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Resumo

Nas últimas décadas, a Distribuição de Chaves Quânticas (QKD) revelou-se uma solução promissora

para garantir comunicações seguras, um assunto premente após a ameaça proposta pelo algoritmo de

Shor. Oferecendo uma forma teoricamente segura de partilhar chaves secretas, o estado-da-arte de

QKD registou progressos notáveis nos últimos anos. No entanto, embora teoricamente seguro, QKD não

é seguro em termos de implementação e até agora, o estudo de vulnerabilidades físicas tem se focado

no canal ótico.

O conceito de pirataria de uma configuração criptográfica através das suas falhas físicas, conhecido

como análise de canal lateral, foi introduzido pela primeira vez na criptografia clássica, com o trabalho

seminal de Paul Kosher. Desde então, a análise de energia e a análise eletromagnética de canal lateral

tornaram-se um elemento essencial da criptoanálise clássica. No entanto, estes conceitos quase não

foram aplicados a QKD.

Neste trabalho, propomos e implementamos um novo método para piratear um sistema QKD, ex-

plorando o consumo de energia do controlador eletrónico que controla os componentes eletro-óticos

do transmissor de QKD. Para atingirem uma elevada taxa de transmissão, os módulos QKD requerem

normalmente controladores eletrónicos, tais como Arranjos de Porta Programável em Campo (FPGAs).

Aqui, mostraremos que o consumo de energia da FPGA pode revelar informações sobre a chave. A aná-

lise foi efetuada no transmissor QKD da Universidade de Pádua. Os nossos resultados são consistentes

com uma fuga de informação, tendo-se atingido uma precisão máxima de 73, 35% para a previsão de

chaves aleatórias a uma frequência de repetição de qubit de 100 MHz.

Palavras-Chave: Distribuição de Chaves Quântica, Análise de Canal Lateral, Consumo
de Energia, Arranjos de Porta Programável em Campo
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Abstract

Over the last decades, Quantum Key Distribution (QKD) has risen as a promising solution for secure

communications, a pressing subject in the aftermath of the security threat posed by Quantum Computers

and the Shor’s Algorithm. Offering a theoretically secure way to share secret keys between parties, QKD

state-of-the-art has witnessed remarkable progress in the last years. Nonetheless, although theoretically

secure, QKD is not implementation-secure and until now, the study of physical vulnerabilities in QKD

setups has mainly focused on the optical channel.

The concept of hacking a cryptographic system via its physical characteristics and associated leakages,

known as side-channel analysis, was firstly introduced in classical cryptography, with the seminal work

of Paul Kosher. Since then, power and electromagnetic side-channel analysis have become a staple in

classical cryptanalysis. However, these concepts have hardly been applied to QKD.

In this work we propose and implement a new method for side-channel analysis to QKD systems, by

exploiting the power consumption of the electronic driver controlling the electro-optical components of

the QKD transmitter. For high-rate transmission, QKD modules typically require electronic drivers, such

as Field Programmable Gate Arrays (FPGAs). Here, we will show that the FPGA’s power consumption

can leak information about the QKD operation, and consequently the generated key. The analysis was

performed on the QKD transmitter at the University of Padua. Our results are consistent and show critical

information leakage, having reached a maximum accuracy of 73.35% in the prediction of the generated

random keys at 100 MHz qubit repetition frequency.

Keywords: Quantum Key Distribution, Side Channel Attack, Power Consumption, Field
Programmable Gate Array
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Chapter 1

Introduction

1.1 Motivation

Protecting information is a need that has followed mankind throughout its development, and presently,

the relevancy of information security is ever more pressing. Currently, most of the cryptographic tasks

make use of public-key encryption protocols, which rely on certain computational hardness assumptions,

such as low factoring efficiency [1]. Until recently, classical algorithms offering efficiency advancements

were the main threats to the current cryptography schemes, however, with the rise of quantum computation,

the paradigm has shifted.

Proven by Peter Shor in 1994 [2], a large-scale Quantum Computer poses a threat to current public-key

encryption protocols. Although this has yet to be achieved, the fast-paced development of the field,

coupled with different research facilities reaching the Quantum Supremacy milestone [3, 4, 5], sets a

positive precedent for the future of Quantum Computing and magnifies the significance of the privacy

threat. These advancements not only underline the future need for full-proof encryption schemes, but the

current one, since today’s eavesdroppers may acquire cryptograms and store them until a large-scale

quantum computer has been built [6].

In this climate, Quantum Key Distribution (QKD) rises as a promising solution. Through leveraging the

laws of quantum mechanics, it offers a provably-secure method for two parties to create a shared secret

key, that can then be used to encrypt messages. Given so, the field has witnessed remarkable progress

in recent years, from pivotal demonstrations increasing distance and key rate [7, 8], to the deployment of

long-range QKD networks in classical communication infrastructures [9, 10, 11].

However, although theoretically secure, implementations of QKD systems may hold physical vulner-

abilities which can be explored to gain information about the key. Devising Quantum Hacking attacks is

therefore crucial for the development of the field, since it is only by finding vulnerabilities that one can

create countermeasures to mitigate them. Plenty of attacks have been devised [12, 13, 14, 15], some

even implemented [16, 17], and the increasing relevancy of characterizing security breaches in QKD

systems drives the search for new physical vulnerabilities.

1



1.2 Basic Concepts in Cryptography

Confidentiality, one of the main cryptographic tasks, ensures unauthorized parties cannot access

private information [18], and can be achieved via encryption schemes.

Let us consider a simple, yet typical setting, where Alice wants to send a message to Bob, and

keep it private against eavesdroppers, represented by Eve. This framework can be translated with some

definitions. The messagem is defined as an element from the message space M, and is typically denoted

as the plaintext. In order to guarantee that Eve cannot read m, Alice must encrypt it. Therefore we define

the key space K, whose elements a ∈ K Alice can use to encrypt m before sending it to Bob. Additionally,

we must define an the encryption transformation, Ea such that, after using it to encrypt m, c = Ea(m),

Alice computes the cyphertext c, which she then sends to Bob. To retrieve the original plaintext m, Bob

must decrypt the cypher text. To do so, he uses a key b ∈ K and a decryption transformation Db, such

that m = Db(c).

Evidently the encryption scheme relies on the initial choice of key pair (a, b) (which can consist of

two identical keys, i.e. (a, a)). The necessity for secret keys is attributed to Kerckhoffs’ Principle, which

states that an encryption scheme should be considered publicly known upon its creation [19], making its

confidentiality rely solely on the decryption key’s secrecy. According to the properties of the key pair (a, b),

encryption techniques can be categorized as symmetric-key and asymmetric-key encryption.

Symmetric-key encryption defines schemes where each key in a pair (a, b) can be determined using

the other pair key in a computationally easy manner [18]. Typically, in practical schemes, all parties share

the same key, this is a = b. Since the encryption and decryption transformations are considered public

knowledge, and key b can be easily derived from key a, secret-key sharing between parties rises as a

pivotal necessity. Additionally, symmetric-key protocols have the fastest implementations in hardware and

software, which make them an enticing choice for large data encryption and emphasises the need for

sharing secret keys [20].

On the other hand, asymmetric-key encryption, also known as public-key encryption, defines schemes

where the key pair (a, b) is composed of a publicly know encryption key a and a private decryption key b.

The two keys must obey the following property: by knowing a, c and Ea, it is computationally infeasible to

determine m. Therefore, Bob can create two keys, a and b, publicly share a and keep b private. Any party

i with public access to a can then send a cyphertext ci = Ea(mi) to Bob over an unsecured channel, given

that Eve is unable to decypher ci without the private key b. Since symmetric-key implementations achieve

higher rates for data exchange, but require sharing a secret key between users, public-key schemes can

be used for the creation of the secret key.

However, with the rise of Quantum Computation, the threat to public-key encryption protocols [2],

spawns the need for new key distribution methods, and Quantum Key Distribution rises a promising

solution. We note here that post-quantum cryptography is another research domain which addresses the

security threat posed by Quantum Computers. This field aims at developing classical algorithms for which

no known quantum computing attack exists. However, these algorithms do not offer long-term security,

being based on mathematical conjectures only.

2



1.3 Quantum Key Distribution

Pioneered by Stephen Wiesner in the early 1970’s [21], Quantum Cryptography pertains to all methods

which use the fundamental laws of Quantum Mechanics to encrypt information in a provably-secure

manner. Quantum Key Distribution (QKD) is the primary example of a Quantum Cryptography task. It

encompasses all the ways which leverage the laws of Quantum Mechanics to create a shared secret key

between users in a provably-secure way. Importantly, QKD is not a method to transmit messages, and

serves to satisfy the necessity for a provably secure way of creating shared secret keys for symmetric-key

encryption protocols.

The first QKD protocol, known as the BB84 protocol, takes its name after its authors, Charles H.

Bennet and Gilles Brassard, who proposed it in 1984 [22]. Since then, many protocols have been put

forth [23, 24, 25, 26, 27], and despite their differences, they all share the same base idea, which is to

encode and transfer information by using quantum states. In a typical QKD protocol, Alice and Bob are

connected through an unsecured quantum channel which is used by the parties to send quantum states

to each other. In this quantum channel, Eve can interact with the quantum states, however, by doing

so, she introduces errors in the key. These errors, detected during classical communication between

Alice and Bob over authenticated channels, allow them to detect Eve’s presence. This error introduction,

explained by the rules of quantum mechanics, is the essence of security in QKD [28].

The physical system chosen to encode the quantum state divides QKD protocols into discrete variable

(DV) protocols, described by finite-sized Hilbert spaces, and continuous variable (CV) ones, described by

infinite-sized Hilbert spaces. This thesis will focus on DV systems, considered the earliest form of QKD,

since the BB84 protocol was initially conceived for DV applications. In these systems, the single photon is

used as a vessel, with its polarization or phase typically used to encode information.

Another important way of distinguishing between QKD protocols is on whether they rely on distributing

entanglement, named entanglement based protocols, or not, meaning prepare and measure protocols. In

the latter, exemplified by the BB84 [22], Alice encodes a random string of bits using a pool of non-orthogonal

quantum states and sends them to Bob through a quantum channel. Upon receiving them, Bob retrieves

the string by measuring the states. These protocols consistently follow an initial two-step procedure, with

Alice preparing the state and Bob measuring it, which distinguishes them from the entanglement based

framework, where Alice and Bob both measure incoming states. The latter, firstly suggested by Ekert in

1991 [23], requires an entangled state to be shared between the two users. By measuring her system,

Alice prepares Bob’s system, which allows for both of them to share a key.

Aiming at understanding DV QKD protocols, it is important to start by grasping some quantum

mechanics notions for DV systems. With this knowledge, given that this thesis will focus on prepare-

and-measure systems, we will move on to the study of the BB84 protocol, and then to the state of the

art of current implementations. This last step will conclude the fundamental groundwork necessary to

understand DV QKD systems.
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1.3.1 Quantum Information Notions

A qubit is a two-dimensional quantum state, in a bi-dimensional Hilbert space H2, that can be written

as a linear combination of basis states [28].

|ψ⟩ = α |0⟩+ β |1⟩ with |α|2 + |β|2 = 1 (1.1)

where B01 = {|0⟩ , |1⟩} is known as the computational basis and the basis states are vectors given by

|0⟩ =

1

0

 (1.2) |1⟩ =

0

1

 (1.3)

Being (θ, ϕ) the polar and azimuthal angle defining a sphere surface, the two degrees of freedom

(α, β) can be written as a function of (θ, ϕ), such that every pure qubit state can be mapped to a position

in the surface of a sphere. This unit sphere, schematized in Figure 1.1, is denoted the Bloch sphere, and

every state |ψ⟩ can be written as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ with θ ∈ [0, π] ϕ ∈ [0, 2π]. (1.4)

Figure 1.1: Representation of the Bloch Sphere

The poles of the sphere represent the computational basis states (θ = 0 and θ = π) and in the

equator we can identify two pairs of states which constitute important basis for QKD protocols, which are

B+− = {|+⟩ , |−⟩} and BLR = {|L⟩ , |R⟩}.

The three basis B01,B+− and BLR, defined in H2, have the important characteristic of being mu-

tually unbiased. By definition [29], a pair of orthonormal basis Bγ = {|bγ1⟩ , |b
γ
2⟩ , ..., |b

γ
d⟩} and Bσ =

{|bσ1 ⟩ , |bσ2 ⟩ , ..., |bσd ⟩}, in a Hilbert Space of dimension d, Hd, define mutually unbiased basis (MUB) if they

obey Equation 1.5. ∣∣〈bγi ∣∣bσj 〉∣∣2 =
1

d
∀i, j ∈ {1, ..., d} (1.5)

For describing quantum systems whose state is not completely know, it is useful to introduce the
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density matrix ρ [28]. Considering a quantum system that is in one of a number of states |ψi⟩, with

respective probability pi, the density matrix of the system is

ρ =
∑
i

pi |ψi⟩⟨ψi| . (1.6)

The density matrix formalism is mathematically identical to the state vector one, used in Equations 1.4

and 1.1. Nonetheless, the former is more useful for describing mixed states, this is, quantum systems

whose state is not completely known. Before, the Block sphere was introduced for pure states, this is, for

quantum systems who state is exactly known, via Equation 1.4. However, it can also be generalized for

mixed states. In fact, any mixed state can be mapped to a point in the interior of the Bloch Sphere [28].

Note also that, the density matrix ρ of a pure state |ψ⟩ is written as ρ = |ψ⟩⟨ψ|.

To fully understand prepare and measure protocols, it is important to grasp the concept of measurement

of a quantum system. Here, we will introduce the measurement postulate of Quantum Mechanics using

the state vector formalism, nonetheless, it can be reformulated using the density matrix formalism, for

which we refer to [28]. Measuring a quantum state |ψ⟩ is an operation which can be described by a set

of operators {Mm}, acting on the state space, where m are the number of possible outcomes for the

measurement [28]. Each measurement outcome has a probability of occurring given by Equation 1.7,

and the state of the system after the measurement |ψ′⟩ is be determined by Equation 1.8.

pm = ⟨ψ|M†
mMm|ψ⟩ (1.7) |ψ′⟩ = Mm |ψ⟩√

⟨ψ|M†
mMm|ψ⟩

(1.8)

For most applications of DV QKD, the primary concern is with measurements described by an observ-

able M , an Hermitian operator acting on the state space of the qubit [28], with spectral decomposition

given by Equation 1.9.

M =
∑
i

mPm (1.9)
∑

Pm = I (1.10) PmPm′ = δmm′Pm (1.11)

Pm are the projectors onto the eigenspace of M , and they obey the properties given by Equation 1.10

and Equation 1.11. In this case, each outcome, corresponding to eigenvalue m, has a probability given

by Equation 1.12. The final state |ψ′⟩ is determined using Equation 1.13.

pm = ⟨ψ|Pm|ψ⟩ (1.12) |ψ′⟩ = Pm |ψ⟩√
⟨ψ|Pm|ψ⟩

(1.13)

Performing a measurement in the B01 basis corresponds to performing a projective measurement using

the set of operators {|0⟩⟨0| , |1⟩⟨1|} and so on for B+− and BLR. Let us now consider we want to measure

state |bγi ⟩, which corresponds to one of the two states (i ∈ {0, 1}) of one of the three previously discussed

basis (γ ∈ {01,+−, LR}). When measuring this state in a MUB Bσ (σ ≠ γ, with σ, γ ∈ {01,+−, LR}),

we now see from Equations 1.5 and 1.12 that it will produce one of the eigenstates of Bσ with equal

probability.

pbσj = ⟨bγi |Pbσj |b
γ
i ⟩ = ⟨bγi |b

σ
j

〉〈
bσj |b

γ
i ⟩ =

1

2
(1.14)

5



To finish this overview, it is important to tackle entanglement, a purely quantum mechanical resource

which also plays an important role in DV QKD. A composite system is said to be entangled if it cannot be

written as a product of states of its component systems [28]. In other words, a state |ψ⟩ is entangled if

and only if its Schmidt Rank, this is, the number of Schmidt coefficients of its Schmidt decomposition, is

strickly greater than one. For example, the following state |ψ⟩ represents a bipartite entangled state

|ψ⟩AB =
|00⟩AB + |11⟩AB√

2
. (1.15)

The Bell states are maximally entangled bipartite states which are of crucial importance for entanglement-

based QKD protocols. They can be written in the computational basis as∣∣Φ+
〉
AB

=
1√
2
(|00⟩AB + |11⟩AB) (1.16)

∣∣Φ−〉
AB

=
1√
2
(|00⟩AB − |11⟩AB) (1.17)

∣∣Ψ+
〉
AB

=
1√
2
(|01⟩AB + |10⟩AB) (1.18)

∣∣Ψ−〉
AB

=
1√
2
(|01⟩AB − |10⟩AB) (1.19)

From the definition of entanglement one sees that the composite system states which make up an

entangled state cannot be described independently from one another. Measuring one of these composite

system states causes changes in the other. To see this, let us imagine that Alice and Bob share a Bell

state |Φ+⟩AB and Alice measures her state in the B01 basis.

p0 = AB

〈
Φ+

∣∣0⟩AA⟨0∣∣Φ+
〉
AB

=
1

2
(1.20) |Φ′⟩AB =

|0⟩AA⟨0 |Φ+⟩AB√
p0

=
1

2
|00⟩AB (1.21)

As expected, there is a 50% probability for Alice to measure a |0⟩A or a |1⟩A state, which is also true for

Bob. However, if Alice performs the measurement and obtains a |0⟩A state, Bob’s state will collapse into

a |0⟩B state, as it can be seen in Equation 1.21, which computes the final state shared by Alice and Bob

after Alice’s measurement. Now, if Bob measures his state, there is a 100% probability of measuring |0⟩B .

This phenomenon, is particularly important for entanglement-based protocols, since Alice and Bob, by

measuring in the same basis, can know which state each one got.

1.3.2 BB84 Protocol

In a typical BB84 protocol, Alice and Bob, who wish to share a secret key, are connected through

an unsecured quantum channel and an authenticated classical channel. Through the quantum channel,

Alice sends qubits to Bob, and uses two mutually unbiased basis, in a 2-dimensional Hilbert Space H2, to

encode information.

Without loss of generality, let us assume Alice chooses B01 = {|0⟩ , |1⟩} and B+− = {|+⟩ , |−⟩}. She

starts by creating a random string of bits s1, where each bit encodes the basis choice for each photon,

and a second random string s2 encoding the basis state choice for each photon. Considering bi,1 as a bit

encoding information about photon i in the first string s1 and bi,2 as one in the second string s2, then the

association between basis and state choice for each photon and the bit pair (bi,1, bi,2) must be previously

agreed between Alice and Bob. Table 1.1 represents a possible convention choice.
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bi,1 Basis Choice bi,1 Basis State Choice
0 BR 0 |0⟩
0 BR 1 |1⟩
1 BD 0 |+⟩
1 BD 1 |−⟩

Table 1.1: Example of a possible association between bit pair (bi,1, bi,2) and qubit state

Upon receiving photons from Alice, Bob must decide on which basis to perform the measurement in.

Therefore, he creates a string s3 where each bit bi,3 encodes a basis choice for the measurement performed

on each upcoming photon, obeying the convention in Table 1.1. As mentioned before, Bob’s measure-

ment in each basis can be described by two sets of projective operators {P0, P1} and {P+, P−} [28].

P0 = |0⟩⟨0| (1.22)

P1 = |1⟩⟨1| (1.23)

P+ = |+⟩⟨+| (1.24)

P− = |−⟩⟨−| (1.25)

When measuring a photon, Bob has a 50% probability of performing the projective measurement in

the basis Alice chose, this is bi,1 = bi,3. From Equation 1.12, one sees that, in this case, he has 100%

probability of measuring the received photon in the state prepared by Alice, and retrieving the correct bit.

p0 = ⟨0|P0|0⟩ = ⟨0|0⟩⟨0|0⟩ = 1

p1 = ⟨0|P1|0⟩ = ⟨0|1⟩⟨1|0⟩ = 0

(1.26)

p0 = ⟨1|P0|1⟩ = ⟨1|0⟩⟨0|1⟩ = 0

p1 = ⟨1|P1|1⟩ = ⟨1|1⟩⟨1|1⟩ = 1

(1.27)

However, if they choose different basis, since they are mutually unbiased, from Equation 1.14 we see

that Bob has 50% probability of measuring the qubit in either state of his chosen basis, and thus randomly

retrieve a bit.

p+ = ⟨0|P+|0⟩ = ⟨0|+⟩⟨+|0⟩ = 1
2

p− = ⟨0|P−|0⟩ = ⟨0|−⟩⟨−|0⟩ = 1
2

(1.28)

p+ = ⟨1|P+|1⟩ = ⟨1|+⟩⟨+|1⟩ = 1
2

p− = ⟨1|P−|1⟩ = ⟨1|−⟩⟨−|1⟩ = 1
2

(1.29)

After measuring, Bob and Alice share the strings s1 and s3 over an authenticated classical channel.

This way, they can know when they chose the same basis bi,1 = bi,3, and thus Bob is sure of which state

Alice prepared, and when they chose different basis bi,1 ̸= bi,3, and so he cannot gain any information

about Alice’s state. In the end, they keep the bits corresponding to the bi,1 = bi,3 cases, and discard the

others. Table 1.2 represents a possible communication between Alice and Bob.

s1 0 1 0 1 0 1 1 0 1 1
s2 0 0 1 0 0 1 1 1 0 1

Alice’s Photon |↑⟩ |↗⟩ |↓⟩ |↗⟩ |↑⟩ |↘⟩ |↘⟩ |↓⟩ |↗⟩ |↘⟩
s3 0 0 1 1 1 0 1 0 1 0

Bob’s Photon |↑⟩ |↓⟩ |↗⟩ |↗⟩ |↘⟩ |↑⟩ |↘⟩ |↓⟩ |↗⟩ |↓⟩
Sifted Key 0 0 1 1 0

Table 1.2: Example of communication between Alice and Bob during the BB84 protocol.

If Alice had an initial key of size N , since Bob has a 50% probability of choosing the same basis as

her, then after this last step they will share a key with half the initial size N/2.
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As initially mentioned, the safety of the QKD protocols comes from the introduction of errors in the

key when in the presence of eavesdropping. Therefore, after sharing a sifted key between them, Alice

and Bob must go through a classical post-processing of the key. Firstly, they use part of the raw data to

estimate the error rate in the quantum channel, by calculating parameters such as channel noise and

transmissivity. Depending on this parameter, the protocol either aborts or, if it doesn’t, Alice and Bob

perform error correction and privacy amplification to respectively detect and correct errors in the key and

to reduce Eve’s possible stolen information to a minimum.

To understand the impact of an eavesdropper, one can start with picturing a very simple hacking

strategy, depicted in Figure 1.2. Here, Eve intercepts photons from the quantum channel, measures them

in a randomly chosen basis, and resends them to Bob. Like Bob, Eve has a 50% probability of choosing

the same basis as Alice. When the wrong basis is chosen, her measurement collapses the qubit’s state

into one of the MUB states.


P+|0⟩√
⟨0|P+|0⟩

= |+⟩ with p = 50%

P−|0⟩√
⟨0|P−|0⟩

= |−⟩ with p = 50%

(1.30)


P+|1⟩√
⟨1|P+|1⟩

= |+⟩ with p = 50%

P−|1⟩√
⟨1|P−|1⟩

= |−⟩ with p = 50%

(1.31)

If Bob now chooses the same basis as Alice, instead of retrieving the correct bit with an 100% probability,

he now only has a 50% probability, because instead of receiving the qubit encoded in the correct basis,

he is receiving it encoded in the MUB one. Of course when Eve chooses the same basis as Alice, her

measurement collapses the photon in its initial state and so no errors are introduced in the key. Table 1.3

summarizes Eve’s error introduction in the sifted key, and from it one concludes that with this strategy,

she introduces a 0.5 ∗ 0.5 = 0.25 error rate.

Alice B1 B1 B2 B2

Eve B1 B2 B1 B2

Bob B1 B1 B2 B2

Error fraction 0 0.5 0.5 0

Table 1.3: Error fraction introduced in the key for the four possible cases which make up the sifted
key.

In this simplified example where there aren’t other sources of errors, Alice and Bob, after determining

the error rate, would detect the presence of Eve and discard the sifted key, restarting the protocol after

removing the eavesdropper.

Figure 1.2: Simple Intercept and Resend
Attack.

Figure 1.3: Intercept and Resend Attack
with a Cloning Operation.
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It’s worth noticing that, if Eve was able to copy each qubit state into an ancilla system, then she could

elevate the intercept and resend attack to get full information about the key without being noticed. As

depicted in Figure 1.3, she would simply retrieve the photons from the quantum channel, copy their state

to another quantum system, and wait for Bob to reveal his basis choices over the classical channel to

make her measurements on the stored photons. This copying of quantum states is, however, prohibited

by the No-Cloning Theorem [30], which states that a single unitary operation U cannot clone an arbitrary

quantum state. Therefore, theoretically, any attempt from Eve to get information about the key increases

the error rate.

Even though the intercept-and-resend strategy is an intuitive example for the claim that an eavesdropper

must introduce errors in the key in order to retrieve information, a broader argument can be made in order

to justify it. We start by considering Eve which, similarly to the intercept-and-resend strategy, retrieves

the photons Alice is sending to Bob over the quantum channel. But now, instead of measuring them in a

random basis, she attaches an ancillary system |E⟩ to each of them [31]. For example, from two arbitrary

Alice states |ψ⟩ and |ϕ⟩, Eve would get |E⟩ |ψ⟩ and |E⟩ |ϕ⟩. Given that her objective is to gain information

about the states |ψ⟩ and |ϕ⟩ without disturbing them, she applies a unitary operation to the system which

only changes her ancillary state:

U |E⟩ |ψ⟩ = |Eψ⟩ |ψ⟩

U |E⟩ |ϕ⟩ = |Eϕ⟩ |ϕ⟩
(1.32)

However, from the scalar product calculated in Equation 1.33, we can conclude that with this strategy,

Eve’s states |Eψ⟩ and |Eϕ⟩ are identical, and Eve cannot gain any information about Alice’s state

⟨E|E⟩U†U ⟨ψ|ϕ⟩ = ⟨Eψ|Eϕ⟩ ⟨ψ|ϕ⟩ ⇔ ⟨Eψ|Eϕ⟩ = 1 (1.33)

Let’s now consider a unitary operation which also disturbs Alice’s states:

U |E⟩ |ψ⟩ = |Eψ⟩ |ψ′⟩

U |E⟩ |ϕ⟩ = |Eϕ⟩ |ϕ′⟩
(1.34)

Now from the scalar product in Equation 1.35, we can see that Eve’s states |Eψ⟩ and |Eϕ⟩ are no

longer identical for |ψ⟩ ≠ |ϕ⟩, thus Eve can gain information about the key.

⟨E|E⟩U†U ⟨ψ|ϕ⟩ = ⟨Eψ|Eϕ⟩ ⟨ψ′|ϕ′⟩ ⇔ ⟨Eψ|Eϕ⟩ =
⟨ψ|ϕ⟩
⟨ψ′|ϕ′⟩

(1.35)

To get more information, Eve must increase the distinguishability between her states, this is, decrease

⟨Eψ|Eϕ⟩. However by doing this, she increases ⟨ψ′|ϕ′⟩, which means introducing more disturbance

in Alice’s states. Therefore, from this simple theoretical exercise, one can understand how retrieving

information from the quantum channel implies disturbing the initial states.

Nevertheless, implementing the BB84 protocol presents challenges not considered in this simple

theoretical explanation. The impact they have on the protocol’s security will be covered in later sections
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but before, it is necessary to understand what these challenges comprise of and, consequently, how to

implement a DV QKD system.

1.3.3 Implementation of Discrete Variable QKD systems

In an ideal implementation of the BB84 protocol, Alice uses a perfect single photon source, which

emits indistinguishable photons into a given spatio-temporal mode with 100% probability and with arbitrary

emission frequency. Then, she sends the photon to Bob through a lossless quantum channel, who in turn

uses ideal single photon detectors to measure them. Unfortunately, these idealizations are not practical

and in an experimental implementation of QKD, both parties must find a compromise between theoretical

requirements and what is achievable given the state of the art.

Single photon emission techniques can be divided into probabilistic and deterministic [32]. As conveyed

by their name, the former rely on probabilistic phenomena, such as Spontaneous Parametric Down

Conversion (SPDC) and Four-Wave Mixing, where a laser excitation of a non-linear optical material

creates pairs of correlated photons. This pair production is very useful because one of the photons of the

pair can be used to herald the photon produced by the source. The X2 non-linearity needed for SPDC can

be found in crystals [33] or in single-mode waveguides [34], whilst X3 non-linearity required for four-wave

mixing is typically found in single mode optical fibers [35]. Even though commercially available, the

disadvantages of probabilistic sources have prevented a widespread implementation in QKD setups. Their

statistical nature, combined with multiple pair emission probability increasing when single pair emission

probability is increased, means that they have reduced emission frequencies. Since this has a direct

impact on the overall key rate of the setup, higher rate solutions are preferred.

On the other side, deterministic sources rely on quantum systems with two energy levels. Single

neutral atoms [36] and quantum dots [37], among many others, are examples of physical systems which

can be externally controlled and put into an excited state, producing only a single photon upon returning

to the ground energy level. However, different issues, such as decoherence in neutral atom sources,

scalability issues and cryogenic temperature requirements in quantum dots [32], have prevented these

sources from being a staple in QKD implementations.

With the current state of art, most QKD setups have resorted to weak coherent states created by lasers

as an approximation to single photons. In order to understand coherent states, and their implications in

the security of QKD protocols, we must first introduce the concept of Fock States. Quantum states with

a well-defined number of particles can be described by Fock States, quantum states in a Fock space

[38], which comprise the occupancy number basis. An arbitrary Fock state is written as |nk1 , nk2 , ..., nki⟩,

where nki are the number of particles in the state ki, and it is an eigenstate of the number operator Nki

Nki |nk1 , nk2 , ..., nki⟩ = nki |nk1 , nk2 , ..., nki⟩ (1.36)

Therefore, states produced by single photon sources can be described by the Fock State |1⟩. However,

electromagnetic waves created inside an optical laser cavity cannot be described this way, hence, their

study requires the introduction of coherent states |α⟩.
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|α⟩ =
∑
n

cn |n⟩ =
∑
n

αn√
n!
e−

|α|2
2 |n⟩ (1.37) Pn = |cn|2 =

µn

n!
e−µ (1.38)

Coherent states are a weighted superposition of Fock States [39], as explicit in Equation 1.37. They

can be used to ideally describe coherent light produced by lasers, and the probability Pn of having a state

with n photons follows the Poisson distribution (Equation 1.38), where µ = |α|2 is the average number of

photons.

As aforementioned, in QKD setups, single photon sources are typically replaced by coherent state

sources, such as lasers. To do so, increasing the probability of having one photon per beam P1 whilst

decreasing Pn>1 is crucial. From Figure 1.4 one can see that, to achieve this, the coherent wave must be

highly attenuated, such that µ≪ 1. Consequently, the probability of having 0 photons per state is high

P0 = e−µ ≈ 1− µ, reducing the efficiency of weak coherent state sources.

Figure 1.4: Poisson Statistics for different µ values.

Additionally, the probability of having more than one photon per state, albeit small for µ ≪ 1, is

non-vanishing, independently of how attenuated the beam is, as seen by Equation 1.39. As we will see

later, this was one of the first vulnerabilities to be explored by a side channel attack.

P (n > 1|n > 0) =
1− P1 − P0

1− P0
≈ µ

2
(1.39)

After preparing her photon, Alice must send it to Bob over a quantum channel. The choice over this

channel is extremely important, given that it has a direct impact on the trade-off between the key rate

and the distance of the key exchange. Any point to point QKD link is limited by the Pirandola-Laurenza-

Ottaviani-Banchi (PLOB) bound [40]. This upper bound states that, given a bosonic lossy channel with

transmissivity η, and two parties which may apply arbitrary local operations, assisted by unlimited two-

way classical communication, the maximum achievable rate for key generation is − log2(1− η). As the

transmissivity of the channel decreases with distance, this bound constraints the key rates for long-distance

QKD.

However, channel loss doesn’t solely depend on the distance between parties. Among different factors,

it depends on the wavelength of the shared photons, the choice of information support (e.g. polarization

versus phase encoding), and the type of channel (e.g. free-space versus fiber). For example, even

though polarization encoding seems like a logical choice, the birefringence of optical fiber, arising mainly

from external stresses applied to the fiber, but also from small asymmetries in the fiber’s core cross-

section, combined with a possible wide spectral-range of incoming photons, creates rapid depolarization.
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Therefore, in order to achieve QKD for large distances, phase encoding is typically preferred. In optical

fiber quantum channels, telecommunication wavelengths are implied, and the associated losses are

wavelength dependent: typically 2 dB/km for λ = 850 nm, 0.3 dB/km for λ = 1300 nm and 0.15 dB/km for

λ = 1500 nm. On the other hand, in free-space links, photons with smaller wavelengths, in the 700−900nm

range, are typically preferred.

Upon receiving the photon, Bob must detect it. For this, he requires a single photon detector, which

plays a crucial role on the performance of the key exchange. These detectors are characterized by a set

of parameters, typically temperature and wavelength dependant, whose value allow for an overall view of

the detector’s performance. Among them we identify the following:

• Detector’s efficiency: translates the probability that an incident photon is detected.

• Dark count rate: caused by the detector firing when no photon is present.

• Dead time: time after an event when the detector is unable to detect any photon.

• Timing jitter: fluctuation between events of the time interval between the photon’s arrival and the

electrical output signalling a detection

• Photon number resolution: whether the detector is able to distinguish the number of photon in

incoming pulses.

Photomultipler tubes pioneered the field of single photon detectors. In these detectors the incoming

photon pulse is directed onto a photocathode causing the emission of a single electron. As depicted

in Figure 1.5, this primary electron is then accelerated towards the first dynode through the focusing

electrode, where it produces more electrons via secondary emission, which are then accelerated to

the second dynode, and so forth. With low dark count rates, timing jitters and dead time, the routine

deployment of these detectors is hindered by their efficiency rates [32].

Figure 1.5: Schematics of a Photomultiplier Tube.

Superconductor-based technologies, such as Superconducting Nanowire Single-Photon Detectors

(SNSPDs), offer a promising solution for high efficiency and fast response detection, with ultra-low dark

counts, in the infrared and visible wavelengths [41]. In these detectors, nanowires typically made out of

NbN, and with widths around 100 nm, are biased just below critical current density. Individual photons

impinging on the superconductor disrupt hundreds of Cooper pairs, forming a small hotspot region. The

current flows around this higher resistance region, which in turn increases the current density in the

adjacent areas above the critical point, forming a resistance barrier across the width of the nanowire. The
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fast resistance increase causes a voltage spike, representing the detection of a photon. Operating at

4.2K, SNSPDs are usually cooled by immersion in liquid Helium, which is a hazardous and expensive

procedure, keeping these high efficiency detectors from common deployment in QKD networks.

Until now, the single photon avalanche photodiode (SPAD) has been the mainstream solution for

detection in QKD due to its compact size, cost-effectiveness and easy operation [42]. Using a pn junction

in Geiger mode, this is, biased well above the breakdown voltage, when an incoming photon strikes the

detector, it produces an electron-hole pair, as schematized in Figure 1.6. This electron is then accelerated

to a kinetic energy above the ionization energy of the bulk material. Therefore, a photon inserted in the

depletion region generates a self-sustained avalanche current, which must be terminated by lowering the

bias voltage below the breakdown value. This quenching is typically accomplished by an external circuit

which generates a well synchronized output pulse upon recognizing the onset of the avalanche current,

and it is crucial for the detector’s performance.

Figure 1.6: Schematics of a SPAD

The absorption material, namely its energy gap Eg, dictates the photon wavelengths for which the

detector is sensitive to. Detection at the telecommunication wavelength, λ = 1550nm, requires lower band-

gap semiconductors like InGaAs, with Eg = 0.75eV , which are typically matched with a InP multiplication

layer. Commercially available InGaAS-InP SPADs have a detection efficiencies around 20% and dark

count rates of 500 cps, small compared to the efficiencies of SNSPDs, which have reached record values

of 93% [43]. They suffer also from afterpulsing, a non-ideal behaviour caused by carriers getting trapped

in certain sites in the multiplication layer during the avalanche. If these trap sites are not given time

to depopulate after the quenching, then these carrier can be released, causing fake avalanches, thus,

fake detections. The afterpulsing probability increases the waiting time needed before rebiasing the

detector, causing increased dead times [32]. Nonetheless, continuous efforts to enhance InGaA-InP

SPAD’s performances have culminated in record values such as 60% efficiencies [43].

Having summarized the main devices and implementation problems in DV-QKD, it is clear that

translating the theoretical simplicity of protocols to practical systems is a difficult task. Nevertheless, the

field has witnessed extraordinary progress. The first QKD implementation, done by Bennet and Brassard,

with the help of three students, aimed at disproving the skepticism surrounding it, used a free-space

quantum channel with 30cm to extract a final key of 403 bits from 64516 light pulses [44]. In recent years,

1002 km distances [7] and Mbit/s rates [8] have since been reached, and efforts for improvement are

ongoing. However, vulnerabilities introduced by physical flaws, known as side-channels, are still an

important concern. Opening security breaches not initially considered in the theoretical security proofs,

side-channel attacks are a ubiquitous problem to QKD, and will be further discussed in the next chapter.
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Chapter 2

Security in QKD

Theoretically proving the security of QKD protocols is crucial for their implementation and role in current

cryptographic settings. For the purpose of this thesis, it is important to understand the role assumptions on

physical devices play in security proofs of QKD protocols, and how they can lead to unexpected security

breaches. Therefore, this chapter will cover different security aspects regarding QKD and will overview

state-of-the-art quantum hacking attacks for prepare-and-measure protocols.

2.1 Security Definition

Intuitively, to prove that a QKD protocol is secure, one wants to assure Eve’s information on the key

is negligible when taking into account the most powerful attacks she can do. Naively, this can lead to

quantifying security via the mutual information betweenK, a classical variable representing the key shared

between Alice and Bob, and W , a random variable describing Eve’s measurement outcomes [31]

max
W

I(K :W ) ≤ ϵ. (2.1)

A crucial requirement for QKD protocols is universal security, which determines that the key is secure in

arbitrary contexts. Importantly, since keys are used by symmetric encryption protocols, universal security

entails composability, meaning that the key can be used as a part of a bigger system. Unfortunately, the

criterion in Equation 2.1 does not guarantee universal security, so another approach must be taken.

Typically, security claims for QKD protocols are phrased within the framework of Abstract Cryptography

[45], which is mostly independent from the modelling of devices, and can be used in classical and quantum

settings. In this framework, security is established by defining an ideal protocol I, perfectly secure by

construction, and proving that the real protocol R is indistinguishable from it. This is computed by the

distinguisher, an agent who has access to all inputs and outputs of Alice, Bob and Eve, and can use any

strategy to distinguish between the real and the ideal protocol. Let us assume we have two states, ρ and

σ, which are given to a distinguisher with 50% probability, to distinguish. It can be proven that the amount
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by which the distinguisher can surpass random guessing is given by the distinguishing advantage

D(ρ, σ) =
1

2
∥ρ− σ∥1, (2.2)

where ∥ρ∥1 = Tr
(√

ρ†ρ
)

is the trace norm of the state ρ. For the real and ideal protocols, it is said that

R ≈ϵ I if they have a distinguishing advantage of at most ϵ,

R ≈ϵ I if pdistinguish(R, I) =
1

2
+

1

2
ϵ. (2.3)

This is called the distinguishing advantage criterion, equivalent to writing d(R, I) ≤ ϵ, and it means the

protocol is ϵ-secure. This criterion can be written in terms of ρABE and ρ̃ABE , the states shared between

Alice, Bob and Eve in the real and the ideal protocol, respectively,

D(ρABE , ρ̃ABE) ≤ ϵ. (2.4)

Note that this definition of security englobes composability since given two protocols, one ϵ1-secure

and the other ϵ2-secure, it can be proven that together they are (ϵ1 + ϵ2)-secure, for both sequential and

parallel composition [31]. Typically, for a QKD protocol, the criterion in Equation 2.4 is divided into two

parts, the correctness of the key and the secrecy.

For the definition of correctness, we consider KA and KB, random variables which describe Alice’s

and Bob’s respective key bit strings, whose realizations kA and kB belong to the space K ∪ ⊥, where

kA = kB =⊥ represent an aborted protocol, K = {0, 1}ℓ the key space, and ℓ the key size when the

protocol is not aborted. The protocol is said to be ϵcorr-correct if the probability that Alice and Bob do not

abort the protocol whilst having different generated keys is small,

Pr[KA ̸= KB ] ≤ ϵcorr. (2.5)

Defining secrecy requires comparing the real key to an ideal key, a key which is uniformly distributed

and independent of the adversary’s information. To do so, we consider the distinguishing advantage

between the classical-quantum state shared between Alice and Eve in the real scenario ρAE and in the

ideal one ρ̃AE , D(ρAE , ρ̃AE). Note that this analysis can be also done for Bob, since his key is ϵcorr likely

to be identical to Alice’s.

Firstly, we consider the two possible cases within the protocol, this is, either it is aborted, with

probability p⊥, either it is not. For example, the shared state in the real scenario can be written as

ρAE = p⊥ρ
⊥
AE + (1 − p⊥)ρ

⊤
AE , where ⊤ represents the scenario when the protocol is not aborted. As

aforementioned, when the protocol is aborted, kA = |⊥⟩ for both the ideal and real scenarios. Regarding

Eve, Alice and Bob aborting the protocol does not affect her information, and so her state is also the same

for both scenarios. Therefore ρ⊥AE = ρ̃⊥AE = p⊥ |⊥⟩⟨⊥| ⊗ ρ⊥E .

Considering the protocol is not aborted, in the real scenario, Eve’s system, described by the quantum

state ρkAE , depends on the realization kA of Alice’s key KA, which is distributed according to the probability
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distribution pKA
. Therefore, we can write

ρ⊤AE =
∑
kA∈K

pKA
|kA⟩A⟨kA| ⊗ ρkAE . (2.6)

In the ideal scenario, Eve’s information is independent of Alice’s key, and her system described by ρE .

Alice’s key is uniformly distributed, thus described by a maximally mixed state ρU =
∑
u∈K

1
|K| |u⟩⟨u|, and

the whole system described by

ρ̃⊤AE =
∑
u∈K

1

|K|
|u⟩A⟨u| ⊗ ρE . (2.7)

Finally, we can write

ρAE = p⊥ |⊥⟩⟨⊥| ⊗ ρ⊥E + (1− p⊥)
∑
kA∈K

pKA
|kA⟩A⟨kA| ⊗ ρkAE ,

ρ̃AE = p⊥ |⊥⟩⟨⊥| ⊗ ρ⊥E + (1− p⊥)
∑
u∈K

1

|K|
|u⟩A⟨u| ⊗ ρE .

(2.8)

For the distinguishing advantage, we can use the triangle inequality of the trace norm together with the

indistinguishability between ρ⊥AE and ρ̃⊥AE to obtain

D(ρAE , ρ̃AE) =
1

2
∥ρAE − ρ̃AE∥1 =

1

2
∥p⊥(ρ⊥AE − ˜ρAE

⊥) + (1− p⊥)(ρ
⊤
AE − ˜ρAE

⊤)∥1 =

≤ p⊥
2
∥ρ⊥AE − ˜ρAE

⊥∥1 +
1− p⊥

2
∥ρ⊤AE − ρU ⊗ ρE∥1

≤ 1− p⊥
2

∥ρ⊤AE − ρU ⊗ ρE∥1.

(2.9)

Therefore, a protocol is said to be ϵsec-secret if, for all adversarial strategies, it satisfies

1− p⊥
2

∥ρ⊤AE − ρU ⊗ ρE∥1 ≤ ϵsec. (2.10)

Equipped with the framework for correctness and secrecy, we can now define the condition for ϵ-security

from Equation 2.4 in a more precise manner. In the ideal protocol, kA and kB are identical and uniformly

distributed, such that the state shared between Alice and Bob is given by ρUU = 1
|K|

∑
u∈K |u⟩A⟨u|⊗|u⟩B⟨u|.

In the real protocol, the state shared between them depends on the probability distribution pKA,KB
(ka, kb),

entailing how the two key variables are distributed, and Eve’s state is given by ρkA,kBE . The security

condition can be then written as a function of the state ρ⊤ABE , which is given by

ρ⊤ABE =
1

1− p⊥

∑
kA,kB∈K

pKA,KB
(ka, kb)|kA⟩A⟨kA| ⊗ |kB⟩B⟨kB | ⊗ ρkA,kBE . (2.11)

A protocol is ϵ-secure if, for all adversary strategies, it satisfies

1− p⊥

2
∥ρ⊤ABE − ρUU ⊗ ρE∥1 ≤ ϵ. (2.12)

From the condition in Equation 2.12 it can be proven, as done in [31], that if a protocol is ϵcorr-correct and
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ϵsec-secret, then it is ϵ-secure with ϵ = ϵcorr + ϵsec. Also, this condition allows for an intuitive comparison

between the ideal and real key, depicted in Figure 2.1. The ideal key U has a uniform distribution pU ,

and so each realization u has a probability 2ℓ of happening, where ℓ is the size of the key. For a real

key K, generated by an ϵ-secure protocol, not all realizations k happen with the same probability. The ϵ

parameter describes the amount by which we must shift the probabilities pK(k) to retrieve the uniform

distribution.

Figure 2.1: Schematics of key realizations in an ideal protocol and in a real protocol.

2.2 Assumptions

As we have seen, security proofs for QKD protocols rely on the modelling of the real protocol, so that

indistinguishability from the ideal protocol can be assured. More than assuming that Quantum Mechanics

is correct and complete, and that authenticated communication between parties is possible, assumptions

regarding the physical implementation of the protocol are typically required. Knowing what these are

is crucial to understand the feasibility of the security proof, given that any deviation of the theoretical

modelling from the actual physical implementation represents a possible security threat.

From the exhaustive list of assumptions typically made by security proofs, here we present a short list,

taken from [31], with some which are commonly found to be different from the actual implementations.

1. State Preparation: it is assumed Alice always prepares the desired quantum states, which in a

practical setting, is not always true, and may cause the actual states to differ from the theoretical

expected ones.

2. Measurement Devices: typically the modelling of these devices doesn’t take into consideration

imperfections such as losses or the measuring of states outside the desired Hilbert space.

3. Timing: in order for Alice and Bob to compare their strings bit by bit, which as we will see, is

necessary for post processing, they need a shared timing method that allows them to associate the

sent state to the correct measurement outcome.
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4. Isolation of Alice and Bob’s Laboratories: it is assumed that Eve is unable to tamper with state

preparation and measurement devices, and cannot access any of their outputs except for the state

in the quantum channel.

5. Post Processing: as we will in the next section, in the post processing phase, the amount of

information which has been leaked to Eve is estimated. If the security proof does not account for

differences between the physical implementation and the modelling, it can lead to an underestimation.

2.3 Post-Processing

After the Quantum transmission, where Alice shared with Bob M symbols over a quantum channel,

they are each left with a key that is partially-secret and partially-correct. However, as seen in the security

definition, they wish to share an ϵcorr-correct and ϵsec-secret key. To achieve this, they resort to classical

post-processing techniques.

The first step is parameter estimation, where they estimate the error rate in the key in order to

understand how much information has been leaked to Eve during the quantum transmission. This step

can be considered in the asymptotic-key scenario, where one considers an infinite number of shared

symbols M → ∞, or in the more realistic finite-key scenario, where M <∞. In the finite key scenario,

which will be considered for the purpose of this discussion, one defines the secret key rate as

r =
ℓ

M
, (2.13)

where ℓ is the length of the secret key. To calculate this value, they use a small sample, with dimension k,

of their sifted bit strings, with length k < M . For example, Alice sends her string sample, Kk
A, to Bob, who

compares it to his sample Kk
B , and calculates the error rate

Λk =
1

k
|Kk

A ⊕Kk
B |, (2.14)

where |Kk
A ⊕Kk

B | represents the Hamming weight, this is, the number of ones in the string Kk
A ⊕Kk

B . If

this value is greater than a certain threshold λmax, the protocol is aborted, and if not, they use it to estimate

the global error rate. Using Sterfling’s inequality and Bayes Theorem, it can be proven that the error rate

λn, in the remaining n = M − k bits, has an exponentially small probability in sample size k, of being

incompatible with the estimated parameters [31],

Pr[Λn ≥ Λk + γ|λk < λmax] ≤
e

2k2nγ2

(k+1)N

Pr[λk ≤ λmax]
. (2.15)

After parameter estimation, Alice and Bob either abort the protocol, or they have partially correct raw

keys of size n, to which they know an estimate of the error rate, but do not know where the errors lie. To

remove them, they use classical information reconciliation, which turns two strings with correlations into

two identical ones. For simplicity, here we consider direct reconciliation, where Alice sends information
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about her string to Bob and he uses it to correct his key. The choice of the error correcting code dictates

the amount of communication necessary between both parties. Nonetheless, after this correction, Alice

and Bob need to make sure that the procedure was successful. For that they use a two-universal hash

function f . These functions belong to F , a family of functions from an alphabet X to an alphabet Z and

they obey

Pr
f∈F

[f(x) = f(x′)] ≤ 1

|Z|
, for any x, x′ ∈ X with x ̸= x′. (2.16)

To check the correctness of their key string, Alice chooses a two-universal hash function fEC , applies

it to her string, sends it to Bob, together with the result she obtained fEC(KA), and he then applies it to

his string fEC(KB). If Alice chooses fEC from a family F with output space cardinality |Z| = 2⌈log2
1

ϵcorr ⌉,

then it follows from Equation 2.16 that

Pr[fEC(KA) = fEC(KB)|KA ̸= KB ]
def
≤ 1

|Z|
= 2−⌈log2

1
ϵcorr ⌉ ≤ 2− log2

2
ϵcorr ≤ ϵcorr. (2.17)

Applying Bayes Theorem, knowing that the protocol aborts if the hashes differ, we retrieve

Pr[KA ̸= KB |fEC(KA) = fEC(KB)] ≤ ϵcorr, (2.18)

showing that if the checking procedure succeeds except with probability ϵcor, then the whole protocol is

ϵcor-correct.

After error correction, Alice and Bob share an ϵcorr-correct, partially secret key. In the final state of post

processing, called privacy amplification, the objective is to remove any residual information which might

have been leaked to Eve over the quantum channel as well as the authenticated classical channel during

information reconciliation. To do so, parties can resort to random extractors. These are functions Ext

which receive as input a string X, of length n, as a source of randomness, and a small uniformly random

seed S, of length d, to compute the output Z, a string whose length ℓ is bigger that d,

Ext(X,S) = Z. (2.19)

In a QKD setting, the randomness extract must fulfill two requirements. Firstly the output string Z must

be independent from the seed S, given that Alice must publicly announce S to Bob over the classical

channel. Secondly, it must be able to extract randomness against a quantum adversary. Understanding

whether this is possible requires quantifying the amount of information Eve has on Alice’s key, to know if it

is limited. For the classical-quantum state ρXE , shared between Alice’s classical key variable X and Eve’s

quantum system E,

ρXE =
∑
xinX

pX(x) |x⟩⟨x| ⊗ ρxE , (2.20)

the conditional min-entropy Hmin(X|E) quantifies how much uniform randomness Z = Ext(X,S) can be

extracted from X such that Z is independent from E.

The randomness extractors which fulfill these requirements are called Quantum-proof Strong Random-

ness Extractors. A function Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is a (t, ϵ)-strong quantum-proof randomness
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extractor if, for all classical-quantum states ρXE with Hmin(X|E) ≥ t, we have

D(ρExt(X,S)SE,
1

2ℓ
⊗ ρS ⊗ ρE) ≤ ϵ, (2.21)

in which the state 1
2ℓ

⊗ ρS ⊗ ρE represents the ideal case. The output key Z, uniformly distributed such

that every string of length ℓ has an equal probability 1
2ℓ

, is independent from the seed state ρS and from

Eve’s system state ρE .

The two-universal hash functions aforementioned are quantum proof strong randomness extractors,

and so for privacy amplification, Alice can randomly choose a function fPA from F , for which she uses

the seed S, and apply it to KA, to obtain the final key fPA(KA). Notice that KA is the product of the error

correction procedure, which means it is 1− ϵcorr likely to be identical to KB , thus this is trivially extended

to Bob.

Whilst Hmin(X|E) assumes output Z indistinguishable from a uniformly distributed variable, it is useful

to extend the previous considerations to allow for some errors in the final key. To do so, we require the

concept of quantum conditional smooth mean entropy Hϵ
min(X|E), which allows the output to be ϵ distant

form the uniform distribution. Being B(ρ) an ϵ-ball around the state ρ, the smooth min-entropy can be

written as

Hϵ
min(X|E) = max

ρ̃∈B(ρ)
Hmin(X|E)ρ̃. (2.22)

The Quantum Leftover Hash Lemma allows us to further generalize our results, by making use of

Hϵ
min(X|E). Let ρfPA(KA)SE be the state shared between Alice’s final key fPA(KA), the seed state and

Eve’s system, then for every ϵ′ > 0 it holds that

D(ρfPA(KA)SE ,
1

2ℓ
⊗ ρSE) ≤ 2ϵ′ +

1

2

√
2ℓ−H

ϵ′
min(KA|E). (2.23)

Equipped with this Lemma, requiring the protocol is ϵsec-secure allows us to extract an upper bound for

the final key length ℓ,

D(ρfPA(KA)SE ,
1

2ℓ
⊗ ρSE) ≤ ϵsec ⇔ ℓ ≤ Hϵ′

min(KA|E) + 2− 2 log2

(
1

ϵsec − 2ϵ′

)
. (2.24)

In summary, post-processing shapes the security proof of a QKD protocol, with every step accounting

for a security parameter that contributes to the total failure of the protocol. With this, we can now tackle

the secret key fraction, and how it is impacted by eavesdropping.

2.4 Secret Key Fraction

In the asymptotic-key scenario, where an infinite amount of shared symbols is assumed, the secret

key fraction r is defined as

r = lim
n→∞

ℓ

n
, (2.25)
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where ℓ is the size of the final key, after post-processing, and n the length of the raw key, this is, the key

after parameter estimation. Security proofs must provide an explicit expression for the secret key fraction,

which can the be turned into the final secret key rate S∞ by multiplying it by Rraw, the rate at which the

raw key is created,

S∞ = Rrawr. (2.26)

As previously seen, before error correction the keys are not ϵcorr-correct. At this stage, we can define

the Quantum Bit Error Rate (QBER) δ, as

δ =
number of different bits in the sifted key

total number of bits in the sifted key . (2.27)

and use it to describe the channel between Alice and Bob as a binary symmetric channel, where the

binary input a is chosen with 1
2 probability, and the binary output b has a δ probability of being different

from a. This comparison simplifies the calculation of the mutual information between Alice and Bob,

I(A : B) = H(B)−H(B|A) = −
∑
b=0,1

p(b) log2(p(b)) +
∑

a,b=0,1

p(a, b) log2(p(b|a)) = 1− h2(δ), (2.28)

where h2(δ) = −δ log2(δ)− (1− δ) log2(1− δ) is the Binary Entropy of the QBER. Actually, I(A : B) is an

upper bound for the fraction of perfectly correlated symbols that can be extracted from a list of partially

correct ones [46]. With this being said, Equation 2.28 takes on a more intuitive interpretation: if the sifted

key had no errors, then h2(δ = 0) = 0 and Alice and Bob would not need to remove any bits from the

sifted key. Since this is not the case, they must communicate at least an h2(δ) number of bits.

For privacy amplification, considering a direct reconciliation setting, the fraction of bits which must be

removed are the ones which Eve has information on. Therefore, they can be calculated by the mutual

information between Alice and Eve I(A : E). Note that, for inverse reconciliation, one simply replaces this

by I(B : E).

Finally, the secret key fraction, in the asymptotic-key scenario, is given by

r = I(A : B)− I(A : E). (2.29)

From Equation 2.29 it is clear that the more information Eve has on the key, the smaller the secret key

fraction is. To calculate r, security proofs must then evaluate I(A : E), which in turn depends on the

protocol and the type of attack Eve performs.

2.5 Classification of Attacks

The security of a protocol has to be proven against all attacks Eve can perform to get information about

the key. These can be divided into three classes, which are, in increasing order of power, individual attacks,

collective attacks and coherent attacks [31]. Eve’s extraction of information, regardless of what attack

class she chooses, can be generalized as such: not knowing Alice’s state, she is left with attaching an
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ancilla system |E⟩E⟨E| to Alice’s system ρA; she then performs a unitary transformation to the composite

system, leaving her ancilla system in the state

ρE = TrA
(
U†(ρA ⊗ |E⟩E⟨E|)U

)
; (2.30)

to extract a result, she must measure ρE , for which she chooses an appropriate POVM M = {Mj}, where

result j happens with probability Tr(MjρE).

In individual attacks, Eve handles each state sent by Alice ρiA individually. Considering n the total

number of states, such that i = 1, ..., n, Eve attaches |E⟩E⟨E| to ρiA, retrieving

ρiE = TrA
(
U†(ρiA ⊗ |E⟩E⟨E|)U

)
. (2.31)

Afterwards, she measures each ρiE individually, obtaining the probability distribution Pρ
1
E

M1 ...Pρ
n
E

M1 . Con-

versely, in collective attacks, Eve measures the composite state ρ1E ⊗ ρ2E ⊗ ... ⊗ ρnE , creating a final

probability distribution Pρ
1
E⊗...⊗ρnE

Mn .

Coherent attacks are the most powerful ones, where one assumes Eve has unlimited resources. Here,

she attaches |E⟩E⟨E| to the composite system formed by all n states, ρ1A ⊗ ρ2A ⊗ ...⊗ ρnA, and performs a

global unitary transformation UG, retrieving

ρE = TrA
(
U†
G(ρ

1
A ⊗ ρ2A ⊗ ...⊗ ρnA)⊗ |E⟩E⟨E|UG

)
, (2.32)

to which she applies a global measurement, with probability distribution PρEMn .

As aforementioned, the mutual information I(A : E) shared between Alice and Eve depends on the

type of attack Eve performs. For individual attacks we have that

I(A : E) = max
Eve

I(A : E), (2.33)

where the maximization considers all the individual attacks strategies Eve can perform and chooses the

strongest one, and I(A : E) is the classical mutual information.

In turn, for collective attacks, we have

I(A : E) = max
Eve

I(A : E)ρAE
, (2.34)

where the maximization follows the same logic as before, but now I(A : E)ρAE
represents the quantum

mutual information associated with the classical-quantum state ρAE =
∑
k pK(k)|k⟩A⟨k| ⊗ ρkE .

Finally, to completely validate a given protocol, one must prove its security against the most powerful

eavesdropping tactic, coherent attacks. However, these involve a very high dimension global Hilbert Space,

including many possible variations, and consequently cannot be efficiently parameterized. Nonetheless,

techniques for security proofs against coherent attacks have been developed [31], but are outside the

scope of this thesis.

As an example, we show how the secret key fraction r is calculated for an individual attack. The most
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general individual attack [31] Eve can perform in a prepare-and-measure protocol consists of

U |0⟩ |E⟩ =
√
δ |0⟩ |E00⟩+

√
1− δ |1⟩ |E01⟩

U |1⟩ |E⟩ =
√
1− δ |0⟩ |E10⟩+

√
δ |1⟩ |E11⟩ ,

(2.35)

where δ is the QBER from Equation 2.27, |E⟩ is the initial state of her ancilla system, and |E⟩ij the states

after the unitary transformation.

As proven in [47], the mutual information shared between Alice and Eve, I(A : E), when Eve performs

this attack in a BB84 implementation can be written as

I(A : E) =
1

2
(1 + f(δ)) log2(1 + f(δ)) +

1

2
(1− f(δ)) log2(1− f(δ)), with f(δ) = 2

√
δ(1− δ). (2.36)

However, the same attack does not result in the same I(A : E) when considering a different QKD protocol.

For example, considering the Six-State protocol, another QKD prepare-and-measure protocol, the mutual

information I(A : E) [48] can be written as

I(A : E) = 1+ (1− δ)
(
g(δ) log2(g(δ)) + (1− g(δ)) log2(1− g(δ))

)
, with g(δ) =

1

2

(
1+

1

1− δ

√
δ(2− 3δ)

)
.

(2.37)

Using I(A : B) from Equation 2.28, which is the same for both protocols, the secret key fraction r from

Equation 2.29 can be calculated for each protocol by using the respective I(A : E). In Figure 2.2 (a),

we can see the evolution of I(A : E) with the QBER: as the number of errors in the key increases,

the more information Eve has on the key and the less information is shared between Alice and Bob.

Figure 2.2 (b) shows the secret key fraction for both protocols, where it is evident that, for α such that

I(A : B) > I(A : E), no key can be extracted, since r < 0.

(a) (b)

Figure 2.2: Mutual Information I(A : B) and I(A : E) for the BB84 and the Six-State Protocol in
(a) and their corresponding difference r in (b)

In conclusion, the parametrization of Eve’s attacks in a security proof is necessary to distil a secret

key fraction r, which in turn is crucial for Alice and Bob to know how many key bits they can securely

extract from the sifted key. If this analysis is based on naive assumptions, which do not hold in real

implementations of the protocol, then the secret key rate might be overestimated, and security may be

23



breached. In the next section we will summarize different ways in which this has been done.

2.6 Optical Side-Channel Attacks in Discrete Variable QKD

As we have seen, although theoretically secure, QKD is susceptible to eavesdropping. Before being

implemented and studied for QKD systems, physical security attacks, also known as side-channel

attacks, were introduced in classical cryptography. In both settings, classical and quantum, they exploit

implementation-specific characteristics of the cryptographic device in order to extract information.

In a QKD framework, as mentioned in Section 2.2, it is assumed that Eve has total control of the

Quantum Channel. Consequently, most hacking strategies that have been proposed so far have explored

vulnerabilities via the quantum channel, this is, Eve tries to gain information by manipulating the optical

band of the cryptographic setting. In this sense, these attacks can be categorized as Optical Side-

Channels.

Here we will focus on DV QKD systems, where attacks they can be categorized into four classes:

Photon Number Splitting, Faked States, Trojan Horse and Backflash [49].

2.6.1 Photon Number Splitting Attacks

As seen in subsection 1.3.3, QKD implementations typically resort to highly attenuated weak coherent

state sources as a replacement to single photon ones. In this case, the number of photons in the states

prepared by Alice obey the probability distribution in Equation 1.38. Let us assume a quantum channel

with transmittance τ = e−η, where η is the previously introduced transmissivity of the channel. If Alice

sends a weak coherent state with average photon number µ through this channel, when Bob receives it,

this number will have decreased to τµ. Therefore, the probability of him receiving a non-vacuum pulse is

given by

P (n > 0) = 1− e−τµ. (2.38)

For this attack, Eve replaces the lossy quantum channel with an ideal one, and performs a photon

number resolving (PNR) quantum non-demolition measurement to the pulses, which measures their

number of photons without disturbing the state where information was encoded, e.g. polarization. The zero

photon states are straightforwardly resent to Bob, since they do not hold any information. However, upon

receiving a multi-photon pulse, Eve splits off one photon, stores it in a quantum memory, and forwards the

remaining to Bob, as schematized in Figure 2.3. When Alice reveals her basis choice over the classical

channel, Eve can perform the correct measurements on the stored photons, and gain information about

the bits they encoded. Nonetheless, if she resends every single photon pulse to Bob, given that she can’t

gain information on them, then the probability in Equation 2.38 would increase, because the quantum

channel is now ideal (τ = 1). Therefore, to assure she remains undetected, Eve must block some single

photon pulses in order to mimic the expected probability distribution for non-vacuum pulses.

To counter Photon Number Splitting Attacks, the Decoy State Protocol was firstly suggested in [50].

Here, Alice employs two weak coherent state sources, with different mean photon numbers µ1, µ2, and
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Figure 2.3: Schematics of a Photon Number Splitting Attack

alternates between the two. In the quantum channel, Eve cannot distinguish which source the states come

from, thus she treats them equally and implements exactly the same strategy as before. However, now,

when she blocks single photon states in order to maintain the probability Bob expects for non-vacuum

states, she is correcting for states with a Poisson distribution µ1 + µ2. This means that, after Alice

announces which states were created by which source, Bob will detect a higher loss that expected for

each state population.

Nonetheless, vulnerabilities in the implementation of Decoy State Protocols have also been found,

mainly regarding the assumption of indistinguishability between decoy and signal states. If Eve can

distinguish them, she can adjust her strategy to keep the statistic distributions as expected by Bob, and

perform a photon number splitting attack whilst undetected. In [51], the authors tested a source which

alternated between two intensities via laser diode gain switching, by modulating its pump current. They

found, with this setup, that the probability distributions of the signal and decoy state did not overlap,

specifically, the higher intensity pulses had a higher probability of being emitted earlier. This is expected

since the laser diode reaches, on average, population inversion earlier for higher pump currents. Also in

[51], a setup with an external intensity modulator connected to the laser was tested and found to create

indistinguishable decoy and signal states.

2.6.2 Faked State Attacks

In this type of attack, instead of trying to gain knowledge whilst remaining undetected, Eve sends

designed states through the quantum channel to try and influence Bob’s results. According to [12], where

these types of attacks were firstly introduced, a faked state attack is an intercept-and-resend attack, where

Eve generates light pulses to get detected by legitimate parties in a controlled manner, without being

noticed. As schematized in Figure 2.4, Eve cuts into the fiber Alice uses to send photons to Bob and

connects it to a copy of Bob’s measurement setup; she then prepares faked states, which are setup and

even target device dependent, and sends them to Bob.

In [12], two of the four devised attacks exploit the passive-basis choice on Bob’s setup, where rather

than using a source of true randomness to decide the basis for each incoming photon, depolarized

photons impinging on a polarizing beam splitter randomly choose their detection basis. The third attack

devised forced detections via parasitic reflections in Bob’s setup, and the fourth one explored detector

efficiency mismatch. The latter focused on SPADs working in gated mode, a common approach to reduce
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Figure 2.4: Schematics of a Faked States Attack

dark counts, that results in the detectors having a time-dependent efficiency. This vulnerability was

further explored in [52]. In a setup with two SPADs, the detection windows will typically overlap, but not

coincide completely. Thus Eve can encode states in a well-defined manner in relation to her measurement

outcome and time-shift them to the sides of Bob’s detector sensitivity curve, taking advantage of the

higher sensitivity of one detector regarding the other and vice-versa.

2.6.3 Trojan Horse Attacks

Firstly introduced with the Large Pulse Attack [13], Trojan Horse Attacks also involve sending states

into one or more of the legitimate parties devices, but now Eve does not aim at manipulating detections,

wanting in turn to gain information about the key.

In the Large Pulse Attack, schematized in Figure 2.5, Eve takes advantage of the reflection coefficient

of optical components in Alice’s setup and the finite operational time of her internal modulators. For

example, in a setup which uses phase modulators to encode the qubit’s basis, Eve can send large light

pulses to Alice’s setup that pass through the modulator while it is still operational and gain the encoding

of the signal states sent to Bob. The reflections of these light pulses can then be analysed by Eve to gain

information about the key. This might not allow her to know the bit value, and only the encoding basis,

nonetheless in this case she can perform an intercept-and-resend attack where she always chooses

the same basis as Alice, thus not introducing errors in the key. If, conversely, Eve chooses to target

Bob’s setup, then she can gain information about his measurement basis and perform a PNS in a BB84

implementation without a quantum memory.

Figure 2.5: Schematics of a Trojan Horse Attack
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2.6.4 Backflash Attacks

As mentioned before, avalanche photodiodes have become a preferred choice in practical implementa-

tions of QKD. In 1955, Newman reported for the first time a significant emission of light accompanying the

avalanche of carriers during photon absorption in silicon p-n junctions [53]. From then on, the emission of

light from APD’s has been a well known phenomena, being firstly introduced as a vulnerability that could

be explored by side-channel attacks in 2001 [54].

The quantum state of the backflash photon is not correlated to the one of the incident photon, however

after emission, the photon can pass through security sensitive components of Bob’s implementation and

take some information back to the quantum channel, where it can be picked up by Eve. For example,

considering a polarization encoding with a passive basis-choice scheme, backflash photons emitted by

the detector which measures, for example, horizontally polarized photons, will return to the quantum

channel with a horizontal polarization. In this way, Eve can obtain information about which detector the

photon came from.

Figure 2.6: Schematics of a Backflash Attack

2.7 Device-Independent QKD

All the side-channels shown in Subsection 2.6 pose a security threat due to the same base problematic:

the operation of some device does not follow the assumptions made by the protocol’s security proof. These

threats can be mitigated by patching the side-channel, however this does not assure other side-channels

will not be found by the eavesdropper. Fortunately, Device-Independent (DI) QKD offers a way of mitigating

side-channels which exploit device imperfections.

DI QKD protocols rely on the historical Ekert 91 protocol [23], where the Bell State in Equation 1.19 is

shared between Alice and Bob. To measure her photon, Alice selects her measurement basis from three

options: A1 = Z, A2 = X and A3 = 1√
2
(X+Z), while Bob chooses from B1 = Z, B2 = 1√

2
(Z−X) and

B3 = 1√
2
(Z+X). When they choose the same basis, one of them flips the resulting bit value, and they

both use it as part of their key. If they choose different basis, they use their results to calculate the CHSH

quantity,

S := ⟨A1B3⟩+ ⟨A1B2⟩+ ⟨A2B3⟩ − ⟨A2B2⟩, (2.39)

where, if A1, A2, B2, B3 are classical variables which can take one of two values +1 or −1, then they

obtain the CHSH inequality S ≤ 2 [31]. Conversely, if they are quantum observables, the inequality is

violated, and S reaches the maximum violation value of S = 2
√
2 when Alice and Bob share a maximally
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entangled state, as the one in Equation 1.19. Therefore, if after the quantum transmission Alice and Bob

retrieve S ≤ 2, they know they shared separable states, which means eavesdropping has occurred, given

that a maximally entangled bipartite state cannot be entangled with a third party.

To encompass the DI framework, the idea behind the Ekert 91 protocol is combined with foregoing

trust on devices. To circumvent this, and prove security, Alice and Bob self-check their devices during

the protocol via their input-output statistics. For example, in the spot-checking CHSH DI QKD protocol,

Alice and Bob alternate between key and test rounds. In the key rounds, they measure their photon in the

same basis, whilst in the test rounds, they play the CHSH game, schematized in Figure 2.7.

Figure 2.7: Schematics of a CHSH Test Setup

Via the CHSH game, parties calculate the CHSH quantity, in order to keep the devices honest. In

an ideal implementation S = 2
√
2, but in reality, some tolerance δ is given to account for physical

imperfections, and thus Alice and Bob abort the protocol if S < 2
√
2− δ.

Given that they rule out many quantum hacking threats, one would expect DI QKD protocols to be the

primary choice. However, in practice, their implementation is very challenging [55], since it relies on the

sharing of high-quality entanglement and close to perfect quantum measurements. Additionally, device

independence does not assure protection against all side-channels. Security in the DI QKD framework

relies on the following assumptions [55]:

1. Quantum Mechanics is correct

2. Parties are connected through an authenticated classical channel

3. Parties are able to perform post-processing operations faithfully

4. Parties are able to generate truly local randomness

5. Parties perform their measurements in secure locations, where no unwanted information leakage

occurs

This last assumption makes DI QKD vulnerable under the side channel explored in this thesis, as we will

see below

2.8 Electronic Side-Channel Attacks in QKD

From Sections 2.2 and 2.7, we conclude that the assumption that Alice and Bob’s laboratories

are secure locations where no unwanted information is leaked applies to all QKD protocols. Typically,
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guaranteeing this can be done by either physically protecting the facilities, or, for plug-and-play devices,

by assuring boxes are unopenable, e.g. self-destruct upon opening.

Nonetheless, electronic side-channel attacks might offer a way for Eve to gain information, even

when faced with these protective measures. These attacks exploit vulnerabilities related to the electronic

components of a cryptographic setting, and were introduced for classical devices in the seminal work [56].

These devices are typically implemented using semiconductor transistors as logic gates, where electrons

flow across the silicon substrate when voltage is applied or removed from the gate. This means that their

power consumption and emanated electromagnetic radiation is data-dependent, namely, depends on the

Hamming weight of the handled bits. Exploring these dependencies has, since then, evolved into the

fields of power and electromagnetic side-channel analysis, respectively.

Returning to the quantum framework, electronic devices, such as Field Programmable Gate Arrays

(FPGAs), are ubiquitous to high-rate QKD setups [57] and are also based on transistor logic, thus opening

the possibility for electronic side-channels. Until now, only two works devising these types of hacking

strategies against QKD setups have been put forth, both exploring electromagnetic vulnerabilities [16, 17].

Summarily, in [16] researchers used a magnetic near-field probe, an RF amplifier and an oscilloscope

to measure the EM near-field emissions from the control electronics of the QKD transmitter. The module

consisted on a BB84 polarization-encoding decoy-capable setup, where the control electronics lied in a

(10× 10) cm2 Printed Circuit Board (PCB). With the probe fixed at 10 mm from the unshielded PCB, a

machine-learning based attack was implemented on different locations of the board and at the optimal

location, a prediction accuracy of 99% was reached. However, for distances between the probe and

the PCB above 8 cm, the attack was no longer considered successful, motivating a far-field analysis.

Using a log-periodic dipole antenna and the same neural network, the far-field was explored but proved

unsuccessful for extracting a key. Nonetheless, in the article it was proved that the far-field emissions had

non-zero information.

In [17], researchers explored the Radio Frequency (RF) radiations emitted by the accelerated dis-

placement of electrons in a SPAD. Given their specific location in the laboratory, the radiation emitted by

each SPAD creates a unique spectrum, due to the multiple reflections induced by the detectors’ physical

surroundings. They created a deep learning signal classification neural network to distinguish between

two different SPADs via their RF fingerprint. With the detectors placed 20 cm apart, and an antenna 2 m

away from the SPAD setup, they found an accuracy above 99%. Afterwards, the same procedure was

applied to a BB84 implementation, with four SPADs, a pair per basis choice, and a detector in each pair

for each bit value. They found also that, with this procedure, they were able to extract more than 99%

of the raw key, from which Eve could then extract the sifted key by listening to Alice and Bob’s classical

communication.

Equipped with the state-of-the-art on electronic side-channels for QKD systems, we can now better

understand the objective of this thesis, which is to perform a power side channel on the QKD transmitter

at the University of Padua. As previously mentioned, these attacks are implementation dependent, so the

next chapter will briefly cover the main aspects of the QKD implementation at the University of Padua.
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Chapter 3

Working Principle of the QKD

transmitter

The QKD setup at Padua implements the three-state one-decoy BB84 protocol with polarization

encoding. In the transmitter, an Intensity Modulator (IM) [58] is used to create decoy and signal states,

followed by a polarization modulator, the iPOGNAC [59], which encodes the polarization of each photon. In

Figure 3.1, a schematics of the setup implemented in [60] is shown. Here, the detection at the receiver was

achieved with a time-multiplexing scheme, where the measurements on the two BB84 bases were done

using only one InGaAs/InP SPAD. Regarding the transmission, in this setup, the classical and quantum

communication were established within the same fiber via wavelength multiplexing. The quantum states

were emitted at 1550 nm, by a gain-switched distributed feedback laser, with a frep = 50 MHz repetition

rate, whilst the classical communication was held at 1490 nm. This allowed the key exchange to happen

using an already stationed telecom dark fiber.

Figure 3.1: Schematic representation of a QKD setup employed by researchers at University of
Padua. Taken from [60]

The side-channel attack performed in this thesis was done on the electronic drivers at the transmitter

side, therefore, this chapter will primarily focus on explaining the main components of the QKD transmitter.

However, we start by outlining the three-state one-decoy BB84 protocol, in order to understand its

experimental demands.

30



3.1 Three-State One-Decoy BB84

The three-state BB84 protocol relies only on 3 qubit states, two which contribute to key generation, and

a third which is solely used for parameter estimation. Its security was proven in [61] for a single-photon

source and for a coherent state source with a decoy state method, which is the case at the University of

Padua. With a polarization encoding, the protocol has the following outline [26]:

1. For each bit, Alice chooses between two basis, K and C, corresponding to the key and the check

basis, with probabilities pAK and pAC = 1 - pAK, respectively. Note that K and C can be any two MUB,

where here we use K = {|L⟩ , |R⟩} and C = {|D⟩ , |A⟩} since these are the polarization states

prepared at the University of Padua. If K is chosen, Alice transmits a state randomly chosen

between |L⟩ = |H⟩+i|V ⟩√
2

and |R⟩ = |H⟩−i|V ⟩√
2

, whilst if C is selected, she sends |D⟩ = |H⟩+|V ⟩√
2

.

2. Bob measures each bit, choosing randomly between the two measurement bases K and C, with

respective probabilities pBK and pBC = 1 - pBK.

3. Alice and Bob announce over a classical channel the basis used to measure each bit

4. They discard the bits corresponding to different basis. The bits belonging to the key basis K are

used for key generation, whilst the ones belonging to C are used for parameter estimation.

As previously mentioned, the QKD setup at Padua uses a coherent-state source, and to protect against

PNS attacks, they implement a one-decoy protocol, where for each state sent through the quantum

channel, Alice chooses between two intensities µ1 and µ2 (µ1 > µ2 > 0) with probabilities pµ1
and

pµ2
= 1− pµ1

. To implement this, they use an Sagnac-based intensity modulator, described in the next

section.

3.2 Intensity Modulator

To modulate each pulse’s intensity, between µ1 and µ2, a Lithium Niobate (LiNbO3) phase modulator

placed inside a Sagnac interferometer is used as a two-level IM [58], as depicted in Figure 3.2

Figure 3.2: Schematic representation of a Sagnac-based IM

The pulses created by the gain-switched laser are directed to the IM, where they are divided into two

fiber paths, denoted as parallel and anti-parallel, going anticlockwise and clockwise respectively. Then, a

phase shift is applied to the parallel light pulse, via the use of an electro-optical phase modulator. In this
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device, the light passes through an electro-optical crystal, where the voltage at its terminals determines

its refractive index, and thus, the phase delay of the light pulse. At the output, both light pulses are

recombined by the beam splitter into a single pulse, whose intensity obeys

I ∝ R2 + T 2 + 2RT cos(∆ϕ). (3.1)

Noticeably, in the Sagnac interferometer, both parallel and anti-parallel light pulses travel through the

same length of fiber, meaning that, any perturbations in the fiber or DC changes in the phase modulator

affect both pulses equally, which increases the stability of the interferometer [58].

The coupling ratio of the beam splitter is fixed, and, for example, on the exchange held in [60] it was

fixed at 70:30. For fixed coupling ratios, the maximum optical extinction ratio of the IM is achieved when

the higher intensity pulses correspond to applying ∆ϕ = 0, and the lower intensity ones to ∆ϕ = π.

The voltage required for inducing a π phase change to light pulses passing through a phase-modulator

is called the half-wave voltage Ṽπ. Therefore, to choose between two intensity levels µ1 and µ2 which

maximize µ1

µ2
, one simply chooses between applying Vπ or 0 V at the terminals of the phase modulator. If,

instead, one wants an arbitrary value for µ1

µ2
, they can reach this value by tuning the voltage V applied to

the phase-modulator, such that V < Ṽπ. For example, in [60], the voltage was tuned such that µ1

µ2
≈ 3.5.

3.3 Polarization Modulator (POGNAC)

After exiting the IM, the pulses have been encoded with decoy/signal information, but are yet to be

encoded with key information. To do so, they are put through the POGNAC, a polarization modulator based

on a LiNbO3 phase modulator inside a Sagnac interferometer. In this section we will briefly go through

the device’s theory of operation, detailed in [59]. Figure 3.3, taken from [59], represents a schematics of

the working principle of the POGNAC, where, importantly, single mode fibers are represented in yellow,

and polarization mantaining (PM) fibers in blue.

Figure 3.3: Schematic representation of the POGNAC. Taken from [59]

The POGNAC receives linearly polarized light pulses, which enter an Optical Circulator (CIRC) through

port 1, and exit through port 2, where they directed to a Polarization Controller (PC). The PC changes their

polarization to the state |ψ⟩ = 1√
2
(|H⟩+ eiϕ0 |V ⟩), where ϕ0 is an arbitrary relative phase, inconsequential

to the polarization state of the light output. Afterwards, the pulses go through a Polarizing Beam Splitter
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(PBS) which splits the two polarization states, |H⟩ and |V ⟩, into two different spatial modes. The PBS

marks the beginning of the Sagnac loop, where the two orthogonally polarized light pulses travel through

the slow axis of a PM fiber in opposite directions. The |V ⟩ polarized light travels through the clockwise

direction, going first through the phase modulator, where it is applied a phase ϕe, and then through a PM

fiber delay line, of length ∆L. The |H⟩ polarized light does the opposite path, in the counter clockwise

direction, reaching the phase modulator after passing through the delay line, where it is given a phase ϕℓ.

In this way, both light pulses exit the interferometer at the same instance, where their polarization state is

recombined to the final state

∣∣∣ψϕe,ϕℓ

out

〉
=

1√
2
[|H⟩+ ei(ϕe−ϕl+ϕ0) |V ⟩]. (3.2)

The |H⟩ polarized light arrives at the phase modulator with a time delay of ∆L
nf c

, compared to the |V ⟩

polarized one. Consequently, one can tune the values ϕe and ϕl by carefully timing the voltage pulses at

the terminals of the phase modulator.

Figure 3.4: Schematic representation of the voltage pulses at the terminals of the phase modulator
in the POGNAC

For simplicity, let us assume ϕ0 = 0. If equal voltage, i.e VCCW = VCW = 0 is applied to both counter

propagating pulses, then ϕe = ϕℓ and the state 3.2 becomes

∣∣∣ψ0,0
out

〉
=

1

2
[|H⟩+ |V ⟩] = |D⟩ . (3.3)

Conversely, one can create the output states |L⟩ and |R⟩ by accordingly applying Vπ
2

to the phase

modulator during the passage one of the light pulses,

VCCW = 0, VCW = Vπ
2

→
∣∣∣ψ π

2 ,0
out

〉
=

1

2
[|H⟩+ i |V ⟩] = |L⟩ ,

VCCW = Vπ
2
, VCW = 0 →

∣∣∣ψ0,π2
out

〉
=

1

2
[|H⟩ − i |V ⟩] = |R⟩ ,

(3.4)

where Vπ
2

is the voltage required for the device to apply a π
2 shift. In this way, we can modulate the

polarization of each light pulse between the three states required by the Three-State BB84 protocol. After

exiting the PBS, the light pulses are guided by a single mode fiber to port 2 of the CIRC, and exit the

POGNAC through port 3.

Tracing back to Figure 3.1, after leaving the POGNAC, the light pulses are sent to Bob, whose

receiver module irrelevant for our side-channel analysis. Nonetheless, the most relevant component of
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the transmitter for this analysis, the System-on-a-Chip (SoC), has yet to be addressed.

3.4 System-on-a-Chip (SoC)

The optical encoder in the transmitter requires three separate electrical signals: one to gate the laser

every 1
frep

seconds, and two for the phase modulators, one in the IM and the other in the POGNAC. To

create these electrical pulses with the high temporal resolution required by fast repetition rates frep, a

System-on-a-Chip (SoC) is used, comprising a Field Programmable Gate Array (FPGA) and a dual core

CPU unit.

The hardware and software architecture used could be implemented as a QKD receiver as well as a

quantum random number generator control unit, as described in [57]. For the purpose of this thesis, we

will focus on its application as a QKD transmitter. Here, the architecture follows a top-down configuration,

where data flows from the user/pc to the quantum system, passing through two different layers, as depicted

in Figure 3.5. Firstly it goes through the CPU layer, which is responsible for communication with the

outside world and data management operations. Then it reaches the FPGA, which is the lowest layer,

where all deterministic and high resolution operations are carried. Finally, from the FPGA, it goes to the

chip input-output pins, where the electric pulses are emitted.

Figure 3.5: Schematics of the top-down workflow configuration

To perform the data transfer from an external device, either generated in real time by a quantum

random number generator or stored in a PC, Gigabit Ethernet communication is used. However no

encryption is done to the raw data, which demands setting a private Local Area Network (LAN) between

the SoC and the external device, physically disconnected from other networks. From the CPU, the data

must then be transferred to the FPGA. To do so, the software distinguishes between two types of data:

configuration parameters, such as the key length, which have a slow refresh rate, and the raw key data.

For the first type, the exchange happens with direct communication via the Advanced eXtensible Interface

(AXI) protocol. However the raw key data exchange entails a higher refresh rate, thus requiring the use

of the onboard DDR-RAM memory, accessible from the CPU, and the Block RAM memory (BRAM),

integrated in the FPGA but accessible from the CPU [57].

Figure 3.6: Schematics of the raw data transfer from the CPU to the FPGA
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The BRAM has a memory length LBRAM, in the order of MBits, which has been split into two halfs. The

raw key data, received by the CPU via an external data source, is stored in the CPU’s RAM. Then, via the

AXI protocol, data strings of length LBRAM/2 are transferred to one of the halves of the BRAM, whilst the

FPGA reads data from the other half. When it reaches the end of one of the two halves, a signal is emitted

by one of the FPGA’s blocks, which signals the CPU to start writing new data in the corresponding half.
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Chapter 4

Power Consumption of the

System-on-a-Chip

Power consumption traces of cryptographic devices, taken during the cryptographic operation, can

leak unwanted information about the encryption key. This is a standard and powerful technique in

cryptoanalysis of classical devices implementing symmetric-key algorithms, such as the Data Encryption

Standard (DES) [62] and the Advanced Encryption Standard (AES) [63]. However, it has yet to be applied

to Quantum Key Distribution systems.

In this chapter, we characterize the power consumption of the SoC used for driving the electro-optical

components of the QKD transmitter at the University of Padua. Vulnerabilities found in the course of this

characterization are then used to implement a hacking attack, breaking the assumption that Alice performs

her operations in secure locations. During the analysis and subsequent attack, the SoC is treated as a

pseudo black-box, as it would be by a current eavesdropper with malicious intent, who would expectedly

only have access to publicly available information about the device. Therefore, the only knowledge we

assume on the working principle of the SoC is the one made public in [57], covered in Chapter 3.

4.1 Experimental Setup

Our target device is the Zynq-7020 SoC mounted on a ZedBoard by Avnet. The ZedBoard receives a

12 V input power supply and comes with an inbuilt 10 mΩ, 1 W in series resistor for power consumption

measurements, placed at the high voltage side of the circuit, as schematized in Figure 4.1.

The terminals of the shunt resistor are connected to Header J21 of the ZedBoard [64], such that by

measuring the difference between the voltages at the two pins, we can infer the ZedBoard’s power con-

sumption. To guarantee enough resolution for measurements regarding the average power consumption

values, the 10 mΩ resistance was replaced by a an 1 Ω, 1 W one. The 1Ω value was chosen in order

to satisfy two conditions: the voltage at the resistance terminals is not high enough to require a higher

voltage input to the Zedboard (V > 12 V), but it is high enough to allow resolution in the mV range.

The voltage difference at the terminals of the 1 Ω resistance translate the power consumption of the
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Figure 4.1: Schematics of the ZedBoard highlighting the inbuilt resistance in series with the SoC

SoC. Given that we are not interested in the actual power consumption values, only on how their variation

can lead to information leakage, it is sufficient to characterize the voltage difference at the terminals of the

resistance. To do so, we acquire power consumption traces, also referred to as power traces, which we

define as the voltage difference data at the terminals of the resistance during a certain time interval.

The power traces were acquired using the SIGLENT SDS5104X Oscilloscope, which can reach a

sampling frequency fsamp = 5 GSa/s, a record length of 250 MSa, and has bandwidth of 1 GHz. Two

different probe setups were used to measure the voltage, according to the different requirements of the

measurements. The first probe used was a KEYSIGHT N2791A Differential Probe, with a 10× attenuation

ratio, which directly computes the voltage difference between the two resistance terminals, as schematized

in Figure 4.2 (a). As specified in the probe’s datasheet [65], it was connected to the oscilloscope at 1MΩ

impedance. This probe has a 25 MHz bandwidth, which is insufficient for an analysis of the frequency

spectrum of the power traces, leaving this setup for the study of the average power consumption of the

SoC. In this case, the sampling frequency of the oscilloscope was set to 500 MSa/s to avoid oversampling

given the 25 MHz bandwidth of the differential probe. With this setup, two oscilloscope channels were

used, one for the signal measured by the differential probe, and another for the laser pulse signal, which

was used to trigger acquisitions.

(a) Setup with low bandwidth differential probe (b) Differential setup with oscilloscope probes

Figure 4.2: Schematics of the two experimental setups

For the frequency spectrum analysis of the power traces, we used two SIGLENT SP2035A voltage

probes with a bandwidth of 350 MHz and 10MΩ impedance, as schematized in Figure 4.2 (b). For each

probe, the sensor was placed in one of the resistance terminals, whilst the ground was connected to the

ground of the SoC, this way eliminating any parasitic voltage loops that may occur in other configurations.

Using the oscilloscope, the power traces were retrieved by computing the difference between the two

voltage traces, using a Math function of the oscilloscope. Importantly, given that the resistance is placed

in the high voltage end of the circuit, both probes measure an average voltage higher than 5V , not only
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meaning that they must impedance matched at 1MΩ with the oscilloscope, but that, if the signals are DC

coupled to the oscilloscope, they require a scaling of at least a 2V/div. This high scaling results in low

resolution in the mV range, making it inappropriate for high precision measurements. To increase the

resolution, both probes were AC coupled to the oscilloscope. Finally, in this case, the sampling frequency

of the oscilloscope was set to the maximum 2.5 GSa/s allowed when using three channels. The three

channels required were two for the oscilloscope probes and one for the laser pulses which were used as

a trigger.

4.2 Oscilloscope

The oscilloscope is pivotal for power trace acquisition, and thus preparing and characterizing it is of

utmost importance. The SIGLENT SDS5104X oscilloscope was chosen since it can reach high sampling

rates, i.e fsamp = 5GSa/s, and high bandwidths, i.e. 5GHz. The first task upon setting up the instrument,

was create the software to control it remotely.

4.2.1 Controlling the Oscilloscope

Acquiring power traces for different working conditions of the FPGA requires a control over the

oscilloscope which can only be obtained by controlling it remotely. For this, we connected a computer

to the Oscilloscope via USB, and used MATLAB to establish communication between both. The NI

implementation of the Virtual Instrument Software Architecture (NI-VISA) provides a programming interface

to control instruments over different communication protocols, USB being one of them. It is supported by

MATLAB via the Instrument Control ToolBox, but the control commands are specific to each instrument.

For the case of the SIGLENT SDS5104X Oscilloscope, the PG01-E02B Programming Manual offers the

list of available commands together with some implementation examples. By consulting this manual, after

installing the Instrument Control ToolBox, we used MATLAB to create the ’Oscilloscope_SD’ class, where

each class method implements different control sequences.

Throughout the data acquisition performed for the purpose of this thesis, we mostly relied on the

following class methods:

• connect(obj): connects the computer to the oscilloscope.

• set_trigger(obj, type, source, slope, value): defines the trigger settings.

• measure(obj, n): retrieves the measurement result in the nth slot

• retrieve_data(obj, channel, initial_point, final_point): retrieves the waveform data on a given channel,

over a given interval, aligning the data according to the oscilloscopes settings, i.e the vertical and

horizontal scale.
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4.2.2 Effective Number of Bits (ENOB)

Before any characterization of the voltage traces is done, it is crucial to quantify the resolution we can

achieve with our oscilloscope. The oscilloscope’s resolution is labeled as 8 bit per data point. However,

the analog to digital converter inside the oscilloscope is not ideal, and thus the effective number of bits

(ENOB) of each data point will actually correspond to a bit number smaller than 8.

To calculate the ENOB of the SIGLENT SDS5104X Oscilloscope, we used the IEEE definition of

ENOB [66]

ENOB =
1

2
log2(SINAD)− 1

2
log2

(3
2

)
− log2

(A
V

)
, (4.1)

where SINAD represents the Signal to Noise and Distortion Ratio, A is the peak to peak amplitude of the

sine wave and V the full range of the oscilloscope. The KEYSIGHT Agilent 33220A Arbitrary Waveform

Generator, with a maximum frequency generation of 20 MHz, was used to generate sine waves with a well

defined amplitude A, and different frequencies. These signals were sent to the oscilloscope, acquired

and then transferred to the computer. After storing the traces, the Fast Fourier Transform (FFT) of each

waveform was calculated, in order to the compute the SINAD [67]

SINAD =
PS

PNAD
, (4.2)

where PS is the power in the FFT bin corresponding to the waveform’s frequency and PNAD is sum of

powers in all other frequency bins excluding the 0 frequency bin, up to and including the bin at Nyquist

frequency.

The input frequency of the sine waves must be chosen such that the sampled waveforms comprise

an integer number of periods, this is, the frequency fits in exactly one bin of the FFT, and there are no

windowing effects. Therefore, the optimal frequencies fopt obey

fopt = fsamp
J

M
, (4.3)

where M is the number of samples in each waveform and J is the number of periods it comprises. In our

analysis, the oscilloscope was set to its highest sampling frequency fsamp = 5 GSa/s, since expectedly,

higher sampling frequencies correspond to lower ENOBs. Furthermore, we expect higher waveform

frequencies to correspond to lower ENOBs, thus we choose to generate sine waves in the MHz range,

close to the ceiling of the signal generator’s frequency range. Finally, in [66], a minimum sample length L

which produces a representative sample in every code bin is defined as

L = π2N , (4.4)

where N is the resolution of the oscilloscope, which in our case N = 8. The record length chosen was of

10 MPts, which is well above the minimum required value.

The choice regarding the waveform’s amplitude A is not specified by the IEEE. From Equation 4.1

we see that lower amplitudes correspond to higher ENOB values, and thus commonly, ENOB values
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are given at 90% or 95% full scale. Due to the noisy nature of the voltage traces at the terminals of the

resistance, we do not expect them to occupy 95% of the oscilloscope’s full range, given that we must leave

some room for occasional voltage drops or rises. Therefore, the ENOB was calculated at 90%, where the

amplitude of the incoming sine waves was set at A = 1.44 V, thus V = 1.6 V, which corresponds to a 200

mV/div oscilloscope scale.

Figure 4.3: ENOBs of the SIGLENT SDS5104X Oscilloscope at 90% full width

Taking all these conditions into account, using the MATLAB oscilloscope class to program the os-

cilloscope’s setting and the data acquisition by the computer, 10 sine waves were collected and their

respective ENOBs calculated. The results are shown in Figure 4.3 and from them we extract an average

ENOB of

ENOB = 6.62± 0.06, (4.5)

meaning that, on average, we have 6.62 bits per data value, instead of the expected 8. We now must

translate this result into voltage resolution. Considering the oscilloscope has a certain vertical division

scale vdiv, the vertical accuracy is given by

1

2ENOB
× vdiv × 8, (4.6)

where 8 is the number of vertical divisions of the oscilloscope. For example, a vertical range vdiv = 20

mV/div means a vertical accuracy of 1.6 mV, meaning that the oscilloscope cannot ideally resolve voltage

differences smaller than 1.6 mV.

4.3 Field-Programmable Gate Array (FPGA)

As mentioned at the beginning of this chapter, we assume no knowledge of the FPGA’s software

other than the one made publicly available in [57]. Nonetheless, to control the system’s settings, e.g. the

qubit repetition frequency of the QKD transmitter, we relied on an application previously developed by the

Quantum Future research group, which allows the user to connect to the FPGA and control the different

settings. Moreover, it is also through this application that the user initiates or terminates symbol emission,
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this is, sends an instruction to the FPGA which starts or ends the emission of electronic signals. Naturally,

these signals depend, among others, on the following settings: clock frequency, decoy string, key length

and symbol string.

For all the measurements taken in this thesis, the qubit repetition frequency of the QKD transmitter

was set to 100 MHz, meaning that the laser pulse signal exiting the FPGA has a 10 ns period. Additionally,

the decoy string was also left unchanged at all times, and set to a pre-defined sequence of all 1′s. In this

way, all symbols are programmed by the FPGA as non-decoy pulses, implying that the electronic pulse

exiting the FPGA to feed the phase modulator in the IM is periodic (T = 10 ns).

Regarding the key, the symbol encoded by each qubit can be chosen between H, V or D. We note that

these states differ from the ones in the explained in Section 3.1. Nonetheless, this difference is simply

symbolic, and one associates the state |H⟩ to |L⟩ and the state |V ⟩ to |R⟩. The application connecting the

user to the FPGA allows for two options concerning the key choice. The first one is using fixed sequences,

which consists of an infinite repetition of a fixed sequence of symbols. For example, an Only-H sequence

corresponds to having the QKD transmitter sending H symbols indefinitely. Naturally, these sequences

would not be used in a practical QKD setting, since to assure theoretical security, each symbol Alice sends

must be chosen in a truly random manner, i.e. using a Quantum Random Number Generator (QRNG).

Nevertheless, they can be a good starting point for our analysis. Lastly, when using fixed-sequences, a

key length must be set by the user, however, this value is arbitrary since the key will be emitted indefinitely.

When the emission reaches its end according to the key length setting, it continues again from the start,

without ever stopping. To terminate the emission, the user must restart the board. The second option to

define the key string is to encode it with a binary file, where an H symbol is encoded via the bit-string ′01′,

whilst a V symbol via ′10′. The content on the file can be transferred to the FPGA by importing the file to

the application. If the length of the key encoded in the file is smaller than the one set by the user in the

application, then the remaining pulses are set to ’H’ symbols. If they match, the FPGA ends the emission

upon reaching the final symbol encoded in the file. This method allows us to closely resemble a QKD

setting since we can generate files encoding pseudo-random symbol strings.

4.3.1 Randomize Method

The randomize method was implemented within the control interface of the FPGA in order to achieve

statistical relevance for the results regarding fixed sequences. To better understand this, we focus on

the case of Only-H/Only-V sequences, but the reasoning can be applied to any fixed sequence. As

aforementioned, power traces acquired during the emission of an Only-H sequence correspond to a

snippet of an operation that is set to run indefinitely. Therefore, the instant the power trace is acquired

was preceded by H-symbol emission and will be succeeded by H-symbol emission. Now let us consider

the case were there is a characteristic of power traces from Only-H emissions that differs from the one in

power traces from Only-V emissions. If this difference could be solely associated to the percentage of

H-symbols in the key, then this would mean that it would be visible in the random key emission scenario,

and thus that there is a strong information leakage. However, in fixed-sequences, this association cannot
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be done, since the characteristics of the power traces might be influenced by the FPGA emission before

and after the acquisition. To reduce this influence, we developed the randomize method.

With the randomize method, the FPGA chooses randomly between five pre-defined sequences: Only-

H, Only-HHV, Only-HV, Only-HVV, Only-V and Only-HVV. These sequences were chosen given their

different percentage of H-symbols, respectively 100%, 66%, 50%, 33% and 0%. The chosen sequence is

emitted during a time interval ∆T , and afterwards, another sequence is chosen and emitted during ∆T ,

and so forth. The emission stops after Nseq have been sent. The parameters ∆T and Nseq are defined by

the user before the method is initialized. During emission, a register of the random sequence order is

written in a txt. file, so that it can be consulted during data analysis. Regarding the acquisition, MATLAB

is used to program the oscilloscope such that, at a fixed time interval δt before the end of each sequence

emission, the oscilloscope acquires a power trace and transfers the data to the PC. The time span of

the acquired power trace is defined by the oscilloscope settings, namely, if its time scale is set to tdiv,

then the power trace will correspond to a 10tdiv time span, where 10 is the number of horizontal divisions.

Figure 4.4 schematizes the timing of the emissions and respective power trace acquisitions during a run

of the randomize method. Noticeably, using this methodology, one can associate each power trace to the

corresponding sequence, and additionally, know the time each trace was acquired.

Figure 4.4: Schematics of sequence emission and power trace acquisition during the Randomize
Method implemented for the FPGA

On the statistical relevance of this method, we note that the average time interval between the

acquisition of power traces corresponding to the same sequence is 5 ·∆T . If this interval is much larger

than the symbol period, this is, 5 ·∆T ≫ 10 ns, and given that the sequence order is chosen randomly,

different acquisitions of the same sequence can be considered independent.

4.4 Average Power Consumption

The main objective of this section was to study whether the average power consumption of the

FPGA depends on the values of the symbols composing the key. If this dependence exists, it could

leak information about the key to an eavesdropper who is monitoring the power consumption of the SoC.

Nonetheless, we did not expect this to allow a symbol-to-symbol side-channel attack to the QKD transmitter

due to the rise time of the system tr, which was expected to be larger than the period associated with the

emission of each symbol, i.e tr ≫ 10 ns. This means that, even if the power consumption of the FPGA

would ideally increase when emitting one symbol value (i.e. H) and decrease when emitting another

42



(i.e. V), the system would not be able to respond to this variation in a 10 ns time span. Thus, if this DC

difference existed, we expected it to manifest in longer time intervals, thus to be related to the relative

percentages of symbols on the key. Although not allowing a symbol-to-symbol side-channel attack of

the QKD transmitter at a qubit repetition frequency of 100 MHz, the existence of such a difference could

leak information about the relative percentage of H and V symbols in the key. Additionally, it can leak

symbol-to-symbol information at lower qubit repetition frequencies.

We started this analysis by measuring the rise time of the system, in order to support the initial claim tr ≫

10 ns. Then, we showed a brief example on how the average power consumption contains information about

operations of the SoC. Afterwards, we studied the average power consumption dependence on the symbol

values composing the key and analysed until which qubit repetition frequency this dependence could

be exploited by a symbol-to-symbol side-channel attack. Notably, all the measurement and subsequent

results were obtained using the experimental setup for the average power consumption measurements,

detailed in Section 4.1.

4.4.1 Rise Time

The rise time of a system is defined as the time it takes a signal to go from a certain low value to a high

value. In our case, we are interested in the voltage difference at the terminals of the 1Ω resistance and we

study the rise time between the FPGA’s inactivity and the beginning of emission. Figure 4.5 shows the

power trace acquired while the FPGA starts emitting an Only-H sequence. The acquisition was done

Figure 4.5: Trace acquired during the beginning of an emission

using a time scale of 50 µs/div. As mentioned in Section 4.1, the laser signal was used for triggering the

acquisition. When the FPGA is inactive, the laser signal’s average is 0 V and when it starts emitting, the

signal rises sharply upon the emission of the first symbol. In Figure 4.5 one can see the laser signal

rising at t = 0.25 ms, therefore symbolising the start of the emission. During emission, the average power

consumption of the FPGA is higher than during inactivity. Nonetheless, the beginning of the emission at

0.25 ms does not correspond to an instantaneous rise in the power consumption, which is can be seen in

Figure 4.5. To characterize this rise time, we modulate the system with a simple approach.

Let us consider h(t) the impulse response of the system, this is, the system’s output when presented by

a brief input. For a linear time invariant system, the step response a(t) can be obtained by the convolution
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of h(t) with the Heaviside function H(t),

a(t) = (h ∗H)(t) =

∫ +∞

−∞
h(t)H(t− τ)dτ =

∫ t

−∞
h(τ)dτ. (4.7)

A system is said to have a Gaussian Response if its frequency response, H(ω), is given by

H(ω) = e
−ω2

σ2 . (4.8)

The impulse response h(t) can be obtained by calculating the inverse Fourier Transform of the frequency

response,

h(t) = F−1[H(ω)](t) =
1

2π

∫ +∞

−∞
H(ω)eiωt =

σ

2π
e−

σ2t2

4

∫ +∞

−∞
e−u

2

du =
σ

2
√
π
e−

σ2t2

4 . (4.9)

Finally, using Equation 4.7, we can find the step response function a(t) for our system

a(t) =

∫ t

−∞
h(τ)dτ =

1

2

[
1 + erf

(σt
2

)]
. (4.10)

Importantly, this response function characterizes a simplified system, which received the input at t = 0,

has an initial voltage output of 0 V and a total voltage increase of 1 V. To account for all these parameters,

we fit our voltage trace to V (t),

V (t) =
∆V

2

[
1 + erf

(σ(t− t0)

2

)]
+ Vt→−∞. (4.11)

By fitting the function in Equation 4.11 to the acquired power trace, we obtained the parameters for the

fitted function shown in Figure 4.5 (Table 4.1). We define the rising time tr as the time it takes for the

system to go from 10% of rising, t1, to 90%, t2, such that

V (t1) = Vt→−∞ + 0.1∆V, V (t2) = Vt→−∞ + 0.9∆V, =⇒ tr = t2 − t1 =
4

σ
erf−1(0.8). (4.12)

Using the obtained σ, we calculate a rising time tr of

tr = (28.64± 0.78) µs, (4.13)

supporting the initial claim that tr ≫ 10 ns.

∆V [mV] σ [s−1] t0 [ms] Vt→−∞ [mV]
23.89± 0.08 (127± 3)× 103 0.288± 0.001 364.6± 0.2

Table 4.1: Parameters from the fitting of the rise time function
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4.4.2 Central Processing Unit Operation

As detailed in section 4.1, the raw key data exchange between the CPU integrated in the SoC and the

FPGA is done via the BRAM, a block RAM memory, of length LBRAM = 128 kB 1. When an external key is

uploaded to the SoC, the BRAM is filled completely with key encoding bits. However, due to its finite size,

a completely filled BRAM can only encompass the encoding of 524288 key symbols. If the length of the

key uploaded by the external user to the CPU is larger that 524288 symbols, then, when the FPGA finishes

reading the first half of the BRAM, the CPU begins writing the now empty half, while the FPGA reads the

second half. This switching goes on until all the key has be written in the BRAM. During our analysis, we

observed that the CPU’s writing operation is visible through the average power consumption of the SoC.

Let us consider a user which uploads an external key encoding 1 · 106 symbols. The emission starts

with the BRAM filled with the encoding of the first 524288 symbols. After half the symbols in the BRAM

have been emitted by the FPGA, which at a qubit repetition frequency of 100 MHz, corresponds to a time

interval of 1
100·106 × 524288

2 = 2.621 ms, the CPU starts writing the encoding of another 262144 symbols in

the empty half of the BRAM. Afterwards, 786432 symbols have been encoded in the BRAM, meaning

that there are still 213568 symbols remaining in the external key. Consequently, after the FPGA reads the

BRAM’s second half and moves to the now full first half, the CPU writes the encoding of the remaining

symbols in the empty second half. This happens 2.621 · 2 = 5.242 ms after the emission begins.

Figure 4.6: Trace acquisition corresponding to emission of 1 million random key symbols transferred
externally to the SoC

Figure 4.6 shows the acquisition of a power trace during the emission of a 1 million symbol key,

transferred to the SoC by uploading a file to the control interface. Since the key length was set to 1 million,

at 10 ms we see the decrease in power consumption corresponding to the end of the emission. Noticeably,

we saw two power consumption drops in the trace which appear to happen at times coincidental with the

beginning of the CPU’s writing operation. In order to calculate these times, we fit each power consumption

decrease to the rise time function in Equation 4.11, where now σ < 0. Table 4.2 shows some of the

parameters resulting from the fit, together with the falling time tf , this is, the time it takes from the voltage

to go from 90% of its initial value to 10%. We start by noting that the falling times are smaller than the

rise time calculated in section 4.4.1. This can be justified by the smaller ∆V value, meaning that the

power consumption drop associated with the CPU operation is smaller than the power increase upon the

beginning of emission.
1The value for the length of the BRAM is not disclosed in [57] and it was obtained via a private conversation with the authors of

the publication
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tf [µs] t0 [ms] ∆V [mV]
Voltage Drop 1 11.67± 1.7 2.637± 0.001 7.1± 0.1
Voltage Drop 2 16.04± 1.9 5.261± 0.001 7.4± 0.1

Table 4.2: Parameters obtained by fitting the rise response function to the power consumption
drops in the trace corresponding to the emission of 1 million symbols

We can now calculate the times at which each power consumption drop was triggered, t1 and t2,

t1 = t0,1 −
tf,1
2

= (2.631± 0.001) ms t2 = t0,2 −
tf,2
2

= (5.253± 0.001) ms (4.14)

The interval between the two voltage drops is δt = t2 − t1 = (2.622± 0.002) ms, meaning the results are

consistent with a drop happening at approximately every δt. Figure 4.7 depicts the voltage trace acquired

during the emission of a random 2 million symbol key, uploaded externally to the SoC. The vertical lines

represent the integer multiples of the interval δt calculated previously. Visually we infer that this interval is

also consistent with the power consumption drops in the 2 million symbol acquisition.

Figure 4.7: Trace acquisition corresponding to emission of 2 million random key symbols transferred
externally to the SoC

In conclusion, we note that the calculated δt closely matches the time interval in which the FPGA emits

the symbols encoded in half of the BRAM, thus allowing us to attribute the power consumption drops to

the writing operation of the CPU.

4.4.3 Power Consumption Dependence on Symbol Value

After having characterized our system and seen that the average power consumption of the FPGA

can encode information regarding the SoC’s operation, we wanted to understand whether it can leak

information regarding the symbols in the key. As previously debated, since tresp ≫ 10 ns, the information

leakage does not manifest symbol-by-symbol. Thus, to perform this analysis, we started by considering

the emission of fixed sequences with different percentage of H symbols in the key. Therefore, we used

the Randomize Method, with the parameters displayed in Table 4.3.

∆T [s] δt [s] Nseq

30 10 400

Table 4.3: Randomize Method parameters for the analysis of the average power consumption of
fixed-sequences with different percentage of H-symbols
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With the chosen parameters, the entire acquisition takes approximately 3.33 hours, and the average

time between the acquisition of two power traces corresponding to the same sequence is 2.5 minutes,

assuring the independence condition in Section 4.3.1. Finally, we expect to acquire on average 400/5 = 80

overall traces for each sequence.

Regarding the oscilloscope, the time scale was set to 500 µs/div, meaning that each power trace

corresponds to the encoding of 500000 symbols. Given that we are only interested in the average power

consumption value, which corresponds to the average of all the data points in the power trace, we can

avoid transferring the entire waveform to the computer, thus saving time. After acquiring each power trace,

the oscilloscope measures its average value and transfers it to the computer, which then stores it together

with the acquisition time. We note that, during acquisition, some power traces showed an abnormally low

average power consumption. This appeared to affect the traces randomly, such that we do not believe it

can be attributed to an FPGA operation. In reality, we believe these power consumption drops are due to

faults in the connection between the jack of the power cable and the ZedBoard’s socket.

Figure 4.8 (a) displays the evolution in time of the average power consumption for Only-V, Only-HV and

Only-H sequences. Each point in the graph represents an average over the encoding of 500000 symbols.

The vertical scale in the oscilloscope was set to 15 mV/div, meaning that the uncertainty of each voltage

data is 0.94 mV, thus having a negligible contribution to each average.

(a) (b)

Figure 4.8: (a) - Time evolution of the average power consumption of traces corresponding to
different fixed-sequences; (b) - Linear regression for the data corresponding to the HHV sequence

The average power consumption for the emissions of each fixed sequence showed a slow decrease

over the acquisition time, which may be explained by a temperature dependence of the 1 Ω resistor..

Already it was apparent that Only-H sequences have a higher average power consumption than Only-HV

ones, which in turn are higher than Only-V ones. Nonetheless, to quantify this difference, we had to

mitigate the overall power decrease. To understand whether the power decrease affects all sequences

equally, we performed linear regressions to the time evolution of the average power consumption for each

fixed sequence. Figure 4.8 (b) shows the result of this fit to the data from the HHV sequence. Noticeably,

there were 4 outliers which fall outside the 95% prediction interval, which corresponded to averages taken

during the downwards power spikes. These spikes are ubiquitous to the voltage measurements, not only

for the HHV sequence, and affected the traces randomly in time. They were also visible in Figure 4.8 (a),
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as expected. The results from the linear regressions V = β0 + β1t are displayed in Table 4.4. Generally,

the β1 parameters obtained for the different sequences are in agreement with a global power descent,

independent of the sequence. We highlight the high value obtained for the HHV fit, which can be justified

by a lower goodness-of-fit, as translated by the lower coefficient of determination R2.

Sequence β1 [mV/h] β0 [mV] R2

Only-V −1.61± 0.11 373.7± 0.21 0.73
Only-HVV −1.79± 0.09 375.8± 0.17 0.86
Only-HV −1.76± 0.10 376.2± 0.20 0.80

Only-HHV −1.85± 0.14 376.8± 0.26 0.69
Only-H −1.64± 0.10 377.4± 0.19 0.79

Table 4.4: Parameters from Linear Regression

To parameterize the power consumption descent as a global phenomenon, which approximately

affected each sequence equally, we considered the average β1 = −1.73± 0.1 mV/h. In order to mitigate

this effect, we shifted all data points (t, V ) from all sequences to (t, V −β1t), thus approximately centering

the data for each sequence around its β0 value.
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Figure 4.9: (a) - Scattering of average power consumption values for each H symbol percentage;
(b) - Average power consumption value and associated standard deviation for each H symbol
percentage

After shifting all the data points, we analysed the scattering of average power consumption values

for each fixed-sequence, which is shown in the graph in Figure 4.9 (a). The results showed a trend: the

average power consumption increased with increasing percentage of H symbols in the key. This can also

be seen in Figure 4.9 (b), where the average power consumption for each fixed sequence is displayed,

together with the associated standard deviation. The results showed a high distinguishability between

Only-H and Only-V sequences. From the 76 average power consumption values collected for the Only-H

sequence, only 2 were bellow the maximum value achieved by an Only-V sequence. Both these points

can be attributed to the previously mentioned downwards power spikes. The difference between the

average power consumption of an Only-H sequence, PCOnly-H and of an Only-V sequence, PCOnly-V is

PCOnly-H − PCOnly-V = 3.7± 1.8 mV. (4.15)

This means that, in the unrealistic scenario that the QKD transmitter is solely oscillating between the
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emission of Only-H and Only-V, an eavesdropper could distinguish most of them by looking at the FPGA’s

power consumption. Regarding the Only-HVV, Only-HV and Only-HHV sequences, distinguishability

cannot be assured, although their average power consumption increases respectively, obeying the trend.

Additionally, the data from the HHV sequence (66% of H symbols) shows a higher number of outliers,

justifying its higher standard deviation observed in Figure 4.9 (b).

4.4.4 Simulating a QKD Transmitter with Lower Qubit Repetition Frequencies

As aforementioned, the average power consumption difference between the emission of an H symbol

and a V symbol cannot manifest itself symbol by symbol at a qubit repetition frequency of 100 MHz, since

the system’s response is greater than the clock period of 10 ns. Nonetheless, it is possible to use the

FPGA emitting at this rate to approximately simulate a smaller qubit repetition frequency. The FPGA

outputs pulses with a 50% duty cycle: the phase modulator pulse has a high period in the first 5 ns upon

the encoding of an H symbol, and in the second 5 ns upon encoding a V-symbol; the laser pulse has a 5

ns high period which is independent of the symbol value. For example, if we send 50000 H symbols at 100

MHz, the total emission time will be 0.5 ms, meaning that both laser and phase modulator pulses will have

a non-zero voltage value during 0.25 ms. Now let us consider a QKD transmitter with a repetition frequency

of 2 kHz, meaning that every 0.5 ms, Alice would send a qubit to Bob. Assuming the working principle

of the FPGA is left unchanged, a smaller clock frequency would still correspond to a 50% duty cycle

for the output pulses. Therefore, at 2 kHz, during the emission of a single H symbol, the output pulses

have a non-zero voltage value during 0.25 ms, exactly as they did for the emission of 50000 H symbols

at a 100 MHz clock rate. Generalizing, having the FPGA working at a qubit repetition frequency fclock,

one can imitate the high period of the output pulses emitted by a lower repetition frequency fdelayed, by

emitting sequential sequences consisting of n = fclock/fdelayed same valued symbols. This is schematized

in Figure 4.10, where the emission of 1 H symbol by an FPGA working at fdelayed is simulated by the

emission of n = fclock/fdelayed H symbols by the FPGA at fclock.

(a) (b)

Figure 4.10: (a) - Emission of n = fclock/fdelayed H-symbols by the FPGA working at fclock; (b) -
Emission of 1 H symbol by an FPGA working at fdelayed

Naturally, the simulation of lower qubit repetition frequencies is an approximation. We assume that the

operation difference which causes the power consumption difference between H symbol and V symbol

emission is still present at a lower clock frequency, in other words, we consider the working principle of

the FPGA is left unchanged. Expectedly, at this lower clock frequency, the system can respond to the

different power consumption requests from the FPGA in time, and the power traces will translate a symbol
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to symbol power consumption difference between H and V emission. In this case, an eavesdropper would

be able to retrieve the key simply by looking at the average power fluctuations in the traces.

In this section, we focused on quantifying the repetition frequencies for which the average power

consumption of the FPGA contains symbol to symbol information about the key. To do so, we started by

simulating a lower clock frequency of 2 kHz. At this frequency, the QKD transmitter sends symbols each

0.5 ms, meaning that, to simulate the emission of 1 H symbol, our FPGA working at 100 MHz must emit

50000 H symbols in a row. To understand whether at 2 kHz the power consumption difference is visible

symbol by symbol, we looked at the power trace corresponding to the alternating emission of H and V by

importing a key to the FPGA which simulates this. The key was encoded in a binary file and transferred to

the FPGA through the control software. The file included the encoding of 450000 symbols, the first 50000

corresponding to H, the second 50000 corresponding to V, and so forth, oscillating between the two for

the total emission of 9 symbols. For acquiring the power trace, we had to guarantee that it corresponded

to and solely to the emission of the 9 symbols, this is, the oscilloscope acquisition started exactly at the

beginning of the emission and ended exactly at the end of the emission. Therefore, before acquiring

the power trace, we restarted the FPGA, ending emission of all output pulses, and left the oscilloscope

in single acquisition mode. The rising edge of the laser pulses was used as a trigger, such that, when

emission starts, the oscilloscope starts acquiring when the rising edge of the first laser pulse surpasses

the 1 V limit. The time scale of the oscilloscope was set at 500 µs/div, and the delay set to −2 ms, thus

allowing to retrieve the rising of the power consumption and the emission of the 9 symbols. An example

of a power trace is shown in Figure 4.11, together with a schematic representation of the time intervals

corresponding to each symbol.

Figure 4.11: Power trace taken during the emission of a 2 KHz symbol key, alternating between H
and V emission

The trace showed a high amount of noise, ubiquitous to power consumption measurements. Namely

we note the peaks affecting the waveform at a frequency around 20 kHz, present before and after t = 0.5

ms, the time instant at which emission begins. Generally, the trace parts corresponding to the emission of

H symbols (blue shaded area) show a higher average power consumption than the ones corresponding

to the emission of V symbols (green shaded area). However the high amount of sampled data per period

(fsamp = 500 MSa/s and T = 0.5 ms), together with the high amount of noise, made it difficult to see this

difference.

Before moving forward with the characterization of the power consumption at lower clock frequencies,
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we wanted to understand where the noise, namely the peaks affecting the waveform, were coming from.

Since they were also present in the trace before the FPGA starts emitting, it was important to understand

whether they translated an FPGA operation unrelated to emission, or they came from the AC power supply.

Therefore, we collected two power traces while the FPGA was not emitting: one using a DC power supply

and the other with the current setup so far, this is, the FPGA connected to the AC power supply of the

building. The FFTs of both traces are displayed in Figure 4.12, (a) corresponding to the DC power supply.

Both spectra show a strong DC component, as expected, and some noise in the kHz range, which is

shown respectively in the amplified axis. Focusing on the right most spectrum, we see a first peak at 21.8

kHz and then an harmonic pattern, with following peaks at 43.6 kHz, 65.4 kHz, 87.2 kHz and so forth. The

21.8 kHz frequency bin translates the peaks affecting the power consumption measurements. Given that

this peak, and its following harmonic pattern, is not present in the left most FFT, we conclude it is being

introduced by the AC power supply. Since this 21.8 kHz noise posed a limit for the low qubit repetition

frequency study, given that it could mitigate possible power consumption differences for a QKD transmitter

emitting at frequency close to 20 kHz, we switched to a DC power supply for the following measurements.

(a) DC Power Supply (b) AC Power Supply

Figure 4.12: FFTs of power traces taken during FPGA inactivity.

Having changed to a DC power supply, we acquired a new power trace for the 2 kHz clock frequency.

To make the power consumption difference more visible, we started by filtering the power trace. Using

MATLAB’s filtering capabilities, we used a infinite impulse response filter with a lowpass bandwidth

of 2 kHz, meaning that frequencies above the qubit repetition frequency we simulated are attenuated.

Afterwards, we applied a running average to the data, where we considered data snippets of a fixed length

and averaged them. For example, considering a snippet length of 1000 samples, the first 1000 samples in

the power trace were averaged, and this averaged value corresponded to the first point in the final power

trace, and so forth. This procedure can be perceived as reducing the sampling frequency of the trace.

The initial power trace was acquired with a sampling frequency of 500 MSa/s. In the previous example, a

data length of 1000 samples means the final trace after the running average will have a sample frequency

of 500 kSa/s.

Figure 4.13 shows the power trace for the 2 kHz repetition frequency after data treatment. The power

consumption between H and V emission was now more evident, appearing as a modulation of a 2 kHz

wave in the trace. We note that the trace was plotted starting at the t = 0.5 ms, this is, at the start of

FPGA emission. Nonetheless, there is a sharp increase around the first 80 µs of the treated power trace,

which corresponds to the rising time of the power consumption upon starting emission. In Figure 4.11 we
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Figure 4.13: Power trace at 2 kHz after filtering and running average treatment

can see that, even though emission started at 0.5 ms, it takes some time for the power consumption to

reach the higher value required by the FPGA, and this in the treated trace in Figure 4.13 corresponds to

the initial rising peak. Additionally, we noted that at ≈ 3.12 ms, the power consumption showed an abrupt

decrease and subsequent destabilization. This is consistent with a power consumption drop caused by

the CPU’s writing operation, which should happen δt = 2.62 ms after the emission start t = 0.5ms. The

power consumption drop was also observed in the untreated trace depicted in Figure 4.11. Additionally

we observed that, even after changing to a DC source and filtering, there is still noise in the power trace,

else the treated trace would just correspond to a square wave with period 1 ms.

To understand whether the power consumption difference is always distinguishable at the 2 kHz qubit

repetition frequency, we acquired more power traces corresponding to an HV sequence and evaluated

whether all encoded symbols could be guessed correctly from the traces. To do so, we formulated a

way to discern which part of the treated traces encoded a V and which encoded an H. A first approach

would be to calculate the average power consumption of each 0.5 ms interval; if an average is smaller

that the previous one, it corresponds to a V symbol and vice-versa. However, since the sample size

for the running average was 1000 samples, which was smaller than the number of samples per 0.5 ms

period, there were averages which contain H symbol and V symbol trace parts. Additionally, the power

response in the H-V switching is not instantaneous, in order words, the average power consumption does

not increase or decrease abruptly. Therefore, a better approach was to consider the power consumption

value at the beginning and at the end of each 0.5 ms period. If the value decreased, this would mean the

power consumption decreased, and thus the period corresponded to the emission of a V symbol, and the

contrary for an H. Using the previously discussed acquisition settings and data treatment, 20 traces were

obtained for the 2 kHz clock frequency. Using the previously debated prediction approach, each trace

was analysed and used to predict 8 of the 9 symbols it encoded, where the first symbol is discarded due

to the rising time effect on the trace. With this approach we obtain an 100% prediction accuracy, where

we define prediction accuracy as

Prediction Accuracy(%) =
Nº of Correctly Guessed Symbols

Total Nº of Symbols in the Key × 100. (4.16)

The prediction accuracy with a random guessing method, this is, for each symbol in an infinite sized key,

one randomly predicts between H and V, would be 50%. Therefore, a successful prediction accuracy lies
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above the random guessing probability, where

Random Guessing = 50% (4.17)

The 100% prediction accuracies obtained at 2 kHz mean that, at this repetition frequency, the power

consumption of anH and a V symbol is completely distinguishable. We then wished to see until which qubit

repetition frequency this distinguishability was present. Supposedly, we are bounded by the bandwidth

BW of our power system, meaning, the maximum qubit repetition frequency for which distinguishability

should present corresponds approximately to

BW ≈ 0.35

trise
= (12.22± 0.95) kHz. (4.18)

To test our hypothesis, we applied the procedure considered for the 2 kHz frequency to all the frequencies

between 2 kHz and 46 kHz. For each repetition frequency, we uploaded a key to the SoC, working at

a qubit repetition frequency of 100 MHz, which simulated the emission at the lower frequency of an H

followed by a V and so forth. The oscilloscope settings were the same as the ones for the 2 kHz acquisition,

meaning that each trace translated information regarding the first 4.5 ms of emission. The number of key

symbols encoded in these 4.5 ms depends of the repetition frequency we wish to simulate. For the 2 kHz

case, the trace collected information regarding 4.5 · 10−3 · 2 · 103 = 9 symbols, but, for example, for the 7

kHz case we collect 7 · 10−3 · 2 · 103 = 31.5 symbols. In this case, we neglect the information regarding the

last 0.5 symbol, and calculate the prediction accuracy considering the total number of symbols in the key

as 31. The same approach was followed for all the repetition frequencies which lead to power traces with

a non integer number of symbols. The traces were treated and analysed using MATLAB. The code was

developed such that each trace is filtered with a low pass filter, with bandwidth set to the qubit repetition

frequency the trace corresponds to. For example, the power trace corresponding to a 23 kHz repetition

rate is filtered for all frequencies above 23 kHz. The running average was also performed to all traces, and,

to assure coherence between all the frequencies, the number of samples Nsamp per average was set to,

Nsamp = 0.1×
fsamp
fdelayed

, (4.19)

Figure 4.14 shows two examples of traces acquired at different repetition rates, after the filtering and the

running average.

In Figure 4.14, the power consumption drop from CPU’s writing operation is observed on both power

traces. Before, when only dealing with traces taken at a 2 kHz repetition frequency, this effect was

negligible, since it happened in a time interval smaller than the period T = 0.5ms, and it always happened

during the emission of a V symbol, as opposed to in between symbol emission. However, for different

repetition frequencies, this power consumption drop and subsequent destabilization affects the traces

in different ways. As the emission period decreases with an increasing repetition frequency, the effect

encompasses more symbols, affecting the prediction accuracy in unpredictable ways. Therefore, to

calculate the prediction accuracy, the symbols corresponding to the time interval associated with the CPU
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Figure 4.14: Power traces acquired at 10 kHz and 31 kHz repetition frequency, after filtering and
running average treatment

writing operation were not considered. This means, for example, that the 6th symbol in the 2 kHz voltage

traces was not taken into account when calculating the prediction accuracy, whilst for the 10 kHz traces,

symbols 27 to 29 were discarded.

Figure 4.15 depicts a box chart with the prediction accuracy distribution for keys taken at different

repetition frequencies. For each frequency, 10 power traces were analysed, and for each trace, a prediction

accuracy calculated. For qubit repetition frequencies until 11 kHz we obtained a prediction accuracy of

100% for all the power traces. From the 12 kHz repetition frequency forward, we saw a slow decrease in

the prediction accuracy, which is in agreement with the expected behaviour for frequencies above the

calculated bandwidth of the power system, where there is a cutoff in the distinguishability between H and

V emission.
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Figure 4.15: Prediction accuracy distribution for different power traces at different repetition
frequencies. The calculated system’s bandwidth is displayed together with its 95% confidence
interval

From this result we can conclude that, for QKD setups working at low qubit repetition frequencies, if

there is an electronic driver, e.g FPGA, with a power consumption which depends on the symbol value of

each qubit, then power side-channel can reach high prediction accuracies with a simple symbol-to-symbol

54



analysis of the power consumption values.

4.5 Frequency Spectrum Analysis of the Power Consumption

The main objective of this section is to characterize the frequency spectrum of the power traces,

identify possible information leakages and explore them for hacking the key. Given that we are focusing on

the frequency domain, the bandwidth of our system is of crucial importance. Therefore, the power traces

were acquired with the two oscilloscope probes with a 350 MHz bandwidth, using the setup schematized

in Figure 4.2 (b) . Nonetheless, data taken with the same setup, but with two Tektronix P2220 voltage

probes with a bandwidth of 200 MHz and 1 MΩ impedance will also be considered. Although having a

lower bandwidth, these probes can be impedance matched to the oscilloscope, which can only switch

between an input impedance of 50 Ω or 1 MΩ. This, together with the fact that these probes do not have an

in-built signal attenuation, unlike the P2220 350 MHz probes, reduces the noise associated with the data

acquisition. Data taken with these two probes will be analysed and compared. Unless stated otherwise,

the measurements were taken with the 350 MHz probes.

4.5.1 Fixed Sequences

We started by analysing the frequency spectrum of power traces during the emission of fixed sequences.

To do so, we set the FPGA to emit H symbols indefinitely and successively triggered the oscilloscope

using the rising edge of the laser pulses, in order to acquire power traces. Having set the time scale

of the oscilloscope to 200 µs/div, each power trace corresponded to the emission of 200000 H symbols.

After the acquisition of 50 traces for the Only-H emission, the process was repeated for the emission

of V symbols. We then calculated the FFT of each power trace, averaging all that corresponded to

the emission of 200000 H symbols, and all that correspond to the emission of 200000 V symbols. The

average spectrum for each emission is shown in Figure 4.16 between the frequencies of 50 MHz and 900

MHz. Each frequency bin displays the average magnitude, together with its standard deviation. For a

Figure 4.16: Average spectrum for the emission of 200000 H symbols (Only-H) and the emission
of 200000 V symbols (Only-V) in the [50, 900] MHz frequency range

given frequency bin, if the average magnitude differs depending on the sequence, and the respective
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standard deviations do not overlap, then the magnitudes at that frequency are distinguishable. Therefore

we note that the magnitudes for all the frequencies in this range which are integer multiples of 100 MHz

show complete distinguishability between an Only-H and an Only-V sequence. Consequently, in these

frequencies, we observe an information leakage in the magnitude of the frequency bins. When averaging

all the FFTs corresponding to emissions of the same sequence, we smooth out the noise in the spectrum.

To understand how this noise affected the distinguishability between spectra, we computed the correlation

coefficients, at zero delay, between the different pairs of FFTs. The higher the correlation value is, the

more similar the two FFTs are two one another. To analyse the results, we organized them in matrix form

h1, h1 · · · h1, h50 h1, v1 · · · h1, v50
... . . . ...

... . . . ...

h50, h1 · · · h50, h50 h50, v1 · · · h50, v50

v1, h1 · · · v1, h50 v1, v1 · · · v1, v50
... . . . ...

... . . . ...

v50, h1 · · · v50, h50 v50, v1 · · · v50, v50


, (4.20)

where xi represents the FFT of the ith power trace taken during an Only-X emission, x ∈ {H,V}, and

xi, xj the correlation value between xi and xj .

Figure 4.17: Correlation Matrix for the FFTs of Only-H and Only-V sequences in the [50, 900] MHz
range

Figure 4.17 shows the FFT correlation matrix, only considering the [50, 900] MHz frequency range.

Here we see that the top-left and bottom-right 50 × 50 sub matrices, which correspond to correlations

between FFTs of the same sequence, showcase higher values. Therefore, it is possible to distinguish

between the spectrum of Only-H and Only-V sequences without filtering the noise.

Until here we focused on the [50, 900] MHz frequency range, where we attributed the main distin-

guishability between spectra to the amplitude of the frequency bins. Nonetheless, the same analysis can

be expanded to the whole range. In Figure 4.18 (a), we present the whole spectrum of the average FFT of

an Only-H and an Only-V emission. As an example, we focus on the frequencies around the 4 MHz and

the 1 MHz frequency bins. Here, we saw that the maximum amplitudes achieved are similar, however, the
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frequencies which reach these amplitudes are slightly shifted. Regarding the correlation matrix in Figure

4.18 (b) we observe that, when considering the full spectrum, the similarity between same sequence FFTs

increases, this is, the top-left and bottom-right 50× 50 sub matrices show higher coefficients. However,

the lowest values achieved for the full spectrum are around 0.998, whilst for the partial spectrum they

were around 0.955, meaning that the similarity between Only-H and Only-V sequences increased as well.

Therefore, we can conclude that the main information leakage lies in the [50, 900] MHz spectral range,

and as we increase the range, the information content added does not surpass the lower frequency noise

which is also added to the FFTs.

(a) (b)

Figure 4.18: Full spectrum analysis. (a) - Average spectrum of Only-H and Only-V sequences in
the full frequency range. Focus on the 4 MHz and 1 MHz frequency bins; (b) - Correlation Matrix
for the full spectrum FFTs of Only-H and Only-V sequences

So far we had analysed FFTs of power consumption signals during the emission of 200000 symbols.

We can define the FFT Resolution, also known as the spectral resolution, as the interval between two

consecutive frequency bins. The higher the interval is, the less amount of frequency bins there will be

in the FFT, and the less information one will have about the spectrum. Therefore, we associate high

intervals to low FFT Resolutions. The FFT Resolution is related to the number of time domain samples,

also known as the Record Length,

FFT Resolution =
fsample

Record Length . (4.21)

Therefore, as we increase the Record Length, the FFT Resolution also increases. Given that fsample = 2.5

GSa/s and the qubit repetition frequency is 100 MHz, we have 25 samples per symbol emission, meaning

that the FFT Resolution of the previous FFTs of 200000 symbols is

FFT Resolution =
2.5× 109

25 ∗ 200000
= 500Hz. (4.22)

Therefore, we had a frequency bin every 500 Hz. However, in a realistic symbol-to-symbol hacking

scenario, we will want to consider the FFTs of smaller sized sequences. The frequency spectrum of the

emission of 200000 symbols can only transmit information if all the symbols are either the same, as in the
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previous case, or differ in a known way, for example the emission of an Only-HV sequence. In a realistic

QKD scenario, the keys are emitted randomly, thus the frequency spectrum of the emission of 200000

symbols will not hold valuable information. Nonetheless, as we decrease the size of the sequence, the

spectral resolution will also decrease. For example, the FFT of the emission of only one symbol will have

a resolution of 100 MHz. The low spectral resolution of small sized sequences poses a big impediment for

discerning possible distinguishability in spectra corresponding to different sequences. As the spectral

resolution decreases, the information content decreases as well, and the noise in the signal becomes a

stronger impediment for possible information leakages.

To understand how much the FFT resolution affects distinguishability, we must start with two spectra

which, with high spectral resolution, are a priori distinguishable. Then we reduce the resolution and see

whether it is possible to distinguish between the two spectra. Therefore, we used the previously obtained

data retrieved for Only-H and Only-V sequences, given that we know their spectra is distinguishable

when considering the emission of 200000 symbols. The 50 power traces of Only-H sequences were

thus divided into snippets of n symbols. For example, if n = 2, the power traces were divided into

snippets of 50 samples, each corresponding to the emission of 2 symbols, in the end producing 5 · 106

snippets corresponding to the emission of HH. The same process was followed for the 50 power traces of

Only-V sequences. Then, the FFT of each snippet was individually calculated and finally all the FFTs

corresponding to the emissions of the n same symbols were averaged. In this way, we were able to obtain

the average frequency spectrum of n symbols during the emission of a fixed sequence. Figure 4.19 shows

in (a) and (b) the average spectra for n = 1 and n = 2 respectively.

(a) n = 1 (b) n = 2

Figure 4.19: Spectrum of n sized sequences extracted from fixed sequence emission.

In both cases we are able to discern distinguishability between different symbol emissions, however it

is now much smaller than the one observed in Figure 4.16, where the FFT resolution was much higher.

Nonetheless, the fact that this distinguishability is present for such low spectral resolutions allows us

to extend the study to the analysis of small sized sequences, which we will do in the following section.

Nonetheless, we note that the average spectra displayed in Figure 4.19 corresponds to symbol emissions

extracted from fixed sequences. Therefore, we cannot affirm, for example, that the average spectrum

for an H emission in a realistic QKD scenario is the one displayed in Figure 4.19 (a). The fact that the n

symbol emissions were taken out of a fixed sequence emission makes it so that they are not independent
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from each other, and their average spectra can show an increased distinguishability due to memory effects.

To eliminate these constraints, and study a realistic QKD scenario, the next section will focus on the the

emission of random keys.

4.5.2 Sequences in Random Key Emission

As aforementioned, the emission of fixed sequences is not a realistic QKD scenario. From the analysis

in Section 4.5.1 we concluded that the spectra of different fixed sequence emissions is different. Now we

wish to extend this study to the spectra of sequences during random key emission. If there is a difference

between the spectra of different sequences emitted randomly, then this can be exploited by, for example,

a correlation-based hack to extract information about the key at the qubit repetition frequency of 100 MHz.

To emit a random key, we encoded the key string in a binary file and transferred it to the FPGA,

following the procedure detailed in Section 4.3. The key length was set to 200000 symbols, meaning

that the file must consist of 50000 bytes. We note that the random key emission mentioned is, in reality,

pseudo-random, given that the key string was created with Python’s pseudo-random number generator.

In a real QKD scenario, the string must be generated with a QRNG. Nonetheless, pseudo-randomness

already provides the framework necessary for validating a possible hacking strategy, thus, from this point

forward, we will neglect its difference from true-randomness.

To study the spectrum of different sequences during random emission, we first needed to acquire a

data set consisting of randomly emitted symbols and the power consumption values during their emission.

For this, we collected 5 power traces, each taken during the emission of an independent random key

consisting of 200000 symbols. In order to map the symbols in the key to the data in the power traces,

we had to guarantee that for each emitted key, the oscilloscope started acquiring at the beginning of

the FPGA’s emission and collected data during the time interval necessary for the FPGA to emit 200000

symbols. Therefore, we left the Oscilloscope in single acquisition mode and use the laser pulse exiting

the FPGA to trigger the acquisition. Before emission, the laser pulse had an average voltage of 0 V. When

the emission started, the pulse rose, triggering the power consumption acquisition. To guarantee that the

acquisition covers the 2 ms necessary for the key emission, we set the time scale of the Oscilloscope to

200 µs/div and the time delay to −1 ms. By acquiring the power traces this way, and using the maximum

sampling frequency allowed by the oscilloscope in a 3 channel configuration, 2.5 GSa/s, we were able to

associate the first 25 samples of the trace to the first symbol in the key and so forth.

After data acquisition, we had a data set consisting of 1 · 106 randomly emitted symbols and their

corresponding power consumption data. To study the spectrum of different sequences, we started again

by analysing their average spectra. Before, each one of the five power traces were normalized, this is, for

all the samples in a given trace, we subtracted the average voltage and divided by the standard deviation

of the trace. With the normalized traces, we then studied the average FFTs of different sequences, for

which we considered the following methodology:

1. Consider sequences SiL, where L is the number of symbols in the sequence and i the number of

possible sequences of size L, i ∈ {1, . . . , 2L}
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2. Divide the symbols in the data set into the 2L possible sequences. Each sequence SiL occurs in the

data set an average of
1 · 106

L · 2L
(4.23)

times, meaning the higher the length, the less times the sequence appears in the data set.

3. Divide the power consumption data accordingly

4. Calculate the FFTs of all the occurrences of each sequence and average them according to the

symbols they correspond to. After this step one has 2L average FFTs, F iL, one per sequence SiL.

5. Compute the correlation matrix of the FFT averages


F 1
L, F

1
L · · · F 1

L, F
2L

L

... . . . ...

F 2L

L , F 1
L · · · F 2L

L , F 2L

L

 (4.24)

To further understand this, let us consider the example of L = 2, this is, sequences comprising of 2

symbols. In this case, there are 4 possible sequences, Si2 = {HH,HV,VH,VV}, each occurring on average

1.25 · 105 times in the data set. Therefore, the average FFT of an HH sequence will correspond to an

average over approximately 1.25 · 105 FFTs, and the same for the other three sequences. The correlation

matrix for L = 2 will have the form
vv, vv vv, hv vv, vh vv, hh

hv, vv hv, hv hv, vh hv, hh

vh, vv vh, hv vh, vh vh, hh

hh, vv hh, hv hh, vh hh, hh

 , (4.25)

where, for example, vv = F 1
2 represents the average FFT of a VV sequence.

By averaging all the FFTs corresponding to the emission of the same sequence, two outcomes are

achieved. Firstly, the signal noise will be smoothed out, increasing distinguishability. Secondly, we

eliminate all memory effects from the spectrum, given that all occurrences of the sequence were preceded

and succeeded by other completely random sequences. For example, retrieving the L = 2 case, of the

1.25 · 105 occurrences of an HH sequence, approximately one quarter of them were preceded by a VV

sequence, another quarter by an VH sequence, and so forth. By averaging all the occurrences, we nullify

the impact these previous sequences might had on the spectrum.

Figure 4.20 shows the correlation matrix for L = 2. The main diagonal in the matrix corresponds to the

auto correlation coefficients, which are one. However, in addition to the diagonal, we can see that there

are other correlation values extremely close to one. To address these values, we define a k-diagonal

as the set of entries Ai,j for which j = i+ k. Therefore, we see that the higher correlation values lie in

−2-diagonal and the 2-diagonal. Importantly, these diagonals represent correlations between sequences

which share the first symbol and differ in the second symbol, telling us that the average FFT of a two

symbol sequence depends on the value of the first symbol.
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Figure 4.20: Correlation Matrix for the average FFTs of two symbol sequences, considering the
full frequency range and the magnitude at each frequency.

Different components of the frequency spectrum can be studied with this methodology. Meaning that,

after calculating the FFTs of all sequences, one can focus on the complex value at each frequency bin, its

magnitude or its phase. If we focus, for example, on the magnitude at each frequency, the average FFT of

a sequence will, in reality, correspond to the average magnitude distribution for the different frequencies

in the FFT. Consequently, when computing the correlation matrix, we are studying the similarity between

the different frequency contributions to signals corresponding to different sequences. This is exactly what

was done to obtain the correlation matrix in Figure 4.20. In Figure 4.21 we can see the average spectra

which led to this matrix. By visual inspection of the whole spectrum, no distinguishability can be found

between the different sequences. Nonetheless, focusing on the first 8 integer multiple frequencies of 100

MHz, we can see small differences between the magnitudes of different sequences. These differences

are very small, namely in the range of 1 to 2 mV, which justifies the very high correlation values between

sequences which do not share the first symbol in the matrix of Figure 4.20. This being said, it is not the

absolute value of these correlations that we can use to extract information, but their relative one. In other

words, it is the fact that the amplitudes of HH and HV sequences are more similar to each another then to

VH and VV, whilst the ladder are more similar to each other, that can be used to extract information.

Figure 4.21: Average magnitudes for the full FFT spectrum of two symbol sequences emitted
randomly.
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Until now we have been considering the magnitude at each frequency bin, but, as aforementioned, we

can also consider the phase. Figure 4.22 (a) shows the average phases of the frequency spectrum of

2-symbol sequences.

(a) Average phases of the FFT spectra (b) Correlation Matrix for the average FFT phases

Figure 4.22: Phase analysis of the FFTs of 2-symbol sequences emitted randomly

Here we see an increased distinguishability between the sequences starting with an H symbol and the

ones starting with a V. This increase is proved by the corresponding correlation matrix, displayed in Figure

4.22 (b), where the lowest correlation value is 0.9951, between HV and VV, whilst for the correlation matrix

between the FFT magnitudes, in Figure 4.20, the lowest value was achieved between the HV and VH

sequences, and corresponded to 0.9999. Nonetheless, it is important to note that the standard deviations

are high, meaning that, phases in the non averaged FFTs corresponding to the same sequence are not

stable. This is mainly due to the noise in the signals, combined with the low frequency resolution in FFTs

of sequences with 2 symbols. Even so, given that for the average magnitudes, the standard deviations

were also high, we concluded that there is more information leakage in the phases of the frequencies

composing the 2-symbol spectra than in the magnitudes. Therefore, from this point forward, we will focus

on former.

In summary, we have reached two important conclusions from the study of 2 symbol sequences, L = 2.

Firstly, we concluded that the frequency spectrum of the power consumption during the emission of 2

symbols, this is, during the time interval of 20 ns, depends on the first emitted symbol. In addition, we also

concluded that this dependence is stronger for the phase of each frequency, in respect of the magnitude.

With these conclusions in mind, we then moved to the study of larger sized sequences, namely L = 4,

L = 6 and L = 8.

Figure 4.23 (a) displays the correlation matrix for L = 4, having considered the phases at each

frequency of the FFTs. In this case, there are 24 = 16 possible sequences of 4 symbols, meaning that

each average FFT corresponds to an average over approximately 15625 FFTs. The correlation matrix is a

16× 16 matrix, where again the main diagonal corresponds to the auto-correlation coefficient. Additionally,

we distinguish some diagonals with correlation values close to 1. Among these, the−12,−4, 4, 12-diagonals

correspond to the correlation coefficients between sequences which share the first two symbols. On the

other hand, the −8, 8-diagonals represent the correlation values between sequences which only differ
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in the last symbol. These higher correlation values follow the trend seen for L = 2 sequences, this is,

(a) (b)

Figure 4.23: Correlation matrix for the FFTs of 4-symbol sequences without (a) and with (b) an
applied threshold.

sequences which share the first symbols have higher correlated FFTs. To better understand possible

differences between these high correlations, we apply a threshold to the matrix, retrieving the matrix (b)

in Figure 4.23. The threshold is applied in the following way: all coefficients in the initial matrix which

fall below 0.99 are set to 0, all between 0.99 and 0.9995 are set to their initial value minus 0.4, and all

between 0.9995 and 1 are set to their initial value minus 0.2. This allows us to highlight differences between

coefficients close to 1, which wasn’t possible with the range of the initial matrix. Again we find a pattern in

the matrix after applying a threshold, this is, the coefficients in the −12,−4, 4, 12-diagonals are lower than

in the −8, 8-diagonals. In other words, four symbol sequences which share the first three symbols are

more correlated than the ones which only share the first two symbols. This can be seen as an extension

of the L = 2 case, whereas now, the correlation range is broader. The lowest correlation value achieved

for L = 4 is 0.8592, between HVVV and VHHH, which is smaller than the lowest value achieved in the

L = 2 case, 0.9951. Therefore, the distinguishability between sequences differing in the first symbols is

increased in the L = 4 case. This can also be see in Figure 4.24, where the average phases of the FFT

spectrum for different 4 symbol sequences are shown. By comparing the spectra in this figure with the

ones from the L = 2 case, in Figure 4.22, we can visually see an increased distinguishability for the L = 4

case.

Figure 4.24: Average phases of the FFT spectrum of different 4 symbols sequences
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We identify two possible reasons for this increase, the first one being the internal operation of the FPGA,

which we treat as a pseudo-black box, and do not propose to explain. The second reason is that as the

sequence size increases, so does the resolution of the FFTs, thus increasing the information content of

each frequency bin.

(a) (b)

Figure 4.25: Correlation matrix for the FFTs of 6-symbol sequences without (a) and with (b) an
applied threshold.

Lastly, for completeness, we apply the same analysis for the L = 6 and the L = 8 case. Figure

4.25 shows the correlation matrix for the L = 6 case, where again we find the same correlation trend

regarding the first 4 and 5 symbols in the sequence, highlighted by the application of a threshold. In this

case, the threshold was applied such that coefficients below 0.972 were set to 0, ones between 0.972 and

0.99635 set to their initial value minus 0.4, and finally the ones between 0.99635 and 1 set to their initial

value minus 0.2. These smaller threshold values, in comparison to the L = 4 case, showcase the higher

distinguishability between sequences in the L = 6 case. This is also seen in the coefficient range of the

initial correlation matrix, where the lowest achieved coefficient is now 0.7224, between the sequences

VVHHHV and HHVVVH.

(a) (b)

Figure 4.26: Correlation matrix for the FFTs of 8-symbol sequences without (a) and with (b) an
applied threshold.

Figure 4.26 shows the correlation matrix for the L = 8 case before and after applying a threshold. Again,

in the initial matrix, we see 6 diagonals with very high correlation values, which are the −192,−64, 64, 192-

64



diagonals and the −128, 128-diagonals, corresponding to coefficients between sequences which share

the first 6 and 7 symbols respectively. However now, the coefficients in the −128, 128-diagonals are not,

in general, higher than the ones in the −192,−64, 64, 192-diagonals. In fact, when applying a threshold

to the initial matrix, there is no value which allows us to distinguish between these diagonals. This

can be seen by analysing the matrix after the threshold, where the values chosen were the following:

coefficients below 0.9 were set to 0, ones between 0.9 and 0.973 set to their initial value minus 0.4, and ones

between 0.973 and 1 set to their initial value minus 0.2. Here, we see that the −128, 128-diagonals display

similar correlation coefficients to the ones in the −192,−64, 64, 192-diagonals. Nonetheless, we see other

highlighted diagonals with smaller coefficients than the former, namely the 32, 96, 160, 224-diagonals, which

correspond to sequences sharing the first 5 symbols. In other words, for the L = 8 case, the sequences

which share the first 5 symbols are highly correlated, but less than the ones which share the first 6 and 7

symbols. Finally, we note that the distinguishability between sequences which do not share initial symbols

decreased compared to the previous considered cases. This can be seen in the coefficient range of the

initial matrix, where the lowest achieved value is now 0.4821, between HHVHVVVH and VVHVHHHH.

In conclusion, the power consumption of the FPGA during the emission of random symbols can leak

information about the key. This information leakage is present in the frequency spectrum of the power

consumption, and can be explored for hacking the key, as we will see in the next section.

4.5.3 Hacking the key at 100 MHz repetition frequency

In the previous section we have seen that the similarity between the average FFTs of different sized

sequences increases with the amount of shared initial symbols. Nonetheless, the correlation values

between sequences which do not share initial symbols is, in general, high. Given so, the hacking strategy

much rely on extracting information in the relative correlation values, not the absolute ones. Therefore

we propose a template attack based on the ’FFT Fingerprints’ of the system. Here, we assume that the

eavesdropper has initial access and control of the QKD transmitter, or of one equal to it. During this

initial stage, the eavesdropper uses this control to store power consumption data and the keys the data

corresponds to. These keys are not to be used for any type of data encryption, and are just to provide the

eavesdropper with information about the system. With the power consumption data, the eavesdropper

computes the FFT averages of L sized sequences, i.e., for L = 4, Eve computes the average FFT during

the emission of HH, the average FFT during the emission of VV, and so forth. These four FFT averages

are the ’FFT Fingerprints’ for L = 4. For an arbitrary L, we define FFT Fingerprint as the average FFT of

the power consumption during the emission of a certain sequence with L number of symbols. Note that,

for our hack, we considered the average phase at each frequency bin, as opposed to the magnitude.

In the second phase of the hack, Eve loses control over the QKD transmitter, but keeps monitoring the

power consumption of the FPGA. It is in this phase that Alice and Bob use the QKD system to share secret

keys, not knowing that Eve has had previous access and is still monitoring the power consumption of the

FPGA. When the key sharing starts, Eve uses the power consumption data and accordingly computes

the FFTs of snippets of data corresponding to the emission of L symbols. To guess these symbols, she
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uses the FFT Fingerprints, and calculates which is more likely to correspond to the FFT of the symbols

she doesn’t know. She then uses this probability to guess part of the symbols, and performs this over the

power consumption data taken during the emission of the key she wants to guess.

In the proposed hacking strategy there are two parameters which Eve must choose: L, the length

of the sequences for which the FFT Fingerprints are calculated, and δN , the number of symbols she

guesses after finding the best match for an FFT, such that 0 < N ≤ L. To better understand this, let us

consider the example of a hacking strategy with L = 4 and δN = 1, schematized in Figure 4.27.

Figure 4.27: Schematics of the first three steps of hacking strategy with L = 4 and δN = 1.

Here, Eve uses the data she collected in the first part of the attack to compute the FFT Fingerprints of

sequences with 4 symbols. Then, in the second phase, she retrieves the power consumption trace of the

key she wants to guess. Knowing the sampling frequency of her data, which in this case we consider

2.5 GSa/s, and the qubit repetition frequency of the FPGA, which in this case is 100 MHz, she starts by

analysing the first 100 samples, knowing they correspond to the first 4 emitted symbols. She computes

the FFT of this data snippet, and then calculates the correlation coefficients of this FFT with the 16 FFT

Fingerprints she has at her disposal, each corresponding to one of the 16 possible sequences with 4

symbols. After this, she will be left with 16 correlation coefficients, and she uses them to find which

FFT Fingerprint corresponds to the maximum correlation. Finally, knowing which sequence this FFT

Fingerprint corresponds to, given that δN = 1, she uses the value of its first symbol to guess the first

symbol in the key. Then, she collects another snippet of 100 samples, but this time considering the second

to fifth symbol emission. Repeating the same procedure, she guesses the second symbol in the key.

In this case, by repeatedly applying this procedure, she will be able to guess all the symbols in the key

except for the last three.

In general, for an arbitrary L and δN = 1, Eve is not able to guess the last L− 1 symbols in the key.

However, this effect is negligible at the qubit repetition frequency of 100 MHz when using oscilloscopes

with a record length in the order of a milion samples. A power trace with 1 · 106 samples, at fsamp = 2.5

GSa/s, encodes 40000 symbols. Therefore, for any L value which falls below 100, the non-guessed

symbols at the end would compose less than 0.25% of the key encoded in the power trace, thus being

negligible.

To prove the feasibility of this hacking strategy, we hacked 15 independent random keys. For the first
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phase of the hacking strategy, we used a previously obtained set of 1 · 106 random symbol emissions and

their corresponding power consumption data, which acquisition was detailed in Section 4.5.2. Following

the methodology detailed in Section 4.5.2, we used the data set to calculate the FFT Fingerprints of L

sized sequences. For the acquisition of the power consumption data during the emission of each one of

the 15 random keys, we used again the same acquisition process detailed in Section 4.5.2. Each power

trace, corresponding to the emission of one key encoding 200000 symbols, was stored by the computer,

together with the encoded key, which was used to quantify the performance of the hack.

Two hacking trials were performed, one with a pair of oscilloscope probes with a bandwidth of 350

MHz, and another with a pair with 200 MHz bandwidth. For each trial, a different set of 15 independent

random keys was considered. The FFT Fingerprints were calculated using a data set acquired with the

according probes, meaning that, for example, in the 200 MHz acquisitions, the FFT Fingerprints were

calculated considering a previous data set of 1 · 106 random symbols, whose power consumption was

acquired also with 200 MHz probes. The two hacking trials were performed with a 1 month time interval

between them and the performance of both will be shown. In general, as explained in Section 4.5, power

consumption data acquired with the 200 MHz probes is less prone to noise than the one acquired with the

350 MHz ones.

To quantify the hacking performance we calculate the prediction accuracy, defined in Equation 4.16,

for each of the 15 keys in each hacking trial. Given that each key consists of 200000 symbols, each symbol

assuming a value between H or V, we consider the hacking of a key successful [16] if it exceeds random

guessing, as defined in Equation 4.17, by 3 standard deviations of the binomial distribution, this is,

Prediction Accuracy(%) >
(
0.5 + 3

√
200000× 0.5× 0.5

200000

)
× 100 = 50.34%. (4.26)

Figure 4.28: Prediction Accuracy for a L = 8 and δN = 1 hacking strategy

With a hacking strategy with L = 8 and δN = 1, we were able to achieve a maximum prediction

accuracy of 73.35%, which lies above the success probability by a large amount. The prediction accuracy

achieved for each one of the 15 power traces in the two hacking trials is shown in Figure 4.28. The

performance of the hacking trial with the 350 MHz probes surpasses the one with the 200 MHz ones.
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This tells us that the bandwidth of the acquisition system is more important to the hacking performance

then the amount of noise associated with the measurements. Although this is true for the L = 8 and

δN = 1 case, it is not necessarily true for other parameters. As L decreases, the resolution of the FFTs

decreases as well, making noise a crucial impediment for the prediction of the key. To understand whether

the experimental data sustain this claim, and also to understand how the L and δN parameters affect

the hacking performance, we repeated the trials for δN = 1 and smaller values of L. In Figure 4.29 we

can see the Prediction Accuracy results for L = 6, in (a), and L = 4, in (b). In both cases, the prediction

(a) (b)

Figure 4.29: Prediction Accuracy for a hacking strategy with L = 6 and δN = 1 (a) and with L = 8
and δN = 1 (b).

accuracy decreased for all the power traces in comparison with the L = 8 case. For L = 6, the trial with

the 350 MHz probes still performed generally better than the one with the 200 MHz ones. However, this

is not true for the L = 4 case, where even though some power traces show higher prediction accuracy

values in the 350 MHz trial, the values for the 200 MHz trial are higher on average. Generally, the L = 4

hacking strategy performed better than the L = 6 one, which can tell us that the increase in the FFTs

resolution in this case does not translate in more information leakage. The spectral resolution for L = 6

is approximately 16.67 MHz, meaning that the FFTs computed in this case do not have frequency bins

located at the integer multiple frequencies of the 100 MHz frequency, which, as we have seen before, are

one of the main sources of information leakage. For the L = 8 and L = 4 case, the spectral resolution

is 12.5 MHz and 25 MHz respectively, meaning that the FFTs in both cases have frequency bins in the

integer multiple frequencies of 100 MHz. Finally, a strategy with L = 2 and δN = 1 was also applied, and

the results are shown in Figure 4.30. In this case we see a strong decrease in the prediction accuracy.

Nonetheless, all hacking attempts in both trials performed above the success probability, meaning that

even with sequences with 2 symbols, and thus FFTs with 50 MHz of spectral resolution, it is still possible

to extract information about the key. As seen in Figure 4.30, the hacking trial with the 200 MHz probes

performs better for all the attempts, sustaining the initial claim that as the spectral resolution decreases,

noise becomes a larger impediment for guessing the key and the bandwidth of the system a less important

requisite.

Until now we have studied the performance of the L parameter, having kept δN constant and equal to

one. To understand the impact of the former, we hacked the 15 keys keeping L constant and changing
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Figure 4.30: Prediction Accuracy for a L = 2 and δN = 1 hacking strategy

δN . The results for L = 2 and L = 4 are shown in Figure 4.31, in (a) and (b) respectively, where for

simplicity, only the trial with the 350 MHz probes was considered. In both we see a decrease in the

hacking performance as δN increases. This behaviour follows the conclusions from the correlation study

in Section 4.5.2, where in general, sequences showed higher correlations with other sequences which

shared the most amount of initial symbols. This, in our hacking strategy, means that after calculating the

FFT of a given snippet and finding the FFT Fingerprint with the higher correlation coefficient, we have a

high degree of certainty on the first symbol in the snippet. This certainty decreases for the second symbol,

and so forth for L > 2. Therefore we see that the hacking strategy with lowest performance is the one

that combines the lowest FFT resolution with the highest δN value allowed, this is, L = 2 and δN = 2.

Nonetheless, even in this case, all hacking attempts were successful.

(a) (b)

Figure 4.31: Prediction Accuracies for hacking strategies with different δN and constant L = 2 in
(a) and L = 4 in (b).

Finally, it is worth mentioning why higher values of L were not considered, since we have seen that,

in general, increasing the sequence length by powers of 2 increases the performance of the hack. As

L increases, the number of times each sequence occurs in the initial data set decreases, as seen in

Equation 4.23. The occurrences of a given sequence in the initial data set are used for calculating its

FFT Fingerprint, thus, if there is not a representative amount of them, their average will not produce a
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valid fingerprint. For example, if L = 16, which would correspond to increasing L = 8 by 2, there are

approximately 0.95 occurrences of each sequence in our initial data set, according to Equation 4.23. In

fact, on average, there will be sequences which do not occur at all, thus being impossible to calculate

their FFT Fingerprint. Nonetheless, even considering L values which are not powers of 2 but are higher

than 8, for example L = 10, the number of occurrences of each sequence in the initial data set are not

enough for a valid FFT Fingerprints calculation. A possible solution for this problem is to increase the size

of the initial data set, which we leave for possible next steps.

In conclusion, we were able to reach a Prediction Accuracy of 73.35% with a template based hack,

considering correlations between the phases of frequencies in the FFTs of sequences with 8 symbols.

This result shows a high level of information leakage in the spectral content of the power consumption

during the emission of keys at a 100 MHz qubit repetition frequency. Since this is the first time a power

consumption side-channel attack has been performed to a QKD framework, the achieved prediction

accuracy represents an important milestone in this novel field.
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Chapter 5

Conclusions

In this thesis, we have made the first known attempt to perform power side-channel analysis to a

QKD system. This eavesdropping approach breaches the assumption made by security proofs of QKD

protocols that the laboratories of Alice and Bob are secure locations where no unwanted information is

leaked. In this work, we propose an attack on Alice’s laboratory, namely, on the power consumption of the

FPGA controlling the electro-optical components of the transmitter.

During this analysis, we have found that the average power consumption of the FPGA depends on

the symbol value of the emitted key. Nonetheless, a variation in the average power consumption upon

the emission of different symbols cannot be seen at high qubit repetition frequencies, for example 100

MHz, since the system is bounded by its bandwidth. Therefore, we have proven that until qubit repetition

frequencies close to the system’s bandwidth, we are able to distinguish between the emission of an H

and the one of a V by analyzing the difference in the average power consumption of the FPGA. We found

that, for frequencies until 11 kHz, this method achieves an 100% accuracy for distinguishing between H

and V emission.

To hack the key at the qubit repetition frequency of 100 MHz, a typical frequency for mature QKD

distribution systems, we analyzed the frequency spectrum of the power consumption. We have found

that, during the emission of finite sized sequences, the spectrum of the power consumption, mainly the

phase of each frequency, depends on the values of the first symbols in the sequence. By exploiting

this dependence, we were able to hack the key in a realistic QKD scenario, where the transmitter emits

a key composed of a random string of symbols at a qubit repetition frequency of 100 MHz. Via the

implementation of a template attack, using a correlation-based approach, we were able to achieve a

maximum accuracy of 73.35% for the prediction of a random key. We believe this result, together with the

fact that all hacking attempts in the two hacking trials performed above the success threshold, proves

the feasibility of this novel hacking approach to QKD systems. Looking into the future, there are some

improvements that can be implemented to possibly increase the prediction accuracy, namely:

• Increase the sampling frequency and bandwidth of our acquiring system. Currently, our oscilloscope

has a maximum sampling frequency of 2.5 GSa/s. By using an oscilloscope with a higher sampling

frequency, we would be able to increase the number of samples per symbol and thus increase the
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resolution of the FFTs. Additionally, using oscilloscope probes with a bandwidth higher than 350

MHz would reduce the attenuation of frequencies in the [400, 900] range, which were proven to be a

source of information leakage.

• Perform the template attack with an initial data set of bigger size, in order to implement a hacking

strategy with higher values of the L parameter, namely, L = 16 and L = 32.

• Employ a neural network for signal recognition

This being said, the results achieved until now prove that the power consumption of electronic controllers

in QKD setups can be a source of information leakage, thus opening an unexplored path for cryptanalysis

in QKD. Therefore, this work has opened new questions, namely:

• What counter measurements can be employed in order to mitigate the found information leakage?

• Given that the power consumption of the FPGA depends on its programming, what is the behavior

of the power consumption in FPGAs of other QKD transmitters?

In conclusion, in this work we were able to exploit the power consumption of the FPGA controlling

the electro-optical components of the QKD transmitter in the University of Padua to guess 73.35% of the

emitted key. This is the first implementation of a power side-channel attack to a QKD system, and the

positive results have unlocked new research questions and problems which will be approached in future

work.
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