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Title Leveraging Existing Technologies to Improve Large-Scale Recommender Systems

Abstract

Recommender Systems have as goal providing valuable recommendations to their users.

Most research on Recommender Systems aims to improve the recommendation quality ex-

clusively, while overlooking the computational e�ciency of such solutions. Although Recom-

mender Systems, based on collaborative filtering, do not have many ratings available, in this

work by strategically removing redundant ratings it is possible to o↵er a similarity metric,

that improves the computational e�ciency of Recommender Systems.

This work focus on improving the computational e�ciency of similarity metrics and en-

hance quality, using two di↵erent approaches. The first relies on Collaborative Filtering,

i.e., exclusively on ratings, to produce a computationally e�cient similarity metric for Rec-

ommender Systems. The second approach uses contextual information regarding users and

items to further improve recommendation quality, while still maintaining the same computa-

tional e�ciency. The solutions here proposed can be readily deployed on real Recommender

Systems.

The first approach methodology intends to improve similarity metrics for Memory-based

Collaborative Filtering using Fuzzy Models. Memory-based Collaborative Filtering relies

heavily on similarity metrics to produce recommendations. Fuzzy Fingerprints are used as

a framework to create a novel similarity metric, providing a fast and e↵ective solution. The

second approach also uses Fuzzy Fingerprints, and it combines contextual information with

ratings into a single Fuzzy Fingerprint, or create a multi-context Fuzzy Fingerprint where each

contextual information has its own Fuzzy Fingerprint. Each contextual Fuzzy Fingerprint

allows a ranking fusion algorithm to produce similarity values. This work is validated using

four well-known datasets which are ML-1M, HetRec 2011, Netflix and Jester.

The application of the Fuzzy Fingerprint similarity improves recommendation quality but,

more importantly, requires four times less computational resources than current solutions on

large datasets. When using contextual information, the recommendation quality improves

either by combining contextual information and ratings into a single Fuzzy Fingerprint or by

using multi-context Fuzzy Fingerprints. The solutions using contextual information achieve

further recommendation quality improvements while maintaining a comparable computa-

tional e�ciency in comparison with well-known similarity metrics.

Keywords: Recommender Systems, Memory-based Collaborative Filtering, Similarity

metric, Fuzzy Fingerprint, Computational complexity.
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Resumo

Os Sistemas de Recomendação têm como principal objetivo gerar recomendações com interesse para o

utilizador. A maioria da investigação em torno de Sistemas de Recomendação tenta exclusivamente melhorar

a qualidade das recomendações, ignorando a sua complexidade computacional. Embora os Sistemas de

Recomendação, usando filtragem colaborativa baseada em memória, não tenham ratings em abundância,

devido a esparsidade, é posśıvel ainda estrategicamente remover alguns ratings redundantes conseguindo-se

melhorar a eficiência computacional das métricas de similaridade.

Este trabalho foca-se em melhorar a eficiência computacional e ao mesmo tempo melhorar a qualidade de

recomendação. Duas abordagens são apresentadas: a primeira utilizando filtragem colaborativa, i.e. exclusi-

vamente ratings, para produzir uma métrica de similaridade mais eficiente computacionalmente; a segunda

abordagem, usa informação contextual relativamente aos utilizadores e itens, conseguindo melhor qualidade

de recomendação e mantendo ainda a mesma complexidade computacional que as métricas de similaridade

tradicionais. A eficiência computacional é um requisito deste trabalho, pois o objetivo é desenvolver um

Sistema de Recomendação capaz de integrar a aplicação em um cenário real e não ser apenas aplicável a ńıvel

acadêmico.

As abordagens desenvolvidas procurammelhorar a métrica de similaridade para Sistemas de Recomendação

de filtragem colaborativa baseada em memória, através de modelos fuzificados. A sua qualidade depende

muito da métrica de similaridade usada. Propõe-se o uso de Fuzzy Fingerprints para criar uma métrica de

similaridade capaz de produzir uma solução de rápida integração e eficiente para Sistemas de Recomendação.

A segunda abordagem também utiliza Fuzzy Fingerprint similarity, quer seja por combinar informação con-

textual e ratings numa só Fuzzy Fingerprint quer seja por criar uma multi-contextual Fuzzy Fingerprint

similarity utilizando algoritmos de ranking fusion. Este trabalho é validado usando quatro populares datasets

designados por ML-1M, HetRec 2011, Netflix e Jester.

Os resultados mostram que as Fuzzy Fingerprints conseguem melhorar ligeiramente a qualidade de re-

comendação mas mostram principalmente a sua capacidade de melhorar a complexidade computacional, que é

quarto vezes menor face as outras métricas de similaridade testadas. O uso de informação contextual permite

melhorar a qualidade de recomendação quer seja combinando informação contextual e ratings em uma só

Fuzzy Fingerprint, ou usando multi-contextual Fuzzy Fingerprints criando uma Fuzzy Fingerprint por cada

fonte de informação contextual. Estas duas soluções, usando informação contextual, conseguem melhorias na

qualidade de recomendação e a sua eficiência computacional é ainda assim comparável com outras métricas

usadas pela comunidade cient́ıfica.

Palavras-Chave: Sistemas de Recomendação, Filtragem colaborativa baseada em memória, Métrica de

Similaridade, Fuzzy Fingerprint, Complexidade computacional.
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Titulo Técnicas adaptadas para Sistemas de Recomendação de larga-escala

Resumo Alargado em Português

Os Sistemas de Recomendação têm como principal objetivo gerar recomendações com in-

teresse para o utilizador. A maioria da investigação em torno de Sistemas de Recomendação

tenta exclusivamente melhorar a qualidade das recomendações, ignorando a complexidade

computacional das soluções desenvolvidas. Embora os Sistemas de Recomendação, usando fil-

tragem colaborativa baseada em memória não tenham ratings em abundância, devido a espar-

sidade, é posśıvel ainda estrategicamente remover alguns ratings redundantes conseguindo-se

melhorar a eficiência computacional das métricas de similaridade.

Este trabalho foca-se em melhorar a eficiência computacional e, ao mesmo tempo mel-

horar, a qualidade de recomendação. Duas abordagens são apresentadas para este efeito:

a primeira utilizando exclusivamente filtragem colaborativa, i.e. exclusivamente ratings,

para produzir uma métrica de similaridade mais eficiente em termos computacionais; a se-

gunda abordagem utilizando informação contextual relativamente aos utilizadores e itens,

conseguindo mais qualidade de recomendação e mantendo ainda a mesma complexidade

computacional que as métricas de similaridade tradicionais. A eficiência computacional é

um requisito deste trabalho, pois o objetivo é desenvolver um Sistema de Recomendação

capaz de integrar um cenário real e não apenas ser aplicável a ńıvel acadêmico.

As metodologias desenvolvidas procuram melhorar a métrica de similaridade para Sis-

temas de Recomendação de filtragem colaborativa baseada em memória, através de modelos

fuzificados. Propõe-se o uso de Fuzzy Fingerprints para criar uma nova métrica de simi-

laridade capaz de produzir uma solução de rápida integração e eficiente para Sistemas de

Recomendação. A segunda abordagem explorada também utiliza a Fuzzy Fingerprint sim-

ilarity quer seja por combinar informação contextual e ratings numa só Fuzzy Fingerprint

quer seja por criar uma multi-contextual Fuzzy Fingerprint similarity utilizando algoritmos

de ranking fusion. Este trabalho é validado usando quatro populares datasets designados por

ML-1M, HetRec 2011, Netflix e Jester.

A Fuzzy Fingerprint similarity é capaz, em outras áreas, de reduzir a complexidade com-

putacional e garantir qualidade na determinação de similaridades. Este trabalho é o primeiro

a aplicar a Fuzzy Fingerprint similarity no âmbito de Sistemas de Recomendação. Para criar

uma Fuzzy Fingerprint é necessário primeiro criar uma Fingerprint. Em um Sistema de

Recomendação baseado em filtragem colaborativa, as Fingerprints são compostas por rat-

ings ordenados segundo um dado critério de ordenação. Em este trabalho testaram-se vários

critérios de ordenação pois devido às caracteŕısticas dos ratings, geralmente em uma escala

discreta compreendida entre 1 e 5, não é direta a sua ordenação. Seguindo um dos critérios de

ordenação é, então, criada uma lista ordenada de ratings para cada um dos itens. A dimensão



desta lista e reduzida a k ratings criando-se assim a Fingerprint. A cada uma das Finger-

prints é aplicada uma função de fuzificação criando-se, deste modo, uma Fuzzy Fingerprint.

As Fuzzy Fingerprints são capazes de reduzir a complexidade computacional pois o número

de ratings que as representam está limitado a um número máximo. Cada Fuzzy Fingerprint

poderá ter menos elementos que esse número máximo de elementos e, desta forma, itens que

tenham poucos ratings a descrevê-los não perdem a pouca informação que têm dispońıvel.

Com as Fuzzy Fingerprints constrúıdas é posśıvel calcular a Fuzzy Fingerprint similarity

entre dois itens a qual utiliza a Gödel t-norm entre duas Fuzzy Fingerprints.

Os resultados desta primeira abordagem permitiram garantir uma melhoria na complex-

idade computacional e em dois datasets melhorar ainda a qualidade de recomendação. No

dataset ML-1M obtém-se um RMSE de 0.8565 e uma redução de 7.8% na complexidade com-

putacional face a métrica de similaridade Jaccard mean square distance que tem um RMSE

de 0.8670. No dataset Netflix obtém-se um RMSE de 0.9490 e uma redução de 64.2% na

complexidade computacional face a métrica de similaridade Pearson correlation que tem um

RMSE de 0.9517. No dataset Jester obtém-se um RMSE de 4.0664 e uma redução de 98.4%

na complexidade computacional face a métrica de similaridade Pearson correlation que tem

um RMSE de 4.0419. Estes resultados mostraram que em datasets ricos em ratings as mel-

horias na eficiência computacional são mais fáceis de obter permitindo, ainda, uma melhoria

na qualidade de recomendação.

A segunda abordagem envolve, para além da filtragem colaborativa, a inclusão também

de informação contextual. Esta inclui a descrição dos utilizadores, a descrição dos itens,

as keywords associadas aos itens entre outras posśıveis fontes de informação. A segunda

abordagem foi alvo de várias versões e melhoramentos ao longo desta Tese.

Inicialmente, os ratings foram combinados com a descrição textual dos itens (TF-IDF)

durante criação das Fingerprints dos itens. Os resultados permitiram verificar que existem

posśıveis melhorias na qualidade das recomendações produzidas ao introduzir informação

contextual, mas a eficiência computacional é sacrificada. Os testes conduzidos no dataset

Hetrec-2011 mostram que o sistema proposto tem um RMSE de 0.757 e a métrica de simi-

laridade Jaccard mean square distance tem um RMSE de 0.787.

A segunda versão, desta segunda abordagem, propõe a criação de um Sistemas de Re-

comendação semelhante a tradicional filtragem colaborativa baseada em memória mas sem

se realizar previsão dos ratings que um utilizador atribuirá aos itens. Este Sistema de Re-

comendação cria uma lista de itens mais apropriados para recomendar ao utilizador com

base nos itens que os vizinhos mais gostaram. Estes são identificados usando a métrica de

similaridade Fuzzy Fingerprint similarity a qual tira partido da informação contextual dos

itens e dos ratings. Este Sistema de Recomendação é capaz de gerar melhores recomendações



que as soluções anteriormente desenvolvidas usando Fuzzy Fingerprints. Os testes foram re-

alizados no dataset ML-1M onde este Sistema de Recomendação consegue obter um F1-score

de 0.769 enquanto o Jaccard mean square distance apenas obtém 0.766 . Ainda assim, a

eficiência computacional do sistema proposto, não é comparável com a solução proposta na

primeira abordagem desenvolvida.

A terceira e última versão, da segunda abordagem, propõe a criação de uma métrica de

similaridade multi-contextual usando Fuzzy Fingerprints. Métrica essa que é integrada no

Sistema de Recomendação que não realiza previsão de ratings, da versão anterior. A solução

combina diferentes Fuzzy Fingerprints com diferentes fontes de informação contextual usando

um algoritmo de ranking fusion. Esta versão obteve a mais alta precisão de todas as soluções

apresentadas nesta Tese. A sua precisão é de 0.637 enquanto o Jaccard mean square distance

apenas consegue uma precisão de 0.621. A eficiência computacional da métrica de similar-

idade multi-contextual usando Fuzzy Fingerprints é comparável à eficiência computacional

da similaridade de coseno ou Pearson correlation que não utilizam informação contextual.

Esta terceira versão apresenta resultados promissores quer para melhorias significativas em

termos de qualidade de recomendação quer para melhoria da eficiência computacional. Tal

como se observou na primeira abordagem no dataset ML-1M as melhorias na eficiência com-

putacional estavam limitadas pelo número de ratings, utilizadores e itens. Será interessante

a aplicação das ideias da segunda abordagem a datasets de maiores dimensões pois será es-

perado uma maior margem de melhoria da eficiência computacional, tal como se verifica no

datasets Netflix e Jester.

Em conclusão, os resultados mostram que a aplicação das Fuzzy Fingerprints no âmbito

de Sistemas de Recomendação permite melhorar ligeiramente a qualidade de recomendação

mas, principalmente, a capacidade de ter uma maior eficiência computacional, face a out-

ras métricas de similaridade testadas. O uso de informação contextual permite melhorar a

qualidade de recomendação quer seja combinando informação contextual e ratings numa só

Fuzzy Fingerprint, ou usando multi-contextual Fuzzy Fingerprints. Porém, a utilização de

informação contextual permite melhorias na qualidade de recomendação em detrimento de

alguma eficiência computacional segundo as experiências até agora realizadas nos datasets

ML-1M e Hetrec-2011. Ainda assim, é totalmente comparável com outras métricas usadas

pela comunidade cient́ıfica esperando-se que, com a utilização de datasets maiores como o Net-

flix, seja posśıvel melhorias da eficiência computacional similares às obtidas com a primeira

abordagem deste trabalho.

Palavras-Chave: Sistemas de Recomendação, Filtragem colaborativa baseada em me-

mória, Métrica de Similaridade, Fuzzy Fingerprint, Complexidade computacional.
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Chapter 1

Introduction

The field of Recommender Systems (RS) has significantly been affected by
the continuous growth of the Internet, which boomed with the appearance
of search engines and is now part of our society. Most Recommender Sys-
tems rely heavily on similarity metrics to generate quality recommenda-
tions. Many fields besides Recommender Systems also take advantage of
similarity metrics, for example, search engines, image classification, data
mining, among others. In the context of Recommender Systems, similarity
metrics are optimized to compare items or users. This work concerns the
use of similarity metrics that exploit information such as ratings, item de-
scriptions, and keywords, to provide recommendations using techniques
similar to current Recommender Systems but requiring less computational
resources. This Chapter discusses the relevance of Recommender Systems
and Fuzzy Fingerprints, the goals and contributions of this Thesis, and
concludes with a brief overview of the contents of each Chapter.

1.1 Recommender Systems

Users of the digital world are overloaded with information [1]. Nowadays,
Recommender Systems provide a solution to those that, regularly, rely on

1
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services such as video and audio streaming, online shops, hotel booking,
restaurant search, job offers, among others. Recommender Systems allow
us to cope with this large amount of information, by cataloging a vast list
of items, that later can be recommended. These recommendations can be
determined by a large number of techniques, as highlighted by the scien-
tific community [1, 2]. In fact, due to their success, Recommender Systems
can be found in several services [3].

In general, a Recommender System (RS) works by collecting informa-
tion from its users on a given set of items [4]. This information can be
explicit (e.g. ratings) or implicit (e.g. frequency of a mouse clicks on an
item). Recommender Systems (RSs) can also rely on contextual information
sources, such as item descriptions, temporal information, demographic
information, social information, among others [4]. With such information,
the system should be able to provide valuable recommendations, filtering
through the overload of information by bridging users preferences profiles
and comparing them to others.

Having these techniques allows the RSs to discover new items that
might please the user, among the diversity of items available. Some com-
panies, such as Amazon, eBay, Netflix, and LinkedIn, are current examples
of services that benefit from providing recommendations to their clients [3,
5, 6]. As a result, much research has been done in the area, contributing to
the development of new techniques to improve recommendations, help-
ing to increase the RS providers’ income. Note that these companies have
requirements such as provide valuable recommendations; and being prof-
itable, which sometimes can be conflicting. In this Thesis, only considers
the first requirement.



1.2. COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS3

1.2 Collaborative filtering based Recommender
Systems

Despite the efforts to improve RSs, there are still challenges to be ad-
dressed. For example, turning state-of-art solutions into real-world sce-
narios is still difficult, mainly due to a large amount of available data and
the scalability issues that ensue [7, 8]. For this reason, more traditional ap-
proaches, such as item-based Collaborative Filtering (CF) are still the most
widely used [9, 10, 11]. Regardless of its simplicity, CF can provide quite
accurate results, thus yielding an advantageous trade-off between engi-
neering effort and user satisfaction.

CF exploits how humans make decisions. As users provide ratings to
a plethora of items, such information is stored in a rating matrix. These
stored ratings create patterns that allow computing similarity values be-
tween items, via a similarity metric. In general, CF systems then compute
rating predictions based on the similarities between items. The rating pre-
dictions are used to generate recommendations to users. Provided that
there is enough collected information, the RS can find items similar to
those a user like [4].

In CF systems, the issue of scalability is related to the need to compute
similarities between a high number of items in the database. The used
similarity metrics can introduce a high load, as the number of users and
items grow, thus reducing their applicability for real-world services [12].
To solve this, two complementary types of solution are often proposed.
One is to provide scalability by distributing the storage and computational
cost over several machines [13, 14]. The other is to devise computationally
efficient similarity metrics [15, 16, 17], in which this Thesis focuses. Dif-
ferent approaches have also been proposed to improve computational effi-
ciency. In [15], for example, the goal is to speed up the k-nearest neighbors
algorithm using a hardware-based similarity function. Its use allows for



4 CHAPTER 1. INTRODUCTION

a computation approximately twice as fast than a traditional metric. Au-
thors in [16] represent items and their biases in a Euclidean space that pre-
serves the item consumption patterns. This embedding representation ap-
proach can retrieve similar items faster from a Euclidean space, as shown
by experiment results. However, in this Thesis a Fuzzy Fingerprint simi-
larity function is used to improve the computational efficency of RSs.

1.3 Fuzzy Fingerprints

The concept of Fuzzy Fingerprints has its roots in Fuzzy systems. Although
there are RSs using Fuzzy systems, this Thesis is the first where Fuzzy
Fingerprints are applied in the context of RSs.

A Fuzzy Fingerprint (FFP) is a top-k list to which is applied a fuzzi-
fying function. The key information in an FFP is the ranking of the list
and not the actual weights of each element [18]. Fuzzy Fingerprints can be
compared using a Fuzzy Fingerprint similarity function. The proper for-
mation of the top list of features in the FFP, and the application of a proper
membership function enables to improve the information used by the sim-
ilarity metric, consequently reducing the number of features used [19] and
thus speeding up the similarity computation.

Fuzzy Fingerprints have been used on other domains, such as text au-
thorship identification [20], identifying mobile users based on call logs [19],
topic detection for micro-blogging (e.g. Twitter posts) [21], text classifica-
tion into categories [18], and event determination using sparse textual in-
formation [22]. FFPs were used in contexts where its features result from
textual information or logs, and the data is on a continuous domain. For
example, in [19] and [22] FFP features are composed of statistical infor-
mation derived from words in a text (TF-IDF values), whereas in [19] FFP
features are derived from call logs from each user, these call logs are or-
dered starting with the most frequently called number to the least frequent
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called number. Due to the proprieties of RSs, and more specifically ratings
on CF, the existing information is on a discrete scale. This raises differ-
ent challenges than previous solutions using FFPs on other domains. As
stated above the ranking of the top-k list of features is crucial for the suc-
cess of FFPs. This Thesis addresses these challenges and exploits the capa-
bilities of FFPs and FFP similarity, to create a better performing similarity
metric, in both computational efficiency but also recommendation quality.

1.4 Objectives and Contributions

This Thesis addresses the following research question: Is it possible to im-
prove traditional CF methods using contextual information sources without in-
creasing computational complexity? This question can be answered by test-
ing the following hypothesis:

• Develop efficient similarity functions to reduce the computational
complexity of current CF solutions without impacting the recom-
mendation quality.

• Use the developed similarity functions to combine information from
other sources and improve the quality of recommendations while
still maintaining low computational complexity.

To address these issues, a novel similarity metric is proposed for Rec-
ommender Systems, using the concept of Fuzzy Fingerprint (FFP) [20],
more specifically, representing items by their low-dimensional Fingerprints.
These can then be directly used to determine similarities between items,
instead of the higher dimensional raw set of item ratings commonly used
in RSs. Although FFPs are a compact representation, i.e. they require re-
moving some information from the full feature vector, FFPs present sev-
eral characteristics that are fundamental for RSs:
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• minimal number of features to represent an item (or user), in com-
parison to the original feature vector;

• easy to create and update, as new data enters the RS;

• there is a maximum size for each FFP, thus as new data enters the RS,
the increase in computational complexity is limited;

• faster than traditional similarity metrics;

• the FFP of each item (or user) is independent, which allows for easy
integration of new users to the system;

• it requires a minimal implementation effort.

These characteristics make FFPs an appropriate technique for achiev-
ing the goals of this Thesis, i.e. the development of a similarity metric able
to require less computational resources than current solutions, and incor-
porate different sources of features while outperforming existent similar-
ity metrics.

To demonstrate these claims, experiments were performed on four data-
sets. Results show that FFPs are a promising route to be applied for recom-
mendations, requiring from 23% through 95% fewer iterations to compute
the similarities for a rating prediction, depending on the density of the
dataset. This improvement is achieved while maintaining a comparable
quality of results, varying from a loss of 0.0241 through a gain of 0.0105 in
Root Mean Square Error (RMSE), which combined with an improvement
of computational efficiency is a worthy trade-off.

1.5 Organization of this work

The first part of this work, Chapters 1, 2, 3 provide background on RSs
and Fuzzy Systems. Chapter 2 contains an overview description of RSs,
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the existing filtering techniques, focusing more on the explanation of tra-
ditional memory-based CF and its key components, followed by a broad
overview of Fuzzy Systems, with an explanation of their key characteris-
tics and their applications. Chapter 3 provides a literature review for RSs
with the particular focus on computational efficiency improvement, simi-
larity metrics, and how Fuzzy systems have been used in RSs. It finishes
with the literature review of Fuzzy systems and Fuzzy Fingerprints.

In the second part of this work, Chapters 4 and 5 are composed by ap-
plication of Fuzzy Fingerprints on RSs detailing its challenges, develop-
ment, and solutions produced. Chapter 4 details the application of Fuzzy
Fingerprint to RSs. A newer approach that reformulates previous Fuzzy
Fingerprint solutions applied to other domains. Chapter 5 starts by pro-
viding extensive details regarding the evaluation process, which includes
quality metrics, datasets, and framework used. Afterwards, it presents a
series of results discussing the quality of recommendations and the com-
putational complexity of the proposed solutions.

Finally, Chapter 6 draws conclusions and a final analysis of the results
of this Thesis. This research left some questions opened which is how this
document ends, with a proposal of future work.
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Chapter 2

Basic Concepts

On this Chapter, an overview of Recommender System (RS) and Fuzzy
Systems is given. RSs have used different filtering techniques over the
years. Section 2.2 provides an overview of these. The most broadly used
filtering technique is called Collaborative Filtering (CF), Section 2.3 con-
tains an extensive and detailed explanation of different CF approaches.
One of these approaches is Memory-based CF, more specifically item-bas-
ed CF, Section 2.4 explains traditional item-based CF, how to produce rec-
ommendations, compute rating predictions and determine similarity met-
rics. Another technique is Content-based filtering also widely popular on
RSs, it uses descriptive information about the item and users. Such in-
formation is exploited by the RS, either as an alternative to CF, but more
often combined with CF. Section 2.5 explains how Content-based filter-
ing works, and its most common elements. Section 2.6 examines different
approaches to create a hybrid filtering RS and how filtering techniques
discussed in Section 2.2 can be complementary to provide better recom-
mendations to users. This Chapter concludes with Section 2.7 about Fuzzy
Systems. Its basic concepts are shown, starting with an overview of the do-
mains in which it has been applied, followed by an explanation of Fuzzy
sets and T-norms. It then ends with how Fuzzy Systems can be applied for

9
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RSs.

2.1 Principles of Recommendation Systems

A Recommender System (RS) helps users to find items that correspond to
their preferences. This provides an interesting tool for both users and e-
commerce providers, as users discover new items and e-commerce provid-
ers can increase their revenues. For this reason, the demand for RSs has
only increased, allowing users to deal with large amounts of data and pro-
viding them with a selection of personalized recommendations, services,
and contents [4]. As a result, various techniques have been developed
and studied by both the scientific community and service providers [4, 23,
24, 25]. The scientific community has mostly focused on increasing the
quality of recommendations [16, 26]. The problem is that some of these
solutions are computationally demanding and are engineering challeng-
ing for real-world applications. Nowadays, cloud computing alleviates
the computational complexity but does not solve it completely.

Recommendation Systems started by helping users distinguish between
relevant and irrelevant emails, in a work that coined the term Collaborative
Filtering (CF) [27]. Users would provide feedback (relevant/non-relevant)
for the emails and, after a few interactions, the system was able to classify
emails as relevant or non-relevant for the remaining users.

A Recommendation System traditionally relies on two entities: the
users and the items, these share a relation between each other, described
as an interaction. Items can be many things, such as movies, music, restau-
rants, job offers, products from a website, among other possibilities. The
interactions between users and items generate a large set of tuples that
can be represented as (user, item, interaction) triplets. Such a set can be al-
ternatively represented as a sparse matrix where each user corresponds to
a row, an item to a column, and each entry is the interaction between the
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two. These interactions can be explicit, such as quality ratings, or implicit
such as mouse clicks.

A RS can store both implicit and explicit feedback. Youtube is a good
example having the like and dislike button while at the same time tracking
which videos (and for how long) have been watched, by each user. Some
systems exploit implicit feedback, for example, Amazon or eBay use the
browsing pattern from users (via searches and clicked items), Spotify ex-
ploits if a user keeps skipping specific type of songs and listens to other
types until the end1. Implicit feedback is considered as a mean to provide a
sentiment toward an item without user intervention. Nowadays, research
is increasing to improve implicit RSs. In 2017, Recsys released a challenge
to improve job RSs in collaboration with XING2. In this challenge, partici-
pants are tasked with predicting which jobs (items) have been clicked, jobs
that users applied to, and should take into account if it was a premium job
listing, as these premium job listings are a source of income for XING.
This challenge was more focused on short-lived items since job listings are
short-lived in a RS context. This problem is focused on cold-start problems
making this challenge more suited for Content-based filtering.

In 2019, the challenge is co-organized with Trivago3. Participants are
tasked with predicting which accommodations (items) have been clicked
in the search result during the last part of a user session, in an offline eval-
uation setup.

Explicit feedback requires the user intervention, by actively providing
a measurable sentiment toward an item, e.g. rating a movie in IMDB or
Netflix. The matrix that stores these ratings as interactions between users
and items is known as Rating Matrix in which Collaborative filtering ap-
proaches rely on. This Thesis focuses only on explicit interactions.

1Information obtained from http://www.cp.jku.at/tutorials/mrs_recsys_2017/
on 21 December 2018

2XING: http://www.recsyschallenge.com/2017/ Accessed in 15-01-2019.
3Trivago: http://www.recsyschallenge.com/2019/ Accessed in 15-01-2019.

http://www.cp.jku.at/tutorials/mrs_recsys_2017/
http://www.recsyschallenge.com/2017/
http://www.recsyschallenge.com/2019/
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Figure 2.1: Filtering techniques used in Recommendation Systems.

2.2 Overview of Recommendation techniques

The idea behind CF is exploiting the preferences of a community. A RS
can, however, follow different strategies. Figure 2.1 illustrates the most
common filtering techniques used by RSs.

Model-based CF generally, relies on supervised machine learning to
perform rating prediction [28]. Some models also perform rank prediction
and try to identify how related a user is to each item, skipping the rating
prediction stage [29]. These supervised machine learning algorithms have
two phases: (1) Learning phase: where the latent features are fine-tuned to
improve the overall performance of the RS, generally by minimizing the
root squared error between rating predictions and the actual ratings. (2)
Prediction (or recommendation) phase: where the model is already trained
and able to provide rating predictions and recommendations to its users.
The learning phase is the most computationally expensive. Model updates
are achieved either by using an online approach, where the learning and
prediction phases concurrently occur, or through a periodic model retrain-
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ing to incorporate new ratings, e.g. after a certain threshold of new ratings
has been registered.

One of the most common Model-based CF approaches is Matrix Fac-
torization [30], since it was applied with great success on the Netflix chal-
lenge [31]. Matrix Factorization performs a decomposition of the rating
matrix into two latent matrices, where one represents users based on la-
tent features, and the other represents items based on their latent fea-
tures [32]. These matrices are determined using optimization algorithms,
such as stochastic gradient descent or alternating least squares.

Content-based filtering infers the correlation between the attributes of
items and users. These attributes usually result from the description of an
item such as its textual description or keywords associated with it. Users
provide information by creating a profile rich with attributes, that can be
compared to the items and exploited by the RS to generate valuable rec-
ommendations.

Hybrid filtering consists of a combination of different filtering tech-
niques that often result in an improved recommendation quality, since rec-
ommendations are generated based on richer information regarding items
and (or) users. Hybrid filtering techniques usually rely on CF combined
with one or more filtering techniques that enrich the RS with contextual
information.

Social filtering uses the community social network to infer a correla-
tion between users, often to complement CF information, reducing data
sparsity and the cold-start problem [33, 34]. The use of a social network
allows improving the neighborhood formation of a traditional CF system,
an essential component of memory-based CF [35]. Since CF does not work
well for items and users with few ratings available [4], the use of an ex-
isting social network by, for example, using the degree of trust between
peers, provides contextual information that helps to improve recommen-
dations. Both Content-based and Social filtering help increase the infor-
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mation available regarding users and items. It is by exploiting this in-
formation and combining it with CF that Hybrid filtering achieves better
performing RSs.

2.3 Collaborative Filtering

Most Recommendation Systems rely upon Collaborative Filtering (CF),
since it provides good quality recommendations and its implementation
cost is low. CF relies on community knowledge and experience to bet-
ter infer recommendations. CF can be split into two main categories: (1)
Memory-based: an approach that computes similarities between items (or
users), then predicts ratings for user-item pairs; (2) Model-based: an ap-
proach that relies on machine-learning algorithms to predict ratings, of-
ten resulting from the computation of latent features between variables.
The Model-based approach is nowadays more supported by the scien-
tific community, highly focused on comparing the recommendation qual-
ity between proposed solutions and often overlooking the computational
requirement of such solutions in real-world applications [15].

Memory-based CF is split into two main approaches: (1) user-based,
which compares users and tries to determine similarities between them;
and (2) item-based, that measures the similarity between items instead.
More specifically, user-based CF compares users to create groups of simi-
lar users (neighborhoods), using these to compute rating predictions for a
given (user, item) pair. It relies on the degree of similarity between neigh-
boring users. Item-based CF, on the other hand, creates neighborhoods of
items producing predictions for (user, item) pairs also, but now depending
only on comparing items that the user previously rated. Item-based has
several advantages, since a RS usually has more users than items, and the
computation of rating predictions relies on similarity metrics, causing the
number of similarities to be computed to be much higher for user-based
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than for item-based approaches.

This Thesis focuses on item-based approaches. The main advantage
of item-based CF is its scalability in comparison to user-based CF. In well
established real-world RSs, the number of users is far higher than items.
This is highly relevant because a higher number of users also means a
higher number of similarities to be computed. To illustrate, consider the
dataset provided by Netflix (see Chapter 5) contains 20 000 users and 1 700
items. With a user-based approach, 399 980 000 similarities would have to
be computed, as opposed to an item-based CF which would only need
to calculate 2 888 300 similarities, approximately 138 times less. Besides,
item-based CF approaches, in general, allow for better recommendations
to be obtained, when compared to user-based CF, which makes it also
preferable to use [10].

To address the high number of similarities to be computed and the fact
that these are continually changing, a straightforward solution is to pre-
compute similarities, which can be later updated with a given periodicity.
This Thesis presents a less computationally demanding similarity metric
that, while delivering good results, allows to improve the computational
efficiency of such updates.

CF systems usually store the ratings given to items by users in a so-
called rating matrix. They rely on such ratings to determine similarities
between items (or users), through the use of a similarity metric. This al-
lows the creation of neighborhoods of similar items (or users), to predict
new ratings and consequently to be used by the recommendation strategy.
Figure 2.2 illustrates the architecture of traditional Collaborative filtering
with users, interface, rating matrix, similarity metric, prediction metric,
and recommendation strategy.

Users of a RS interact with it via the user interface. The user interface
(e.g. website or a mobile app) is responsible for being the intermediary
between the RS and the user. Either by collecting ratings from users on
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Figure 2.2: Memory-based Collaborative filtering.

items, as by providing recommendations to users. Using the ratings from
its users, the RS builds the rating matrix, in the example of Fig. 2.2 items
correspond to movies. It is by leveraging the rating matrix that both the
similarity metric and rating prediction generate their results. A memory-
based CF uses, exclusively, the similarity metric to compute similarities
between items (or users). Rating predictions require the computation of
similarities using the similarity metric and the rating matrix. Relying on
the quality of rating predictions, the recommendation strategy generates
sets of items to recommend to each user.

2.4 Memory-based Collaborative Filtering

Memory-based Collaborative filtering traditionally performs the follow-
ing tasks to create recommendations: (1) compute the similarity between
items (or users) depending on the used approach; (2) predict the possible
rating that a user attributes to an item; (3) recommendation generation of
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items to a user. This Section explains how this is achieved and provides
formulas and calculation examples, for each.

2.4.1 Recommendation Strategy

The most simple and commonly used recommendation strategy is to sort
rating predictions placing the highest rating predictions first. Assuming
that only seven items exist in the RS, and that user v has already rated
items x and y, and a set of item rating predictions r̂vi were generated by a
rating prediction formula. This set of rating predictions could be as illus-
trated in Fig. 2.3.

i a b c d e
r̂vi 3.3 4.2 4.8 3.5 2.5

Figure 2.3: A set of rating predictions r̂vi for user v.

Since RSs can generate a vast number of rating predictions, there should
be a limit of the number of recommendations made to a user. In this ex-
ample, if the maximum number of items to recommend is set to 3, the
resulting recommendations would be items c, b and d. This is an impor-
tant aspect since depending on the application of a RS more than ten or
twenty recommendations could be too much for the user. The RS’s goal is
to alleviate and filter through the overload of item possibilities.

2.4.2 Rating prediction

To generate recommendations, rating predictions need to be computed for
all items not rated by the user. The rating prediction formula is obtained
using the neighborhood resulting from the similarity metric. More specif-
ically, let brvi be the predicted rating that a given user v would assign to
item i. Starting by computing the neighborhood Ni(v) of item i , i.e. the
set of n items in the database that are more similar to i. To determine



18 CHAPTER 2. BASIC CONCEPTS

Ni(v), the similarity between the item i and all other items rated by the
v must be computed. The process is performed by computing the simi-
larities and then ranking them from the most similar to the less similar.
Figure 2.4 shows an example of a set of similarities between item i and all
other items.

i a b c d e
sim(i, j) 0.71 0.30 0.81 0.41 0.9

Figure 2.4: Similarities between item i and other items rated by user v.

The neighborhood is determined by ranking these items in Fig. 2.4. The
resulting ranked neighborhood is e, c, a, d, b. Ranking the neighbors of i is
important, since depending on the memory-based CF approach used [35],
the number of neighbors used to generated rating predictions can be trun-
cated either by: (1) setting maximum of neighbors; or (2) establishing a
minimum similarity value to be considered a neighbor. The most common
way to truncate the number of neighbors is to set the maximum number
of neighbors and to fine-tune the RS according to an evaluation criteria.

With a known neighborhood of items, the value of brvi can be com-
puted [35, 36] using, for example, the average algorithm (Eq. 2.1), weighted
average algorithm (Eq. 2.2), or the adjusted weighted method (Deviation-
from-mean) (Eq. 2.3).

brvi =
Âg2Ni(v) rvg

|Ni(v)|
(2.1)

brvi = gvi Â
g2Ni(v)

sim(i, g)⇥ rvg (2.2)

brvi = r̄i + gvi Â
g2Ni(v)

sim(i, g)⇥ (rvg � r̄g) (2.3)

where rvg is the rating assigned by user u to item g, r̄x is the average of all
ratings assigned to item x and gui is the normalization factor defined as:
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gvi =
1

Âg2Ni(v) sim(i, g)
(2.4)

The average algorithm (Eq. 2.1) is an average of ratings of the neighbor
items of item i. It is an extremely simplified approach to generate rating
predictions. Note that Eq. 2.1 uses the similarity metric as it is required to
compute the neighborhood Ni(v). The weighted average algorithm (Eq. 2.2)
is an improved version of the average algorithm. It uses the similarity
metric to balance the relevance of each neighbor rating and is normalized
using Eq. 2.4.

The last alternative to compute rating predictions, and the one used
in this Thesis, is the adjusted weighted method (Deviation-from-mean)
(Eq. 2.3), due to the better results obtained on experiments. Being an im-
provement over the weighted average algorithm, it accounts for the aver-
age rating of each item and how much a user enjoys or dislikes an item in
relation to its average rating. As in the weighted average algorithm, rat-
ings are also weighted by the similarity metric. The sum of this operation
for all the neighbors, after being normalized, estimates how much the user
is expected to like an item.

Rating prediction formula in Eq. 2.3 uses the average rating of the item,
yet a vast number of combinations can be applied [31]. The value r̄i refers
to the average of the community rating on that given item, but the average
rating of the user r̄v and the global average rating of the rating matrix
can also be used on Eq. 2.3. Nevertheless, as a rule of thumb, item-based
approaches use r̄i and user-based approaches use r̄v.

To generate recommendations for a user u, rating predictions are com-
puted for all items not evaluated by the user. For example, in Fig. 2.5 item
i can be recommended to users a and e, as the rating vector has no rating
from them.
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u a b c d e
rui - 3 4 1 -

Figure 2.5: Rating vector of users on item i. Users a and e have not rated
item i.

2.4.3 Computing similarities

Some of the most common similarity metrics used in RSs are Cosine simi-
larity (COS) and the Pearson Correlation (PC) [6].

u a b c d e
rui - 3 4 1 -
rug 5 2 - 3 3

Figure 2.6: Rating vectors of item i and item g.

Figure 2.6 illustrates an example of two rating vectors from items i and
g. It is used to explain how the similarities are computed between two
items.

The Cosine similarity (COS), as defined in Equation (2.5), is the angle
formed between two vectors.

simCOS(i, g) =
Âu2U ru,i ⇥ ru,gq

Âu2U r2
u,i ⇥

q
Âu2U r2

u,g

(2.5)

Results from the inner product between both items i and g normalized
by their L2-norm, over the users in U that rated both movies. It yields a
value between 0 and 1, where 0 corresponds to no similarity between them
and 1 to exactly proportional ratings between both users. Using the rating
vectors from Fig. 2.6 the COS value between the two items is computed as
follows:

simCOS(i, g) =
3 ⇥ 2 + 1 ⇥ 3p

32 + 12 ⇥
p

22 + 32
=

6 + 3p
10 ⇥

p
13

= 0.789 (2.6)
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Another metric often used as a similarity measure is the Pearson Cor-
relation. This coefficient has been widely used in RSs, since it is simple to
implement, intuitive and provides fair quality results [37]. PC is defined
in Eq. 2.7. It results from the inner product between i and g, normalized
by the average rating of each item. The inner product between the two is
then normalized by the square root of the product of the variance of from
two items.

simPC(i, g) =
Âu2U(ru,i � r̄i)⇥ (ru,g � r̄g)

p
Âu2U(ru,i � r̄i)2 ⇥

q
Âu2U(ru,g � r̄g)2

(2.7)

The result of Eq. 2.7 is within the interval [�1, 1], where �1 corresponds
to an inverse correlation and +1 to a positive correlation. Values near zero
show that no linear correlation exists between the two items.

Using the rating vectors from Fig. 2.6 the PC value between the two
items is computed as follows:

simPC(i, g) =
(3 � 2)⇥ (2 � 2.5) + (1 � 2)⇥ (3 � 2.5)p

(3 � 2)2 + (1 � 2)2)⇥
p
(2 � 2.5)2 + (3 � 2.5)2

= 0.44353

(2.8)
Note that RSs have rating matrices with high sparsity and therefore

the vector of each item is also sparse. Thus, in both cases, similarities are
computed using only existing ratings with respect to each item.

2.5 Content-based Filtering

The roots of Content-based filtering are from Information Retrieval [38],
due to the earlier development of search engines. Search engines rely on
text, which is represented using words. Likewise, Content-based filtering
represents items using their textual description and keywords. It relies on
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the description of interests of the user to determine the degree of interest
on an item. It is composed of three general components [39]: (1) Content
analyzer: pre-processing step to transform unstructured data (e.g. text)
into structured data using approaches such as TF-IDF representation [28];
(2) Profile learner: collects data from the content analyzer component, to
represent users or items profiles; (3) Filtering component: exploiting the
users’ profiles and items, to then match them and generate recommenda-
tions.

Instead of users ratings to represent items, textual descriptions, e.g.
movie synopsis or keywords are used to represent the item. Term Freq-
uency-Inverse Document Frequency (TF-IDF) is a common approach to
create a Content analyzer responsible for transforming unstructured data
into structured data that can be compared programmatically. The value
of TF-IDF corresponds to how relevant is a term of an item taking into
account not only the relevance of the word in the given item but also in
the collection of items. TF-IDF weights of each term w.r.t. each item is
obtained by computing the Term Frequency (TF) multiplied by the Inverse
Document Frequency (IDF). TF is the frequency of a term, in this Thesis a
word w, for a given item i and is computed using Eq. 2.9.

t fi,w =
fi,w

Âi02I fi0,w
(2.9)

The number of occurrences of the word w in the item i is represented
by fi,w, where w correspond to a given word within the dictionary W, and
I corresponds to the collection of existing items. The IDF of a word reflects
how frequent is the word within the collection of items. The computation
of the IDF is done using Eq. 2.10.

id fw = log
✓

|I|
|i 2 I : w 2 W|

◆
(2.10)

To obtain the TF-IDF of a word in a given item Eq. 2.11 is used.
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TF-IDFi,w = t fi,w ⇥ id fw (2.11)

Profile learner approaches such as clustering techniques (e.g. k nearest
neighbors [4]) exploit structured representations of items and can compare
and establish neighborhoods of items that later can, with the use of a fil-
tering component, provide a selection of recommendable items to a user.

Content-based approaches have drawbacks since they are limited by
(1) reliability of contextual data and if this data contains enough infor-
mation, but also the use of other sources of information such as images,
videos or manual keywords attribution is very time and resource consum-
ing; (2) profile learning approaches can become overspecialized since rec-
ommendations only occur due to the high similarity between users profile
and item representation. Also, diversity is hard to incorporate due to this
property. Content-based approaches shine when new users join a RS, i.e.
when users show a preference for a few items, which are not enough for
CF to generate good recommendations, but enough for content-based fil-
tering approaches.

On Content-based approaches it is highly unlikely that new informa-
tion to improve the representation of items is added, e.g. a description of
a movie or the description of products on an online shop will not change
over time. Due to these limitations, Content-based approaches are com-
monly used in conjunction with CF approaches, leading to Hybrid filter-
ing solutions.

2.6 Hybrid Filtering

The use of Hybrid filtering aims to provide more contextual informa-
tion to the RS, this extra information allows to, generally, improve recom-
mendation quality. A RS using Hybrid filtering can be implemented using
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different approaches. This Section discusses each one of these approaches
briefly.

Most approaches using Hybrid filtering aim to compensate for the lim-
itations of different filtering techniques. The most straightforward ap-
proach is weighting [40], where each filtering technique produces a rat-
ing prediction or recommendation and, given certain weighting criteria,
rating predictions or recommendation are generated resulting from the
weighted combination of these filtering techniques.

Another simple approach involves switching the filtering technique [40].
This approach requires a criteria to decide when to switch to other filtering
technique, e.g. when one filtering technique is not producing valuable rec-
ommendations anymore. A different filtering technique should be able to
produce different recommendations to a user than the previous technique.

A mixed Hybrid filtering technique can also provide diversity to rec-
ommendations [40]. The aim of such approaches is to compensate for
the limitations of different filtering techniques by generating recommen-
dations, where part of the items are generated from a content-based ap-
proach, other part generated by a CF approach and another part by a so-
cial filtering approach. The recommendations could be an aggregation of
the three filtering techniques, this approach allows the creation of a large
number of recommendations and avoids a possible overspecialization of
a particular technique.

Hybrid filtering through feature combination [40] is the technique used
in this Thesis. The technique requires the combination of different sources
of information e.g. ratings and textual data, for a single model use to both
without distinguishing between them.

Cascading is also a popular approach [40], where a filtering technique
creates a set of recommendations. Then, the next filtering technique im-
proves and modifies the recommendations created by the previous ap-
proach, leading, in the end, to an expected better set of recommendations
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for users.
Feature augmentation is also a Hybrid filtering technique [40]. These

systems use one filtering technique that creates, e.g. rating predictions.
These ratings then join the actual ratings, into the rating matrix to be used
by other filtering technique to produce recommendations.

2.7 Fuzzy Systems

Since the creation of fuzzy logic, Fuzzy systems have been a focus of con-
tinuous research [41]. Fuzzy systems are computational systems based on
fuzzy logic [41]. Fuzzy systems are based on a mathematical model that
creates a trust value representation that accommodates continuous values
between 0 and 1, as opposed to the boolean logic, which uses only true
and false. This is why fuzzy logic has a broad scope of applicability, such
as pattern classification or information processing [42].

Fuzzy sets are the core element of fuzzy logic. Proposed and defined in
1965, by Lotfi Zadeh [42], a Fuzzy set characterizes a class of objects within
a continuum of grades of membership (characteristics), using a function
that assigns to each object a degree of membership ranging from 0 to 1 on
a continuous scale. It allows for a natural way of representing problems
that have imprecision on membership representation of the data.

Let X be a space and x an arbitrary element of X thus X = {x}. The
fuzzy set (class) A in X is represented by a membership function fA(x).
A membership function associates to any x a real number in [0, 1], where
fA(x) is the degree of membership of x in class A. In its ordinary form,
the closer to 1 the value of fA(x) the more x belongs to class A. On the
contrary, the closer to 0, the less it belongs, according to the membership
function used to characterize class A. The notion of the membership func-
tion is entirely none statistical [42]. The step when x is transformed from
space X into space A using fA(x) is also known as the fuzzyfication of x.
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trim f (x; a, b, c) = max
✓

min
✓

x � a
b � a

,
c � x
c � b

◆
, 0
◆

(2.12)

trapmp(x; a, b, c, d) = max
✓

min
✓

x � a
b � a

,
d � x
d � c

◆
, 0
◆

(2.13)

gaussm f (x; a) = e
1
2(

x�a
s )

2
(2.14)

gbellm f (x; a, b, c) =
1

1 +
�� x�c

b
��2a (2.15)

There are infinite possibilities for membership functions, and its correct
selection depends on its application. Examples of commonly used mem-
bership functions are triangular (Eq. 2.12), trapeziodal (Eq. 2.13), gaussian
(Eq. 2.14), and generalized bell (Eq. 2.15). Figure 2.7 illustrates these mem-
bership functions responsible for creating a fuzzy set. During this Thesis,
membership functions are not combined, although it is possible to do so
with two or more functions [43].

Having two fuzzy sets, it is possible to compute the t-norms (inter-
section) and t-conorms (union). A triangular norm is a binary operation
T : [0, 1]2 ! [0, 1], and for all x, y, z 2 [0, 1]. The following properties
apply:

• commutativity: T(x, y) = T(y, x);

• associativity: T(x, T(y, z)) = T(T(x, y), z);

• monotonicity: T(x, y)  T(x, z), if y  z;

• boundary condition: T(x, 1) = x;

Two popular triangular norms are Gödelian minimum and Product.
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Figure 2.7: Membership functions: triangular (Fig. 2.7a), trapeziodal
(Fig. 2.7b), gaussian (Fig. 2.7c), and generalized bell (Fig. 2.7d).
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The Gödelian minimum triangular norm has the intersection operator
i.e. t-norm TM(a, b) = min(a, b) and the union operator i.e. t-conorm
CM(a, b) = max(a, b).

The Product triangular norm has the t-norm TP(a, b) = a ⇥ b and its
union operator i.e. t-conorm is CP(a, b) = a + b � a ⇥ b.

This Thesis relies on Gödelian minimum to form a similarity metric
based on fuzzy logic, i.e. the Fuzzy Fingerprint similarity. This Section
focused exclusively on topics relevant to the scope of this Thesis.

2.8 Ranking Fusion and Learning to rank

Ranking Fusion and Learning to rank are two techniques that aim to solve
ranking problems. The most widely known application is ordering query
results in a search engine. A search engine is responsible for, given a query,
retrieving a list of documents. These documents need to be ranked regard-
ing the relevance for that query.

2.8.1 Ranking Fusion

The goal of Ranking Fusion is when having a set of different ranked lists
generated by different approaches, combine them into a final ranked list
that contains the best ranking. Figure 2.8 illustrates this process applied to
three different search engine approaches. Each generates a ranked reply to
a given query, created via the search engine interface. The Ranking fusion
algorithm combines the three ranked replies into an ideal set of ranked
responses to that query.

There are several effects that ranking fusion algorithms can leverage to
perform the task of re-ranking [44]:

• the skimming effect: different models represent differently the same
items and consequently retrieve different results for the same query.
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Figure 2.8: Ranking fusion combining three search engines replies to a
query from a search engine interface.

Thus, top-ranked results from each approach can create a consensus
of the most relevant elements, moving them to the higher ranked
positions, while less relevant elements are moved to lower relevance
positions;

• the chorus effect: elements retrieved for a query can be considered
relevant by various approaches, thus tending to a confluence of more
relevance than if only one approach finds it relevant;

• the dark horse: an approach in comparison to other approaches may
determine for a set of queries a highly accurate or inaccurate ranking
of elements.

Ranking fusion techniques exploit these effects with algorithms score
based, e.g. Comb [45], and rank based algorithms, such as Borda-count [46]
rank, Condorcet [47] and reciprocal ranking [48], among others. These al-
gorithms are all unsupervised, meaning that they do not have a feedback
of the correctness of the generated set or ranked elements.



30 CHAPTER 2. BASIC CONCEPTS

Comb [45], a score based algorithm, has several variations: CombMIN
(Eq. 2.16), CombMAX (Eq. 2.17), CombSUM (Eq. 2.18), CombANZ (Eq. 2.19)
and CombMNZ (Eq. 2.20).

CombMIN(i) = min(s1i, s2i, . . . , ski) (2.16)

CombMAX(i) = max(s1i, s2i, . . . , ski) (2.17)

CombSUM(i) =
K

Â
k

ski (2.18)

CombANZ(i) =
CombSUM(i)

xi
(2.19)

CombMNZ(i) = CombSUM(i)⇥ xi (2.20)

As shown in Eq. 2.16- 2.20 the relevance value for a given the query is
ski. The number of systems in K that retrieved i is denoted as xi. This The-
sis uses CombMIN, CombMAX, CombSUM, and CombMNZ to combine
different similarity metrics using contextual information.

2.8.2 Learning to rank

Besides ranking fusion, it is possible to use machine learning to appropri-
ately rank elements using learning to rank.

Learning to rank systems are split into supervised learning to rank and
semi-supervised learning to rank. Supervised learning to rank relies on
machine learning to train a model. The model is trained knowing the cor-
rect ranked list expected to be produced. Semi-supervised learning to rank
also trains a model using machine learning. The data used to train has two
parts, one which the correct ranked list expected to be produced is known
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and the other which the correct ranked list is unknown. Meaning, the
ranked list is unknown since it is not possible to verify if the truly correct
rank list generated by the learning to rank system.

Due to the characteristics of the data used in this Thesis, rank fusion is
more suitable to combine different neighborhoods, generated by different
similarity metrics using different contextual sources of information. It is
impossible to know the most accurate neighborhood to be used for rating
prediction, and possibly it varies over time as new information enters the
RS. For this reason, supervised learning to rank systems cannot be used
for this specific application.

2.9 Summary

This Chapter allows to broadly understand some basic concepts and how
diverse RS approaches are. It explains the key concepts of Fuzzy systems,
in the context of this Thesis and discusses ranking fusion and learning to
rank techniques. More specifically, this Chapter explains how a RS using
CF operates to determine recommendations to its users, throughout the
use of a similarity metric and rating prediction formula. It is followed by
an explanation of Content-based filtering and Hybrid filtering approaches.
Following, Fuzzy systems and concepts such as fuzzy logic, fuzzy sets,
membership functions, t-norms, and t-conorms are explained. Finally,
a brief discussion of learning to rank and ranking fusion approaches is
presented and shown how they can be used to combine different ranking
sets.
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Chapter 3

Related work

This Chapter presents a literature review of four topics related to this
Thesis: Memory-based Collaborative Filtering, similarity metrics, with
focus on computational complexity, Model-based Collaborative filtering
solutions, Recommendation systems using Fuzzy Systems, and previous
works using Fuzzy Fingerprints in problems of other domains.

3.1 Memory-based Collaborative filtering

Similarity metrics between items (or users) are a central part of RS re-
search [6]. Traditionally, the similarity is measured using metrics such
as Pearson Correlation (PC) or the Cosine similarity (COS) [4]. Neverthe-
less, many other ways of measuring similarity have been proposed, rang-
ing from simple variations of PC and COS, through the design of more
complex functions [6, 30, 49, 50, 51].

In [37], for example, the authors argue that using PC alone is not enough
to capture relevant statistical features of the data. To correct this, they pro-
pose a combination of the mean squared difference between the user’s
ratings and the Jaccard coefficient. Thus, capturing the similarity between
users, while taking into account the number of items they have ranked in

33



34 CHAPTER 3. RELATED WORK

common. The similarity metric proposed is called Jaccard Mean Squared
Difference (JMSD) and is defined in Eq. 3.1:

simJMSD(i, g) = Jaccard(i, g)⇥
�
1 � MSD(i, g)

�
(3.1)

where Jaccard and MSD are defined as:

Jaccard(i, g) =
|Ui \ Ug|
|Ui [ Ug|

(3.2)

MSD(i, g) =
Âu2U(ru,i � ru,g)2

|U| (3.3)

where Us is the set of items ranked by user s. Through experiments, the
authors demonstrate that results are improved when compared to tradi-
tional CF. In particular, this metric allowed the RS to use fewer neighbors
in comparison to COS and PC, according to the experiments carried on
three datasets [37].

The JMSD similarity in [37] was later modified to be implemented via
hardware allowing to speed up its calculation [15]. As in this Thesis, the
authors argue that one of the problems with CF is the execution time re-
quired to produce recommendations. It relies on k-nearest neighbors and
the non-scalable properties of the algorithm since the processing time in-
creases quadratically as the number of users and items increase. The au-
thors also argue that real-world applications have large demand spikes,
thus further increasing the need for more computational efficient similar-
ity metrics. Their solution presents a few drawbacks that limit its use: (1)
the hardware solution does not allow easy modification to introduce other
types of information, such as content-based, context-based information or
social information; and (2) it does not improve nor maintain the recom-
mendation quality achieved by the similarity metric that inspired it [37].
Instead, the presented similarity metric HwSimilarity [15] can speed up
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the similarity computation by sacrificing the similarity precision. Their
work goes in depth into the process of creation of the formulas BitJaccard
and BitMSD, both adaptations from Eq. 3.2 and 3.3, respectively. These
two allow creating BitJMSD a subtraction of BitMSD from BitJaccard. The
BitJMSD is an intermediate metric, developed by the authors, which deals
with Boolean data and logical operations and has natural numbers sub-
tractions. While the HwSimilarity metric deals with Boolean data and log-
ical operations only. The HwSimilarity can reduce the processing time
required by 39.83% in comparison to JMSD and 47.92% in comparison to
COS. The quality loss from JMSD to HwSimilarity is between 3.87% and
11.11% depending on the dataset.

The work in [52] presents a novel RS, that exploits social information
to improve the results produced by traditional CF. This social information
is the concept of trust, i.e. trusted neighbors explicitly specified by users.
Cold-start problems lead to user preference models with lack of informa-
tion. To address this, the authors use the trust between users within the
system to help improve recommendation quality. The authors also show
that users with few ratings also have few trusted neighbors. For this rea-
son a web-of-trust is used, where trust is propagated between users. Their
approach uses a weighting factor that reduces the trust degree as the dis-
tance between trusted users increases. Results show improvements of 53%
in comparison to user-based CF using PC as the similarity metric.

The authors in [26] present a modified Pearson Correlation formula.
This modified similarity metric adds constraints and positive or negative
adjustments to the similarities. It considers the number of users and items
existing in the rating matrix and uses a series of six equations selected de-
pending on the constraints. The constraints take into account the number
of co-rated items and relevance threshold of the PC. Another component
of this work is the use of dynamic multi-levels of similarity. This solu-
tion requires providing characteristics regarding the database being used,
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and manual experimentations of different parameters to optimize the sim-
ilarity metric. The authors provide an extensive evaluation, showing that
the proposed similarity metric allows for improvements in the quality of
recommendations and rating prediction, in comparison with PC. The sim-
ilarity metric was able to outperform in terms of MAE, Precision, Recall,
and F1-score, all of baselines approaches on two datasets used for the ex-
periments.

Liu et al. [6] evaluate various similarity metrics, pointing out their
advantages and drawbacks. Taking these into account, they propose a
new heuristic similarity (NHSM), which results from a combination of
similarities including the Jaccard coefficient and Proximity-Significance-
Singularity metric [51]. NHSM can provide good recommendation quality
and combines heuristics to provide a meaningful similarity. The authors
provide an in-depth comparison of Precision and Recall between NHSM
and ten other similarity metrics, in which JMSD is included.

In [53] authors argue that the generation of user neighborhoods can be
achieved through a Naive Random Neighbor selection, instead of the k-
nearest neighbors as usual. Their algorithm selects a set of possible neigh-
bors and stops when either the maximum number of neighbors is selected,
or a certain threshold of similarity is reached. This filters neighbors with a
lower correlation but, at the same time, reduces the number of similarities
computed by setting a confidence interval of similarities used per rating
prediction. Their results were the third best performing approach in com-
parison to the other baselines.

An alternative method, named M-distance based recommendation (MBR),
allows the system to determine neighborhoods in linear time [17]. The
authors leverage the average rating of each item and use the difference
of such averages as the distance between items. The MBR metric uses a
different principle, as shown in Eq. 3.4. It starts by computing the average
rating r̄j of each item j. The absolute value of the difference between these
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average ratings (called MBR) determines the distance between the items.
The set of neighbors Hi of item i is defined as all items j 6= i such that
MBR(i, j)  T, where T is a predefined threshold. Rating predictions r̂u,i

for user u and item i are the average of all ratings given by u to items in
Hi.

MBR(i, j) =
��r̄i � r̄j

�� r̂u,i =
Âj2Hi\Uu ru,j

|Hi \ Uu|
(3.4)

MBR has a lower computational cost than COS, PC, and JMSD. Since
the average item rating can be pre-computed, the computational cost of
MBR is O(1). It should be noted that MBR is not a similarity metric, but a
distance metric between two items.

In [36] authors argue that contextual information can improve recom-
mendation using a concept named singularity. The main idea of their work
is that each item rating contribution to the similarity value of two users
should not be considered absolute. As not every rating has the same rel-
evance for every similarity computation. The authors explore the concept
of singularity, which exploits embedded information of users rating pat-
terns, e.g. if two users rated it negatively and every other user rated an
item positively. Then these two users have a particularity in comparison
to all the other users. Such information increases the quality of the sim-
ilarity value between the two. The singularity metric can improve both
prediction and recommendation quality in comparison to PC.

The above works, and others [15, 50, 51, 54, 55], show that improving
the similarity metrics has a beneficial impact on the overall RS results.
Nevertheless, this is often done at the expense of an increase in com-
putational complexity. This Thesis introduces a similarity metric based
on Fuzzy Fingerprint (FFP), adapted for item-based CF, that aims to im-
prove time-efficiency, allowing for other sources of information besides
ratings, while maintaining a low implementation effort and a comparable,
or even better, recommendation accuracy.
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3.2 Model-based Collaborative filtering

Instead of using Memory-based Collaborative filtering techniques, there
is also the possibility of using Model-based [4] techniques, such as Matrix
Factorization (MF). MF became well known after the results achieved in
the Netflix challenge [31]. It can include, besides Collaborative filtering
information, temporal information, social information among other con-
textual information [4].

In [31] the authors explain how MF is adapted to incorporate ratings
and timestamps, and propose a Matrix Factorization model named SVD++.
This model allowed the authors to be top-ranked during the 2007 Netflix
Progress prize [31], achieving an improvement of 8.43% in comparison
to the Netflix recommendation algorithm at that time. The temporal dy-
namics of ratings were taken into account using the assumption that, in
general, item popularity varies over time but also each user taste changes
over time, affecting their rating behavior. The authors show that temporal
components have a crucial impact on Matrix Factorization models allow-
ing them to improve rating prediction. When using the model with tem-
poral dynamics, the rating prediction improvements were around 1% in
RMSE.

The winning solution of the Netflix challenge, winning a prize of 1
million dollars, achieved an RMSE of 0.8563 in comparison to the Netflix
RS which had an RMSE of 0.9514, a reduction of 10% in terms of RMSE.
However, this solution was never used by Netflix, due to the engineering
effort required to implement such a system. The winner solution resulted
from the joint efforts of some of the top tier teams that participated in the
Netflix Challenge.

The model was later improved creating the Asymmetric-SVD algo-
rithm [56], which allows using fewer parameters and providing recom-
mendations to new users, without requiring to re-train the model and es-
timate new parameters. It also allows explainability of recommendations,
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by not abstracting users with an intermediate layer and the integration of
implicit feedback to the model.

In [57], authors focus on the application of MF to RSs and propose a
modification to the stochastic gradient descent optimization algorithm. It
requires storing the entire data and continuously use and store the whole
dataset while adding new data that enters the system. Instead of us-
ing stochastic gradient descent, they modify it creating an incremental
stochastic gradient descent suitable for real-world applications, where there
are streams of data continuously entering the RS. The incremental stochas-
tic gradient descent presents the following differences: each new sample
can be iterated multiple times to improve the accuracy, and the data used
for learning does not require shuffling samples as in stochastic gradient
descent. The proposed solution was tested on datasets using implicit feed-
back and shown to be faster and providing competitive accuracy to the
baselines used. The authors in [57] focus on incremental solutions for RSs,
such incremental solutions focus on providing fast RSs that support real-
world applications with continuous streams of inputs and recommenda-
tion requests [58, 59, 60].

Over the years other alternatives have also been presented such as So-
cialMF [32], TrustMF [61], and TrustSVD [62]. These use Matrix Factor-
ization and exploit the concept of trust. As previously explained, trust is
defined as the degree of trustworthiness value between two users. The
concept allows to correlate users better and often aids in the cold-start and
sparsity problems [32]. This is useful for users that only interact on a social
network and do not provide explicit information such as ratings.

Another highly relevant model-based CF is the use of Factorization
Machines [63, 64]. This model-based approach is a modified polynomial
regression, able to control the dimensional constraints. A significant dif-
ference between Factorization Machines and other factorization methods
is that it was designed to be a general predictor. Thus, it can incorporate
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arbitrary categorical and numerical variables, which are applied in a poly-
nomial regression model. Such a model is capable of dealing with sparse
data, by performing a factorization of the interactions between variables.
Besides, variables in a Factorization Machine model can represent any in-
formation. One of the advantages of Factorization Machines over other
factorization methods is that it allows the recommendation process to be
treated as any other machine learning problem, where the model can be
fine-tuned through feature engineering. Later, this model was adapted to
easily incorporate relational data, allowing a reduction of computational
complexity using a block structure for the input data [65].

In [66], the authors modified Factorization Machines, allowing the train-
ing phase to occur in a distributed fashion, using asynchronous stochastic
gradient descent to perform the optimization. The proposed model al-
lowed up to 8 times speedup (using 16 machines) while retaining a marg-
inally lower prediction accuracy. Also, the model convergence required
two times fewer iterations than the original Factorization Machine model
according to the experiments.

3.3 Fuzzy Recommendation Systems

Fuzzy systems are present in many domains, such as the automotive [67],
mobile networks [68], medical applications [69, 70, 71], among others. The
main idea behind fuzzy systems is to represent truth values using contin-
uous states, instead of only true or false, thus allowing a more accurate rep-
resentation of the world. The ideas behind Fuzzy Systems have also been
previously applied to RS. For example, in [72] a Neuro-Fuzzy Pedagogi-
cal Recommender, using an adaptive RS based on neuro-fuzzy inference,
was proposed. This RS can aid students providing pedagogical content to
them, but also teachers since they have the flexibility to modify the peda-
gogical model created. The system represents a user (student) using fuzzy
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set theory, which allows for easy conversion from the pedagogical rules
into a fuzzy computational model. The authors claim that the proposed
system can automate the creation and configuration of the neural network
based RS.

A Fuzzy-genetic approach is proposed in [73] to implement an Hy-
brid RS. Their work aims to reduce computational complexity while im-
proving recommendation quality for movies. Each user is represented by
a fuzzy model using features such as age, gender, occupation, and interest
in each genre. These create a membership function and allow using fuzzy
distance functions to compute the degree of similarity between two users.
The model was then subjected to a genetic algorithm that captures the
optimal weights of each feature, creating a hybrid fuzzy-genetic RS. The
authors state, in their work, that the RS is limited by the computational
complexity introduced by the genetic algorithm since each user requires
its own genetic algorithm. The improvements achieved in terms of recom-
mendation quality are significant, being as high as 25% of mean average
error, in comparison to PC.

In [74], fuzzy set theory is combined with Bayesian networks to cre-
ate intuitive representations of relations between users. To do so, a fuzzy
representation of item ratings is used to create a probabilistic distribution
of an expected rating. The fuzzy representation enables to represent the
ambiguity and vagueness of ratings. A Bayesian network combines these
representations to obtain a degree of relationship between users. The pro-
posed RS improved the rating prediction and recommendation quality in
comparison to the baselines.

In the work of Son [75], fuzzy sets are used to combine CF using fuzzy
context to represent the demographic information of each user. This pro-
duces a similarity metric, later combined with Pearson Correlation (PC)
and resulting in a Hybrid RS named HU-FCF. Results have shown that the
system has higher accuracy depending on the configuration used. Their
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system was able to outperform their baselines by up to 33%, while the
computational complexity was increased approximately by 33% and 66%
depending on the baseline used.

Later, Son addressed the cold-start problem and proposed an hybrid
method named HU-FCF++ [76]. The system uses NHSM [6] on a rating
matrix filled with rating predictions that are determined using Associ-
ation Rules Mining. Association Rules Mining intends to find patterns,
correlations, and associations between elements on a dataset [77]. These
rating predictions result from a clustering process of users using demo-
graphic information, the clusters allow determining similar items to those
for which a rating is being predicted. This set of techniques introduces a
high demand for computational resources (in comparison NHSM requires
only 4% of the time computational time) while the RMSE improvements
of HU-FCF++ are only of 1.44%.

3.4 Fuzzy Fingerprints

This Thesis applies several concepts of Fuzzy Systems to the problem of
item-based Collaborative Filtering. More specifically, the concepts of Fuzzy
Fingerprints [18, 20] to represent items (or users) in a CF system.

Fuzzy Fingerprint (FFP) has been used for various tasks. In [20] the
authors produced a text authorship identification system using Fuzzy Fin-
gerprints. The proposed method allows matching texts with the corre-
sponding author’s text, according to features generated from words and
stylometric characteristics, i.e. number of words used per clause or num-
ber of clauses per sentence. These features form a Fuzzy Fingerprint of
each user and each text. Using a similarity metric, the most probable au-
thor for each text can be determined. Results have shown accuracy in
detecting the correct author between 55% and 60%. The authors also con-
cluded that this method could be adapted or modified to be applied to
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other domains.

In [19] Fuzzy Fingerprints are used to identify mobile users based on
call logs. The system requires a set of call logs from each user and then cre-
ates a Fuzzy Fingerprint for each. The features used to represent the user
are a Top-N destination number call frequencies; and the representation
is generated using a Filtered Space-saving, an algorithm that provides a
fast and compact solution for the top-k problem but providing an approx-
imate solution. By using it allows for a fast and compact approximation
answer to the Top-N destination number calls, such approximation is not
problematic for this application. The authors also state that the system can
provide: fast comparison to identify a new session owner; scalability, i.e.
the performance should not degrade, significantly, as the number of exist-
ing user sessions increases; flexibility allows for the incorporation of new
users when enough information exists.

In [21] FFPs are used to create a topic detection method for micro-
blogging (e.g. Twitter posts). Each Fuzzy Fingerprint represents a topic
on Twitter, and each topic is represented using the most relevant words
used of that topic. The selection of the most relevant words is made us-
ing the inverse document frequency (see Eq. 2.10) but now using Twit-
ter topics as documents. The authors compared their method against k-
Nearest Neighbours and Support Vector Machines. Their findings show
that the proposed method provides a similar precision and 20% better re-
call in comparison to the best performing baseline which is Support Vector
Machines. The training process is ten times faster in comparison to Sup-
port Vector Machines, and five times faster in comparison to k-Nearest
Neighbours.

Later in [18], Fuzzy Fingerprints allowed to create a classification sys-
tem that could classify unstructured texts into 42 categories and was able
to outperform methods such as Support Vector Machines and Multino-
mial Naive Bayes algorithm. Unstructured texts are preprocessed and con-
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verted to TF-IDF representation, on existing documents from the dataset
Crunchbase. The dataset contains information about start-up companies,
people and investors. The CrunchBase dataset contains about 650k pro-
files of people and companies and is maintained by tens of thousands of
contributors. Descriptions consist of unstructured text, and all the infor-
mation can be consulted using the CrunchBase API. The system relies on
inverse class frequency, an adaptation of inverse document frequency to al-
low representing each existing category. The proposed method achieved
between 7% and 20% accuracy improvements in comparison to baseline
text classifiers. Experiments compare the results with exclusion or inclu-
sion of the category ’others”, by including the category, it degrades the
accuracy on all the baselines. Fuzzy Fingerprints outperform by 7% the
best performing baseline the Updatable Multinomial Naive Bayes.

In [22] the authors used Fuzzy Fingerprints to determine events men-
tioned in short sentences. The authors emphasize that the method outper-
forms Support Vector Machines, being able to determine all the twenty-six
different types of events, while Support Vector Machines were able to de-
termine only 60% of the existing type of events. The authors also refer
to the computational advantages of using Fuzzy Fingerprints instead of
Support Vector Machines, claiming it is more than 20 times faster.

Finally, in [78], fuzzy tools such as fuzzy sets and a fuzzy linguistic
approach [79] are used to improve recommendation accuracy, by manag-
ing what the authors named natural noise. Natural noise results from the
users’ errors during item evaluation. Their work is compared to other
noise reduction methods and shows superior performance. There is some
similarity between [78] and the work developed on this Thesis as both
aim to disregard information that does not help the RS to generate recom-
mendations. However, this Thesis aims to filter unreliable ratings while
improving the recommendation quality and seeking to reduce the compu-
tational complexity, whereas in [78] ratings are modified to reduce noise.
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3.5 Summary

This Chapter provided a review of current similarity metrics being used
in memory-based CF and interesting proposed solutions to be used in
memory-based CF, followed by a review of state of the art on model-based
CF. Next, it focused on current solutions that apply Fuzzy Systems to Rec-
ommendation Systems. The last Section focuses on how Fuzzy Finger-
prints were applied to other domains, but also the advantages of using
Fuzzy Fingerprints.
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Chapter 4

Fuzzy Fingerprints for
Recommendation

When users evaluate items on a Collaborative filtering system, often their
preferences are provided as ratings. Ratings are a discretization of the user
opinion and usually attributed on a discrete scale. Replacing ratings by
Fuzzy Fingerprints allows for a reduction of ratings used when computing
similarities, and consequently improving computational efficiency.

This Chapter starts by presenting how FFPs can be used in Recom-
mender Systems (RSs), more specifically in memory-based Collaborative
Filtering (CF). It proceeds to explore if the proposed RS can incorporate
contextual information regarding items and users to improve the recom-
mendation quality further, while still improving the computational effi-
cency.

4.1 Building a Fuzzy Fingerprint representation

Fingerprints map an arbitrarily large object into a smaller and more com-
pact representation [18]. This idea can be applied to items that are repre-
sented by a Fuzzy Fingerprint (FFP), which is then used to compute item

47
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Figure 4.1: Steps required to create a Fuzzy Fingerprint. L corresponds to
the total of ratings ri.

similarities.

A Fingerprint, fi, of an item i is generated by using a criteria to se-
lect a subset of the ratings ri assigned to i. To create fi a sorting scheme
performs a ranking of the ratings relevance according to specific criteria.
The produced fi is then reduced to only k ratings, these are the most rele-
vant ratings based on the order determined by the sorting scheme. Once
fi is determined, an FFP is computed, by applying a Fuzzyfying Function
(FF) [80]. This function transforms the ordered set of ratings, i.e. fi into a
fuzzy set, where a membership degree M is assigned to each rating. This
set of M forms the FFP of item i, designated as Fi. Figure 4.1 illustrates
the various steps and the corresponding result of each step. The following
Sections go into detail of how a sorting scheme is created (Section 4.2) and
how a fuzzifying function is applied (Section 4.3).

Traditionally, when predicting the rating that a given user u will assign
to a given item i, item-based CF systems compute the items most similar
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to i, by using the full set of ratings assigned to i. It is possible to replace
this raw set of item ratings with the FFP of item i, while improving the
recommendation quality and improving the computational efficiency, as
detailed in the following Sections.

4.2 From Ratings to Fingerprints

Let ri be the set of ratings that a given set of users u1 · · · , uN has provided
for item i:

ri = {(u1, r1i), (u2, r2i), · · · , (uN, rNi)} (4.1)

Building the Fingerprint fi for item i is a straightforward process. It starts
by choosing a subset of k ratings in ri, where k is the parameter that con-
trols the size of the Fingerprint. The idea is that the selected ratings should
be those that best represent item i, to this effect, selecting the k ratings with
the highest value. However, on most RSs, users provide ratings on a small
discrete scale (e.g. 1, 2, 3, 4, or 5 stars), and FFPs need to distinguish the
relevance of ratings from different users. Thus, sorting equal ratings is
a crucial part of this work. To sort such ratings sorting alternatives are
proposed. Each of these sorting alternatives is named sorting scheme (SS).

The sorting schemes considered to rank ratings by their relevance for
representing each item are:

• Random sorting scheme, which ranks ratings from the highest value
to the lowest and, when two ratings are equal, orders them ran-
domly;

• Higher to Lower (HL) sorting scheme which ranks ratings from the
highest to the lowest value and, when equal, ratings from more ac-
tive users are placed first;

• Lower to Higher (LH) sorting scheme that ranks ratings from the
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lowest to the highest value, and when equal, ratings from less active
users are placed first;

• Ratings and Words (R&W) sorting scheme that ranks ratings together
with item descriptions (words) from the highest relevance to the low-
est;

• Timestamp-aware sorting scheme that ranks ratings from the highest
value to the lowest, and equal ratings are sorted according to their
timestamp, i.e. more recent ratings are placed first;

• Timestamp-only sorting scheme that ranks ratings from most recent
to the oldest.

The remainder of this Section contains a more detailed explanation of each
of the proposed sorting schemes.

Figure 4.2 illustrates an example of ri, where the first row contains the
user ids and the second row the ratings. For the following explanation, it is
assumed that #x is the number of ratings of user x, and that the number of
ratings per user is ordered alphabetically, i.e. #a > #b > · · · > #U.

uj a b c d e f g h i
rji 5 2 - 5 4 2 - 1 2

Figure 4.2: The set of ratings ri for item i.

4.2.1 Random sorting scheme

The first approach, Random can be considered as a baseline to determine
if the rating scheme has any influence on the quality of the chosen Fin-
gerprint. The Random SS, in Fig. 4.3 is, therefore, the most simplistic SS
presented. The order of users d and a is selected randomly since both rated
item i with 5. The users f , i and b are also randomly positioned since they
all rated item i with 2.
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uj d a e f i b h
rji 5 5 4 2 2 2 1

Figure 4.3: Fingerprint fi, resulting from a Random SS.

4.2.2 Higher to Lower sorting scheme

The Higher to Lower (HL) SS retains ratings from most active users, i.e.
those with the highest number of ratings. The idea is that they are ex-
pected to be more engaged in providing accurate information, therefore
being prioritized over less active users. The resulting Fingerprint is shown
in Fig. 4.4. The order of the users a and d is selected taking into account
who has rated more items. The same is done for sorting users b, f and i
which rated item i with the same rating.

uj a d e b f i h
rji 5 5 4 2 2 2 1

Figure 4.4: Fingerprint fi, resulting from a Higher to Lower SS.

4.2.3 Lower to Higher sorting scheme

On the other hand, the Lower to Higher (LH) SS retains ratings from less
active users. Based on the idea that they can be expected to be more co-
herent in providing accurate ratings, and thus more reliable information
to compute similarities. In Fig. 4.5 the resulting Fingerprint for item i is
presented, the order of the users d and a is selected taking into account
who rated less items since both rated the item i. The same applies to users
b, f and i.
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uj d a e i f b h
rji 5 5 4 2 2 2 1

Figure 4.5: Fingerprint fi, resulting from a Lower to Higher SS.

4.2.4 Timestamp based sorting schemes

Considering the movie domain, popular movies tend to have a rating too
high or too low when released. This is often caused by the hype around
them and after some time, it converges to a more stable average rating, as
the number of existing ratings increases. This Thesis presents two sorting
schemes timestamp based that can capture this property: the Timestamp-
aware SS and the Timestamp-only SS, where items are being described by
users that more recently rated them. Both the Timestamp-aware SS and
the Timestamp-only SS are evaluated using general evaluation conditions
for time-aware RSs, i.e. by discarding any temporal overlapping among
training and the test data, as done by authors in [81]. Assuming that the
timestamp of each user rating is as presented in Fig. 4.6, the resulting Fin-
gerprint after applying the Timestamp-aware SS is as shown in Fig. 4.7.

uj a b c d e f g h i
tji 5-Nov 3-Nov - 16-Dec 30-Dec 1-Nov - 1-Dec 16-Dec

Figure 4.6: The set of timestamps ti for item i.

uj d a e i b f h
rji 5 5 4 2 2 2 1

Figure 4.7: Fingerprint fi, resulting from a Timestamp-aware sorting
scheme.

The order of the users d and a is now selected taking into account who
more recently rated item i, since they both rated it with 5. The same applies
to the order of users i, b and f which also rated this item with the same
value.
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In contrast, the Timestamp-only SS generates a different Fingerprint. It
sorts users considering more relevant those that most recently rated the
item, without having any consideration for the rating value. The resulting
Fingerprint is presented in Fig. 4.8. In the event that two users ratings are
done at the same time on the same item, the one with a higher rating is
considered more relevant.

uj e d i h a b f
rji 4 5 2 1 5 2 2

Figure 4.8: Fingerprint fi, resulting from a Timestamp-Only sorting
scheme.

The experiments with the timestamp-based sorting schemes did not
present promising recommendation quality nor computational complex-
ity improvements. For that reason, they are not included in Chapter 5.

4.2.5 Dimensioning a Fingerprint

In all the above SSs the idea is that a Fingerprint stores only the user ids
and neglects the ratings or timestamp information. As a result, after com-
puting the order, it is legitimate to say that the rating (or timestamp) in-
formation is embedded in the degree of relevance of each user to the item
Fingerprint. The Fingerprint creation is only complete when the k most
relevant ratings are selected and the remaining ratings discarded. The di-
mensioning the Fingerprint is what allows the improvement of the simi-
larity metric computational efficiency. The similarities can be computed
using, therefore, only the order and most relevant users that compose fi.

A fuzzifying function µ(idx) generates the Fuzzy Fingerprint using the
Fingerprints, designed by the sorting scheme and after reducing it to at
most k features. The following Section provides more details on the fuz-
zfication process.



54 CHAPTER 4. FUZZY FINGERPRINTS FOR RECOMMENDATION

4.3 Fuzzifying a Fingerprint

The Fingerprint fi is, in fact, an ordered set of k users. This order, deter-
mined by one of the sorting schemes, defined in the previous Section, and
reflects the importance of each rating to represent an item. It is by lever-
aging on this importance that the Fuzzy Fingerprint Fi, of item i, is deter-
mined.

A Fuzzyfying Function (FF) µ(idx), also refered to as membership func-
tion (see Section 2.7), assigns a weight to each position in a Fingerprint. In
this case, the Fuzzyfying Function (FF) is used to assign a weight to each
user in fi. The size of each Fingerprint is not constant, it varies on each
Fingerprint depending on the number of ratings the item has. A maximum
FFP size k is defined, for example using k = 4, to truncate the Fingerprint
in Fig. 4.5 obtaining:

uj d a e f
rji 5 5 4 2

Figure 4.9: Fingerprint fi, resulting from a Random SS (see Fig. 4.3) trun-
cated to k = 4 ratings.

There are many alternatives to define a FF [80]. Here, three possible
FFs are shown in Equations 4.2 through 4.4. In each equation, posuj

is the
position of user uj within fi.

Function µone (Eq. 4.2), assigns an equal membership degree to all user
ratings. It is used mainly as a baseline for comparison.

µone(posuj
) = 1 (4.2)

Using function µlinear (Eq. 4.3), the membership degree of a user de-
creases linearly, according to its position posuj

.

µlinear(posuj
) =

k � (posuj
�1)

k
(4.3)
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Finally, function µer f c (Eq. 4.4), uses a variation of the complementary
error function to yield a faster decrease in membership degrees.

µer f c(posuj
) = 1 � erfc(

2 ⇥ posuj

k
) (4.4)

To better illustrate their impact, a plot showing the behavior of these
functions can be found in Fig. 4.10.

It is important to note that these functions are not the only available
options [20], as shown in Section 2.7. However, preliminary experiments
have indicated that using other variations does not significantly improve
the quality of the recommendations for RSs. For this reason, no further
alternatives are presented in this Thesis.
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Figure 4.10: Plot of the three proposed Fuzzyfying Functions.

Using one of the above fuzzifying functions, FFP Fi is defined as:

Fi = {(uj, µ(posuj
)), 8uj 2 fi} (4.5)
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The FFP is the set of users in the Fingerprint, each with an associated mem-
bership degree, given by the Fuzzyfying Function. It is, in effect, a fuzzy
set of users that ranked item i. An example is shown in Fig. 4.11, taking the
Fingerprint from Fig. 4.3.

uj d a e f
µ 1 3/4 2/4 1/4

Figure 4.11: FFP obtained after applying µlinear, to the Fingerprint in
Fig. 4.3.

Notice that the FFP does not contain the item ratings. Instead, it con-
tains only the value of membership degree, reflecting the rating position.
In [20], when classifying textual documents, the authors argue that the
relative weight of the words provides more useful information than their
actual relevance. Similarly, this Thesis tries to exploit the relevance of rat-
ings instead of their actual value.

4.4 Integrating Content-based Information

The detailed information regarding each item, e.g. item text description,
can be used to represent the items better, leading to an improvement of
recommendations. Moreover, content-based information can help address
cold-start problems, where the item has not yet been rated. Either because
it is not popular or because it is a new item listed in the RS. This informa-
tion can be, for example, the synopsis of a movie or a detailed description
of a product.

It starts by applying stemming and stop-word removal to create a dic-
tionary of possible words. Then computing the respective TF-IDF of each
word, (see Eq. 2.11). Each item will thus be represented by a vector of
TF-IDF weights, as illustrated in Fig. 4.12.
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word w1 w5 w30 w72
TF-IDFi,wx 0.2 0.052 0.024 0.046

Figure 4.12: TF, IDF and TF-IDF representation of item i. Each wj corre-
sponds to a word present in the item’s description.

Combining content-based information with user’s ratings requires nor-
malizing user’s ratings to average zero. It replaces the original rating by a
degree of how much the user liked the item when compared to his (or her)
average rating ūj.

To illustrate this process, Fig. 4.13 shows an example for an item i with
ratings ri, the average rating of each user is ūj, and line rji � ūj show the
final value normalized.

uj a b c d e
rji 5 2 - 5 4
ūj 3.5 3.4 3.4 3.6 3.5

rji � ūj 1.5 -1.4 - 1.4 0.5

Figure 4.13: Ratings (ri) of item i, average rating of each user ūj and the
rating of a user in reference to the average rating rji � ūj.

The next and final step is to combine the ratings and the item’s TF-IDF.
To do so, it is essential to normalize the values from both sources of infor-
mation, so that they are on the same scale. This is achieved by performing
a min-max normalization [82] to the ratings (having subtracted average
rating) and the TF-IDF values, for all items, as shown in Eq. 4.6.

In Eq. 4.6, xnew is the resulting scaled value, x is the value being nor-
malized, min the lowest value and max the highest value.

xnew =
x � min

max � min
(4.6)

Experiments were also conducted using standardization (Eq. 4.7), where
µ is the average of the data X and s its standard deviation. Performing
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standardization causes the standardized representation of the data to have
zero as an average value and have a standard deviation of 1.

xnew =
x � µ

s
(4.7)

The results obtained using standardization were outperformed by nor-
malization. Thus, this Thesis only uses the min-max normalization.

Figure 4.14 shows the normalized vector obtained for the ratings from
Fig. 4.13, considering min = �2.0 and max = 2.5. To determine the min
and max values, the lowest value and highest value of X must be identi-
fied.

uj a b c d e
Norm. rji � ūj 0.777 0.133 - 0.756 0.556

Figure 4.14: Min-max normalized ratings, for item i.

Figure 4.15 shows the normalized vector obtained for the text from
Fig. 4.12, considering min = 0.001 and max = 0.2, these correspond to
the min and max values, from the TF-IDF matrix.

word w1 w5 w30 w72
Norm. TF-IDFi 1 0.2563 0.1156 0.2261

Figure 4.15: Min-max normalized TF-IDF, for item i.

Once the matrices resulting from the ratings and textual information
are normalized, a Fingerprint can be generated by concatenating both rep-
resentations, ordering them, and keeping only the k features with the high-
est values. Figure 4.16 shows the formation of a Fingerprint that combines
the normalized ratings and the normalized TF-IDF of item i before trun-
cating the features to k.

Figure 4.17 shows the resulting Fingerprint for item i, with k equal to
5.
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feature w1 a d e w5 w72 b w30
fi 1 0.777 0.756 0.556 0.2563 0.2261 0.133 01156

Figure 4.16: Fingerprint fi using R&W sorting scheme with all its features.

feature w1 a d e w5
fi 1 0.777 0.756 0.556 0.2563

Figure 4.17: Fingerprint fi using R&W sorting scheme, and with k equal
to 5.

After obtaining an item Fingerprint using the R&W sorting scheme, to
compute the FFP a FF needs to be applied to the Fingerprint in Fig. 4.16.
Using the µlinear FF described in Section 4.3, the FFP of Fig. 4.17 is obtained.

4.5 Comparing Fuzzy Fingerprints

With two or more FFPs determined, it is possible to compute similarities
between items. Consider Fi and Fj the FFPs of items i and j, respectively.
Let Ui be the set of users in Fi and Uj be the set of users in Fj. The FFP
similarity between items i and j is defined by:

sim(Fi, Fj) = Â
uv2Ui\Uj

min(Fi(uv), Fj(uv))

k
(4.8)

where Fx(uv) denotes the value associated with user uv in Fx. Equa-
tion (4.8) defines the similarity between two FFPs.

The above similarity metric uses the sum of the lowest values from
each FFP depending on the users in common between items i and j. This
corresponds to a Gödel t-norm (see Section 2.7) between the two fuzzy sets
represented by the FFPs. There are other possible t-norms such as product
t-norm, drastic t-norm, or Hamacher t-norm among others [83].

The idea is that, for two items to be similar, they must have been rated
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uj a i d h
µ 1 3/4 2/4 1/4

Figure 4.18: Item j FFP, Fj.

by the same users and the ratings given by those users must have the same
relative importance. Equation 4.9 illustrates the computation of Eq. 4.8 for
the similarity between the FFP from item i (Fig. 4.11) and FFP from item j
(Fig. 4.18).

sim(Fi, Fj) =
min(Fi(a), Fj(a))

k
+

min(Fi(d), Fj(d))
k

=
min(3

4 , 1)
4

+
min(1, 2

4)

4
(4.9)

=
3
4
4
+

2
4
4
= 0.3125

4.6 Computational Efficiency

It is important to make some remarks on the computational efficiency of
the similarity metric when compared to the traditional Cosine similarity
and Pearson Correlation methods, and with the state of the art methods
such as Jaccard Mean Squared Difference [37]. More specifically remarks
in regard to the complexity of:

1. computing a rating prediction for a given user-item pair (u, i);

2. create a Fuzzy Fingerprint;

3. maintaining and updating FFPs as the rating matrix changes.

For the first point, the similarity between item i and all other items
rated by user u must be computed. It occurs independently of the sim-
ilarity metric used. Thus, this Thesis focuses on the complexity of com-
puting each single similarity value between pairs of items, sim(i, j). The
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proposed approach, using FFP similarity with Eq. (4.8) costs O(k), where
k is the maximum size of the Fingerprints. For the baseline metrics, the
average cost is O(q), where q is the number of ratings between a pair of
items. FFPs using solutions that rely on ratings or timestamps (e.g. LH
SS and HL SS) always have k  q. For solutions such as R&W SS, k can
be higher than q, since incorporating contextual features increases the size
of each FFP. Nevertheless, it is expected that for any of the proposed SSs
and RS approaches for k to be much smaller than q, and that there is a
computational gain to be achieved, as shown later in Section 5.5.6.

Unlike the baseline metrics, the proposed FFP similarity has the addi-
tional cost of creating Fuzzy Fingerprints. Building an FFP, as explained
in Section 4.1, requires collecting the top-N ratings of each item. It can be
done with an average cost of O(m log k), where m is the number of rat-
ings per item. It is higher than the baselines which have a cost of merely
retrieving the ratings, i.e. O(m). This operation can, however, be done
offline, thus having no impact on similarity computation. This is related
to the third point, maintaining the user-item rating matrix. Using an ap-
propriate data structure, such as a B-tree, all ratings can be stored already
ordered, thus reducing the cost of retrieval to O(log(k)). Updating and in-
serting new ratings is still entirely feasible, also having a logarithmic cost
of O(log(k)) with a B-tree representation for each FFP.

Fuzzifying the Fingerprint into a Fuzzy Fingerprint has a cost of O(k).
The fuzzifying function is a continuous function yet, on this application, it
maps the discrete position of the k features of any item, as result a simple
table can store the corresponding values from 1 to k of the FF.

RSs have a high number of users and items, and these are constantly
increasing. The FFP similarity metric can incorporate new items and users
easily. If a new item enters the RS it starts with zero information in its FFP,
as users rate the item or contextual information is added, it begins to form
a Fingerprint with more and more features, until it reaches the maximum
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k features.

The most relevant part regarding to computational complexity is the
similarity computation cost, which is lower using the proposed solution
in this Thesis (see Section 5.5.6). This fact, together with the low engi-
neering effort required to implement it, makes this Thesis a practically
off-the-shelf, effective solution for large-scale Recommender Systems.

4.7 Adapted Memory-based CF using Fuzzy Fin-
gerprints

As discussed in Chapter 2, Memory-based Collaborative filtering can be
user-based or item-based. This Thesis focuses mostly on item-based CF
using FFPs. RSs traditionally rely on a rating prediction to determine
which items to recommend to users. This Section proposes a solution for a
user-based CF that does not make rating predictions. Instead, this solution
identifies similar users using FFP similarity, based on keywords associated
with items that users rated.

Let N be the total number of keywords in the system and let M be
the total number of items in the system. Let also qi represent the set of
keywords of a given item i: qi = (t1i, t2i, t3i, · · · , tNi). Any element tni 2 qi

can assume the value 1 if the keyword is associated with that item, or 0 if
it is not.

Let ru be the set of ratings for a given set of items i1 · · · , iM, provided
by a user u: ru = (r1u, r2u, · · · , rMu). It is assumed that rmu � 0 and that a
value of zero means that the user has not yet rated item im. A Fingerprint
fu is built by counting, for user u, the number of occurrences of each key-
word in the items rated by u, multiplied by the respective item’s rating,
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i.e. fu = (c1u, c2u, · · · , cNu), where:

cnu =
M

Â
8i=1

tni ⇥ riu (4.10)

The rationale behind Eq. 4.10 is that keywords from items a user has
rated higher should also get higher importance in the Fingerprint. The
next step consists in ordering fu according to cnu and keeping only the k
highest values.

To illustrate the previous procedure, let ru = (5, 2, 4) for items a, b,
and c. Assume there are only 5 keyword and let qa = (1, 0, 0, 1, 1), qb =

(0, 1, 0, 0, 1), and qc = (0, 0, 1, 1, 0). Assuming that k = 4, the resulting
Fingerprint fu will be (c4u = 9, c5u = 7, c1u = 5, c3u = 4).

The Fingerprint fu is, therefore, an ordered set of keywords. The rank
of each keyword reflects its importance for the user. This Fingerprint still
needs to be fuzzified into a Fuzzy Fingerprint. As before, the fuzzification
of the Fingerprint leverages the importance of the order (and not of the
frequency) to represent users. The FFP of user u, Fu, is obtained by fuzzi-
fying the rank (the position in the Fingerprint) of each keyword, as shown
in Section 4.3. The FFP similarity computation, now user-based, is done
using Eq. 4.8.

The recommendation process of the proposed RS, as stated previously,
does not rely on rating predictions as in traditional Collaborative Filtering.
Instead, it identifies the user’s nearest neighbors (according to Eq. 4.8) and
uses the items seen and liked by them to extrapolate possible items to
recommend to the user.

The RS starts by computing which users are the nearest neighbors of
user u, based on the FFP similarity metric. Users are considered neighbors
if the similarity is higher than a defined threshold simthreshold. It is consid-
ered that any item rated highly by a neighbor (e.g., 4 or 5 on a 0-5 scale)
and rated higher than that same neighbor’s item rating average, is suited
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to be recommended.
The final step in the recommendation process consists of getting the

difference between the rating of the recommendable item, the neighbor
average rating, and multiplying it by the similarity between the user and
the neighbor. It allows creating a ranking of recommendable items, for
each user.

4.8 Multi-Context Fuzzy Fingerprints for RSs

Sorting schemes are responsible for ranking features according to their rel-
evance. Ranking features that are on different domains such as ratings,
timestamps of ratings, item textual descriptions and keywords, or users
profile characteristics, among others are hard to combine into a single FFP.
This is due to the different representation domain of each contextual infor-
mation source. Two previous attempts to use contextual information pro-
posed in this Thesis are the use of R&W sorting scheme (see Section 4.4)
and in Section 4.7 through a different RS approach that skips the rating
prediction task.

This Section proposes a new way to represent users. Instead of us-
ing normalization to combine contextual information into one FFP, create
several FFPs, one for each of the contextual information source. Doing so
requires computing the similarity between users according to each contex-
tual information source.

The number of existing features limits the computational complexity
involved. Even though there are more similarity metrics to be computed
the total number of existing features is the same. On each FFP the available
contextual information is less.

Each user has as many FFPs as the available contextual information
sources. The similarity between two users is computed for each contex-
tual information using Eq. 4.8. Figure 4.19 illustrates an example with the
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similarity of user un with six other users over four context FFP similarities.

u1 u2 u3 u4 u5 u6

simC1 0.72 0.32 0.52 0.23 0.63 0.54
simC2 0.27 0.64 0.33 0.72 0.58 0.18
simC3 0.74 0.81 0.18 0.65 0.74 0.35
simC4 0.98 0.90 0.46 0.27 0.22 0.52

Figure 4.19: Contextual Fuzzy Fingerprint similarities simCx , between user
un and all other users that rated item i i.e. un possible neighbors.

For each context, the top-n neighbors are computed, resulting in the
neighborhoods shown in Fig. 4.20.

u1 u2 u3 u4 u5 u6

simC1 0.72 - - - 0.63 0.54
simC2 - 0.64 - 0.72 0.58 -
simC3 0.74 0.81 - - 0.74 -
simC4 0.98 0.90 - - - 0.52

Figure 4.20: Top-3 nearest neighbors for each contextual FFP similarities,
between user un and all other users that rated item i i.e. un possible neigh-
bors.

Each neighborhood of un is, in this example, limited to three users, i.e.
the top-3 neighbors. Using the neighborhoods from each context, the com-
putation of a ranking fusion is obtained. Figures 4.21-4.25 illustrate the
resulting neighborhood of un depending on the ranking fusion approach
desired which include: CombMin, CombMax, CombSUM, CombMNZ and
CombANZ.

In Fig. 4.21 CombMIN is used as ranking fusion to combine the ob-
tained similarities of each context, for each user from Fig. 4.20. CombMIN
combines the similarity values by selecting the minimum value of similar-
ity from all contexts, for each user. Therefore, the resulting ranked neigh-
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u1 u2 u3 u4 u5 u6

simCombMIN 0.72 0.64 0.00 0.72 0.63 0.52

Figure 4.21: Contextual Fuzzy Fingerprint similarities simCombMIN, be-
tween user un and the possible neighbors.

borhood is u1, u4 and u2, as highlighted in the Figure. There are no criteria
to untie neighbors such as u1 and u4 which have the same value of sim-
ilarity. The likelihood of such occurrence is low in real cases and should
have a small impact on the overall quality of recommendations generated
by the RS.

u1 u2 u3 u4 u5 u6

simCombMAX 0.98 0.90 0.00 0.72 0.74 0.54

Figure 4.22: Contextual Fuzzy Fingerprint similarities simCombMAX, be-
tween user un and the possible neighbors.

Figure 4.22 uses CombMAX as ranking fusion to combine the obtained
similarities of each context for each user. CombMAX combines the similar-
ity values by selecting the maximum value of similarity from all contexts,
for each user. Thus, the resulting ranked neighborhood is u1, u5 and u2, as
highlighted in the Figure.

u1 u2 u3 u4 u5 u6

simCombSUM 2.40 2.25 0.00 0.72 1.95 1.06

Figure 4.23: Contextual Fuzzy Fingerprint similarities simCombSUM, be-
tween user un and the possible neighbors.

Figure 4.23 uses CombSUM as ranking fusion to combine the obtained
similarities of each context for each user. CombSUM combines the similar-
ity values by performing a sum of the similarity values from all contexts,
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for each user. Therefore, the resulting ranked neighborhood is u1, u2 and
u5, as highlighted in the Figure.

u1 u2 u3 u4 u5 u6

simCombMNZ 7.20 9.75 0.00 0.72 5.85 2.12

Figure 4.24: Contextual Fuzzy Fingerprint similarities simCombMNZ, be-
tween user un and the possible neighbors.

Figure 4.24 uses CombMNZ as ranking fusion to combine the obtained
similarities from each context for each user. CombMNZ combines the sim-
ilarity values by performing a sum of the similarity values of all contexts,
for each user, as CombSUM does. The resulting values are then multiplied
by the number of contexts, in which the user is considered neighbor, as
in Eq. 2.20. The resulting ranked neighborhood is u2, u1 and u4, as high-
lighted in the Figure.

u1 u2 u3 u4 u5 u6

simCombANZ 0.8 0.75 0.00 0.72 0.65 0.53

Figure 4.25: Contextual Fuzzy Fingerprint similarities simCombANZ, be-
tween user un and the possible neighbors.

Finally, Figure 4.25 uses CombANZ as ranking fusion to combine the
obtained similarities of each context for each user. CombANZ combines
the similarity values by performing a sum of the similarity values of all
contexts, for each user, as CombSUM does. The resulting value is then
divided by the number of contexts, in which the user is considered neigh-
bor, as in Eq. 2.19. The resulting ranked neighborhood is u1, u2 and u4, as
highlighted in the Figure.

These five different ranking fusion approaches produce different rank-
ings for the neighborhood of user un. The effects of ranking fusion are
observable and exploited on these examples. The chorus effect is present
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since three contexts consider users u1 and u2 relevant as a neighbor of
user un. The dark horse effect is observable where C2 considers u4 as rele-
vant while the other three contexts do not and, for that reason CombMIN,
CombMNZ and CombANZ have u4 in the top-3 neighbors of user un. The
skimming effect is seen where different contexts obtain different similarity
values for the same pair of users. User u5 is an example of the skimming
effect if this was an actual system.

Each ranking fusion approach, presented in this Section, is suitable to
replace the similarity metric used on the RS proposed in Section 4.7. This
is the final goal of the multi-context FFP similarity metric here proposed.

This FFP similarity metric, used in conjunction with the RS proposed
in Section 4.7, has several parameters that need to be fine-tuned according
to the data they represent. This is a challenging task to achieve as the pa-
rameters that must be fine-tuned include: the number of neighbors used;
the number of features used for each individual context FFP; the sorting
scheme and FF used for each individual context FFP; the selection of a
ranking fusion algorithm; and the similarity threshold to determine if a
neighbor is relevant or not of the RS algorithm;

4.9 Summary

This Chapter details the application of Fuzzy Fingerprint on RSs. The use
of FFP aims to reduce the amount of data used to represent users and
items. To do so, sorting schemes are responsible for ranking features thus
allowing to remove less relevant information from the FFP. From the pre-
sented sorting schemes, it is important to highlight the High-Low and
Low-High sorting schemes, both of which rely only on ratings to generate
a FFP. One of the goals of this Thesis is also the combination of contex-
tual information for RS using Fuzzy Fingerprints. This goal is attempted
firstly by using the R&W SS, secondly by the proposed RS in Section 4.7,
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and finally by creating an FFP which combines several contextual FFPs
representing its users using a multi-context FFP.
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Chapter 5

Evaluation

Evaluation is an important task to consider when developing Recomm-
ender Systems. However, there are many variations of evaluation metrics
and procedures, making it difficult to replicate every single detail of the
process [84]. Problems with the evaluation of RSs are not new and often
authors assume crucial parts of their process. For example, do not report
if they use cross-validation, what they do when a rating prediction cannot
be determined or how recommendations are evaluated.

This Chapter is structured as follows. Section 5.1 presents the datasets
used in this Thesis experiments and their properties. In Section 5.2, the
evaluation metrics used to measure the quality of rating predictions, rec-
ommendations, and improvements in the computational complexity when
using the FFP similarity metric. Finally, Section 5.5 presents the experi-
ments with the approaches proposed in Chapter 4 and discussion on the
quality of these approaches.

5.1 Datasets

To assert the effectiveness of FFPs when applied to RSs, the solutions pre-
sented in this Thesis are compared to the baseline similarity metrics Cosine

71
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Similarity (COS), Pearson Correlation (PC) [4], and state-of-the-art meth-
ods, jaccard mean square distance (JMSD) [37] and MBR [17].

Experiments were performed on four standard datasets: (1) MovieLens-
1M (ML-1M), a dataset from the movie domain; (2) Netflix, a large dataset,
also from the movie domain with a rating matrix that has high sparsity;
(3) Jester, a dataset for recommending jokes, with a high number of rat-
ings per item; and (4) Hetrec2011-ML, a dataset containing movie ratings,
and URLs for the Internet Movie Database1 (IMDB) and Rotten Tomatoes2

that allows extracting contextual information (movie synopsis). Table 5.1
shows statistics regarding these datasets. All the datasets provide times-
tamps for each rating.

Dataset Ratings Users Items sparsity #r̄i

ML-1M 1 000 209 6 040 3 706 95.53% 217
Jester 1 728 785 79 681 150 75.64% 12 348

Netflix 100 000 000 480 189 17 770 98.82% 5 576
Hetrec2011-ML 86 000 2 113 2 113 97.90% 85

Table 5.1: Statistics for the experimental datasets. Column sparsity shows
the percentage of unrated items in the rating matrix and column #r̄i shows
the average number of ratings per item.

To evaluate the use of the R&W sorting scheme the dataset Hetrec2011-
ML is used. An appropriate web crawler was developed in order to obtain
a synopsis for each movie using the IMDB website. A total of 52 392 terms
were extracted to compose the TF-IDF of each movie.

To evaluate the RS proposed in Section 4.7, and to use the multi-context
FFP similarity proposed in Section 4.8 the ML-1M dataset is used. The
movie information is extracted from Dbpedia3. Dbpedia provides key-
words for each movie via a web-crawler. It is a project that aims to retrieve

1IMDB: http://imdb.com
2Rotten Tomatoes: https://www.rottentomatoes.com/
3Dbpedia: http://www.dbpedia.org

http://imdb.com
http://www.dbpedia.org
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structured information from Wikipedia. In December 2017, it provided a
total of 29 942 unique keywords to represent items. These are used as con-
textual information on the experiments of this Thesis. Table 5.2 shows how
many keywords exist on each contextual information source.

keyword type number of keywords

basedOn 232
cinematography 693

director 1680
editing 704

musicComposer 1133
narrator 148
producer 2016
starring 6291
writer 2533
subject 6471
subject2 6477

type 3690

Table 5.2: Contextual information extracted from Dbpedia.

5.2 Evaluation Metrics

RSs provide item recommendations to users, e.g. products, movies, books,
songs, and others. The quality of such recommendations is usually mea-
sured by evaluating the quality of the predicted ratings. To that effect, the
Root Mean Square Error (RMSE) is commonly used and computed using
the following equation:

RMSE =

vuuutÂu,i2S

⇣
ru,i � r̂u,i

⌘2

|S| (5.1)
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where S is a set of ratings to which an RS computes predictions, and
|S| corresponds to the number of ratings being predicted. The best value
for RMSE is zero, corresponding to a perfect rating prediction 8u, i 2 S.
The higher the RMSE, the worst the rating prediction capabilities of the RS.
Due to cold-start problems, sometimes an RS are not able to predict ratings
for some u, i 2 S, as a result, the RMSE computation ignores these. For
example, if no neighborhood can be determined, then a rating prediction
also cannot be determined. This number of rating predictions that can not
be determined by the RS are measured by coverage.

Coverage captures the ability of the RS to recommend using the whole
collection of items instead of only a portion of the collection [37, 85]. Equa-
tion 5.2 shows how coverage is determined, where |r̂testset| corresponds to
the number of ratings predicted by the RS in the testset, and |rtestset| the
total number of ratings in the testset.

coverage =
|r̂testset|
|rtestset|

(5.2)

The maximum coverage is 1, when all rating predictions are possible to
compute. The closer to 0 coverage is the fewer rating predictions requests
is the RS able to compute. The closer the value of coverage is to 1 the more
rating predictions is the RS able to compute. For example, a RS with cov-
erage of 0.1 indicates that it only predicts ratings for 10% of the requested
rating predictions. Thus, even if it has an extremely good RMSE, i.e. close
to 0, the usefulness of the recommendations is fairly limited.

RMSE measures only the quality of the rating predictions, it does not
measure the quality of the actual recommendations. To do so Precision
(PR) and Recall (RC) are often used. Precision reflects the amount of rec-
ommended items that are relevant to a user, as shown in Eq. 5.3.

PR =
#relevant recommended items

#items recommended
(5.3)
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Figure 5.1: Evaluation of relevant items for recommendation, to a given
user. Inside the circle are items recommend to the user.
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Recall reflects the number of relevant items actually recommended to
a user, as shown in Eq. 5.4.

RC =
#relevant recommended items

#relevant items
(5.4)

A criteria to consider items as relevant or non-relevant for recommen-
dations must be defined. Datasets provide ratings from users on items.
Each user rates items as he or she sees fit. For some users, a 4 out of 5
stars is not a relevant item for a recommendation and for other users it is.
This leads to the discussion of when to consider an item relevant or not.
Usually, a rating threshold is set so that values above it are considered rel-
evant, and below it are considered non-relevant. As expected, such thresh-
old highly influences the recommendation evaluation. In this Thesis, if a
rating, in the testset, is equal to or above 4, it is treated as relevant to that
user.

There are other alternative approaches in order to set a threshold to
determine if an item is relevant or irrelevant for recommendation. For
example, for an item to be considered relevant, it must have a rating higher
than the average rating of the user rating it. Another alternative is to use
only items that have the maximum possible rating. The authors in [84]
provide an in-depth discussion on evaluating RSs using precision based
metrics.

Figure 5.1 illustrates a recommendation to a user wherein green are the
items relevant for recommendation, i.e. ratings are above or equal to 4 in
the testset, while in red are the items not relevant to recommend for this
user. Inside the circle are the items that the RS recommends to the user,
the ones inside the green semi-circle are the ones considered relevant by
the RS and relevant according to the testset. Items inside the red semi-
circle are items recommended by the RS that according to the testset are
not relevant for recommendation to the user.
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It is important to note that recall provides a different viewpoint of
the RS capabilities than coverage. Recall measures the number of rele-
vant items recommended, that are considered to be relevant by the testset.
While coverage measures the ratio between the number of rating predic-
tions computed and the number of rating predictions requested to the RS.
Coverage does not provide any information about the quality of those rat-
ing predictions nor of the recommendation. It only informs if the RS is
able to produce rating predictions or not.

Another recommendation quality metric is the F1-score (Eq. 5.5). It is
valid to argue that precision is a good indicator for the quality of a RS, as
long as the recall is within a range that allows the retrieval of a sufficient
number of relevant items. The F1-score is a metric that combines both pre-
cision and recall into a single quality measure value, as shown by Eq. 5.5.

F1 = 2 ⇥ PR ⇥ RC
PR + RC

(5.5)

When evaluating recommendation quality, neither precision or recall
account for the ranking position of the recommended items, i.e. if an item
should appear first or after another item as a recommendation. The rank-
ing correctness of recommendations can be measured using a metric such
as Normalized Discounted Cumulative Gain (NDCG). This metric cap-
tures if a more relevant item is presented first than a less relevant item.
NDCG results from computing the Discounted Cumulative Gain (DCG)
(Eq. 5.6) that accounts for the order of the elements within the recom-
mendations generated, divided by the Ideal Discounted Cumulative Gain
(IDCG) (Eq. 5.7) that corresponds to perfect ranking of items to recom-
mend for each user. NDCG is computed using the Eq. 5.8.

DCG@N =
P

Â
i=1

2reli

log(1 + i)
(5.6)
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IDCG@N =
R

Â
i=1

2reli

log(1 + i)
(5.7)

NDCG@N =
DCG@N
IDCG@N

(5.8)

In the Equations above, N is the number of recommendations pro-
vided, reli is the relevance of the recommendation at position i, P is the
ordered set of recommendations being generated by the RS, and R is the
correct ordered set of items to recommend to a user. Note the subtle dif-
ference between Eq. 5.6 and Eq. 5.7, which only differs by the use of sets P
and R.

In the proposed RS of Section 4.7 and with the multi-context FFP simi-
larity in Section 4.8, a threshold for a maximum number of recommenda-
tions is not set. The RS recommends as many relevant items to a user as it
considers fit.

5.3 Computational Cost

This Thesis intends to demonstrate that using FFP similarity metric allows
for a smaller computational cost than traditional similarity metrics. The
metrics used to determine the reduction of complexity of this work are:
the average number of iterations per similarity; the time required for the
computation of a whole similarity matrix; and the time required to com-
pute the testset rating predictions.

Similarity metrics such as COS and PC have the same average number
of iterations per similarity. On the other hand, the proposed FFP similarity
metric is limited to k, the maximum number of features an FFP can have.
This parameter influences the quality of rating predictions, recommenda-
tions and the average number of iterations per similarity. A decrease in
the average number of iterations per similarity indicates an improvement
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of computational efficiency. Also, having a k smaller than the average
number of ratings used by COS or PC indicates that the FFP similarity
does have a smaller computational cost. The measurements of time re-
quired for the computation of a whole similarity matrix and time required
to compute the testset rating predictions are performed using only a single
thread.

The time required to create the FFPs is not computed since if the rating
matrix is a sparse matrix, then it can be represented using a table, e.g. a
hashtable. Such table has item ids as key and as value another hashtable,
in which users ids are keys and the value is the corresponding rating.
The list of existing keys (users) should be sorted, according to the sort-
ing scheme used. Thus, not adding additional memory complexity and
having a neglectable update cost over time, i.e. insertion of an element
in a sorted list O(log(n)). The only memory complexity added is O(k)
for storing the FF values using a list. This is preferable than constantly
computing the FF value for each position of the FFP.

5.4 Evaluation Framework

All experiments of this Thesis use RiVal [86], a framework that promotes a
more uniform and unbiased RSs evaluation. The RiVal framework imple-
ments four modules: data split, recommendation, candidate selection, and
evaluation. The user of the RiVal framework (developer of the RS) only
needs to input the correct parameters to execute the experiments. RiVal
is responsible for generating the dataset split (e.g. using cross-validation
or separating a train and test set according to timestamps); and executing
the recommendation module (i.e. uses the RS created by the developer
to generate rating predictions and recommendations). The candidate se-
lection module decides which items are used to evaluate the recommen-
dation quality, an often overlooked aspect of RSs evaluation. The evalu-
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ation module performs the computation of evaluation metrics using the
recommendations produced by the recommendation module against the
expected results from the testset.

This Thesis uses N-fold cross-validation with a N equal to five, i.e. a 5-
fold cross-validation where each fold has two sets, a trainset and a testset
which are randomly generated.

During the development of this Thesis large datasets such as Netflix
(see Table 5.1) required modifications to the data split module of RiVal.
More specifically, the generation of the folds for cross-validation was be-
ing all performed in memory, which made the process infeasible for large
datasets. The solution was to write the folds directly to the disk, requiring
only to have in memory one representation of the dataset. This modifi-
cation was submitted to the framework, and it is now part of the master
branch of the RiVal framework4 allowing for a memory complexity of O(1)
instead of O(N + 1), when executing the data split module.

5.5 Experiments

This Section delivers the most relevant findings regarding the usage of
the FFP similarity metrics for Recommender Systems. More specifically,
the evaluation of the FFP similarity capabilities using different sorting
schemes, fuzzifying functions, a comparison with baselines, a computa-
tional complexity analysis, an evaluation of the proposed RS in Section 4.7
and evaluation of the multi-context FFPs deployed into the RS of Sec-
tion 4.7.

4RiVal framework: https://github.com/recommenders/rival Accessed on 2019
March 22.

https://github.com/recommenders/rival
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5.5.1 Comparing Fuzzyfying Functions

To determine if the Fuzzy Fingerprint similarity is appropriate for tradi-
tional item-based CF using Eq. 2.3 for rating prediction, the first exper-
iment presents a comparison of the fuzzifying functions µOne, µer f c and
µlinear over a series of k features used to create the FFP. Afterward, us-
ing the best performing Fuzzifying Functions, a comparison of the sorting
schemes Random, HL and LH, over a series of k features used to create the
FFP is performed. This is followed by a comparison of the best performing
combinations of fuzzifying functions and sorting schemes, to determine if
these outperform the baselines.

The value of k features used to create an FFP depends on the dataset
being used, i.e. the number of features each item uses, for representation,
is taken into account during evaluation. When varying k, several changes
in the dynamic of the FFPs and FFP similarity take place. Regarding to
the FFPs, k influences the representation of the FF and, consequently, the
relevance attributed to each feature. The number of features allowable
to represent items with the FFP is capped by k thus it also influences the
amount of information to represent each item.

The first experiment starts by comparing the rating prediction quality
of the different Fuzzifying Functions. Figures 5.2-5.4 present the RMSE
over three FFs, while varying the value of k. The FFPs use the LH sorting
scheme.

Analysing Figure 5.2 using few features does not yield an optimal RMSE.
The same also applies if too many features are used. The ideal number of
features to use varies between 100 and 300, depending on FF selected. FF
µOne requires 100 features to obtain the minimal RMSE while µlinear re-
quires 200. The function µer f c requires 300, i.e. 3 times more features than
µOne, yet is the best performing in regards to RMSE, in the ML-1M dataset.
Note that ML-1M has a total of 6040 users and each item has an average
of 217 ratings, preferably FFPs should use less than 217 ratings in order to
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Figure 5.2: Experiment on ML-1M showing the impact on RMSE of differ-
ent Fuzzyfying Functions. The CF uses 100 neighbors while varying k, i.e.
the size of FFPs.

improve the computational complexity. Moreover, the cap that k features
create influences only items with a high number of ratings (generally pop-
ular items), which have enough information to provide accurate similarity
values. Items with few ratings are able to retain all features they have, thus
not influencing the already low amount of information available.

In Figure 5.3, the experiment with the FFs shows different patterns of
RMSE. The Netflix dataset has an average number of ratings per item of
5 576 and a total of 17 770 items. In comparison with the ML-1M, it has
a higher number of users, thereby requiring to have a higher number of
features per FFP. The FF µOne uses 1 500 features to obtain the minimal
RMSE while µlinear uses 2 000. The µer f c uses 4 000 features, much more
than the other two FFs, yet it is the best performing in regards to RMSE of
the three, not only on the ML-1M, but also in the Netflix dataset. The µer f c

has a different RMSE pattern than the other two FFs, as the number of k
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Figure 5.3: Experiment on Netflix showing the impact on RMSE of differ-
ent Fuzzyfying Functions. The CF uses 200 neighbors while varying k.

features of the FFP increases.
Examining Figure 5.4, the Jester dataset enables the FFP similarity to

use a low number of features in comparison to the average number of
ratings per item 12 348. The ideal number of features to use varies between
100 and 300 depending on FF selected. The FF µOne requires 175 features to
obtain the minimal RMSE, while µlinear requires 250, and the µer f c 450. The
difference between the three FFs in terms of RMSE is marginal. As a result
any of the FFs is suitable to use. Note that Jester has a total of 79 681 users
and each item has an average of 12 348 ratings. This difference between
the average number of rating per item and k features of FFPs allows for a
good margin to improve the computational efficiency. A particularity of
the Jester dataset is the rating scale from -10 to 10. This causes it to have a
higher RMSE, much higher in comparison to the ML-1M and Netflix. This
is expected and is only due to the scale of the ratings.

The results from Figures 5.2-5.4 lead to the conclusion that any of the
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Figure 5.4: Experiment on Jester showing the impact on RMSE of differ-
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Figure 5.5: Experiment on ML-1M shows the impact on the RMSE of dif-
ferent SSs. The CF uses 100 neighbors while varying k.

FFs is suitable to use generate items FFPs. This small RMSE difference
between FFs is, in fact, consistent with other results found in the liter-
ature [20]. Additionally, more extensive experiments show that the be-
haviour of the sorting schemes HL and Random is similar in terms of FFs
to when using LH as SS.

5.5.2 Comparing Sorting Schemes

Sorting schemes are a core part of this Thesis, since creating an FFP re-
quires to first rank features. Ratings are on a discrete scale, thus ranking
them requires extra information regarding the items and users. The task
of a sorting scheme is to use this information. The experiments on Fig-
ures 5.5-5.7 show the Random, HL, and LH sorting schemes while varying
the number of k features used to form the FFP and FF.

The experiment in Fig. 5.5 shows that using an FFP with µlinear FF with
different SS causes different RMSE patterns. On the ML-1M dataset, LH



86 CHAPTER 5. EVALUATION

0

1,
00

0

2,
00

0

3,
00

0

4,
00

0

0.955

0.960

0.965

0.970

0.975

0.980

k features

R
M

SE

Random
HL
LH

Figure 5.6: Experiment on Netflix shows the impact on the RMSE of dif-
ferent SSs. The CF uses 200 neighbors while varying k.

is the best performing SS, and the Random SS has a similar RMSE using
k = 200 features. The HL sorting scheme requires k = 300 features to
achieve peak quality in terms of RMSE. The HL SS ranks users considering
more relevant the ones with a higher rating and unties equal user ratings
based on which user has rated more items (see Section 4.2), yet has the
worst RMSE values, this is an unexpected result.

In the experiment of Fig. 5.6, the Netflix dataset is used and FFPs use
a µlinear FF. The best performing SS is LH using k = 2000 features, while
Random SS uses k = 1500 features. As in ML-1M, HL is the worst per-
forming SS in terms of RMSE, requiring k = 1900 features to achieve peak
RMSE quality. The convergence pattern in the Netflix dataset is different
than in ML-1M, since increasing the FFP number of features after a certain
point does not influence the RMSE value.

The experiment in Fig. 5.7 shows that using an FFP with a µlinear FF
with different SS causes different RMSE patterns. The best performing
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Figure 5.7: Experiment on Jester shows the impact on the RMSE of differ-
ent SSs. The CF uses 50 neighbors while varying k.

SS is LH as in the two previous datasets. It requires using only k = 300
features to create the FFP which in comparison to the average number of
features per item (12 348) is only 2.5%. Moreover, in comparison to the to-
tal number of users 79 681 is only 0.376%, this opens a clear opportunity
to reduce the computational complexity in comparison to traditional sim-
ilarity metrics such as COS or PC. The other two SSs require more features
and have a higher RMSE, where the Random SS uses k = 800 features and
the HL uses k = 2000 features.

The experiments carried in these three datasets lead to the conclusion
that best performing SS is the LH when taking into account the RMSE
performance and the number of k features required to create FFPs.
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Figure 5.8: FFP similarity comparison with the baselines in the ML-1M
dataset. Baseline metrics are represented in light grey, while the FFP met-
rics are represented in black.

5.5.3 Comparison to the baselines

Figures 5.8-5.10 compare the results between the best performing FFs and
SSs (based on Figures 5.2-5.7) to the baseline similarity metrics, on the ML-
1M, Netflix and Jester datasets.

The experiments from Fig. 5.8 show that the three alternatives pre-
sented of the FFP similarity metric are able to improve the recommenda-
tion quality on ML-1M, having a neglectable difference of RMSE among
them. The best performing FFP similarity is the one using the LH sorting
scheme, with µlinear as FF and k = 200 features, with an improvement of
0.0105 in RMSE. The best performing baseline is JMSD with a RMSE of
0.8670 and requiring the same number of neighbors as the FFP similarity.

The experiments from Fig. 5.9 show that the three alternatives pre-
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Figure 5.9: FFP similarity comparison with the baselines in the Netflix
dataset. Baseline metrics are represented in light grey, while the FFP met-
rics are represented in black.

sented are able to improve the recommendation quality on the Netflix
dataset, having a neglectable difference of RMSE among them. The best
performing baseline is PC with a RMSE of 0.9517 and requiring 20 neigh-
bors to determine rating predictions. The best performing FFP similarity
is the one using the LH sorting scheme and the µer f c FF with k = 200
features and achieving the RMSE of 0.9486 while requiring 35 neighbors
to determine rating predictions. Using the same number of neighbors for
rating prediction still yields a better RMSE than any of the baselines, yet
the best RMSE is achieved using 35 neighbors.

The experiments from Fig. 5.10 show that the three alternatives pre-
sented using the FFP similarity metric have similar RMSE on the Jester
dataset. The best performing baseline is PC with a RMSE of 4.0419 and
requiring 15 neighbors to determine rating predictions. The best perform-
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Figure 5.10: FFP similarity comparison with the baselines in the Jester
dataset. Baseline metrics are represented in light grey, while the FFP met-
rics are represented in black..

ing FFP similarity is the one using the LH sorting scheme and the µer f c

FF with k = 300 features and achieving the RMSE of 4.0660 while requir-
ing 25 neighbors to determine rating predictions. Experiments on Jester
show that PC outperforms the FFP similarity in regards to the RMSE and
number of neighbors used. However, PC has to determine the similarity
between two items comparing the 12 348 ratings that each item has on av-
erage. While, when using the FFP similarity at most 300 ratings are used
to determine similarity values. This is a compromise in terms of RMSE
that when performed improves the computational efficiency of the sim-
ilarity metric. Jester has a low sparsity in comparison to the other two
and is atypical dataset for RSs, due to its uncommon sparsity, as shown
previously in Table 5.1.
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Sim. ML-1M
SS µ k N RMSE

FFP
LH µlinear 200 20 0.8565
LH µer f c 200 25 0.8577

Rand µlinear 200 20 0.8568
COS - - 217 50 0.8914
PC - - 217 75 0.8847

JMSD - - 217 20 0.8670
MBR - - 217 - 0.9031

Table 5.3: Best results for FFPs and baselines, on ML-1M. Column N con-
tains the number of nearest-neighbour items used to compute the pre-
dicted rating.

5.5.4 Summary of FFP Results

Tables 5.3-5.5 present a summary of the best performing FFP similarity
combinations with the respective k features used and the number of neigh-
bors used by the traditional CF, in comparison to the baselines. The best
values of RMSE are highlighted using bold. The value of k for the baselines
represents the average number of ratings per item. The coverage of all the
similarity metrics in Tables 5.3-5.5 is always higher than 99.8%. Note that
when computing a similarity value, the baselines must compute the de-
gree of similarity across all the shared ratings between two items, instead
of using the FFP similarity, which is limited to at most k features between
the two items are computed.

The best results for the ML-1M dataset are obtained with the FFP simi-
larity, which outperforms all four baselines. This is achieved using at most
k = 200 features (ratings) to describe each item and 20 neighbors to com-
pute rating predictions, as shown in Table 5.3.

The best results for the Netflix dataset are obtained with any of the
FFP similarity approaches, which outperform all four baselines. This is
achieved using at most k = 3000 features to describe each item and 35
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Sim. Netflix
SS µ k N RMSE

FFP
LH µOne 1500 35 0.9497
LH µlinear 2000 35 0.9490
LH µer f c 3000 35 0.9486

COS - - 5 576 15 0.9616
PC - - 5 576 30 0.9517

JMSD - - 5 576 20 0.9549
MBR - - 5 576 - 1.0016

Table 5.4: Best results for FFPs and baselines, on Netflix. Column N con-
tains the number of nearest-neighbour items used to compute the pre-
dicted rating.

Sim. Jester
SS µ k N RMSE

FFP
LH µlinear 200 25 4.0664
LH µer f c 300 25 4.0660
LH µOne 200 25 4.0685

COS - - 12 348 15 4.0983
PC - - 12 348 15 4.0419

JMSD - - 12 348 15 4.0842
MBR - - 12 348 - 4.4063

Table 5.5: Best results for FFPs and baselines, on Jester. Column N contains
the number of nearest-neighbour items used to compute the predicted rat-
ing.

neighbors to compute rating predictions, as shown in Table 5.4. There is
a possible trade-off between the number of k features used and the RMSE
when choosing a FF for the FFP similarity, thus reducing by half the num-
ber of k features used.

The best RMSE in Jester dataset is obtained with PC, which is able to
outperform the FFP similarities by 0.0266. However, the number of fea-
tures used by the FFP similarity metric is less than by PC as shown by
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Table 5.5. When using FFP similarities the maximum number of features
used to determine similarities is between 200 and 300 depending on the
FF, while the PC uses on average 12 348 ratings to determine a single sim-
ilarity value, important characteristic since on average 95% less iterations
are required to compute a similarity than by PC, as shown later in this
Chapter (see Fig. 5.14).

5.5.5 Ratings & Words sorting scheme

The R&W sorting scheme outperforms the baselines on the Hetrec-2011
dataset. The sorting scheme relies on the context-based information and
collaborative filtering information to compute similarities, being able to
improve the rating prediction and recommendation quality.

In comparison to the baselines COS, PC and JMSD the proposed simi-
larity metric FFP-R&W improves the RMSE by 0.03 and the NDCG@10 by
0.023. It is also included the best performing FFP using ratings exclusively,
more specifically using the LH sorting scheme and as FF the µlinear with k
equal to 75. The best performing baseline is the FFP using the LH SS fol-
lowed by the JMSD as shown by Fig. 5.11. Table 5.6 provides a comparison
of the proposed SS with the baselines.

The use of R&W as sorting scheme requires a higher computational
complexity than when using Random, HL or LH as SSs due to the number
of features used by the FFP. The number of features used by the FFP-R&W
is 125 while the average number of rating per item is 85. One particularity
is that FFP-R&W requires only 15 neighbors instead of the 25 required by
the FFP-LH and the 20 required by the baseline JMSD.

5.5.6 Computational Efficiency

The proposed similarity metric shows consistent gains in recommendation
quality. This Section aims to evaluate if the FFP similarity can improve
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Figure 5.11: Comparison of the different baselines to the FFP-R&W sim-
ilarity. RMSE is shown in Fig. 5.11a and NDCG@10 in Fig. 5.11b, while
varying the number of neighbors.
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Similarity K N RMSE NDCG@10
FFP-R&W 125 15 0.757 0.488

FFP-LH 75 25 0.783 0.489
COS - 100 0.833 0.442
PC - 100 0.821 0.461

JMSD - 20 0.787 0.471

Table 5.6: FFP-R&W similarity metric in comparison to the baseline simi-
larity metrics, on the dataset Hetrec-2011.

computational complexity and, if so, by how much. The experiments con-
sider the average number of iterations per similarity, the time needed to
compute a similarity matrix and the time required to compute the testset
rating predictions.

Figures 5.12-5.14 show a comparison of the average number of itera-
tions per similarity of the best performing FFP similarity metric on each
dataset, while varying the number of k features. As the number of fea-
tures that form the FFPs increases, so does the number of iterations per
similarity increase in all datasets. The same does not apply to either of the
baselines: COS, PC, JMSD, and MBR. The baselines are represented using
the grey line at the top of each Figure. MBR has a computational complex-
ity 1 as shown in the Figures and explained in Section 2.4.3. The vertical
line that crosses the FFP iterations per similarity corresponds to the num-
ber of k features used by the best performing FFP in terms of RMSE. It
is used as a reference to compare to the baseline similarity metrics. It is
important to recall that none of the baselines can vary the k number of
features. Thus, the horizontal line is only indicative of the average itera-
tions per similarity of baseline similarity metrics. They do not change the
number of features.

In ML-1M, the FFP similarity needs on average 100 iterations per simi-
larity when using around 200 features. The baselines require, on average,
125 iterations per similarity, which is 20% more than FFPs.
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Figure 5.12: The average number of iterations performed per similarity
computed in the ML-1M dataset, while varying the size of the FFP. Vertical
lines show the value of k for which the best results were achieved.



5.5. EXPERIMENTS 97

0

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

0

1,000

2,000

3,000

4,000

k features

A
ve

ra
ge

ite
r.

pe
r

si
m

ila
ri

ty

FFP Baselines (except MBR) MBR

Figure 5.13: The average number of iterations performed per similarity
computed in the Netflix dataset, while varying the size of the FFP. Vertical
lines show the value of k for which the best results were achieved.

In Netflix the gains become more evident, as shown in Fig. 5.13. Using
1500 features (ratings) the FFP similarity metric only performs on aver-
age 1000 iterations per similarity. Baseline similarity metrics require 3800
iterations per similarity, on average. This corresponds to a reduction of
iterations per similarity of almost 75%, combined with an improvement of
RMSE, as shown in Figure 5.9.

The Jester dataset has the particularity of having an average of 12 348
ratings per item, and a sparsity of 75.64%, a low value for a RS. FFP sim-
ilarity provides a good RMSE using only 300 features and requiring 281
iterations per similarity, on average. Such performance when compared
to the baselines that require 5822 iterations per similarity allows for an
improvement of at least 95% of the number of iterations per similarity.

Besides measuring the average number of iterations per similarity, other
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Figure 5.14: The average number of iterations performed per similarity
computed in the Jester dataset, while varying the size of the FFP. Vertical
lines show the value of k for which the best results were achieved.
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Dataset # items # similarities FFP COS PC JMSD

ML-1M 6040 18 237 780 28.88 s 44.833 s 67.54 s 56.75 s
Netflix 17 770 157 877 565 5 694 s 21 157 s 39 707 s 37 990 s
Jester 150 11 175 139 ms 3 305 ms 5 092 ms 4 443 ms

Table 5.7: Time complexity to compute the similarity matrix.

valid measurement is the time required to compute rating predictions and
a similarity matrix. Tables 5.7 and 5.8 show the results of these experi-
ments, the highlighted times on the table correspond to the faster simi-
larity metric on an item-based CF, for each dataset. In both experiments,
the most relevant results to discuss are on Netflix due to the number of
existing items and similarities that have to be computed.

Table 5.7 shows the number of items, the total of similarities that have
to be computed, and the time required by each similarity metric to com-
pute them. The FFP similarity outperforms the fastest baseline COS on
Netflix requiring less 15 463 seconds. The baseline obtain the better RMSE
is PC, yet it requires more 34 013 seconds than the FFP similarity. On ML-
1M and Jester, the baselines are also outperformed by the FFP similarity,
when considering to the time required to compute the similarities, by a
large margin.

Table 5.7 shows the time required to compute the rating predictions in
the testset. One of its columns shows the number of rating predictions
contained in each testset as a reference to help understand the importance
of improving the computational complexity of similarity metrics. The FFP
similarity outperforms the fastest baseline COS on Netflix, as it requires
less 17 768 seconds to determine the rating predictions. In Netflix the best
performing baseline in regards to RMSE is PC, yet it requires more 35 073
seconds than the FFP similarity, it corresponds to roughly 4.5 times more
time required, while achieving the worst RMSE in comparison to the FFP
similarity. On ML-1M and Jester, the baselines are also outperformed by
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Dataset #rating predictions FFP COS PC JMSD

ML-1M 200 042 483 s 496 s 538 s 521 s
Netflix 1 408 393 10 371 s 28 139 s 45 444 s 43 241 s
Jester 345 757 17.99 s 23.89 s 28.18 s 26.39 s

Table 5.8: Time complexity to compute the testset with rating predictions.

the FFP similarity.

5.5.7 Adapted Memory-based CF results

In Section 4.7, a CF approach that does not rely on rating prediction is pro-
posed. This Section presents an evaluation of this CF approach. The RS
uses ratings and keywords to represent users with FFPs. For comparison,
traditional CF with the baseline similarity metrics COS, PC, JMSD on both
item-based (IB) and user-based (UB) CF are used. The FFP similarity met-
ric is also included, where the LH SS is applied to a traditional item-based
CF. The experiments are performed on the ML-1M dataset.

Figures 5.15-5.17 compare different sizes of the FFP, where for each
size the number of neighbors used varies. According to the F1-score, the
best results are obtained using k equal to 200. Knowing that, on average,
each user has 637 keywords associated to rated movies, the FFP similarity
metric uses only 31% of the existing keywords, thus being able to select the
most relevant keywords to represent users. Note that the FFP does not use
the ratings as features of the FFP, the features are exclusively keywords.
The keywords are an aggregation of the available contextual information
in Table 5.2, creating an FFP for each user using contextual information.

An important conclusion in Fig. 5.15 is that according to the F1-score
using more features does not equate to better recommendations. The con-
clusions would be different if considering only Figures 5.16 and 5.17.

Table 5.9 shows how the different approaches perform. The proposed
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Figure 5.15: F1-score of different sizes of the FFP, while varying the num-
ber of neighbors used.

RS performs better overall than any other baseline, even when compared
to the state-of-the-art JMSD, although the improvement is not statistically
significant.

An interesting result is how much better the proposed approach is
when compared to other previously proposed user-based approaches, leav-
ing room to further developments in user-based RSs. It should be noted
that item-based approaches have been thoroughly used in the past and
have been highly optimized. Yet, user-based approaches are also viable.
For example, it is straightforward to enrich the FFP using data other than
simple keywords, from movie descriptions with a user’s favorite actors,
directors or genres.

Nevertheless, using contextual information besides ratings is more com-
putationally demanding. The FFP using the LH sorting scheme and k =

200 features has an average number of iterations per similarity of 88. While
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Figure 5.16: Precision of different sizes of the FFP, while varying the num-
ber of neighbors used.

Similarity Metric Num. neighbors F1-score Precision Recall

FFPkeywords-UB 150 0.76929 0.63504 0.97554
FFPLH-IB 20 0.76623 0.62113 0.99979
COS-IB 50 0.76622 0.62112 0.99978
PC-IB 75 0.76621 0.62115 0.99969

JMSD-IB 20 0.76623 0.62112 0.99980
COS-UB 200 0.42356 0.26869 0.99989
PC-UB 100 0.42338 0.26854 0.99990

JMSD-UB 100 0.42356 0.26869 0.99989

Table 5.9: Summary results of FFPkeywords (using k = 200), compared with
several baselines using CF item-based (IB) and user-based (UB).

the solution presented in this Section using the FFP similarity, with a total
of k = 300 features, requires an average of 213 iterations per similarity.
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Figure 5.17: Recall of different sizes of the FFP, while varying the number
of neighbors used.

5.5.8 Multi-Context Fuzzy Fingerprints for RSs

In Section 4.7 a CF approach that does not rely on rating prediction is
proposed. Section 4.8 uses that CF approach and applies to it a multi-
contextual FFP similarity metric (MC FFP). This similarity uses a ranking
fusion algorithm to combine each contextual FFP similarity into a single
similarity metric between two users. The relevant variables to take into
consideration are the ranking fusion algorithm, which includes Comb-
MIN, CombMAX, CombSUM, CombMNZ and CombANZ; the sources of
contextual information used; the number of k features each contextual in-
formation uses; and the number of neighbors used by the CF system. All
these variables play a role in the computational efficiency of the similarity
metric and the recommendation quality.

The experiments use the ML-1M and each contextual-information from
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Table 5.2. The multi-context FFP similarity is compared to traditional CF
with the baseline similarity metrics COS, PC, JMSD on both item-based
(IB) and user-based (UB) CF. The FFP similarity metric using the LH sort-
ing scheme, on a traditional CF with an item-based approach is also a
baseline similarity metric. So does the CF approach in Section 4.7 that
is referred FFPkeywords.

The number of features used by each contextual FFP depends on the
number of existing features on each contextual information source. In-
stead of manually selecting the appropriate k number of features for each
FFP, this number is set using a percentage of the total existing features for
each context. For example, if only 25% of features are used and one con-
textual information source has 100 different possible features, then the k
number of features is set to 25 for those contextual FFPs.

The first experiment uses CombSUM as ranking fusion approach and
varies the number of features used, as shown in Figures 5.18-5.20. The F1-
score in Figure 5.18 is more informative than the ones showing precision
and recall.

Precision shows that using fewer features yields better results, while
recall shows that the increase of features causes it to improve. Using be-
tween 20% and 30% appears to be the best percentages of features to create
multi-context FFPs. As for the number of neighbors used, the best F1-
score value is between 75 and 100 neighbors. Increasing past 100 neigh-
bors causes the recommendation quality to start deteriorating according
to the values of F1-score.

The following experiment, shown in Figures 5.21-5.23, aims to deter-
mine if different ranking fusion algorithms influence the recommendation
quality on the proposed RS using multi-context FFPs and which one is best
suited for the task. The comparison of different ranking fusion algorithms
is performed using only 20% of the k features for each context. CombMax,
CombMNZ, and CombSUM all show good quality recommendations, ac-
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Figure 5.18: F1-score of the multi-context FFP similarity using CombMAX
as ranking fusion algorithm depending on the percentage of features used
and the number of neighbors of the RS.
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Figure 5.19: Precision of the multi-context FFP similarity using CombMAX
as ranking fusion algorithm depending on the percentage of features used
and the number of neighbors of the RS.
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Figure 5.20: Recall of the multi-context FFP similarity using CombMAX
as ranking fusion algorithm depending on the percentage of features used
and the number of neighbors of the RS.
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cording to the F1-score in Fig 5.21. While the ranking fusion CombMIN
and CombANZ show a lower quality recommendation.

Deciding which ranking fusion algorithm to use and if to use 20% or
30% features for each contextual FFP must be done taking into considera-
tion the average number of iterations required per similarity. Of the two,
only the percentage of k features influences the number iterations per sim-
ilarity. By using 10% the average number of iterations per similarity is 76,
using 20% requires 101 iterations, and using 30% requires 194 iterations.

The multi-context FFP similarity using CombMAX with 20% of the fea-
tures is the best performing alternative in regards to F1-score while using
100 neighbors to determine the recommendations. Recall that it requires
on average 101 iterations per similarity computation. An alternative is to
use CombMAX ranking fusion algorithm with also only 20% features, the
RS is able to achieve good F1-score while requiring 50 neighbors to com-
pute recommendations.

The baseline FFPkeywords (see Table 5.9) uses 300 features and requires
213 iterations. The FFP similarity using the LH requires 88 iterations using
200 features. These results make the multi-context FFP similarity better
than FFPkeywords similarity in terms of computational efficiency, while still
worst than the FFP similarity using the LH, in terms of computational
efficiency.

Table 5.10 shows the comparison of the actual values obtained by the
different approaches and baselines above discussed. The MC FFP-Comb-
SUM-20% manages to have the highest precision on all the experiments
while using only 50 neighbors and requiring only, on average, 101 itera-
tions per similarity computation. As for the MC FFP-CombSUM-20%-UB
the F1-score is closer to the FFPkeywords-UB which is the best performing
approach in regards to F1-score. In comparison to baselines such as COS,
PC, and JMSD that require 125 iterations per similarity, both the MC FFP-
CombMAX-20% and the MC FFP-CombSUM-20%-UB are able to outper-
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Figure 5.21: F1-score comparison of different ranking fusion algorithms
using 20% and 30% of features to create FFPs, while varying the number
of neighbors used by the RS.
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Figure 5.22: Precision comparison of different ranking fusion algorithms
using 20% and 30% of features to create FFPs, while varying the number
of neighbors used by the RS.



5.5. EXPERIMENTS 111

50 10
0

15
0

20
00.900

0.920

0.940

0.960

0.980

1.000

Num. neighbours

re
ca

ll

CombMAX (20% features) CombMAX (30% features)
CombMIN (20% features) CombMIN (30% features)
CombSUM (20% features) CombSUM (30% features)
CombMNZ (20% features) CombMNZ (30% features)
CombANZ (20% features) CombANZ (30% features)

Figure 5.23: Recall comparison of different ranking fusion algorithms us-
ing 20% and 30% of features to create FFPs, while varying the number of
neighbors used by the RS.
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form them on F1-score, precision, and computational efficiency.

Similarity Metric Num. neighbors F1-score Precision Recall

MC FFP-CombSUM 50 0.76731 0.63750 0.96352
MC FFP-CombMAX 100 0.76812 0.63428 0.97356

FFPkeywords 150 0.76929 0.63504 0.97554
FFPLH-IB 20 0.76623 0.62113 0.99979
COS-IB 50 0.76622 0.62112 0.99978
PC-IB 75 0.76621 0.62115 0.99969

JMSD-IB 20 0.76623 0.62112 0.99980
COS-UB 200 0.42356 0.26869 0.99989
PC-UB 100 0.42338 0.26854 0.99990

JMSD-UB 100 0.42356 0.26869 0.99989

Table 5.10: Summary results of Multi-context FFP similarity, compared
with several baselines using CF item-based (IB) and user-based (UB). Both
the MC FFP-CombSUM and the MC FFP-CombMAX use 20% of features
on each contextual FFP and are a user-based approach.

5.6 Summary

This Chapter shows that using the FFP similarity can be beneficial for RSs.
This work is able to improve recommendation quality while improving
the computational efficiency of item-based CF systems. Experiments show
that improvements in computational efficiency are still only possible us-
ing FFPs that rely exclusively on ratings. The computational efficiency
of the similarity metric reduces when contextual information is added as
features of FFP. This is due to the richness of information that contextual
sources provide, as adding contextual information helps to improve the
recommendation quality but at the expense of the FFP similarity com-
putational efficiency. As a result, multi-context FFPs have a comparable
computational efficiency to baseline similarity metrics and allow the RS to
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produce higher quality recommendations to users.
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Chapter 6

Conclusions and future work

This Chapter presents a summary of the achievements of this Thesis. Sec-
tion 6.1 contains a closing analysis of the work developed. Following, Sec-
tion 6.2 suggests future work to answer the research questions left open
and possible complementary works.

6.1 Conclusions

This work proposed to create a computational efficient similarity metric
for Recommender Systems, since large-scale RSs can significantly benefit
from more efficient similarity metrics, while improving (or at least main-
taining) the recommendation quality.

Recommender Systems work with sparse information. That sparsity is
due to users rating only a few items in comparison to the extensive collec-
tion of items in a RS. Through the use of Fuzzy Fingerprints, the existing
information is leveraged to improve the computational efficiency and im-
prove recommendation quality.

The main research question is if it is possible to improve traditional CF
methods using contextual information sources without increasing compu-
tational complexity? Two hypotheses were proposed. The first hypoth-
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esis is to develop efficient similarity functions that can reduce the com-
putational complexity of current CF solutions without impacting the rec-
ommendation quality. The second hypothesis is presenting a similarity
function that combines contextual-information and improves the quality
of recommendations while still maintaining low computational complex-
ity.

The first hypothesis explored the FFP similarity metric adapted to RSs
using CF. The second hypothesis explored several approaches: a similar-
ity metric (using Fuzzy Fingerprints) for collaborative filtering that ex-
ploits items textual descriptions and ratings; the development of a RS
that does not compute rating predictions, and in which the FFPs com-
bine features sourced from ratings and items keywords; moreover, the last
approach which uses the previously proposed RS that does not compute
rating predictions only recommendations, while applying a multi-context
Fuzzy Fingerprint similarity using a ranking fusion algorithm to generate
similarity values.

The application of FFP similarity metric for collaborative filtering is not
straightforward since ratings are on a discrete scale, commonly between
1 and 5, and FFPs needs to rank these ratings (features) by relevance. To
rank them, three sorting schemes are presented: Low High, High Low,
and Random. Sorting schemes leverage the number of ratings each user
has and use that information to untie equal ratings. By ranking the users’
ratings, a Fingerprint is formed. Fingerprints are modifiable in size, allow-
ing to remove features to represent the items and this is why the sorting
scheme is so important. To create a Fuzzy Fingerprint, a Fingerprint must
then be fuzzified using a Fuzzyfying Function (FF).

Experiments with FFP similarity metric for collaborative filtering allow
to draw four conclusions:

• It is possible to compute similarities using less information than is
available;
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• The FFP similarity can improve in most cases the RS recommenda-
tions in comparison to baselines;

• The more ratings exist in a dataset, the higher the computational im-
provements are possible;

• Netflix dataset has a reduction of near 75% of the average number
of iterations required per similarity, the time required to compute
the similarity matrix is at least 72% less, and at least 63% less time
is required to compute rating predictions, in comparison with any
other baseline with a comparable recommendation quality.

Such conclusions align with the first hypothesis of developing an effi-
cient similarity function that can reduce the computational complexity of
current CF solutions without impacting the recommendation quality.

To evaluate the validity of the second hypothesis, a similarity func-
tion that combines contextual information to improve the quality of rec-
ommendations while still maintaining a low computational complexity is
an ambitious goal. The first proposed approach is the creation of a Fuzzy
Fingerprint similarity metric that exploits both items textual descriptions
and ratings using a sorting scheme named R&W. The richness of the item
textual descriptions helps to improve the recommendation quality but also
increases the size of FFPs. Consequently, the similarity metric compu-
tational complexity also increases. This solution uses almost the double
of features that the LH SS uses. In its favor, it reduces the number of
neighbors required from 25 to 15. The hypothesis requires the similar-
ity metric to have low computational complexity. The trade-off between
the improvements in recommendation quality and the added computation
complexity lead to pursue other alternatives.

The second proposed approach involves the development of a RS that
does not compute rating predictions only recommendations. The RS aims
to produce valuable recommendations to users, without any constraint
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for a maximum number of recommendations. To represent a user, the
FFP registers as features the number of occurrences of each keyword on
items the user rated, multiplied by the rating attributed. As a result, items
a user enjoys lead also to a higher relevance of the keywords associated
with that item. Relying on the neighborhood of users, if the user has not
rated an item that a neighbor likes, the rating is multiplied by the simi-
larity between the two, resulting in the value of relevance of that item for
that user. The RS can generate as much item recommendations to each
user as it sees fit. The experiments show that it has a better recommenda-
tion quality with an F1-score of 0.76929, while the best baseline similarity
metric JMSD has an F1-score of 0.76623, an improvement of 0.00306 in F1-
score. As a comparison, an item-based CF with an FFP similarity using the
LH sorting scheme and k = 200 features, requires on average 88 iterations
per similarity, while the proposed RS solution using the FFP similarity re-
quires k = 300 features and has an average of 213 iterations per similarity.

The last test to the hypothesis is an approach that relies on the pro-
posed RS that does not compute rating prediction, but only recommenda-
tions and applies to it a multi-context Fuzzy Fingerprint similarity. The
similarity metric relies on ranking fusion algorithms to generate similarity
values. Experiments show that the effort to create multi-context Fuzzy Fin-
gerprints yields no significant improvements in recommendation quality,
in comparison to the previously proposed approach that also endeavors to
achieve the second hypothesis. Nevertheless, this last proposed approach
has several variables and approaches that possibly can be better fine-tuned
and optimized. These variables and approaches include the selection of a
ranking fusion approach, the contextual information sources used, the in-
dividual k number of features for each contextual FFP, and the number of
neighbors used by the RS.

Most RSs use CF, the rating information is sparse, but some of it can
still be discarded allowing to reduce the computational load and improve
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recommendations. Such improvements are due to the use of FFPs that rely
exclusively on ratings. By introducing contextual information the com-
putational complexity increases due to the additional information being
used. The computational complexity is still comparable to the baselines,
while providing a better recommendation quality. The baseline similar-
ity metrics do not have the flexibility to vary the number of features used
as FFP similarity has and, such characteristic is notably relevant for real-
world applications. RSs have periods of peak usage, and having the flex-
ibility to vary the k number of features allows to reduce the computation
demand of the similarity metric, adjusting it to the traffic of the RS accord-
ingly.

In conclusion, the FFP similarity uses a minimal number of features to
represent an item (or user), in comparison to the original feature vector; it
is easy to create and update, as new data enters the RS; there is a maximum
size for each FFP, thus as new data enters the RS, the size of each FFP is
limited; it is a faster similarity metric than traditional CF similarity metrics
when no contextual information used; the FFP of each item (or user) is
independent from each other, which also allows for an easy integration of
new users and items to the system.

6.2 Future work

These are open questions left by this research and other ideas found dur-
ing this work. In particular, these are the main ways to continue this work
research.

Model refinement

The multi-context FFPs presented in Section 4.8 should improve the qual-
ity of recommendations and improve computational complexity. By using
a different approach to select the number of features used per contextual
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source instead of selecting a percentage based on the number of features
that exist on each context information source. Also, the experiments in-
clude all the contextual information available. It is possible that not all the
contextual information is beneficial to compute similarities.

Larger datasets

The experiments to achieve a RS with a low computational complexity
using contextual information were conducted using the ML-1M dataset.
The experiments on ML-1M with the FFP similarity using the LH sorting
scheme do not have a meaningful improvement of computational com-
plexity as in the datasets Netflix and Jester. For this reason, the size of the
dataset used can be the root cause for being able to confirm that FFPs can
provide a low complexity RS using contextual information.
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Abstract. Memory-based Collaborative filtering solutions are dominant
in the Recommender Systems domain, due to its low implementation
effort and service maintenance when compared with Model-based ap-
proaches. Memory-based systems often rely on similarity metrics to com-
pute similarities between items (or users). Such metrics can be improved
either by improving comparison quality or minimizing computational
complexity. There is, however, an important trade-off — in general, mod-
els with high complexity, which significantly improve recommendations,
are computationally unfeasible for real-world applications. In this work,
we approach this issue, by applying Fuzzy Fingerprints to create a novel
similarity metric for Collaborative Filtering. Fuzzy Fingerprints provide a
concise representation of items, by selecting a relatively small number of
user ratings and using their order to describe them. This metric requires
from 23% through 95% less iterations to compute the similarities required
for a rating prediction, depending on the density of the dataset. Despite
this reduction, experiments performed in three datasets show that our
metric is still able to have comparable recommendation results, in rela-
tion to state-of-art similarity metrics.

1 Introduction

Users of the digital world are overloaded with information [13]. Recommender
Systems (RSs) allow us to cope with this, by cataloging a vast list of items, that
later can be recommended. Due to their success, RSs can be found in a num-
ber of services, providing recommendations for movies, music, news, products,
events, services, among others [1].

However, turning state of the art solutions into real-world scenarios is still
challenging, mainly due to a large amount of data available and the scalability
issues that ensue. For this reason, more traditional approaches, such as item-
based Collaborative Filtering (CF) are still the most widely used [16]. Despite
its simplicity, item-based CF can provide quite accurate results, thus yielding
an advantageous trade-off between engineering effort and user satisfaction.

In CF systems, the issue of scalability is closely related to the need to com-
pute similarities between a high number of items in the database. To solve this,
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two complementary types of solution are usually proposed. One is to provide
scalability by distributing the storage and computational cost over several ma-
chines [15,10]. The other is to devise computationally efficient similarity met-
rics [3,8,14,18]. Our work focuses on the latter.

Our main contribution is a novel similarity metric for RSs, using the con-
cept of Fuzzy Fingerprints (FFPs) [7]. More specifically, we propose to repre-
sent items by their low-dimensional Fingerprints, which can then be directly
used to determine similarities between them. A similar idea has been previ-
ously applied to text authorship identification [7] with success. Our goal is to
apply the same principle to RSs. This solution has three major advantages: (1)
it has a smaller computational cost than traditional similarity metrics; (2) it re-
quires a minimal implementation effort; and (3) the proposed representation of
the items is also easily maintainable.

To demonstrate our claims, experiments were performed on three datasets.
Results show that FFPs are a promising route to be applied for recommenda-
tions, requiring from 23% through 95% less iterations to compute the similar-
ities for a rating prediction, depending on the density of the dataset. This im-
provement is achieved while maintaining a comparable quality of results.

The remainder of this paper is organized as follows. Section 2 contains lit-
erature review on similarity metrics for CF. Section 3 presents how FFPs can be
applied to RSs. Section 4 presents an experimental evaluation. Finally, in Sec-
tion 5 some conclusions are drawn from the results and directions for future
work are proposed.

2 Related Work

Even thought Fuzzy systems have been previously applied to RSs, they have
never been specifically used to improve the RS similarity metric [12,17]. Our
proposal applies concepts of Fuzzy Systems to the problem of item-based Col-
laborative Filtering. More specifically, we use the Fuzzy Fingerprints to repre-
sent items in a CF system.

CF systems usually rely on the ratings given to items by users to determine
similarities between items (or users), through the use of a similarity metric. This
allows the creation of neighborhoods of similar items, to predict new ratings.
Traditionally, the similarity is measured using metrics such as Pearson Corre-
lation (PC) or the Cosine similarity (COS) [2]. Nevertheless, many other ways
of measuring similarity have been proposed, ranging from simple variations of
PC and COS, through the design of more complex functions.

An example is the work of [5], where ratings are combined with a mea-
sure of trust between users, which is inferred from social information. The
authors show that such combination does improve the overall rating predic-
tion. On a different approach, in [4], the authors propose a combination of the
mean squared difference between the user’s ratings with the Jaccard coefficient.
Through experiments, they demonstrate that results are improved, when com-
pared to traditional CF.
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Liu et al. [9] also propose a new similarity metric, which attributes penal-
ties to bad similarities, while rewarding good similarities. Defining a similar-
ity as good or bad depends on several factors, such as the popularity of the
rated items or the similarity of the rating to the other user’s ratings. Finally,
in [18], authors propose an alternative called M-distance-based recommenda-
tion (MBR). They leverage the average rating of each item and use the differ-
ence of such averages as the distance between items. Authors also have shown
that it is possible to pre-compute such averages and compute the similar items
neighborhood in linear time. Since this is the most time-efficient work that we
know of, we use it as a baseline in our experiments.

The above works show that improving the similarity measures has a ben-
eficial impact on the overall RS results. Nevertheless, this is often done at the
expense of an increase in the computational complexity. In this work, we intro-
duce a similarity metric based on FFPs, adapted for item-based CF, that aims
to improve time-efficiency while maintaining a low implementation effort and
a comparable, or even better, recommendation accuracy.

3 Fuzzy Fingerprints for Collaborative Filtering

We now explain how the Fingerprint of a given item is created and, following,
how a Fuzzifying Function can be applied to obtain the corresponding FFP.

Let ri be the set of ratings that a given set of users u1 · · · , uN has provided
for item i be: ri = {(u1, r1i), (u2, r2i), · · · , (uN , rNi)}. To build the Fingerprint fi,
we start by choosing a subset of k ratings in ri, where k is the parameter that
controls the size of the Fingerprint. The idea is that the selected ratings should
be those that best represent item i. To this effect, we select the k highest ratings.

However, since users usually provide ratings on a small discrete scale (e.g.
1,2,3,4, or 5 stars), we still need to give a different importance to the possi-
bly many ratings with the same value. Thus, when two ratings are equal, we
use what we call a sorting scheme (SS) to decide which one will have a higher
rank. In our experiments, we evaluated three different SSs. Let #uj be the total
number of items that user uj has rated: (1) Random: equal ratings are ordered
randomly (to be used as a baseline); (2) Higher to Lower (HL): equal ratings are
sorted in descending order according to #uj; (2) Lower to Higher (LH): equal
ratings are sorted in ascending according to #uj.

To illustrate, let ri = {(a, 5), (b, 2), (d, 5), (e, 4), ( f , 2), (h, 1), (i, 2)}, assume
that k = 4, and #a > #b > · · · > #i. The resulting Fingerprints fi, using each
of the above sorting schemes would be f(random)

i = {(d, 5), (a, 5), (e, 4), ( f , 2)},
f(HL)

i = {(a, 5), (d, 5), (e, 4), (b, 2)}, and f(LH)
i = {(d, 5), (a, 5), (e, 4), (i, 2)}.

The Fingerprint fi is, in fact, an ordered set of ratings. This order, determined
by a SS and, reflects the importance of each rating to represent items. It is by
leveraging on this importance that we determine the Fuzzy Fingerprint of item
i, Fi.

A Fuzzyfying Function (FF) µ(idx) assigns a weight to each position in a
Fingerprint. In this case, the FF is used to assign a weight to each user in fi.
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There are many alternatives to define the FF [6]. Here, we have tested three
possibilities, shown in Equation 1, where puj

is the position of user uj within fi.

µone(puj
) = 1 µlinear(puj

) =
k � puj

k
µer f c(puj

) = 1 � erfc(
2 ⇥ puj

k
) (1)

The function µone assigns an equal weight to all users ratings. Using func-
tion µlinear, the weight of a user decreases linearly, according to its position puj

.
Finally, function µer f c, uses a variation of the complementary error function to
yield a faster decrease in weights. It is important to note that these functions
are not the only available options [7]. However, preliminary experiments have
indicated that using other variations does not significantly improve the quality
of the results. For this reason, we have not tested further alternatives.

Using one of the above fuzzifying functions, we can now define the FFP Fi
as: Fi = {(uj, µ(puj

)), 8uj 2 fi}. The FFP is, therefore, the set of users in the
original Fingerprint, each with an associated weight, given by theFuzzyfying
Function. It is, in effect, a fuzzy set of users that rated item i.

Once the FFP for each item is determined, it is possible to compute similar-
ities between items.

Consider Fi and Fj the FFPs of items i and j, respectively. Let Ui be the set
of users in Fi and Uj be the set of users in Fj. The FFP similarity between items
i and j is defined as:

sim(Fi, Fj) = Â
uv2Ui\Uj

min(Fi(uv), Fj(uv))

k
(2)

where Fx(uv) denotes the the value associated to user uv in Fx. This similarity,
in fact, corresponds to a minimum t-norm between the two fuzzy sets repre-
sented by the FFPs.

Rating predictions can now be obtained in a process similar to traditional Col-
laborative Filtering. More specifically, let brvi be the predicted rating that a given
user uv would assign to item i. We start by computing the neighborhood of item
i, i.e. the set of n items in the database that are more similar to i, Ni(v), using
the similarity function defined in Eq. (2). The value of brvi is defined as:

brvi = r̄i +
Âj2Ni(v) sim(Fi, Fj)⇥ (rvj � r̄j)

Âj2Ni(v) sim(Fi, Fj)
(3)

where rvj is the rating assigned by user u to item j, r̄x is the average of all
ratings assigned to item x. A RS will usually perform these predictions for a
large set of items and return those with the highest rating predictions, thus
creating recommendations for a user.
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4 Evaluation

4.1 Experimental Setup

To assert the effectiveness of FFPs, experiments were performed using four
baseline similarity metrics and three distinct datasets. The similarity metrics
used as a baseline for comparison are the traditional Pearson Correlation (PC)
and Cosine similarity (COS). In addition, we also include theJaccard Mean Squared
Difference (JMSD) [4], an improvement on previous metrics that offers a high
rating prediction accuracy, while using a lower number of neighbors. Finally,
an alternative similarity metric, named MBR [18], is also compared since its
authors have the exact same goal as ours.

The Pearson Correlation coefficient has been widely used since it is simple
to implement, intuitive, and provides good quality results [4]. PC is defined in
Eq. 4, where U is the set users that rated both items i and j.

simPC(i, j) =
Âu2U(ru,i � r̄i)⇥ (ru,j � r̄j)q

Âu2U(ru,i � r̄i)2 ⇥
q

Âu2U(ru,j � r̄j)2
(4)

The resulting similarity will be in within the interval [�1, 1], where �1 corre-
sponds to an inverse correlation, +1 to a positive correlation, and values near
zero show that no linear correlation exists between the two items.

Another often used similarity measure is the Cosine similarity, as defined
in Eq. 5. COS will yield a value between 0 and 1, where 0 corresponds to no
similarity between i and j and 1 to exactly proportional ratings between both
users.

simCOS(i, j) =
Âu2U ru,i ⇥ ru,jq

Âu2U r2
u,i ⇥

q
Âu2U r2

u,j

(5)

The idea behind Jaccard Mean Squared Difference (JMSD) it to combine the
Jaccard coefficient, which captures the number of ratings in common between
items, with the Mean Square Difference (MSD) of those ratings, resulting in
Eq. 6:

simJMSD(i, j) = Jaccard(i, j)⇥
�
1 � MSD(i, j)

�
; (6)

where Jaccard and MSD are defined as:

Jaccard(i, j) =
|Ui \ Uj|
|Ui [ Uj|

MSD(i, j) =
Âu2U(ru,i � ru,j)

2

|U| (7)

where Us is the set of items ranked by user s.
The MBR metric uses a different principle, as shown in Eq. 8. It starts by

computing the average rating r̄j of each item j. The absolute value of the dif-
ference between these average ratings (called MBR) determines the similarity
between the items. The set of neighbors Hi of item i is defined as all items j 6= i
such that MBR(i, j)  T, where T is a predefined threshold. Rating predictions
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r̂u,i can then be determined such that the rating predicted for user u and item i
is the average of all ratings given by u to items in Hi.

MBR(i, j) =
��r̄i � r̄j

�� r̂u,i =
Âj2Hi\Uu ru,j

|Hi \ Uu|
(8)

Evaluation was conducted using three standard datasets: (1) MovieLens-
1M (ML-1M), a dataset from the movie domain; (2) Netflix, a large dataset, also
from the movie domain with a very sparse user-items ratings matrix; and (3)
Jester, a dataset for recommending jokes, with a high number of ratings per
item. Table 1 shows some statistics regarding their contents.

Table 1. Statistics for the experimental datasets. Column sparsity shows the percentage
of not rated items in the rating matrix and column #r̄i shows the average number of
ratings per item.

Dataset Ratings Users Items sparsity #r̄i

ML-1M 1 000 209 6 040 3 706 95.53% 217
Jester 1 728 785 79 681 150 75.64% 12348

Netflix 100 000 000 480 189 17 770 98.82% 5576

All experiments were conducted using the RIVAL framework [11]. All mea-
surements result from a 5 fold cross-validation, where the ratings are split on
a user basis. The exception is the Netflix dataset, where we used the provided
probe test set, to make our results comparable to those found in most literature.

4.2 Results

Recommendation Effectiveness We start by evaluating the results yielded by
different sorting schemes. Figure 1 presents the RMSE for the three proposed
sorting schemes, while varying the value of k, using µlinear as theFuzzyfying
Function. We note that the different scale for the Jester dataset is required since
its ratings vary between 1 and 10, whereas the ratings for the ML-1M and Net-
flix datasets vary between 1 and 5.

We can see that, in all datasets, the three sorting schemes show a similar
behavior. The best results are achieved, in general, by the LH sorting scheme,
while the worst are achieved by the HL sorting scheme. This indicates that rat-
ings given by the least active users are better sources of information. A possible
explanation for this phenomena is that very active users tend to give the same
rating to a large number of items that, in practice, vary widely in quality (as
perceived by the user). On the other hand, less active users are more discrimi-
natory when evaluating the items.

We now evaluate the impact on RMSE for differentFuzzyfying Functions.
Figure 2 presents the values obtained, while varying the value of k, using the
LH sorting scheme.
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Fig. 1. Impact on RMSE of different sorting schemes. We use 100 neighbors for ML-1M,
200 for Netflix and 50 for Jester. The scale on the left y axis is for the ML-1M and Netflix
datasets. The scale on the right y axis is for the Jester dataset.

As for the sorting schemes, all FFs show a similar behavior on all the datasets.
In addition, all show a similar performance, with only very small differences in
RMSE. The difference is slightly more evident in the ML-1M dataset, although
still lower than 1% between the best (µer f c) and worst (µOne) FFs. This small
difference is, in fact, coherent with other results found in the literature [7].

It is also interesting to show a comparison between the results achieved by
our proposed FFP similarity and the baselines described in Section 4.1. Fig-
ure 3 shows the results obtained, while varying the number of neighbors while
computing rating predictions. We note that the number of neighbors is not ap-
plicable to the MBR similarity metric (see Section 4.1). Thus, results for MBR
are shown as an horizontal line across the plot.

The Figure shows that results are clearly comparable, independently of the
number of neighbors used. Furthermore, the lower RMSE was yielded, in gen-
eral, by the FFP similarity metrics. We also note that FFP metrics seem to be
more resilient to variations in the number of neighbors used, with results re-
maining almost constant as this number increases.

Computational Efficiency To measure computational efficiency, we count the
number of iterations required to make a single rating prediction. Since comput-
ing the actual prediction, using Eq. (3) is independent of the similarity metric
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Fig. 2. Impact on RMSE of differentFuzzyfying Functions. We use 100 neighbors for ML-
1M, 200 for Netflix and 50 for Jester. The scale on the left y axis is for the ML-1M and
Netflix datasets. The scale on the right y axis is for the Jester dataset.

used (i.e. in all cases, the same items will be compared to the item whose rating
is being predicted) we are only interested in the iterations required to compute
the similarity between any two items.

For the purpose of this work, when computing the similarity between any
pair of items i and j, we define an iteration as: (1) a comparison between a
value in the FFP of item i and a value in the FFP of item j, as in Eq. (2); (2)
a multiplication of a rating of item i by a rating of item j, as required for the
Pearson correlation or Cosine similarity; or (3) a subtraction of a rating of item
i from a rating of item j, as in Eq. (7). In practice, for the baselines, this will be
the number of ratings in common between the two items being compared. For
the FFP, this will be the highest value between k and the number of ratings in
common between the two items. We expect the gain in our proposal to come
from the fact that k will be lower.

Figure 4 shows a plot of the average number of iterations performed per
similarity computed, on each dataset. The number of operations for the FFP
metric is shown as a function of k. A vertical line is drawn where the best results
were achieved. It should be noted that MBR only requires one iteration, since
it compares items by simply computing the difference between their ratings
average.
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In Figure 4a, we observe that, for the ML-1M dataset, the FFP similarity re-
quires on average 100 iterations when k = 200. This corresponds to a reduction
of about 23% per similarity, since the baselines require 130 iterations. In the
Netflix dataset (Figure 4b), the gain is even more evident, with the FFP metric
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Table 2. Best results for FFPs and baselines, on ML-1M. Column N contains the number
of nearest-neighbour items used to compute the predicted rating.

Sim. ML-1M Netflix Jester
SS µ k N RMSE SS µ k N RMSE SS µ k N RMSE

FFP
LH µlinear 200 20 0.8565 LH µOne 1500 35 0.9497 LH µlinear 200 25 4.0664
LH µer f c 200 25 0.8577 LH µOne 1500 35 0.9497 LH µer f c 300 25 4.0660

Rand µlinear 200 20 0.8568 LH µer f c 3000 35 0.9486 LH µOne 200 25 4.0685
COS - - - 50 0.8914 - - - 15 0.9616 - - - 15 4.0983
PC - - - 75 0.8847 - - - 30 0.9517 - - - 15 4.0419

JMSD - - - 20 0.8670 - - - 20 0.9549 - - - 15 4.0842
MBR - - - - 0.9031 - - - - 1.0016 - - - - 4.4063

requiring about 1009 iterations, when k = 1500, whereas the baselines use 3791
iterations — a reduction of 73%. Finally, for the Jester dataset (Figure 4c), the
FFP similarity requires, on average, 281 iterations when k = 300, compared to
the baseline, requiring 5822 iterations. The gain is, therefore, of 95%.

In conclusion, FFP has shown gains in all cases. This is, of course, dependent
on the data. However, it is natural to expect that, the bigger the dataset, the most
likely it is that items have a high number of ratings in common and, thus, the
more gains can be achieved by our proposal.

Summary of Results To summarize our experiments, we now present the best
results achieved by each tested similarity metric. Results for the ML-1M, Net-
flix, and Jester datasets are shown in Table 2. The lowest values for RMSE are
highlighted using bold.

The best results for the ML-1M dataset were obtained with FFPs, which out-
performs all four baselines. This was achieved using at most 200 ratings to de-
scribe the items and 20 neighbors to compute rating predictions. JMSD, the best
performing baseline, uses the same number of neighbors, as the best FFP simi-
larity, but still requires using all available ratings to compute the similarities.

Similarly, on the Netflix dataset, the best results were also achieved by the
FFPs. However, the lowest value in RMSE was obtained using the µer f c Fuzzy-
fying Function and k = 3000.

On the Jester dataset, the best results were obtained using Pearson Corre-
lation. Nevertheless, the results for our proposal are still highly relevant, for
several reasons. First, Jester is a somewhat unusual dataset, with a highly num-
ber of ratings per item (see Table 1) thus, we could expect the similarity metrics
to behave differently. Second, the difference in RMSE to the best FFP similarity
is small (0.02). Finally, as shown in Figure 4c, the gain in efficiency obtained by
the FFP is clearly significant, since on average we need 95% less iterations to
compute a similarity than PC.

In conclusion, the use of FFPs allows the reduction of the similarity com-
putational complexity, while improving, or at least maintaining, the quality of
recommendations, in comparison with the baselines COS, PC, JMSD, and MBR.
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The improvements become more noticeable in larger datasets, which translates
to a better solution in real world RSs, where we can expect very sparse data and
a higher number of users and items.

5 Conclusion

In this work, we have applied the concept of Fuzzy Fingerprints to item-based
Collaborative Filtering. FFPs are used to create a new concise item representa-
tion and an efficient and effective similarity metric. They have a smaller com-
putational cost than traditional similarity metrics while requiring a low engi-
neering effort to implement.

We have experimentally compared our proposal to two traditional similar-
ity measures, Pearson Correlation and Cosine similarity, and two state of the
art similarity metrics, Jaccard Mean Squared Difference and MBR. Results show
that FFPs are a promising approach since they can be applied with success in
recommendation tasks. In fact, using FFPs we were able to obtain a reduction of
the number of operations needed per similarity computation between 23% and
95%, depending on the density of the rating matrix. This was achieved with an
overall improvement in RMSE.

Future work will be conducted with the goal of exploring further configu-
ration options for the FFPs, such as new sorting schemes and Fuzzyfying Func-
tions. Also, we will study the application of FFPs to content-based RS.
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Abstract— Memory-based Collaborative filtering solutions
are dominant in the Recommendation Systems domain, due
to their low implementation effort and service maintenance,
when compared to Model-based approaches. Memory-based
systems often rely on similarity metrics to compute similar-
ities between items (or users) using ratings, in what is often
named neighbor-based Collaborative filtering. This paper
applies Fuzzy Fingerprints to create a novel similarity metric.
In it, the Fuzzy Fingerprint of each item is described with a
ranking of users ratings, combined with words obtained from
the items’ description. This allows the presented similarity
metric to use fewer neighbors than other well-known metrics
such as Cosine similarity or Pearson Correlation. Our pro-
posal is able to reduce RMSE by at least 0.03 and improve
NDCG@10 by at least 0.023 when compared with the best
baseline here presented.

I. INTRODUCTION

Users of the digital world are overloaded with in-
formation [20]. Recommender Systems (RSs) allow us
to cope with this, by cataloging a vast list of items,
that later can be recommended. These recommendations
can be determined by a large number of techniques, as
highlighted by the scientific community [1, 5]. Due to
their success, RSs can be found in a number of services,
providing recommendations for movies, music, news,
products, event, and services, among others [1].

RSs allow the discovery of new items that might please
the user, among the diversity of items available. Some
websites, such as Amazon, Ebay, Netflix, and LinkedIn
are current examples of services that benefit from pro-
viding recommendations to their clients [1, 12, 19]. As
a result, much research has been done in the area,
contributing to the development of new techniques to
improve recommendations, thus helping to increase the
RS providers income.

Despite these efforts, there are still challenges to be
addressed. For example, turning state-of-art solutions
into real-world scenarios is still difficult, mainly because
of the large amount of data and scalability issues that
ensue [13]. For this reason, more traditional approaches,

such as item-based Collaborative Filtering (CF) are still
the most widely used [8, 10, 16]. Despite their simplicity,
item-based CF can provide quite accurate results, thus
yielding an advantageous trade-off between engineering
effort and user satisfaction.

Our goal is to present a similarity metric using Fuzzy-
Fingerprints (FFPs) [11], which combines item ratings
and words information obtained from the item descrip-
tions to produce a better similarity metric. More specif-
ically, we propose to represent items by their ratings,
combined with a textual description, which can then be
directly used to determine similarities between them.
Previously, FFPs have been used to classify text doc-
uments, using the words’ relative weight to provide
more useful information than their actual importance.
Our work combines such approach with CF techniques.
The main contribution of this work is, therefore, the
application of FFP similarity metric for the RS domain,
by combining ratings and items descriptions within the
same FFP.

Results show that our FFP similarity metric is a
promising solution to be applied for recommendations,
achieving improvements of up to 0.073 in RMSE and in
NDCG@10 of up to 0.048.

The remainder of this paper is organized as follows.
Section II contains the literature review in Fuzzy systems
and RSs, more specifically on the use of similarity met-
rics for CF. Section III presents how Fuzzy Fingerprints
can be applied to RSs and how text can be combined
with ratings. Section IV presents the experimental evalu-
ation of our proposal. Finally, in Section V we draw some
conclusions from our results and propose directions for
future work.

II. RELATED WORK

Similarity metrics between items (or users) are a cen-
tral part of RS research [12]. Traditionally, similarity is
measured using metrics such as Pearson Correlation (PC)
or the Cosine similarity (COS) [5]. Nevertheless, many



other ways of measuring similarity have been proposed,
ranging from simple variations of PC and COS, through
the design of more complex functions [5, 7].

An example is the work of [7], where a novel sim-
ilarity metric is proposed, with the goal of exploiting
social information to improve the results produced by
traditional CF. In their work, user ratings are combined
with a measure of trust between users, which is inferred
from social information. The combination is performed
through a variation of PC and is able to improve the
rating predictions.

In [6], the authors argue that using PC alone is not
enough to capture relevant statistical features of the data.
To correct this, they propose a combination of the mean
squared difference between the user’s ratings with the
Jaccard coefficient, thus capturing the similarity between
users, while taking into account the number of items
they have ranked in common. Through experiments, the
authors demonstrate that their metric allows the RS to
use a lower number of neighbors to determine rating
predictions than traditional metrics, thus reducing rating
prediction complexity.

Fuzzy systems have also been previously applied to
RS [2, 17]. An example is the work of Son [18], where
fuzzy sets were used to combine CF with demographic
information. The author also proposes a formal defini-
tion for a Fuzzy Recommender System.

In [14], fuzzy principles are combined with proba-
bilistic inference. To do so, a fuzzy representation of
item ratings is used to create a probabilistic distribution.
The fuzzy representation enables to represent ambiguity
and vagueness of ratings. A Bayesian network combines
these representations to obtain a relationship between
users, allowing an improvement of the system accuracy.

In a recent work [21], fuzzy tools are used to improve
recommendation accuracy, by managing what the au-
thors call natural noise. Natural noise results from the
users’ own errors during item evaluation. Their work
is compared to other noise reduction methods and is
shown to have a superior performance..

There is some similarity between [21] and our work.
However, our aim is to filter unreliable ratings, whereas
in [21] ratings are modified to reduce noise.

The above works, as many others show that improving
the similarity metrics has a beneficial impact on the
overall RS results. In this work, we introduce a similarity
metric based on FFPs, adapted for RSs, that aims to
improve recommendations and allows the combination
of different types of information.

III. PROPOSAL

Fingerprints map an arbitrarily large object into a
smaller and more compact representation [3, 11]. In our
work, items in a Recommender System are represented
by their Fuzzy-Fingerprint (FFP), which is then used
to compute item similarities. Before obtaining the FFPs,

Fingerprints must be computed. A Fingerprint, fi, of an
item i is generated by ranking a set of features assigned
to it. Once fi is determined, a FFP is computed, through
the application of a Fuzzyfing Function (FF) [9]. This
function transforms sets of ratings into fuzzy sets, which
form the FFP of item i, designated as Fi. In the following,
we explain this process in detail.

A. Creating Fingerprints

Neighbor-based CF computes similarities using the
ratings given by users to different items. In this work,
besides using the ratings, we add textual information
taken from the item’s descriptions. We argue that ratings
and text can be combined into an FFPand improve the
quality of the recommendations.

Representing Ratings

Let ri be the set of ratings, for which N users provided
a rating for item i defined as:

ri = {(u1, r1i), (uw, rwi), · · · , (uN , rNi)} (1)

where each uj is a user identifier and rji is the rating
assigned by user uj to item i.

In general, users provide explicit feedback by giving
a rating, i.e. by evaluating the item using a given scale.
Since ratings are usually based on a discrete limited
scale (e.g. 1 to 5 stars), items often get the same rating
from many users. However, the meaning of a particular
value may be different for different users. Thus, it is
important to normalize the ratings. To achieve this, we
simply subtract the average of all ratings given by the
user.

To illustrate this process, Fig. 1 shows an example for
an item i with ratings ri, the average rating of each user
is ūj, and line rji � ūj show the final normalized value.

uj a b c d e
rji 5 2 - 5 4
ūj 3.5 3.4 3.4 3.6 3.5

rji � ūj 1.5 -1.4 - 1.4 0.5

Figure 1: Ratings (ri) of item i, average rating of each user
ūj and the rating of a user in reference to the average
rating rji � ūj.

Representing Item Descriptions

We now need to apply a similar process to the item
descriptions. An item description can be any piece of
textual information associated with an item (e.g. a movie
synopsis).

We start by applying stemming and stop-word re-
moval, followed by computing the respective TF-IDF of
each word. Each item will, thus be represented by a
vector of TF-IDF weights, as illustrated in Fig. 2.



word w1 w5 w30 w72
TF-IDFi 0.2 0.052 0.024 0.046

Figure 2: TF-IDF representation of item i. Each wj corre-
sponds to a word present in the item’s description.

Building the Fingerprint
Finally, we combine the ratings and item information.

To do so, we first need to transform the values so that
both types of information are on the same scale. We
achieve this using Eq. 2, where xnew is the resulting
scaled value, x is the value being normalized, min the
lowest value max the highest value. This normalization
is applied to each item representation separately.

xnew =
x � min

max � min
(2)

Figure 3 shows the normalized vector obtained for the
ratings from Fig. 1, considering min = �2.0 and max =
2.5. Figure 4 shows the normalized vector obtained for
the text from Fig. 2, considering min = 0.001 and max =
0.2.

uj a b c d e
Norm. rji � ūj 0.777 0.133 - 0.756 0.556

Figure 3: Normalized ratings for item i.

word w1 w5 w30 w72
Norm. TF-IDFi 1 0.2563 0.1156 0.2261

Figure 4: Normalized TF-IDF for item i.

Once the ratings and textual information are normal-
ized, a Fingerprint can be generated by simply joining
both representations, ordering them, and keeping only
the k features with the highest values. The value for k
can be configured and optimized. Figure 5 shows the
resulting Fingerprint for item i, with k equal to 5.

feature w1 a d e w72
fi 1 0.777 0.756 0.556 0.2261

Figure 5: Fingerprint fi, using k equal to 5.

B. Fuzzifying a Fingerprint
The Fingerprint fi, shown in the previous Section, is

an ordered set of features. This order reflects the impor-
tance of each rating and word in representing the items.
It is by leveraging this importance that we determine the
Fuzzy-Fingerprint of item i, Fi.

A Fuzzyfing Function assigns a weight to each feature
in fi. There are many alternatives to define a FF [9]. Here,
we present one suggestion, shown in Eq. 3, where pos f j
is the position of feature f j within fi.

µ(pos f j
) =

k � pos f j

k
(3)

Using Eq. 3, the weight of a feature decreases linearly,
according to its position. Preliminary experiments have
indicated that using other functions does not influence
significantly the quality of the results for this problem.
For this reason, we do not present the alternatives in this
paper.

Using the above FF, we can now define the FFP Fi as:

Fi = {( f j, µ(pos f j
)), 8 f j 2 fi} (4)

The FFP is, therefore, the set of features in the Finger-
print and its associated weight, given by the FF. It is, in
effect, a fuzzy set of features for item i.

An example is shown in Fig. 6, resulting from fuzzi-
fying the Fingerprint in Fig. 5.

f j w1 a d e w72
Fi 0.8 0.6 0.4 0.2 0

Figure 6: FFP for item i, with k equal to 5.

Note that the FFP does not contain the item ratings
nor the actual TF-IDF weights of the words. Instead,
it contains the value corresponding to the position in
the FF. In [11], when classifying textual documents,
the authors argue that the relative weights of words,
resulting from a FF, provides more useful information
than their actual value. We apply the same idea in this
work.

C. Comparing Fuzzy Fingerprints

Once the FFPs are determined, it is possible to com-
pute similarities between items. Consider Fi and Fg the
FFPs of items i and g, respectively. Let Fi be the set of
features in Fi and Fg be the set of features in Fg. The
FFP similarity between items i and g is defined as:

simFFP(Fi, Fg) = Â
uv2Fi\Fg

min(Fi( fv), Fg( fv))

k
(5)

where Fx(v) denotes the the value associated with fea-
ture fv in Fx.

Equation (5) defines the similarity between two
FFPs [11]. This similarity uses the sum of the lowest val-
ues from each FFP depending on the features in common
between the two items i and g. This corresponds to a
minimum t-norm, where we intersect the two fuzzy sets.
The idea is that, for two items to be similar, they must
have been rated by the same users and the ratings given
by those users must have the same relative importance,
or the words in their descriptions also have a similar
importance.

f j d w1 s y w30
Fg 0.8 0.6 0.4 0.2 0

Figure 7: FFP for item g, with k equal to 5.



We illustrate this using the previously determined FFP
for item i (Fig. 6) and the FFP of a new item g, shown
in Fig. 7. The computation is shown in Eq. (6).

simFFP(Fi, Fg) =
min(Fi(d), Fg(d))

k

+
min(Fi(w1), Fg(w1))

k

=
min(0.4, 0.8)

5
+

min(0.8, 0.6)
5

= 0.2 (6)

D. Rating Prediction and Recommendation

In this work, predictions are obtained using the con-
ventional neighbor-based Collaborative Filtering. More
specifically, let brvi be the predicted rating that a given
user uv would assign to item i. We start by computing
the neighborhood of item i, i.e. the set of n items in the
database that are more similar to i, Ni(v). The value of
brvi is defined as:

brvi = r̄i + gvi Â
g2Ni(v)

sim(Fi, Fg)⇥ (rvg � r̄g) (7)

where rvg is the rating assigned by user u to item g, r̄x
is the average of all ratings assigned to item x and gui
is defined as:

gvi =
1

Âg2Ni(v) sim(Fi, Fg)
(8)

To generate recommendations for a user, rating pre-
dictions are computed for all items not evaluated by the
user. Those predictions are then sorted and the highest
rated are selected and recommended.

IV. EVALUATION

This Section contains the experimental procedure used
to validate our work. Our aim is to determine similarities
between items by combining ratings and content-based
information. These are embedded in a Fuzzy-Fingerprint
and the similarity between FFPs is used to compare the
items.

To assert the effectiveness of our approach, we have
conducted experiments with three baseline similarity
metrics: Pearson Correlation (PC), Cosine similarity
(COS) and a state-of-the-art similarity metric named
Jaccard-Mean Squared Difference (JMSD) [6].

The Pearson Correlation coefficient has been widely
used in RSs, since it is simple to implement, intuitive
and provides fair quality results [6]. PC is defined in
Eq. 9, where U is the set users that rated both items i
and g.

simPC(i, g) =
Âu2U(ru,i � r̄i)⇥ (ru,g � r̄g)q

Âu2U(ru,i � r̄i)2 ⇥
q

Âu2U(ru,g � r̄g)2

(9)

Another often used similarity measure is the Cosine
similarity (COS), as defined in Equation (10).

simCOS(i, g) =
Âu2U ru,i ⇥ ru,gq

Âu2U r2
u,i ⇥

q
Âu2U r2

u,g

(10)

To further demonstrate the generality of our solution,
the similarity metric proposed in [6], designated as the
JMSD is included. It combines the Jaccard coefficient, to
capture the number of ratings in common, with the mean
squared difference (MSD) of those ratings. It offers a
good rating prediction accuracy, using a lower number of
neighbors than PC and COS. JMSD is defined in Eq. 11:

simJMSD(i, g) = Jaccard(i, g)⇥
�
1 � MSD(i, g)

�
(11)

where Jaccard and MSD are defined as:

Jaccard(i, g) =
|Ui \ Ug|
|Ui [ Ug|

(12)

MSD(i, g) =
Âu2U(ru,i � ru,g)2

|U| (13)

where Us is the set of items ranked by user s.
The evaluation was conducted using the Hetrec2011-

movielens dataset1. This dataset, from the movie do-
main, has 86 000 ratings, from 2113 users to 10 197
movies. Content-based information was extracted from
the movies synopsis.

A. Evaluation Metrics

In this Section, we are interested in determining how
effective is our proposed similarity and how many
features are needed to build the FFP. To do so, we
use the values of Root Mean Square Error (RMSE) and
Normalized Discounted Cumulative Gain (NDCG) [5].
RMSE evaluates the quality of rating predictions. NDCG
evaluates the recommendations considering not only the
elements being recommended, but also their ranking
within the recommendation. For NDCG we consider
the 10 highest (predicted) rated items to recommend to
users. An item is considered relevant only if it has the
highest possible rating, which in this dataset is the rating
of 5 stars.

No users or items were discarded, if even they con-
tained only very few ratings. Although this might lead
to what is called the cold start problem, we were interested
in observing the performance of our approach under
such conditions. All experiments were conducted using
RIVAL [15], a framework to evaluate Recommender
Systems. All measurements result from a 5 fold cross-
validation experiment, where the ratings are split on a
user basis. All predictions are made using only the items
in the test set [4].

1The dataset can be obtained at http://grouplens.org/
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B. Results
Our experiments start by analyzing the impact of the

FFP size, i.e. the number k of features used to represent
items. Results are shown in Fig. 8.

We can see that there is an optimal value for k,
achieved when k is equal to 125, in this dataset. Figure 8
also shows that FFPs with more than 125 features start
to introduce noise and, thus, lead to an slight increase
in RMSE.

Using this ideal number of features, Fig. 9 and Fig. 10
show a comparison of our solution to the baselines, in
terms of RMSE and NDCG, respectively.

We can see that the FFP similarity is able to improve
both rating predictions and recommendation quality.
Moreover, according to the obtained NDCG, not only
more relevant items are being recommended to users,
those most relevant are being recommended first, when
compared to the baselines. This is achieved using fewer
neighbors than all the baseline similarity metrics. As re-
sult, our proposal not only can increase the quality of the
results, but also improve recommendation performance.

Similarity K N RMSE NDCG@10
FFP 125 20 0.760 0.490
COS - 100 0.833 0.442
PC - 100 0.821 0.461

JMSD - 25 0.790 0.467

Table I: Summary table with FFP similarity and base-
lines.

To summarize our evaluation, Table I shows the best
results achieved by each similarity metric. The values
shown confirm our observations. More specifically, the
FFP similarity requires five neighbors less, achieves an
RMSE that is 0.03 lower and an NDCG that is 0.023
higher than the best baseline here presented, JMSD.
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Figure 9: Value of RMSE for varying number of neigh-
bors, comparing the different baselines with the FFP
similarity.
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Figure 10: Value of NDCG@10 for varying number of
neighbors, comparing the different baselines with the
FFP similarity.

We can therefore conclude that using FFPs is an ef-
fective way to combine different types of information to
improve the quality of RSs.

V. CONCLUSION

In this work, we apply the concept of Fuzzy Finger-
prints to RSs, creating a new item representation and
similarity metric. Fuzzy Fingerprints use not only user
ratings, as common similarity metrics do, but also allow
the introduction of other types of information. In this



work, we experiment with textual information, extracted
from movie synopsis.

A set of experiments on a standard dataset shows
that FFPs are a promising approach. When compared
with two traditional and one state-of-the-art baseline, we
achieved improvements of 0.03 in RMSE and 0.023 in
NDCG, when compared to the best results achieved by
the baselines.

Future work will be conducted with the introduction
of more information sources, such as social network data
and user demographics.
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Abstract. Most Recommender Systems rely exclusively on ratings and
are known as Memory-based Collaborative Filtering systems. This is cur-
rently dominant approach outside of academia due to the low implemen-
tation effort and service maintenance, when compared with more com-
plex Model-based approaches, Traditional Memory-based systems have
as their main goal to predict ratings, using similarity metrics to determine
similarities between the users’ (or items) rating patterns. In this work,
we propose a user-based Collaborative Filtering approach based on tags
that does not rely on rating prediction, instead leveraging on Fuzzy Fin-
gerprints to create a novel similarity metric. Fuzzy Fingerprints provide
a concise and compact representation of users allowing the reduction of
the dimensionality usually associated with user-based collaborative fil-
tering. The proposed recommendation strategy combined with the Fuzzy
Fingerprint similarity metric is able to outperform our baselines, in the
Movielens-1M dataset.

Keywords: Recommender System, Collaborative Filtering, Fuzzy Finger-
print, Tags

1 Introduction

Users of the digital world are overloaded with information [16]. Recommender
Systems (RSs) allow us to cope with this, by cataloging a vast list of items, that
later can be recommended. Due to their success, RSs can be found in a num-
ber of services, providing recommendations for movies, music, news, products,
events, services, among others [1]. However, turning state of the art solutions
into real-world scenarios is still challenging, mainly due to a large amount of
available data and the ensuing scalability issues. For this reason, more tradi-
tional approaches, such as Collaborative Filtering (CF) are still the most widely
used [18]. Despite its simplicity, CF can provide quite accurate results, thus
yielding an advantageous trade-off between engineering effort and user sat-
isfaction.

Memory-based Collaborative Filtering can usually be implemented using
one of two different strategies: user-based CF, which compares users ratings to
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determine a neighborhood of similar users; and item-based CF, which instead
computes item similarities and forms item neighborhoods to produce the rating
predictions.

Over the years, item-based CF has replaced user-based CF, given its better
scalability properties [11]. Since the number of users grows over time, and gen-
erally at a faster rate than the items, so does the number of similarities, thus
posing a scalability problem. Similarities between users also vary more over
time than similarities between items, since individual users tend to change their
preferences, while the global opinion on a given item tends to remain stable.

In this work, we argue that an effective and efficient user-based CF system
can be implemented. To this effect, we use Fuzzy Fingerprints (FFPs) to repre-
sent users based on item tags and ratings. Tags, i.e. short textual labels attached
by the users to the items, provide an item description or categorization and are a
common resource in current online RSs. They allow us to create a more detailed
user representation than traditional CF, in a controlled manner, i.e. by control-
ling the number of tags used in the FFPs, we can easily fine-tune our system to
improve recommendation quality or to speed up the similarity computation. In
this work, we mainly focus on obtaining an improved recommendation quality.

Our main contributions are, therefore, (1) a new way to determine relevant
items to recommend to users without requiring the computation of rating pre-
dictions for user-based CFs, and (2) a novel similarity metric for RSs, using the
concept of FFPs cite5751998 to represent users based on tags from rated items.
More specifically, we propose to represent users by their low-dimensional Fin-
gerprints, which can then be directly used to determine similarities between
them. A similar idea has been previously applied to text authorship identifica-
tion [9] with success. Our goal is to apply the same principle to RSs using tags
from the items rated by each user, to obtain better recommendations. This solu-
tion has three major advantages: (1) provides overall better recommendations
to users; (2) requires a minimal implementation effort; and (3) its representation
of the users is scalable and easily maintainable.

To demonstrate our claims, experiments were performed on a movie dataset
providing movies metadata information, allowing the creation of users FFPs.

The remainder of this paper is organized as follows: Section 2 contains lit-
erature review on similarity metrics for CF; Section 3 presents how FFPs can be
applied to RSs; Section 4 presents an experimental evaluation; finally, in Sec-
tion 5 some conclusions are drawn from the results and directions for future
work are proposed.

2 Related Work

Fuzzy systems approaches have been previously used to improve the RS sim-
ilarity metric [6] focusing exclusively on item-based CF. Our proposal applies
concepts of Fuzzy Systems to the problem of user-based Collaborative Filter-
ing. More specifically, we use Fuzzy Fingerprints, in a CF system, to represent
users in a more compact way.
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CF systems usually rely on the ratings given to items by users to determine
similarities between users (or items), through the use of a similarity metric. This
allows the creation of neighborhoods of similar users, to predict new ratings.
Traditionally, the similarity is measured using metrics such as Pearson Corre-
lation (PC) or the Cosine similarity (COS) [2]. Nevertheless, many other ways
of measuring similarity have been proposed, ranging from simple variations of
PC and COS, through the design of more complex functions.

An example is the work of [7], where ratings are combined with a measure
of trust between users, which is inferred from social information. By introduc-
ing the degree of trust between users the authors show that it does improve the
overall rating prediction. On a different approach, in [3], the authors propose
a combination of the mean squared difference between the user’s ratings with
the Jaccard coefficient. Through experiments, they demonstrate that results are
improved, when compared to traditional CF.

To determine the neighborhood of each user, usually, similarities are com-
puted between the user and all other users, which are then sorted by their de-
gree of similarity and only the top k are kept. In [17] an alternative way to
determine neighborhoods is proposed. The authors randomly choose a possi-
ble neighbor from the set of all users. This neighbor is kept only if its similarity
is above a given threshold. The process is then repeated until a certain amount
of neighbors is obtained. Their work has two threshold variables that depend
on the data and must be fine-tuned: (1) the minimum similarity for a user to be
considered a neighbor; (2) the minimum number of users in the neighborhood.

Combining Recommender systems and tags is not a novel idea [13,15,10].
Tags can help alleviate the so-called cold-start and data sparsity problems. The
cold-start problem occurs when new items, not yet rated by any user, or new
users, who have not rated any item yet, cannot receive recommendations since
they cannot be compared to other items/users. The data sparsity problem is also
associated with CF systems since it is common for users and items to have
very few ratings, and thus not enough information to produce valuable rec-
ommendations [4]. Tags can help address these issues, they only depend on the
availability of metadata, for each item. Our RS takes advantage of tags to more
accurately represent each user and, therefore, improve the quality of the user
similarity computation.

Liu et al. [12] also propose a new similarity metric, which assigns penalties
to bad similarities, while rewarding good similarities. Defining a similarity as
good or bad depends on several factors, such as the popularity of the rated
items or the similarity of the rating to the other user’s ratings.

In [5] a FFP was applied to item-based CF using also movies synopsis to
represent items. The FFP results from ratings and synopsis words that are also
added as features. A normalization is applied to both ratings and synopsis
words, separatly, resulting in FFP which combines both.Note that in this work,
we are currently creating a user-based CF to represent users with item tags
weighted by the ratings, and not represent item using FFP.
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The above works show that the selection process of neighbors and the im-
provement of the similarity measures have a beneficial impact on the overall
RS results. This work presents a similarity metric based on FFPs, adapted for
user-based CF, using the tags associated to each item, with the main goal of
improving the recommendation quality.

3 Tag-Based User Fuzzy Fingerprints for Collaborative
Filtering

A Fuzzy Fingerprint (FFP) is a fuzzified ranked vector containing information
based on frequencies of occurrence of the elements being encoded [9]. In this
Section, we explain how to build and apply a tag-based FFP to represent users
in a CF recommender system.

Let N be the total number of tags in the system and let M be the total num-
ber of items in the system. Let qi represent the set of tags of a given item i:
qi = (t1i, t2i, t3i, · · · , tNi). Any element tni 2 qi can assume the value 1 if the
respective tag occurs in the item, or 0 if it does not.

Let ru be the set of ratings for a given set of items i1 · · · , iM, provided by
a user u: ru = (r1u, r2u, · · · , rMu). We assume, without loss of generality, that
rmu � 0 and that a value of zero means that the user has not yet rated item im.

A Fingerprint fu is built by counting, for user u, the number of occurrences
of each tag in the items rated by u, multiplied by the respective item’s rating,
i.e. fu = (c1u, c2u, · · · , cNu), where:

cnu =
M

Â
8i=1

tni ⇥ riu (1)

The rationale behind Eq. (1) is that tags from items a user has rated higher
should also get a higher importance in the Fingerprint. The next step consists
in ordering fu according to cnu and keeping only the k highest values. The Fin-
gerprint size k is a parameter of the system and can be optimized offline.

To illustrate the previous procedure, let ru = (5, 2, 4) for items a, b, and c.
Assume there are only 5 tags and let qa = (1, 0, 0, 1, 1), qb = (0, 1, 0, 0, 1), and
qc = (0, 0, 1, 1, 0}. Assuming that k = 4, the resulting Fingerprint fu will be
(c4u = 9, c5u = 7, c1u = 5, c3u = 4).

The Fingerprint fu is, therefore, an ordered set of tags. The rank of each tag
reflects its importance in representing the user. This Fingerprint still needs to
be transformed into a Fuzzy Fingerprint. The fuzzification of the Fingerprint
leverages the importance of the order (and not of the frequency) to distinguish
between users. The FFP of user u, Fu, is obtained by fuzzifying the rank (the
position in the Fingerprint) of each tag.

The choice of the fuzzifying function can affect the obtained results [8,9].
Here, we have tested the linear approach, shown in Equation 2, where puj

is
the rank of tag tn within fu (starting with t=0).

µlinear(ptn
) =

k � ptn

k
(2)
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Preliminary experiments indicate that using other fuzzifying functions does not
significantly improve or degrade the quality of the results in this approach.

After the fuzzification step, we can now define the FFP Fu as:

Fu = {(tn, µ(ptn
)), 8tn 2 fu} (3)

The FFP is, therefore, a ranked set of tags, each of which is associated with
a membership value, built based on the description of the items rated by the
user.

Once the FFP for each user is determined, it is possible to compute similari-
ties between users.

Consider Fu and Fj the FFPs of users u and j. The FFP similarity between
users u and j is defined as:

simFFP = (Fu, Fj) = Â
tn2Ui\Uj

min(Fu(tn), Fj(tn))

k
(4)

where Fx(tu) denotes the membership value associated to tag tn in Fx. Note
that the use of k in this equation as a normalization factor is only needed to fa-
cilitate development and parameter optimization. It can be omitted during sys-
tem operation when computing similarities, largely improving computational
efficiency.

The recommendation process of the proposed RS does not rely upon rating
predictions as in traditional Collaborative Filtering (see Section 4). Instead, it
identifies the user’s nearest neighbors (according to Equation 4) and uses the
items seen and liked by them to extrapolate possible items to recommend to the
user.

The RS starts by computing which users are the nearest neighbors of user
u, based on the FFP similarity metric. Users are considered neighbors if the
similarity is greater than a defined threshold simthreshold.

We consider that any item rated highly by a neighbor (e.g., 4 or 5 on a 0-5
scale) and rated higher than that neighbor’s item rating average, is recommend-
able to the user.

The final step in the recommendation process consists in getting the differ-
ence between the rating of the recommendable item, the average rating given
to that item by the neighbor, and multiplying it by the similarity between the
user and the neighbor. This allows to create a ranking of recommendable items.

4 Evaluation

To assert the effectiveness of the proposed RS experiments were performed
using a movie dataset. Precision, Recall, and F1-score are used as evaluation
metrics.

The similarity metrics used as baselines for comparison are the traditional Pear-
son Correlation (PC) and Cosine similarity (COS). In addition, we also include
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the Jaccard Mean Squared Difference (JMSD) [3], an improvement on previ-
ous metrics that offers a high rating prediction accuracy, while using a lower
number of neighbors. Finally, a similarity metric, that uses FFPs [6] yet is only
applicable to traditional item-based CF and which only relies upon ratings to
compute similarities. We refer to this baseline [6] throughout the rest of this doc-
ument as FFPrating. While the FFP proposed in this document will be referenced
as FFPtags. All similarity metrics baselines use both user-based and item-based,
except FFPrating that is only applicable to item-based CF.

Pearson Correlation coefficient has been widely used since it is simple to
implement, intuitive, and provides good quality results [3]. PC is defined in
Eq. 5, where I is the set items both user u and j rated.

simPC(u, j) =
Âi2I(ru,i � r̄u)⇥ (rj,i � r̄j)q

Âi2I(ru,i � r̄u)2 ⇥
q

Âi2I(rj,i � r̄j)2
(5)

The resulting similarity will be in within the interval [�1, 1], where �1 corre-
sponds to an inverse correlation, +1 to a positive correlation, and values near
zero show that no linear correlation exists between the two users.

Another often used similarity measure is the Cosine similarity, as defined
in Eq. 6. COS will yield a value between 0 and 1, where 0 corresponds to no
similarity between u and j and 1 to exactly proportional ratings between both
users.

simCOS(u, j) =
Âi2I ru,i ⇥ rj,iq

Âi2I r2
u,i ⇥

q
Âi2I r2

j,i

(6)

The idea behind Jaccard Mean Squared Difference (JMSD) is to combine the
Jaccard coefficient, which captures the number of ratings in common between
users, with the Mean Square Difference (MSD) of those ratings, resulting in
Eq. 7:

simJMSD(u, j) = Jaccard(u, j)⇥
�
1 � MSD(u, j)

�
; (7)

where Jaccard and MSD are defined as:

Jaccard(i, j) =
|Iu \ Ij|
|Iu [ Ij|

MSD(i, j) =
Âi2I(ru,i � rj,i)

2

|I| (8)

where Is is the set of items rated by user s.
The FFPrating metric uses an approach that is totally different to the one

proposed in this work: each item has its own FFP and the recommendation is
based exclusively on ratings. The user’s ratings constitute the item Fingerprint
and ratings are sorted taking into consideration the total amount of ratings from
each user.

We now explain how a traditional CF computes rating predictions. Let r̂ui
be the predicted rating that a given user u would assign to item i. We start by
computing the neighborhood Nu, of user u, i.e. the set of n users in the database



Tag Fuzzy Fingerprints for User-Based CF 7

that are more similar to u, using a similarity function. The value of r̂ui is defined
as:

r̂ui = r̄u +
Âv2Nu sim(u, v)⇥ (rvi � r̄v)

Âv2Nv sim(u, v)
(9)

where rvi is the rating assigned by user v to item i, r̄x is the average of all ratings
assigned to user x. A traditional CF system usually performs these predictions
for a large set of items and returns those with the highest rating predictions, as
recommendations.

An evaluation was conducted using MovieLens-1M (ML-1M) dataset, from
the movie domain. By using Dbpedia1, Tags and other meta-data, regarding
each movie, were collected. In this work, we focus exclusively on Tag informa-
tion.

The ML-1M dataset has 1 million ratings, 6040 users, 3706 items, a sparsity
of 95.53% and has an average of 125 ratings per user.

The evaluation process was performed through 5-fold cross-validation, us-
ing RiVal [14], a framework to make RSs evaluation fair process, completely
separating the recommendation task of a RS from the Evaluation of the recom-
mendations.

We define any item with rating greater than or equal to 4 as a relevant (i.e.
should be recommended) to the user.

Precision can be computed using Eq. 10 and Recall using Eq. 11. In this
work, we do not set a threshold for a maximum number of recommendations
i.e. the RS can recommend as many relevant items to a user as possible. Even
though we calculate the F1-score (Eq. 12.), we support the idea that Precision
is a far better indication for a good RS, as long as Recall is within a range that
allows the retrieval of a sufficient number of relevant items (in the tested cases,
all approaches fulfill the Recall criteria).

PR =
#TruePositives

#TruePositives + #FalsePositives
(10)

RC =
#TruePositives

#TruePositives + #FalseNegatives
(11)

F1 = 2 ⇥ PR ⇥ RC
PR + RC

(12)

We start by comparing the similarity distribution using our similarity met-
ric and the baselines, this allows us to determine the best simthreshold when se-
lecting the neighborhood. We then vary the number of neighbors used by the
FFPtags over different sizes of k. This allows us to determine not only the best
k for the FFPtags but also the most adequate number of neighbors to use. Fi-
nally, we present a summary table with baselines and how do they perform in
comparison to the proposed RS.

1 Dbpedia: http://www.dbpedia.org
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Figure 1 shows the similarity distributions. By analyzing Fig. 1d, we notice
that the average similarity is around 0.2. This provides a good indicator to ex-
periment different simthreshold around 0.2. Experimentally, we determined that
using 0.25 provides good results, for this dataset.
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(c) JMSD similarity distribution.
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(d) FFPtags similarity distribution.

Fig. 1. Histograms show the similarity distribution of different similarity metrics when
applied to user similarity computation. FFPtags uses k = 200 tags to represent a user
FFP.

Figure 2 compares different sizes for the FFP and for each size we vary the
number of neighbors used by the RS. According to the F1 � measure the best
results are obtained using k equal to 200. Knowing that, on average, each user
has 637 tags associated to rated movies, the proposed FFP similarity metric uses
only 31% of existing tags, being able to correctly select relevant tags to represent
each user.

Table 1 shows how the different tested approaches perform. The proposed
Tag-user based FFP performs better overall than any other approach, even when
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Fig. 2. Comparison between different sizes of the FFP, while varying the number of
neighbors used.

compared to the state-of-the-art JMSD, although the improvement is not signif-
icant.

An interesting result is how much better the proposed approach is when
compared to other previously proposed user-based approaches, thus opening
the door to further developments in user-based RS. It should be noted that item-
based approaches have been thoroughly used in the past and have been highly
optimized. Yet user-based approaches are also viable. For example, it is very
easy to enrich the FFP using data other than simple tags, from movie descrip-
tions to a user’s favorite actors, directors or genres.
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Similarity Metric Approach Num. neighbors F1-score Precision Recall

FFPtags User-based 150 0.76929 0.63504 0.97554
COS Item-based 50 0.76622 0.62112 0.99978
PC Item-based 75 0.76621 0.62115 0.99969

JMSD Item-based 20 0.76623 0.62112 0.99980
FPPratings Item-based 20 0.76623 0.62113 0.99979

COS User-based 200 0.42356 0.26869 0.99989
PC User-based 100 0.42338 0.26854 0.99990

JMSD User-based 100 0.42356 0.26869 0.99989
Table 1. Summary results in which FFPtags (using k = 200) combined with the proposed
recommendation algorithm is compared with several baselines using item-based and
user-based CF.

5 Conclusion

In this work, we have applied the concept of Fuzzy Fingerprints to user-based
Collaborative Filtering and represented users based on tags according to the
items they rated. FFPs are used to create a new concise user representation that
improves the F1-score and Precision of an RS. The best result for the proposed
approach was obtained for k = 200. In this dataset, each user has on average
637 tags, which shows that the FFPs are able to reduce the problem complexity
while still improving recommendation quality.

We have experimentally compared our proposal to two traditional similar-
ity measures, Pearson Correlation and Cosine similarity, and a state-of-the-art
similarity metrics such as Jaccard Mean Squared Difference.

Results show that FFPs are a promising approach since they can be applied
with success in recommendation tasks. In fact, using FFPs we are able to repre-
sent a user using, on average, 68% less features. In addition, and even though
we do not address such issue in this paper, FFP similarity is a much more com-
putationally efficient process than any of the other similarity measures. This
can be arguably enough to compensate for the fact that there are usually much
more users than items in RS, as we will try to show in a future work.

Future work includes more extensive parameter optimization, enriching the
FFP with other features, and improving the last step of the recommendation
algorithm by using more sophisticated ways to aggregate the influence of each
neighbor.
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(eds.) Advances in Fuzzy Logic and Technology 2017, pp. 419–430. Springer Inter-
national Publishing, Cham (2018)

7. Chen, S., Luo, T., Liu, W., Xu, Y.: Incorporating similarity and trust for collabora-
tive filtering. In: Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09. Sixth
International Conference on, vol. 2, pp. 487–493 (2009). DOI 10.1109/FSKD.2009.720

8. Dimiev, V.: Fuzzifying functions. Fuzzy Sets and Systems 33(1), 47 –
58 (1989). DOI http://dx.doi.org/10.1016/0165-0114(89)90216-9. URL
http://www.sciencedirect.com/science/article/pii/0165011489902169

9. Homem, N., Carvalho, J.P.: Authorship identification and author fuzzy ‘finger-
prints”. In: Fuzzy Information Processing Society (NAFIPS), 2011 Annual Meeting
of the North American, pp. 1–6 (2011). DOI 10.1109/NAFIPS.2011.5751998

10. Kim, H.N., Ji, A.T., Ha, I., Jo, G.S.: Collaborative filtering based
on collaborative tagging for enhancing the quality of recommenda-
tion. Electronic Commerce Research and Applications 9(1), 73 –
83 (2010). DOI http://dx.doi.org/10.1016/j.elerap.2009.08.004. URL
http://www.sciencedirect.com/science/article/pii/S1567422309000544. Spe-
cial Issue: Social Networks and Web 2.0

11. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. Internet Computing, IEEE 7(1), 76–80 (2003). DOI
10.1109/MIC.2003.1167344

12. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to
improve the accuracy of collaborative filtering. Knowledge-Based Systems 56,
156 – 166 (2014). DOI http://dx.doi.org/10.1016/j.knosys.2013.11.006. URL
http://www.sciencedirect.com/science/article/pii/S0950705113003560

13. Osmanli, O., Toroslu, I.: Using tag similarity in svd-based recommendation systems.
In: Application of Information and Communication Technologies (AICT), 2011 5th
International Conference on, pp. 1–4 (2011). DOI 10.1109/ICAICT.2011.6111034



12 Carvalho André et al.
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Fingerprint ;   Fuzzy-Fingerprint

This similarity metric does not use the ratings directly instead uses the order of those 
ratings and an ordering criteria based on rating value and user popularity: (1) 
Random or (2) High-Low or (3) Low-High. 

The number of ratings used to define the Fingerprint depends only on k, which 
highly influences the similarity computational complexity.

Rating prediction equation:

Fuzzy Fingerprints 
for Item-based 

Collaborative Filtering 

Recommendation systems generally use Collaborative Filtering (CF), a 
technique where ratings given to items by users are exploited to 
determine rating predictions for other yet unrated items. In CF, 
recommendations depend on a similarity metric to compare items, a rating 
prediction equation, and a recommendation strategy (e.g. selection of the 
Top-K rated items).

We propose a novel similarity metric for Recommender Systems using 
Fuzzy Fingerprints and item-based Collaborative Filtering.

Our current solution allows to: 
• Improve rating prediction and recommendation quality; 
• Reduce the complexity required to compute item similarity, in 

comparison to the current state of the art metrics; 
• Provide a concise representation of items, by selecting a relatively 

small number of user ratings and using their order to describe them.

Experiments have shown that the ordering criteria have a high impact on the 
recommendation quality. 

The best performing feature sorting scheme is Low-High, which solves rating 
ties by placing the user with fewer ratings first. Users with less ratings are 
more reliable than users with more ratings. We are currently working on this 
question and exploring new ways to perform this sorting scheme using 
unsupervised learning to rank.

Regarding the similarity computational complexity, we achieved a significant 
reduction of the number of operations per similarity computation, between 23% 
and 95% less than other state of the art metrics.

Fuzzy Fingerprint item similarity:

Comparison of similarity metrics. 

Netflix dataset similarity metric 
computational analysis by varying k.
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Methodology
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Item Ratings
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Fingerprint ;	 Fuzzy-Fingerprint

This	similarity	metric	does	not	use	the	ratings	directly	instead	uses	the	order	of	those	

ratings	and	an	ordering	criteria	based	on	rating	value	and	user	popularity:	(1)	Random	or	(2)	

High-Low	or	(3)	Low-High.	

The	number	of	ratings	used	to	define	the	Fingerprint	depends	only	on	k,	which	highly	

influences	the	similarity	computational	complexity.

Rating	prediction	equation:

Fuzzy Fingerprints 
for Item-based 
Collaborative Filtering 
Recommendation	systems	generally	use	Collaborative	Filtering	(CF),	a	technique	where	ratings	

given	to	items	by	users	are	exploited	to	determine	rating	predictions	for	other	yet	unrated	

items.	In	CF,	recommendations	depend	on	a	similarity	metric	to	compare	items,	a	rating	

prediction	equation,	and	a	recommendation	strategy	(e.g.	selection	of	the	Top-K	rated	items).

We	propose	a	novel	similarity	metric	for	Recommender	Systems	using	Fuzzy	Fingerprints	and	

item-based	Collaborative	Filtering.

Our	current	solution	allows	to:	

• Improve	rating	prediction	and	recommendation	quality;	

• Reduce	the	complexity	required	to	compute	item	similarity,	in	comparison	to	the	current	

state	of	the	art	metrics;	

• Provide	a	concise	representation	of	items,	by	selecting	a	relatively	small	number	of	user	

ratings	and	using	their	order	to	describe	them.

Experiments	have	shown	that	the	ordering	criteria	have	a	high	impact	on	the	recommendation	

quality.	

The	best	performing	feature	sorting	scheme	is	Low-High,	which	solves	rating	ties	by	placing	

the	user	with	fewer	ratings	first.	Users	with	less	ratings	are	more	reliable	than	users	with	more	

ratings.	We	are	currently	working	on	this	question	and	exploring	new	ways	to	perform	this	

sorting	scheme	using	unsupervised	learning	to	rank.

Regarding	the	similarity	computational	complexity,	we	achieved	a	significant	reduction	of	the	

number	of	operations	per	similarity	computation,	between	23%	and	95%	less	than	other	state	

of	the	art	metrics.
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