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Abstract

The need to develop models capable of describing key processes in the biomanufacturing industry has been

rising as this industry is in a rapid transition towards more automation and digitalisation. Fermentation

for recombinant protein production is one key process, and as all biological processes, it is subject to the

stochasticity of living beings. Because of this, it is important that these models take this stochasticity

into account. Gillespie’s algorithm is a method of doing so, with exact numerical calculations within

the framework of the stochastic formulation without the need of solving the Chemical Master Equation

(CME).

The aim of this project was to develop a model for fed-batch fermentation of Escherichia coli for

recombinant protein production that was able to capture the uncertainty associated with this bioprocess.

This model was developed for two case study proteins, Green Fluorescent Protein (GFP) and recombinant

human Growth Hormone (rhGH).

This goal was achieved by using deterministic models available in the literature and adapting them to

the Stochastic Simulation Algorithm (SSA). It was shown that the developed model was applicable and

could describe well the production dynamics. By confronting the model with experimental data, some

parameters were re-estimated using the ABC Rejection sampler method. In summary, it is possible to

derive conclusions regarding the uncertainty associated with each species present in the model.

These results provide one more successful application of this algorithm, and stand as a foundation to

expand and improve its use for industry relevant processes.
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Resumo

A indústria biotecnológica encontra-se numa fase de transição, para uma maior automatização e digital-

ização. Por esta razão, há uma necessidade crescente de desenvolver modelos que descrevam os bioproces-

sos mais relevantes. A fermentação para a produção de protéınas recombinantes é um destes processos,

e, como todos os processos biológicos, está sujeito à estocacidade caracteŕıstica dos processos qúımicos,

metabólicos e fisiológicos dos seres vivos. Por esta razão, ao desenvolver estes modelos, é necessário que

esta estocacidade seja tida em conta. Gillespie desenvolveu um algoritmo que permite fazê-lo, utilizando

cálculos numéricos exatos dentro do enquadramento estocástico, sem a necessidade de resolver a Chemical

Master Equation (CME).

Neste contexto, o objetivo desta tese foi o desenvolvimento de um modelo da fermentação fed-bacth

de Escherichia coli para a produção de protéınas recombinantes, que fosse capaz de capturar a incerteza

associada ao processo. Este modelo foi desenvolvido para duas protéınas, Green Fluorescent Protein

(GFP) e recombinant human Growth Hormone (rhGH).

Recorreu-se a modelos determińısticos dispońıveis na literatura, que foram adaptados para o Stochastic

Simulation Algorithm (SSA). Mostrou-se que o modelo desenvolvido era aplicável no contexto desejado e

descrevia adequadamente as dinâmicas de produção. Foi posśıvel concluir acerca da incerteza associada

a cada uma das espécies simuladas. Através do confronto do modelo com dados experimentais, foi ainda

posśıvel re-estimar alguns parâmetros recorrendo ao método ABC Rejection Sampler.

Os resultados obtidos ilustram mais um caso de aplicação bem-sucedida deste algoritmo e podem

servir como base para expandir e melhorar o seu uso para processos industrialmente relevantes.

Palavras Chave

Modelamento estocástico; Algoritmo de Gillespie; Produção de protéınas recombinantes; Escherichia coli ;

Bioreactores
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1.1 Motivation

The concept of Digital Twins is now a hot topic in the bioprocessing industry [1]. Essentially, the first step

to developing a digital twin is a model that can describe the process of interest well. Using mechanistic

models is a helpful tool from process development to monitoring and control. They are a key part of

making biomanufacturing more automated and digitalised [2].

Hand in hand with this, the relevance of this industry keeps growing. For example, fermentation pro-

cesses and the production of recombinant proteins bring several advantages when producing therapeutics

and food additives, among many other products. Regarding pharmaceuticals, these advantages are for

example high effectiveness, less side effects and the capability of curing diseases instead of only curing

symptoms. As well, there is an increasing number of diseases which can be treated with biopharmaceuti-

cals [3]. Recombinant human growth hormone as a therapeutic agent is an example that could only start

being used due to the development of recombinant protein production.

One of the disadvantages of biological processes when compared to chemical routes is that they are

harder to control. No recipe guarantees that a process will run the same way every time, for example

when talking about fermentation. Living organisms have inherent stochasticity which brings randomness

and noise to said processes [4]. Due to this, it is important that when developing models, this uncertainty

should be taken into account. Thus, different scenarios can be predicted a priori, and strategies can be

developed to model, predict, and rectify such variations.

1.2 Objectives and Contributions

The initial goal of this work was the stochastic simulation of intracellular biochemical reactions and its

applications to industry relevant cases of fed-batch fermentation processes. As it is described in the

results chapter, there was a need to change strategies. So, the objective of this work was to develop a

stochastic model of bioreactors for recombinant protein production, recurring instead to an unstructured

model.

The desired output of this thesis was to validate the application of the Stochastic Simulation Algorithm

(SSA) to recombinant protein production, which to the author’s knowledge had not been done previously.

It is thus expected to derive insights regarding the uncertainty of this process, how it propagates, and

hence gain a better understanding of it.

That being said, the main outcome of this thesis was the validation of this model against deterministic

simulations available in the literature. This concordance also attested that the assumptions made in the

development of the propensity equations were valid in this scenario.
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Moreover, the simulation results were confronted with experimental data. Parameter re-estimation

using the Approximate Bayesian Computation (ABC) Rejection sampler was performed. It allowed to

improve the model quality in the prediction of protein production trajectories.

1.3 Thesis Outline

This thesis is divided into 5 chapters, including the present introduction Chapter. In Chapter 2, the

theoretical background necessary for the development and understanding of the work done is detailed.

It starts by highlighting the different types and the advantages of bioreactor modelling. It moves on to

the thorough explanation of the SSA, the assumptions behind it, the different steps in the algorithm

and some situations where its application has been successful. Finally, there is a brief introduction to

recombinant protein production in E. coli as well as to the two proteins of the case studies.

Chapter 3 details the methodology used for the development of the project. It includes all the

equations that were taken from available models in the literature; adaptation of these to the stochastic

simulation; detailed steps of the algorithm used. Finally, the method utilised for parameter estimation is

explained.

Following, Chapter 4 presents all the relevant results obtained as well their discussion. At last,

Chapter 5 highlights the conclusions that were possible to draw from the obtained results as well as the

future perspectives for this topic.
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This chapter will concern the work that has been previously developed in the scope of this thesis. It

is important for its understanding since it will as well detail the necessary theoretical bases. The most

important section will be regarding the stochastic simulation algorithm which serves as the foundation

for the developed models. It also includes important information on modelling of bioreactors, protein

production in E. coli and a brief description of the proteins used as a case study.

2.1 Modelling of bioreactors

In the present time, the biomanufacturing industry is delving into the concept of Digital Twins and

the benefits it can bring regarding process optimisation. Becoming more digitalised and automated is

one of the requisites of Industry 4.0 [1]. This industry is still falling behind in the implementation of

digitalisation and automated handling of data when compared to other industries, partly because the

definition of digital twins is still not clear. So, in the biomanufacturing operations context, a Digital

Twin can be defined as a comprehensive digital representation of a physical object that is capable of

bidirectional communication with it. It is responsive to changes in the physical asset and can modify the

behaviour of the real system [2].

In the domain of bioprocesses the term “Digital Twin” is still scarcely used, however, the same is not

true for the term “model”, which, in the end, is always the backbone of a digital twin [2]. So, accurate

mathematical description of unit-operations can represent the digital model component of the digital

twin. These are useful to design and optimise different processes. In the case of fermentation, the topic

that concerns this thesis, the base for this model will be a description of the relationship between feed

inputs and product outputs.

When concerning models, the first distinction must be made between steady-state and dynamic

models. A steady-state model, is essentially a steady-state mass and energy balance of a process which

employs equilibrium conditions to describe reactions or simple relations to elucidate the conversion of

components [2]. These expressions are not time dependent and thus do not contain an accumulation

term. They can be used mostly for a first optimisation in an early stage and uncertainty analysis. Their

main use is in areas where kinetic information is not available making them the only viable possibility.

On the other hand, dynamic models pick up on the mass balances of the steady-state model, adding

accumulation terms and system dynamics. They contain time-based derivative terms for variables of

interest and can be used to determine optimal process parameters. These dynamic models can also be

purely data-driven models which can be used for example for predicting the end time of a fermentation

process [5]. Here lies the second distinction that should be made, data-driven and mechanistic models.

Data-driven models use parametric equations to compute process outputs (response variables) from

6



inputs (predictor variables). These can identify correlations between critical process parameters and criti-

cal quality attributes while not focusing on mechanistic causalities that are governing the relationships [6].

The main advantage of these models is the automatic model assembly and reduced computational burden,

which makes them suitable for real-time monitoring. However, their predictive capabilities are limited to

the space where they were validated, constricting their use for bioprocess control and optimisation.

As for mechanistic models, they are mathematical descriptions of the current understanding of a

current system. The model will be described by first-principle equations with parameters that have a

physical meaning [7]. These are mass, heat and momentum balances with the addition of ,e.g., kinetic

expressions to describe process dynamics, which are often empirical. If assuming a homogeneous reactor

environment, mechanistic models can be classified in four different categories [8] illustrated in Figure 2.1.

Figure 2.1: Schematic classification of mechanistic models for fermentation processes [8].

The most common are unsegregated models which illustrate average cell description. Within these,

the simplest and most popular are the unstructured models. They use a single variable to describe

biomass, treating it as a black-box. Unsegregated structured models describe biomass as a group of

different variables, e.g ATP, NADH, precursors and metabolites. These can be used to model complex

processes such as intracellular metabolism [9].

Segregated models consider each cell individually accounting for the fact that in a population cells

are different. These are usually formulated with Population Balance Models (PBM) [8]. Unstructured

segregated models characterise cells by one distributed property (e.g. cell size or age) but without con-

sidering extracellular composition. Structured segregated models are more complex since the distribution

of one or more intracellular variables is considered.
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Having explained what are mechanistic models and the different classes, now the focus is brought back

to how they can be applied and be useful in the context of Industry 4.0, as mentioned in the beginning

of this section.

These mechanistic models require extensive time and resource investment when compared to data-

driven models. However, since they are based on process understanding they can be applied to multiple

processes by changing model parameters, making them highly valuable. They can also be used in several

stages of process development and operation, as summarised in Figure 2.2 [7].

Figure 2.2: Mechanistic model structures for(A) offline process development, (B) offline control strategy testing,
(C) online model-based monitoring, and(D) online model-based control [7].

Starting with offline development (Figure 2.2 (A)), the models can be used to asses the sensitivity of

the process in different conditions, for example mass and heat transfer at different scales of operation.

This is especially useful in scale-up studies, since it is critical to understand equipment limitations at

8



different scales. So, these models are useful to determine what are the conditions that lead to a more

profitable process. Mechanistic models are chosen at this stage because they can be extrapolated outside

of the conditions for which they were developed (e.g, for different process parameters) and so can be used

to test new equipment types or conditions for which there is no available data yet.

Regarding offline control strategy testing (Figure 2.2 (B)), a control algorithm can be coupled with

the model to simulate different control strategies. This way, the control algorithm is implemented offline

speeding up the online implementation that otherwise comes with considerable resource consumption for

testing and tuning.

The biomanufacturing industry suffers from the lack of online sensors for key parameters, like sub-

strate, biomass and product concentration. Some of the issues lie in the sterilisation of the probes as well

as getting approval for changes in hardware according to Good manufacturing practice (GMP). As such,

using mechanistic models for online based model-based monitoring (Figure 2.2 (C)), could be a good

solution. The model can be implemented online, where the measured data is used to re-estimate param-

eters (online parameter estimation) and thus improving model prediction. This was done successfully by

Mears et al. [10] for a case of industrially relevant filamentous fungus process at pilot scale, where the

model was used to predict product concentration over time.

As for applying online model-based control (Figure 2.2 (D)), it allows for a flexible control objective,

that can among others be glucose concentration control and avoid overflow metabolism. It also allows for

control on key parameters that cannot be measured online. This works as available measurement data is

fed to the model to update the predictions. The model output is used by the control algorithm.

To sum up this section, mechanistic models are highly useful for the biomanufacturing industry,

in several stages of process development. However, most of these models are based on deterministic

equations, and as such do not account for the stochasticity in the process. For this reason, the focus

of this thesis was to create a mechanistic model that would take the inherent randomness of biological

processes into account. For that purpose, the stochastic simulation algorithm was used, which is detailed

in the following section.

2.2 Stochastic Simulation

Stochasticity is an inherent characteristic of multiple biochemical processes meaning that randomness

and noise are an essential part of living beings. This is especially prevalent in processes where low copy

numbers of chemical species have a big influence on the system dynamics and the best example of this is

the regulation of gene expression [4]. The stochastic effects on biochemical processes are also influencing

onset of disease and immune response. Given this, it is clear that models that are not deterministic, but
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that take this randomness into account are essential to better understand these biological phenomena.

Over recent decades considerable attention has been given to this problem and in 1977, Daniel Gillespie

described the SSA, also known as the Gillespie algorithm. His motivation relied on the fact that the

stochastic approach a firmer physical basis than the deterministic formulation. It describes the time

behavior of a spatially homogeneous chemical system, regarding this process as a random-walk, which is

governed by a single differential equation, the Chemical Master Equation (CME). This formulation is,

however, often mathematically intractable, which leads the author of said work to develop a way to derive

exact numerical calculations within the stochastic formulation framework, without the need to solve the

CME. This framework uses a rigorously derived Monte Carlo procedure to numerically simulate the time

evolution of the given system [11].

The general problem was formulated in the following way: ‘If a fixed volume V contains a spatially

uniform mixture of N chemical species which can interact throughM specified chemical reaction channels,

then given the number of molecules of each species present at some initial time, what will these molecular

population levels be at any later time?’[11].

The deterministic solution would be to assume that the number of molecules of the ith species in V

at time t can be represented by a continuous function, Xi(t) (i = 1, ..., N), and that each of the chemical

reactions M can be considered as a continuous rate process, then it is easy to construct a set of coupled

first-order Ordinary Differential Equations (ODEs), where the specific functions for each reaction would

be determined by the respective structure and rate constant. Even though this approach is of great

importance and in many cases the chemical systems can be treated as deterministic and continuous, it

must not be forgotten that the physical approach behind it is not the most solid. This is due to the fact

that molecular population levels can only change by discrete integer amounts and time evolution itself

is not a deterministic process. Moreover, since more and more attention is given to chemical reactions

within biological processes, with the inability of the reaction-rate equations to describe the fluctuations

in the molecular population levels, this becomes particularly relevant [11].

On the other hand, the stochastic solution takes into consideration the known fact that, in general,

a chemical reaction occurs when two or more molecules of appropriate kinds collide in the right way,

and that in a system of molecules in thermal equilibrium this happens essentially in a random manner.

This argument supports the idea that chemical reactions are better described by a ‘reaction probability

per unit of time’ instead of a ‘reaction rate’. This way, considering the reaction described by Eq. 2.1,

there will exist a c1 constant which only depends on the physical properties of the two molecules and

temperature of the system, such that c1dt is the probability that the molecular pair A − B will react

according to R1 in the next infinitesimal time interval dt.
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R1 : A+B → AB. (2.1)

So, in general, supposing that volume V contains a spatially homogeneous mixture of Xi molecules of

chemical species Si (i = 1, ..., N) and that these species can react through M specified chemical reaction

channels Rµ (µ = 1, ...,M), M constants cµ (µ = 1, ...,M) exist depending only on the physical properties

of the molecules and the temperature of the system, such that cµdt represents the average probability

that a particular combination of Rµ reactant molecules will react accordingly in the next infinitesimal

time interval dt.

It is important now to understand how this stochastic rate constant relates to the more well known

reaction-rate constant, kµ, since this will allow for the direct application of the latter in the Gillespie

algorithm simulation. For first order reactions, both constants are equal and in the case of second order

reactions, the stochastic rate constant is equal to the reaction-rate constant, divided by the volume of

the reaction environment (Equation 2.2) [12].

cµ =
kµ

NAvV
, (2.2)

where NAv is the Avogadro number. For second order reactions of two molecules of the same species,

for example A+A → AA, the stochastic rate constant would be calculated by Equation 2.3 [12].

cµ =
2kµ

NAvV
. (2.3)

This is because the number of distinct pairs of molecules that can collide is smaller in the second case.

In the A + B → AB reaction, if XA and XB denote the number of molecules of A and B, the number

of distinct molecular encounters is XAXB . As for the homodimer formation reaction A+ A → AA, the

number of distinct molecular encounters is XA(XA−1)
2 .

For reactions described by Michaelis-Menten dynamics and not by the Law of mass action, it is no

longer possible to apply the equations described above. This was addressed by Rao and Arkin [13] who

proposed a way to translate kinetic ODEs into propensities through the application of the Quasi-steady

state assumption (QSSA). Using as an example the enzymatic reaction E+ S
k1

⇄
k2

ES
k3→ E+P , the ODE

for the substrate would correspond to equation 2.4 [14]

dS

dt
= − k3E0S

S +KES
. (2.4)

Recurring to the fact that the system volume is constant, concentrations can be replaced by the

number of molecules through Equation 2.5.
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Ci = Ni

(
S0

NS,0

)
, (2.5)

where S0 andNS,0 are the substrate’s initial concentration and the corresponding number of molecules,

respectively. Through this, Eq. 2.4 becomes Equation 2.6.

dNS

dt
= −k3

NE,0NS

NS +KES .(
NS,0

S0
)
. (2.6)

which would correspond to the following propensity function

a = −k3
NE,0NS

NS +KES(
NS,0

S0
)
. (2.7)

Once the relationship between the reaction-rate constant and the stochastic rate constant, the atten-

tion is brought back to the stochastic description of reactions.

The number of distinct reactant combinations available for reaction Rµ is denoted by hµ

Considering the definitions given above, the algorithm proceeds as follows: In each step of the simu-

lation, two things must be determined,

(1) what is the waiting time for the next reaction to occur and,

(2) which of the reactions in the system will occur.

This is determined by generating two random numbers according to the following probability density

function:

P (τ, µ) = aµe
−a0τ , (2.8)

where

aµ = hµcµ, (2.9)

a0 =
∑

aµ. (2.10)

P (τ, µ)dτ is the probability that the next reaction will occur in the next infinitesimal time interval

dτ and that the reaction will be Rµ. Once the waiting time and the reaction to occur are determined,

the number of molecules in the system and the simulation time are updated and the algorithm proceeds

to the next iteration. The step by step description of the algorithm is presented in Chapter 3.

From the definition of the algorithm it is intuitive to understand that the bigger the reaction rate is

or the larger the number of substrate molecules, the greater the chance that the given reaction will occur

in the next step of the simulation. This also means that there is no constant time step in the simulation,
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given that this is determined in every iteration and is dependant on the current state of the system.

Thus, it isn’t easy to anticipate the simulation’s computational cost and there is no way of determining

the required simulation time in advance, since the total number of iterations is depending on the time

step change and consequently the number of reactant molecules [12].

The algorithm that has been described thus far is the result of Gillespie’s work in 1977 and is denom-

inated the Gillespie direct method. It is clear that this algorithm is computationally very intensive since

for each iteration two random numbers must be generated to determine the next reaction to occur. As

such, some other exact SSAs were formulated to try to improve the efficiency without trading accuracy.

An example is the one developed by Gibson and Bruck [15] named the Next reaction method, in which the

next reaction time of each reaction is determined independently. The next reaction to occur is the one

with the smallest next reaction time, and thus there is no need for random selection of reaction events,

and so it is only necessary to generate one random number per iteration.

Anderson [16] further improves this method by scaling the times of each reaction so that these fol-

low unit-rate exponential random variables. This way, this algorithm can be applied to more complex

biochemical reaction networks with time-dependant propensity functions.

Even though the above mentioned algorithms present computational improvements in comparison

to the Gillespie direct method, all the exact SSAs, meaning the algorithms that identically follow the

probability laws of stochastic chemical kinetics, become computationally intractable for large biochemical

networks where many chemical species and reactions are involved. This comes as a result of every reaction

event being simulated. So, in order to try to reduce the computational burden, several approximate SSAs

have been developed. It is to be noted, that with the gain of computational efficiency there is a sacrifice

in accuracy.

One of the main methods developed in this category was developed by Gillespie [17], the author of

the first exact SSA and is named the τ -leaping method. In this algorithm the system evolves in discrete

time steps of defined length τ such that in the time interval [t, t + τ ] the propensity functions are held

constant. Then the number of reaction events that occur are counted and the state vector is updated

accordingly. The number of reaction events that occur within the time interval can be considered a

Poisson distribution with a mean aj(X(t)τ), (j = 1, ...M).

As mentioned, this produces results that require less computational effort at the cost of accuracy.

This is observable in the clear difference in the noise patterns of the generated paths, as can be seen in

Figure 2.3. This figure shows one of the obtained sample paths by each of the described methods for two

different reaction networks (mono-molecular chain, a),c) and e) and enzyme kinetics, b),d) and f)). It is

also possible to observe that the two exact methods (Gillespie direct method (a) and (b); Next reaction

method (c) and (d)) produce different trajectories, while the noise patterns remain the same.
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Figure 2.3: Plots illustrating the difference between the discussed methods, Gillespie direct method (a) and (b);
Next reaction method (c) and (d); τ -leaping method (e) and (f) [4].
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2.2.1 Practical examples

In this section some practical examples where stochastic simulation has been used and proved useful

will be illustrated. This includes the modelling of gene expression, human immune system response and

fermentation in an industrial bioreactor.

Example 1

There is strong experimental evidence that the same gene has significantly different levels of expression

from cell to cell [18]. Combined with having mRNA molecules in such small numbers, the stochastic

nature of the associated biochemical reactions leads to large fluctuations [19]. Thus, it is clear that

these fluctuations need to be taken into account when modelling this type of systems and the Gillespie

algorithm is the standard method for doing so. It does not, however account for volume changes during

the course of the simulation. Cell division and growth play an important role on genetic regulatory and

protein-protein interaction networks since the cell volume inversely relates to the association rate for a

bi-molecular reaction [19]. With this in mind, this approach to the SSA accounts for deterministic time

dependence of rate constants arising from cellular growth and division.

To do so, some modifications were made to the original algorithm. This time, there is a volume

variable dependant on time. The reaction channels are divided into those whose propensities depend on

the time and the ones that do not. Time was normalised in such a way that the volume doubles in a unit

time interval after which the cell divides. The simplifying assumption that cell division is deterministic

is made, and so the cell division time is constant and all molecules are divided uniformly among the

daughter cells [19]. The algorithm proceeds in a similar way to the original, the difference being in

accounting for the different types of propensities when defining the time of the next reaction.

The authors applied this to a case of transcriptional regulation without feedback. In this example,

there is a single gene that can exist in two states, S0 and S1, where the transition between states

occurs when a regulator protein is bound to the gene’s promoter. This transition probability is inversely

proportional to the cell volume and when cell division occurs both the volume and number of proteins are

halved. The propensity of the reverse transition is considered to be time independent. The transcription

of the gene leads to the production of protein X.

Given that the protein production and degradation reactions are fast when compared with the cell

division time it would be too computationally expensive to use the Gillespie algorithm. The authors opted

for a hybrid simulation technique where the dynamics for the fast reactions are simulated deterministically

or using Langevin equations while the slow ones are simulated through the Gillespie method.

It was concluded that even though the Gillespie approach produced accurate results it was not feasible

to simulate all the reactions his way. Concerning the hybrid technique, the simulations achieved good

results when compared to the theoretical predictions while not increasing significantly the computational
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expense. This way, it was shown that it is possible to incorporate periodic deterministic events into the

SSA. This opens up doors for including other sources of noise such as stochastic growth rate or unequal

partition of molecules upon cell division.

Example 2

In the following example, the author’s goal was to simulate the human immune response to the

Yellow Fever (YF) vaccine. The Human Immune System (HIS) is fundamental in the body’s defense

against diseases. It has, however, many components interacting, which makes the understanding of these

mechanisms complicated. Mathematical models are a useful tool for this goal. Distinct techniques can be

used to achieve this, the most common being the modelling of the HIS using differential equations (ODEs

or PDEs), agents (ADM) or cellular automaton. ODEs or PDEs describe solely the average behaviour

of the system and as such cannot describe the behaviour of small populations or individuals as ABM

and cellular automaton can. These however require significant computational power to simulate large

populations [20].

Given this, a stochastic approach based on Gillespie’s algorithm seems interesting since it can provide

the description of distinct behaviours at a lower computational cost. It can be used to understand

the dynamics of the human response to vaccines, since for example the yellow fever vaccine presents a

seroconversion rate of 95% - 98% and it becomes relevant to understand what factors explain the 2% -

5% of individuals that are not seroconverted.

The developed model represents five populations: virus, antibodies and three types of lymphocyte B

cells (naive, active and memory). For the deterministic model this is translated into five ODEs which

are then converted into equivalent reactions for the stochastic model. Without going too much in detail

about this model, in general the conversion of ODEs is done in the following way: For each species, the

positive terms in the corresponding ODE will correspond to the probability of the reaction that leads to

addition of one unit of the species to the simulation, as for the negative terms, they will correspond to

the probability of the reaction that leads to one unit of the species to be removed.

For validation, both the deterministic and the stochastic model simulates a scenario where an individ-

ual was vaccinated against YF for the first time. Out of the 400 realisations of the stochastic model, 20

were plotted against the deterministic result for comparison. The results obtained are shown in Figure

2.4.

For the virus results, it can be seen that the stochastic simulation is in agreement with the deterministic

one. Moreover, both are consistent with the literature regarding the time point in which the viraemia peak

occurs. The antibody results are more interesting since it is possible to detect an important difference

between the deterministic and the stochastic model. From the scientific knowledge, it is expected that

after vaccination, an individual’s antibody level remains different from zero, which is observed in the
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Figure 2.4: Simulation results obtained by [20]; The black line represents the deterministic simulations, the light
grey line, represents the different realisations of the stochastic simulation.

deterministic model. One specific stochastic simulation, however, shows otherwise, that after 120 days

the antibody level is almost equal to zero. When accounting for all 400 realisations, this happened in

around 4% of the cases. This is within the range of 2% - 5% of experimental non seroconversion mentioned

above. So, in conclusion, the stochastic model was able to reproduce what the deterministic one could

not, that not all individuals seroconvert after vaccination.

Example 3

In the third chapter of his Master Thesis [14], Isaza approaches the production of xylitol at an

industrial level. Since it is desired to predict the behaviour of these bioprocesses while also accounting

for their inherent stochasticity, stochastic modelling is of great relevance. So in his work, both the

deterministic and stochastic models for the fermentation in question are developed.

The model includes as species biomass (Candida moggi), glucose, xylose and intra and extracellular

xylitol in a batch bioreactor. As in the previous example, the construction of the stochastic model is

based on the deterministic one. The conversion of ODEs into propensities is the one adopted in the

present thesis and as such is explained in detail in Chapter 3.2.

In the obtained results, the stochastic simulation is not shown with all its realisations, but instead

it is shown the uncertainty of the system concluded from those. This results are shown in Figure 2.5,

where the red full line is the result of the deterministic simulation and the grey dashed lines the deviation

envelope.

First of all, from the results it is possible to observe good agreement between the stochastic model and

the deterministic one as well as with the experimental data. For xylitol, the biggest difference between

the models is observed, since the simulation was conducted with a smaller volume 5 · 10−22 in order to

increase uncertainty and thus contain the experimental results. The model allows to evaluate the different

scenarios on which the concentration may vary as well as predict the most probable behaviour from the

average.
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Figure 2.5: Simulation results obtained by[14]; The red line represents the deterministic solution, the stars,
circles, diamonds and squares, represent the experimental results, and the space in between the
dashed grey lines corresponds to the envelope predicted by the stochastic simulation.

2.3 Recombinant protein production in E. coli

Escherichia coli is a Gram-negative bacterium that is a facultative anaerobe. It is the most well studied

micro-organism which is one of the characteristics that makes it an attractive choice for the production

of biological products.

Even though many organisms can and are used for recombinant protein production, E. coli remains

the favourite due to ease of cultivation, short life-cycle and easy genetic manipulations because of the vast

knowledge of its genetics [21]. Thus, using E. coli as a microbial cell factory for producing recombinant

proteins reduces the cost of production and improves yield [22].

Nonetheless, producing in E. coli comes with its challenges. This can be caused by protein toxicity

to the host organism or protein aggregation in inclusion bodies. This can either harm biomass growth

or complicate the protein structure and consequent downstream process. For this reason among others,

there is still a considerable interest in research on novel strategies to improve this process [22].

Fermentations for protein production usually run at high growth rates to maximize growth and pro-

duction. This, however, also brings some challenges. One is the significant acetate accumulation as a

by-product that affects both biomass growth and the production of the product of interest. Glucose is

usually fed as a carbon source, and even in a medium with multiple carbon sources its the preferred one

by the bacteria due to catabolite repression [23]. Once the glucose is taken up, it is simply metabolised

through glycolysis and central carbon metabolism with acetate as a secondary product. This acetate is
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both a loss of the carbon source and thus financial handicap but as well inhibiting for cell growth and

protein production [24]. Besides this, it can as well have a negative effect on the stability of intracellular

proteins [25].

There can be two reasons behind acetate production. One is a drop in dissolved oxygen that activates

the fermentation pathway causing acetate excretion. The other one is overflow metabolism, which is

caused by imbalance between the fast glucose uptake and the biomass and other products formation rate.

Acetyl-CoA is then diverted from the TCA cycle to the formation of acetate. Figure 2.6 [9] schematises

the glucose path in the central carbon metabolism, where the conversion of AcCoA to acetate is also

shown.

Figure 2.6: Schematic representation of the central carbon metabolism of E. coli [9].

The amount of acetate produced depends on several factors such as the producing strain, growth

conditions and glucose concentration. Strategies to control acetate secretion can be done at the genetic

level, or at the bioprocess level which is the concern of this thesis.
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These methods consist mostly in controlling the medium composition and fermentation conditions, like

temperature, pH, dissolved oxygen and substrate concentration. The E. coli culture will generate acetate

when the substrate consumption rate surpasses a certain threshold. To overcome this different strategies

can be use such as limitation of growth through substrate-limited fed-batch schemes and utilisation of

different substrates such as glycerol or fructose.

To adopt these efficient strategies, relevant mathematical models that predict growth and nutrient

demand are a key factor. An example of this is the growth model developed by Anane et al. [26] on

which the model developed in this thesis is partly based on.

2.4 Case study: GFP and rhGH

2.4.1 Introduction to Green Fluorescent Protein

Green Fluorescent Protein (GFP) is a 238 amino acid protein with a molecular weight of around 27

kDa. Figure 2.7 shows its tertiary structure. It was first identified in the jellyfish Aequorea victoria.

This organism gets its bioluminescence from two photo proteins, one of which is GFP. The fluorescence

originates in a sequential activation of aequorin and GFP. When binding to calcium, aequorin emits blue

light which then excites GFP to fluoresce green [27].

Figure 2.7: Tertiary structure of GFP.

GFP has a particularity that it forms a chromophore of three amino acids within its primary structure

and so, unlike other bioluminescent molecules it can operate in the absence of a co-factor. It is also a

very stable protein. Even though the molecule’s properties have been known years before, only in 1992

when its cDNA was cloned, and with subsequent heterologous expression in E. coli and C. elegans,

the research community became aware of its potential applications [28]. In more recent years, through

direct-site mutagenesis, GFP can now emit blue, cyan and yellow [29].
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A few examples are the use of GFP as a reporter for gene expression; a marker to study cell lineage

during development and a tag to localize proteins in living cells [29].

The first applications were as a reporter gene. The gene expression can be measured by placing GFP

under the control of the promoter of the gene of interest and measuring GFP fluorescence to directly

indicate the gene expression level in living cells or tissue. Other application are fusion tags. In this

case GFP is fused with a cloned gene. With this, dynamic cellular events can be visualised and protein

location can be monitored. GFP is ideal for this since it doesn’t require the presence of any cofactors

or substrates. As a final example, GFP can be used as a marker for tumor cells, illuminating tumor

progression and allowing the detection of metastases up to single-cell level [30].

GFP is also used for research purposes, for example for testing fermentation conditions for the pro-

duction of recombinant proteins [31] due to its ease of quantification.

2.4.2 Introduction to Recombinant Human Growth Hormone

Human Growth Hormone (hGH) is a single-chain polypeptide hormone. It is mainly synthestised in the

anterior pituitary gland by the acidophilic somatrophs. The most common form of this hormone contains

191 amino acid residues and has a molecular weight of around 22 kDa. It is released in the blood stream

where it participates in several biological functions, like protein synthesis, cell proliferation, lactation,

immune regulation and metabolism of proteins, carbohydrates and lipids [32].

Figure 2.8: Tertiary structure of rhGH.

Before the 1980s, the only available source for hGH was human cadaver tissue, which made its use as a

therapeutic agent forbidden. With the advances made in recombinant DNA technology it is now possible

to express proteins, such as hGH, in host cells, eliminating the risk of transfer of human pathogens
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and requirement of pituitary-derived preparation. Now, safe and abundant production of recombinant

human Growth Hormone (rhGH) is possible, as well as its therapeutic use in diseases related with growth

hormone deficiency (GHD) [32].

rhGH can be used in a multitude of health applications. It is FDA-approved for treatment of several

conditions such as growth hormone deficiency, chronic renal insufficiency, and some genetic diseases like

Turner syndrome and Prader-Willi syndrome. GHD is caused by hypothalamic or pituitary dysfunc-

tion. Multiple studies have demonstrated that rhGH is effective in the treatment of GHD, with patients

achieving adult heights consistent with family related parameters [33]. In the case of chronic renal insuffi-

ciency, children suffering from it usually experience a linear decrease in growth. Studies have shown that

treatment with rhGH increases linear growth, bone mineral density, body weight and lean mass. Also,

it doesn’t appear to negatively affect the progression of disease [34]. Turner syndrome is characterised

by an abnormal or missing X chromosome which results in girls having short stature and ovarian failure.

Therapy with rhGH increases growth rate and adult height of girls suffering from this syndrome [34].

Additionally to the mentioned diseases, rhGH also has a positive effect on bone fractures, skin burns and

bleeding ulcers [32].

Regarding its recombinant production, since nonglycosylated hGH is biologically active, prokaryotic

expression systems are the favourites for its production [32]. Like most recombinant proteins, production

is more efficient when growth and production phase are separated, therefore, recombinant organisms

that have inducible promoters are preferred. E. coli, as mentioned in the previous chapter, is one of the

most widely used hosts for production of heterologous proteins, and it has several inducible promoter

systems. These are advantageous for the over production of recombinant proteins in high cell density

fermentations.
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This chapter will detail the methodology used throughout the development of this work. This includes

the algorithm used as well as the equations used for the models and the chosen method for parameter

estimation. Figure 3.1 illustrates the workflow.

Figure 3.1: Information flow of the developed methodology. The diamond shapes symbolize the inputs, the
circle shapes the results/outputs, and the rectangles show the intermediate steps. The highlighted
rectangles represent the two main steps.

3.1 Model development

In this section, the equations implemented in each of the models and the literature they were based on

are detailed.

3.1.1 Escherichia coli central carbon metabolism

The model used was based on the one developed by Jahan et al. [9]. It describes the central carbon

metabolism of E. coli including the glycolytic pathway, TCA cycle, pentose phosphate pathway, Entner-

Doudoroff (ED) pathway, anaplerotic pathway, glyoxylate shunt, oxidative phosphorylation, Pts and

non-Pts. The kinetic model contains 27 metabolites, 22 enzymes and Pts proteins, 38 fluxes, 21 gene

expressions and 12 biomass production rate equations for precursor intracellular metabolites [9].

Due to the significant number of equations and the fact that no changes are made to the model

equations, these are not presented here. The interested reader is referred to the original paper ([9]),

where the model is described in detail.

3.1.2 Escherichia coli fed-batch fermentation

The model for E.coli growth is based on the model developed by Anane et al. [26] which takes into account

acetate cycling on the bacterial growth. This is of great relevance since E. coli ’s overflow metabolism

and acetate excretion to the fermentation broth are biological phenomena that that have most impact
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on industrial fermentation. This is not only because the extracellular acetate inhibits bacterial growth,

but also because the carbon source diverted into the overflow metabolism affects the production of

recombinant proteins [26].

Regarding the ordinary differential equations that this model consists of, for the state variables, X,

S, A, these equations follow the general Equation 3.1.

dx

dt
=

F

V
(xi − x) + rX, (3.1)

where x ∈ {X,S,A} represents the respective state variable in [g/L], subscript i the inlet concentra-

tion, F the feed, V the volume and r is the corresponding specific rate. For the biomass, considering the

inlet concentration is zero, Equation 3.2 is obtained.

dX

dt
= µX − F

V
X, (3.2)

where X represents the cell concentration, expressed as cell dry weight (CDW), and µ is the non-

inhibited Monod-type specific growth rate, that is given by Equation 3.3.

µ = (qsox − qm)Yem + qsofYXsof + qsAYXa, (3.3)

where qsox, qsof , qsA represent the substrate uptake rates for oxidation, metabolism through the

overflow route and acetate, respectively. As for the Y... constants, they define the respective yield coeffi-

cients, qm represents the substrate consumed for cell maintenance. The mass balance for glucose (S) is

represented by Equation 3.4.

dS

dt
=

Fs

V
(Sf − S)− qsX. (3.4)

The specific substrate uptake rate, qS , takes into account the acetate inhibition, as such is modelled

with Monod-type kinetics with non-competitive inhibition (Equation 3.5).

qs =
qsmax

1 + A
Kia

· S

S +Ks
, (3.5)

where Kia and Ks are the acetate inhibition and substrate affinity constant, respectively. The sub-

strate that is consumed, qS is not only metabolized in the TCA cycle (qsox), but also through the overflow

path, qsof (Equations 3.6 and 3.7).

qsox = (qs − qsof ) ·
DO

DO +K0
, (3.6)
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qsof =
PAmaxqs
qs +Kap

, (3.7)

Ko is a dimensionless constant set to 0.1, to increase the numeric stability of the simulation. PAmax

and Kap are the maximum acetate production and the production affinity constants, respectively. The

acetate production/consumption is considered a cyclic process that is described by the mass balance of

Equation 3.8.

dA

dt
= qAX − F

V
A. (3.8)

When the acetate produced through the overflow route, pA, is equal to the acetate consumed, qsA,

equilibrium is reached (qA = 0), as described by Equation 3.9.

qA = pA − qsA, (3.9)

pA = qsofYas. (3.10)

In Equation 3.10, Yas is the yield of acetate relative to the substrate consumed through the overflow

route [g/g]. The specific acetate consumption rate is modelled similarly to the substrate uptake rate,

following a non-competitive inhibition Monod-type kinetic (Equation 3.11).

qsA =
qAmax

1 + qs
Kis

· A

A+Ksa
, (3.11)

where qAmax, Kis and Ksa are the maximum acetate uptake rate, the acetate uptake inhibition and

acetate affinity constants, respectively. Through Equations 3.4 and 3.11, the glucose and acetate counter

inhibition effect is illustrated.

Finally, the dissolved oxygen is calculated in % of saturation, assuming that the feeding solution in

the fed-batch phase is fully saturated with dissolved oxygen. The oxygen profile is described by Equation

3.12.

dDO

dt
= KLa (DO∗ −DO)− qoX, (3.12)

where DO∗ is the saturation value of dissolved oxygen in the medium, KLa the volumetric mass

transfer coefficient for oxygen and qo the oxygen uptake rate described by Equation 3.13. It should be

noted that the above equation differs from the one presented by Anane et al., as the authors include

Henry’s constant, H, in the second term. This is omitted here since due to the algorithm’s nature, the

constant is used in the DO conversion equation (Equation 3.29) in the following sub-chapter 3.2.
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qo = (qsox − qsan)Yos + qsAYoa. (3.13)

Regarding the equation above, Yoa and Yos are the yield coefficients for substrate and acetate to

oxygen consumption, respectively. qsan is defined by Eq. 3.14.

qsan = (qsox − qm)Yem · Cx

Cs
, (3.14)

where Cx and Cs are the carbon content of biomass and glucose, respectively.

Regarding the feeding strategy, just as adopted by Anane et al., the fed-batch phase is initiated when

there is an exhaustion of the batch phase glucose (activated when glucose drops below 0.05 g/L) and

consisted of two-feeding regimes. First an exponential feed that is applied that was used to maintain a

set-point specific growth rate µset.

Fs(t) =
µset

Yx/sSf
(X0V0)e

µsettf . (3.15)

The exponential feeding rate Fs [L/h] that is calculated through Equation 3.15 uses biomass concen-

tration (X0) and volume (V0) at the end of the batch phase, biomass to substrate yield (Yx/s) and glucose

concentration in the feed solution (Sf ) and it is a function of feeding time, tf .

After 3h, the feeding is switched, Anane et al. [26] proceeds with a constant feed, but it was decided

to do the switch for a decreasing feed. This is based on the finding in [35] that substrate accumulation,

which can lead to inducer exclusion, would occur before batch completion. So, when the substrate

concentration exceeds 0.03 g/L, the exponential feed is substituted by a linearly decreasing feed for the

remaining duration of the fermentation.

3.1.3 Protein production

To account for the recombinant protein production, ODEs describing these dynamics were necessary.

3.1.3.A Green Fluorescent Protein

In the case of GFP the equation is based on the paper by Aucoin et al. [31]. It was assumed that

the production follows a mixed-growth associated product formation kinetic. It was considered that the

production is temperature induced, so the equation does not require a term for inducer dynamic. As

such, the production is controlled by an inducer switch, which is activated when desired.

So, before when the inducer switch is turned OFF, the ODE for the biomass remains the same as Eq.

3.2, and the equation for protein production corresponds to Eq. 3.16.
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dP

dt
= 0. (3.16)

When the inducer switch is turned ON, the ODE for biomass becomes Eq. 3.17 and the ODE for

protein production becomes Eq. 3.18.

dX

dt
= µX(1− xind)−

F

V
X, (3.17)

dP

dt
=

(
YP/Xµ+ β

)
X · xind −

F

V
P. (3.18)

Thus, GFP production is described by Equation 3.18 and is dependant of two terms. The first one

corresponds to the growth associated product, where YP/X is the protein to biomass yield and µ the

specific growth rate described above by Equation 3.3. As for the second term, it represents the non-

growth-associated production, where β is a protein production constant. The term xind represents an

attenuating term for protein production.

3.1.3.B Recombinant Human Growth Hormone

In the case of the rhGH, it was considered that the induction is done in response to IPTG, one of the

most common inducers used in the biotechnology industry. As such, the protein equation has to include

an inducer dependant term. Also, a new species, the inductor, must be introduced and have an equation

describing its dynamics.

The equations are based on the model defined by Chae et al. [36] for recombinant protein expression

in E. coli. Since foreign protein production also occurs before inducer addition due to read through

transcription and translation, it is useful that the model includes this type of production. This results in

Equation 3.19.

dP

dt
=

(
k1µ

I

I +Ki
+ k2

)
X − k3P − P

F

V
, (3.19)

where k1 and k2 are the induced and constitutive protein biosynthesis rates respectively, Ki is the

induction constant and k3 a constant first order degradation term. As for the inductor, the ODE follows

the general Equation 3.1.

dI

dt
=

Fi

V
(If − I)− I

F

V
, (3.20)

where If is the concentration of the inducer on the inducer feed stream.

In addition, a feeding strategy for the induction needs to be defined. According to Ruiz et al. [37]
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it is adequate to start induction when biomass reaches the concentration of 20 g/L. As such, following

the strategy outlined in [35], when X = 20 g/L a constant flow rate of Fi = 200 g/L is set to rapidly

rise IPTG levels. When the concentration reaches 1 mM or 0.238 g/L, the flow rate is determined by

setting Equation 3.20 to 0 and the inducer concentration to I = 0.238 g/L, so it remains constant for the

remaining part of the process. Solving this equation for Fi, Eq. 3.21 is obtained.

Fi =
0.238Fs

If − 0.238
. (3.21)

As for the substrate feed, the same exponential feed equation (3.15) as in section 3.1.2 was used.

However, in this case the feed is switched on when glucose drops below 0.5 g/L. After 3h, the feed control

is the same as described previously.

3.2 Model implementation

When it comes to first order reactions, the propensity function is the same as the deterministic kinetic

equation, however, the same is not true for more complex ODEs. As such, it was necessary to transform

the ODEs from the reference models so they could be incorporated into the SSA. This was done according

with the work of [14].

The most straightforward case occurs when there is the same species on both sides of the equations,

as presented, for example, in Equation 3.2. In this case, it is only necessary to replace the concentrations

for number of molecules, through Equation 3.22. This is the unit needed to run the SSA.

Ci =
Nimwi

NAvV
. (3.22)

This leads to Equation 3.23.

dNX

dt
· mwX

NAvV
= µNX · mwX

NAvV
− F

V
NX · mwX

NAvV
. (3.23)

When 3.23 is simplified it originates the propensity function (Equation 3.24). It is equivalent to the

ODE, except where the concentration is replaced by the number of molecules.

aX = µNX − F

V
NX . (3.24)

In the situations where there are different species on each side of the equation, the first step is again

to replace Equation 3.22 into, for example, Equation 3.4, which then leads to Equation 3.25.

dNs

dt
· mws

NAvV
=

Fs

V

(
Sf −Ns ·

mws

NAvV

)
− qs ·Nx · mwx

NAvV
. (3.25)
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This generates the following propensity function (Equation 3.26).

aS =
Fs

V

(
Sf · NAvV

mwS
−Ns

)
− qs ·NX · mwX

mwS
. (3.26)

Intending to simplify when programming the equations, for each chemical species, a conversion con-

stant was defined and applied (Equation 3.27). Replacing this constant into Equation 3.26 yields the

final propensity function, Equation 3.28.

Kconv,i =
NAvV

mwi
, (3.27)

aS =
Fs

V
(Sf ·Kconv,S −Ns)− qs ·NX · mwX

mwS
. (3.28)

In the particular case of DO, the conversion constant differs from the remaining ones, due to the input

initial condition being in units of %DO. As such, Henry’s constant was applied to convert this value to

mol/L (M) and afterwards to number of molecules (Equation 3.29).

Kconv,DO =
NAvV

H
. (3.29)

As for the growth equations such as Equations 3.5 and 3.6, it is only necessary to replace the concen-

tration terms using Equation 3.22. Then, using the conversion constant for each species, it finally leads

to Equations 3.30 and 3.31.

qs =
qsmax

1 +
NA/Kconv,A

Kia

· NS/Kconv,S

S +Ks
, (3.30)

qsox = (qs − qsof ) ·
NDO/Kconv,DO

NDO/Kconv,DO +Ko
. (3.31)

Since both the remaining propensity functions and growth equations are modified in the same way,

there is no need to exhaustively explain all of them. As such, all the final equations are presented in

Table 3.1. Table 3.2 summarises all the parameters used in the model.
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Table 3.1: Final model equations.

Growth equations

µ = (qsox − qm)Yem + qsofYXsof + qsAYXa

qs =
qsmax

1+
NA/Kconv,A

Kia

· NS/Kconv,S

S+Ks

qsox = (qs − qsof ) · NDO/Kconv,DO

NDO/Kconv,DO+Ko

qsof = PAmaxqs
qs+Kap

qA = pA − qsA

pA = qsofYas

qsA = qAmax

1+ qs
Kis

· NA/Kconv,A

NA/Kconv,A+Ksa

qsan = (qsox − qm)Yem + Cx

Cs

qo = (qsox − qm)Yos + qsAYoa

Propensity functions - Fed-batch growth

aX = µNX − F
V NX

aS = Fs

V (Sf ·Kconv,S −Ns)− qs ·NX · mwX

mwS

aA = qA ·NX · mwX

mwA
− F

V NA

aDO = KLa (DO∗ ·Kconv,DO −NDO)− qo ·NX ·mwX

Propensity functions - GFP production

IND=OFF:
aX = µNX − F

V NX

aP = 0

IND=ON:
aX = µNX(1− xind)− F

V NX

aP =
(
YP/Xµ+ β

)
NXxind · mwX

mwP
− F

V NP

Propensity functions - rhGH production

aP =
(
k1µ

NI/Kconv,I

NI/Kconv,I+Ki
+ k2

)
·NX · mwX

mwP
− k3NP −NP

F
V

aI = Fi

V (If ·Kconv,I −NI)−NI
F
V

Feeding control

Fs(t) =
µset

Yx/sSf
(X0V0)e

µsettf

Fi =
0.238Fs

If−0.238
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Table 3.2: Final parameters.

Parameter Value
Fed-batch growth

qm (Specific maintenance coefficient) 0.0129
Yem (Yield for exclusive maintenance) 0.5333
Yxsof (Biomass yield from overflow route) 0.2268
Yxa (Yield of biomass on acetate) 0.5178
Cx (Carbon content of biomass) 0.488
Cs (Carbon content of glucose) 0.391
Sf (Glucose concentration in feed) 300
qsmax (Maximum specific glucose uptake rate) 0.6356
Kia (Inhibition of glucose uptake by acetate) 1.2399
Ks (Affinity constant for substrate consumption) 0.037
KO (Affinity constant for oxygen consumption) 0.0001
Pamax (Maximum specific acetate production rate) 0.2268
Kap (Monod-type saturation constant for intracellular acetate production) 0.5052
Yas (Yield of acetate on substrate) 0,9097
qamax (Maximum specific acetate consumption rate) 0.1148
Kis (Inhibition of acetate uptake by glucose) 2.1231
Ksa (Affinity constant for acetate consumption) 0.0134
KLa (Volumetric mass transfer coefficient) 220
DO∗ (Saturation value of dissolved oxygen) 99
Yos (Yield of oxygen on glucose) 1.552
Yoa (Yield of oxygen on acetate) 0.544
Yx/s (Yield of biomass on substrate) Yem + qm
µset(Set specific growth rate during exponential feed) 0.25

GFP production
Yp/x (Yield of protein on biomass) 0.05
β (Protein production constant) 0.014
xind (Attenuating term) 0.8
qm (Specific maintenance coefficient) 0.0133
Yem (Yield for exclusive maintenence) 0.5
Yxsof (Biomass yield from overflow route) 0.229
Yxa (Yield of biomass on acetate) 0.5794
qsmax (Maximum specific glucose uptake rate) 1.5
Kia (Inhibition of glucose uptake by acetate) 1.0062
Ks (Affinity constant for substrate consumption) 0.05
Kap (Monod-type saturation constant for intracellular acetate production) 0.56
Kis (Inhibition of acetate uptake by glucose) 1.8383
Ksa (Affinity constant for acetate consumption) 0.0128
Yos (Yield of oxygen on glucose) 1.5722
Yoa (Yield of oxygen on acetate) 0.5221

rhgh production
k1 (Induced rhGH biosynthesis rate) 0.32
Ki (Inducer saturation constant) 0.55
k2 (Constitutive rhGH biosynthesis rate) 0.00044
k3 (First order degradation term) 0
If (Inducer concentration in feed) 50
Yem (Yield for exclusive maintenance) 0.65
Sf (Glucose concentration in feed) 600
Pamax (Maximum specific acetate production rate) 0.41
Kis (Inhibition of acetate uptake by glucose) 1.8363
µset (Set specific growth rate during exponential feed) 0.3
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To run the Gillespie algorithm, the equations need to define reaction channels with the corresponding

stoichiometry. In this way, once the ODEs have been transformed in propensity functions, a reaction was

associated to each of them. At this point, an assumption taken here was that the stochiometry would be

1 to 1 as described in Isaza [14].

Even though some species are more likely to be produced (increase in concentration) and others to

be consumed (decrease in concentration), both cases can happen for every species, due to for example

the dilution when feeding occurs. As such, in this work, it was defined that it would be a production

reaction when the associated propensity was positive, and a consumption reaction when the propensity

was negative. The possibility of implementing two separate channels for each species, one for production

and one for consumption, was also evaluated, however it would increase the complexity of the model and

produce the same results. All the reactions implemented in the model are summarised in Table 3.3.

Table 3.3: Reaction channels.

ai > 0 ai < 0

NX → NX + 1 NX → NX − 1

NS → NS + 1 NS → NS − 1

NA → NA + 1 NA → NA − 1

NDO → NDO + 1 NDO → NDO − 1

NP → NP + 1 NP → NP − 1

NI → NI + 1 NI → NI − 1

Volume is a key variable in this simulation since it is used in the C to N conversion and also is changing

throughout the simulation due to the fed-batch mode of operation.

Since the models deal with bioreactors either of industrial or pilot-scale, the volumes in question are

considerably big. As such, if this same volume was to be used in the calculation of N, it would result in a

very big number of molecules for each species which significantly slows the computation or even renders

it impossible, due to the big memory burden inherent to the algorithm. This way, it was decided to have

two separate volume variables, a simulation volume, Vsim, used in the computation of N and the reactor’s

working volume, V .

For the simulation volume, it was appropriate to keep it at cell scale, between 1 ·10−17 L and 1 ·10−18

L. This allows for a computing time that is feasible, even though still extensive, as well as producing a

good match with the deterministic models.

This solution only fixed the first half of the volume “problem”. Since it is required that the bioreactor

volume changes once the feeding is initiated, the first solution was to make it a chemical species to include
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in the SSA. The conversion to N in this case would be described by Equation 3.32. Considering that N is

directly proportional to V, an industrial scale volume, would lead to a number of molecules, that would

make the model computation infeasible.

NV =
ρNAvV

mwV
. (3.32)

With this in mind, another solution was proposed. Consider the volume as a separate value, with

a starting value of V0, equal to the desired bioreactor volume, which is maintained constant through

the batch-phase. Once the feeding phase is initiated, a new variable V , starts being updated through

Equation 3.33 on each iteration of the SSA.

Vnew = Vcurrent + F · τ. (3.33)

3.3 Stochastic Simulation Algorithm

The stochastic simulations were performed using the Gillespie direct method [11], previously described

in Chapter 2. The algorithm hereafter detailed is based on the work of [11] which is described more

straightforwardly by Kierzek et al. [12].

Initialisation:

• Input values for the stochastic rate constants ci (i = 1, ...,M).

• Input initial values for initial number of reactant molecules Xi (i = 1, ...,M)

• Set initial time of simulation t = 0.

Iteration:

• For every reaction calculate the propensity aµ = hµcµ (µ = 1, ...,M)

• Calculate a0 =
∑M

n=1 aµ

• Generate two random numbers r1 and r2 uniformly distributed over (0, 1).

• Calculate the waiting time for the next reaction τ = (1/a0)ln(1/r1)

• Choose the µ index for the next reaction so that (a1 + a2 + ...+ aµ−1) < r2a0 < (a1 + a2 + ...+ aµ)

• Update the number of molecules in the system by executing reaction µ according to the stoichiom-

etry.

• Set simulation time to t = t+ τ
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Termination:

• Terminate simulation when time of simulation t exceeds predetermined maximum simulation time

or when all substrates of all reactions in the system are consumed (a0 = 0)

Given that the algorithm is based on the chemical interactions of molecules on a sub-microscopic

level, the inputs of the propensity functions must be in a unit of molecules and not concentrations. Since

concentration units are widely used, it was imperative to adapt the algorithm to have these as input and

output, so that comparison with other models and experimental data is possible.

First of all, the conversion from concentrations to number of molecules should be done by using to

the Avogadro number according to Equation 3.34.

Ni =
CiNAvV

mwi
. (3.34)

When the algorithm terminates, the reverse conversion is done by applying Equation 3.22.

3.4 Parameter Estimation

Given the implicit randomness of the SSA, for parameter estimation, it was required to use a method

that would take this into consideration. ABC, is a widely used likelihood-free approach, especially in

the field of systems biology [4]. This method is based on a discrepancy metric, ρ, described by Equation

3.35, which measures the difference between the measured data, Yobs, and the simulated data, Sobs that

is generated trough the SSA. The tested parameter’s acceptance depends on the discrepancy threshold, ϵ.

ρ (Yobs, Sobs) =

[
nt∑
i=1

(Y (ti)− S (ti))
2

]1/2

. (3.35)

The algorithm used to implement this method can be described with the following steps:

• Define the starting value of the parameter to test, θ, and the range in which it should be varied.

• Generate a trial parameter, θtrial, using a random uniform distribution in the interval defined in

the previous step.

• Generate the simulated data with θtrial as an input by running the SSA, and generating data for

the time points present in the experimental data.

• Calculate the value for the discrepancy metric, ρ.

• If ρ ≤ ϵ, θtrial is accepted.
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• The algorithm terminates when a predefined number of parameters has been accepted.

According to Warne et al. [4], the value for ϵ should be chosen such that it is small enough in order

for a good approximation to the experimental data to be obtained, but not so small that it will make the

estimation too long. As such, for the data sets in question, a value of ϵ = 5 for the GFP and ϵ = 0.01 for

the rhGH, was assumed to be acceptable. The number of accepted parameters was decided to be 100 to

assure a sufficiently low standard deviation.

Once the set of accepted parameters was determined, a histogram was plotted to determine what

interval is most suited. Finally, the new parameter is selected using the average value within the selected

range.

As an explanatory example, Figure 3.2 represents one of the histograms obtained.

Figure 3.2: Example histogram for one of the estimated parameters; the red circle highlights the chosen interval.

So, in this case, the interval [0.03, 0.04] would be chosen, and the selected new parameter value would

be the average value of the interval, 0.035.
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Results and discussion
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The present chapter will detail the main results obtained throughout this project. These results will

be discussed and compared with the available knowledge from literature.

4.1 E. coli central carbon metabolism

The first approach was to model E. coli’s growth using a structured model. This was because SSA’s

use has been reported for systems containing a small number of molecules and for models that consist of

reaction networks. So, it was decided to use the Jahan et al. [9] model for the central carbon metabolism

of E. coli. This model encompasses the main steps of the carbon source metabolism and can predict the

effects of multi layer regulations, such as allosteric effectors and gene regulation, on the biomass growth.

However, this model is constituted by 129 reactions and includes 51 species. As mentioned in Chap-

ter 2, this algorithm can be very computationally intensive. This is explained because for each iteration,

two random numbers must be generated and, the propensity of each reaction is re-calculated. If added

to this, the number of reactions is very big, it is clear that the computation time will be very large as

well. Therefore, while using this model, it was not possible to get relevant results. Figure 4.1 exemplifies

the results that were obtained.

Figure 4.1: Comparison between one realisation of the stochastic simulation, depicting the evolution of the
glucose (orange) and biomass (blue) concentration (left hand side plot), and the deterministic sim-
ulation depicting the evolution of biomass concentration [9] (right hand side plot).

The simulation depicted in Figure 4.1 only ran for a simulated time of 1 · 10−5 h. The reason is

mentioned above, the algorithm is very computationally demanding and thus simulating this high number

of reactions takes a long time. This high demand is not only translating in the running time but as well

to a very large memory requirement. Even recurring to a HPC with 400GB of RAM memory, it was not

possible to simulate an amount of time with biological relevance.

Given this, from this first model still some conclusions can be drawn. The range of concentrations in

which biomass varies is the same in the present simulation and the deterministic one conducted by the

authors of the original work. This indicates that the strategy used here for the conversion between number
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of molecules and concentration units was successful. Also, it can be seen, that even though the trajectories

are varying in the same range, the stochastic simulation dynamics has very different characteristics. The

evolution is noisy when compared to the deterministic one which is a smooth line. This goes in hand

with the goal of this work, which was to highlight the uncertainty associated with biological processes.

Finally, the conclusion was reached, that the original Gillespie algorithm is not adequate for such a high

number of reactions. Thus, in these cases, one of the optimised versions mentioned in Chapter 2 should

be used.

4.2 E. coli fed-batch fermentation

Given the results from the first model, it was clear that a new strategy had to be adopted. So, an

unstructured model was utilised. The model, adapted from the one of Anane et al. [26], simulates the

growth of E. coli based on growth rate and substrate consumption equations and uses ODEs to describe

the evolution of species over time. As explained in Chapter 3, each ODE corresponds to one reaction

channel and so it was possible to reduce the number of reactions to be simulated to the number of species

in question. In this first case, four.

This reduction in model complexity, reduced greatly the required computational power. Thus, even

though the simulation was still considerably slower than the ones conducted deterministically, it was

now possible to simulated the full duration of the fermentation. Since each realisation of the stochastic

simulation can originate a different trajectory, each plot that is shown represents 100 realisations of the

same simulation.

Figure 4.2: Evolution of biomass concentration over time: a) 100 realisations of the developed stochastic sim-
ulation model; b) results of the deterministic model (blue) and experimental data (red). Line A
corresponds to the start of the exponential glucose feed fed-batch phase and line B to the start of
the constant glucose feed fed-batch phase [26].

Starting by analysing the time evolution of the biomass concentration, it can be seen that there are
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no significant differences between the two plots. It is a plot characteristic of a fed-batch fermentation.

There is a slower growth in the beginning, corresponding to the batch mode, which accelerates once the

feeding is initiated. There is no exhaustion of the carbon source and thus biomass does not enters a

stationary phase, unlike the characteristic curve of a batch fermentation.

Focusing solely on stochastic simulation, it can be observed that the line starts thinner and becomes

wider until time has reached around 10 hours, from which point the line width is maintained. Since the

plot is representing 100 realisations, the thinner the line, the higher the overlap between the simulations.

So, even though the uncertainty is very small for this species, the smallest corresponds to the batch phase

of the fermentation, increasing when the feed starts. This is in accordance with the expectation, because

one more control variable is included in the system (the feed rate), increasing the sources of uncertainty.

Figure 4.3: Evolution of glucose concentration over time: a) 100 realisations of the developed stochastic sim-
ulation model; b) results of the deterministic model (blue) and experimental data (red). Line A
corresponds to the start of the exponential glucose feed fed-batch phase and line B to the start of
the constant glucose feed fed-batch phase [26].

Regarding the evolution of the glucose concentration, the stochastic simulation is in general agree-

ment with the deterministic results. Still, batch completion happens around 2 hours earlier than in the

deterministic case. This happens in spite of exactly the same equations being used as well as the same

initial conditions. Also, even though the exponential feeding phase lasts for the same number of hours,

and the same feed equation is applied, a higher glucose concentration is achieved. Notwithstanding, this

indicates that the performed simulation can reproduce the results to a good extent, even though not the

exact same results are obtained. Although, these discrepancies do not seem to influence the behaviour of

biomass, which is the variable of most interest in a fermentation operation as this one, where no other

product is being produced.

Regarding the period after the exponential feed is switched to a linearly decreasing one, first it should

be noted that the spikes observed in the deterministic simulation (plot b)), that start after around 20h,

are due to glucose pulses introduced by the authors to test the robustness of the model. This is not done
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in the model developed in this thesis and thus there are no spikes present in plot a) . Secondly, in contrast

to the biomass case, it is the final stage of the fermentation that has less uncertainty associated. The line

is very thin after a fermentation time of 15h meaning that the 100 realisations are highly overlapping. At

this stage, glucose concentration is made to be very low and constant. Because of this, on the stochastic

algorithm, the glucose reaction channel is not selected as the reaction that should occur leaving little to

no space for uncertainty.

Figure 4.4: Evolution of acetate concentration over time: a) 100 realisations of the developed stochastic sim-
ulation model; b) results of the deterministic model (blue) and experimental data (red). Line A
corresponds to the start of the exponential glucose feed fed-batch phase and line B to the start of
the constant glucose feed fed-batch phase [26].

Now analysing the evolution of the acetate concentration, it is the variable with the biggest difference

between the two plots thus far. The beginning of the plot is very similar, with the first peak in acetate

concentration reaching around 0.25 g/L in both cases, only with a slight shift to the left in the stochastic

simulation. This is due to the difference in batch completion time previously mentioned for glucose. As

mentioned in Chapter 2.3, acetate production is related with both glucose and dissolved oxygen, so its

evolution can be explained by the evolution of the other two. In the deterministic simulation it is possible

to observe an abrupt decrease of the acetate concentration once the batch glucose is consumed; however,

in the stochastic simulation results, this drop is very small and not very noticeable. An explanation to

this can be that the SSA does not respond to these changes so rapidly. It could be due to the fact that

in each time-step only one reaction is selected to occur and thus, when the biggest changes are occurring

in glucose, the acetate reaction is selected less frequently.

After the feeding starts, the evolution of the plots is mostly the same, with the quick rise in glucose

concentration, there is a rise in acetate production. In plot a), the achieved concentration is higher, but

this can be easily explained. Since the concentration does not drop to the same values, even though

the difference is about the same, the maximum attained value is higher. Once the exponential feed is

finished, there is a sharp decrease in acetate concentration which remains close to zero until the end of
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the fermentation. This part is equivalent in both plots and like in the glucose plots it is where the line

is thinner and so less uncertainty is present.
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Figure 4.5: Evolution of dissolved oxygen concentration over time: a) 100 realisations of the developed stochastic
simulation model; b) results of the deterministic model (blue) and experimental data (red). Line A
corresponds to the start of the exponential glucose feed fed-batch phase and line B to the start of
the constant glucose feed fed-batch phase [26].

The evolution of dissolved oxygen (DO) is where the stochastic simulation seems the least accurate.

The general pattern is present but mostly ranges between very different values. Excluding the first five

hours, the stochastic simulation always gives lower values than the deterministic simulation as well as the

experimental data, even though the decrease and increase dynamics are captured. A possible explanation

for the big discrepancy, is that the conversion for number of molecules in the case of oxygen is more

complicated than the other species. So, it is probable that this conversion has a bigger impact and

influences the rise and fall of the concentration. Overall, it does not seem that these discrepancies are

affecting the behaviour of the remaining species; therefore it does not appear to be a big fault of this

model.

4.3 Production of recombinant GFP

Having established the model for E.coli growth, with overall good results, the next step was to integrate

the production of the proteins of interest into the model. For the production of GFP, the deterministic

model available for comparison, from Muldbak et al. [38], was for a batch mode fermentation. Given this,

the first simulation for GFP production was done for batch mode, so it could be possible to compare. The

same equations as in the previous model were used, only the feed related terms were disregarded. Because

of this, only the plots for GFP and glucose are included in this section, in order not to be repetitive. The

remaining results of the model can be found in Appendix B.
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Figure 4.6: Evolution of glucose concentration over time: a) 100 realisations of the developed stochastic simu-
lation model; b) results of the deterministic model [38].

As mentioned in Chapter 3.1.3.A, the production of GFP is controlled by an inducer switch. This is

activated when glucose concentration decreases below 2 g/L. When this switch is off, the propensity of

the GFP production reaction is set to 0. This explains why in Figure 4.7, GFP only starts increasing

at the same time as glucose is seen to be below 2 g/L, as shown in Fig. 4.6. Consequently, it can be

deduced that the switch dynamics are well captured by the model.

Figure 4.7: Evolution of GFP production over time: a) 100 realisations of the developed stochastic simulation
model; b) results of the deterministic model [38].

Focusing now on the time evolution of the protein. Firstly, it is clear in this plot that the biggest

variance in trajectories is observed. Nonetheless, the deterministic simulation line, falls within the predic-

tion envelope of the stochastic simulation. As previously mentioned, stochasticity is particularly relevant

when there is a small number of molecules involved. So, considering that at the peak, there is only 0.05

gGFP per each gBiomass, the order of magnitude of protein concentration is significantly lower than the

remaining species. This is the most likely explanation for why the discrepancy is so obvious. Likewise,

this is in accordance to what would be expected in a real-life production case. Product titers are subject
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to big variations, even if biomass titers remain constant. This is because there can be a a numerous

amount of factors that influence it, since it is the production of a foreign protein.

4.3.1 Including fed-batch growth

Once the comparison with the deterministic model was made, it was decided to add a substrate feed to

the model, since fed-batch mode is the most well-documented mode of operation in fermentations with

the goal of protein production.

The feeding strategy used was the same as in the previous model for E. coli fed-batch growth. The

substrate feeding would start when the concentration of glucose dropped below 0.5 g/L and the induction

would occur 30 minutes later, in accordance with Aucoin et al. [31].

Figure 4.8: Evolution of GFP production over time: a) 100 realisations of the developed stochastic simulation
model including a substrate feed; b) results of the same model for batch mode operation.

Comparing both results, it can be observed that the fed-batch mode is more advantageous, as expected.

The production of protein starts earlier and the increase in production is faster. As well, the prediction

space is now smaller. It means that there is less uncertainty associated with the production of protein

which results in a more accurate prediction.

4.4 Production of rhGH

In the case of the production of rhGH, the dynamics are different. Instead of an inducer switch, the

production of the protein is linked to the inducer concentration that enters the system as a feed stream.
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Figure 4.9: Evolution of rhGH production over time: a) 100 realisations of the developed stochastic simulation
model; b) results of the deterministic model [35].

The inducer feed is set to start when biomass concentration reaches 20 g/L. As can be seen in Fig.

B.4 of Appendix B, the plots for the biomass are different. However, since the results obtained by the

implemented model are in agreement with the ones of Anane et al. [26] (the evolution is of the same

shape), the discrepancy with the deterministic simulation is regarded as an error from the model proposed

in [35]. Nonetheless, this means that this difference will propagate to the other species, which depend on

the biomass concentration, such as the inducer or rhGH.

Thus, overlooking the fact that the inducer feed starts some hours later on plot a), the evolution is

otherwise very similar. The inducer concentration is null, followed by a very rapid increase to the desired

inducing concentration (1 mM or 0.238 g/L), from which point it remains constant until the end of the

fermentation.

Figure 4.10: Evolution of rhGH production over time: a) 100 realisations of the developed stochastic simulation
model; b) results of the deterministic model [35].

The model includes a term for constitutive expression in the protein production equation. Therefore,
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in both plots some production before the inducer feed is started. This phase seems to have almost as much

uncertainty associated as the end of the fermentation. Especially at the beginning of the fermentation,

when the biomass concentrations are very low, a very small concentration of protein is necessary to create

a spike in relative protein production. As for the period when the inducer is being fed, the deterministic

line is contained in the range predicted by the stochastic simulation. Regarding the associated uncertainty,

the same reasoning as presented for GFP can be applied.

4.5 Parameter Estimation

After validating the model against the deterministic solutions, it was important to validate it against

experimental data. The Anane et al. [26] model already included re-estimated parameters and was in

accordance with experimental data. This can be observed in Figures 4.2 - 4.5. Then, a decision was made

that the focus will be put on the protein production for this final task (parameter estimation).

4.5.1 For GFP production

The results of the simulation of the GFP production were compared with the experimental data of [31].

After adjusting some parameters of the model, such as the feed rate and substrate concentration in

the feed, to match the ones described in the article, the simulation results were plotted against the

experimental data (Fig. 4.11).

Figure 4.11: Comparison of the simulation results for GFP production (100 realisations) with experimental data
(black dots) [31], using the parameters from the literature [38].

From this comparison, it can be seen that some of the realisations of the simulation can describe

the experimental data satisfactorily. However, looking at the general trend, the model predictions are
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considerably higher than the experimental results. In order to obtain a better model fit, some changes

and adjustments were performed to the parameters in the equation for protein production (3.18).

dP

dt
=

(
YP/Xµ+ β

)
X − F

V
P. (3.18)

Looking again at this equation, there are two parameters that influence the production rate, YP/X and

β, the protein to biomass yield and a protein production constant, respectively. The first had a value of

0.05 and the second of 0.014. and then evaluate if the model predictions fitted better to the experimental

data. The first parameter was selected. This parameter was varied by ±50%. The algorithm was stopped

when 100 parameters are accepted that guarantee a discrepancy threshold (ϵ) below 5.

Figure 4.12: Histogram illustrating the distribution of the accepted parameters in different intervals.

The 100 accepted values are plotted in a histogram to determine which interval of parameters leads to

the best simulation results. As can be seen in Fig. 4.12, this interval is [0.03, 0.04]. Hence, the values that

belonged to this range are taken and their average value is calculated, this corresponded to the average

value of the interval itself, 0.035.
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Figure 4.13: Comparison of the simulation results for GFP production (100 realisations) with experimental data
(black dots) [31]: a) using the literature parameter value; b) using the re-estimated parameter.

In Figure 4.13, plot a) represents the simulation results using the value of of 0.05 for YP/X , and in

plot b), the results obtained for the new parameter value of 0.035. Even though the prediction range is

still rather wide, just like in Figure 4.7, the improvement is evident. The experimental data now falls in

the middle of the simulation results, instead of in the lower range of the simulation results like previously.

In summary, the re-estimation of this parameter was enough to see a significant improvement in the

simulation results, and thus no further estimation was performed. Now, with this new parameter, the

model can predict well the envelope for the production of the protein.

4.5.2 For rhGH production

Moving on to rhGH, finding literature with experimental results for the conditions for which the model

was developed proved to be very difficult. Hence, it was then assumed that the best approach was

to use the experimental data from Bylund et al. [39]. The issue was that the plots presented in the

article all had arbitrary units (au). So, given some concrete results presented in the text and some

knowledge of the typical range for these values, some interpretation assumptions were made. The most

relevant were the relative protein production units, where it was assumed that 100 a.u corresponded

to 100 mgProtein/gBiomass. Considering this, the parameter value that was obtained might not be the

most accurate, but this exercise was useful for observing the model’s sensitivity to the changes in the

parameter.
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Figure 4.14: Comparison of the simulation results for rhGH production (100 realisations) with experimental
data (black dots). The experimental data was taken from Bylund et al. [39] Figure 6 a), using the
results corresponding to the SDR bioreactor.

Figure 4.14 plots the experimental data against the simulation results. Of note is that, the experi-

mental results provided data from the point when induction started (25 h), and so, the values of the time

preceding this were assumed to be 0. Since the model predicts some constitutive protein production in

this stage, the initial discrepancy was expected. However, it was decided to not remove or re-estimate

the parameter responsible for this, because said production is documented in the literature. Concerning

the period for which there is effectively data available, it can be observed that the model predictions are,

in every realisation, too low when compared to the experimental results.

dP

dt
=

(
k1µ

I

I +Ki
+ k2

)
X − k3P − P

F

V
. (3.19)

Looking once more into Eq. 3.19, four parameters influence the production of rhGH, k1, k2,Ki and

k3. These represent induced and constitutive protein biosynthesis rates,the induction constant and a

constant first order degradation term, respectively. Similar to the previous case, it was decided to start

with the re-estimation of k1 which had an initial value of 0.32. In this case, the value chosen for ϵ was

0.01. Once 100 parameters were accepted, they were plotted in a histogram (Fig. 4.15).
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Figure 4.15: Histogram illustrating the distribution of the accepted parameters in different intervals.

From this, it can be established that the interval chosen is [0.40, 0.48]. From the values within this

interval, the average value is picked, corresponding to 0.44.

Figure 4.16: Comparison of the simulation results for rhGH production (100 realisations) with experimental data
(black dots)[39]: a) using the literature parameter value; b) using the re-estimated parameter.

In Figure 4.16, plot a) represents the simulation using the value of 0.32 for k1 and plot b), the new

value of 0.44. First of all, it is observed that now the experimental data is falling mostly in the center

of the simulation predictions. This improvement is very significant, since, to start with, these values

were in every case outside of the prediction space. Similarly, the prediction range was decreased giving

a smaller envelope. All in all, the re-estimated parameter made the prediction not only more accurate,

but also more constrained. It should be noted once again, that the interpretation of the experimental

results required assumptions, and thus this new parameter value should not be taken by itself. Instead,

this procedure illustrated that the model is sensitive to this parameter and for the hypothetical case of

the presented experimental results, its decrease is beneficial for the quality of the predictions.

51



52



5
Conclusion and future perspectives
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5.1 Conclusions

Stochasticity is an inherent part of biological processes, since randomness and noise are an essential

characteristic of living beings. Thus, this should be taken into account when trying to model such

systems in order to gain a better understanding of certain biological phenomena.

The production of recombinant proteins is a major part of the biotechnological industry, since these

can have several applications ranging from therapeutics, to food supplements and detergents, to mention

a few. Part of the goal of Industry 4.0, is to get the biomanufacturing industry more automated and

digitised. Models of key processes are in this an important to tool to gain better understanding and allow

the prediction and control of different production scenarios.

Given these two things it seemed relevant to adapt these bioprocess models, namely fermentation, to

include stochasticity. The developed work aimed then at the application of the SSA to predictive models

of recombinant protein production in bioreactors.

The first approach used a detailed structured model to predict E. coli ’s growth. It was concluded

that simulating a model with this level of complexity was not feasible recurring to the Gillespie direct

method. It was computationally too intensive, preventing that relevant results could be obtained.

Moving on, unstructured models were developed. This allowed to reduce to a very significant extent

the number of reactions as well as the number of simulated variables. Both these things relieved the

computational burden of the model, allowing for simulation times that gave significant results. The

results of the simulations were in general good, with good agreement with the deterministic results.

However, the results for all the species excluding the recombinant proteins showed very little uncer-

tainty. So, on the one hand the model was validated by the deterministic results, but on the other hand,

it did not seem to bring a significant advantage. The results predicted a solution space not much bigger

than the deterministic model, while having a much slower computation. So, even though it is a good

result in terms of the applicability of this type of algorithm to large scale bioproduction, the deterministic

solution seems to have the upper hand. Its calculation of trajectories is almost immediate and gives a

good description of the average behaviour of the system, which for the large number of molecules involved

is adequate.

Regarding the case studies for both recombinant proteins, GFP and rhGH, the results obtained were

very different than the ones described above. Considering that the concentrations of these molecules

are significantly smaller when compared to the remaining species, it was expected that the uncertainty

captured by the model would be higher. This is exactly what was observed. Even though the deterministic

solution was in all cases included in the stochastic simulation envelope, the stochastic information provided

more information on the different possible scenarios. So, as a compromise for losing a single “exact”
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solution, information about the uncertainty associated with the process is gained.

Moreover, this positive outcome also attested that the assumptions made in developing the propensity

equations were valid under this scenario.

Finally, using ABC rejection sampler, new parameters for the equations of protein production were

estimated. Even though it was decided to perform this for only one parameter for each protein, in order

to reduce the computational effort, significant improvements were observed for both the proteins.

To conclude, the goal of this work was achieved, providing one more example of successful implemen-

tation of the SSA in a case that presumably had not been done previously, the production of recombinant

proteins.

5.2 Future Perspectives

Now, with the model successfully implemented and proof of concept of its usability for industry relevant

bioproduction cases, it is important to explore the insights that can be drawn with this type of model

and as well point out what can be improved.

It was outside the objective of this thesis and as well there was not enough time to conduct some

production optimisation studies. Nonetheless, in future work on this subject, the model can be used

to study how different initial conditions and process parameters can influence the production, and help

determine optimal conditions. Also, the inherent uncertainty of the model can be used to study its

sensitivity to the different parameters, and with that draw conclusions on which parameters can influence

production the most.

On trying to improve the efficiency of the model, different strategies can be proposed. One is to utilise

one of the more recent methods mentioned in Chapter 2, like the Next reaction method or the τ -leaping

method. This could be especially relevant when trying to implement a structured model, as the first one

herein proposed.

Another suggestion is on the implementation of a hybrid model. As it has been mentioned, the species

excluding recombinant protein, had very little uncertainty associated when using this algorithm. Because

of that, an approach could be adopted where biomass and glucose are modelled recurring to deterministic

equations and protein production is modelled in a stochastic way. This way, the computation time would

be greatly decreased, without loosing the advantages of stochastic simulation on the species for which it

is relevant.
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A
Code for the developed model

This appendix shows the Python code for the developed model. It is the code corresponding to the rhGH

production model, since this was the msot complex one.

Listing A.1: PYTHON Code

1 import numpy as np

2 import random

3 import math

4 import copy

5

6 n=6.022e23

7 Vsim=1e-18

8 mwBM=25

9 mwS=180.156

10 mwA=60.052

11 mwI=238.31
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12 mwP=22124.76

13 mwH2O=18.01528

14 H=14000

15 C={'BM':n*Vsim/mwBM ,'S':n*Vsim/mwS ,'A':n*Vsim/mwA ,'I':n*Vsim/mwI ,'P':n*Vsim/

mwP ,'DO':n*Vsim/H} #C to N conversion constant

16

17 #parameters

18 If=50

19 Sf=600

20 k1=0.32

21 k2=0.00044

22 k3=0.6

23 Ki=0.55

24 Kap=0.5088

25 Ksa=0.0128

26 Ko=0.0001

27 Ks=0.0381

28 Kia=1.2602

29 Kis=1.8363

30 Pamax=0.41

31 qAMAX=0.1148

32 Qm=0.0129

33 qSMAX=0.6356

34 Yoa=0.5221

35 Yxa=0.5718

36 Yem=0.65

37 Yos=1.5722

38 Yxs=Yem+Qm

39 Yxsof=0.229

40 muset=0.3

41 Cx=0.488

42 Cs=0.391

43 Sc=1.5

44 Yas=0.9097

45 Xc=4

46 Vi=1.4e3

47 kla=220

48 DOTstar=99
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49

50 class rxnetwork:

51 def __init__ (self , X,react):

52

53 self.M=len(react) #number of reactions

54

55 self.N=len(X) #number of species

56

57 self.r=react #stoichiometry

58

59 self.X0=X #initial conditions

60

61

62 def Gillespie(tend):

63

64 num_simulations=100

65

66 for i in range(num_simulations):

67

68 X={'BM':[1],'S':[2],'A':[0.0129],'I':[0],'P':[0],'DO':[98]} #initial

conditions

69 V=[Vi] #variable for volume update

70 X0=[] #variable to store X before feeding start

71

72 n=6.022e23

73 Vsim=1e-18

74 mwBM=25

75 mwS=180.156

76 mwA=60.052

77 mwI=238.31

78 mwP=22124.76

79 mwH2O=18.01528

80 H=14000

81 C={'BM':n*Vsim/mwBM ,'S':n*Vsim/mwS ,'A':n*Vsim/mwA ,'I':n*Vsim/mwI ,'P':

n*Vsim/mwP ,'DO':n*Vsim/H}

82

83 for key in X:

84 X[key][0]=X[key][0]*C[key]
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85

86 a=[[] for x in range (6)] #list for propensities

87

88 def prp(t, tf ,X):

89

90 if tf[-1]==0:

91 Fs=0

92 else:

93 if tf[-1]<=3:

94 Fs=((X0[0]*Vi*muset)/(Yxs*Sf))*math.exp(muset*tf[-1])

95 elif t[-1]>3:

96 if (X['S'][-1]/C['S']) >=0.03:

97 Fs=3e3*-120*tf[-1]

98 if Fs <=0:

99 Fs=0

100 else:

101 Fs=((X0[0]*Vi*muset)/(Yxs*Sf))*math.exp(muset*tf[-1])

102

103

104 if X['BM'][-1]/C['BM']<20:

105 Fi=0

106 else:

107 if (X['I'][-1]/C['I'])<0.238:

108 Fi=20

109 else:

110 Fi=0.238*Fs/(If-0.238)

111

112 F=Fi+Fs

113

114 if tf[-1]>0:

115 V.append(V[-1]+(F*(tf[-1]-tf[-2])))

116

117 else:

118 V.append(Vi)

119

120 qS=(qSMAX /(1+((X['A'][-1]/C['A'])/Kia)))*((X['S'][-1]/C['S'])/((X

['S'][-1]/C['S'])+Ks))
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121 qSA=( qAMAX/(1+(qS/Kis)))*((X['A'][-1]/C['A'])/((X['A'][-1]/C['A'

])+Ksa))

122 qSOF=Pamax*(qS/(qS+Kap))

123 qSOX=(qS -qSOF)*(X['DO'][-1]/C['DO'])/((X['DO'][-1]/C['DO'])+Ko)

124 mu=(qSOX -Qm)*Yem+qSOF*Yxsof+qSA*Yxa

125 pA=qSOF*Yas

126 qA=pA-qSA

127

128 if X['S'][-1]<=0:

129 mu=0

130

131 a[0]=mu*X['BM'][-1]-X['BM'][-1]*F/V[-1]

132 a[1]=Fs/(V[-1])*(Sf*C['S']-X['S'][-1])-qS*X['BM'][-1]*( mwBM/mwS)

133 a[2]=qA*X['BM'][-1]*( mwBM/mwA)-X['A'][-1]*F/V[-1]

134 a[3]=(Fi/V[-1])*(If*C['I']-X['I'][-1])-Fs/V[-1]*X['I'][-1]

135 a[4]=((k1*mu*(X['I'][-1]/C['I']))/(Ki+(X['I'][-1]/C['I']))+k2)*X[

'BM'][-1]*( mwBM/mwP)-X['P'][-1]*F/V[-1]

136 qSan=(qSOX -Qm)*Yem*Cx/Cs

137 qo=Yos*(qSOX -qSan)+qSA*Yoa

138 a[5]=kla*( DOTstar*C['DO']-X['DO'][-1])-qo*X['BM'][-1]*mwBM

139

140 return a

141

142 r=[] #stoichiometry matrix

143

144 dict1=copy.deepcopy(X)

145 for x in dict1:

146 dict1[x]=0

147 dict1['BM']=1

148 r.append(dict1)

149

150 dict4=copy.deepcopy(X)

151 for x in dict4:

152 dict4[x]=0

153 dict4['S']=1

154 r.append(dict4)

155

156 dict5=copy.deepcopy(X)
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157 for x in dict5:

158 dict5[x]=0

159 dict5['A']=1

160 r.append(dict5)

161

162 dict7=copy.deepcopy(X)

163 for x in dict7:

164 dict7[x]=0

165 dict7['I']=1

166 r.append(dict7)

167

168 dict9=copy.deepcopy(X)

169 for x in dict9:

170 dict9[x]=0

171 dict9['P']=1

172 r.append(dict9)

173

174 dict11=copy.deepcopy(X)

175 for x in dict11:

176 dict11[x]=0

177 dict11['DO']=1

178 r.append(dict11)

179

180 rx=rxnetwork(X,r)

181

182 t=[0] #initial time

183 tf=[0] #variable to store t after feeding start

184 X=rx.X0 #set X to initial conditions

185 stc=rx.r #set stoichiometry matrix

186

187 rev=copy.deepcopy(stc) #create matrix for stoichiometry of "reverse"

reaction

188 for i in range(len(stc)):

189 for key in stc[i]:

190 rev[i][key]=-stc[i][key]

191

192 while t[-1]<tend:

193
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194 notabsprp=prp(t,tf ,X) #actual propensity values

195

196 updtprp=copy.deepcopy(notabsprp) #absolute propensity values

197 for i in range(len(updtprp)):

198 updtprp[i]=abs(updtprp[i])

199

200 prp_sum=sum(updtprp) #sum of all propensities

201

202 if prp_sum ==0: #stop algorithm when there is no more substrate

molecules

203 break

204

205 rand=random.uniform(0,1)

206

207 tau=abs(1/prp_sum*np.log(1/rand)) #timestep

208

209 t.append(t[-1]+tau)

210

211 rand2=random.uniform(0,1)

212

213 for j in range(rx.M): #selection of reaction channel

214 if rand2*prp_sum >sum(updtprp [:j]) and rand2*prp_sum <=sum(

updtprp [:j+1]):

215 for key in X:

216 if notabsprp[j]>0:

217 X[key]. append(X[key][-1]+stc[j][key])

218 elif notabsprp[j]<0:

219 X[key]. append(X[key][-1]+rev[j][key])

220

221 for key in X: #condition to prevent negative concentration values

222 if X[key][-1]<0:

223 X[key][-1]=0

224

225 if (X['S'][-1]/C['S'])<0.5: #initiate substrate feed

226 tf.append(tf[-1]+tau)

227 X0.append(X['BM'][-1]/C['BM'])

228 else:

229 if tf[-1]>0:
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230 tf.append(tf[-1]+tau)

231

232 conc=copy.deepcopy(X) #convert N to C

233 for key in X:

234 for i in range(len (X[key])) :

235 conc[key][i]=X[key][i]/C[key]

236

237 pratio =[0 for x in range(len(conc['BM']))]

238 for i in range(len(conc['BM'])):

239 pratio[i]=conc['P'][i]/conc['BM'][i]

240

241 return (t, conc)
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B
Additional simulation results

This appendix presents the plots obtained throughout the results of thesis that were not considered

relevant to include in Chapter 4.

B.1 GFP production

Figures B.1 and B.2illustrate the comparison between the stochastic simulation and deterministic results

for biomass and acetate. There is no relevant difference to be commented.
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Figure B.1: Evolution of biomass overtime: On the left side, 100 realisations of the developed stochastic simu-
lation model; on the right side, results of the deterministic model [38].

Figure B.2: Evolution acetate overtime: On the left side, 100 realisations of the developed stochastic simulation
model; on the right side, results of the deterministic model [38].

Figure B.3 illustrates the comparison between the stochastic simulation and deterministic results for

dissolved oxygen. The observed differences can be explained by what is suggested in Chapter 4 for Model

4.2.
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Figure B.3: Evolution of dissolved oxygen overtime: On the left side, 100 realisations of the developed stochastic
simulation model; on the right side, results of the deterministic model [38].

B.2 rhGH production

Figure B.4 illustrates the comparison between the stochastic simulation and deterministic results for

biomass. The differences are commented in Chapter 4.4.

Figure B.4: Evolution of biomass overtime: On the left side, 100 realisations of the developed stochastic simu-
lation model; on the right side, results of the deterministic model [35].

Figures B.5 and B.6 illustrate the comparison between the stochastic simulation and deterministic

results for glucose and acetate. The differences are not relevant for discussion.
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Figure B.5: Evolution of glucose overtime: On the left side, 100 realisations of the developed stochastic simu-
lation model; on the right side, results of the deterministic model [35].

Figure B.6: Evolution of acetate overtime: On the left side, 100 realisations of the developed stochastic simu-
lation model; on the right side, results of the deterministic model [35].

72



Figure B.7 illustrates the comparison between the stochastic simulation and deterministic results for

dissolved oxygen. The observed differences can be explained by what is suggested in Chapter 4 for Model

4.2.

Figure B.7: Evolution of dissolved oxygen overtime: On the left side, 100 realisations of the developed stochastic
simulation model; on the right side, results of the deterministic model [35].
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