hot/h; + 5717 of
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the principal point relatively to the mapping presented in Section 5.1.2.

The SCam considering the sampling fixing the microlens coordinates
corresponds to a viewpoint camera in the LF. Therefore, the change that
occurs only in the viewpoint camera projection center and the same z
coordinate between the viewpoint (i, js) and the microlens (ky, [;) pro-
jection centers are in accordance.

Generalized EPI Geometry. Considering equation (3.11) and the resam-

pled microlens cameras (6.18), one can obtain the EPI geometry that
T

Aig Ajs] as

relates the depth of a point with the disparity on the MIs [

Ak Al
: hyi : By — tnip,
A’Ls hqk‘ - h_thk 1 huk: 1 d A]S rl hy; vl 1 hvl
= — —————an = — —
Ak hi  zlw g B Al hej

(6.19)
This EPI geometry shows that the zero disparity plane also changes with
the sampling of the viewpoint coordinates, similarly to the EPI geometry
(6.14). Hence, this sampling can also be used during the refocusing
operation of the LF.

6.1.2 Experimental Results

In this section, the mappings proposed in Section 6.1.1 are validated
experimentally using the publicly available calibration dataset [4 | | (Dataset
A) acquired with a 1°' generation Lytro camera. Namely, the viewpoint
and microlens cameras obtained after calibration of the sheared versions
of the LFs for the calibration dataset are compared with the cameras ob-
tained using the mappings proposed with the LFIM obtained from the
calibration of the non-sheared calibration dataset.

Let us start by calibrating the non-sheared calibration dataset using the
calibration procedure described in Section 4.3. The estimated LFIM H
(4.17) and the corresponding viewpoint (4.1) and microlens (5.1) cam-
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eras are given in Tables 6.1 and 6.2, respectively, where /@% denotes the

entry (n,m) of the intrinsic matrix and t\) denotes the entry n of the
projection center associated with the viewpoint (7, 7) or microlens (k, ).
Using the values in Table 6.1 and the mappings (6.9) and (6.13), one
obtains the characterization of the camera arrays for different values of

disparity f3.

hsi hs htj ht hm huk hu hvj hvl hv
0.0003 | -0.0013 | 0.0003 | -0.0013 | -0.0011 | 0.0019 | -0.3508 | -0.0011 | 0.0019 | -0.3515

Table 6.1: LFIM obtained after calibration of Dataset A [41] with hg, = hy = 0.

S A A A T A B U
538.6 | 5349 | 189.6 | 188.6 | 0.001 | 0.001 | O | 881.0 | 892.0 | -307.5 | -311.9 | -0.081 | -0.081 | -0.227

Table 6.2: Intrinsic matrices and projection centers for viewpoint and microlens cameras. These values
are obtained after applying the mappings in Sections 4.2 and 5.3 with At = Aj =1and Ak = Al =1,
respectively.

The characterization of the viewpoint and microlens cameras obtained
using the mappings proposed is compared with the characterization ob-
tained by applying (4.1) and (5.1) to the LFIM obtained from the cal-
ibration of the sheared versions of the calibration dataset LFs. The
sheared LFs are obtained considering different disparities 3 for the re-
parameterization of the EPIs (shearing). The disparities considered range
from 0.1 to 2.0 pixels. Figure 6.5 depicts the entries of the viewpoint in-
trinsic matrix and projection center with the disparity 3 used for shearing
considering a unitary displacement from the reference viewpoint (i, j,),
i.e. A1 = Aj = 1. Similarly, Figure 6.6 depicts the entries of the mi-
crolens intrinsic matrix and projection center considering Ak = Al = 1.
Tables 6.3 and 6.4 represent the mean and Standard Deviation (STD) of
the errors ¢, = )(-)M _ (-)E\ / \(-)M
the intrinsic matrix and projection center for the viewpoint and microlens
camera, respectively. In the error €., ()M corresponds to the entries ob-

, In percentage, for each entry of

tained from the mappings (6.9) and (6.13), and (-)” corresponds to the
entries obtained from the mappings (4.1) and (5.1).
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Figure 6.5: Variation of viewpoint camera intrinsic matrix and projection center with disparity S for
shearing. These entries are estimated considering that Ai = Aj = 1. The scale factors of the intrinsic

matrix k7] and kg, are represented in (a). The principal point [l{;%, k;jg] is depicted in (b). In (c), the
2- and y- components of the projection are presented. The z-component of the projection center is not
represented since it is always zero regardless of the disparity S considered for shearing.

K1y 27 ki ks ty ty
0.022 + 0.018 | 0.022 £ 0.017 | 0.004 = 0.003 | 0.002 £ 0.002 | 0.174 = 0.067 | 0.100 % 0.075

Table 6.3: Mean and STD error, in percentage, for each entry of the viewpoint intrinsic matrix and
projection center.

i k5 ki ks ' t3' s
1.85+6.45 | 4.45 + 19.07 | 1.84 + 6.45 | 4.44 + 19.07 | 1.89  6.38 | 1.89  6.38 | 1.90 = 6.38
0.41+0.44 | 0.19+0.18 | 0.40+0.44 | 0.18 £ 0.18 | 0.47 + 0.42 | 0.47 + 0.42 | 0.48 = 0.43

Table 6.4: Mean and STD error, in percentage, for each entry of the microlens intrinsic matrix and
projection center. First line considers all disparity values while the second line excludes the disparity
8 =0.6.

The viewpoint mapping (6.9) models the changes with the disparity 3
very accurately (Figure 6.5). In Table 6.3, one can see that the mean error
is below 0.2% which shows that the estimate values are in accordance
with the mapping (6.9). The difference on the estimated values appears
to be the result of the interpolation and discretization that occurs in the
shearing operation. This also affects the position of the detected corners
that are used in the calibration.

The microlens mapping (6.13) also models the changes with the dis-
parity 3 very accurately except for 5 = 0.6 (Figure 6.6). This disparity
value is close to the singularity that occurs for 5 = —h,;/h,. = 0.611
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Figure 6.6: Variation of microlens camera intrinsic matrix and projection center with disparity S for
shearing. These entries are estimated considering that Ak = Al = 1. The scale factors of the intrinsic

matrix k1 and k%) are represented in (a). The principal point [kf}, k5% ] " is depicted in (b). The z- and
y- components of the projection are presented in (¢) while the z-component is presented in (d).

which causes some numerical instability in the mapping. Indeed, in Ta-
ble 6.4, one can see that the mean error considering all disparity values
is below 4.5%. Nonetheless, removing the disparity S = 0.6, one obtains
a mean error below 0.5% which shows that the estimate values are in
accordance with the mapping (6.13). Notice that the viewpoint mapping
obtains a lower error than the microlens mapping. This can be justified

by the strategy of the calibration procedure [4 1] that calibrates an SPC
using detected corners on Vls.
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6.2 Plenoptic Camera Array

The microlens or viewpoint camera arrays of lenticular based plenop-
tic cameras are characterized by having a narrow baseline which limit the
reconstruction capabilities of these cameras. Recently, camera arrays of
plenoptic cameras started to be used to capture information of the scene
[40]. Nonetheless, the strategies to calibrate these cameras consider an
independent calibration of each plenoptic camera followed by an estima-
tion of the relative position of each camera. This creates a representation
that grows with the number of cameras used in this plenoptic camera ar-
ray. In this section, one proposes a camera model that does not grow
with the cameras considered in the plenoptic camera array and that ex-
tends the 5 x 5 LFIM to represent a coplanar array of plenoptic cameras
with the same world focal plane.

6.2.1 Multiple Baseline Camera Array

Let us consider an array composed of equally spaced coplanar plenop-
tic cameras. Each plenoptic camera is assumed to have the same zoom
and focus settings, i.e. the same main lens world focal plane.

The LF in the image space acquired by this camera array collects rays
¢ = [p,g,i,7,k, 1] parameterized by the plenoptic camera (p, g), the
pixels (7, j) and the microlenses (k, () indices. On the other hand, the LF
in the object space collects rays that are parameterized by an additional
point (g, r) on the parameterization plane I". This allows to define a ray
€=lq,7 8, t, u, U]T that defines a line whose points are given by

[ _q_ B [
yl = |(r| + |t]| +X|v AER . (6.20)
z 0 0 1

As seen in Section 4.1, plenoptic cameras can be represented by a view-
point camera array. The vector [s, , O]T represents the different projec-
tion centers enclosed in a plenoptic camera, the viewpoint camera pro-
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jection centers, while the vector [g, 7, O]T represents the origin of the co-
ordinate systems of each individual plenoptic camera. The rays in the
image space ¢ are mapped to the rays in the object space £ by a 7 x 7

matrix H,:

E=H,( (6.21)
where
i O _
H,=|0 hy, ° (6.22)
05><2 H

and H is the LFIM (4.17).

Viewpoint Camera Array. Let us represent the viewpoint camera ar-
ray by a parametric projection matrix P?9" varying with the coordinates

(p,9,1,7)

proii — K [ngg tpmj} ‘T, (6.23)

where K" denotes the intrinsic matrix (4.13) and t9% is the projection
center of the viewpoint camera (7, j) associated with the plenoptic cam-
era (p, g) defined by

799 = | —g hyy | +t7 (6.24)
0

with [—hg,, —h,,, 0]" denoting the baseline between consecutive plenop-
tic cameras and t* (4.18). Thus, a plenoptic camera array can be con-
sidered a multi-baseline plenoptic camera since besides the baseline be-
tween plenoptic cameras, one also has the baselines between viewpoint
cameras in a plenoptic camera [ | 04].
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The model defines one coordinate frame “T',, and the same pixel size
for all viewpoints while the principal point is different for each viewpoint
of a plenoptic camera. Notice that the projections centers are different
for each viewpoint on a plenoptic camera and from one plenoptic camera
to the other. Notice that K* is the same since one assumes identical
plenoptic cameras with the same world focal plane.

6.2.2 Corner-based Calibration

The calibration proposed considers the corners of a planar calibra-
tion grid of known dimensions as features. In the following, one as-
sumes that the corners in the world coordinate system have been matched
with the imaged corners. An imaged corner is defined by a ray { =
p,9,1,7,k, Z]T in the image space. The (k,[) coordinates correspond to
the pixel coordinates of the detected corners on the VIs while the (7, j)
coordinates correspond to the viewpoint coordinates, and (p, g) corre-
spond to the plenoptic camera indices.

Linear Initialization. Considering the mapping in Section 6.2.1, one
defines a linear solution for the viewpoint array parameters associated
with a multi-baseline plenoptic camera and the extrinsic parameters for
each pose of the calibration grid. The linear solution comprises homog-
raphy, intrinsic and extrinsic parameters estimation steps.

Homography Estimation. Considering the viewpoint projection matrix
Pr9il (6.23) with KV (4.13) and t77 (6.24), a point m = [z,v, 2] in
the object space is projected to a point in the image plane q = |k, Z]T by

q N Ppgij A = KZJ ch th + tpgij m (625)

where the symbol ~ denotes equal up to a scale factor. The coplanar
grid points allow to define a world coordinate system such that the z-

. . . . ~ T
coordinate is zero. In this context, denoting m = [z,y,1]", one can
redefine the projection (6.25) as q ~ H"YY m where
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HP9 — K [rl ry Ct, + t79% (6.26)

is the parametric homography matrix for the camera (p, g, 4, j), and ‘R,, =

[rh Iy, r3]'

The homography matrix H?9" changes among viewpoints as a result
of the principal point shift and baseline defined in Section 6.2.1. Let
us consider that H?9% can be defined from the homography matrix H’
associated with the viewpoint coordinates (p, g,%,5) = (0,0,0,0), the
homography viewpoint change matrix A” and the homography plenop-
tic change matrix B*Y by

7

- _hgl his h(1)3_ ¢ 0 0] |ann a2 ais p 00 [0 0 b3
HP'Y = | hY) hiy his| + [0 j 0| |azr age as| + [0 g 0 [0 0 b
hY, hY, hi 001l [0 0 0 00 1] |00
I—YO p?’j BP9
(6.27)

Considering the homography projection of a calibration grid corner m =
[z, y,1]" in the object space to the image point ¢ for the camera (p, g, 7, j),
applying the cross product by q on each side of the projection equation
leads to [q], HPY m = 03,4, where [(-)]  is a skew-symmetric matrix
that applies the cross product. Using the properties of the Kronecker
product [93] and solving for each of the unknown parameters, one ob-
tains

(0" @(d,) T [a¥ | =050 (6.28)
bP9
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where

00
070000 : (6.29)
0158
00i0po0
0070
O1xs

o O
o O

T = 19><9

o O
o O
(@)

and h", a”/ and b?Y correspond to vectorizations of the matrix H", A%
and B? by stacking their columns and removing the zero entries, re-
spectively. The solution [h",a”/, b9]" for the parametric homography
matrix can be estimated using Singular Value Decomposition (SVD).

The parametric homography matrix (6.27) has 17 parameters. Accord-
ing to (6.28), each point correspondence (m, q) originates three equa-
tions with only two being linearly independent. Nonetheless, the restric-
tions on the viewpoint camera array also originate restrictions on the pro-
jections of a point in the object space. Namely, the ray in the image space
¢ = 1p,g,i, 5, k, Z]T associated with an arbitrary camera (p, g, 4, j) can
be described from the ray coordinates ¢” = 0,0,0,0, ko, ZO]T associated
with the camera (p, g, 4, j) = (0,0,0,0) by ¢ = ¢"+[p, 9,4, j,iB + pY,jB + g
where [ corresponds to the disparity of the point defined on the VIs and
~ corresponds to the disparity of the point between plenoptic cameras.
This reduces the number of linearly independent equations originated by
a point in the object space to 6. Thus, one needs at least 3 non-collinear
points to obtain the entries of the homography matrix H9"/

Intrinsic and Extrinsic Estimation. The intrinsic matrix of the viewpoint
cameras is the same regardless of the plenoptic camera (p, g) so one
can use the method proposed in Section 4.3.1. This method should be
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changed only if the world focal plane changes among plenoptic cameras.

The extrinsic parameters can be estimated once the intrinsic matrix
K" is known. From (6.26), the rotation matrix “‘R,, = [ry, T, 3] is
recovered considering

r; = AKY 'hy, ry = AKY 'hy , andrs = r; X 19 (6.30)

with A = 1/ sz—lth — 1/HKU_1hQH. The translation “t,, and projec-

tion center t?9% are recovered solving the following system of equations

"
- hqp
Ahy — [K” _pk; —gky —ik; —jkg} iy, 6.31)
hsi
ht]’

where k,, corresponds to the m-th column of the parametric intrinsic
matrix K%,

Nonlinear Optimization. The linear solution is refined and radial dis-
tortion [25] is considered on the coordinates (u, v). Namely, the undis-
torted rays in the object space £" = |q, 7, s, t, u", v“]T are defined from
distorted rays in the object space & = [q, 7, s, 1, u, U]T by (4.34) that is
described by the distortion vector d = (ky, ko, k3, by, b,). In the non-
linear optimization, one minimizes the ray re-reprojection error. This
optimization refines the intrinsic parameters H,, the extrinsic parame-
ters R, (parameterized by Rodrigues formula [48]) and t,,p=1,..., P
where P is the number of poses, and the distortion vector d:

C
arg min S‘ Sj A (n (Hy,d), R, m, +t,) (6.32)
=1 n=1

-
HaaRpat;m c= 1
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where N, corresponds to the number of corners detected on a pose p, C
corresponds to the number of viewpoint cameras, A (-) defines the point-
to-ray distance [41], n defines the undistorted ray coordinates £" after
mapping the ray in the image space ¢ associated with the viewpoint
camera c and corner n to the ray in object space (6.21) and followed
by distortion rectification (4.34). m,, defines the 3D corner point in the
world coordinate system. The nonlinear optimization is solved using
the trust-region-reflective algorithm [35], where a sparsity pattern for
the Jacobian matrix is provided. The number of parameters over which
one optimizes is 10 for the intrinsic parameters, 5 for the lens distortion
parameters, and 6P for the extrinsic parameters.

6.2.3 Experimental Results

The calibration proposed for a plenoptic camera array is evaluated on
a synthetic dataset. The synthetic dataset is obtained extending the 4D
LF Benchmark add-on for Blender [68]. This tool simulates a plenoptic
camera with rectangular sampling by considering a set of coplanar cam-
eras. The multi-baseline plenoptic camera is simulated by placing a set
of identical plenoptic cameras equally spaced in a plane.

The multi-baseline plenoptic camera calibration dataset is acquired
assuming an array of 3 X 3 plenoptic cameras and comprise 12 calibration
poses. The plenoptic cameras are spaced by 0.3 m and are focused at
4.0 m. Each plenoptic camera is composed of 5 X 5 viewpoint cameras
spaced by 25 mm.

The calibration i1s performed using the corner points detected using
the feature detector [ /8] and compared with the results of the calibration
using the ground truth corner points. The calibration using the detected
points is repeated several times with different levels of noise added to the
location of the corner points. The noise is assumed to be Gaussian noise
with zero mean and increasing variance. The results are summarized in
Figure 6.7. The reprojection error as well as the ray reprojection and

165



CHAPTER 6. DEPTH-SELECTED CAMERA ARRAYS

6.3. CHAPTER SUMMARY

reconstruction errors are provided in Figure 6.8.
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Figure 6.7: Multi-baseline plenoptic camera parameters estimation with added Gaussian noise. The
plenoptic array baseline is depicted in (a) while the viewpoint baseline is depicted in (b). In (c) the
focus depth is represented. The ground truth values are depicted in red.
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Figure 6.8: RMS of reprojection (a), ray reprojection (b) and reconstruction errors (c¢) with added Gaus-
sian noise.

Figure 6.7 shows that the calibration method proposed allows to re-
cover the parameters of the plenoptic and viewpoint cameras even when
the location of the corners is highly affected by noise. More specifically,
the baselines and the focus depth have errors above 10% for o > 10.0. In
addition, in Figure 6.8, one shows that the reprojection error is sub-pixel
for 0 < 7.5 and the reconstruction error obtained is below 100 mm for
o < 10.5 which shows the accuracy of the calibration method and the
camera model proposed.

6.3 Chapter Summary

The rays captured by a plenoptic camera allow to define multiple cam-
era arrays besides the viewpoint and microlens camera arrays [2 1, ,
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] described in Sections 4.1 and 5.1. In this chapter, is shown that
by selecting different combination of rays, one can generate new views
of the scene at different depths. Namely, resampling the LF according
with the constraint (6.1) one defines new camera arrays whose geometry
is defined in Section 6.1.1. The resulting EPI geometry shows that the
world focal plane is dependent on the resampling [3.

In Section 6.2.1, was extended the LFIM to represent a coplanar ar-
ray of plenoptic cameras with the same world focal plane. This repre-
sentation allows to describe a multi-baseline camera array: the baseline
among the viewpoint cameras within a plenoptic camera and the baseline
among plenoptic cameras. Using the viewpoint camera array model, one
proposed a calibration procedure for the plenoptic camera array (Section
6.2.2).

In the next chapter, the scope of the concepts presented until now
will change to focus on a natural application of the LF, namely, depth
estimation.
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Chapter 7

Reconstruction

In a plenoptic camera, a point in the object space is projected into multi-
ple points in the image sensor which allow to recover disparity and depth.
In this chapter, are described several reconstruction approaches ranging
from sparse to dense reconstruction. These reconstruction approaches
are improved considering the projection model of the plenoptic cameras
described in the previous chapters and the original construct of affine
Lightfield (LF). In addition, an efficient dense reconstruction methodol-
ogy is proposed that allows to obtain disparity estimates for the full 4D
LF.

7.1 Related Work

The multiple projections of a point in a plenoptic camera allow to
recover disparity and depth assuming no particular position for the cam-
eras, e.g. using multiview stereo [3], or assuming the cameras define a
linear path, e.g. using the Epipolar Plane Image (EPI) geometry [406].
The LF obtained by a plenoptic camera is equivalent to the one obtained
by a camera array whose cameras are regularly arranged and spaced
(Chapters 4 and 5). Thus, a 3D point on a Lambertian surface defines
a plane of constant intensity in the LF whose orientation represents the
depth of the point [39].

The plane’s orientation can be estimated considering gradient based
approaches using standard image gradient operators [39, 89] or struc-
ture tensors [139] due to the very narrow baseline. Nonetheless, these
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approaches limit the disparity range that can be estimated accurately to
one pixel [46]. Shearing of the LF [46] increase the disparity range while
maintaining the gradient operators size constant.

Another strategy to estimate the plane’s orientation consists on testing
a predefined disparity hypothesis by shearing the LF and evaluating cor-
respondence, defocus and shading cues on the resulting LF [ 134, ].
Recently, the concept of Surface Camera Images (SCams) [29] has been
introduced to identify types of surfaces (Lambertian or specular) and
occlusions that allow to adapt the metrics used to evaluate correspon-
dences. Nonetheless, these methodologies only allow to obtain sparse
disparity estimates.

The sparse disparity estimates can be used to obtain dense disparity
maps using variational approaches. Wanner et al. [56, ] proposed a
global optimization framework that is based on the regularization and in-
tegration of the disparity maps obtained from the EPIs. This framework
can be preceded of a labeling scheme to impose visibility constraints that
imply a discretization of the disparity values. This step is computation-
ally expensive and the discretization reduces the accuracy of the dispar-
ity estimation. Hence, Wanner et al. [139] considered a more efficient
approach by performing a fast denoising of the initial disparity estimates
that result from selecting the disparities obtained from a small subset of
the LF. This approach allows to retrieve a dense disparity map only for
the central viewpoint camera. Thus, in this chapter, is formalized a data
fusion problem with total variation regularization using the Alternating
Direction Method of Multipliers (ADMM) to recover a dense disparity
map for the full LF.

In recent years, deep neural networks have also appeared to retrieve
disparity from LF [65, ]. These networks use convolutional neural
networks to more precisely estimate disparity from the LF intrinsic cues
and performing propagation of these estimates to regions where these
cues are absent. More specifically, Shin ef al. [129] recovers disparity
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using EPI geometry cues while Hazirbas er al. [65] presented the Deep
Depth From Focus Network (DDFFNet) which uses focus cues (focal
stack).

7.2 Point Reconstruction

In the reconstruction problem, one wants to determine the point in the
object space whose rays where projected into specific points of the LF in
the image space. The LF obtained by a plenoptic camera is equivalent to
the one obtained by a camera array so one strategy is to use a multiview
stereo reconstruction approach.

Let us consider that one has a set of L rays in the image space that
correspond to a given point m = |x, y, z]T in the object space and that the
Lightfield Intrinsic Matrix (LFIM) H is known. This allows to convert
the set of rays in the image space, ®,...,®;, to a set of rays in the
object space W, ..., W . Using the relationship between a point m and
the rays in the object space (3.10), one obtains for the n-thray v —z u,, =
s, and y — z v,, = t,, which in matrix form corresponds to

X
10 —u S
" = |°" . 1

From equation (7.1), for each ray W,, one obtains a set of two equations.
The reconstruction problem has three unknowns to determine, hence,
one needs at least two point-ray correspondences to determine the cor-
responding point m.

Generalizing the equation (7.1) for the rays ¥, ..., ¥, and replac-
ing those rays by the rays in the image space ®4, ..., ®;, one has
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10 —hs®, |  [h®
01 —h4(I)1 X hg(I)l
P : y| = : (7.2)
10 —hg(I)L <z h1 (I)L
01 —hy®;,| hy &

where h,, corresponds to the n-th row of the LFIM H. This is a problem
that can be readily solved using a least-squares method.

7.2.1 Imposing Projection Geometry Cues

The multiview stereo reconstruction methodology does not impose
any prior knowledge on the rays in the image space that originate at
a given 3D point. Namely, this reconstruction methodology does not
consider that the cameras in the camera array are regularly arranged and
spaced. Hence, the reconstruction is as good as the precision of the
detections, maintaining all parameters of the optical system constant.

The rays in the image space, due to the discretization that occurs at
the image sensor, do not define a line in the ray-space defined by the pair
of coordinates (i, k) and (7, /) but a staircase (Figure 3.3). Therefore, the
precision of the detections and, consequently, the reconstruction is likely
to improve if one imposes the rays ®,, in the ray-spaces to define a line.
Let us call these lines in the ray-spaces as the projection geometry cues.

Let us incorporate the projection cues as a prior knowledge on the rays
in the image space ®4, ..., ®;. This can be achieved by considering the
point reconstruction from the lines in each of the ray-spaces (i, k) and
(7,1) instead of using the point-ray correspondences directly. Namely,
rewriting the projection equation (3.14) as
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( (hsi + 2 hy) i+ (hgy + 2 hyg) E+hs+ 2hy, —2x =0

al by 1

(hij + zhej) J+ htl+zhvl) [+ hy + 2 hy —

A\ J/
~ ~~ ~~

. a9 ba €2

o (3

J

one defines the relationship between the point in the object space and the
line parameters 0;; = [ay, by, cl]T and 0, = [ay, by, 02]T that define the
lines in the ray-spaces (i, k) and (7, (), respectively. From these equa-
tions, one can see that, for a given point, the line parameters are fixed
while the coordinates of the LF in the image space may vary. The line
parameters are obtained by fitting lines to the collection of coordinate
pairs (i, k) and (j, 1) of the rays @, . .. x ®; in the respective ray-space.
Let us define the arrays ®* = [i,, k,, 1]" and ®J' = [j,.,1,,1]" contain-
ing the coordinates (i, k) and (j, () of the n-th correspondence. The line
parameters can be estimated using a least-squares minimization using
the L point-ray correspondences

argmm Z |9T s.t. HG(.>H2 = (7.4)

(~ n=1

where (-) represents either of the pair of coordinates (7, k) and (7, [) ac-
cording to the ray-space that is being analyzed. These estimates for the
line parameters 0;;, and 0, can then be used to estimate the point m

0 0 hm —ai 0 _CL’_ hsi
0 0 hvj 0 —a9 ’ htj
0 0 hy —b 0 | ha
00 hy 0 =bef || |k {7:2)
10 hy = 0| )" hs
0 —1 h, 0 —cp| LV hy

Remember that the line parameters are defined up to a scale factor, there-
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fore, the scale factors \;; and \;; associated with each fitting should also
be estimated to recover the correct coordinates for the point m.

The reconstruction methodology proposed has 5 unknowns and 6 equa-
tions which allows to obtain a solution for the point in the object space
using a least squares method, for example. On the other hand, for the es-
timation of the line parameters, due to the constraint in (7.4), one needs
at least two point-ray correspondences to determine the three unknowns
in each of the ray-spaces. A given correspondence contributes only with
one equation for each of the ray-spaces. Notice that the optimization can
be simplified by dividing (7.3) by b; and b, respectively. This assumes
that the singularity 2> described in Section 3.4.2 will not occur. In fact,
for most of the experiments performed, this singularity occurs for points
behind the camera. The reconstruction methodology imposing the pro-
jection geometry cues is detailed in Algorithm 2, where one considers
&) as the collection of coordinates (-) of the rays in the image space.

Algorithm 2: Reconstruct scene point m
Input : Projection Rays: {®4,..., P}
Parameters: H
Output: Scene point: m = [z,y, 2]
1 Obtain 0,4 by fitting a line to (®’, ®*) using equation (7.4) ;
2 Obtain 0 by fitting a line to (®7, ®') using equation (7.4) ;
3 Reconstruct m using equation (7.5)

7.2.2 Experimental Results

In this section, are compared the two methods described in Section
7.2 by performing point reconstruction for points in the object space at
different depths. Hence, let us consider the LFIM H provided as a result
of the calibration of Dataset B [41]. The entries obtained are presented
in Table 7.1.

In this experiment, the accuracy at each depth is evaluated by ran-
domly selecting P = 500 points from the Field of View (FOV) of the
plenoptic camera and computing the reconstruction error after projec-
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hes; Pst hs hu; hy hy
4.0003e-04 | -9.3810e-05 | 1.5871e-02 | 3.9680e-04 | -9.3704e-05 | 1.5867e-02

hui huk hu hvj hvl hv
-1.5833e-03 | 1.9043e-03 | -3.4762e-01 | -1.5551e-03 | 1.9014e-03 | -3.3817e-01

Table 7.1: LFIM entries considered for evaluating the point reconstruction methods.

tion and reconstruction using the two methods described. In the projec-
tion step, one considers two different sources for the projection error: (i)
rounding the pixels (7, 7) and the microlenses (k,[) to the nearest inte-
ger and (i1) adding noise that follows a Gaussian distribution with zero
mean and different Standard Deviations (STDs). The reconstruction er-
ror is defined as the distance between the reconstructed point m; and the
generated point m; in the object space. The mean reconstruction error
r. 1s defined by (4.37). The depth values evaluated ranged between 0.01
and 2.00 m. The reconstruction error and the estimated depth of these
simulations are provided in Figures 7.1-7.4.

In Figure 7.1, one depicts the reconstruction error when the coordi-
nates of the rays in the image space are affected by a rounding error.
The point reconstruction using directly the rays in the image space (blue
region) start to deviate from the ground truth at 0.65 m while the recon-
struction imposing the projection geometry cues (green region) start to
deviate from the ground truth at 1.30 m. The deviation is assumed to
occur when the mean reconstruction error 7. normalized by the ground
truth depth is greater than 10%. Figure 7.1.a shows that the mean value
for the depth estimates using the projection cues are in accordance with
the ground truth for the entire depth range tested. Namely, the maxi-
mum deviation from the ground truth normalized by the ground truth
depth is 15.0% which is significantly lower than the 55.0% obtained for
the point reconstruction applied directly to the rays ®;. Nonetheless, the
STD normalized by the ground truth depth increases significantly at 1.20
m which makes the depth estimates less reliable. Additionally, one can
see that the error on the (, ) coordinates increase more rapidly than the
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error on the z-coordinate with the real depth of a point.
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Real Depth [m] Real Depth [m]
(a) Reconstructed Depth (b) Reconstruction Error

Figure 7.1: Results from reconstructing randomly generated points at depths ranging from 0.01 to 2.00
m. The projection error is modeled as a rounding of the coordinates of the rays in the image space to
the nearest integer. The reconstructed depth is depicted in (a) while the reconstruction error using the
(x,y, z) coordinates is depicted in (b). The blue region corresponds to the point reconstruction (7.2) and
the green region corresponds to the point reconstruction imposing projection geometry cues (7.5).

Figure 7.2 depicts the results assuming that the projection error cor-
responds to Gaussian noise and that it affects all coordinates of the rays
in the image space. In this figure, one can see that the point reconstruc-
tion imposing projection geometry cues (7.5) provides better results than
the point reconstruction using directly the rays in the image space (7.2)
independently of the noise content and source (rounding or Gaussian).

Additionally, since point reconstruction methodologies consider fea-
tures detected with sub-pixel precision on images obtained from the LF,
one models the error introduced by the feature detectors as a Gaussian
distribution with zero mean and different STDs. The LF allows to obtain
Viewpoint Images (VIs) and Microlens Images (MlIs) by fixing either the
(¢, 4) or (k, ) coordinates, respectively. Hence, in Figure 7.3, one consid-
ers that the feature detectors introduce error only in the (£, [) coordinates
while the coordinates (7, 7) are rounded to the nearest integer, i.e. fea-
tures are detected on VIs. In Figure 7.4, one considers that the feature
detectors introduce error only in the (7, j) coordinates while the coordi-
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Figure 7.2: Reconstructed depth for randomly generated points at depths ranging from 0.01 to 2.00 m.
The projection error modeled as additive Gaussian noise affects all coordinates of the rays in the image
space (b-d). The point reconstruction applied to the projection rays ®,, (7.2) is presented in blue while
the point reconstruction from line parameters (7.5) is presented in green. The mean for the estimated
depth is presented as a darker line and the brighter shaded areas correspond to the STD. The depth
ground truth is represented with a black line.

nates (k,[) are rounded to the nearest integer, i.e. features are detected
on MIs like in [21]. These figures continue to show that the point recon-
struction imposing projection geometry cues (7.5) gives better results.
Furthermore, one can see that the variance of the reconstructed depth
is greater when adding noise to the coordinates (7, j). This indicates
that the reconstruction is more robust for noise added to the coordinates
(k,1).

As suggested, imposing the projection geometry cues allows to im-
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Figure 7.3: VI Feature Detector Case. Reconstructed depth for randomly generated points at depths
ranging from 0.01 to 2.00 m. The error modeled as additive Gaussian noise affects coordinates (k,[) of
the rays in the image space (b-d). The point reconstruction applied to the projection rays ®,, (7.2) is
presented in blue while the point reconstruction from line parameters (7.5) is presented in green. The
mean for the estimated depth is presented as a darker line and the brighter shaded areas correspond to
the STD. The depth ground truth is represented with a black line.

prove the depth reconstruction. More specifically, assuming the pixels
(7,7) and the microlenses (k,l) are integers, the reconstruction using
line parameters allows the ray coordinates to be real. Let us consider the
depth error ¢, for a binocular stereo configuration ¢, = ésd, where b 1s
the baseline length, f is the focal length, z is the depth of a given point
in the object space, and ¢, corresponds to the disparity error. For a given
depth of a point, maintaining all parameters constant, the depth error
can only decrease by reducing the disparity error. This can be achieved
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Figure 7.4: MI Feature Detector Case. Reconstructed depth for randomly generated points at depths
ranging from 0.01 to 2.00 m. The error modeled as additive Gaussian noise affects coordinates (i, j) of
the rays in the image space (b-d). The point reconstruction applied to the projection rays ®,, (7.2) is
presented in blue while the point reconstruction from line parameters (7.5) is presented in green. The
mean for the estimated depth is presented as a darker line and the brighter shaded areas correspond to
the STD. The depth ground truth is represented with a black line.

by increasing the precision of the detections, which i1s achieved with the
reconstruction imposing the projection geometry cues.

7.3 Gradient-based Reconstruction

The LF conveys information that allows to estimate the depth of the
objects in the scene and the narrow baseline between the viewpoint and
microlens cameras of a plenoptic camera allows to use gradient operators
to estimate depth.

Let us denote the 4D LF as L (i, j, k, [) which maps an intensity value
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to the light ray whose direction is defined by the intersection with the
viewpoint camera plane I1 at (¢, j) and the image plane I" at (k, [):

L:(i,j, k1) e R* = I € R™ (7.6)

where N, is the number of channels. For example, a scalar valued LF
has . = 1 channels and a vector valued LF has N. > 1 channels. As
mentioned in Section 2.5.2, an EPI can be obtained readily from the LF
considering 2D slices. More specifically, the EPI can be obtained by fix-
ing a pair of coordinates (i,, k;,) or (j,, l,,) (Figure 7.5), and considering
a (7,1) or (i, k) slice of the LF, respectively

B (i k) = L (i, n, b, L) (7.7)

where E; ; denotes the EPI fixing the pair of coordinates (jy,, [,,). To
simplify the notation, the subscript parameters (j,, [,,,) will not be in-
cluded in the following expressions. In the EPI, a point in space is pro-
jected onto a line [22] whose slope is related to its depth by

Ak A
e e N (7.8)
Ai 2z

where i—’; corresponds to the disparity, k, to the scale factor, Ax to the

baseline between the viewpoint cameras, z to the depth of a point m
in the object space, and Auwy to the principal point shift as explained in
Section 4.1.3. Depending on the direction of the movement considered
to create the EPIs, (7.8) can be affected by a minus sign.

7.3.1 EPI Disparity Estimation

The most common approach for computing slopes in the EPIs is to
use the gradient or the structure tensor [40, ].

Gradient Estimation. The estimation of disparity using gradients was
introduced by Dansereau et al. [39]. In this work, it is established the

relationship between the ratio of the gradients and the slope ﬁ—]i of the
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il

Figure 7.5: Representation of the spatiotemporal characteristics of the EPI. On the left, a static scene
from the dataset Still [140] is displayed. This image identifies two horizontal slices that are used to
obtain the EPIs. On the right the EPIs obtained from slicing and stacking the sequence of VlIs at position
A and B are depicted.

lines in the EPI. Namely, the main gradient direction is orthogonal to the
projected line in the EPI (Figure 7.6)

Ag 1

& e w) "

where n = |1, k]T. The main gradient direction can be determined from

the EPI gradients by my (n) = 52((1;)) Thus,

— (n)= ——=
Ak E;(n)
where E; = V,E and E; = VE are the image gradients in the ¢- and

k-direction. Assuming a plenoptic camera defined by the LFIM (4.17),
the depth of a point is defined by

(7.10)

hsi
huz' —my ((I)) huk

2t (@) = — (7.11)

The relationship between disparity and the LF gradients can be de-
rived from the optical flow [69]. As for the EPI, the temporal dimen-
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Figure 7.6: Relationship between the EPI gradients and the projection line of a point in the object space.

sion in the LF can be simulated by considering an arbitrary path p (t) =
(¢(t), 7 (t)) through the several viewpoints. Hence, the brightness con-
stancy constraint between point-ray correspondences is defined as

L(®(t+At) =L (®(t) (7.12)

where ® (1) = [i(t),](¢), k,l]T. Rewriting ® (t + At) = ®(t) +
A® (At), and assuming that the displacement from one viewpoint to an-
other and the displacement of the pixel positions of a 3D point on these
viewpoints is small, one can approximate the left term using a Taylor
series expansion

L(®(t)+A®(At)) ~ L(® (1)) + VL (® (1)) A® (At) (7.13)

 dt
brightness constancy constraint as

| 4 T
where A® (At) = [%At d—JAt,Ak,Al} . This allows to define the

VL (® (1)) A® (At) =0 (7.14)

where VL (®) = [L; (®), L, (®), L (®), L, (®)]" is the LF gradient
vector at point ¢ with L.y = VL. Considering that the pair of coordi-
nates (i, k) and (j, 1) are independent and that for the EPL i (t) = j (t) =
t, i.e. A1 = Aj = At, one obtains the relationship (7.10) defining
E; (i, k) = L; (i, jn, k, ) and Ey (i, k) = L (4, jn, k, Un)-

An alternative gradient-based disparity estimation is obtained consid-
ering the concept of affine LF. A LF is denoted locally affine at ® =
i, 7, k, l]T if it is affine relatively to the coordinates of the ray in the im-
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age space within a neighborhood of @, i.e.

L(®) =AT®+b (7.15)

with A = [ai, a;, a, al]T. One obtains a globally affine LF when the
locally affine definition extends for the full domain of ®. Note, how-
ever, that this is a too specific environment and camera setup. More in
detail, in order to obtain a globally affine LF assumed to be smooth, it
is required a planar scenario textured with a constant gradient which is
imaged by a plenoptic camera orthogonal to the scene plane (Figure 7.7).

Fronto-parallel wall,
constant gradient
texture

Plenoptic camera,
array of proj. centers
(magnified)

Figure 7.7: Setup to acquire a globally affine LF with a plenoptic camera. The array of circles represents
the array of projection centers (not in scale) representing the viewpoint cameras of the plenoptic camera.

One way to obtain a locally affine LF is through a Taylor series expan-
sion. Namely, making a first order Taylor expansion of the LF around
the point ®,, one obtains

L(®)=L(®y) + VL (®))" (& — ®;) +HO.T. (7.16)

where ® and ®, = [io, jo, ko, lo]" denote rays in the image space. If
the higher order terms (H.O.T.) are discarded, one forms the locally
affine LF (7.15) considering that A = VL (®y) and b = L (®;) —
VL (®,)" ®,. This is a very interesting way of obtaining locally affine
LFs as it allows considering many real LFs as opposed to the strict (un-
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real) theoretical example given for the globally affine LF.

A LF characterized to be affine provides directly depth information
[96]. Let us consider the globally affine LF example described previ-
ously consisting of a plane colored with a gradient (Figure 7.7). Con-
sidering the fronto-parallel plane A at depth z = 2z, with normal n =
0,0,1)" such that a point m = [z,y,21]' € A = m”’n = z,. The
color of the plane A at a point m is given by ¢(m) = m’g + ¢; where
g = [gx, 9y O} " is the color gradient vector aligned with the plane A and
¢y is the color at point my = [0,0, zy]”.

In order to obtain the color sampled in the image sensor, let us con-
sider the parametric 3D line (3.11) associated with the ray ® in the image
space and considering the LFIM (4.17). The intersection of the line with
the plane A occurs at A = z,. This allows to define the plane color
relatively to the coordinates of the ray in the image space, i.e. ¢ (®).
The affine LF is then represented by (7.15) with a; = g, (hs; + 2 hui),
a; = gy (huj + 20 hj)s @ = o 20 hugs a1 = gy 28 hyr, and b = g, 25 by +
gy zp Iy + co. The unknowns in this definition corresponds to the depth
zp, the color gradient vector g and ¢y. Thus, to estimate the depth zj,
one can cancel the color gradient vector by dividing a;, with a; or a; with
a;. This allows to produce directly a depth estimate from the affine LF
using

hsz' ht'
Zp = — : and zp = — o 7.17
A huz — Z_;huk A hvj - _jhvl ( )

which is equivalent to (7.11).

Let us consider an example of a locally affine LF consisting of a spher-
ical hubcap on top of a plane with a gradient (Figure 7.8.a). In this case,
the LF is not globally affine on the hubcap. The reconstruction using
(7.17) 1s applied with the results illustrated in Figure 7.8.b. The results
obtained show that this methodology can be used even on non-globally
affine LFs since they are still locally affine, i.e. LFs are well represented
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locally by a first order Taylor series approximation. The mean of the
absolute relative errors obtained is 1.49%.

' j _0.05

.
)

-0.05

0.09
0.1
0.11

(a

Figure 7.8: Locally affine LF reconstruction. (a) Central VI of the scene surrounded by two EPIs. The
bottom and right EPIs originate from the horizontal and vertical blue lines, respectively. (b) Reconstruc-
tion of the synthetic LF. Depth values are measured with respect to the camera coordinates frame.

(b)

Structure Tensor Estimation. Gradient of smoothed images can lead
to cancellation effects and do not give reliable orientation information
[39, 142]. The structure tensor is a more reliable descriptor of the local
structure giving clues regarding edge and corner detection, and enabling
the computation of orientations [ 6].

The gradient tensor J corresponds to the covariance matrix of the im-
age gradients and is given at each pixel n as

J(n) = VE (n) VE (n)" = (7.18)

where VE (n) = [E; (n), Ej, (n)] " is the gradient vector of the EPI. For
an easier notation, the dependency on n will not be represented in the
following expressions.

The structure tensor is obtained by averaging a region of neighboring
pixels instead of considering a single pixel. The averaging to obtain the
structure tensor is necessary since the eigendecomposition of the gradi-
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ent tensor (7.18) has only one non-zero eigenvalue that only enables edge
identification. The spatial averaging considering a neighboring region of
pixels allows to obtain two non-zero eigenvalues in regions where one
has edges with different orientations. This enables to identify corners in
the EPI [82], and therefore, occlusions and disocclusions.

The spatial averaging occurs in the estimation of the image gradient
and for each of the components of the structure tensor. Therefore, the
structure tensor S, corresponds to the gradient tensor computed at pixel
(i, k) by applying a Gaussian distribution with STD ¢ (G,) to the EPI
and then applying a Gaussian distribution with STD 7 (G,) to each of
the components of the gradient tensor

S, =G, *J, (7.19)

T

_n'n

where J, = VE, VEL,E, = G,+E, G = 27T1(') e 207 and x denotes

the convolution operator.

The structure tensor (7.19) corresponds to the structure tensor for a
scalar valued image, for example, a grayscale image. If instead one
has a vector valued image, for example, a colored image, the structure
tensor is defined as a weighted sum of the structure tensors computed at
each channel [206, 80, ]. Thus, considering an image composed of V.
channels, the structure tensor is now defined as

Ne
STO' — Z We SC,TJ (720)
c=1

where S, ;, 1s the structure tensor of the image channel c and that is
computed using (7.19), and w, is the weight associated with channel
c. The sum of the weights for the N, channels must be equal to one.
Weickert et al. [142] considered that some channels can be more reliable
than others and therefore can be weighted differently. Nonetheless, if
there is no a priori knowledge of the noise one should assume an equal
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contribution for each of the channels.

Furthermore, since the structure tensor is the product of two filter re-
sults (image gradients), the Nyquist frequency is doubled. To avoid over-
sampling one should use a derivative filter band-limited by half of the
limit frequency of the original image or interpolate the original image to
duplicate its original resolution [83].

The principal directions of the local patch are determined from the
eigendecomposition of the structure tensor. Denoting the structure ten-

S11 S : :
sor components as S,, = Ho120 the eigenvalues are determined as
S12 S22
1 5 5
Amax / min = 5 (| s1 sz + 1/ (811 — s22)” + 4 575 : (7.21)

and can be used to classify the regions of the image (Figure 7.9) as (1)
homogeneous regions or regions without structure or texture (A ~ 0
and A\, ~ 0), (i1) edge regions i.e. regions with a dominant direction
(Amax > 0 and A, ~ 0), and (i) corner regions i.e. regions with an
ambiguous direction (A.x > 0 and A, > 0).

Arbitrary v,
and v,,,,, basi

Figure 7.9: Regions according to structure tensor eigendecomposition.

The eigenvectors are determined by vy, = [cos v, sin a]T and vy, =
[— sin av, cos a]’ where « is the angle of the eigenvector associated with
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the maximum eigenvalue

1 2
o = — arctan <$> : (7.22)
2 S11 — S22

The slope of the lines in the EPI is obtained considering this angle by
i—’; = tan (m/2 — «). This allows to obtain a depth estimate for each

pixel of the EPI using (7.8).

There are several measurements for the confidence of the structure
tensor [10, 16, 26, 82, ]. In the following, one considers the confi-

dence measurement of Bigun et al. [16] that for each pixel n is given
by

(M)z if Aunax + Aain 7 0
m = Amax+Amin fHax i . (723)
0 if )\max + )\min =0

In Figures 7.11 and 7.10, one exhibits the disparity estimation using
the methodology described. For example, in Figure 7.10, the structure
tensor is used to estimate the slope of the lines in the EPI. The slopes
are represented by lines in the figure and only estimates with confidence
above a certain threshold are displayed. These figures show that this
method allows to obtain noisy and sparse disparity estimates.

7.4 Cost-based Reconstruction

The gradient based approaches normally consider disparity estimates
obtained from 2D slices of the LF (EPIs). Contrarily, the cost-based
approaches analyze the rays in a SCam obtained from the 4D LF, as
explained in Section 6.1. The disparity is then estimated based on mini-
mizing or maximizing a metric that is applied to the content of the SCam
for different pre-determined values of disparity.
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(b)

Figure 7.10: Structure tensor disparity estimation. In (a), an EPI taken from a synthetic LF is depicted.
In (b), the same EPI, with a different color scheme, and red lines marking the detected gradients is
depicted. The color scheme still represents image intensities but it was chosen to make the gradients
more visible.

®

(d)

Figure 7.11: Disparity estimates using the structure tensor analysis on each EPI of the LF. In (a), one
depicts the central viewpoint of the LF. The disparity map obtained from the structure tensor analysis is
depicted in (b) and (d). In (c), only the disparity measurements with high confidence are displayed.
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7.4.1 Photo-Similarity Metric for Affine LF

There are several metrics [70, ] that can be used to evaluate the
rays in a SCam but in this section one is going to focus in the correspon-
dence metric proposed by Tao et al. [134]. This metric considers SCams
defined by the microlens cameras after shearing the LF, i.e. the rays col-
lected by these cameras follow the sampling (6.2). Hence, let us define
the SCam c, (6.2) associated with a reference ray ®, = [i,, j,, kr, ZT]T
considering an arbitrary disparity 5 = 3;; = [3;; on the VIs as

c,(i,7,8) = L (i, + Ai, j, + Ad, ke + BAGL L+ BA)) (7.24)

where Ai =1 — 12, and A) = 5 — J,..

The correspondence metric [ | 34] is evaluated comparing the intensity
values collected on a SCam, namely, by evaluating the variance of the
rays’ intensities

1 1 o
vy (B) = N, —IN —1 ; [cq (4,7, 8) — pq (6)}2 (7.25)
where
]

corresponds to the mean intensity of the SCam, and NV; and N, corre-
sponds to the number of viewpoint in - and j-direction. A correspon-
dence candidate, and consequently a disparity candidate, is identified
whenever the intensity of the rays in the SCam is similar, i.e. v, (5) is
low (Figure 7.12.a). Nonetheless, for homogeneous regions the variance
1s also low (Figure 7.12.b), imagine for example the LF of a plenoptic
camera imaging a plain white wall. In these regions, a low value is pro-
duced for v, (3) regardless of the disparity [ being evaluated. Hence, the
disparity that ends up being estimated is determined by the random noise
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present. In order to improve the quality of the disparity estimates, it is
necessary to remove these values by thresholding a confidence measure

associated to each estimate.

\‘ '\\ //:‘ i
Ny % L |
— ﬁ (Disparity) 0 e

o

v(B)

s o s © o o o
o (=] o Qo o =1 (=]
a 4 & 8§ =2 8 2

Photo-Similarity (Variance)

Photo-Similarity (Variance)

o
2

o—

-1.6 -1.4 -1.2 -1 -0.8 -06 -0.4 -0.2 0 0.2 04

Ba Bp Be Disparity
(a) (b)

Figure 7.12: Photo-similarity metric. Illustration of typical results for the photo-similarity metric for
different values of J (a) and in different regions of the VIs (b). The red line corresponds to a pixel in a
low gradient region while the blue line corresponds to a pixel in a high gradient region.

The minimum value of the variance v, () corresponds to the correct
disparity of the ray ®, whenever one has a locally affine LF (7.15). Let
us define the SCam (7.24) using the definition of the affine LF obtained
by a Taylor series expansion around the point @,

o (i.3.8) = L(®,) + (L (®,) + AL (®,) ) A
+ (L (@) +BLi(2,)) A

This allows to represent the mean intensity of the SCam as

(7.27)

o (8) % L (®,)+7 (Li (®,) + 8L (8,) )+ (L, (®,) + AL (®,))
(7.28)
where v = N% > ;Aiand A = Ni] >_;Aj. An imbalanced expansion
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around ®, leads to v # 0 and A # 0 since the limits of the sum are
defined as 4, = ¢ — 0 and i = I + O + x (equivalent for the
coordinate 7). Thus, considering w = Nl P _1, the photo-similarity
metric 1s defined as

LR (L (@) + BLi (2,) ) (230 =)
b (L (@) + 5L (®,)) (35 - V]

From (7.10) and assuming the disparity is the same for (i, k) and (j,1),
Li(‘I’Q) _ Lj(q’q)
Li(®g)  Li(®)

(7.29)

one has . This allows to rewrite the variance as

e <6+ L (<I>q)> > [ (@) (i - )

irj (7.30)
2
L (@) (A7 =N
Analyzing the extrema, one can conclude that the minimum occurs at
L <(I)Q)
Ly ((I)Q>

Hence, for an affine LF, v, (/) is a parabola with minimum at local dis-
parity 2 X % and curvature 7, that increases with VI gradients.

B:_

(7.31)

vy (B) = (5 — % ( q))2 (7.32)

where the curvature is defined as

iy Z L (@) (A8 =) + L (@) (] = V)] T a33)
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Analyzing v, () for pixels in areas with strong and weak gradients
on the VIs (Figure 7.12.b), one can conclude that homogeneous regions
produce flatter lines than textured regions as expected from the curva-
ture. Hence, the curvature is a reasonable measure of confidence for the
disparity estimates.

7.4.2 Disparity Refinement for Affine LF

The cost-based approach assumes pre-determined values of disparity
to evaluate a metric. This leads to a discretization, i.e. a staircase effect
(Figure 7.13.a), when there is a sub-sampling of the disparity range that
lead to reconstructed points forming several constant depth planes cor-
responding to each disparity evaluated. This can be improved solving
the location of the minimum of v, () with more precision by using the
photo-similarity metric for an affine LF (7.32).

Considering the expansion of the photo-similarity metric (7.32), one
has

v, (B) =71,8"+a,B+b, (7.34)

2
Li(® L;(® :
where a, = 27, ﬁ and b, = 7, ( Lk(( @Z%) . Solving

arg mﬂin v, (B) (7.35)
one obtains the following solution

g=_ta (7.36)
27,

Instead of using the information of the LF gradient to compute the
disparity using (7.36), one can use the parameters 1 = [Tq, aq, bq}T ob-
tained by fitting the observations of v, (/3) to a second order polynomial.
Considering that the observation n is represented as 110, — v, (3,) = 0

T : :
where o, = [ 2 Bu, 1} , the fitting parameters are obtained from the
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minimization problem

Ng

arg mlin le::l (lTon — (Bn)> 2 (7.37)

where Ng corresponds to the number of disparities evaluated. This prob-
lem can be solved using least-squares for example. The approach de-
scribed allows to decrease the staircase effect while maintaining the
same sampling for the disparity range (Figure 7.13.c).

(a) Large Disparity Step

x o~ 0
08/ %%

(b) Small Disparity Step (c) Large Disparity Step with Refinement

Figure 7.13: Depth estimation with different steps for the same disparity range. The estimate using
a large disparity step is depicted in (a) while the estimate using a small disparity step is depicted in
(b). The staircase effect caused by a large disparity step is notorious in (a). In (c), one exhibits the
improvement that can be made by applying the refinement proposed to (a).

7.4.3 Refocusing for Affine LF

Disparity can also be estimated using defocus cues [134]. However,
the disparity dependent information that can be retrieved from refocus-
ing is limited. Namely, let us define the refocusing operation on a SCam
as
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ry(8) = 3 Do cn(ind.B) (7.38)
i Vg

0]
The refocusing operation corresponds to the mean intensity of the rays
collected in the SCam c,, i.e. 7,(8) = p,(B). Consequently, for an
affine LF, the refocusing is defined by (7.28).

A focal stack of an affine LF only conveys information that allows
to estimate disparity if there is an imbalanced expansion around @, i.e.
v # 0 and A # 0. Considering a balanced expansion around @, the re-
focusing operation reduces to , (5) = L (<I>q). In this case, the refocus-
ing operation results in the same information regardless of the disparity
used to perform the refocusing and no disparity-dependent information
1s present.

7.5 Dense Reconstruction

The disparity estimates obtained using the approaches described in
Sections 7.2, 7.3 and 7.4 are noisy and sparse. For example, inspect-
ing the disparity estimates using the structure tensor thresholded by the
confidence measurements (Figure 7.11.c), one can see that the non-zero
values correspond to edges and corners only. Therefore, in this section
one presents a regularization framework for denoising and data fusion of
the disparity estimates obtained from the LF.

7.5.1 Hypercube Representation

Let us consider the LF L € RY>Ni*NexNi where N, N; correspond
to the number of viewpoint cameras in the ¢- and j-direction, and Ny, /N,
to the number of pixels in the k- and /-direction. For each ray in the LF
one can assign a disparity value using one of the previous approaches.
Therefore, disparity has the same dimensionality as the LF, i.e. D €
IRNiXNjXNkXNZ.

Let us consider a representation for the disparity based on an hyper-
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cube H). The hypercube is a set of datacubes C, that are obtained
fixing one of the viewpoint coordinates:

H, = {n e {1,... N;}:Cy, (i k1) = D(i,jn,k,l)} (739

These datacubes C,.) consist on a vertical stack of the disparity estimates
obtained for each EPI (Figure 7.14). In the datacube representation, the
disparity estimates for an EPI are obtained by fixing a pair of coordinates

(lna km) or (]na lm)

(i,k) = C; (i, Ln) =D (i jns kL) . (7.40)

(b)

Figure 7.14: Disparity hypercube representation. (a) Hypercube and datacube (green) represented as
matrices, and VI (blue). (b) Datacube structure for fixed j = 7,,.

Notice that the hypercube representation of the disparity observations
can be obtained by fixing the other viewpoint coordinate z. Although
this hypercube represents the same object, the disparity estimates and
the confidence metric values may differ due to the nature of the disparity
estimation. However, if one considers an hypercube representation of
the LF, the information for the two hypercubes (obtained from fixing the
different viewpoint coordinates) would be exactly the same.
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7.5.2 Disparity Estimation Denoising

Let us consider that the disparity observations from a datacube C;,
can be represented as a two-dimensional matrix where each line cor-
responds to the disparity retrieved from each of the pixels of the EPI,
lexicographically ordered (Figure 7.14). Let the matrix representing the
observed disparity be Y; € R" > (NixNk) - Assuming that the observa-
tions are only affected by i.i.d. additive noise W € RN NNk - one
can model the disparity observations as

where Z; € RV*NNi) are the real disparities from the datacube. For
simplicity, one assumes that the boundary conditions are periodic. This
allows to compute convolutions and matrix inversions using Fast Fourier
Transforms (FFTs), see more details in Appendix F. The observation
model (7.41) can be generalized for the hypercube H; by including the
datacubes C; forn =1,..., N;:

Y, =Z;+ W, (7.42)

with Y, Z;, W; € RWi N> (NixNi) requlting from the vertical stack of
the matrices Y, Z;,, and W; forn =1,..., N, respectively

In?

Yj1 Zjl Wj1
Yj: : Zj: S Wj: . (7.43)
Y, Z;, W,

J ) ]

This allows to include the disparity observations from several viewpoints
while considering the same virtual camera motion to obtain the EPIs.

In Figure 7.14 there is an example of the matrices Z;and Z;,. These
structures represent a repeating sequence of disparity images that differ
in a small number of pixels due to the different viewpoint coordinates.
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Since one obtains natural like images one applies an isotropic total vari-
ation regularizer proposed by Rudin et al. [126] to promote sharp dis-
continuities at edges. This type of regularizer is regularly used in image
denoising [28] and has already been used in the context of LF analysis

[56, 139]. This leads to the following optimization problem:
1
arg n%in (§HYJ — ZJH?? + ATV (Zth, ZjDU)> (7.44)
j

where ||-||, = \/ tr (() ()T> corresponds to the Frobenius norm, TV

corresponds to the total variation regularizer that is given by

TV (Z;Dy, ZD,) = Y TV, (Z;D4,Z;D,) (7.45)

n,m

2 2
TV, (Z;D), Z;D,) = \/ (ZDy),,| +|(@D.),,| 746

where (-), ,, corresponds to the entry (n,m) of matrix (-), and D), and
D, are operators for the horizontal and vertical finite differences con-
sidering periodic boundary conditions, respectively. The solution to this
optimization problem is given by the method of ADMM and the details
are presented in Section 7.5.3 and Appendix F.

7.5.3 Disparity Estimation Data Fusion

The LF allows to obtain two different hypercube representations that
simulate two types of virtual linear paths that can be used to retrieve
the EPIs. The denoising problem presented in Section 7.5.2 considered
only one of the possible observations of the hypercube. The approach
described in this section allows to integrate the information of the dis-
parities obtained using the two virtual linear paths for obtaining the EPIs.

Let us consider the disparity observations from the hypercubes cor-
responding to fixing the viewpoint coordinate 7 as Y ; and to fixing the
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viewpoint coordinate 7 as Y;. The two observations of the hypercube
are related with each other by Y; = Y7, assuming that the observa-
tions are not affected by noise. From Section 7.5.2, one knows that

Y; € RN M) < (No<Nk) and, consequently, Y; € RONVPNix (NN

Hence, let us consider a matrix Z € IR (Vi* N X (NixNe) ghag corresponds

to the real disparity map to be estimated and that integrates the informa-
tion of the two observations.

The observation models for the hypercube for each of the camera
paths is given by:

Y, =M,;Z+W; and Y,=M/Z" +W, (7.47)

where M, € R<N1XNZ)X(NJXNZ), and M, € IRWixNg)x(NixNg) repre-
sent a uniform sub-sampling of Z to obtain the disparity information
that correspond to each of the camera motions. M; has lines and M,
has columns that are a subset of the columns of the identity matrix.
W, € IP{(NJXNZ)X(NZ'XN’“), and W, ¢ IR (NixNe) % (Njx Ny ) represent i.i.d.
additive noise. Similarly, to the denoising problem one considers the
total variation (7.46) as the regularizer. The optimization problem can
then be formalized using the observation models and the regularizer as

2
ATV (ZDy, ZDU)) .

(7.48)

In this optimization problem, the first two data terms are data-fitting
terms while the last is the regularizer. The data terms explain the ob-
served disparities considering the observation models for Y; and Y;
(7.47). The weights A\; and A, allow to control the contribution of each
of the terms. This optimization problem is similar to the data fusion
problem presented by Simdes et al. [131] for hyperspectral cameras su-
perresolution. In this problem, one faces the same problems indicated
by Simdes et al. [131]: (1) high dimensionality of the variable to be es-

(1 Ai
arg min (5 HYJ — M, ZH? + =

Y - ZM,
2
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timated Z, (i1) the regularizer is non-quadratic and non-smooth although
the optimization problem (7.48) is convex, and (iii1) the sampling opera-
tors do not allow to use the FFT directly.

Therefore, one follows the same approach presented in [ 13 1]. Namely,
by using an ADMM instance, the Split Augmented Lagrangian Shrink-
age Algorithm (SALSA) [4]. Thus, the optimization variable Z is split
into auxiliary variables using the variable splitting technique to be able
of applying the ADMM method. The optimization problem (7.48) is
now defined by

. 1 2 >\z T 2 "
arg | win (5 1Y, —M; Vi + 5 Y - V.M, ot ATV (Vs, V4)/
s.t. V1 = Z, VQ = Z, V3 = ZDh, V4 = ZDU

(7.49)
Considering
f(V) = 5 Y, —M; Vi + S |Y = VoM + ATV (Vs3, V)
(7.50)
and
_ v _ B
V = v G = L (7.51)
(vl T pr| '
Vi D,
one can rewrite the optimization problem (7.49) as
argmin (V) st. V=GZ' . (7.52)

/AY
This problem has the following Augmented Lagrangian [ | 4], disregard-
ing the part that only depends on the scaled dual variable A
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2
L‘(Z,V,A):f(V)+gHGZT—V—AHF (7.53)

where 1 1s a positive constant called the penalty parameter. Now, one
is able to apply the ADMM method, more specifically SALSA [4] as
summarized in Algorithm 3.

Algorithm 3: Disparity Data Fusion
Input : Observations: Y;, Y,
Parameters: \;, A\, i
Initializations: V(©, A(©)
Output: LF Disparity Map: Z
1 repeat
2 Z0+Y ¢ arg mzin L(Z,VH® AR

3 Vvt ¢ arg m\;n g(z(kﬂ)’V’A(k))
o | AGED AWM <G g T (k1) _ V(k+1)>

s until stopping criterion is satisfied,

The conditions for the convergence of SALSA are established in [4].
The algorithm requires that G must have full column rank and the func-
tion f (-) must be closed, proper, and convex. The algorithm described
above has a matrix G with full column rank (due to the presence of
identity matrix I), and the function f(-) is a sum of closed, proper, and
convex functions. Therefore, the conditions for the convergence of the
algorithm are met. The detailed minimization problems can be found in
Appendix F.

The solution for the denoising problem in Section 7.5.2 is achieved
by considering only one of the data terms, Y ;, and that the sub-sampling
matrix is equal to the identity matrix (M; = I) in the optimization prob-
lem (7.48). Therefore, the minimization problem regarding the auxiliary
variable V, disappears, and the minimization problem regarding the dis-
parity map Z is simplified. This optimization problem can also be solved
using a primal-dual solver, for example using the Forward Backward Pri-
mal Dual algorithm of Condat et al. [34].
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7.5.4 Experimental Results

The methodology described for dense reconstruction is applied to the
Still synthetic dataset provided by the HCI Heidelberg Group [ 140] (Fig-
ure 7.15). The results of the regularization with one and two data terms
are compared with the disparity estimates from the structure tensor. The
ground truth provided with the synthetic dataset is used to determine the
PSNR values.

(b) (©

Figure 7.15: Still live dataset of the HCI Heidelberg Group [ 140]. The central VIis displayed on (a). The
disparity ground truth information is depicted on (b) while the generated observed disparity is displayed
on (c).

The structure tensor analysis is implemented as described in Section
7.3 assuming an equal contribution for each of the color channels since
one does not have a priori knowledge of the noise [142]. The structure
tensor is computed using an upsampled version of the EPIs to compen-
sate for the doubled Nyquist frequency [83]. Furthermore, the smooth-
ing of the image and the components of the structure tensor is obtained
by applying Gaussian distributions with STD 0.8 and 3.2, respectively,
following the suggestion of Koethe [82]. For the optimization problem,
one considers an equal contribution for each of the data terms (\; = 1),
and the penalty parameter u to be fixed and equal to 1 since it only af-
fects the convergence speed and not the convergence. The parameter A\,
is fine-tuned by performing a denoising of the disparity ground truth for
several values of \, ranging from 272" to 27 and selecting the one that
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provides the highest PSNR. The total number of iterations is fixed and
equal to 20.

From Figure 7.16, one can see that the hypercube obtained from the
structure tensor analysis presents a noticeable decay on accuracy in the
peripheral viewpoints. Focusing on a specific viewpoint (peripheral or
central) in Figure 7.17, one can conclude that the disparity estimates
are less accurate on homogeneous regions which in the EPI represent
regions of constant intensity between the lines that one wants to detect.
A small change of intensity in these regions lead to disparity estimates
that change rapidly and have high variability. This is more noticeable
on the 3D representation of the disparity estimates (Figure 7.17.b and
7.17.d).

‘& 8 & & & & ® &
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5 6 & e & & L I .
EYSY RY SY RY RY SY RY B 88
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(a) Structure Tensor (b) 1D Regulanzed (c) 2D Regularized

Structure Tensor Structure Tensor

Figure 7.16: Hypercube disparity estimation before (a) and after regularization considering one (b) and
two (c) observations of the hypercube.

The hypercube after the regularization has reduced noise and the ac-
curacy remains almost the same from the central to the peripheral view-
points. This is confirmed by the increased PSNR after regularization
(from 8.65 dB to 10.76 dB). The noise can be further reduced by consid-
ering the additional data term of the optimization problem (7.44) (PSNR
of 11.00 dB). The usage of the two disparity data terms allows to improve
the estimates since the estimated hypercube corresponds to a compro-
mise between the two disparity observations of the hypercube.

Additionally, the formulation allows to select specific disparity esti-
mates for each of the observations of the hypercube through the sub-
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Figure 7.17: Disparity estimation using the structure tensor analysis (top) and after regularization with
one (middle) and two data terms (bottom). The columns correspond to the disparity estimates using a
2D representation (1% and 3" columns) and a 3D representation (2" and 4" columns) to highlight the
noise. Peripheral viewpoints are depicted on the 1°¢ and 2"¢ columns. Central viewpoints are depicted
on the 3" and 4" columns.

sampling matrices M .). Therefore, one performed the same analysis but
now considering only the disparity observations with higher confidence
values from each hypercube observation. In this scenario, a compromise
between the two hypercube observations will only occur for disparities
with similar confidence values between the two observations instead of
achieving this compromise for all disparities. Hence, this approach leads
to an increase in the PSNR value for 11.38 dB.

7.6 Deep Neural Network Reconstruction

Deep neural networks generally require intense training, and while
they may lead to good results, they may also result in an inability to per-
form well under inputs with characteristics outside their training scope.
Normally, one can augment the training data [130] for the network to
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generalize for other inputs or one can perform transfer learning of the
neural network [47]. However, this is not always possible due to con-
straints such as lack of data, time or computational power.

In the DDFFNet from Hazirbas et al. [65], the focal stack used has
implicit a specific camera geometry defined by the microlens array and
the main lens configuration (zoom and focus) of the plenoptic camera
used to acquire the LF dataset. More specifically, the DDFFNet requires
a focal stack of ten images each focused at linearly spaced disparities
covering a disparity range of [0.02, 0.28] pixels. The disparity range for
the camera configuration used corresponds to a depth range of [0.5, 7.0]
meters. Let us denote the camera configuration used by Hazirbas et al.
[65] as the source camera configuration.

Cameras with different characteristics from the source camera will
capture the same scene in a different way and produce images with dif-
ferent information. As an example, the scene disparity range shifts if
the main lens focal plane changes or the disparity range increases if one
considers a higher baseline. This can lead to disparity values that were
not considered during training. Also, changing the depth of the scene or
the disparities considered to obtain the focal stack will also lead to an in-
ability to correctly reconstruct the scene. Let us denote the camera with
different characteristics from the source camera as the target camera. In
this section, one extends the network application range of Hazirbas et
al. [65] by accepting larger input disparity ranges that can be obtained
considering different scenes or camera configurations.

7.6.1 Target-Source-Target LF Mapping

Let us consider the camera array representation for a plenoptic camera
(Section 4.1). The FOV of a plenoptic camera is bounded by the enve-
lope of all cameras’ fields of view (pyramids) in the array. This envelope
corresponds to the pyramid of the central viewpoint in the main lens fo-
cal plane and is not much wider than this pyramid for other planes due
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to the small baselines (Section 4.1.3). Therefore, in these transformation
one is going to consider only the central viewpoint.

The method proposed extends the application range by transforming
the input LF so that it falls under the training conditions. This mapping is
achieved by back-projecting the target LF into a point cloud, transform-
ing the generated point cloud and reprojecting the scenery onto an array
of cameras identical to the source camera to obtain the corresponding LF
(Figure 7.18) [122].
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Figure 7.18: Target-Source LF mapping steps for the Cotton dataset [68]. The disparity range of this
dataset is [—1.6, 1.5] pixels which is outside the disparity range of the source camera. (a) exhibits the
point cloud obtained from back-projecting the central viewpoint rays with a given disparity map. The
FOV of the target camera is displayed in red while the FOV of the source camera is displayed in blue.
(b) highlights the alignment of the point cloud with the principal axis of the camera. (c¢) and (d) show
the FOV and depth scaling that is done in order to ensure the scene geometry uses a wider FOV and
depth range within the source camera available ranges, respectively.

Back-Projection. In the first step, the rays corresponding to the cen-
tral viewpoint camera are back-projected, resulting in a 3D point cloud
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(Figure 7.18.a). The back-projection requires a calibrated camera and
a disparity map for the central VI. In the example provided in Figure
7.18, one used the ground truth provided with the dataset [6&] but in a
real scenario one should estimate disparity using one of the approaches
described in the previous sections. The disparity map, having a cali-
brated camera, is easily converted to a depth map using (7.8). Then, the
(x,y) coordinates of each point in the point cloud for a known depth z
is obtained by the back-projection (3.11) with (i, j) fixed to the central
viewpoint coordinates. For each point of the point cloud, one stores the
corresponding intensity value.

FOYV Rotation. The FOV for the target and source cameras are obtained
by back-projecting the viewpoint camera limit pixels (Figure 7.18.a) The
generated point cloud is rotated around the optical center along the z-
and y- axis in order to align the target and source principal axis (Figure
7.18.b). The rotation angles are computed using a point at depth z in

each of the principal axis, namely, § = tan~* (%) with (-), and (-),
denoting the point x- or y- coordinate on the target and source principal
axis, respectively.

FOV Scaling. In order to use a wider FOV of the source camera, the
(x,y) coordinates of the point cloud are scaled by the same factor to
avoid distortion. Hence, the scaling factor is the one that scales the point
cloud so that it matches the source smaller FOV side (Figure 7.18.c).

Depth Scaling. In this step, one scales the z-coordinate of the point
cloud such that the point cloud spans a wider depth range and is within
the source depth range. Inspecting the supplementary material in [65],
one concludes that using a smaller range, depth range [0.5, 2.5] meters,
results in a more well distributed set of focused depths. The scaling
to the new depth range [2{, z)] is obtained by an affine transformation
whose parameters are obtained from the solution of the linear system
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zm 1] |a 21
— 7.54
zy 1] |D 24 (7.54)
with z,, and z,; corresponding to the minimum and maximum depth of
the point cloud. The (x, y) coordinates are recomputed in order to ensure
that the point cloud is within the source plenoptic camera pyramid. The
new coordinates are obtained by multiplying the coordinates of the point

by Z;/ where 2’ is the new z-coordinate after the depth scaling.

Reprojection. The final step corresponds to a reprojection of the point
cloud into the camera array of the source camera used by Hazirbas et al.
[65]. This allows to obtain a new LF which will then be refocused and
used to create the input focal stack for the DDFFNet. This LF is within
the range of the network training conditions, so one expects to obtain
better depth estimates than using the LF of the target camera without
any transformations.

The DDFFNet is used to obtain a new depth map considering the
source camera configuration. Then, this depth map is used to obtain
a new point cloud using the source camera calibration. In this case, for
each point on the point cloud one stores the corresponding depth. The
generated point cloud is then transformed using the inverse transforma-
tion of each step described previously, in reverse order. In the final step,
the depth of each point of the point cloud is reprojected onto the central
viewpoint camera of the target camera, forming a depth map. The depth
map is then converted to a disparity map using (7.8).

7.6.2 Experimental Results

The proposed method is evaluated on the Training Set of the 4D LF
Benchmark [68], the same used by Hazirbas et al. [65] to evaluate the
network performance after retraining. The disparity maps obtained can
be compared with the ground truth provided by these datasets [68].
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In a LF acquired by a plenoptic camera, the depth map is not available
so one has to first estimate a depth map. In this experiment, an initial
disparity map is obtained using the structure tensor (Section 7.3.1). The
estimated disparity map is sparse, hence, one proposes two strategies for
obtaining a dense map: (i) converting disparity to depth, constructing
the point cloud as is and inpaint each source VI in intensities (STII), or
(1) inpainting the disparity map, converting disparity to depth and then
generating a full point cloud (STDI). The results of applying DDFFNet
without transforming the target datasets or using the STDI and STII ap-
proaches are summarized in Table 7.2. The ground truth based approach
to guide the transformation of the target datasets is used to show the best
outcome one can obtain. The numerical results are presented as defined
in [65]. As a qualitative analysis, the disparity map obtained by each
method is presented in Figure 7.19.

Method Target LF | Retrain | Ground Truth | STDI | STII + DDFF | STDI + DDFF
Disparity MSE 0.7741 0.19 0.3002 0.7383 0.5378 0.3392
Disparity RMS 0.8709 0.42 0.5463 0.7934 0.7227 0.5765

Depth MSE 0.9395 — 0.2934 1.1063 0.6499 0.3104
Depth RMS 0.7233 — 0.4220 0.6950 0.5958 0.4332

Table 7.2: Disparity and depth MSE and RMS errors. The second column exhibits the results of applying
DDFFNet directly to the target LFs. The results obtained by retraining the DDFFNet (retrieved from
[65]) and applying the structure tensor on the target LFs followed by inpainting are displayed on the third
and fifth columns. The results obtained using the ground truth to perform the transformation from the
target to source camera is presented in the fourth column. The results of the STDI and STII approaches
to guide the transformation from the target to source camera are presented on the last two columns.
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Figure 7.19: Depth reconstruction for Cotton dataset [68]. LF central VI (a) and ground truth depth
map (b). Depth reconstruction using the structure tensor considering inpainting of pixel intensity values
(STII) or disparity values (STDI) (c)-(e).

Table 7.2 shows that applying the network directly on the target LFs
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produces a high depth error. However, applying the proposed method
using the STDI approach, one is able to reduce the error in almost 40%
which shows the validity of the approach.

7.7 Chapter Summary

In this chapter, was proposed an improved metric reconstruction method-
ology based on multiview stereo for a calibrated plenoptic camera by
imposing geometry cues on the ray-spaces (7, k) and (7, /) (Section 7.2).

The gradient-based approaches to recover depth from the LF are re-
viewed to consider the EPI geometry of plenoptic cameras defined in
Sections 4.1.3 and 5.1.3. In Section 7.3, one also derives the disparity
estimation from LF gradients by using the concept of optical flow and
the original concept of affine LF.

The affine LF concept is proposed in the context of cost-based ap-
proaches to gain some insights on the metrics normally used (Section
7.4). Namely, it is derived the expression of the correspondence met-
ric [134] for an affine LF. The correspondence metric is a parabola with
a minimum at the disparity value and with curvature that depends on
the VI gradients. This expression allows to define a methodology for
disparity improvement and identify that the curvature can be used as a
confidence metric. Additionally, one shows that a focal stack of an affine
LF hardly exhibits disparity-dependent information.

A data fusion problem which uses the full 4D LF by considering dis-
parity estimates for each 2D EPI of the hypercube is formalized to re-
cover a dense disparity map (Section 7.5). The optimization problem
was solved by resorting to an ADMM instance that provides good re-
sults with few iterations. Furthermore, were considered periodic bound-
ary conditions that allowed to use FFT's in the computations allowing the
algorithm to be computationally efficient.

The network application range of Hazirbas et al. [65] is extended in
order to accept larger input disparity ranges that can be obtained consid-
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ering different scenes or camera configurations. The method presented
extends the application range by transforming the input LF so that it
falls under the training conditions. The proposed method provides a
faster and more versatile approach at the cost of loosing some accuracy
relatively to a full retraining approach.
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Chapter 8

Conclusions and Future Work

In this chapter, contrarily to the organization of the thesis that presented
a plenoptic camera type-based view of the work, are presented the major
conclusions regarding the contributions identified in Chapter 1.

8.1 Unification of Geometric Projection Models

In the last decade, different plenoptic camera designs gave rise to var-
1ous, specialized, geometric camera models [21, 41, ]. The Light-
field Intrinsic Matrix (LFIM) mapping rays in the image space to rays
in the object space is the most well known model to describe plenop-
tic cameras. This model appears in the literature with different struc-
tures, namely, Dansereau et al. [41] introduced this structure for Stan-
dard Plenoptic Cameras (SPCs) with 12 non-zero entries while Zhang et
al. [150] presented the LFIM for SPCs and Focused Plenoptic Cameras
(FPCs) with 6 non-zero entries. SPCs and FPCs can also be represented
by describing the microlens cameras using a pinhole-like model with
6 parameters [21]. This model was extended to Multifocus Plenoptic
Cameras (MPCs) by Nousias et al. [ 1 15] that considered each microlens
type as an independent and separate FPC. Although the different camera
models describe the same plenoptic camera types, no connection among
the models i1s found in the literature (Figure 8.1.a).

In this thesis, were studied the different models under a common
framework. More specifically, the models in the literature were reduced
to a LFIM with 8 non-zero entries. This representation is obtained re-
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moving the redundant parameters with the extrinsic parameters and shift-
ing the rays parameterization plane (Sections 4.2 and 5.2). The model
proposed by Zhang et al. [150] corresponds to a LFIM with 8§ free in-
trinsic parameters if one includes the 2 additional intrinsic parameters
added in the radial distortion model [150] (Appendix A) relatively to the
model of Brown [25]. On the other hand, the model proposed by Bok et
al. [21] can be represented by a LFIM constraining the microlenses cen-
ters coordinates on the raw image to be regularly spaced (Section 5.4).
The same LFIM can describe the chief-ray point projections of a world
point in the different microlenses types for an MPC (Section 5.5).

Additionally, were explained the assumptions that allow to have an
1dentical LFIM for SPCs and FPCs. More in detail, the same structure
is obtained by the appropriate choice of the microlens coordinates and

by assuming that the image sensor is aligned with the microlens array
(Section 3.5).

The LFIM is not restricted as a camera model for plenoptic cameras, it
can also be used to describe a coplanar camera array of identical cameras
[95] (Appendix B) using a representation similar to the one from Zhang
et al. [150]. In this case, the LFIM encloses information regarding the
baseline and the intrinsic matrix used to define the cameras in the array,
i.e. 6 non-zero parameters. The LFIM with 8 non-zero entries allows
to describe a coplanar camera array of distinct cameras. In this case,
the two additional parameters encode a principal point shift between the
cameras in the array (Sections 4.1 and 5.1). The connection between
the different plenoptic camera models [21, 41, | and between the
LFIM and a camera array allow to switch representations regardless of

the camera models considered during the calibration procedure (Figure
8.1.b).

The LFIM was also extended to model a camera array composed of
identical coplanar plenoptic cameras with the same world focal plane.
This setup corresponds to a multi-baseline camera array (Section 6.2).
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LF Hardware LFIM LF Representations

(a) State of the art

LF Hardware LFIM LF Representations

(b) Contributions

Figure 8.1: Relationships among camera models for plenoptic cameras and the types of images that can
be obtained from an acquired LF. State of the art is summarized in (a) and the contributions are shown
in (b). The models and relationships in red are state of the art, in yellow are present in the literature but
do not characterize completely the corresponding cameras, in grey are not found in the literature and in
blue are denoted the contributions of the thesis.

8.2 Camera Array-based Representation for Plenoptic Cameras

The LF acquired by plenoptic cameras can be represented using View-
point Images (VIs) or Microlens Images (MIs) [112]. Although the ar-
rays corresponding to these images have been considered in the literature
[21, 112], their full projection model was yet to be formalized and there
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was not available a connection between these models and the LFIM [4 1]
(Figure 8.1.a). A proposal of a mapping to the pinhole projection matrix
[48] allows the LFIM to be adopted as mainstream in computer vision.

In this thesis, 1s defined the mapping among the LFIM and the virtual
array (viewpoint camera array) and the physical array (microlens cam-
era array) pinhole-type projection models. The viewpoint and microlens
cameras define a coplanar array of cameras that differ on the location
of their projection centers and on their principal points (Sections 4.1 and
5.1). The different principal points define an Epipolar Plane Image (EPI)
geometry whose zero disparity plane is at a finite depth. This geometry
extended the geometry defined by Bolles ef al. [22] that considers im-
ages acquired by identical cameras, i.e. same principal point.

The rays captured by a plenoptic camera can be represented by a fam-
ily of camera array models alternative to the viewpoint and microlens
camera arrays [2], , ]. In Chapter 6, is defined a constraint to
obtain the set of rays in the image space that intersect at an arbitrary
point in the object space. Using this contraint, one may extend the pro-
jection models associated with the viewpoint and microlens cameras to
cope with the resampling of the LF which allows to define camera arrays
at different depths. The camera arrays redefined for specific depths may
differ only in their principal points comparing with the non-resampled
camera arrays or may describe completely different arrays. More specif-
ically, the resampling changes the location of the projection centers and
the intrinsic parameters of the cameras in the array. The resampling of
the LF also changes the EPI geometry and consequently the zero dispar-
ity plane depth. The contributions provided together with the contribu-
tions in Section 8.1 facilitate the use of plenoptic cameras by modeling
them based on classic projection models.

The formalization of the microlens and viewpoint camera array rep-
resentations, based on the pinhole camera model, enables novel calibra-
tion procedures for plenoptic cameras. More in detail, in Section 4.3, is
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proposed a calibration procedure for an SPC using corner points in VIs
based on the viewpoint camera array projection model. The calibration
consists in a linear solution capable of estimating the 8 parameters of the
LFIM and a nonlinear optimization by minimizing the ray reprojection
error. As in Zhang et al. [150], one only needs to estimate one homog-
raphy for each calibration pattern pose, and extending techniques from
pinhole camera calibration [151] to consider a coplanar camera array of
distinct cameras, one is able to estimate the additional parameter regard-
ing the baseline and principal point shift. To the best of our knowledge,
this is the first work capable of estimating the principal point shift in the
linear solution which allows to outperform state of the art methods.

In Section 5.5, one extended the LFIM used in SPCs and FPCs to
MPCs. In this section, is proposed a camera model that describes the
chief-ray point projections of a world point in the different microlenses
using a single LFIM and the specific defocus behavior of each microlens
type using the blur radius derived from the models [! 1, 18]. The mi-
crolens camera array projection model complemented by the blur model
[11, 18] 1s used to define a calibration procedure for the MPC based on
corner points and blur radius detected in the MIs using a new detection
algorithm that overcomes the defocus blur present in the MIs. The corner
detection algorithm and the calibration proposed outperform the state of
the art showing that the MPC can be described using common intrinsic
and extrinsic parameters among the different microlens types.

The extension of the LFIM to a coplanar array of plenoptic cameras
allowed to describe the equivalent optical setup as a multi-baseline cam-
era array: the baseline among the viewpoint cameras within a plenoptic
camera and the baseline among plenoptic cameras. Using this equiv-
alence, was proposed a calibration procedure for the plenoptic camera
array that allowed to estimate all parameters in the linear solution (Sec-
tion 6.2.2).
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8.3 In Depth Study of Standard Plenoptic Cameras

The SPC was the first plenoptic camera available commercially. The
low cost of this camera and the availability of an open source toolbox for
the raw image decoding and processing [4 1] aided in the early adoption
of this camera by the research community. Although this camera pro-
vides information regarding the depth of the scene, there was not found
in the literature an evaluation of the depth capabilities of SPCs. Works
evaluating the depth capabilities of plenoptic cameras were found just
for FPCs. Hence, in Section 4.5, was studied the depth capabilities of an
SPC in a range up to two meters considering several datasets with differ-
ent zoom and focus settings captured by a 1°* generation Lytro camera.
Experiments have shown that the depth error has a minimum at the main
lens focal plane and increases as one moves away from this plane. Addi-
tionally, the increasing zoom allows decreasing the reconstruction error
while the focus depth determines the depth range of the camera.

The SPC manufacturer provides information regarding the camera op-
tical settings together with each acquired image. However, public do-
main calibration procedures for SPCs [21, 41] do not consider the in-
formation provided by the camera manufacturer and therefore rely com-
pletely on the acquisition of a dataset with a calibration pattern for a
specific zoom and focus settings. In Section 4.4, are identified the rela-
tionships among the optical parameters provided as metadata as well as
the relationships between these optical parameters and the entries of the
viewpoint camera array projection model for different zoom and focus
settings of the camera. These relationships allowed to define a regres-
sion model for the LFIM based on the observations of the main lens focal
length and the infinity lambda meta-parameters provided by the manu-
facturer. This allowed to calibrate an SPC for a given zoom and focus
settings without having to acquire a new calibration dataset.
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8.4 Depth Estimation Boosting and Refinement

Plenoptic cameras acquire different perspectives of a point in a single
acquisition. The multiple perspectives allow to recover the point’s 3D
information using several strategies ranging from stereo approaches to
neural networks that explore the depth cues in the LF. In this thesis, are
presented contributions to improve the multiview stereo, gradient-based,
cost volume and deep neural network approaches.

In a multiview stereo approach, depth is estimated assuming no par-
ticular position for the microlens or viewpoint cameras by performing
matching among the features detected on the corresponding images [3].
However, this strategy does not consider the regularity of the array of
cameras defined by a plenoptic camera whose coplanarity and spac-
ing set constraints on the projections observed on the multiple cameras
(Sections 4.3 and 5.5). Consequently, is proposed a metric reconstruc-
tion methodology that ensures the projection geometry cues are satisfied
(Section 7.2). The projection geometry cues proposed restrict the pro-
jections of a point to define lines in the ray-spaces (i, k) and (7, ). This
approach improved the precision of the reconstruction by reducing the
effects of discretization and independent detection of the features in each
image.

The narrow baseline among cameras in the camera array equivalent
representation of a plenoptic camera allows to apply gradient-based ap-
proaches in the EPIs [39, ]. In this thesis, are reviewed these ap-
proaches to consider the EPI geometry of plenoptic cameras defined in
Sections 4.1.3 and 5.1.3. In Section 7.3, is also derived the disparity es-
timation from LF gradients by using the concept of optical flow and the
original concept of affine LF.

The affine LF concept is used in the context of cost-based approaches
to gain insights on the metrics normally used (Section 7.4). Namely, the
correspondence metric for an affine LF is a parabola with a minimum
at the disparity value and with curvature that depends on the VI gra-
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dients. This expression allowed to define a methodology for disparity
refinement and to identify that the curvature can be used as a confidence
metric. Additionally, is shown the property that a focal stack of an affine
LF does not contain disparity information. Depth has to be estimated
directly from the affine LF.

The previous approaches allow reconstructing sparse disparity maps.
In order to obtain dense disparity estimates it is necessary to use regu-
larization methodologies. These approaches normally use just a subset
of the LF information to recover disparity for the central view to reduce
the high computational requirements [ 1 39]. In this thesis, is recovered a
dense disparity map for all views by formalizing a data fusion problem
which considers disparity estimates for each 2D EPI of the full 4D LF
(Section 7.5). This approach is computed efficiently by resorting to an
Alternating Direction Method of Multipliers (ADMM) instance, namely
SALSA [4], and considering periodic boundary conditions that allowed
to use the frequency domain.

In recent years, deep neural networks have been proposed to retrieve
disparity maps from LFs [65, ]. Neural networks generally require
intense training, and while they may lead to good results, they may also
result in an inability to perform well under inputs with characteristics
outside their training scope. Normally, one can augment the training
data [ 130] for the network to generalize for other inputs or one can per-
form transfer learning [47]. However, this is not always possible due to
constraints such as lack of data, time or computational power.

In this thesis, is extended the application range of the LF depth esti-
mation neural network [65]. The method extends the application range
by transforming the input LF so that it falls under the training condi-
tions. The proposed method provides a faster and more versatile ap-
proach at the cost of loosing some accuracy relatively to a full retraining
approach.
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8.5 Future Work

Plenoptic cameras acquire more information than conventional cam-
eras. The additional information can be used to decompose the acquired
LF into intrinsic components like albedo, shading and specularity [7, 8],
or retrieve disparity or depth [139] that can be used to aid in other
applications like image segmentation [141] and change detection [43].
Nonetheless, the amount of data generated to have this additional in-
formation and the characteristics of plenoptic cameras introduce some
limitations detailed in the following for identifying possible points for
future work.

Lower Cost and Wider Field of View (FOV) Optical Setups. The
low-cost Lytro plenoptic cameras [| 3] stopped being available com-
mercially in 2018. The plenoptic cameras available, nowadays, are ex-
pensive which limits their research and usage. It is important to design
new and lower cost optical setups or pieces of hardware that allow con-
ventional cameras to acquire the LF [13]. The equivalence of the plenop-
tic camera with a regular coplanar camera array may guide the setups in
this direction (Sections 4.1 and 5.1). Nonetheless, solutions avoiding or
reducing the problems identified in Section 2.3 for camera array setups
are necessary.

The narrow baseline in plenoptic cameras allow to use gradient oper-
ators for easily recovering disparity estimates [39] when compared to a
stereo-matching approach. However, this also results in a limited FOV
that can be too restrictive for some applications. In a camera array design
the baselines are inherently larger due to the encasing of the individual
cameras which would result in a wider FOV. However, the larger base-
lines prevent the usage of gradient operators to retrieve disparity so one
should come up with new solutions to synthesize intermediate views or
to estimate disparity maps [1 10, ]. An example of this setup can be
for example the array of plenoptic cameras idealized in Section 6.2. De-
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signs using combination of different cameras instead of similar cameras
should also be thought.

At a first sight, another solution would be to replace the main lens by
a wide angle lens. However, wide angle lenses are not easily adapted
for LF acquisition [42]. Even so, the design of a single lens wide FOV
LF camera is possible using wide FOV imaging techniques based on
monocentric optics [42, ].

Event-based LF Video. Plenoptic cameras acquire different perspec-
tives of the scene which imply a high storage space demand. For ex-
ample, the lowest resolution plenoptic camera acquires a 382 x 381 sub-
aperture image with 11 x 11 directions per pixel which is equivalent to
eight 1980 x 1080 pixels standard images. The area of LF compression
is an active topic of research [36, 37, 99] and the Joint Photographic Ex-
perts Group (JPEG) is defining the standard JPEG Pleno that provides
a standard framework to represent new imaging modalities including
LF [9, ]. The compression of LF will allow to reduce the require-
ments in terms of storage space and communications. However, since
these compression methodologies work on the already acquired LF, the
high throughput of the cameras is not reduced. In fact, current commer-
cial plenoptic cameras providing LF video are rare and the frame rate at
which they operate is still far from conventional cameras [120].

The recent event-based cameras [ |4, 7] mimic our retina [97] behav-
ior by representing an image with spikes that report differences in image
intensity. This allows a sparse representation of the image which allows
to have higher acquisition rates. The event-based cameras sparse repre-
sentation can be a solution to reduce the high throughput of plenoptic
cameras and enable LF video within cost effective hardware solutions.

LF Video for 3D TV. The acquisition of LFs either requires a heavy
post-processing if one considers images taken from arbitrary positions
[57] or requires images taken from a fixed and regular geometry on a
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planar, cylindrical or spherical surface [84, 86]. The latter introduce spe-
cific geometries on the EPIs that help estimating disparity maps [22, 38].
In camera arrays, the precise placement and orientation of the individual
cameras is hard and the process of converting the acquired images into
a LF based on the two-plane parameterization implies loosing some of
the acquired information. Hence, it is important to devise new LF rep-
resentations that give more flexibility on the placement of the cameras
[152].

The representations should also take into account domains of appli-
cation. For example, the Surface Camera Image (SCam) captures the
behavior of a surface point by characterizing the point from different
views. This representation can be used to represent the surface of objects
allowing to obtain an object-centered LF that is taylored for augmented
reality. However, this approach can have high memory requirements ac-
cording with the density of points used to represent the object.

The SCam representation is usually not the most convenient for dis-
play. Normally, the screens used to display LF information are planar
and the scene has objects at multiple depths. The rays coming from the
objects would have to be intersected on a plane for displaying purposes.
This suggests that the two-plane parameterization representation for the
LF is a better fit for displaying purposes and, consequently, for 3D TV
[12, ]. The challenge on these displays is more on the hardware side.
At each point of the display it is necessary to differentiate the intensity
being emitted according to the user’s viewpoint. Additionally, in order
to provide a continuous experience for the user it is necessary to obtain
a continuous flow of viewpoints from the discretized LF.
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Appendix A
Zhang et al. Mapping to LFIM

The model proposed by Zhang et al. [150] considers that the minimal
form for the 5 x 5 Lightfield Intrinsic Matrix (LFIM) H, has 6 non-zero
entries

he 0 0 0 0]
0 hy O 0 0
H.= |0 0 hy 0 h,| . (A.1)

0 0 0 hy hy
0O 0 0 0 1

This model is complemented with a radial distortion model that has 2
additional parameters (k3, ky) relatively to [25]

u'' =, u+ ks s

: (A.2)
V=, v+ kst

where o, = (1 + k7% + ko 7“4) corresponds to the standard radial distor-
tion correction defined by Brown [25] with r? = u? + v?, k1, ko, ks, k4]T
denotes the distortion vector, and " = [s, ¢, u", UU]T is the undistorted
ray in the object space.

A similar representation for the LFIM using 6 non-zero parameters
has been proposed by Marto et al. [95] (Appendix B) to represent a
camera array with coplanar projection centers and whose cameras are
identical (same intrinsic parameters). Nonetheless, this is not the case
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for plenoptic cameras, i.e. the cameras in the array are not identical
[104, 105] (Sections 4.1 and 5.1).

The LFIM (4.17) has a minimal form with 8 non-zero parameters as
a consequence of the different intrinsic parameters between the view-
point or microlens cameras. In this section, one shows that in fact the
model proposed by Zhang ef al. [150] is equivalent to the 8 non-zero
parameters representation for the LFIM (4.17) considering that the two
additional radial distortion parameters defined in Zhang et al. [150] rel-
atively to Brown [25] are included in the H, matrix. The two additional
parameters for example, in the Standard Plenoptic Camera (SPC), are
responsible for defining an Epipolar Plane Image (EPI) geometry that
is consistent with the zero disparity plane at the main lens world focal
plane [ 104, ].

Let us define v/ = v+ SZ—i and v’ = v+ t% to convert the Zhang et al.
[150] radial distortion model (A.2) to the model defined by Brown [25]
assuming that the «, is constant. Considering the relationship between a
point [z, 3, 2]* in the object space and the distorted ray ¥ = [s, ¢, u, U]T
in the object space as [z,y]" = [s,t]' + 2z [u,v]", and replacing the
direction coordinates (u,v), one has [z, y]’ = [s, ] + z[u’ — si—i, v —
t%4)7 . In order to obtain a relationship of the form [z,y]” = [s,#]" +

z[u', 0|1, let us define the mapping between the rays in the object space
U =st,u, v’]T and W, as

(1 0 00 0]
01 000
T=|%0100{F . (A3)
0%010
0 0001
Hy

Extending the definition of W, to consider the rays in the image space
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® = [i,7,k, 1" using the LFIM H. proposed by Zhang e al. [
obtains a LFIM H, = ngHz defined with 8 non-zero entries
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Appendix B

Coplanar Camera Array of Identical Cameras

The Lightfield (LF) can be captured by camera arrays [144] (Section
2.3). The LFIM can represent an array comprised of several identical
coplanar cameras by setting the principal point shift to zero, i.e. Auy =
AUO = 0.

Let us consider the coordinates (s, ¢, 0) that denote the position of the
cameras’ projection centers in a plane I', and (up, Up, f ) that denote the
points captured by a camera on a plane defined at a distance f from,
and parallel to, the plane I'. In this camera array setup, each image
is obtained pointing in the same direction, and using identical cameras.
Hence, nothing changes from camera to camera apart from their position
(s,t), which does not affect the coordinates (u,,v,) because of their
local parameterization relatively to (s, t). Therefore, in this setup (s, ?)
is independent from (up, vp) and can be analyzed separately.

Regarding the (s,t) coordinates, one can assume that the projection
centers of the cameras (7, j) are equally spaced in the plane I" and the
distance between consecutive projection centers is denoted by h, and
h;, which leads to

he 0 0]
— o n; 0| 5] (B.1)
0o 0 1| |1

considering that (s,¢) = (0,0) when (¢, j) = (0,0).
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Regarding the (u,,v,) coordinates, one can use the formula for the
pinhole camera to describe the relationship between a world point and
the pixel coordinates (k,[). This is, essentially, projecting the points on
the plane which is f units of distance away from the plane [' containing
the array onto the image plane, i.e. [k, [, 1]T =K [up, Uy, f}T.

Inverting the projection equation and combining with (B.1), the LFIM
H is defined as

hsz' 0 hL 0 _}?_u
02><3 ) uk 1 ﬁtk

H=|0 with K= [0 ;L & (B.2)
I 032 K_l_ |0 0 1 |

where 0,,«,, 1S the n X m null matrix, [—hsz-, —htj] g corresponds to the
baseline between consecutive cameras, and K corresponds to the intrin-
sic matrix that represents the cameras in the camera array defined using
the LFIM (4.17) entries with /,,; = h,; = 0. This reduces the EPI geom-
etry (4.15) to the one presented by Bolles et al. [27]

Ak AJ?O Al Ayo

A~ T/ N - T B.
Az’kzandAjkz (B.3)
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3D Corner-based Calibration

Let us consider the viewpoint projection matrix P* defined in equation
(4.1) that maps a point m = [z,y,z] in the object space defined in
the world coordinate system to a point in the image plane q = |k, l]T
through (4.19). The projection matrix entries of a viewpoint camera can
be estimated from a set of tridimensional points, in the object space, and

the corresponding image points using a Direct Linear Transformation
(DLT) [63].

Let us consider that the viewpoint projection matrix P* associated
with the viewpoint coordinates (, j) can be defined from the projection
matrix P associated with the viewpoint coordinates (7, j) = (0,0) and
the projection viewpoint change matrix A" by

- Pl Pl Pl Pl © 0 0] Jaun az a3 aiy
PY = |py phy Py Phy| + |0 4 O] |ax ax axs au| , (C.1)
Ph Pl P P| (0010 0 0 0
5 e

Considering the projection of a point m in the object space to the image
point q for the viewpoint camera (¢, j), applying the cross product by
q on each side of the projection equation leads to [q], P” m = 03,1,
where [()} . 1s a skew-symmetric matrix that applies the cross product
and O3y is a 3 X 1 null matrix. Using the properties of the Kronecker
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product [93] and solving for each of the unknown parameters, one can
redefine the projection equation as

(C.2)

with

0
T = |Liax12 bx® : (C.3)

000007500

01><8
0000O0O0¢2O0

00000O0O0y
01><8

where p” and a”/ correspond to vectorizations of the matrix P’ and A%
by stacking their columns, respectively. 11512 1s a 12 x 12 identity matrix
and ;s is a 1 X 8 null matrix. The solution [p°, a| " for the parametric
projection matrix can be estimated using Singular Value Decomposition
(SVD).

The restrictions introduced by a plenoptic camera allow to represent
the parametric projection matrix (C.1) using 20 parameters. According
to equation (C.2), each pair (m, q) originates three equations with only
two being linearly independent. On the other hand, each point in the
object space originates N image points, one for each viewpoint camera,
assuming that the point is observed in all viewpoint cameras. However,
as discussed in Section 4.3.1, the number of linearly independent equa-

232



APPENDIX C. 3D CORNER-BASED CALIBRATION

tions originated by a point in the object space is 4. Thus, one needs at
least 5 non-coplanar points in the object space to obtain the entries of the
projection matrix P¥.
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Appendix D

Reconstruction Estimation Accuracy without
Distortion

The results of the reconstruction estimation accuracy not considering
radial distortion correction are summarized in Table D.1. Comparing
with Table 4.11, one can see that the results are very similar which allows
to conclude that the radial distortion does not play an important role on
the reconstruction estimation accuracy. Nonetheless, one has to notice
that the depth range with normalized reconstruction error lower or equal
to 10% is larger for Datasets E and F, and that Dataset C has a normalized
reconstruction error that is always greater than the 10% for all depth
range analyzed.

Dataset Depth Range | Mean + STD Error | Mean + STD
(m) in Depth Range (%) Error (%)
A 0.35-1.30 6.84 +5.11 16.67 + 6.28
B 0.40-1.30 7.89 £+ 5.96 13.72 £ 9.73
C Not Defined Not Defined 23.74 +17.72
D 0.60 - 2.00 5.18 £3.14 14.18 + 4.87
E 0.65 - 2.00 548 +£3.04 8.05 +4.01
F 0.85-2.00 397 £ 142 5.67 £ 1.57
G 1.50-1.85 1.94 + 0.61 1.94 + 0.61

Table D.1: Depth ranges for the datasets acquired not considering radial distortion correction. The depth
ranges are identified as the regions whose mean for the normalized reconstruction errors is lower or equal
to 10%. The mean and STD for the normalized reconstruction errors within the depth ranges defined
and for all ground truth depths are also depicted.
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Appendix E

Microlens Projection Centers

Image Space Object Space

. . Sq,‘r:}%:U) 3

World
Focal Plane

Microlens ‘

Array dl'[—>1“

Figure E.1: LF parameterization. The LF in the image space is parameterized using pixels and mi-
crolenses indices while the LF in the object space is parameterized using a point and a direction.

Let us consider the LF in the object space Ly (q, r, u,v) where each
ray Wy = [q, 7, u, U]T is parameterized using a point g, 7, O]T on a plane
IT and a direction [u, v,1]" defined in metric units [107] (Figure E.1).
The LFIM Hy; (4.7) maps this LF to the LF in the image space L (i, j, k, )
by (4.6) where ® = [i, j, k, Z]T corresponds to a ray that is parameterized
by pixels (7, j) and microlenses (k, ) indices. For a microlens camera,
the microlens coordinates (k,[) are fixed and are considered as param-
eters. Hence, for a microlens camera, the positions (g,r) and the di-
rections (u,v) are affine mappings only on the pixel coordinates (¢, j),
namely
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i; k,Hp) = hgit + hg k + by
j; laHH) - hrjj + hrll+hr
(i; k, HH) = hy;it + hye k+ by
(75 LHn) = hyj j + hol + hy
where the LFIM Hy; is also considered as a parameter. To simplify the

notation, the parameters (k, [, Hy) will not be included in the following
expressions.

(
( (E.1)

q
r
u
v

\

A ray captured by a plenoptic camera and parameterized by (i, 7, k, [)
intersects the plane IT at point p (4,7) = [q(i), r(j), 0]' with a direc-
tion n (4,5) = [u(i), v(j), 1]7. This allows to define an arbitrary point
c(i,7,\) = [x,y, 2]' along the ray [58] as

c(i,j,A)=p(i.j)+An(ij) , \eR . (E2)

Note that by sweeping the range of (7, j) in (E.2) with A = 0, one sam-
ples an area of the plane II through which pass all the microlens imaging
rays. In addition, by sweeping (%, [), one obtains all the microlens cam-
eras, and therefore all rays that can be imaged by the plenoptic camera.
Finally, sweeping A, allows representing all world points within the Field
of View (FOV) of the plenoptic camera.

The location of the projection centers of an optical setup is defined
by its caustic surface, which is the loci of singularities in the flux den-
sity [27, 58]. The convergence of the rays captured by a camera at a
single point, i.e. a unique projection center, is considered a degenerate
configuration of the caustic surface (point caustic) [58]. Although there
are many techniques to derive the caustic surface, one will consider the
Jacobian method [27].

The caustic surface is defined at the points in the object space where
the ray to image mapping (E.2) is singular, i.e. the mapping from (7, 7, \)
to (x,y, z) is singular. The singularities occur at the set of points where
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the Jacobian matrix of the transformation does not have full rank, i.e.
points that make the determinant of the Jacobian vanish det (J (c (¢, 7, A))) =
0. Solving the vanishing constraint one obtains two solutions for A:

P P
AM=—2 V dg=—2 . E.3
1 . 2 B (E.3)
Replacing A\; or A\, in (E.2), one identifies the caustic profile for the
microlens camera. The caustic profile of a single microlens consists of
a line with (i) unique (x, z) and variable y components if A = \; or (ii)
unique (y, z) and variable = components if A = \y. In case \; # ), the
microlens is a non-central camera. The microlens camera corresponds
to a central camera, i.e. a camera with a unique projection center, if and
only if A\; = A9 which imply the model parameters relation
hqi h?"j
— = E.4
hui hvj ( )
Assuming this constraint and replacing A in (E.2), expanded by the ex-
pressions in (E.1), the location of the microlens projection center for a
microlens camera (k, ) is given by
hy = %hu + k(g — %hu’f)
hy = 5y + 1 (b = P2ha) | (E.5)
v] V]
hyi

P
Furthermore, considering all microlens cameras that can be defined, the
LFIM represents a coplanar grid of equally spaced projection centers.
Notice that the microlens coordinates (k,[) only affect the z- and y-
components of the projection centers while the z-component of the pro-

jections centers i1s always the same.

Pc
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Appendix F

Disparity Estimation Data Fusion

In the use of the Alternating Direction Method of Multipliers (ADMM)
instance, Split Augmented Lagrangian Shrinkage Algorithm (SALSA)
[4], one is minimizing the augmented Lagrangian relatively to the aux-
iliary variables. So, let us define each of the minimization problems in
the Algorithm 3. Expanding the equation (7.53), one has

1
£ (Z,Vl,VQ,V37V47A17A27A37A4) — 5 HY] o M] VlHi’

by 2
+ Y = VoM,

2 F
+ A\ TV (Vg, V4) +

Lz —Vi- A}

+ 212 Vo — A7+
+ 212Dy — Vs - Al

+ g 1ZD, — V, — Ay
(E.1)
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In the Algorithm 3, the first minimization problem is

(k1) . ﬁH v <k>H2 HH v <k>H2
Z Gargmzm<2 Z—-V]’ —A F+2 Z -V, — A, F+

2
N R

(F.2)

which corresponds to a quadratic problem that has the following solution

~1
7,0k — [21 +D,D? + D,D’ }

k k k k
(V§ )1 Al >) 4 (Vg N )) E3)

+ (V7 Al Df + (v + ) DT ]

The inverse does not depend on the iteration and can be computed before
entering the loop defined in Algorithm 3. The inverse can be computed
using the Fast Fourier Transform (FFT) due to the periodic boundary
conditions assumed.

The second minimization problem in Algorithm 3 is subdivided into

three minimization problems. Let us consider the minimization problem
for V; defined as

(k+1) 2

V, € arg min ( % 1Y; — M, VlHi? X g Hzmn vV, — Ag@”

Vi F

(F.4)
This is also a quadratic problem. In order to solve this problem, let
us split the variable V; using the sampling matrix M; into M;V; and
M, V;. M, is the matrix that allows to select the pixels not selected by
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M. The solution to the minimization problem is given by

1
A T R

M VlkH ~ M, (z<’f+1> ~ Ag@)

The minimization problem for V5 is given by:

2 2
w5zt - v Al
2 F
(F.6)

This minimization problem yields a similar solution to the minimization
problem (F.4) with some minor changes due to the regularization param-
eter and the sampling matrix being different

(k+1) by T
% _Hy, _
9 Carg n‘1[12n (2 ;

1

V (k+1) M (Z(k’+1) . Aék‘)> 1\_/-[2

(F.7)

The minimization problem with respect to V3 and V4 is:

V3,Vy

{VékH),VflkH)} € arg min ()\TTV (V3, Vy)

+ 220D, - vy — Al
F
2
+ g Z*D, — v, — A )
F

(F.8)

which has the solution
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(Vékﬂ)) : (Vikﬂ)) = max 1 ||C||; — ﬁ, 0 ¢ sign(C) (F9)
m m v
=221 s

where (-). . denotes the m-th column of the matrix (-),

the vector L1-norm, and

C = {(Z(k+1)Dh . Aék)) 7 (Z(lH—l)DU - Aglk)) } . (F.10)

This corresponds to the columnwise soft-threshold function. This mini-
mization problem can be efficiently computed using FFTs.
Finally, one has to update the Lagrange multipliers A:

A(1k+1) _ A<1k) (Z(k+1) V§k+1))

A;’Hl) _ A(2k) B (Z(k+1) B V;lm))

A(3k+1) _ Aék) B (Z(kH)Dh B Vélﬁ-l)) (F.11)
Aikﬂ) _ Aik) B (Z(kzﬂ)DU B ng))
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