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Resumo

O objectivo de estudar electromecânica dos meios contínuos é formular matematicamente problemas

físicos que incluem deformação de matéria numa perspectiva macroscópica. Começa-se com a

investigação dos efeitos de múltiplas propagações de ondas acústicas perto de um canto ou de um solo

irregular. A onda acústica também é modificada pela atenuação atmosférica. Os efeitos dos três factores

são estudados em duas dimensões para especificar o nível de pressão sonora do sinal total e o seu rácio pelo

do sinal directo. Outro assunto, agora sobre propagação de ondas elásticas, é se as oscilações livres de um

sistema contínuo podem ser atenuadas, ou pelo menos se a energia total é reduzida, devido à aplicação

de forças externas, usando como exemplo oscilações transversais de uma corda elástica uniforme. Para

oscilações amortecidas, um método efectivo em atenuá-las é aplicando uma força cuja amplitude decai

exponencialmente com o tempo. Outro tema sobre ondas é que, após adicionar os campos magnético

e gravítico ao gradiente de pressão, a propagação das ondas Alfvén num meio que as suporte ao longo

das linhas do campo magnético de um dipolo é considerada usando coordenadas dipolares. A equação

das ondas obtida é hipergeométrica gaussiana generalizada. Outro tema é verificar que ondas elásticas

lineares são não-dispersivas em cristais ou matéria amorfa; neste último caso, as ondas longitudinais

e transversais são isotrópicas, mas não a sobreposição delas. Sobre a mecânica estática dos sólidos,

a teoria de vigas Euler-Bernoulli é analisada usando coordenadas Cartesianas na direcção da posição

indeformada ou perpendicular à mesma, mas permitindo efeitos não-lineares para grandes declives de

deformação. A forma não-linear da curva neutra é uma sobreposição de harmónicas lineares. Em relação

à encurvadura não-linear de placas elásticas, as equações de Föppl-von Kármán são resolvidas usando

expansões assimptóticas semelhantes para deslocamento transversal e função de tensão no plano, ambas

com todas as ordens determinadas explicitamente.

Palavras-chave: Ondas acústicas; Supressão activa de vibrações; Fluxo de energia; Ondas

Alfvén; Deformação de vigas e placas
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Abstract

The purpose of studying continuum electromechanics is to formulate, mathematically and in a macro-

scopic perspective, physical problems that involve the deformation of matter. The thesis starts with

an investigation about multipath effects of acoustic waves near a rough ground or near a corner. The

atmospheric attenuation also modifies the acoustic wave. The effects of the three factors are studied in

two dimensions to specify the acoustic pressure level of total signal and its ratio to the direct signal.

Another issue, now about the propagation of elastic waves, is whether an external force can suppress the

free oscillations of a continuous system, or at least reduce the total energy, using as example the trans-

verse oscillations of a uniform elastic string. An effective method of countering the damped oscillations is

applying a force with amplitude decaying exponentially in time. Another issue about waves is that, after

adding the magnetic and gravitational fields to the pressure gradient, the propagation of Alfvén waves

in a medium that can support them along dipole magnetic field lines is considered using dipolar coordi-

nates. The waves equation obtained is an extended Gaussian hypergeometric equation. Another topic is

to verify if the linear elastic waves are non-dispersive in crystals or amorphous matter; in this last case,

the longitudinal and transversal waves are isotropic, but not their superposition. Related to the static

mechanics of solids, the Euler-Bernoulli theory of beams is analysed using Cartesian coordinates along

and normal to the undeflected position, but allowing the non-linear effects of a large slope of deformation.

The non-linear shape of the neutral surface is a superposition of linear harmonics. About the non-linear

bending of elastic plates, the Föppl-von Kármán equations are solved by a method of twin asymptotic

expansions for the transverse displacement and in-plane stress function, both obtained explicitly to all

orders.

Keywords: Acoustic waves; Active vibration suppression; Energy flux; Alfvén waves; Deforma-

tion of beams and plates
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Extended abstract | List of published

articles

This thesis deals with subjects of continuum electromechanics. It begins with the study of multipath

effects that occur when receiving a wave near a corner, for example, the noise of some forms of

urban air mobility near a building or even a telecommunications receiver antenna near an obstacle. The

total signal received in a corner consists of four parts: (i) a direct signal from the source to the observer;

(ii) a second signal reflected on the ground; (iii) a third signal reflected on the wall; (iv) a fourth signal

reflected from both wall and ground. The problem is solved in two dimensions to specify the total signal,

whose ratio to the direct signal specifies the multipath factor. Its amplitude and phase are plotted as

functions of the frequency over the audible range for various relative positions of observer and source.

They are also plotted for several combinations of the ground and wall reflection coefficients. The received

signal consists of a double series of spectral bands. In other words: (i) the interference effects lead to

spectral bands with peaks and zeros; (ii) the successive peaks also go through zeros and “peaks of the

peaks”. The noise received is also modified by atmospheric attenuation and reflections from the ground.

All these effects must be considered concerning the path of the acoustic wave. Most of the literature

about ground effects on noise considers a point source over flat ground, using the method of images, that

does not extend readily to rough ground. The effect of this ground can be modelled by: (i) identification

of reflection points; (ii) use of a complex reflection coefficient at each reflection point; (iii) adding all

reflected waves within line-of-sight of the receiver that is not blocked by terrain (for a flat ground there

is no blockage).

The thesis also addresses whether an applied external force suppresses the free oscillations of a con-

tinuous system, or at least reduces the total energy, for instance, in the linear transverse oscillations of

a uniform elastic string. For undamped oscillations, the non-resonant forcing does not interact with the

normal modes, whose energy is unchanged. It adds the energy of the forced oscillation, thus increasing

the total energy, which is the opposite of the result sought. The resonant forcing leads to an amplitude

growing linearly with time; hence, the energy grows quadratically with time, implying an increase in

total energy after a sufficiently long time. A reduction in total energy is possible over a short time, say

over the first period of oscillation, by optimising the forcing. In the case of a concentrated force, by

optimising its magnitude and location, the total energy with forcing in the first period can be reduced by

xi



a modest maximum of 2% relative to the free oscillation alone. In the case of a continuously distributed

force, optimising the spatial distribution can reduce the energy of the total oscillation to one-fourth of

that of the free oscillation over the first period of vibration. This optimisation shows that continuously

distributed forces are more effective at vibration suppression than point forces. Regarding damped os-

cillations, active vibration suppression is considered again for the transverse oscillations of an elastic

string. Assuming a finite elastic string fixed at both ends, the free oscillations are (i) sinusoidal modes in

space-time with exponential decay in time due to damping. The non-resonant forced oscillations at an

applied frequency distinct from a natural frequency are also (ii) sinusoidal in space-time, with a constant

amplitude and a phase shift such that the work of the applied force balances the dissipation. For resonant

forcing at an applied frequency equal to a natural frequency, the sinusoidal oscillations in space-time have

(iii) a constant amplitude and a phase shift of π/2. In both cases, the (ii) non-resonant or (iii) resonant

forcing dominates the decaying free oscillations after some time. Even after optimising the forcing to

minimise the total energy of oscillation, it remains below the energy of the free oscillation alone, only

for a short time, generally a fraction of the period. A more effective method of countering the damped

free oscillations is to use a force with amplitude decaying exponentially in time; by suitable choice of the

forcing decay relative to the free damping, the total energy of oscillation over all time can be reduced to

no more than 3.6% of the energy of the free oscillation.

The energy balance equation, including the kinetic energy density, the deformation energy density

and the power of external forces, identifies the energy flux as minus the product of the velocity by the

stress tensor; this result does not depend on constitutive relations and applies to elastic or inelastic

matter. The energy flux is also obtained for linear strains and, in the case of transverse vibrations of

elastic strings, is extended to the non-linear case of unrestricted slope. In the linear case, the energy flux

is obtained in elasticity for crystals and amorphous matter. By inspecting any linear wave equation in

a steady homogeneous medium, it is possible to ascertain whether the waves are (a) isotropic and (b)

dispersive, with no need for an explicit solution. Applying this result to linear elastic waves shows that:

(i) they are non-dispersive in crystals or amorphous matter; (ii) for the latter material, the longitudinal

and transversal waves are isotropic, but their sum is not. A consequence of (ii) is that the superposition

of both waves: adds the two energy densities and powers of external forces; adds, to the two energy

fluxes, a third cross-coupling energy flux that is proportional to the dilatation of the longitudinal wave

multiplied by the velocity of the transverse wave.

After adding the magnetic and gravitational fields to the pressure gradient and considering a medium

consisting of or surrounded by plasma, which can support Alfvén waves, the propagation of waves along

dipole magnetic field lines is evaluated using a new coordinate system: dipolar coordinates. The applica-

tion considered is to Alfvén waves propagating along a circle, that is a magnetic field line of a dipole, with

transverse velocity and magnetic field perturbations; the various forms of the wave equation are linear

second-order differential equations with variable coefficients. The coefficients are specified by a back-

ground magnetic field, which is force-free. The absence of a background magnetic force leads to a mean

state of hydrostatic equilibrium, determined by the balance of gravity against the pressure gradient, for

a perfect gas or incompressible liquid. The wave equation simplifies to a Gaussian hypergeometric type

xii



in the case of zero frequency; otherwise, for non-zero frequencies, an extended Gaussian hypergeometric

equation is obtained. The solution of the last equation specifies the magnetic field perturbation spectrum

and, via a polarisation relation, the velocity perturbation spectrum; both are plotted over half a circle

for three values of the dimensionless frequency.

Another issue of continuum electromechanics is the deformation of beams and plates. The Euler-

Bernoulli theory of beams is usually presented in two forms: (i) in the linear case of small slope using

Cartesian coordinates along and normal to the straight undeflected position; and (ii) in the non-linear

case of large slope using curvilinear coordinates along the deflected position specified by the arc length

and angle of inclination. In this thesis, (iii) Cartesian coordinates along and normal to the undeflected

position like (i) are used, but including exactly the non-linear effects of large slope like (ii). This third form

of the equation of the elastica (neutral surface) shows that the exact non-linear shape is a superposition of

linear harmonics; thus, the non-linear effects of a large slope are equivalent to the generation of harmonics

of a linear solution for a small slope. In conclusion: (i) the critical buckling load is the same in the linear

and non-linear cases because the fundamental mode determines it; (ii) the buckled shape of the elastica

is different in the linear and non-linear cases because non-linearity adds harmonics to the fundamental

mode. The non-linear shape of the elastica, when the square of the slope cannot be neglected, is illustrated

for the first four buckling modes of cantilever, pinned, and clamped beams with different lengths and

force amplitudes.

The Föppl-von Kármán equations for the non-linear bending of elastic plates are also solved by a

novel method of twin asymptotic expansions for the transverse displacement and in-plane stress function.

Unlike most asymptotic expansions, which can be derived explicitly only to the second or third order,

in this thesis, both asymptotic expansions can be obtained explicitly to all orders. The perturbation

relations form a causal chain of linear relations, with variable coefficients specified by the lower orders.

Furthermore, this method applies to the axisymmetric case with external loading approximated by a

polynomial of the radius. The method of perturbation expansions is illustrated explicitly up to second-

order by applying to a clamped circular plate subject to a radial pressure and its weight.
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List of symbols

Due to an extensive list of symbols used in this document, and since the chapters can be considered

as independent of each other, the nomenclature is divided for each chapter. The following list does not

contain the symbols from the appendices A to E since they are self-explanatory.

Chapter 2 – On the multipath effects due to wall reflections for wave reception near a corner

α Elevation angle for the observer’s position

O

β Elevation angle for the source’s position S

∆SPLground, ∆SPLwall, ∆SPLground+wall Variation

in the sound power level, in dB, due to a

reflected wave on the ground, a reflected

wave on the wall or three reflected waves

simultaneously

λ, λmin Wavelength and its minimum respectively

r, ϑ Polar coordinates

ϕ Phase change due to the reflection on the

ground

θ Angles of incidence and reflection following

the law of reflection

θ1 Angles of incidence and reflection between

the wave and normal to the ground at the

point P1

θ2 Angles of incidence and reflection between

the wave and normal to the wall at the point

P2

θ31 Angles of incidence and reflection between

the wave and normal to the ground at the

point P31

θ32 Angles of incidence and reflection between

the wave and normal to the wall at the point

P32

ε Average height of irregularities

A, B, C Functions of α and β that modify the fac-

tor F when the observer is at near-field and

the source at far-field

c Sound speed

c0 Speed of the light in vacuum

F Multipath factor (= ptot/pdir)

f Frequency of the wave

k Wavenumber

N Number of waves in phase received at the

observer’s position

O Order of the function

pdir Acoustic pressure perturbation due to the

direct wave
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ptot Total acoustic pressure perturbation

q Distance between the corner (x = 0 and

y = 0) and the source’s position S

r Distance between the positions O and S

R1 Reflection factor at the point P1

R2 Reflection factor at the point P2

Rh Reflection factor on the ground

Rv Reflection factor on the wall

r11 Distance between the positions S and P1

r12 Distance between the positions P1 and O

r21 Distance between the positions S and P2

r22 Distance between the positions P2 and O

R31 Reflection factor at the point P31

r31 Distance between the positions S and P31

R32 Reflection factor at the point P32

r32 Distance between the positions P31 and P32

r33 Distance between the positions P32 and O

s Distance between the corner (x = 0 and

y = 0) and the observer’s position O

x, y Cartesian coordinates

x1 Coordinate x of the reflection point P1 on

the ground

xO, yO Observer’s coordinates (position O)

xS, yS Acoustic source’s coordinates (position S)

x31 Coordinate x of the reflection point P31 on

the ground

y2 Coordinate y of the reflection point P2 on

the wall

y32 Coordinate y of the reflection point P32 on

the wall

Chapter 3 – Effects of rough ground and atmospheric absorption on aircraft noise

∆x Horizontal distance between the source and

observer

δ, δI, δII, δIII Atmospheric attenuation

κ, κ′ Vertical wavenumbers of incidence and

transmitted waves respectively

R0 Ratio of acoustic impedances to evaluate R

Rj Reflection factor at the point Rj

r Ratio between the distances of the direct

and reflected waves

ω Temporal frequency of the wave

ϕ Angle between the arbitrary point P with x-

axis in the source-observer coordinate sys-

tem

Φ, ΦI, ΦII, ΦIII Variation in phase of the acoustic

pressure perturbation due to reflected waves

ρ0 Air density

ρ1 Density of homogeneous ground

θ Angles of incidence and reflection following

the law of reflection

θ′ Angle of refraction following the Snell’s law

θmax Maximum slope of undulating ground

ε Uniform atmospheric attenuation per unit

length

a Parameter in cosine argument

A, AI, AII, AIII Variation in sound power level, in

dB, due to reflected waves
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c0, c1 Sound speeds in air and ground respectively

d Horizontal coordinate of the position O

(= xO)

E, EI, EII, EIII Complex magnitude of the multi-

path factor

F Multipath factor due to atmospheric atten-

uation

G, G Geometrical factors to evaluate F

H Height of rough ground

h Height of rough ground in a 2D plane pass-

ing through the source and observer

k Wavenumber

L Lengthscale of undulating ground

M Number of reflection points

p, pI, pII, pIII Total acoustic pressure perturbation

p0 Acoustic pressure perturbation due to the

direct wave

pr Acoustic pressure perturbation due to the

reflected wave on the flat ground

q Amplitude of undulating ground

r1 Distance between the positions S and O

r2j
Distance between the positions S and Rj

r3j
Distance between the positions Rj and O

X, Y , Z Cartesian coordinates

x, z Cartesian coordinates in a 2D plane passing

through the source and observer

XO, YO, ZO Observer’s coordinates

xO, zO Observer’s coordinates (position O) in a 2D

plane passing through the source and ob-

server

Xr, Zr Coordinates of sinusoidally undulating

ground

XS, YS, ZS Acoustic source’s coordinates

xS, zS Acoustic source’s coordinates (position S) in

a 2D plane passing through the source and

observer

xRj , zRj Coordinates of the reflection point Rj on

the ground

Chapter 4 – On the countering of free vibrations by forcing: non-resonant or resonant

forcing with phase shifts

αm Phase of the resonant term of the vibration

αn Phase related to the variables Pn and Qn

β Phase shift of the forced oscillation

∆ Determinant of Hessian matrix

δ Dirac delta function

δnr Kronecker delta

λn Wavelength of the mode n

⟨. . .⟩ Time average over a period

ω Frequency of the applied force

ωm Frequency of the resonant term of the vi-

bration

ωn Frequency of the mode n

y Amplitude of the forced vibration of an elas-

tic string

ρ Mass density per unit length

τ Period of the function

τn Wave period of the mode n
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θ Dimensionless time (= ωt)

Ẽ, E, E Energies equal to 4ẽ/T , 4e/T and 4e/T

respectively

ẽ, e, e Energy density per unit length of free,

forced and total oscillations respectively

ẽe Average elastic energy

ẽk Average kinetic energy

ỹ Amplitude of the free vibration of an elastic

string

ε Independent variable related to F and ξ(
= F sin (kξ)A−1k−2L−1)

ε0 Constant
(
= 3/8/π2)

ξ, ξm Localisation of the applied force with am-

plitude F and Fm respectively

ξ+, ξ− Critical localisations of the applied force to

minimise resonant energy

An Amplitude related to the variables Pn and

Qn

an Amplitude of the mode n related to the sine

series of δ

B Amplitude of the forced oscillation

Bn Terms of series defining B for continuously

applied forces

bn Amplitude of the mode n for each term of

the series defining B in the case of a single

concentrated force

c Wave speed

c1, c2, c3 Coefficients of quadratic equation

E∗ Energy per unit length associated to y∗

em Energy density per unit length of free plus

forced resonant oscillations

f Continuously distributed force in space

F , Fm Amplitude of the applied force

F+, F− Critical forces to minimise resonant energy

fn Amplitudes of Fourier series evaluating f

G Total resonant energy for the string

g Dimensionless parameter of total oscillation

depending on θ and ε

G∗ Total energy over the length of the string

associated to E∗

G+, G− Critical resonant energies

h Indication of total energy
(
= g2)

h, γ General function and parameter respec-

tively

k Wavenumber of the applied force

km Wavenumber of the resonant term of the vi-

bration

kn Wavenumber of the mode n

L Length of the string

M Number of concentrated forces

Pn Constant of spatial mode n related to the

initial deflection

Qn Constant of spatial mode n related to the

initial velocity

T Tangential tension

t Time

t′ Temporal change (= t− αn/ωn)

x Position along the undeformed string

y Amplitude of the total vibration of an elas-

tic string

y∗ Free plus forced resonant forced oscillation

for continuously distributed force

ym Resonant term of the vibration

yn Spatial mode n of the amplitude of the vi-

bration
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Chapter 5 – On the countering of free vibrations by forcing: damped oscillations and

decaying forcing

αn Phase related to Pn and Qn

β Phase shift of the applied force

χ Diffusivity

δ Damping as the symmetric of the real part

of complex roots v+
n and v−

n

∆ω Half of the difference between free and ap-

plied frequencies

ω̂ Half of the sum between free and applied

frequencies

Ê Energy density per unit length of the string

associated to oscillation ŷ

ê Average energy as function of time for oscil-

lation ŷ

Ĝ Average energy as function of θ for oscilla-

tion ŷ

Ĥ Total energy over all time for oscillation ŷ

ŷ Free plus forced oscillation with equal os-

cillation and applied frequencies and with

opposing amplitudes

λn Wavelength of the mode n

⟨. . .⟩ Time average over a period

⟩. . .⟨ Spatial average of the energy over the length

of the string

µ Damping proportional to the velocity

ωn Frequency of the mode n

ω Frequency of the applied force

y Amplitude of the forced vibration of an elas-

tic string

y∗, Y ∗ Forced resonant oscillation

ϕ Phase factor related to B

ψ Ratio of damping ε to forcing decay δ

ψ+, ψ− Critical values of ψ

ψe Constant (= 4/3)

ρ Mass density per unit length

τ Period (= 2π/ω̃)

θ Dimensionless time (= ω̃t− α)

θm Value of θ to maximise g

ω̃n Oscillation frequency as the symmetric of

the real part of complex roots v+
n and v−

n

Ẽ, E Free and total energy density per unit

length of the string respectively

ẽ, e Average energy as function of time for free

and total oscillation respectively

Ẽ∗, E∗ Free and total resonant energy density per

unit length of the string respectively

ẽ∗, e∗ Free and total resonant average energy as

function of time for total resonant oscilla-

tion

G̃ Average energy as function of θ for free os-

cillation

G̃∗, G∗ Average energy as function of θ for free and

total resonant oscillation respectively

H̃, H∗ Total energy over all time for free and total

resonant oscillation respectively

ỹ, Ỹ Amplitude of the free vibration of an elastic

string
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ỹn Spatial eigenfunction n of the amplitude of

free oscillations

ε Exponential decay of the applied force

A, α Amplitude and phase shift respectively of

the free wave solution without damping

An Amplitude related to Pn and Qn

B Amplitude of the forced oscillation

C Amplitude factor related to B

c Wave speed

D Amplitude of the damped forced resonant

oscillation

F Amplitude of the applied force

g Time dependence of Y ∗

I Result of an integral that appears in the

evaluation of H∗

J Ratio of total resonant energy H∗ to the free

energy H̃

k Wavenumber of the applied force

kn Wavenumber of the mode n

L Length

O Order of the function

Pn, Qn Constants determined by initial conditions

in the solution of Tn

q Ratio of damping to oscillation frequency

R Ratio of total resonant energy Ĥ for oscil-

lation ŷ to the free energy H̃

R+, R− Critical values of R

T Tangential tension

t Time

t′ Temporal change (= t− αn/ω̃n)

tm Fraction of the period τ

Tn Temporal dependence of mode n of free os-

cillations

vn Factor used in exponential function to eval-

uate Tn

v+
n , v−

n Roots of vn satisfying quadratic equation

x Position along the undeformed string

Xn, Yn Coefficients of the Fourier sine series that

specify the initial displacement or velocity

respectively

y, y̌ Total oscillation

y∗, Y∗ Total resonant oscillation

Chapter 6 – On the energy flux in elastic and inelastic bodies

α, β, ν General coefficients of differential equations

∇ Gradient operator

•′
+, •′

− Derivative with regard to the phase ϕ+ and

ϕ− respectively

δjr Identity matrix

Ẇ Power or work per unit time

Ẇ s, Ẇ l Transversal and longitudinal contributions

respectively of the power of external applied

forces

λ, µ Lamé elastic moduli

b Coefficient due to inhomogeneous media

ex, ey Unit vectors along the x and y axes

h Contribution by rotational to the transver-

sal displacement us
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wl Longitudinal group velocity

ws Transversal group velocity

ws Group velocity

ω Wave frequency

ωs, ωs± Roots of the frequency

∂t Time derivative

∂m
t Time derivative of order m

∂j1...jn
Spatial derivative with respect to xj1 . . . xjn

∂j Spatial derivative with respect to xj

∂m
tj1...jn

Time derivative of order m and spatial

derivative with respect to xj1 . . . xjn

Φ Wave variable in time domain

ϕ+, ϕ− Phase of the plane wave solution

ϕs
±, ϕl

± Phase of the transversal and longitudinal

plane wave solutions respectively

Ψ Wave variable in temporal frequency do-

main

ψ Contribution by gradient to the transversal

displacement ul

ρ Mass density per unit volume

σ Poisson’s ratio

ϑ Factor relating to longitudinal and transver-

sal phase speeds (= λ+ µcl/cs)

ζ Transverse displacement (= uz)

Am
j1...jn

Coefficients of the wave equation

B Forcing term of the wave equation

c Phase speed

cs, cl Transversal and longitudinal phase speeds

respectively

cs Phase speed of wavefronts

D Flexural stiffness of the plate

E Total energy density per unit volume

E Young’s modulus

Eks, Ekl Kinetic energies of transversal and longi-

tudinal waves respectively

Ek Kinetic energy

Es, El Elastic plus kinetic energies of transversal

and longitudinal waves respectively

Eus, Eul Elastic energies of transversal and longi-

tudinal waves respectively

Eu Deformation energy

F General function

f+, f− Waveform of the plane wave solution

f±s, f±l Waveform of the transversal and longitu-

dinal plane wave solutions respectively

Fr Energy flux

F sl
r Cross-coupling energy flux

F s
r , F l

r Energy fluxes of transversal and longitudi-

nal waves respectively

gj Force density per unit volume

Gjkmn Stiffness double tensor

k Wavenumber

kj Wave vector

nj Wave normal

p Pressure

PM,N Characteristic polynomial of derivatives

with regard to time of order M and regard

to position of order N

s Arc length

Sjr Strain tensor
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T Tangential tension

t Time

Tij Stress tensor

us, ul Transversal and longitudinal displacement

along the wave normal and orthogonal to

the wave normal respectively

ux, uy Longitudinal displacements

uj Displacement vector

u0
j Amplitude of the plane wave solution

u0s
j , u0l

j Amplitude of the transversal and longitu-

dinal plane wave solutions respectively

vz Transverse velocity

vj Velocity vector

x, y, z Cartesian coordinates normal to the trans-

verse direction

xj Position vector

Chapter 7 – Alfvén wave propagation along a circle using dipolar coordinates

α, β Conformal coordinates

∇ Gradient operator

•′ Derivative with respect to β

•̇ Time derivative

Γ Gamma function

γ, δ, ε Parameters of Gaussian differential equa-

tion

λ, κ Wavelength and its wavenumber respec-

tively

B Background magnetic field

eα, eβ , ez Unit vectors along the α, β and z axes

g Gravitational force

V, H Total velocity and magnetic field respec-

tively

v, h Velocity and magnetic field perturbations

respectively

µ Magnetic permeability

ν Alfvén index

Ω Dimensionless frequency

ω Frequency

c1, c2 Arbitrary constants of integration

en, fn Coefficients of the series defining W1 and

W2 respectively

h2, W 2 Dependent variables equal to h2 cos2 θ and

W2 cos θ respectively

J Dependent variable
(
= b−1R−2J

)
J0, J1/2 Particular solutions of the Frobenius-

Fuchs series of J

Q Dependent variable
(
= b−1R−2Q

)
Q0, Q1 Particular solutions of the Frobenius-Fuchs

series of Q

ϕ Angle between coordinate curve α with ev-

ery radial lines

Ψ Dependent variable (= Φ)

ρ Mass density

ρ0 Constant mass density

σ Arbitrary constant

h̃ Magnetic field perturbation spectrum de-

pending on θ and Ω
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h̃′
0 Derivative of the magnetic field perturba-

tion spectrum with respect to θ at θ0

h̃0, h̃1, h̃2 Magnetic field perturbation spectrum

with θ0, θ1 and θ2 respectively

Ṽ , H̃ Fourier transform of v and h in time respec-

tively

ϑ Polytropic index

ξ Independent variable (= 1− ζ)

ζ Independent variable
(
= cos2 θ

)
A Alfvén speed

a Alfvén speed at radius R

b Background magnetic field at radius R

C1, C2 Arbitrary constants of integration

C⋆
1 , C⋆

2 Arbitrary constants of integration

cn, χ Coefficients and index of the Frobenius-

Fuchs series of Q respectively

D1, D2 Arbitrary constants of integration

dn, ι Coefficients and index of the Frobenius-

Fuchs series of J respectively

en, fn Coefficients of the series defining h1 and h2

respectively

F Gaussian hypergeometric function

f General function

G, Φ Magnetic field perturbation spectrum

g0 Magnitude of g at radius R

hα, hβ Scale factor of dipolar coordinates α and β

hm Magnetic field perturbation h depending on

Wm

k, n Arbitrary real and integer numbers respec-

tively

l Arc length

M Molar mass

O Order of the function

p Mean state pressure

p0 Pressure at radius R

q Index of the series defining W1 and W2

Q, J Dependent variable (= Ψ/ζσ)

R Inverse of coordinate α

r, θ Polar coordinates

Rg Constant of perfect gas

s Scale factor

T Temperature

T0 Constant temperature

W , Wm Dimensionless velocity perturbation spec-

trum and its m-th solution

X Dependent variable (= bV )

x, y Cartesian coordinates

z, w Complex number and complex function re-

spectively

Chapter 8 – On the generation of harmonics by the non-linear buckling of an elastic beam

•′ Derivative with regard to x

•1, •2, •3 Variables related to clamped, pinned and

cantilever beams respectively

•max Maximum possible value of •
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η Sine of the angle of inclination θ

A, B, C, D Arbitrary constants of elastica equa-

tion defined by boundary conditions for lin-

ear buckling

Ψ Arbitrary variable to evaluate the integral

(= pξ + pC)

θ Angle of inclination of the elastica

ζ Elastica equation

ζn Harmonics of the deformation

ζ3,m Coefficient of series defining ζ3

A, B, C, D Arbitrary constants of elastica equa-

tion defined by boundary conditions for

lowest-order non-linear buckling

am Coefficient of binomial series

An Coefficients of series defining ζ

b Amplitude of elastica for linear buckling

E Young’s modulus

F Transverse force

f Transverse force per unit length

G Arbitrary constant
(

=
√

2 +B/p2
)

H Arbitrary constant
(
= Ap−2/2

)
I Second moment of inertia

k Curvature (= dθ/ds)

L Length of the undeformed beam

M Bending moment

p Buckling parameter

p1,n, p2,n, p3,n Buckling load of order n for

clamped, pinned and cantilever beams re-

spectively

Q Amplitude of buckling harmonics

q Arbitrary constant
(

= p/
√
B + 2p2

)
s Arc length

T Tangential tension

Tx, Ty Horizontal and vertical components of tan-

gential tension respectively

Tc Critical buckling load

T1,n, T2,n, T3,n Critical buckling load of order n for

clamped, pinned and cantilever beams re-

spectively

Tc,n Critical loads

x, y Cartesian coordinates with x-axis along the

undeformed beam

z Dependent variable =
(
η −Ap−2/2

)

Chapter 9 – On twin perturbation expansions for non-linear bending of plates

∇ Gradient operator

•′ Derivative with regard to r

δ, ∂ Variational and differential operator respec-

tively

ex, ey, ez Unit vectors along Cartesian axes

C, ∂C Domain and its contour of the domain of

integration respectively

E Total elastic energy per unit area integrated

over all directions

En,m Contribution of order (n,m) to the total en-

ergy E

Nn, N r Augmented turning moment and its radial
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component respectively

Wn, Θn Contribution of order n to the work W

and Θ respectively

∂α, dα Partial and total derivative respectively

with respect to rα

∂αβ Partial derivative of second order with re-

spect to rα and rβ

ϕ General solution that satisfies an unforced

biharmonic equation

Ψ, Ψ Work of weight ρg in transversal displace-

ment and its integration over all directions

respectively

ρ Mass density

σ Poisson’s ratio

Θ Airy’s stress function

ε Perturbation parameter

∧ Numerical factor related to σ

ζ Transverse displacement

ζn, Θn, ur,n, Sαβ,n, Tαβ,n Contribution of order n

to the perturbation expansions of ζ, Θ, ur,

Sαβ , Tαβ respectively

a Radius of the circular plate

B Upper bound of ζn

B•, C, Ck Arbitrary constants

D Flexural rigidity

D2, D3 Area and volume changes respectively due

to strains

E Young’s modulus

E1, W1 Elastic energy per unit area due to bending

and associated work W1

E2, W2 Elastic energy per unit area due to trans-

verse deflection and associated work W2

E3, W3 Elastic energy per unit area due to in-plane

deformation and associated work W3

Ed Deformation energy per unit volume

(= E2/h+ E3/h)

ET Total elastic energy per unit area

f Transverse force per unit area

fα In-plane volume forces

Fn, Gn Forcing terms of order n in the perturba-

tion expansions of ζ and Θ respectively

g Gravitational force

H Parameter (= ρgh/D/64)

h Thickness of the plate

K Degree of polynomial of transverse force f

kr, kt Radial and tangential curvatures respec-

tively

l, L Arc length in the undeflected and bent

plane respectively

Mn, Mr Normal stress couple and its radial com-

ponent respectively

N Order of the perturbation expansion

Nn, Nr Turning moment and its radial component

respectively

p Axial pressure

p4 Fourth-order polynomial of r

r, θ Polar coordinates

rα, vα In-plane position and velocity vector respec-

tively

Rd Desired error of truncation at the N -th term

of the series of ζ
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RN Error of truncation at the N -th term of the

series of ζ

S, s Area and contour length of the domain of

integration respectively

Sij Strain tensor

t Time

Tαβ In-plane stress tensor

Uα Total displacement vector

uα In-plane displacement vector

W , W Work of pressure p in radial displacement

and its integration over all directions respec-

tively

x, y, z Cartesian coordinates

X1, X2, X3, X4 Numerical factors

xliv



1 | Introduction

“A thought is an idea in transit.”

— Pythagoras of Samos

Contents
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Electroechanics aims to study the motion (or equilibrium) of matter and the forces or moments

that cause such motion (or equilibrium). Electromechanics is based on the concepts of space, time,

force, matter and energy. The knowledge of these concepts are fundamental for studying all branches of

biology, chemistry, physics and engineering [1].

Some questions about these areas that affect our daily routine can be postulated. At home, how can

a refrigerator keep the food fresh, maintaining a low temperature in the environment? Knowing that

fridges and other household appliances need electrical work, how does the electricity from the street poles

reach the outlets in our homes? How can the transmission lines carry electricity over long distances?

Knowing that large towers hold the transmission lines, how are the trusses designed to sustain tensile or

compressive forces? Now, suppose an aeroplane is flying above us. The wings must support loads and

be under strain to keep the passengers, cargo and structures. How much strain are the wings subjected

to? Have the wings sufficient strength? Many structural members, such as spars and ribs in the wings,

are composed of bars or beams. How does one design such structural elements in order to not fracture at

the same time that carry loads? When an aeroplane flies over us, how do we hear the sounds induced by

the plane? Do we notice any difference in the sound during its flight? And about ourselves, how do we

breathe? What changes take place in the lungs when we are breathing? Moreover, how does the blood

pressure affect its movement and ultimately affect us? The blood circulation, starting from the heart,

then going to every remote appendix of our body and finally coming back to the heart, is not a steady

flow but has peaks of pressure and speed [1].
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All these questions from different areas are concerned with some topics of electromechanics, for in-

stance: force, work, motion, energy, flux, resistance, deformation, properties of materials or modification

in materials. Constitutive equations characterise the properties of materials. Logically, many constitutive

equations describe an almost infinite variety of materials. Nonetheless, idealised stress-strain relation-

ships give a good description of the mechanical properties of many materials around us, namely, the

non-viscous fluid and the perfectly elastic solid [1], which are considered in this thesis. These topics,

with the postulates of continuum electromechanics, can be reduced to particular differential equations

and boundary conditions. By solving such equations, as proposed in this thesis, precise quantitative

information is achieved. In this work, considering fundamental principles that underlie these differential

equations and boundary conditions is essential [1].

In the chapters 2 to 7, the motion produced in an elastic body or fluid by applied loadings is important.

The action of a force or perturbation is not transmitted at once to all parts of the body or fluid respectively.

For example, in the beginning, the remote portions of the body remain undisturbed, and deformations

produced by force propagate through it in the form of elastic waves. Another example is the propagation

of acoustic waves when the pressure perturbation is propagated with a finite velocity through the fluid.

We have such problems in all the chapters except 8 and 9, and are explained in more detail in subsection

1.1. Otherwise, in the chapters 8 and 9, concerning the problems of elasticity which are explained in

the subsection 1.2, the elastic body is at rest under the action of external loadings, and the resulting

problems are problems of statics.

The continuum electromechanics has an important role in all branches of modern science because of

its emphasis on basic concepts and fundamental principles. The subsection 1.3 will enunciate these prin-

ciples. In other words, continuum electromechanics is the basis upon which several physics or engineering

theories, such as fluid mechanics and elasticity in solids, are founded. This thesis is devoted to specific

applications of continuum electromechanics, in particular, to subjects of ideal (non-viscous) incompress-

ible or compressible fluids associated with the propagation of waves (subsection 1.1) and to linear theories

of elasticity related to deformation or buckling (subsection 1.2). These theories are essential, not only

because they apply to a majority of the problems in continuum electromechanics arising in practice, but

because they form a solid base upon which one can readily construct more complex theories of material

behaviour [2]. They aim to obtain solutions to particular problems which may be of practical importance.

1.1 Mechanical vibrations and propagation of waves

As mentioned before, the non-viscous fluids and the Hookean elastic solids are abstractions. Real

materials may have more complex behaviours than these idealisations. No natural material behaves

exactly as any of them, although some materials may follow one of these laws in certain situations

accurately. For solids, most structural materials are, fortunately, Hookean in the useful range of stresses

and strains, which will be assumed in this thesis [1]. For fluids, the action of shear stresses, no matter

how small they may be, will cause the fluid to deform continuously as long as the stresses act. It follows,

therefore, that a fluid at rest (or in a state of rigid body motion) is incapable of sustaining any shear
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stress whatsoever [3]. Air can be treated as non-viscous fluid in many problems. For example, in issues

concerning the propagation of acoustic waves in air, excellent results can be obtained by ignoring the

viscosity of the medium and treating it as a non-viscous fluid, which is assumed in this thesis.

A non-viscous fluid is a fluid for which the stress tensor is isotopic, σij = −pδij , where δij is the

Kronecker delta and p is the static pressure. The presence of the pressure term p represents a fundamental

difference between fluid mechanics and elasticity. To accommodate this new variable, there is an equation

of state which relates the pressure p, the density ρ and the absolute temperature T . In the case of an

ideal gas, the pressure p is related to the density ρ and temperature T by the equation of state p = ρRT

where R is the gas constant. In an incompressible fluid, the equation of state is solely ρ = const and the

pressure p is left as an arbitrary variable (there is a mention for an incompressible fluid in chapter 7),

which is determined merely by the equations of motion and the boundary conditions [1].

In the case of dynamic excitation, the natural frequencies and the corresponding mode shapes are

important system characteristics. Once these are found by considering the homogeneous part of the gov-

erning differential equation, the response to a forcing function may be obtained as a particular solution.

Also, these system characteristics, which can be determined without loadings, are helpful for classifica-

tion. For example, structures are considered stiff or flexible based on natural frequencies [4]. Another

characteristic, which is dependent only on the material properties, is the velocity at which an acoustic or

elastic wave propagates through a medium or a body [4]. In dynamic response computations, damping,

which represents energy dissipation, is also very important (considered, for instance, in chapter 5) [4].

1.2 Theory of elasticity in solids

The approximations generally used for determining the influence of applied forces or moments on

elastic materials are the mechanics of materials and the theory of elasticity, each of considerable im-

portance and each supplementing the other. Both must rely on the equilibrium conditions and use a

constitutive equation between stress and strain associated with elastic bodies. The essential difference

between these approximations lies in the extent to which the strain is described and in the types of sim-

plifications assumed [5]. The mechanics of materials focuses mainly on basically approximate solutions

to practical problems. This last approach uses an assumed deformation mode or strain distribution in

the body as a whole and hence yields the average stress at a cut section under a given force or moment.

Moreover, it usually treats separately each simple type of complex loading, for example, axial centric

loading, torsion or bending (being valid the superposition principle). Although of practical importance,

the formulas of the mechanics of materials are best suited for relatively slender members and are de-

rived based on very restrictive conditions [5]. On the other hand, the theory of elasticity does not rely

on an assumed deformation mode; it concerns with mathematical analysis to determine the “analytic”

stress and strain distributions satisfying the general equations of equilibrium under any external loading

system [5]. The theory of elasticity provides analytic solutions when the configurations of loading and

boundary conditions are relatively simple, and it works as the basis of approximate solutions employing

numerical methods. Thus, the theory of elasticity can verify the limitations of the solutions provided by
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the mechanics of materials. Several factors, including the influence of material anisotropy and the extent

to which boundary conditions depart from reality, contribute to an error in this approach [5].

The theory of elasticity studies a set of equations uniquely describing the state of stress and strain

at each point within an elastically deformable body. It contains equilibrium equations associating the

stresses and loadings, kinematic equations associating the strains and displacements, constitutive equa-

tions associating the stresses and strains, and boundary conditions associating the physical domain and

uniqueness constraints related to the validity of the solution [4]. When elasticity is selected as the ap-

proach for an engineering solution, a rigour is accepted that is distinct from the mechanics of materials

basis which has its various specialised subjects such as the theories of bars, beams, plates and shells. The

theory of elasticity is preferred when critical design constraints and high reliability imply a more exact

solution, or when prior experiences are limited and intuition does not adequately supply the needed sim-

plifications with any degree of accuracy. If properly applied, the theory of elasticity should yield solutions

closer to the actual distribution of strain, stress, and displacement [5].

Solving the equations of elasticity analytically may be a challenging task (as in chapter 8); how-

ever, the inverse or semi-inverse method can solve them. The inverse method requires examining the

assumed solutions and then verifying if they satisfy the governing equations and boundary conditions.

The semi-inverse method requires the assumption of a partial solution formed by expressing stress, strain,

displacement, or stress function in terms of known or undetermined coefficients (as in chapter 9) [5].

Many physical problems are simplified to two dimensions, which facilitates an eventual solution, for

example, in the subjects of plate bending and beam buckling, both studied in this document in the

chapters 8 and 9 [4]. In both chapters, the elasticity problems are reduced from three to two dimensions

since there is no traction on one plane passing through the body, known as plane stress. Analytic solutions

of some governing differential equations of beam and plate theories can only be obtained for particular

boundary and load conditions. In most cases, nonetheless, the theory of elasticity may also be developed

from energy methods (as in the chapter 9) yielding quite usable numeric solutions [4, 6].

All structural materials possess to a certain extent the property of elasticity, i.e. (id est), if external

forces producing deformation of a structure do not exceed a certain limit, the deformation ceases with

the removal of the forces. Throughout this thesis, the bodies subjected to the action of external forces

are perfectly elastic, i.e., they return to their initial form after removing forces [7].

1.3 Principles of continuum electromechanics

Continuum electromechanics deals with physical quantities which are independent of any particular

coordinate system that may be used to describe them. At the same time, those physical quantities are very

often specified most conveniently by referring to an appropriate system of coordinates. Mathematically,

tensors can represent such quantities. As a mathematical entity, a tensor is independent of any coordinate

system. Yet it may be specified in a particular coordinate system by its components. If tensor equations

are valid in one coordinate system, they are correct in any other coordinate system. Therefore, specifying

the components of a tensor in one coordinate system determines the components in any other system
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[1, 3]. Tensor equations can express the physical laws of continuum electromechanics; this thesis presents

some of them (this fact is mentioned in subsection 1.5).

The atomic/molecular composition of matter is well established. On a small enough scale, for instance,

a body of steel is a collection of discrete steel atoms stacked on one another in a particular repetitive

lattice. On an even smaller scale, the atoms consist of a core of protons and neutrons around which

electrons orbit. Although we may speak of a material body as “occupying” a region of physical space, it

is evident that the body does not totally “fill” the space it occupies. Thus, the matter is not continuous.

In numerous investigations of material behaviour, however, the individual molecule is of no concern and

only the behaviour of the material as a whole is deemed necessary. There is a clear implication in such an

approach that the minor element cut from the body possesses the same properties as the body. Random

fluctuations in the properties of the material are thus of no consequence. In keeping with this continuum

model, we assert that matter may be divided indefinitely into smaller and smaller portions, each of which

retains all of the physical properties of the parent body. Accordingly, one can ascribe field quantities

such as density and velocity to each point of the region of space that the body or medium occupies [3].

A similar consideration can be used to define several densities, such as the density of momentum and

the density energy. A material continuum is a material for which the densities of mass, momentum,

and energy exist in the mathematical sense [1]. This continuum concept of matter is the fundamental

postulate of continuum electromechanics. Within the limitations for which the continuum assumption is

valid, this concept provides a framework for studying the behaviour of solids, liquids and gases. Adopting

the continuum viewpoint as the basis for the mathematical description of material behaviour means that

field quantities such as stress and displacement are expressed as piecewise continuous functions of the

space coordinates and time [5]. Moreover, the derivatives of such functions, if they enter into the theory,

likewise will be continuous [3]. The time along with space is also a four-dimensional continuum.

There are two main topics which divide the continuum electromechanics. In the first, the emphasis

is on the derivation of fundamental equations which are valid for all continuous media. These equations

are based on universal laws of physics, such as the conservation of mass, the principles of energy or the

conservation of momentum. In the second, the focus of attention is on the development of so-called

constitutive equations characterizing the behaviour of specific idealised materials, the perfectly elastic

solid and the non-viscous fluid being the best-known examples. These equations provide the focal points

around which studies in elasticity and fluid mechanics proceed [3].

Mathematically, the fundamental equations of continuum electromechanics mentioned above may be

developed in two separate but essentially equivalent formulations. One, the integral or global form,

derives from a consideration of the basic principles being applied to a finite volume of the material. The

other, a differential or field approach, leads to equations resulting from the basic principles being applied

to a very small (infinitesimal) element of volume [3]. In this thesis, usually the second approach is chosen.

The axioms of physics are taken as the axioms of continuum electromechanics [1]. In particular, this

thesis uses Newton’s laws of motion and the laws of thermodynamics. There are additional axioms of

continuum electromechanics. A material continuum remains a continuum under the action of forces.

Another axiom of continuum electromechanics is that stress and strain can be defined everywhere in the
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body. Besides that, the stress at a point is related to the strain and its rate of change with respect to

time at the same point. This axiom is a tremendous simplifying assumption: the stress at any point in

the body depends only on the deformation in the immediate neighbourhood of that point [1].

The molecular structure of elastic bodies is not considered here. This work will assume that the

matter of an elastic body is homogeneous and continuously distributed over its volume so that the

smallest element cut from the body possesses the same physical properties as the body. To simplify

the discussion, the body is isotropic whenever possible, i.e., that the elastic properties are the same in

all directions [7]. Structural materials usually do not satisfy the above assumptions. For instance, the

steel consists of crystals of various kinds and various orientations. The material is very far from being

homogeneous. However, solutions of the theory of elasticity based on the assumptions of homogeneity

and isotropy can be applied to steel structures with great accuracy. While the elastic properties of a

single crystal of steel may be very different in distinct directions, the crystals are ordinarily distributed

at random. The elastic properties of larger pieces of metal represent, therefore, averages of the properties

of crystals. So long as the geometrical dimensions defining a body’s form are large compared to the

dimensions of a single crystal, the assumption of homogeneity can be used with great accuracy. If the

crystals are orientated randomly, the material can be treated as isotropic [7].

From Newtonian mechanics, for analysing the statics or dynamics of a body, one force system may be

replaced by another equivalent system whose force and moment resultants are identical. Although the

force resultants, while equivalent, need not cause a similar strain distribution, Saint-Venant’s principle

permits using an equivalent loading to calculate stress and strain. This principle states that if an actual

distribution of forces is replaced by a statically equivalent system, the stress and strain distribution

throughout the body is altered only in the vicinity of the load application [5]. The contribution of Saint-

Venant’s principle to the solution of engineering problems is significant because the boundary conditions

do not need to be prescribed very precisely. Furthermore, when a specific solution is predicated on a

particular boundary loading, the solution can be valid for another type of statically equivalent boundary

loading, even not quite the same as the first. When an analytical solution calls for a specific stress

distribution on a boundary, the answer is not discarded when the boundary distribution is not quite the

same as that required by the solution, consequently extending its usefulness [5].

1.4 Thesis outline and list of submitted articles

After the introductory topics on subsections 1.1 and 1.2, the reader may be conscious about the

importance of the continuum electromechanics and, in particular, its applications in several areas such

as elastic deformation of bodies or propagation of waves in fluids and solids. Since the list of applications

of the continuum electromechanics is extensive and covers different areas, each chapter is related to one

specific subject. Consequently, each chapter is written in a way that can be read and analysed by itself,

without the necessity to read the preceding chapters. In the following list, the essence of each chapter is

explained briefly, along with the key points. In summary, this thesis is divided as follows:

• Chapter 1: An introduction gives an overview of the continuum electromechanics, including its
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principles that are used in this document, and it also proposes the objectives set to be achieved

with this thesis;

• Chapter 2: Near any corner, multipath effects occur due to the reflection of acoustic waves, for

example, the noise of an helicopter or an aircraft or a drone or other forms of urban air mobility near

a building, or even a telecommunications receiver antenna near an obstacle. Most of the literature

about ground effects on aircraft noise considers a point source over a flat ground, using the method

of images, that does not extend readily to rough ground. The total signal received in a corner

consists of four parts: (i) a direct signal from source to observer; (ii) a second signal reflected on

the ground; (iii) a third signal reflected on the wall; (iv) a fourth signal reflected on both wall and

ground. The problem is solved in two-dimensions to specify the total signal, whose its ratio to the

direct signal specifies the multipath factor. The amplitude and phase of the multipath factor are

plotted as functions of the frequency over the audible range, for various relative positions of observer

and source, and for several combinations of the reflection coefficients of the ground and wall. It

is shown that the received signal consists of a double series of spectral bands, in other words: (i)

the interference effects lead to spectral bands with peaks and zeros; (ii) the successive peaks also

go through zeros and “peaks of the peaks”. The results apply not only to sound, but also to other

waves, for example electromagnetic waves using the corresponding frequency band and reflection

factors.

• Chapter 3: The noise received from an aircraft or any other acoustic source is modified not

only by reflections on ground, but also by atmospheric attenuation. The interference of direct and

reflected waves is studied for a flat ground, with or without atmospheric attenuation, then multiple

reflections that can occur for rough ground or mountainous surroundings are also analysed. The

ground characteristics, like reflection and absorption factors or impedance, also affect the received

sound. All these effects have to be considered with respect to the path of the acoustic wave. The

effect of rough ground on aircraft noise can be modelled by: (i) identification of reflection points

(there may be several points); (ii) use of a complex reflection coefficient (with amplitude and phase

changes) at each reflection point; (iii) adding all reflected waves within line-of-sight of the receiver,

that is not blocked by terrain. As in the chapter 2, the amplitude and phase of the multipath factor

are plotted as functions of the frequency for the previous situations.

• Chapter 4: Continuing with the study of propagation of waves, in this case the linear transverse

oscillations of a uniform elastic string, the question answered in this chapter is if the free oscillations

can be attenuated, reducing the energy of propagation, due to external forcing. In this chapter, all

the oscillations are undamped. When the frequency of the applied force is not equal to the natural

frequency of the system, the total energy increases, that is the opposite of what is intended. When

the applied frequency is equal to one of the natural frequencies, the amplitude of oscillation grows

linearly with time, and hence the energy grows quadratically with time, implying an increase in

total energy after a sufficiently long time. It is proved that a reduction in total energy is possible

over a short time, specifically over the first period of oscillation, by optimizing the forcing, not
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only in the case of a concentrated force, but also for several concentrated forces. In the case of a

continuously distributed force, by optimizing the spatial distribution, it is shown that reducing the

energy of the total oscillation is also possible, at least, over the first period of vibration. It has also

been proved that continuously distributed forces are more effective at vibration suppression than

point forces.

• Chapter 5: Again for the transverse oscillations of an elastic string, but in this chapter with

friction proportional to the velocity (typical of telegraph or wave-diffusion differential equation),

in other words, for damped oscillations, the vibration suppression is investigated, due to external

forces as in the chapter 4. As the damping is considered in this chapter, the free oscillations are

sinusoidal modes in space-time and exponentially decay with time. When the applied frequency is

equal to one of the natural frequencies, the sinusoidal oscillations have a constant amplitude and

a phase shift of π/2. When the applied frequency is not equal to any of the natural frequencies,

the sinusoidal oscillations have also a constant amplitude and a phase shift such that the work

of the applied force balances the dissipation. In both cases, the resonant or non-resonant forcing

dominates the decaying free oscillations after some time. This chapter proposes an optimisation of

the forcing to minimise the total energy of oscillation, but after verifying that the energy remains

below the energy of the free oscillation alone only for a short time, a more effective method of

countering the damped free oscillations is proposed. It consists on use forcing with amplitude

decaying exponentially in time and making a suitable choice of the forcing decay relative to the

free damping, in such a way that the total energy of oscillation over all time can be reduced, in

comparison to the energy of the free oscillation.

• Chapter 6: The energy balance equation, including the kinetic energy density, the deformation

energy density and the power of external forces, identifies the energy flux as minus the product of the

velocity by the stress tensor. It is shown that this result does not depend on constitutive relations,

and therefore it is valid to elastic or inelastic matter. The energy flux is obtained for linear strains,

and in the case of transverse vibrations of elastic strings and membranes it is generalised to the

non-linear case of unrestricted slope. The energy flux is also obtained in elasticity for crystals and

amorphous matter. By inspection of any linear wave equation in a steady homogeneous medium,

it is possible to verify if the waves are (i) isotropic or not and (ii) dispersive or not, even if an

explicit solution is not obtained. Regarding the linear elastic waves, it is shown that (i) they are

non-dispersive in crystals or amorphous matter. In the latter case, the longitudinal and transversal

waves are isotropic. However, the superposition of both waves induces an anisotropy. Consequently,

the superposition adds, besides the two energy densities and powers of external forces, also a third

cross-coupling energy flux, which is deduced in this chapter.

• Chapter 7: For the lowest order term, the multipolar representation of the magnetic field has a

magnetic dipole that dominates the far-field. Thus, the far-field representation of the magnetic field

of the Earth, Sun and other celestial bodies is a dipole. These bodies consist of or are surrounded

by plasma, which can support Alfvén waves. This chapter introduces multipolar coordinates, which
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are an example of conformal coordinates. The conformal coordinates are orthogonal with equal

scale factors, and can be extended from the plane to space, for instance as cylindrical or spherical

dipolar coordinates. This new coordinate system is used to study the propagation of Alfvén waves

along dipole magnetic field lines including, in particular, circle magnetic field lines, with transverse

velocity and magnetic field perturbations. The various forms of the Alfvén wave equation are linear

second-order differential equations, with variable coefficients, specified by a background magnetic

field, which is force-free. The hydrostatic equilibrium, when the gravitational force balances the

pressure gradient, for an incompressible fluid or perfect gas, is obtained when there is no back-

ground magnetic force. When the frequency of the Alfvén equation is zero, the wave equation is

simplified to a Gaussian hypergeometric type, otherwise, for non-zero frequency, an extended Gaus-

sian hypergeometric equation is obtained. The solution of the latter specifies the magnetic field

perturbation spectrum, and also, via a polarisation relation, the velocity perturbation spectrum;

both are plotted, over half-a-circle, for three values of the dimensionless frequency.

• Chapter 8: The study of the behaviour of an elastic beam under compression is made, where

the Euler-Bernoulli theory is used, but taking into account the effect on non-linear terms in the

curvature of the beam. The Euler–Bernoulli theory of beams is usually presented in two forms:

(i) in the linear case of small slope using Cartesian coordinates along and normal to the straight

undeflected position; (ii) in the non-linear case of large slope using curvilinear coordinates along

the deflected position specified by the arc length and angle of inclination. This chapter starts with

the exact equation in a third form, that is, (iii) using Cartesian coordinates along and normal to

the undeflected position like (i), but including exactly the non-linear effects of large slope like (ii).

This third form is analysed and it is proven that the exact non-linear shape of the neutral surface

is a superposition of linear harmonics; thus, the non-linear effects of large slope are equivalent to

the generation of harmonics of a linear solution for small slope. It is made a comparison of: (i)

the critical buckling load in the linear and non-linear cases; (ii) the buckled shape of the neutral

surface, again in the linear and non-linear cases. The non-linear shape of the neutral surface, for

cases when the square of the slope cannot be neglected, is illustrated for the first four buckling

modes of cantilever, pinned, and clamped beams with different lengths and amplitudes.

• Chapter 9: The Föppl-von Kármán equations for the non-linear bending of elastic plates are solved

by a novel method of twin asymptotic expansions for the transverse displacement and in-plane stress

function. Unlike most asymptotic expansions, that can be derived explicitly only to second or

third order, exceptionally in this case both asymptotic expansions can be obtained explicitly to all

orders. The perturbation relations form a causal chain of linear partial differential equations, with

biharmonic operators and forcing specified by the lower orders. Furthermore, a method of exact

analytical solutions applicable to all orders is presented for the axisymmetric case with loading

represented by a polynomial or analytic function of the radius. In this case, the convergence of the

parametric perturbation expansion is proved to any order and as an infinite series provided that

the perturbation parameter is less than unity. The method of perturbation expansions is illustrated
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explicitly up to the lowest order by the application to a clamped circular plate subject to a radial

pressure and its own weight. The scaling of the asymptotic expansion parameter on material and

geometric properties indicates when coupling of bending to in-plane stresses is more significant.

Several articles were submitted to scientific journals and some of them were already published (in

February 2023). The mathematical derivations are put in an elementary form. In some cases, necessary

explanations and intermediate calculations are given so that the reader can follow all the derivations

without difficulty. Furthermore, the thesis has the list of references to the papers or books in which

the derivations can be found. This thesis is divided in such a way that each chapter contributes to one

submitted paper. The following refereed papers arose from work related to this thesis:

• Chapter 2:

L. M. B. C. Campos, M. J. S. Silva and A. R. A. Fonseca (2021) “On the multipath effects due to

wall reflections for wave reception in a corner”, published in Noise Mapping, De Gruyter, 8(1), pp.

41–64, DOI: 10.1515/noise-2021-0004

• Chapter 3:

L. M. B. C. Campos, M. J. S. Silva and J. M. G. S. Oliveira (2022) “On the effects of rough ground

and atmospheric absorption on aircraft noise”, published in Noise Mapping, De Gruyter, 9(1), pp.

23–47, DOI: 10.1515/noise-2022-0003

• Chapter 4:

L. M. B. C. Campos and M. J. S. Silva (2022) “On the countering of free vibrations by forcing: Part

I – Non-resonant and resonant forcing with phase shifts”, published in Applied Mechanics, MDPI,

3(4), pp. 1352–1384, DOI: 10.3390/applmech3040078

• Chapter 5:

L. M. B. C. Campos and M. J. S. Silva (2023) “On the countering of free vibrations by forcing:

Part II – Damped oscillations and decaying forcing”, published in Applied Mechanics, MDPI, 4(1),

pp. 141–178, DOI: 10.3390/applmech4010009

• Chapter 6:

L. M. B. C. Campos and M. J. S. Silva (2023) “On the energy flux in elastic and inelastic bodies”,

submitted in Wave Motion, Elsevier (Original version review)

• Chapter 7:

L. M. B. C. Campos, M. J. S. Silva and F. Moleiro (2019) “On Alfvén wave propagation along

a circle on dipolar coordinates”, published in Journal of Plasma Physics, Cambridge University

Press, 85(6), ID 905850608, DOI: 10.1017/S0022377819000837

• Chapter 8:

L. M. B. C. Campos and M. J. S. Silva (2021) “On the generation of harmonics by the non-linear

buckling of an elastic beam”, published in Applied Mechanics, MDPI, 2(2), pp. 383–418,

DOI: 10.3390/applmech2020022
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• Chapter 9:

L. M. B. C. Campos and M. J. S. Silva (2022) “On twin perturbation expansions for the non-linear

bending of plates”, submitted in Quarterly Journal of Mechanics and Applied Mathematics, Oxford

University Press (Revised version review)

In parallel with the elaboration of the contents presented in this thesis, additional studies were con-

ducted that are not directly related to continuum electromechanics, such as the generalisation of the

Bessel differential equation or its related topics like Airy functions and hypergeometric functions. They

have some applications, for instance, on acoustic-rotational waves in a uniform flow with rigid body swirl.

The decision was not to include the contents of the following articles in this document and instead expose

only the relevant works. All the subsequent research is being submitted in several articles, hereby cited:

• L. M. B. C. Campos and M. J. S. Silva (2022) “On generalized Hankel functions and a bifurcation

of their asymptotic expansion”, submitted in Asymptotic Analysis, IOS Press

(Original version review)

• L. M. B. C. Campos and M. J. S. Silva (2022)1 “On a generalization of the Airy, hyperbolic and

circular functions”, published in Nonlinear Studies, Cambridge Scientific Publishers, 29(2), pp.

529–545, URL: www.nonlinearstudies.com/index.php/nonlinear/article/view/2137

• L. M. B. C. Campos and M. J. S. Silva (2022) “On asymptotic expansions for generalized Airy,

circular and hyperbolic functions”, submitted in Nonlinear Studies, Cambridge Scientific Publishers

(Original version review)

• L. M. B. C. Campos and M. J. S. Silva (2022) “On hyperspherical associated Legendre functions:

the extension of spherical harmonics to N dimensions”, submitted in Nonlinear Studies, Cambridge

Scientific Publishers (Original version review)

1.5 Notation

Throughout this thesis, there are many mathematical variables that can be identified since they are

always written in italic mode. If the letter or symbol is written in normal mode, it does not represent

a mathematical variable. However, it means an abbreviation, or if it is written in a subscript or a

superscript, it can be an identifier of what the mathematical variable represents. Therefore, these letters

or symbols written in normal mode are useful to distinguish several variables. For instance, in chapter

9, E represents the Young’s modulus of elasticity whereas ET contains the subscript T that stands for

total, which means that the variable ET is the total elastic energy per unit volume of the plate during

its deformation.

Some of those variables are tensors that can be of different orders and therefore they have distinct

notations for each of them. The tensors with order zero are scalars and are represented by a variable
1The published article “On a generalization of the Airy, hyperbolic and circular functions” was done during the Ph.D.

course, but it is not included in this document.
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written in italic mode with no subscripts. For instance, A represents a scalar. The tensors with order

one mean vectors (written also in italic), however they need one index (subscript) to represent them; that

subscript follows the notation of multiplicities and is also written in italic. For instance, Ai represents a

vector while i is its free index. In those cases, the vectors can be written also in bold mode, A, instead

of representing them with a subscript. Another example of a vector is ∇ that indicates the derivative

operator (in all chapters of the thesis). The tensors with order two are also written in italic and they have

two italic subscripts. For example, Aij is a second-order tensor with i and j as free indices. In summary,

to know which order the tensors are, the notation of multiplicities is used in this thesis to represent them,

and the number of free indices is equal to the order of the tensor. Following that logic, Aijk is a third

order tensor and Aijkl is a fourth order tensor. An important reminder is that all these indices can be

Latin, Greek or other types of letters, but they must be written in italic mode2. Another note is that the

bold symbols only represent vectors (first-order tensors) and not tensors of other orders.

There are also several variables with subscripts, but these subscripts cannot be regarded as usual

indices of multiplicities. Whenever the subscripts are numbers or letters in not italic mode, they do not

stand for multiplicities. For instance, as indicated in the first paragraph of this subsection 1.5, ET is the

energy of deformation, and the subscript T means that it is about the total energy; therefore, ET is not a

first-order tensor, but a scalar. Another example from the chapter 9 is the variable E1 in which 1 stands

for bending (it is not a free index); therefore, E1 is a scalar and not a first-order tensor. Furthermore,

in some sums or series (infinite sums) written throughout the thesis, there are variables with subscripts

in some terms of the sums. These variables with subscripts do not represent tensors; although they have

a subscript written in the italic mode because it is a mathematical variable, these indexed variables are

coefficients representing each term of the sum and the subscript is the index of summation. For instance,∑N
i ai means a sum of the terms ai and consequently ai is not a first-order tensor, but a scalar term of

the sum in which the subscript i is the index of summation, not an index that stands for a multiplicity.

The indices of summation and the dummy variables of all sums are not indicated in the list of symbols.

The number of variables is large and the following chapters are almost independent of each other. For

that reason, the list of symbols is separated by the various chapters to make the reader’s search easier.

Consequently, some variables are repeated in more than one chapter; for instance, x stands for x-axis

in Cartesian coordinates and is present in the nomenclature not only in the chapter 2, but also in the

chapter 3. Otherwise, some letters or symbols are used in more than one chapter, but represent different

variables, depending on the chapter they are written in; for instance, the symbol µ means the Lamé

second parameter in the chapter 6, however in the chapter 7 it represents the magnetic permeability.

Finally, there are some not italic letters (written in standard mode) that represent a mathematical

variable. These variables are i as the imaginary number, d as the differential operator and e as the

Napier’s number. Other mathematical operators written in normal mode are Re that stands for the real

part of a complex number, const that is when the mathematical symbol is a constant, log10 that is used

to indicate logarithm with 10 as the basis and log that stands for a logarithm with e as the basis.

2There are exceptions in chapter 7 and appendix D: eα, eβ and eϕ are unit vectors in spherical dipolar referential since
they are written in bold mode, although the subscripts α, β and ϕ are not free indices, but identifiers for each vector. The
other example is hα or hβ , which are scalar numbers (scale factors) and not vectors, although they have italic subscripts.
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2 | On the multipath effects due to

wall reflections for wave reception

near a corner

“Reason we call that faculty innate in us of discovering laws and applying them with

thought.”
— Hermann von Helmholtz

Contents
2.1 Direct, singly-reflected and doubly-reflected signals . . . . . . . . . . . . . 15

2.2 Multipath effects on the amplitude and phase of the signal . . . . . . . . 19

2.3 Main conclusions of the chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 28

Aircraft noise near airports can limit the use of runways at night and other times, leading to

take-off weight limits that affect economics and, if not controlled, could become an obstacle to air

traffic growth. Aircraft noise [8] is the subject of international certification standards, with some airports

or local authorities applying lower limits. The efforts to reduce noise near airports lead to a balanced

approach [9] combining low self-noise aircraft with low noise operations to minimise the number of people

affected within given ground contours [10]. The certification and noise monitoring depend on measuring

microphones that receive the direct sound wave from the aircraft. If the microphone is near the ground,

a reflected wave is added to the direct wave; if the two waves are in-phase, the amplitude is doubled,

corresponding to an increase of 10 log10 2 ≈ 3 dB for the amplitude and 20 log10 2 ≈ 6 dB for the power.

If the microphone is in a corner, as sketched in figure 2.1, then there are three reflected waves: one from

the ground, one from the wall and one reflected from both surfaces; together with the direct wave, there

are four waves, and if all four are in-phase, the amplitude is multiplied by 4 leading to an increase of

10 log10 4 ≈ 6 dB for the amplitude and 20 log10 4 ≈ 12 dB for the power. Thus, the norms on noise

measurement [11, 12] specify a 6 dB increase in power near the ground and 12 dB near the corner.

These noise corrections are extreme worst-case scenarios because: (i) if waves are out-of-phase, there

is less amplification and there may be even cancellation; (ii) if the ground and wall are not perfectly
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Figure 2.1: Observer O at (xO, yO) receiving from the source S at (xS, yS) four signals: (i) one direct
from the source to observer at distance r; (ii) one with the reflection on the ground making the distance
r11 +r12; (iii) one with the reflection on the wall making the distance r21 +r22; (iv) one with the reflection
on the ground followed by the reflection on the wall making the distance r31 + r32 + r33.

reflecting, then wave transmission or absorption reduces the amplitude. In addition, urban morphology

[13–15] is not reduced to infinite plane and orthogonal corner reflectors. Further changes to the received

sound field arise due to atmospheric wind and turbulence [16, 17]. More fundamentally, the effect of

a reflector is to lead to interference between the direct and reflected waves, resulting in amplification,

attenuation or even cancellation depending on the frequency (or wavelength) and position of the observer

and source relative to the obstacle. In the case of an orthogonal corner, sketched in the figure 2.2, the

position can be specified by Cartesian (x, y) or polar (r, ϑ) coordinates for the source and observer.

The effect of reflections can be calculated for sound pulses [18] or for sinusoidal waves, which can form

any spectrum by superposition. The present chapter considers a sound source and an observer/receiver

at arbitrary positions relative to an orthogonal corner taking into account the interference between the

direct and the three reflected waves for any frequency, allowing for different reflection coefficients from

the ground and the wall.

In general, the problem of multipath propagation and interference applies to all waves, particularly

acoustic [19–23] and electromagnetic waves [24–26]. The situation is illustrated in the two-dimensional

case in figure 2.1, showing that the observer receives four signals: (i) one direct signal from the source; (ii)

one signal reflected from the ground; (iii) one signal reflected from the wall; (iv) a fourth signal reflected

from both wall and ground. The positions of the reflection points are determined by the condition of

equal angles of incidence and reflection; once the positions of the reflection points are determined, the

lengths of all the ray paths can be calculated. Together with the reflection coefficients, this specifies the

total received signal; normalising with regard to the direct signal specifies the multipath factor accounting

for the interference among the four waves. The multipath factor is generally complex, with the modulus
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setting the amplitude change and the argument specifying the phase change.

The problem is solved in two dimensions (figure 2.1) by determining the total received field (subsection

2.1.1), which consists of the direct plus three reflected waves. The waves reflected on the ground (sub-

section 2.1.2) and on the wall (subsection 2.1.3) are specified by the positions of the respective reflection

points and by the lengths of the two resulting ray paths; for the fourth wave reflected on the ground and

then on the wall (subsection 2.1.4), the positions of the two reflection points are coupled and specify the

three lengths of ray paths. Concerning the fourth signal, there are three cases: (i) if the elevation angle of

the observer is above that of the source (α > β in figure 2.2), then the first reflection is on the ground and

the second on the wall (subsection 2.1.4); (ii) in the reverse case (β > α in figure A.1), the first reflection

is on the wall and the second on the ground (appendices A.1.1 and A.1.2); (iii) in the intermediate case

of observer and source on the same elevation angle (β = α in figure A.2), the double reflection on the

corner is treated as the limit of the preceding cases (appendices A.1.2 and A.1.4). The total signal is the

sum of all four signals taking into account the reflection coefficients (appendix A.3) on the ground and

wall. The total signal is normalised to the direct signal to specify the multipath factor, whose amplitude

and phase are plotted for: (subsection 2.2.1) two relative positions of source and observer (figures 2.3

and 2.4); (subsection 2.2.2) three combinations of the reflection factors on the ground and wall (figures

2.5 to 2.7). The results may be recast in terms of source distance and direction (subsection 2.2.3), and

be simplified for a source in the far field. Thus, as an alternative to the preceding, for a fixed frequency,

the amplitude and phase changes may be evaluated (subsection 2.2.4) as functions of source distance to

the corner (figure 2.8) or as functions of the direction of arrival of the signal (figure 2.9). The contour

maps for the amplitude (figures 2.10 and 2.12) and phase (figures 2.11 and 2.13) of the multipath factor

apply not only to acoustic, but also to electromagnetic waves (section 2.3).

2.1 Direct, singly-reflected and doubly-reflected signals

The total signal received from a distant source by an observer in a corner (figure 2.1) consists of a direct

signal (subsection 2.1.1), plus reflections on the ground (subsection 2.1.2) and on the wall (subsection

2.1.3) plus a double reflection on both surfaces (subsection 2.1.4).

2.1.1 Total signal as sum of four waves

Consider the two-dimensional problem (figure 2.1) of wave reception form a source S by an observer

O near a corner between a horizontal ground y = 0 and a vertical wall x = 0 taken as axes of a Cartesian

reference with origin at the corner. The observer,

O 7→ (xO, yO) = q (cosα, sinα) , (2.1a)

and source,

S 7→ (xS, yS) = s (cosβ, sin β) , (2.1b)
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are at the distance

r =
[
(xS − xO)2 + (yS − yO)2

]1/2
(2.2)

where q is the distance between the corner and the observer, and s is the distance between the corner

and the source. The distance r specifies the direct signal, to which are added reflected signals, illustrated

in the figure 2.1, for source farther from the origin than the observer. The viscosity for the sound field

in air at the most audible frequencies are negligible since the Reynolds number is very large, being of

the order of 108. The sound is therefore considered as a weak motion of an inviscid fluid, in this case

from an initial state of rest, and thermal conduction is also neglected. Since the sound wave induces

small perturbations in the air, its presence can be assumed as a linear perturbation. Consequently,

the product of two perturbations are neglected and the laws describing the movement are linear, using

first-order approximations. Since there is no interaction between the sound waves, they can be added

by superposition, to obtain the total sound field [27]. Four signals are received and the total acoustic

pressure perturbation is given by

ptot = 1
r

exp (ikr) + R1

r11 + r12
exp [ik (r11 + r12)] + R2

r21 + r22
exp [ik (r21 + r22)]

+ R31R32

r31 + r32 + r33
exp [ik (r31 + r32 + r33)] , (2.3)

corresponding to four contributions in (2.3), namely: (i) the first term, where k is the wavenumber, is

due to the direct wave from source to observer, at distance r, and is taken with unit amplitude (the

complex amplitude and the temporal part would drop out when normalizing the total signal to the direct

signal); (ii) the second term involves the reflection factor R1 of the horizontal wall at the reflection point

P1, whose coordinates (x1, 0) specify the distance from source to reflection point r11 and the distance

from reflection point to observer r12; (iii) the third term involves the reflection factor R2 of the vertical

wall at the reflection point P2, whose coordinates (0, y2) specify the distance from source to reflection

point r21 and the distance from reflection point to observer r22; (iv) the last term involves the reflection

factors of the two walls, R31 and R32, respectively at the reflection points P31 and P32, whose coordinates

(x31, 0) and (0, y32) specify the distances from source to first reflection point r31, between reflection points

r32, and from the second reflection point to observer r33, as sketched in figure 2.2. The angles in figure

2.1 follow the law of specular reflection stating that the angle between the normal to the surface and

reflected wave is equal to the angle between the same normal and incident wave. The equation (2.3) is

an harmonic solution of the linearised wave equation assuming that the pressure perturbation is radial

(and unsteady) and represents a wave with outward spherical propagation centred at the source [27]. The

physical solution can be given by the real part of (2.3). The reflection factors may be complex, involving

amplitude and phase changes for an impedance ground and/or wall. If the reflection factor is uniform on

the ground Rh and on the wall Rv, then (2.3) simplifies with

R1 = R31 ≡ Rh, (2.4a)

R2 = R32 ≡ Rv. (2.4b)
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The reflection coefficients of the ground Rh and of the wall Rv may be different (for instance, grass

and concrete) or equal (for instance, both concrete). A brief review about the reflection coefficients is

described in the appendix A.1.3.

S

r31

x31

r32

y32

r33

O

q

s

yO

xO

yS

xS

α
β

α > β

Figure 2.2: Sound source S and observer O near a corner, with elevation angle for the latter α larger
than for the former β, that is, β < α, showing only the reception path with two intermediate reflections.

2.1.2 Signal due to reflection on the ground

The equality of the angles θ1 of incidence and reflection on the horizontal plane,

xS − x1

yS
= cot θ1 = x1 − xO

yO
, (2.5a)

specifies the position (x1, 0) at the reflection point P1, that is,

x1 = xOyS + yOxS

yS + yO
. (2.5b)

The latter determines the distance from the source to the reflection point,

r11 =
[
(xS − x1)2 + y2

S

]1/2
= |yS|

[
1 + (xS − xO)2

(yS + yO)2

]1/2

, (2.6a)

and the distance from the reflection point to the observer,

r12 =
[
(x1 − xO)2 + y2

O

]1/2
= |yO|

[
1 + (xS − xO)2

(yS + yO)2

]1/2

, (2.6b)

where (2.5b) was used. These two distances, in (2.6a) and (2.6b), determine the second term in (2.3) and

specify the signal reflected on the horizontal ground.
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2.1.3 Signal due to reflection on the wall

The equality of the angles θ2 of incidence and reflection on the vertical plane,

yS − y2

xS
= cot θ2 = y2 − yO

xO
, (2.7a)

specifies the position (0, y2) at the reflection point P2, that is,

y2 = xOyS + yOxS

xS + xO
. (2.7b)

The latter determines the distance from the source to the reflection point,

r21 =
[
x2

S + (yS − y2)2
]1/2

= |xS|

[
1 + (yS − yO)2

(xS + xO)2

]1/2

, (2.8a)

and the distance from the reflection point to the observer,

r22 =
[
x2

O + (y2 − yO)2
]1/2

= |xO|

[
1 + (yS − yO)2

(xS + xO)2

]1/2

, (2.8b)

where (2.7b) was used. These two distances, in (2.8a) and (2.8b), determine the third term of (2.3),

which specifies the signal reflected from the vertical wall.

2.1.4 Signal due to double reflection on the ground and on the wall

The angles of incidence or reflection on the horizontal, θ31, and vertical, θ32, planes couple the positions

of the reflection point P31 on the ground (x31, 0),

xS − x31

yS
= cot θ31 = x31

y32
, (2.9a)

and the reflection point P32 on the wall (0, y32),

y32

x31
= cot θ32 = yO − y32

xO
. (2.9b)

Solving the last two equations for y32 gives the equality

x31yS

xS − x31
= y32 = x31yO

xO + x31
, (2.9c)

from which follows

(xO + x31) yS = yO (xS − x31) , (2.9d)

which specifies the position of the first reflection point,

x31 = yOxS − xOyS

yS + yO
. (2.9e)
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The position of the second reflection point,

y32 = yOxS − xOyS

xS + xO
, (2.9f)

follows substituting (2.9e) in (2.9a) or in any equality of (2.9c). The positions of both reflection points

determine the distances: (i) from the source to the first reflection point on the ground,

r31 =
[
(xS − x31)2 + y2

S

]1/2
= |yS|

[
1 + (xS + xO)2

(yS + yO)2

]1/2

; (2.10a)

(ii) from the first reflection point on the ground to the second reflection point on the wall,

r32 =
[
(x31)2 + (y32)2

]1/2
= |yOxS − xOyS|

[
1

(xS + xO)2 + 1
(yS + yO)2

]1/2

; (2.10b)

(iii) from the second reflection point on the wall to the observer,

r33 =
[
x2

O + (yO − y32)2
]1/2

= |xO|

[
1 + (yS + yO)2

(xS + xO)2

]1/2

. (2.10c)

The last three equations are valid if β ≤ α. In the relations (2.10a) and (2.10b) was used (2.9e) and in

the relations (2.10b) and (2.10c) was used (2.9f). The calculations from (2.9a) to (2.10c) assume that

the first reflection is on the ground and the second is on the wall, as indicated in the figure 2.2. This is

the case if the azimuth (or elevation angle) β of the source in (2.1b) is less than the azimuth α of the

observer in (2.1a), β ≤ α. If the reverse was true, β ≥ α, then a similar calculation holds with reflection

first on the wall and then on the ground. The third case of sound and observer on the same azimuth,

β = α, corresponds to reflection at the “corner”, and can be treated as the boundary β → α± 0 between

the two cases, β ≥ α and β ≤ α. These differences affect only the doubly reflected wave, that is, the last

term of (2.3).

2.2 Multipath effects on the amplitude and phase of the signal

The total signal normalised to the incident signal specifies the amplitude and phase changes (subsec-

tion 2.2.1). These changes are plotted over the whole audible range (subsection 2.2.2) for two relative

positions of source and observer with three combinations of reflection factors of the ground and wall. For

a distant source, the amplitude and phase changes may be simplified (subsection 2.2.3) and plotted in

terms of direction of arrival β of the signal and for different source distances q in the plane (subsection

2.2.4).
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2.2.1 Multipath factor due to ground and wall reflections

The multipath factor F is defined as the ratio to the pressure perturbation of the direct signal,

assuming that is a spherical wave [27],

pdir ≡
1
r

exp (ikr) , (2.11)

of the pressure perturbation of the total signal (2.3), that is,

F = ptot

pdir
= ptotr exp (−ikr) , (2.12a)

leading to

F ≡ 1 +Rh
r

r11 + r12
exp [ik (r11 + r12 − r)] +Rv

r

r21 + r22
exp [ik (r21 + r22 − r)]

+RhRv
r

r31 + r32 + r33
exp [ik (r31 + r32 + r33 − r)] . (2.12b)

The pressure perturbation of the direct signal (2.11) is an harmonic solution of the linearised outward

spherical wave equation, centred from the source, where the physical solution can be given by its real part

[27]. The multipath factor (2.12b) depends on the various distances, r, r11, r12, r21, r22, r31, r32, r33,

specified respectively by the relations determined in the section 2.1. The multipath factor is generally

complex,

F = |F | exp [i arg (F )] , (2.13)

and its amplitude and phase are plotted separately respectively at the top |F | and bottom arg (F ) of

figures 2.3 to 2.7, versus frequency over the audible range, 20 Hz ≤ f ≤ 20 kHz.

In all five figures, the source is far from the corner. It is assumed that the source is at the position

xS = 700 m and yS = 30 m. The observer position and the impedance of horizontal and vertical walls are

indicated in the table 2.1.

Number of the figure xO [m] yO [m] Rh Rv

2.3 3 2 1 1
2.4 2 6 1 1
2.5 3 2 0.5 1
2.6 3 2 1 0.5
2.7 3 2 0.5 0.5

Table 2.1: Values of the observer position and reflection factors of the walls in figures 2.3 to 2.7.

The figure 2.3 is the baseline case with observer at the position xO = 3 m and yO = 2 m. The

horizontal and vertical walls have also uniform rigidity equal to one. When the reflection factors are

equal to one, the wave is totally reflected because the acoustic pressure of both waves is the same. In

figure 2.4 the observer position is changed, in figure 2.5 the observer position returns to the baseline
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position, but the ground has reflection coefficient one-half. Instead, in figure 2.6, the reflection coefficient

is one-half on the wall. In figure 2.7, both surfaces have reflection coefficient one-half. Changing one set

of parameters from the baseline shows separately the effect of observer position or the effect of halving

the reflection coefficient not only of the ground, but also of the wall.
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Figure 2.3: Modulus (top) and phase (bottom) of the multipath factor (2.12b) versus frequency in
the audible range (left), 20 ≤ f ≤ 20000 Hz, or in the sub-range (right), 20 ≤ f ≤ 1000 Hz, for a fixed
observer at the position (xO, yO) = (3, 2) m and fixed source at the position (xS, yS) = (700, 30) m. The
ground and wall are completely rigid with Rh = Rv = 1.
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Figure 2.4: The same as figure 2.3, but for a modified observer at the position (xO, yO) = (2, 6) m.
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Figure 2.5: The same as figure 2.3, but for halved reflection factor on the ground, Rh = 0.5.
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Figure 2.6: The same as figure 2.3, but for halved reflection factor on the wall, Rv = 0.5.
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Figure 2.7: The same as figure 2.3, but for halved reflection factor on the the ground and on the wall,
Rh = Rv = 0.5.

2.2.2 Effect of observer position and reflection coefficients of surfaces

The figures 2.3 to 2.7 have all the same format, with the modulus or amplitude of the multipath factor

at the top and its argument or phase at the bottom; the spectrum is quite dense over the audible range,

and in fact was drawn using symbolic expressions. Since the spikes which form the spectrum are very

narrow, a part of the full spectrum at left is amplified at right, namely to the range 20 ≤ f ≤ 1000 Hz.

It is seen in figure 2.3 that the interference between direct and reflected signals leads to nulls and peaks;

furthermore, the succession of peaks has itself peaks and nulls, like a phenomenon of beats; on the right-

hand side, it can be seen clearly the individual peaks, and on the left-hand side only the “peaks of the

peaks”. The complex amplitude of F is a composition (square root, sum and squares of real and imaginary

parts) of cosine and sine functions, all harmonic functions.

The figure 2.3 concerns an observer below the bisector of the corner and figure 2.4 an observer above.

Changing the observer position does not influence significantly the maximum amplitude of |F | and the

extreme values of arg (F ). It has a stronger effect on the frequency values which lead to the extreme

values or zeros of |F | and arg (F ), since the multipath factor depends on the ray distances of all waves.

In figure 2.5, the observer returns to the baseline position of figure 2.3, but the reflection coefficient of the

ground is halved; the maximum amplitude of the multipath factor in figure 2.3 is almost 4, but when the

reflection coefficient of the ground is halved, the maximum amplitude of the multipath factor reduces to

almost 3, since that in this last case, the ground absorbs some of the acoustic energy of the propagating

waves. Nonetheless, the frequency values which lead to maximum absolute value of multipath factor

are the same because those frequency values depend only on the difference between ray distances of

reflected waves and the ray distance of the direct wave (indeed, according to (2.12b), they depend on

the exponential arguments). In figure 2.6, the reflection coefficient on the wall is halved instead of on
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the ground and the observations are the same to the last ones. In figure 2.7, the reflection coefficient is

halved both on ground and on wall. Relative to this, the figure 2.7 shows a smaller maximum amplitude

(almost 2.5) and a smaller maximum phase due to the attenuation effect of the absorbing surfaces.

2.2.3 Case of source in the far field and observer in the near field

The distances appearing in (2.12b) may be expressed in polar coordinates (2.1a) and (2.1b), and

simplified for the observer in near field and the source in far field, for example: (i) the distance (2.2) from

the source (2.1b) to the observer (2.1a) is

r =
∣∣s2 + q2 − 2sq cos (β − α)

∣∣1/2 = s− q cos (β − α) +O

(
q2

s

)
; (2.14)

(ii) the distances from the source (2.6a) and observer (2.6b) to the reflection point on the ground are

respectively

r11 = s− q cotβ sin (α+ β) +O

(
q2

s

)
, (2.15a)

r12 = q sinα cscβ +O

(
q2

s

)
(2.15b)

for single reflection; (iii) the distances from the source (2.8a) and observer (2.8b) to the reflection point

on the wall are respectively

r21 = s− q tan β sin (α+ β) +O

(
q2

s

)
, (2.16a)

r22 = q cosα secβ +O

(
q2

s

)
(2.16b)

for single reflection; (iv) in the case of double reflection, the distance from the source to the reflection

point on the ground (2.10a) is

r31 = s− q cotβ sin (α− β) +O

(
q2

s

)
, (2.17a)

from this last point to the reflection point on the wall (2.10b) is

r32 = q secβ cscβ sin (α− β) +O

(
q2

s

)
(2.17b)

and from the wall to the observer (2.10c) is

r33 = q cosα secβ +O

(
q2

s

)
. (2.17c)

The last three relations are valid if β ≤ α.

Note that the far field approximation requires that all distances can be approximated toO (q), implying

that: (i) if the leading term is O (s), then the next approximation O (q) is needed, for instance to specify
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the O (q) terms in (2.14), (2.15a), (2.16a) and (2.17a); (ii) if the leading term is O (q), as in (2.15b),

(2.16b), (2.17b) and (2.17c) the next term would be O
(
q2/s

)
and can be omitted. The last three results

hold if α ≥ β, and the opposite case is considered in appendix A.1.3. Substituting the simplified distances,

the multipath factor (2.12b) can be written explicitly as

F = 1 +Rh

[
1− q

s
A (α, β)

]
exp [ikq A (α, β)] +Rv

[
1− q

s
B (α, β)

]
exp [ikq B (α, β)]

+RhRv

[
1− q

s
C (α, β)

]
exp [ikq C (α, β)] (2.18a)

where

A (α, β) = cos (α− β) + sinα cscβ − cotβ sin (α+ β) , (2.18b)

B (α, β) = cos (α− β) + cosα secβ − tan β sin (α+ β) , (2.18c)

C (α, β) = cos (α− β) + cosα secβ − sin (α− β) cscβ (cosβ − secβ) (2.18d)

and noting that the last expression is valid if α ≥ β. The relation (2.18a) assumes the approximation

q2 ≪ s2. For a source in the far field at lower elevation angle than the observer in the near field, α ≥ β,

the direct wave has amplitude and phase corrections for single reflections on the ground and on the wall,

and double reflection on both.

2.2.4 Effect of direction of arrival of the signal and source position

The amplitude and phase changes are indicated in the figures 2.8 and 2.9 for the baseline observer

position and rigid walls (first line of table 2.1), but for a fixed frequency f = 1 kHz corresponding at the

sound speed c ≈ 343.21 m s−1 to the wavenumber k = 2πf/c ≈ 18.31 m−1. In the table 2.2 and figure

2.8, the source is kept in the same grazing direction,

β = arctan
(
yS

xS

)
= arctan

(
30
700

)
≈ 2.45°, (2.19a)

but the source position

(xS, yS) = s (cosβ, sin β) ≈ s (0.9991, 0.0428) m (2.19b)

varies with the distance, 4 m < s < 200 m, and so varies the Helmholtz number for the frequency

f = 1 kHz, specifically 73.2285 ≤ ks ≤ 3661.42; higher and lower frequencies, f = 10 kHz and f = 100 Hz

respectively, are also considered in the table 2.2 and figure 2.8. In the figure 2.9, the source distance is

kept at

s =
(
x2

S + y2
S
)1/2 =

(
7002 + 302)1/2 ≈ 700.64 m (2.20a)

corresponding to a Helmholtz number ks ≈ 12826.7 for the frequency f = 1 kHz, and the direction

changes over the whole corner, 0 ≤ β ≤ π/2 rad, so that the source position is

(xS, yS) ≈ 700.64 (cosβ, sin β) m. (2.20b)
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Figure 2.8: Modulus (top) and phase (bottom) of the multipath factor (2.12b) versus source distance,
4 m < s < 200 m, in a fixed direction, β ≈ 2.45°, with rigid ground and wall, Rh = Rv = 1, and observer
position at (xO, yO) = (3, 2) m, adding to the frequency f = 1000 Hz other two frequencies, one with
larger order of magnitude, f = 10000 Hz, and one with smaller order of magnitude, f = 100 Hz.

Frequency [Hz] Absolute value |F | Argument arg (F ) [deg]

100 2.7531 −36.3838
500 1.8857 −2.9399
1000 0.0233 −99.5285
5000 0.1054 −138.6572
10000 1.9056 −59.1402

Table 2.2: Mean value of the modulus (middle column) and phase (right column) of the multipath factor
(2.12b) versus source distance, 400 m < s < 1400 m, in a fixed direction, β ≈ 2.45°, with rigid ground and
wall, Rh = Rv = 1, and observer position at (xO, yO) = (3, 2) m, adding to the frequency f = 1000 Hz
other four frequencies, two with larger order of magnitude and two with smaller order of magnitude.

The table 2.2 shows only the mean values because the changing of the distance s of the far away

source between the values 400 and 1400 meters has little effect, for any fixed frequency f , independently

of its value. Although the amplitude and phase of the multipath effect are almost independent of source

distance s, they are quite sensitive to frequency, as it can be seen in table 2.2. The amplitude of the

multipath factor (second column of table 2.2) slightly increases with source distance for f = 100 Hz,

f = 500 Hz and f = 10000 Hz, but slightly decreases for f = 1000 Hz and f = 5000 Hz showing that

the behaviour of the multipath factor is strongly dependent on the frequency, in contrast to the source

distance. Regarding the phase (third column of 2.2), for all the values of the frequency, the source

distance does not significantly influence the phase. The table 2.2 shows that the phase is negative for the

five values of the frequency. However, that is not always the true because there are some frequencies for

which the phase is positive as it can be seen in the appendix A.2, specifically in the figure A.4 (in that
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Figure 2.9: The same as figure 2.8 with the source at fixed distance, s ≈ 700.64 m, and variable
elevation, 0 ≤ β ≤ π/2 rad, for the fixed frequency, f = 1000 Hz, showing the result of: (i) the exact
multipath factor (2.12b) as thin line; (ii) the far field approximation (2.18a) as thick line.

figure, the source distance is fixed). That means that the frequency also strongly influences the phase of

the multipath factor, in contrast with the source distance.

The conclusion that the multipath factor varies only slightly with the source distance does not hold

for all the values, as shown in figure 2.8. When the source is close to the observer, the effects of varying

the source distance are significant not only for the absolute value but also for the phase value of F ,

especially for higher frequencies, and the effects become negligible for frequencies above a given value.

The multipath factor can be calculated from (2.18a) using the equations (2.18b) to (2.18d) which:

(i) holds for amplitude and phase specifically when the source is far away from the observer, that is,

when q2 ≪ s; (ii) is valid for any value of the frequency and any value of the reflection coefficients

of both surfaces; (iii) may fail at grazing incidences close to ϑ = 0 and ϑ = π/2 when some of the

approximations, from (2.15a) to (2.17c), may cease to hold. Thus, the asymptotic approximation (2.18a)

is more accurate for amplitude than for phase and should be used at intermediate elevations. As an

alternative, substituting (2.1a) and (2.1b) in the exact expression (2.12b) specifies the multipath factor,

correct to all orders of q and s, and valid in all directions, 0 ≤ ϑ ≤ π/2, including grazing directions. The

figure 2.9 shows that both the amplitude (top) and phase (bottom) of the multipath factor are strongly

affected by source direction, in contrast with source distance, which has little effect.

The figure 2.9 also shows the exact multipath factor (thin line) in comparison with the far field

approximation (thick line). The far field approximation (2.18a) is extremely accurate for the amplitude

(figure 2.9, top) since the thick line overlaps the thin line of the exact expression (2.12b) of the multipath

factor. Concerning the phase (figure 2.9, bottom), the far field approximation (thick line) follows closely

the exact theory (thin line) except for local peaks. The amplitude and phase of the multipath factor are
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shown for fixed frequency f = 1 kHz for all source directions in figure 2.9, and conversely over the audible

range, 20 ≤ f ≤ 20000 Hz, for four source directions in figures A.3 to A.6 in the appendix A.2.

2.3 Main conclusions of the chapter 2

The amplification of amplitude of the signal is given by 10 log |F |, which depends on the absolute value

of the multipath factor |F |, whereas the amplification of power is equal to 10 log |F |2, dependent on the

square of the absolute value |F |2. The maximum amplification of a signal due to reflections from surfaces

near the receiver is shown in the table 2.3 for N waves in phase, both for amplitude, dB = 10 logN ,

and for power, dB = 20 logN . The reception near an infinite plane (studied in more detail in chapter 3)

consists of one direct and one reflected wave; if the two waves are in phase, the amplitude is doubled,

10 log 2 ≈ 3 dB, and the power multiplied by four, 10 log 4 ≈ 6 dB. In the case of an orthogonal corner

formed by two infinite planes, the reception consists of: (i) a direct wave; (ii) two waves, each one reflected

once on each plane; (iii) one wave reflected twice, once on each plane. There is a total of four waves,

and if they are all in phase, the maximum amplitude is multiplied by four, 10 log 4 ≈ 6 dB, and the

power is multiplied by sixteen, 10 log 16 ≈ 12 dB. This applies both in: (i) the two-dimensional case

considered here with all waves in a plane perpendicular to the corner; (ii) the three-dimensional case

with the incident and reflected waves in a plane oblique to the two-dimensional corner. In the case of

a three-dimensional corner consisting of three orthogonal planes, the reception includes: (i) one direct

wave; (ii) three waves, each one reflected once at one plane; (iii) three waves, each one reflected twice on

a pair of planes; (iv) one wave reflected three times, that is, once on each plane. If all eight waves are

in phase, the maximum amplitude is multiplied by eight, 10 log 8 ≈ 9 dB, and the power is multiplied by

sixty-four, 20 log 8 ≈ 18 dB.

Receiver near a: plane 2-D corner 3-D corner

Direct wave 1 1 1
Reflected once 1 2 3
Reflected twice 0 1 3

Reflected three times 0 0 1
Total number of waves N 2 4 8

Maximum amplification:
– for amplitude: dB = 10 logN 3.01 dB 6.02 dB 9.03 dB

– for power: dB = 20 logN 6.02 dB 12.04 dB 18.06 dB

Table 2.3: Maximum amplification from wall reflections.

Suppose the ground is the only surface considered, without any other surfaces. In that case, the

multipath factor is given by only the first two terms of (2.12b), while the addition of a vertical wall

induces the sum of the last two terms of (2.12b) to the multipath factor. The figures 2.3 to 2.7 show five

particular cases whose greatest and lowest changes in decibels are indicated in table 2.4. The decibels

are 10 log10 |F | for the sound pressure level in figures 2.3 to 2.7 and 10 log10 |F |
2 = 20 log10 |F | for the
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sound power level (SPL). In table 2.4, ∆SPL is the difference of the SPL at the observer position between

the cases of only direct wave received and direct wave plus reflected waves received by the observer.

∆SPLground is the change, in decibels, due to a wave reflected on the ground, ∆SPLwall is the change,

in decibels, due to a wave reflected on the wall and ∆SPLground+wall is the change, in decibels, due to

the three reflected waves, as depicted in the figure 2.1. The maximum increase occurs when the ground

and wall are both considered because, in that case, there are three “new” waves due to reflections on

surfaces travelling to the observer position, besides the direct wave. The increase can reach approximately

12.04 dB if the two surfaces (ground plus wall) totally reflect the wave and if the observer is near the

corner, but if it is considered only one surface, again one that totally reflects the wave, the increase can

be, at maximum, 6.02 dB, justifying, therefore, the norms on noise measurement [11, 12].

Maximum | Minimum
Figure xO [m] yO [m] Rh Rv ∆SPLground [dB] ∆SPLwall [dB] ∆SPLground+wall [dB]

2.3 3 2 1 1 6.0195 | −72.1629 5.9835 | −41.3899 12.0023 | −86.1743
2.4 2 6 1 1 6.0174 | −62.6480 5.9958 | −44.8957 11.9992 | −69.3974
2.5 3 2 0.5 1 3.5211 | −6.0185 5.9835 | −41.3899 9.5039 | −96.2305
2.6 3 2 1 0.5 6.0195 | −72.1629 3.4971 | −5.9469 9.5159 | −57.3175
2.7 3 2 0.5 0.5 3.5211 | −6.0185 3.4971 | −5.9469 7.0175 | −15.2550

Table 2.4: Maximum increase or decrease of the sound power level (SPL), for a certain frequency, due
to reflections on the ground and wall of the wave originated from the source at (xS, yS) = (700, 30) m,
for the cases of figures 2.3 to 2.7.

These maximum increases of power in decibels can occur for several frequencies. However, the figures

2.3 to 2.7 show that, for some frequencies, |F | is less than 1 (for some frequencies, almost equal to

0) because of the destructive interference from the superposition of the waves, resulting in a decrease of

decibels. The pressure reflection coefficient on the ground for spherical waves is Rh = |Rh| exp (iϕ), where

ϕ represents the phase change on reflection. In the cases of figures 2.3 to 2.7, ϕ is equal to 0, usually

set for an acoustically hard boundary [28] (the same was used for the reflection coefficient of the vertical

wall). Consequently, the phase difference between a direct wave and a reflected wave is caused only by

the path length difference of the waves, that have the same frequency. Since the path difference always

exists (except for the case α = β), there is always some destructive interference. Therefore it is not

possible to reach the maximum theoretical value of SPL when adding two or more waves (the worst case

scenario when adding two waves with the same frequency would be if they also have the same phase). The

increase or decrease of power in decibels depends on the reflection coefficients and the observer position,

despite being more influenced by the former. The results of the table 2.4 are valid for one single wave

originating from the source with one frequency. The sound spectrum can consist of a superposition of

several harmonics of distinct frequencies, leading, therefore, to a more significant increase of power in

decibels at the same observer position.

A three-dimensional plot for each of the modulus |F | and phase arg (F ) of the multipath factor as a

function of the observer coordinates xO and yO would be difficult to visualise due to a large number of

closely spaced peaks and nulls and to the wide range of values. A better way to visualise the modulus and
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phase of the multipath factor is to plot the isolines of |F | and arg (F ), that are closed curves where the

function has a constant value, knowing at first the values of 1000× 1000 different coordinates uniformly

spaced in the 2D region. The figure 2.10 shows the isolines for four different values of the modulus of

F : 0, 4, 8 and 11 decibels (there are also regions with 12 decibels, however it would be hard to visualise

them). The walls are rigid, Rh = Rv = 1, the source point is at the coordinates (700, 30) m, that is, at

the upper right corner in each plot, and the selected frequency is f ≈ 2003.9 Hz, equal to the frequency

of the first line in table 2.4, corresponding therefore to the worst case scenario when the observer is at

the coordinates (3, 2) m with the same remaining conditions. In figure 2.10, the axis x and y stand for

the distances to the vertical and horizontal walls, respectively, and not to the source position. There are

many more points (for example, more 337410 points forming more 5540 isolines between the first and last

plots in figure 2.10) where the presence of walls does not change the modulus of F (resulting in isolines

of 0 dB) than the points where there is an increase of 11 dB. The isolines of 0 dB are plotted in the

whole 2D region, however the isolines of 11 dB exist only in the area near the vertical wall, specifically

near the corner. Near the corner, both the reflected wave on the wall and the reflected wave on the

ground travel approximately the same distance as the direct wave, mathematically, r11 + r12 ≈ r and

r21 + r22 ≈ r (moreover, near the corner, the reflected distances r12 and r22 are much smaller than the

distances r11 and r21, with the reflected distances being almost 0). Furthermore, the distance travelled

by the wave that impinges on both surfaces is also almost equal to the distance travelled by the direct

wave, r31 + r32 + r33 ≈ r. Since the ray distances of the three waves are almost equal to each other

(that do not happen far away from the corner), the three waves, which have the same frequency, are

almost in phase, leading to an almost total constructive interference. Consequently, near the corner, the

total acoustic pressure is almost four times the acoustic pressure due only to the direct wave and the

multipath factor is almost four leading to an increase slightly less than 12 dB. The same applies to the

phase of the multipath factor, as depicted in the figure 2.11, where the points for lower phase values are

much more numerous (for example, more 252361 points forming more 10475 isolines between the cases of

40 and 160 degrees in figure 2.11) than the points for greater phase values. The isolines for large phase

values, for instance, 160 degrees, are plotted not only near the corner, as it happens with the modulus

(fourth plot of figure 2.10), but also for regions far away from the corner. This means that being near

a corner influences more the modulus of the multipath factor than its phase. The figures 2.12 and 2.13

show the isolines of the modulus and the phase respectively of the multipath factor F , but for lower

values of the reflection coefficients of both walls, specifically Rh = Rv = 0.5. The frequency is the same,

f ≈ 2003.9 Hz, because that value also corresponds to the fifth line of table 2.4, leading to the worst-case

scenario when the observer is at the position (3, 2) m. The remarks are the same; the only difference is

that in this case, the maximum values of the modulus and phase of F are not as much increased as for

the maximum values when the reflection coefficients of both walls are equal to unity, as depicted in the

figures 2.10 and 2.11. The plots of the phase in figures 2.11 and 2.13 show the isolines only for positive

values; the plots would be practically the same if the isolines were drawn for the negative phases.

The present theory assumes perfectly flat walls. Real walls are rough, and if the average height

of irregularities is ε, the walls may be considered smooth if the wavelength λ is much larger, λ ≫ ε.
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Figure 2.10: Map of the modulus of the multipath factor F as a function of observer position in the
plane for a fixed source position at the upper right corner in each plot, for rigid walls, Rh = Rv = 1 and
for the frequency f ≈ 2003.9 Hz. The variables x and y in the axis labels stand for the distances to the
vertical and horizontal walls respectively.

Figure 2.11: Map of the phase of the multipath factor F as a function of observer position for the same
conditions as in the figure 2.10.
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Figure 2.12: The same as figure 2.10, but for semi-rigid walls, Rh = Rv = 0.5.

Figure 2.13: The same as figure 2.11, but for semi-rigid walls, Rh = Rv = 0.5.
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Considering audible frequency range from 20 Hz to 20 kHz,

f = 2× 10 s−1 − 2× 104 s−1, (2.21a)

for sound propagation in the atmosphere at sea level with the sound speed c ≈ 340 ms−1, the wavelength

is

ε≪ λ = c

f
≈ 1.7× 10−2 m− 17 m (2.21b)

and the wall may be considered smooth if the average roughness ε is much smaller than the smallest

wavelength λmin ≈ 1.7 cm, say ε < 2 mm. The theory applies to acoustic and other waves, for example

electromagnetic waves, always in terms of wavelength, not frequency. The same range of wavelengths,

1.7× 10−2 m < λ < 1.7 m, (2.22a)

for electromagnetic waves propagating at the speed of light c0 ≈ 3× 108 ms−1, that is much higher than

the sound speed c ≈ 340 ms−1, leads to much higher frequencies,

f = c0

λ
≈ 1.76× 108 Hz− 1.76× 1011 Hz = 17.6 Mhz− 17.6 GHz. (2.22b)

Thus, for the same average surface roughness ε = 2 mm, the present theory applies to electromagnetic

waves in the range of frequencies (2.22b) spanning the high frequencies indicated in the table 2.5. The

theory also applies to lower bands of electromagnetic waves with longer wavelengths, spanning the medium

and low frequencies, also indicated in the table 2.5. The theory could not apply, unless the roughness

was smaller, to higher frequencies and shorter wavelengths, for instance, to the frequencies indicated in

the table 2.6.

Name Initials Frequency band

Super High Frequencies SHF 3 GHz− 30 GHz
Ultra High Frequencies UHF 300 MHz− 3 GHz
Very High Frequencies VHF 30 MHz− 300 MHz

High Frequencies HF 3 MHz− 30 MHz

Medium Frequencies MF 300 kHz− 3 MHz
Low Frequencies LF 30 kHz− 300 kHz

Very Low Frequencies VLF 3 kHz− 30 kHz
Ultra Low Frequencies ULF 300 Hz− 3 kHz
Super Low Frequencies SLF 30 Hz− 300 Hz

Extremely Low Frequencies ELF 3 Hz− 30 Hz

Table 2.5: Ranges of frequencies in which the theory in this chapter can be applied.

The contour plots in figures 2.10 to 2.13 assume a frequency f ≈ 2003.9 Hz corresponding to sound

waves with wavelength λ ≈ 340/2003.9 m ≈ 0.170 m. They also apply to other waves with the same

wavelength, for example, electromagnetic waves with frequency f ≈ 3 × 108/1.7 Hz ≈ 17.6 MHz in
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Name Initials Frequency band

Extremely High Frequencies EHF 30 GHz− 300 GHz
Far Infra-Red FIR 300 GHz− 3 THz
Mid Infra-Red MIR 3 THz− 30 THz
Near Infra-Red NIR 30 THz− 300 THz

Visible and Ultraviolet UV 300 THz− 30 PHz
Soft X-rays SX 30 PHz− 3 EHz
Hard X-rays HX 3 EHz− 30 EHz
Gamma rays γ 30 EHz− 300 EHz

Table 2.6: Ranges of frequencies in which the theory in this chapter cannot be applied.

the HF band. Although the theory applies equally well to electromagnetic waves [24–26], this chapter

concentrates on the acoustic literature for brevity. The theory is directly applicable to noise mapping in

urban environments [8–15] due to surface transport and aircraft. In the latter case of aircraft, the effects

of atmospheric propagation have to be considered [16, 17]. A spherical wave incident on a plane gives rise

to a reflected wave considered here, and a surface lateral wave [20, 28–32], that has been neglected here

as a smaller second-order effect away from the wall. Here, the simplest approach was chosen based on

the superposition of spherical waves in general acoustics [19–23, 27]. The present approach demonstrates

that the interference of reflected spherical waves together with the direct wave can lead to amplitudes

much smaller than the maximum and complex interference patterns. The results are presented for the

whole audible range of monochromatic frequencies and can be superimposed via a Fourier integral to any

spectrum of the incident signal. The walls may be considered smooth for wavelengths much larger than

the surface roughness. For example, suppose the surface roughness does not exceed a few millimetres. In

that case, the theory applies to the whole audible acoustic spectrum and to electromagnetic waves in the

ultra-high frequency (UHF) band and below.

The theory in the general forum presented allows for different reflection factors from each wall. The

calculation of reflection factors is a significant subject in its own right, briefly reviewed in appendix A.3.
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3 | Effects of rough ground and at-

mospheric absorption on aircraft

noise

“There are only two kinds of certain knowledge: awareness of our own existence and the

truths of mathematics.”
— Jean le Rond d’Alembert
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The aircraft noise is a significant environmental issue for residents near airports. It has been a major

topic in the literature from the last century [33] to the present [34]. The aircraft noise can lead to:

(i) curfews, limiting the operating hours of airports, such as forbidding night flights; (ii) local noise limits,

which may be more restrictive than the ICAO certification rules, and thus limiting the take-off weight

and hence payload-range with an adverse effect on operating economics. The helicopter noise is the main

limitation in their use over urban and populated areas, affecting medical emergencies, law enforcement,

city centre business travel and other services. The emerging market for UAM (Urban Air Mobility) using

e-VTOL (electric powered Vertical Take-Off and Landing) aircraft is subject to noise limitations similar

to helicopters. The decreasing tolerance of local communities to aircraft and helicopter noise stands in

contrast to the long-term growth of long range and local air transport.

The two main aspects of aircraft noise are: (i) atmospheric propagation [17, 35–37] including the

effects of stratification leading to not only non-uniform sound speed, but also convection and refraction

by wind and turbulence; (ii) ground effects considered in most of the literature [16, 20, 29–32, 38] by a
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source and its image on a flat impedance ground, including the lateral wave. Ground effects on sound

can be more complex: (i) the presence of obstacles like buildings and other constructions leads to corner

reflections [39] with three reflected waves instead of one from flat ground, in addition to the direct wave

from the sound source, as explained in chapter 2; (ii) the current methods of calculation of noise contours

around airports [40, 41] are based on models of sound propagation over flat ground [42–44], and do not

account for the variable elevations of rough ground that may surround the airport. The main aim of

the present chapter is to consider sound reflection over a rough ground using a wave reflection method

distinct from the image source method, as shown in the figure 3.1. These two differences from the usual

approach in the literature are discussed briefly next and in more detail in the section 3.6.

ground plane

sound source

direct wave

receiving
observer

image source

virtual wave

ground plane

sound source

direct wave

receiving
observer

reflected
wave

reflection
point

θ θ

Figure 3.1: Comparison of (I) the method of image (top) and (II) the method of reflection (bottom) for
a point sound source above a plane. In both cases, there is a direct wave from the sound source to the
receiving observer, as in free space. The ground effect is represented: (I) in the image method by adding
a virtual wave from the image source to the receiving observer so as to satisfy the acoustic boundary
condition on the ground plane; (II) in the reflection method by adding a reflected wave making an equal
angle θ of incidence and reflection relative to the normal at the reflection point, with a complex reflection
coefficient accounting for amplitude and phase changes.
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The effect of flat ground on the sound emitted by a real sound source can be represented by a virtual

image source emitting a virtual wave to the observer. The sum of the direct and virtual waves satisfies

the boundary condition on the ground. Instead of a virtual source and closer to physical reality, the

ground effect is equivalent to adding to the direct wave from the source to the observer another wave

reflected from the ground. This method is simple and quite general since the reflection coefficient on

the ground can be complex, introducing both amplitude and phase changes in the reflected wave. This

method has been applied to sound reflection near a corner in chapter 2 involving three reflected waves.

An alternative would have been to use three images [39] in the corner. The method of images does not

extend easily to reflection by a rough ground since it could require several images and the determination

of their strength and location. The method of reflection extends readily from flat to rough ground by: (i)

determining geometrically all reflection points; (ii) applying the complex reflection coefficient, including

amplitude and phase, at each point; (iii) adding all waves that are not blocked by the terrain and that can

be radiated towards the observer. The latter effect of wave blockage by terrain elevation is not present

for flat ground.

In addition to sound reflection from rough ground, the effect of atmospheric absorption is also con-

sidered. Concerning ground reflection, starting with the most straightforward cases for reference is

convenient as more effects are added. In the case of a point sound source over flat ground, there is: (i)

a direct wave from the source to the observer; (ii) a wave with an intermediate reflection on the ground.

Since the original and reflected waves travel in the same medium, and consequently the frequency of

both waves is the same, the resultant sound pressure level depends on the phase difference between the

two sound waves. Thus, the worst-case scenario happens when they are in phase, duplicating the total

amplitude and increasing 20 log10 2 ≈ 6.02 dB for the power. If the waves are out-of-phase, there is less

amplification and they can even cancel each other out when they have exactly opposite phases. Further-

more, if the ground does not perfectly reflect the wave, then the existence of a reflected wave reduces the

total amplitude perceived by the observer. The present chapter studies, in two-dimensional cases, the

interference between the direct and reflected waves, resulting in the amplification, attenuation or cancel-

lation. The interference depends on the frequency and positions of the source and receiver, specifically

addressing the effects on the aircraft noise that result from the sound reflection on the irregular ground

and from the atmospheric absorption.

The baseline model I, as sketched in the figure 3.2, uses a single reflection point over flat ground and

relies on the following assumptions, as in chapter 2: (i) isotropic, point source of sound emitting spherical

waves (valid if the distance of observer is large relative to the helicopter or aircraft size); (ii) static source

(neglects Doppler effects for aircraft speed small relative to the sound speed); (iii) flat, horizontal ground

(excludes mountainous ground and obstacles, hence there are no multipath effects with multiple reflections

or multiple scattering); (iv) homogeneous atmosphere (neglects density and temperature variations, or

sound speed stratification, hence no refraction effects); (v) atmosphere at rest (no wind or mean flow

convection or turbulence effects on sound); (vi) uniform ground impedance (same ground composition

everywhere all the time, excluding different soils, humidity, changes during the day, etc.).

This simplest baseline model I serves as a reference for two extensions that relax some of its restrictions
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to include: (i) non-flat ground considering multiple paths in the model II; (ii) atmospheric absorption in

the case of flat ground extending the model I to the model III. The application of all three models depends

on the calculation of reflection points, which is done for: (i) reflection from a flat ground, applicable to

the models I and III; (ii) reflection from a two-dimensional slice of ground, applicable to the model II. For

each of these models, formulas for the sound power level (SPL) variation and the phase shift of acoustic

pressure are presented.

As examples of the applications from this set of three models, two cases are considered: (i) flat

impedance ground using the model I or the model III; (ii) rigid undulating ground using the model II.

The general theory for the three models and two applications substantiate some conclusions.

3.1 Baseline model I of reflection by flat ground

The baseline model I relies on the assumption indicated in the introduction of this chapter. The

figure 3.2 shows the source-observer coordinate system: (i) the x-axis is horizontal and the z-axis is

vertical in the vertical plane passing through the source S and observer O; (ii) the y-axis forms a right-

handed triad and the origin is any point on the intersection of the vertical plane with the ground. For

definiteness, the origin may be taken on the ground, for instance in the vertical through the observer,

in the case where xO = 0 (the general case is shown in the figure 3.2). The section 3.5 will prove that

only the horizontal distance between the observer and source matters and not the explicit values of both

horizontal coordinates.

x

z

(xS, zS)

S

r1

(xO, zO)

O
r2

R(xR, 0)

r3
θ θ

Figure 3.2: Direct and reflected sound paths for source S and observer O at arbitrary positions over a
flat ground.

The problem of several paths of propagation and interferences can be applied to all waves, in this

chapter particularly to acoustic waves. The figure 3.2 illustrates the two-dimensional case of propagation

of acoustic waves, where it is shown that the observer (or monitoring device) receives two signals: (i)

one direct signal from the source; (ii) one signal reflected from the ground. Following a purely geometric

methodology, it is necessary to determine the position of the reflection point to calculate the length of

all the ray paths, making use of the Snell’s law of specular reflection: the angle between the normal to

the surface and incident wave must be equal to the angle between the same normal and reflected wave.
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Finally, knowing the value of the reflection coefficient at the reflection point, the total received signal

can be specified and then it can be normalised with the direct wave, specifying the modification factors,

generally complex numbers, due to multipath effects.

Using the vertical plane through the source and observer, in other words the line-of-sight plane, the

focus is on the two-dimensional problem of wave propagation from a source S to an observer O near a

horizontal ground z = 0 taken as an axis of a Cartesian reference with the origin at some point on the

ground and in such a way that the coordinates of the observer are (xO, zO) and the coordinates of the

source are (xS, zS). The direct received acoustic pressure is

p0 = eikr1

r1
(3.1)

where a complex constant amplitude and a frequency factor exp (iωt) are omitted, whereas r1 is the

distance from the observer to the source:

r1 =
[
(xO − xS)2 + (zO − zS)2

]1/2
. (3.2)

The equation (3.1) is an harmonic solution of the linearised wave equation assuming that the pressure

perturbation is radial and propagates spherically outward from the source. The wave equation assumes

that the sound is a weak motion of an inviscid fluid since the viscosity for the sound field in air at the most

audible frequencies is negligible, neglecting thermal conduction and noting that the air before perturbed

by acoustic waves is at rest. Because the acoustic waves induce small perturbations in the medium, the

wave equation can be linearised. The physical meaning can be given by the real part of (3.1).

The line-of-sight reflection occurs at the reflection point R with coordinates (xR, 0), such that the

angles of incidence and reflection θ are the same,

xO − xR

zO
= tan θ = xR − xS

zS
. (3.3a)

This can be solved for xR,

xR = xOzS + xSzO

zO + zS
, (3.3b)

to specify the position of the point-of-reflection. The sound field reflected in line-of-sight,

pr = Reik(r2+r3)

r2 + r3
, (3.4)

consists of: (i) a spherical wave travelling from the sound source to the reflection point at a distance

r2 =
[
(xS − xR)2 + z2

S

]1/2
(3.5)

and from the reflection point to the observer at a distance

r3 =
[
(xO − xR)2 + z2

O

]1/2
; (3.6)
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(ii) a complex reflection coefficient of the ground, which can have a modulus |R| ≤ 1 and a phase angle

arg (R), and depends on ground properties. Again, (3.4) is an harmonic solution of the linearised wave

equation where the physical solution can be given by its real part. This solution is modified by the

complex reflection factor R at the reflection point. The lateral wave resulting from the reflection of a

spherical wave with a flat ground [20, 29–32] is neglected, since it is a surface wave that decays away

from the ground.

As the presence of an acoustic wave is a small perturbation, the product of two perturbations are

neglected and the laws describing the propagation are linear. Consequently, the interaction between the

reflected and direct waves is negligible and the total acoustic field is a result of superposition method,

summing the results of both waves. Hence, the total acoustic pressure perturbation,

pI = p0 + pr = eikr1

r1
+Reik(r2+r3)

r2 + r3
, (3.7)

is the sum of the direct (3.1) and reflected (3.4) acoustic pressure perturbations. The last expression can

be compared with the equation (2.3) of total acoustic pressure perturbation in the case of propagation

near a corner, and observing that the equation (3.7) corresponds to the first two terms of the equation

(2.3) since they are related to the propagation of the direct wave and the reflected wave on the ground.

The total signal (3.7) normalised to the direct signal (3.1) is called the multipath factor since it

specifies the amplitude and phase changes due to the presence of a reflected wave. Since it is defined as

the ratio between two complex acoustic pressure perturbations, assuming that they are harmonic solutions

of the linearised outward spherical wave equation, centred from the source, the multipath factor is also

generally complex; the modulus and phase of the multipath factor specify respectively the amplitude and

phase changes of the received signal that can be analysed separately. The SPL change in the equation

(3.8c) and the phase change in the equation (3.9b) of the acoustic pressure perturbation are valid for

arbitrary reflection factor R, which may involve an amplitude |R| and a phase arg (R). The effect of the

ground reflection on the acoustic energy of the free acoustic field corresponds to the complex magnitude

of the multipath factor,

EI ≡
∣∣∣∣ pI

p0

∣∣∣∣2 =
∣∣∣∣1 + pr

p0

∣∣∣∣2 , (3.8a)

and in the present case is

EI =
∣∣∣∣1 + r1

r2 + r3
Reik(r2+r3−r1)

∣∣∣∣2 . (3.8b)

This corresponds to a change in SPL for power in a decibel (dB) scale

AI ≡ 10 logEI = 10 log
{

1 +
(

r1

r2 + r3

)2
|R|2 + 2r1 |R|

r2 + r3
cos [k (r2 + r3 − r1) + arg (R)]

}
. (3.8c)

The amplitude change depends on all the three ray distances and on the reflection coefficient (not only its

modulus, but also its phase). It is also dependent on the frequency of the acoustic waves. In the particular

case when the receiver is near the ground, that is when the points O and R nearly coincide, the distance

travelled by the reflected wave is the same as the distance travelled by the direct wave, r1 = r2 + r3. In
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that case, pr = Rp0 or equivalently pI = (1 +R) p0. The reflected wave changes the acoustic pressure

perturbation by the factor 1+R and changes the SPL in decibels by 10 log
{

1 + |R|2 + 2 |R| cos [arg (R)]
}

.

If both waves travel the same distance, the multipath factor does not depend on the frequency. If the

phase of the wave does not change when it impinges on the ground, arg (R) = 0, usually set for an

acoustically hard boundary, the change of SPL reduces to 20 log {1 + |R|}, and moreover if the boundary

totally reflects the wave, |R| = 1, the total acoustic pressure perturbation is doubled leading to the

increase of 6.02 dB. Indeed, in that particularly case, when the ground does not change neither the phase

wave nor the modulus of the wave and the distance travelled by both waves is the same, the observer

receives two waves with the same frequency, the same amplitude and the same phase. The phase of the

acoustic pressure perturbation has a variation

ΦI ≡ arg (pI)− arg (p0) = arg
(
pI

p0

)
= arccot

[
Re (pI/p0)
Im (pI/p0)

]
(3.9a)

and is given in the case (3.8c) by

ΦI = arccot
{

cot [k (r2 + r3 − r1) + arg (R)] +
(
r2 + r3

r1 |R|

)
csc [k (r2 + r3 − r1) + arg (R)]

}
. (3.9b)

The phase change also depends on all the three distances, on the modulus and argument of the reflection

factor, and on the frequency of the waves. In the particular case of the receiver near the ground, when

r1 ≈ r2 + r3, and moreover when the ground does not change the phase of the wave, arg (R) ≈ 0, there

is not any phase change due to the presence of the reflected wave, ΦI ≈ 0.

3.2 Model II for multiple paths in mountainous terrain

The extension to non-flat ground (figure 3.3) requires knowledge of the terrain profile z = h (x) in the

plane of the line-of-sight.

x

z

(xS, zS)

S

r1
(xO, zO)

O

r2

R

zR = h (xR)

r3

z = h (x)

θ θ

Figure 3.3: As in figure 3.2 over rough ground with a given altitude profile in two dimensions.

Regarding one wave which reflect on the ground and reaches the observer’s position, the formulas for

reflected (3.4) and hence for total (3.7) acoustic pressure, due to one wave originated from the source,

can also be used in the model II. In this model, the pressure perturbation represents again a wave with
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outward spherical propagation centred at the source and depends only on the radial distance and the

frequency. Therefore, the harmonic solutions (3.4) and (3.7), using the principle of superposition, remain

valid as solutions of the linearised wave equation, deduced from the same assumptions, and do not depend

on terrain profile.

Although the distance r1 remains valid in the model II, the ray distances r2 and r3 that also appear

in the previously mentioned equations cannot be calculated in the same way than in the model I because

those expressions consider the terrain profile depicted in the figure 3.2, valid only if the ground is flat.

To calculate the two ray distances (3.5) and (3.6), the coordinates of the reflection point are necessary.

The difference from the case of flat ground is that the location of the reflection point is no longer given

by the equations (3.3a) or (3.3b), because the reflection point is no longer at zero height:

R 7→ [xR, h (xR)] . (3.10)

Thus, the condition (3.3a) is replaced (figure 3.3) by

zO − h (xR)
xO − xR

= cot θ = zS − h (xR)
xR − xS

(3.11a)

that states again the equality of angles of incidence and reflection asserted by the Snell’s law of specular

reflection. In (3.11a), the terms dependent on the reflection point xR are separated on right-hand side:

xOzS + xSzO

zO + zS
= xR + xO + xS − 2xR

zO + zS
h (xR) . (3.11b)

Given the source S at coordinates (xS, zS) and observer O at coordinates (xO, zO), the solutions of

the equation (3.11b) for xR give the reflection point(s) in the plane of line-of-sight. For flat ground,

h (xR) = 0, there is only one solution, given explicitly by (3.3b). For rough ground there may be several

xRj
reflection points Rj , with j = 1, . . . ,M , depending on the terrain profile z = h (x). Then, by knowing

the coordinates of the reflection point(s), the ray distances r2j from source S to reflection point Rj and

r3j from reflection point Rj to observer O can be calculated for each reflection point in the same way than

in the equations (3.5) and (3.6), but substituting zS and zO respectively by zS−h
(
xRj

)
and zO−h

(
xRj

)
because in this model the coordinates of the reflection points are now given by (3.10). However, the

equation (3.11b) is not the most accurate to determine the coordinates of reflection points in such a

way that the wave, after the reflection on the ground, reaches the observer’s position. The equality of

the angles in (3.11a) was made regarding the geometric characteristics of the figure 3.3 and with the

application of Snell’s law, asserting that the angles of incidence and reflection have the same value in

which they are measured from the correspondent wave to the normal of ground; however, as highlighted

in the figure 3.3, it is assumed in (3.11b) that the normal to the surface lies in vertical (in the z direction),

and the latter may not be exactly perpendicular to the ground. This simplification that will be retained

in the remainder of this chapter under the assumption that the slope of the terrain is neglected,

(
dh
dx

)2
≪ 1, (3.12)
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yields that the angles of incidence and reflection are still measured from a vertical normal direction.

The total sound field,

pII = eikr1

r1
+

M∑
j=1
Rj

eik(r2j
+r3j )

r2j
+ r3j

, (3.13)

is similar to the equation (3.7) with a sum over all the reflection points, where the reflection factor Rj

may vary with the reflection point, whereas r2j and r3j are the distances from the source and observer,

respectively, to the j-th reflection point. The effect on the acoustic energy is obtained substituting (3.13)

in the equation (3.8a),

EII ≡
∣∣∣∣pII

p0

∣∣∣∣2 =

∣∣∣∣∣∣1 +
M∑

j=1
Rj

r1

r2j + r3j

eik(r2j
+r3j

−r1)
∣∣∣∣∣∣
2

, (3.14a)

or the change of SPL on a decibel scale,

AII ≡ 10 logEII = 10 log

1 +
M∑

j=1

(
r1

r2j
+ r3j

)2
|Rj |2

+ 2
M∑

j=1

r1 |Rj |
r2j

+ r3j

cos
[
k
(
r2j

+ r3j
− r1

)
+ arg (Rj)

]

+ 2
M∑

j=2

j−1∑
l=1

r1

r2j + r3j

r1

r2l
+ r3l

|Rj | |Rl| cos
[
k
(
r2j + r3j − r2l

− r3l

)
+ arg (Rj)− arg (Rl)

] .

(3.14b)

If there is only one reflection point, M = 1, the last sum inside the curly brackets of (3.14b) is zero.

Since the last summation varies from l = 1 to j − 1, then when j = 1 the last term yields zero leading

back to equation (3.8c). The change of phase of the acoustic pressure perturbation,

ΦII ≡ arg (pII)− arg (p0) = arccot
[

Re (pII/p0)
Im (pII/p0)

]
, (3.15a)

is given by

ΦII = arccot


1 +

M∑
j=1
|Rj |

r1

r2j + r3j

cos
[
k
(
r2j

+ r3j
− r1

)
+ arg (Rj)

]

×

 M∑
j=1
|Rj |

r1

r2j
+ r3j

sin
[
k
(
r2j

+ r3j
− r1

)
+ arg (Rj)

]−1
 . (3.15b)

With one reflection point, M = 1, the equations (3.14b) (3.15b) simplify respectively to the equations of

model I (3.8c) and (3.9b). In this model, there can be more than one reflected wave reaching the observer’s

position and all these waves influence the multipath factor, that is, it is a result of the combination of

all these waves (superposition principle). The amplitude and phase of the acoustic pressure perturbation

induced by the reflected waves when they reach the final position depend on how far they travel, on their
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frequencies (although the frequency of all reflected waves is the same) and on the reflection coefficient at

each reflection point; fundamentally, they depend on the coordinates of each reflection point. Since these

coordinates are functions of the ground profile, in order to predict a final result from the superposition

of all reflected waves besides the direct wave, the ground profile must be known accurately. In an

hypothetical situation when the ray distance of all the reflected waves is equal to the ray distance of

the direct wave (the real situation is r2 + r3 > r1), the change in SPL or in phase do not depend on

the frequency of waves and if moreover the reflection coefficient is unit throughout the ground, then

AII = 10 log (1 +M)2 = 20 log (1 +M) (when M = 1, there is one reflected wave and the increase

of SPL would be 6.02 dB). It follows from the equation (3.14a), and considering a constant reflection

coefficient, that the reflected waves which have a greater influence on the multipath factor are the waves

that propagate a shorter distance r2 + r3. Hence, if there is a reflected wave that propagates a much

smaller distance than the others, the problem of several reflected waves can be simplified to the case of

model I: besides the direct wave, the existence of the reflected wave that propagates the smallest distance.

3.3 Model III for the effects of atmospheric attenuation

It is assumed that the atmosphere is homogeneous and at rest, so that the attenuation δ (r) depends

only on the distance of propagation, videlicet (viz.) equation (3.7) is replaced by

pIII = eikr1−δ1

r1
+Reik(r2+r3)−δ2−δ3

r2 + r3
(3.16)

and in the case of uniform atmospheric absorption per unit length, ε = const, the attenuations are

{δ1, δ2, δ3} = ε {r1, r2, r3} . (3.17)

The effect of ground reflection,

pIII = eikr1−δ1

r1
F, (3.18)

is equivalent to the multiplication by a factor F ≡ 1 +RG, that differs from unity on account: (i) of the

geometrical factor G ≡ r1 (r2 + r3)−1 exp [ik (r2 + r3 − r1) + δ1 − δ2 − δ3], that depends only on observer

and source positions; (ii) of the reflection factor R, that depends on ground properties.

The effect on acoustic energy (3.8a) is now

EIII ≡
∣∣∣∣ pIII

p0e−δ1

∣∣∣∣2 = |1 +RG|2 =
∣∣∣∣1 +R

(
r1

r2 + r3

)
eik(r2+r3−r1)+δ1−δ2−δ3

∣∣∣∣2 , (3.19a)

i.e. the change in SPL is

AIII ≡ 10 logEIII = 10 log
{

1 +
(

r1

r2 + r3

)2
|R|2 e2δ1−2δ2−2δ3

+ 2 r1

r2 + r3
|R| eδ1−δ2−δ3 cos [k (r2 + r3 − r1) + arg (R)]

}
. (3.19b)
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As in the model I, the amplitude change depends on all the three ray distances, on the frequency of

the waves and on the reflection coefficient. However, in this model, it also depends on the three at-

tenuations. With a uniform atmospheric absorption per unit length, being valid the equation (3.17),

the particular case of receiver near the ground, O ≈ R, when the distances travelled by the reflected

and direct waves are approximately the same, r1 ≈ r2 + r3, leads to a similar result to model I, since

G = 1, and with a correction for attenuation G ≡ exp (−δ1), that is pr = RGp0; the same correction

applies to the direct wave, p0 → p0G, implying for the total wave pIII = (1 +R)Gp0. At this point, two

definitions for the change in SPL (or in phase) can be used: assuming or not, for the evaluation of mul-

tipath factor, that the atmosphere attenuates the acoustic pressure of the direct wave; mathematically,

if, for example, EIII = |pIII/p0|2 as in model I (also being valid in model III) or EIII =
∣∣pIII/

(
p0G

)∣∣2
which can only be used in model III. If the definition for case I is used where the atmospheric at-

tenuation is not considered in the direct wave, EIII = |pIII/p0|2, consequently the SPL in decibels

changes by 10 log
{

1 + |R|2 G2 + 2 |R|G cos [arg (R)]
}

. Therefore, if both waves travel the same dis-

tance, the multipath factor does not depend on the frequency, except possibly through the attenuation

factor that generally increases with frequency. In the case arg (R) = 0, the change of SPL reduces to

20 log
{

1 + |R|G
}

and if the boundary totally reflects the wave, |R| = 1, the total acoustic pressure

perturbation changes by 20 log
(
1 +G

)
; moreover, in the presence of atmospheric attenuation G < 1, this

is less than 20 log 2 ≈ 6.02 dB. That attenuation does not alter the fact that the observer receives two

waves of the same frequency, amplitude and phase (doubling the incident wave) when the ground does not

change none of the characteristics of the wave and the distance travelled by both waves is the same. If one

considers the last definition, then the SPL in decibels changes by 10 log
{

1 + |R|2 + 2 |R| cos [arg (R)]
}

and the maximum change is 20 log 2 ≈ 6.02 dB when the ray distances are equal and the surface does

not modify the acoustic wave, in other words, when arg (R) = 0 and |R| = 1. Therefore, if the most

appropriate definition of changes in SPL for the case III is used, EIII =
∣∣pIII/

(
p0G

)∣∣2, then the total

acoustic pressure perturbation changes at most by 20 log 2 ≈ 6.02 dB when the boundary totally reflects

the wave, R = 1, and when the ray distances are the same.

The change in phase of the acoustic pressure perturbation is

ΦIII ≡ arg
(

pIII

p0e−δ1

)
= arccot

{
cot [k (r2 + r3 − r1) + arg (R)] + r2 + r3

r1 |R|
eδ2+δ3−δ1 csc [k (r2 + r3 − r1) + arg (R)]

}
.

(3.20)

It also depends on all the three ray distances, on the modulus and argument of the reflection factor, on

the frequency of the waves and, in this model, on all the three attenuations. As in the first model, in the

particular case when r1 = r2 + r3 and the ground does not change the phase of the wave, arg (R) = 0,

there is not any phase change due to the presence of the reflected wave.

In the absence of atmospheric attenuation, δ1 = δ2 = δ3 = 0, then the equations (3.19b) and (3.20)

reduce respectively to the equations (3.8c) and (3.9b).
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The simplest form of the reflection coefficient R [37] is

R = 1−R0

1 +R0
, (3.21a)

for a homogeneous ground of density ρ1, generally much higher than the air density ρ0,

R0 = ρ0κ
′

ρ1κ
, (3.21b)

where: (i) the vertical wavenumbers of incidence κ and transmission κ′ [27] are given respectively by

κ = (ω/c0) cos θ and κ′ = (ω/c1) cos θ′ (ii) c0 and c1 are the sound speeds in air and ground respectively;

(iii) the angles of incidence θ and transmission θ′ are related by Snell’s law [27],

sin θ
c0

= sin θ′

c1
, (3.21c)

stating the continuity of the transverse wavenumber. Substituting the equation (3.21c) in the equations

of κ and κ′, and then into (3.21b) leads to

R0 = ρ0c0

ρ1c1

√
sec2 θ −

(
c1

c0

)2
tan2 θ, (3.21d)

which specifies the reflection factor (3.21a) in terms of the angle θ that can be evaluated from the relations

(3.3a) and (3.11a). In (3.21d) appears the ratio of plane wave impedances of air ρ0c0 and ground ρ1c1.

3.4 Determination of the coordinates of reflection points

The study of the effects caused by ground reflection and atmospheric absorption on aircraft noise

depends on the location of the reflection point(s). The latter affects the length of the ray paths and

hence, since the multipath factor depends on all the distances, it also affects the amplitude and phase

of the pressure perturbation due to the atmosphere and ground profile. The location of the reflection

point(s) is calculated in the cases of: (i) flat ground; (ii) two-dimensional slice of rough ground.

3.4.1 Reflection from flat ground

Each of the three ground reflection and atmosphere models mentioned in the beginning of this chapter,

analysed in the sections 3.1 to 3.3, leads to a formula for the effects of ground reflection and atmospheric

absorption on the total acoustic pressure perturbation p, that specifies: (i) the difference in acoustic

energy or difference in SPL in dB,

A ≡ 10 log10 |E| ≡ 20 log10

∣∣∣∣ pp0

∣∣∣∣ ; (3.22)
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(ii) the phase shift of the acoustic pressure

Φ ≡ arg
(
p

p0

)
= arg (p)− arg (p0) . (3.23)

Since the pressure perturbations are harmonic solutions that are functions of the ray distances, these

outputs depend on the calculation of the reflection point(s). Before proceeding in the sequel to reflections

on rough ground, first the simplest case of flat ground is considered, that applies to the models I and III,

for which there is a single reflection point. The figure 3.4 shows a three-dimensional situation for both

models.

Y

X

Z

O

d

S

φ

Figure 3.4: Relative positions of source and observer over a flat ground as in figure 3.2.

The source S 7→ (XS, YS, ZS) and observer O 7→ (XO, YO, ZO) positions are given in figure 3.4. Their

horizontal projections are at distance d; the line joining the horizontal projections makes an angle ϕ with

the X-axis. If the ground is flat, the only single reflection point is on a vertical plane that contains the

source and observer points, between both positions. That means the only reflected wave that arrives at

the observer position travels only on that plane. All other waves (moving out of the vertical plane) will

not reach the observer position. Therefore, in this case, we can reduce the problem to two dimensions.

Making a section by a vertical plane passing through the source and observer positions (figure 3.5), while

choosing Cartesian coordinates with Ox-axis on the ground and Oz-axis passing through the source leads

to the coordinates in the source-observer reference system:

xS = 0, zS = ZS, (3.24)

for the source and

zO = ZO, xO = d ≡
[
(XS −XO)2 + (YS − YO)2

]1/2
(3.25)

for the observer (in the last relation it was assumed that xO > 0). The orientation of x-axis can be

defined so that xO is positive. The location of the reflection point and the effects on acoustic energy

follow as in (3.3b) for the model I and for its extension to include atmospheric absorption in the model

III.

47



x

z

S

O

d

Figure 3.5: Two-dimensional slice in the vertical plane through source and observer in the case of flat
ground.

3.4.2 Two-dimensional slice of rough ground

Let the height of the rough ground be given by Z = H (X,Y ). The two-dimensional slice (figure

3.5) made as before leads for an arbitrary point P at coordinates (X,Y, Z) to an x-coordinate in the

source-observer coordinate system,

x =
[
(X −XS)2 + (Y − YS)2

]1/2
, (3.26)

and the angle ϕ with the x-axis,

tanϕ = Y − YS

X −XS
. (3.27)

This last definition implies that the x-coordinate is positive. Also, the point P must belong to the vertical

plane which pass through the source and observer positions. Using the transformation

X = XS + x cosϕ, (3.28a)

Y = YS + x sinϕ, (3.28b)

the two-dimensional slice through the rough ground is specified in the source-observer coordinate system

by

h (x) = H (XS + x cosϕ, YS + x sinϕ) . (3.29)

This specifies the terrain profile function h (x) used in the model II.

3.5 Application of the three models due to ground and atmo-

spheric effects

The method of application is similar for all the preceding three models presented in this chapter,

allowing for rough, irregular or mountainous ground with a given profile and including or not atmospheric

absorption. The simplest ground profiles are: (i) flat ground, exempli gratia (e.g.) a horizontal ground
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with arbitrary impedance; (ii) undulating ground, e.g. a sinusoid with given height and wavelength.

3.5.1 General method to determine the multipath factor

The steps in the solution procedure, valid for any of the three preceding models, are as follows:

1. input the source and observer positions;

2. in the case of flat ground, use the equations (3.24) and (3.25) to locate the reflection point (3.3b),

or in the case of uneven ground, Z = H (X,Y ), construct the two-dimensional slice by a vertical

plane (3.29) using the equations (3.26) to (3.28b), then determine the reflection points as solutions

of (3.11b);

3. from each reflection point, calculate the distances to source (3.5) and observer (3.6);

4. calculate the reflection factor from (3.21a) and (3.21d) for hard ground, or take from the literature

relevant to the particular type of ground being considered;

5. the expression of the total acoustic pressure perturbation is different in the three models, knowing

however that the pressure induced by the direct wave, p0 = exp (ikr1 − δ1) /r1, is the same:

(a) the effect of reflection at one point on a flat ground is then given by (3.7) in the model I;

(b) taking a constant atmospheric absorption per unit length ε leads to an extension to (3.16) in

the model III;

(c) in the case of reflection at a discrete set of points over mountainous terrain, the effect of all

reflections is considered in (3.13) by the model II, where the correction for the atmospheric

absorption can be included as before in (3.16);

6. all the previous three forms of E lead to amplitude (3.22) and phase changes (3.23) combining all

effects of ground reflection and atmospheric absorption, knowing that the total acoustic pressure

perturbation p is equal to pI, pII or pIII respectively for the models I, II or III.

As an application to the preceding theories including the calculation of reflection points, the case of

static source and observer in fixed positions over flat ground, applying the model I, is considered, and then

extended to sinusoidally undulating ground, applying the model II, or extended to include atmospheric

absorption, applying the model III. The standard case is the sound source in a fixed position at the

altitude of 30 m viz. ZS = 30 m, while the observer, for instance a human being, is at 2 m above a flat

ground, ZO = 2 m. The comparison is made with sinusoidally undulating ground,

Zr = h (Xr) = q sin
(

2πXr

L

)
, (3.30)

with amplitude q = 3 m and lengthscale L:

L = {20, 40, 60,∞}m. (3.31a)
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The case L =∞ is flat ground, and the other cases lead to a maximum slope

θmax = arctan
(

2πq
L

)
. (3.31b)

In addition, three levels of atmospheric absorption,

ε =
{

10−2, 5× 10−2, 10−1}m−1, (3.32)

are considered to apply the model III. The levels of atmospheric absorption in (3.32) vary widely, in order

to make the effects visible. The case of undulating ground is preceded by comparison with flat ground.

3.5.2 Acoustic waves over flat impedance ground

The preceding methods are illustrated by applying the models I and III to fixed sound sources over

a flat impedance ground. The model I is illustrated in figure 3.6 for sound source, S 7→ (xS, zS), and

observer, O 7→ (xO, zO), at positions ZS = 30 m and ZO = 2 m over a flat ground. The sound attenuation

(that is, the SPL variation) and the phase shift of acoustic pressure perturbation are shown for a rigid

ground R = 1 or for a ground with reflection coefficient R = 0.5 + 0.5i, for a horizontal distance between

the source and observer ∆x = xO − xS = 50 m, for a source at height of zS = 30 m, and for an observer

at height of zO = 2 m. Because the ground remains flat, the multipath factor does not depend on

the particular values of horizontal coordinates of observer and source, xS and xO, but only on their

difference ∆x = xO − xS. Thus, the coordinates xO and xS appear only through ∆x. Together with the

vertical coordinates of source zS and observer zO, the difference ∆x specifies the lengths of the ray paths

r1 =
[
∆x2 + (zO − zS)2

]1/2
, r2 = zS

[
1 + ∆x2/ (zO + zS)2

]1/2
and r3 = zO

[
1 + ∆x2/ (zO + zS)2

]1/2
.

These last three expressions were deduced with the equation (3.3b) that is valid only for flat ground.

In the example of figure 3.6 (for R = 1, top), the distances are almost equal, r1 ≈ 57.31 m whereas

r2 + r3 ≈ 59.36 m, and therefore the successive peaks in the upper left plot correspond to 5.86 dB, very

close to 6.02 dB. In summary, when the waves with the same frequency are in phase, a condition that

depends on both ray paths and the wavenumber k, the total amplitude reaches a maximum (constructive

interference). Besides that, the value of that maximum amplitude depends on the factor r1/ (r2 + r3) and

only in the particular situation when r1 = r2+r3 it reaches the highest possible value: twice the amplitude

of the direct wave, leading to AI ≈ 6.02 dB. On the other hand, the successive minimum values on the

plot correspond to waves that are in opposite phases, and in the specific example of figure 3.6 (upper left

figure), these minimums have the value −29.21 dB. The lowest possible value occurs if the waves are in

the opposite phase (that depends on both ray distances and wavenumber k) and if r1 = r2 + r3, where

there is a total cancellation of them, pI = 0, leading to a theoretical value of AI → −∞dB. All the ray

paths are even functions with respect to ∆x and their values don’t change if one permutes the zO and

zS values. Consequently, the multipath factor and subsequent plots will be the same if one switches the

positions of observer and source.

The perfect interference of direct and reflected waves for rigid ground (figure 3.6, top left) leads to
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Figure 3.6: Sound attenuation AI and phase shift ΦI of the acoustic pressure for a ground reflection
R = 1 (top) or R = 0.5 + 0.5i (bottom), a horizontal distance between source and observer ∆x =
xO − xS = 50 m, a source at a height of zS = 30 m, and an observer at a height of zO = 2 m, as functions
of sound frequency.

maxima of almost double amplitude and minima of almost zero amplitude. When two waves superpose,

it can form a total wave of greater, lower or same amplitude. Suppose that the two waves (direct and

reflected on the ground) have the same amplitude and frequency along their ray paths, and reach the

observer’s position. To simplify, consider first the case of R = 1 (figure 3.6, top) when the phase and the

complex amplitude of the wave are not changed when it impinges on the surface. One extreme case is

the constructive interference when at the observer’s point the phase difference between the two waves is

an even multiple of π (. . . ,−2π, 0, 2π, . . .) or, equivalently, when the difference between the ray distances

of both waves is an integer multiple of the wavelength. Consequently, k (r2 + r3 − r1) = 2πn (n is an

integer) and AI is maximum. Note that when the distances travelled by both waves are exactly the same,

r2 + r3 − r1 = 0, the conditions are satisfied too. One can check the validity of these observations in

(3.8c) because when that happens, the cosine function in the equation is equal to one and the value of

AI is maximum. Respecting these conditions, the two waves are in phase but it doesn’t mean that the

amplitude of the sum of both waves is twice the amplitude of the direct wave. Consider, for instance,

k (r2 + r3 − r1) = 0, but the ray distances are different, r1 < r2 + r3 (for geometric reasons, it is

impossible to have r1 > r2 + r3). As explained before, in that case the waves are in phase, hence the

value of AI is maximum. Nevertheless, because the waves are spherical, the complex amplitude of the

acoustic pressure perturbation is directly proportional to 1/r where r is the distance travelled by the

wave. Therefore, since r1 < r2 + r3, the complex amplitude of pr is lower than p0, or the complex

amplitude of pI = pr + p0 is lower than 2p0, and consequently AI is lower than 20 log 2 ≈ 6.02 dB (we are

summing two waves with same frequency, in phase, but of different amplitudes). One can have the same

conclusion through the equation (3.8c) withR = 1, r1 < r2+r3 and k (r2 + r3 − 1) = 2πn and noting that
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AI < 10 log 4 ≈ 6.02 dB. The other extreme case is the destructive interference when at the observer’s

point the phase difference between the two waves is an odd multiple of π (. . . ,−3π,−π, π, 3π, . . .) or,

equivalently, when the difference between the ray distances of both waves is an integer plus one-half

multiple of the wavelength. In that case, k (r2 − r3 − r1) = (π + 2πn), the cosine function in (3.8c) is

−1 and AI is minimum. Additionally, if the two waves have the same amplitude, AI tends to −∞dB,

however that only happens if the sum of both waves is zero and that is only possible, due to their spherical

propagations, if r1 = r2 + r3 (when the waves have the same complex amplitudes). In this study, we

always have r2 + r3 > r1, therefore the complex amplitudes are different and then, even when they are in

opposite phases, the sum is not zero, but it can be almost zero (resulting in negative minimums of AI).

The bottom left plot of the figure 3.6 shows the effect of varying the value R on the SPL values,

keeping constant the positions of observer and source. According to (3.8c), there are two independent

effects of changing R on SPL plots, one caused by changing its complex magnitude and another by

its phase: its phase influences the positions of maximum and minimum values, in other words, keeping

constant the positions of observer and source, it determines the values of frequency in which the two

waves are in phase or in opposite phase, for instance, if arg (R) > 0 the extreme values occur at lower

frequencies in comparison when arg (R) = 0; the complex magnitude of R changes only the values of

maxima and minima of AI. Then, when R changes from 1 to 0.5 + 0.5i, the extreme values of AI will be

lower in modulus and will occur at lower frequencies.

The extremes presented in the upper left plot of figure 3.6 correspond to zeros of the function in

the upper right one. When a crest of a wave meets a crest of another wave of the same frequency at

the same point (constructive interference) or when a crest of one wave meets a trough of another wave

(destructive interference), the phase of total wave will be equal to the phase of direct wave, therefore

ΦI = 0 in (3.9a). Considering the first equality of (3.7), and the condition that the incident waves are in

phase, arg (pr) = arg (p0) + 2πn, then

|pI| ei arg(pI) = (|p0|+ |pr|) ei arg(p0) (3.33)

implying that the phase of total wave remains the same while its complex magnitude is the sum of

magnitudes of both incident waves. If the waves are in opposite phases, arg (pr) = arg (p0) + π + 2πn,

the phase of the total wave would be also equal to the phase of the direct wave because

|pI| ei arg(pI) = |p0| ei arg(p0) + |pr| ei arg(pr) = (|p0| − |pr|) ei arg(p0), (3.34)

taking into account that |pr| = |R| / (r2 + r3) < |p0| = 1/ (r1) and therefore the expression in curved

parentheses is equivalent to |pI| while arg (p0) = arg (pI). The equation (3.9b) leads to the same con-

clusion: when the phase of the waves differ by a multiple of π, k (r2 + r3 − r1) + arg (R) = nπ, then

cot (nπ) and csc (nπ) are (both positive or negative) infinities and consequently (with the sum of positive

or negative infinities being equal to positive or negative infinity respectively) the arccotangent function

approaches to zero (in either cases). In summary, the constructive or destructive interferences of the two

waves correspond to zeros of the plots of phase change. The bottom right plot of figure 3.6 shows the
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effect of varying the value of R in the phase of multipath factor. As in the plots of the complex magni-

tude, there are also two independent effects: the phase of R determines the frequencies that correspond

to zeros (relating to constructive and destructive interferences), maxima and minima of phase ΦI, for

instance, increasing the phase of R, like from 1 to 0.5+0.5i, in figure 3.6, reduces the frequencies of zeros

and extreme values of ΦI as one can compare in the right plots; the complex magnitude of R influences

the range of phase values of ΦI, for instance, the effect of decreasing |R| is to reduce the extreme values

of phase of the multipath factor and the right plots of figure 3.6 show that changing the value of R from

1 to 0.5 + 0.5i (hence reducing the complex magnitude of R) shrinks the range of phase values of the

multipath factor. One can infers the same conclusions analysing mathematically the equation (3.9b).

As shown in figure 3.6, the maximum and minimum extremes are more closely spaced for higher

frequencies, both for amplitude (left plots) and phase (right plots), but it happens only because the

independent axis is in a logarithmic scale. Actually, the extremes remain equally spaced for higher

frequencies. The ground with complex reflection coefficient (figure 3.6, bottom) smooths out the maxima

and minima, leading to a smaller range of amplitudes (bottom left) and phases (bottom right). Although

the figure 3.6 shows the SPL and phase changes for a certain reflection coefficient and for certain positions

of receptor and source, the plots would be similar (a succession of equally spaced crests and troughs) for

other values of the aforementioned parameters, and with the maximum theoretical change of SPL also

being equal to 6.02 dB. The differences would be in the range of the SPL and phase values, and also in

the frequencies corresponding to crests or troughs because the positions of constructive or destructive

interference would be shifted.

The frequency as independent variable in figure 3.6 is replaced by observer height zO, source height

zS and observer-source distance ∆x respectively in figures 3.8, 3.9 and 3.10. The plots of figure 3.6 show

that the modulus (left plots) and phase (right plots) oscillations have extreme amplitudes with the same

value independently of frequency (changing the frequency only leads to different positions where extreme

amplitudes take place), therefore the subsequent plots are set for one frequency, f = 1 kHz. However,

the values of extreme amplitudes of the multipath factor depend on the other three parameters: (i)

increasing the observer height (figure 3.8) decreases the extreme amplitudes of intensity (top) and phase

(bottom) oscillations; (ii) increasing the source height (figure 3.9) does not affect the extreme amplitude

but increases the spacing of extrema of intensity (top) and phase (bottom) oscillations; (iii) increasing the

observer-source distance (figure 3.10) affects both the spacing and extreme amplitudes of intensity (top)

and phase (bottom) oscillations. For all the plots from figures 3.8 to 3.10, two geometrical parameters are

fundamental to analyse them: the difference of ray lengths, r2 + r3− r1 and also their ratio, r1/ (r2 + r3).

The plots of these two parameters are shown in figure 3.7 to help understanding the multipath factor

effects.

Considering zO as independent variable, the maxima and minima of SPL changes (figure 3.8, top)

are related to constructive and destructive interferences respectively and, regarding (3.8c), the cosine

function must be equal to one in modulus. To simplify, consider R = 1. In the case of constructive

interference, setting the cosine function to one (when the cosine function is one, we are analysing the

maximum values of AI), although the three ray distances depend on zO, the factor r = r1/ (r2 + r3) is
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Figure 3.7: Geometrical parameters r2 +r3−r1 (continuous line) and r1/ (r2 + r3) (dashed line) plotted
for zO = 2 m, zS = 30 m and ∆x = 50 m case, but where each one of them is assumed as independent
variable.

a monotonic decreasing function until 10 meters at least (this fact is demonstrated in the top plot of

figure 3.7) and consequently the term in bracket parentheses of (3.8c), equal to (1 + r)2, decreases with

zO. Hence, the successive peaks of AI slightly monotonically decrease with zO. On the other hand, in

the case of destructive interference, when the cosine function is equal to minus one (hence analysing

the minimum values of AI), the term in bracket parentheses reduces to (1− r)2, that increases with zO

(because the variable r is decreasing), and consequently the successive minimum values of AI also increase,

as shown in the top plot of figure 3.8. Actually, the effect of varying zO is more noticeable in the increasing

of minima than in decreasing of maxima of AI. The reason is because of the logarithm effect in (3.8c)

where the logarithm function changes quicker near the abscissa 0 (when the term in bracket parentheses

is almost 0, a phenomenon of destructive interference) than in abscissa greater than 1 (when the term in

bracket parentheses is almost 4, a phenomenon of constructive interference). These interpretations also

explain the behaviour of extremes in the bottom plot of figure 3.8 because, as indicated in (3.9b), the

parameter r1/ (r2 + r3) also appears in the equation and is useful to understand that plot. The phase

space between maxima, minima or zeros of both plots in figure 3.8 is almost constant because r2 +r3−r1

behaves approximately like zO for small values of zO (note the almost proportional behaviour between zO

and r2 + r3− r1 in the top plot of figure 3.7 for zO < 25 m), then the cosine function can be simplified to

cos (kzO) in (3.8c) and the same thing for the phase plot in (3.9b) when the argument of the trigonometric

functions is also reduced to kzO.

The same reasoning can be applied to figures 3.9 and 3.10. Assuming zS as independent variable

in figure 3.9, the middle plot in figure 3.7 is important in this case. When zS < 25 m, according to

the plot, one can approximate the difference of ray paths r2 + r3 − r1 as 0.08zS and because of the

cosine function presented in (3.8c), the space between the extrema is much larger in figure 3.9 than in
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Figure 3.8: Sound attenuation AI and phase shift ΦI as functions of observer height zO, for flat hard
ground with R = 1 (solid line) or for semi-flat grounds with R = 0.7+0.7i (dashed line), R = 0.45+0.45i
(dash-dotted line) and R = 0.2 + 0.2i (dotted line). The sound frequency is f = 1 kHz, the observer is at
a horizontal distance ∆x = 50 m from the source, and the source is at a height zS = 30 m.

3.8. Furthermore, that space in figure 3.9 is increasing with zS, specifically for zS > 25 m, because the

derivative of r2 + r3 − r1 with respect to zS is lowering and consequently the cosine function behaves

like cos (kazS) with a < 0.08, hence the space between the extrema starts to increase in comparison with

the space for zS < 25 m (and as a consequence, also the space between the zeros of the function ΦI in

figure 3.9). On the other hand, the values of the maxima and minima of the functions AI and ΦI, mainly

the former one, remain approximately constant because the ratio between ray paths, r1 (r2 + r3)−1, also

remains approximately constant with zS as one can observe from the middle dashed plot in figure 3.7.

In the case of bottom plot of figure 3.7, for ∆x < 50 m, the derivative of the continuous line starts to

decrease, reaches a constant negative value and then begins to increase, therefore the space between the

extrema points in top and bottom plots and the space between the zeros in bottom plot, both of figure

3.10, follow the same pattern as the change of the derivative aforementioned (the space starts to decrease

until a certain point, then remains constant and finally the space increases). Moreover, for ∆x < 50 m,

the dashed line in the bottom plot of figure 3.7 monotonically increases (instead of the dashed lines of

other plots in figure 3.7), hence the maximum values increase while the minimum values decrease with

∆x (because of the logarithm function, the effect is more noticeable in the minimum values). Note that

the increasing/decreasing the values of extrema points is more visible in the figure 3.8 than in figures

3.9 and 3.10 due to a wider range of values of the parameter r1 (r2 + r3)−1, as one can observe from a

comparison between the ranges of the dashed lines in the figure 3.7.

The figures 3.7 to 3.10 show the plots for certain positions of observer and source and for a certain

frequency. However, independently of that values, the SPL and phase changes depend always on the

parameters r2 + r3 − r1 and r1 (r2 + r3)−1. If one changes the positions of the observer and source, the
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Figure 3.9: Sound attenuation AI and phase shift ΦI as functions of source height zS, for flat hard
ground with R = 1 (solid line) or for semi-flat grounds with R = 0.7+0.7i (dashed line), R = 0.45+0.45i
(dash-dot line) and R = 0.2 + 0.2i (dotted line). The sound frequency is f = 1 kHz, and the observer is
at a horizontal distance ∆x = 50 m from the source and at a height zO = 2 m.
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Figure 3.10: Sound attenuation AI and phase shift ΦI as functions of observer-source distance ∆x,
for flat hard ground with R = 1 (solid line) or for semi-flat grounds with R = 0.7 + 0.7i (dashed line),
R = 0.45 + 0.45i (dash-dot line) and R = 0.2 + 0.2i (dotted line). The sound frequency is f = 1 kHz, the
observer is at a height zO = 2 m, and the source is at a height zS = 30 m.

shapes of the curves shown in the figure 3.7 would be similar. For instance, in the top plot of the figure 3.7,

the parameter r2 + r3 − r1 would continue to monotonically increase while the parameter r1 (r2 + r3)−1

would continue to form an U-shaped curve (however, the minimum of the value would shift its abscissa).

56



The differences would be in the range of the values of both parameters. For instance, keeping ∆x = 50 m,

if zO = 50 m, the parameter r2 +r3−r1 increases from 0 to 100 meters while the parameter r1 (r2 + r3)−1

is between 0.4 and 1; otherwise, if zO = 95 m, the parameter r2 + r3− r1 increases up to 190 meters while

the parameter r1 (r2 + r3)−1 is between 0.25 and 1. Moreover, keeping constant the value zS = 30 m,

if ∆x = 5 m, the parameter r1 (r2 + r3)−1 varies between 0.08 and 1, but if ∆x = 95 m, the parameter

r1 (r2 + r3)−1 varies between 0.73 and 1; however, if ∆x changes while the heights of the source zS and

receptor zO are constant, the parameter r2 + r3 − r1 has the same range of values. In all these cases,

the shapes of the curves of both parameters remain the same; consequently, the plots of the figure 3.8

would have the same shape, with a succession of crests and troughs, with the parameter r2 + r3 − r1

controlling the spacing between the “waves” of the plots and with the parameter r1 (r2 + r3)−1 controlling

the amplitude of that “waves”. Besides, in most of the cases, the maximum increase of SPL is between 5

and 6 decibels. Regarding the middle plots of the figure 3.7, changing the value of ∆x or zO, the range

of values of the parameters r2 + r3 − r1 and r1 (r2 + r3)−1 would also change. The only exception is the

parameter r2 +r3−r1 remaining constant when one changes the horizontal distance ∆x, keeping constant

the other values. Nevertheless, the shape of both curves in the middle plot of the figure 3.7 is the same:

the parameter r2 + r3− r1 monotonically increases while the parameter r1 (r2 + r3)−1 forms an U-shaped

curve (but the minimum of the curve changes its abscissa). Therefore, the conclusions about the figure

3.9 hold for different coordinates of the observer and source, and even for a different frequency (but can

have different amplitudes and different spacing between the “waves”). All previous observations are the

same for the bottom plot of the figure 3.7. Changing the heights of the receptor zO and source zS will

change the values of both aforementioned parameters (however, when only the height of the source zS

or only the height of the observer zO changes, keeping constant the other values, not only the range but

also the format of the curve of the parameter r2 + r3 − r1 remain the same, provided that the condition

zS ≥ zO is checked), but in the other side the format of both curves will be kept (a S-curved shape for

r1 (r2 + r3)−1 and an inverted S-curved shape for r2 + r3− r1). Consequently, the spacing of the “waves”

and their amplitudes in the figure 3.10 will show the same trends while ∆x increases for different values

of the other parameters.

All the plots from the figures 3.8 to 3.10 show also the effects of R on the multipath factor. The

interpretation mentioned to explain the figure 3.6 can be used to explain the figures 3.8 to 3.10. Comparing

the continuous with dashed lines in figures 3.8 to 3.10, one can observe the effect of changing the phase

of R because the complex magnitudes of R for both lines are almost the same: 1 and 0.99. Since arg (R)

only appears in the arguments of trigonometric functions in the equations (3.8c) and (3.9b) respectively

for the modulus and phase plots, increasing the phase of R only shifts the extreme points and zeros to the

left or right and the plots do not move vertically, while increasing its complex magnitude also increases

the values of the extreme points. Comparing the dashed line with the dash-dotted and dotted lines in

figures 3.8 to 3.10 shows the effects of varying only the value |R| because the phase of R is exactly the

same between the three lines. Looking at the ∆SPL plots, resulting from the equation (3.8c), one can

conclude that the decrease in the value of |R| leads only to a vertical shrink of the values in that plots,

therefore the extremes values decrease in modulus, but do not translate them horizontally, consequently
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the zeros and extrema points remain at the same abscissas; increasing the complex magnitude of R leads

to the opposite effect since it only extends vertically the plots. The effect of translating vertically the

plots due to a change in |R| is also visible in the bottom plots of figures 3.8 to 3.10, but it is not the only

one. Decreasing the complex magnitude also shifts right or left the plots of ΦI (bottom plots) because |R|

appears in the arccotangent function, but doesn’t shift horizontally the plots of AI (top plots). Therefore,

since the extrema points of AI have the same abscissas when one changes only the complex magnitude

of R (because that plots do not not move horizontally), the zeros of ΦI (in bottom plots) remain at the

same coordinates because that points and the extrema points of AI have always the same abscissas.

Knowing the effects of all coordinates (zS, zO,∆x) and reflection coefficient R on the multipath factor,

the atmospheric attenuation can now be discussed to understand how it also influences the multipath

factor. Considering in this chapter the simplest case, when the atmospheric attenuation has spherical

symmetry and depends only on the distance of propagation, as stated in the assumption (3.17), the only

important parameter to consider is the difference of ray distances between the direct and reflected waves,

r2 + r3− r1. In the formulas of the multipath factor for the model III, (3.19b) and (3.20) for its complex

magnitude and phase respectively, the three attenuations (δ1, δ2, δ3) appear in the equations merely in

the form exp [−ε (r2 + r3 − r1)] with ε ≥ 0. Starting from ε = 0, the exponential function reduces to 1

and therefore the multipath factor will be equal to that of model I, with no attenuation. If one increases

the value of ε, or in other words increasing the strength of atmospheric attenuation, and plots the data

as a function of some distance, like it was done in the figures 3.8 to 3.10, the results would be very similar

to the plots shown in that figures and it would be observed that increasing ε leads to a smaller range (a

vertical shrink of the plots) of SPL and phase values, similar to the effect of decreasing |R| that is visible

in the previously mentioned figures. Indeed, increasing ε or decreasing |R| weakens the strength of the

signal received at the observer position, the first due to an atmospheric absorption and the last due to a

creation of a transmitted wave from the surface with |R| < 1 when the incident wave impinges on it. Note

that to effectively shrink the plots of the multipath factor, in the last case, a sufficient condition is the

ground not being acoustically hard, |R| < 1; however, in the former case, it is not sufficient to have some

atmospheric attenuation because to shrink the plots, the reflected wave must be more attenuated than

the direct wave, that is, δ2 + δ3 > δ1 (in the simplified case of uniform attenuation, this is always verified

since r2 + r3 > r1). One additional remark has to be considered: when r2 + r3 = r1, since both waves

travel the same distance and consequently suffer the same “amount” of uniform atmospheric attenuation,

the multipath factor is not modified when that attenuation is considered. Indeed, the atmospheric effect

is less visible when both ray distances tend to be very similar because in that particular circumstance the

direct and reflected waves are almost equally attenuated due to the atmosphere and therefore the SPL

and phase changes tend to be equal to the changes with no atmospheric attenuation. Mathematically,

when r2 + r3 → r1, then the change of SPL approaches the result of the model I (with no atmospheric

attenuation), AIII → AI, and the same consequence to the phase change, ΦIII → ΦI. These consequences

are valid for any reflection factor and positions of observer and source. Therefore, one can know when

the difference of ray paths is approximately zero by following the continuous lines of figure 3.7 and

consequently, for that combination of values of ∆x, zS and zO (to determine the difference r2 + r3 − r1),
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one can predict that the atmospheric attenuation (mainly to small values of ε) changes only slightly

the multipath factor. Moreover, the constructive and destructive interferences do not depend on the

atmospheric attenuation, that is, the extreme points of the complex magnitude (and consequently the

zeros of the phase) of the multipath factor remain at the same abscissas because the attenuations only

influence the amplitudes of waves and not their phases of propagation. Indeed, according to (3.19b),

the attenuation parameter does not appear in the cosine argument which is the responsible term for the

location of the extreme points of the SPL plots (and zeros of the phase plots).

The effect of atmospheric absorption (figure 3.11) is equally noticeable for the intensity (top) as for the

phase (bottom) of the multipath factor. The lines are plotted for the next case: the ground is acoustically

hard, R = 1, the heights of the observer and source are respectively 2 and 30 meters, while they are

50 meters apart, and the frequency of the waves is 1 kHz. However, each line represents a variation

of one single value from the default case, which is represented by the black solid line. The line colour

specifies which variable (except the frequency) has its value changed from the default set, and for the

same colour, each line style has a different value of the variable concerned. All these changes are pointed

out in the table 3.1 to clarify the meaning of each line in the figures 3.11 and 3.12. Independently of

the geometrical parameters, reflection coefficient of the ground and frequency of the waves, when the

atmospheric attenuation is very small, that is, when is negligible, the SPL and phase changes are almost

equals to the changes if the attenuation is not included in the calculus; when ε → 0, then AIII → AI

and ΦIII → ΦI. By looking at the plots in figure 3.11, the attenuation effect becomes important when

ε > 0.02 m−1. However, the importance of atmospheric attenuation is influenced not only by the value

of ε, but also by the difference of ray paths, r2 + r3 − r1. As the uniform atmospheric attenuation is

considered, if that difference is small, both waves are attenuated with the same intensity and the only

difference between these waves and the waves with no attenuation is that the former ones reach the

observer’s position with lower amplitudes, but at the same ratio between the direct and reflected waves;

that is, mathematically when r2 + r3 − r1 → 0, then |p|dir.I
/ |p|refl.I

= |p|dir.III
/ |p|refl.III

with |p|dir.III
<

|p|dir.I
and |p|refl.III

< |p|refl.I
, where dir. and refl. stand for direct and reflected waves respectively,

while I and III stand for the models I (without attenuation) and III (with attenuation). Consequently,

in that situation, the results approach also the ones of the model I. To summarise, the fundamental

parameter that influences the multipath factor is ε (r2 + r3 − r1) and the effects of atmosphere become

negligible for small values of that parameter. On the other hand, when the atmospheric absorption

increases, the SPL and phase changes tend to be almost zero, independent of the difference of ray

paths. That happens because for large atmospheric absorptions, in the general case of r2 + r3 > r1,

the reflected wave is much more attenuated (because it travels a greater distance) than the direct wave,

and hence the total wave received at the observer’s position is reduced to the direct wave only, pIII ≈

p0 exp (−δ1); mathematically, for bigger ε, then exp [−ε (r2 + r3 − r1)] → 0, consequently AIII → 0 and

ΦIII → arccot {cot [k (r2 + r3 − r1) + arg (R)]}.

The difference in intensity with and without atmospheric attenuation (figure 3.12) increases sharply as

the latter exceeds about 0.02 m−1, at least, for all cases mentioned in the table 3.1. The figure reinforces

the interpretation that in these cases, for ε < 0.02 m−1, the difference is insignificant, since the SPL
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Line colour
Line style

Solid Dashed Dotted
Black zO = 2 m zO = 12 m zO = 22 m
Red zS = 15 m zS = 45 m zS = 60 m
Blue ∆x = 10 m ∆x = 30 m ∆x = 70 m

Green R = 0.7 + 0.7i R = 0.45 + 0.45i R = 0.2 + 0.2i

Table 3.1: List of the cases for each line in both plots of figures 3.11 and 3.12. The default case is the
next set of values: {zO, zS,∆x,R} = {2, 30, 50, 1} corresponding to the black solid line.
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Figure 3.11: Sound attenuation AIII and phase shift ΦIII due to ground effect as functions of atmospheric
absorption per unit length ε, where the default case (black solid line) is for hard ground R = 1, the sound
frequency f = 1 kHz, the observer at a height zO = 2 m, the source at a height zS = 30 m and at a distance
of ∆x = 50 m from the observer. Each line represents a variation of one single value aforementioned and
it is indicated in table 3.1.

changes of the models I and III (with and without atmospheric attenuation) are almost equal. The

difference starts to increase when ε > 0.02 m−1. That difference can be positive or negative, depending

on the geometrical parameters, the reflection coefficient and the frequency of waves. When ε ∼ 1 m−1,

the waves are strongly attenuated by the atmosphere, with the reflected wave much more attenuated

than the direct wave, since r2 + r3 is greater than r1, and usually AIII ∼ 0 dB, (for instance, in all the

cases of table 3.1 we have −1.56 dB < AIII < 1.01 dB). Consequently, the difference can be simplified

to merely −AI and therefore can be predicted by the results of model I. In figure 3.12, there are three

cases of positive differences when ε > 0.02 m−1, AIII −AI ≈ −AI > 0, because AI is negative in all those

situations; in other cases, the difference is negative because AI is positive in that situations (except for

the red solid line where AIII is “more” negative than AI; the attenuation shrinks vertically the ∆SPL

plots, but the intersection between the plots with ε = 0 and ε = 1 do not occur when ∆SPL is 0 dB).

To predict the signal of the values of AI, the reader can analyse the top plots of figures 3.8 to 3.10 to
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observe when AI is positive or negative and read the discussion about model I.
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Figure 3.12: Difference between sound attenuation due to ground effect with and without atmospheric
absorption, AIII − AI, as a function of atmospheric absorption per unit length ε, where the default case
(solid thinner line) is for hard ground R = 1, sound frequency f = 1 kHz, observer at a height zO = 2 m,
source at a height zS = 30 m and at a distance of ∆x = 50 m from the observer. Each line represents a
variation of one single value aforementioned, in the same way as in the figure 3.11, and that variation is
indicated in table 3.1.

The conclusions about the figures 3.11 and 3.12 hold for other values of the parameters, including

not only the coordinates of the observer and source, but also the frequency. Nevertheless, the effect of

atmospheric attenuation, or equivalently the difference between the change of SPL with and without

atmospheric absorption, AIII −AI, can be significant from a value of ε less than 0.02 m−1.

Understanding the influence of ε and its related parameters on the ∆SPL and phase shift plots,

one can now analyse the plots of difference in intensity with and without atmospheric absorption as a

function of some geometrical parameters (as it was done in the figures 3.8 to 3.10), for instance, of the

observer distance (figure 3.13). The plots show peaks at the locations of destructive interference, because

the latter is less effective in the presence of attenuation. As discussed before, since the positions of

destructive interference are not influenced by the presence of atmospheric attenuation nor its value (they

are influenced mainly by the difference of ray paths and frequency of the waves), the peaks of the figure

3.13 occur at the same values of ∆x, independent of the value of ε. In the figure 3.13, one can observe

that, for ε = 0.1 m−1, the presence of attenuation can lead to an increase of 16 dB. However, that is not

a problem for the noise monitoring because those maximum increases occur always at the positions of

total destructive interferences, where AI is, at least, lower than −15 dB (see the top plot of figure 3.10),

and consequently AIII, that considers the atmospheric attenuation, never reaches a positive value at the

positions of peaks shown in the figure 3.13. On the other hand, the minimum values of the figure 3.13

occur at the positions of constructive interferences. In those positions, both AI and AIII are positive
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values, but AIII is lower than AI, hence resulting in negative differences shown in the figure 3.13. Indeed,

as mentioned before in this section 3.5, the presence of ε shrinks the plots of SPL changes and therefore

the maximum values of ∆SPL with atmospheric attenuation are lower than the maximum values without

attenuation and, on the other hand, the minimum values of ∆SPL with attenuation are higher than the

minimums without attenuation (equivalently, AIII is lower than AI in modulus). The graphs in figure

3.13 are plotted assuming ∆x as the independent variable, however the graphs and the discussion would

be similar if one assumes zS or zO as independent variable rather than ∆x, because the atmospheric

attenuation always shrinks the plots of SPL changes. These conclusions hold not only for other values of

the coordinates of observer and source, but also for other values of the frequency. However, it is possible

that in a specific case the minimum value of the plot reach a value less than −1 decibel as shown in

the figure 3.13 (for instance, increasing the observer’s height zO to 80 meters, the minimum value of the

plot reaches less than −4 decibels; the lowest theoretical minimum would be −6.02 decibels when the

atmospheric attenuation is high enough to attenuate totally the reflected wave, AIII is equal to 0, and

consequently the difference AIII − AI is equal to −AI ≈ −6.02 dB in the positions of total constructive

interference).
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Figure 3.13: Difference between sound attenuation due to ground effect with and without atmospheric
absorption, AIII − AI, for three values of ε and for hard ground R = 1, as a function of the distance
between source and observer. The sound frequency is f = 1 kHz, the observer is at a height zO = 2 m,
and the source is at a height zS = 30 m.

3.5.3 Effect of undulating ground compared with flat ground

To study the effects of undulating ground on the multipath factor, the model II is illustrated for a

terrain profile specified by a continuous function with a continuous derivative, of which the sine function
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is a good example to represent an undulating ground,

z = q sin
(

2πx
L

)
. (3.35)

Note that the maximum and minimum amplitudes of the ground are ±q while L is its period. The

coordinates of reflection points, required to calculate the multipath factor, are determined by the equation

(3.11b). If the ground is flat, h (xR) = 0 and then (3.11b) reduces to (3.3b). Therefore, the horizontal

positions of the observer xO and source xS affect the attenuation and phase only through their difference

∆x = xO − xS in the case of flat ground (the only parameter that influences the result is merely ∆x

and not xO and xS themselves), with the results represented in figures 3.6 to 3.13. However, in the case

of an undulated ground, represented in figures 3.14 to 3.17, the positions of the source xO and observer

xS relative to the undulations affect the variation in SPL and phase shift. In this case, as the ground is

a periodic function, if the horizontal coordinates of observer and source are changed, while keeping the

same distance ∆x between them and their vertical coordinates zS and zO, the SPL and phase changes

would be periodic with xO (or with xS = xO −∆x).

The figures 3.14 to 3.16, similar to the figures 3.8 to 3.10 respectively, continue to show the SPL

variations (left) and phase shifts (right) for a sound wave of one frequency f = 1 kHz. The ground is

acoustically hard, R = 1, because it corresponds to the worst-case scenario of noise monitoring. The

amplitude of the ground is always q = 3 m, but its period varies: L = 20 m (top plots), L = 40 m (middle

plots) or L = 60 m (bottom plots). The figures 3.8 to 3.10 for flat ground correspond to L = ∞ and

all these plots are very similar, consisting on several peaks and troughs, and they have the same range

values: approximately −30 to 6 decibels in change of SPL and −90 to 90 degrees in phase shift. All these

plots are derived from the same physical assumptions and indeed the plots for flat ground can be done

by assuming that L is very large (ideally, tending to infinity). The table 3.2 summarises the positions of

source and observer for the plots in the figures 3.14 and 3.15 (in the plots of figure 3.17, the independent

variable is the horizontal distance ∆x between the observer and source).

Line style
Position

Observer Source Difference
xO [m] xS [m] xO − xS [m]

Solid 10 0 10
Dashed 35 0 35
Dotted 60 0 60

Table 3.2: Parameters for the figures 3.14 and 3.15.

The figures 3.8 and 3.14 show the dependence of the intensity (left) and phase (right) changes on the

observer height, respectively, for flat and undulating grounds. As the height of the observer over ground

increases, the amplitude and phase oscillations decrease for flat ground (figure 3.8); the same happens

to undulating ground. These peaks and troughs decrease in modulus with zO because as the observer

stays in a higher position, the ray path of reflected wave usually became longer (it is possible to consider
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another ground to became shorter but this it is not the case), decreasing therefore the ratio r1/ (r2 + r3),

and because of the proportional decaying of the acoustic amplitude with the propagation distance (due

to the characteristic of a spherical wave), the reflected wave is losing its “strength”. This is the same

reasoning to explain the decreasing of peaks and troughs in modulus for the flat ground in figure 3.8

and can be applied independently of the horizontal coordinate of observer and the characteristics of the

ground, as one can conclude from the figure 3.14. Note however that it is possible to consider another

ground in such a way that, as the height of observer increases, the total ray distance of the reflected wave

shortens because the shortening of the distance r2 due to the new location of the reflection point is more

considerable than the increment of the distance r3, leading consequently to opposite conclusions. The

undulation of the ground leads to two new features. In the middle plot, for L = 40 m, the solid line is

invisible for zO < 3 m (middle plots of figure 3.14) because in that case the observer is under the line of

sight and only when its height is higher than 3 m, the observer is able to receive acoustic waves. When

the direct wave cannot reach the observer’s position, the ∆SPL and phase of the multipath factor are

not plotted. The other feature occurs, for instance, when L = 20 m and xO = 60 m, corresponding to the

dotted lines of top plots in figure 3.14. The signal interruptions that are visible in the top plots occur for

the shortest undulation L = 20 m of the same height q = 3 m, that have a larger slope and can block the

line of sight from the source to the observer, more frequent in the grazing directions. With the specific

values of figure 3.14, the ∆SPL and phase values are always zero, independent of zO, because there is

no reflected wave that can reach the observer’s position. These two new features are also visible in the

subsequent figures.
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Figure 3.14: Sound attenuation AII and phase shift ΦII as functions of observer height zO, for hard
ground R = 1 and undulating ground (3.35) with q = 3 m and for L = 20 m (top), L = 40 m (middle)
and L = 60 m (bottom). The sound frequency is f = 1 kHz, the source is at a height zS = 30 m and
at a horizontal position xS = 0 m, while the observer has different distances from the source, xO =
{10, 35, 60} m for solid, dashed and dotted lines, as indicated in the table 3.2.
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The figures 3.9 and 3.15 show the dependence of intensity (left) and phase (right) oscillations on

source height, respectively for flat and undulating grounds. In this figure, the observer is always 2 meters

above the ground. Increasing the source height leads to a greater spacing of oscillations for flat (figure 3.9

and undulating grounds (figure 3.15). The reasons are the same for both types of ground. The parameter

that explains the spacing of oscillations is the difference of ray paths, r2 + r3− r1, and if the ratio of that

difference with zS is lowering, the space between oscillations starts to increase; on the other hand, if that

ratio is increasing, the space starts to narrow. The same conclusion can be reached by observing at the

cosine and sine arguments in the equations (3.14b) and (3.15b). The variation with zS influences more

the parameter r2 + r3 − r1 than the parameter r1/ (r2 + r3), which is approximately constant with zS

and therefore the amplitude of extreme points remains constant. Shorter undulations do not affect much

the spacing of oscillations, but introduce a blocking of the line-of-sight and signal cut-off visible not only

for steeper undulations, L = 20 m (top) or even L = 40 m (middle), but also for shallower undulations,

L = 60 m (bottom); otherwise the blocking does not exist for the extreme case of flat ground (figure

3.9). Since the height of undulations is fixed (q = 3 m) in figures 3.14 and 3.15, the shorter undulations

have steeper slope q/L and lead to the blocking of the line-of-sight from the source to the observer in

the grazing directions (not forgetting that the block of signals is also very influenced by the position of

observer and source).
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Figure 3.15: Sound attenuation AII and phase shift ΦII as functions of source height zS, for hard
ground R = 1 and undulating ground (3.35) with q = 3 m and for L = 20 m (top), L = 40 m (middle)
and L = 60 m (bottom). The sound frequency is f = 1 kHz, the source is at a horizontal position xS = 0 m
while the observer is always 2 meters above the ground, zO = h (x) + 2 m, but with different distances
from the source, xO = {10, 35, 60} m for solid, dashed and dotted lines, as indicated in the table 3.2.

The figures 3.10 and 3.16 concern the effect of horizontal distance between source and observer respec-

tively for flat and undulating grounds. In this figure, the observer is again 2 meters above the ground,

but the source positions is different for each type of line: xS = 0 m for solid, xS = 10 m for dashed and
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xS = 20 m for dotted line. The intensity (left) and phase (right) oscillations are affected both in magni-

tude and spacing (although the effect is more noticeable in the spacing), not only for flat (figure 3.10)

but also for undulating grounds (figure 3.16). The signal interruptions again occur for shorter or steeper

undulations and grazing directions associated with larger distances from the source to the observer (for

instance, the dashed line, with xS = 10 m, of top plots with L = 20 m). Note that the dotted line of top

plots follows exactly the solid one because both lines represent the same situation since the ground is

periodic with L = 20 m.
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Figure 3.16: Sound attenuation AII and phase shift ΦII as a function of observer-source distance ∆x,
for hard ground R = 1 and undulating ground (3.35) with q = 3 m and for L = 20 m (top), L = 40 m
(middle) and L = 60 m (bottom). The sound frequency is f = 1 kHz. The source is at a height zS = 30 m
and at the horizontal position xS = {0, 10, 20} m for solid, dashed and dotted lines. The observer is
always 2 meters above the ground, zO = h (x) + 2 m, but with its distance from the source varying
continuously since xO = ∆x+ xS.

Whereas the figures 3.10 to 3.16 keep the height of undulations and vary their length, the reverse

applies in the final figure 3.17. The sound intensity depends on the length L of undulations for non-flat

ground and in the figure 3.17 the plots are shown for q = {1, 2, 3, 4}m. In all these plots, the source is

at the height zS = 30 m while the observer is 2 meters above the ground. The horizontal coordinates of

observer and source are indicated in the table 3.3. They are in the same vertical plane as crests or troughs

of the different ground profiles. That remark is also indicated in the table 3.3. The sound level goes

always through several minima and maxima, corresponding respectively to destructive and constructive

interferences, that occur for smaller and more numerous values of the length of undulations L if the

horizontal distance between the observer and source ∆x increases. There is no great difference in the

results when the amplitude of the ground q changes. The effect on the multipath factor is more noticeable

when the length of undulations is modified. However, keeping the ground undulating like a sine function

does not alter the range of SPL changes: approximately −30 to 6 decibels.
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Figure 3.17: Sound attenuation AII as a function of L for hard R = 1 and undulating ground with
q = 1 (solid line), q = 2 (dashed line), q = 3 (dotted line), or q = 4 (dash-dotted line). The sound
frequency is f = 1 kHz, the observer is 2 meters above the ground with zO = h (x) + 2 m, the source is at
a height zS = 30 m. The horizontal distances of observer and source are indicated in table 3.3.

The range of ∆SPL aforementioned is valid for all the plots of figures 3.14 to 3.17. This is a consequence

that is very rare to have more than one reflected wave that can reach the observer’s position. Almost in

all situations of the undulating ground, there is only one solution of the equation (3.11b), indicating that

there is only one reflection point and consequently two waves reach the observer: one direct from the

source plus one reflected from the ground. For the ground profile (3.35), the model II can be analysed

a priori by the results of the model I that studies the situation of flat ground where the same number

of waves reaches the observer. However, this model II does not take into account multiple reflections on

the ground and that explains why in almost every cases there is only one reflected wave. If one considers

waves that can imping on the ground several times and then reach the observer, hence there will be

more reflected waves with the main difference being the maximum theoretical value of the SPL changes:

instead of 6.02 decibels, with 2 reflected waves it can be at maximum 9.53 decibels, or with 3 reflected

waves the maximum value can be 12.04 decibels. The case of multiple reflections before reaching the

observer should occur only for very particular directions of propagation.

3.6 Main conclusions of the chapter 3

Aircraft noise [33, 34] contours at airports [40, 41] are currently predicted using the model of a point

source of sound at the aircraft with the effect of flat ground represented by an image source [16, 20, 29–

32, 38, 42–44]. The real environment around airports may involve non-flat ground, such as buildings that

act as corner reflectors (chapter 2) or uneven and mountainous terrain that can cause reflections from

several points. In the case of flat ground, an alternative to the (I) method of images is the (II) method
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Sub-figure
Horizontal coordinate

Observer Source Difference
xO [m] xS [m] xO − xS [m]

First 5L/4 (crest) L/4 (crest) L

Second 3L/4 (trough) L/4 (crest) L/2
Third 5L/4 (crest) 3L/4 (trough) L/2
Fourth 7L/4 (trough) 3L/4 (trough) L

Table 3.3: Horizontal coordinates of the observer and source for the figure 3.17.

of reflected waves. To the direct wave from the real sound source to the observer, the method I adds a

virtual sound wave from the image source that is replaced in the method II by a wave reflected from the

ground. In both methods I and II, the acoustic boundary condition on the ground must be met. In the

case of method II of reflection, this leads to a complex reflection coefficient, including both amplitude

and phase changes. In the case of method I, the amplitude and phase are specified by the position and

strength of the image source.

Both methods of (I) images and (II) reflections apply to building effects on sound, like a corner

reflector. Using the method I of images, there are three images [39]: on the ground, on the wall and in

the apex. Using the method II of reflected waves (mentioned in chapter 2), there are also three reflected

waves: on the ground, on the wall and on both. The applicability of the two methods differs in the case

of rough ground: (i) the method of images does not extend readily to rough ground, as it is necessary

to find the location and strength of possibly several image sources; (ii) the method of reflections extends

to the rough ground by identifying all reflection points, applying the corresponding reflection coefficients

and adding all waves in line-of-sight of the observer. After the method II of reflection points is applied

to rough ground, it would be possible to identify a set of equivalent image sources for the method I of

images, but this would be redundant. Most of the acoustic measurements and experiments compare with

theories of sound reflection from flat ground and do not record the terrain profile. Comparing the present

approach of sound reflection by rough ground with experiments would require both the acoustic signal

and terrain profile.

The problem of ground effect and atmospheric attenuation on aircraft noise can be addressed by a

sequence of three progressively more sophisticated models. The models evolve from (i) a single reflection

from flat ground to (ii) multiple reflections from the rough ground; the atmospheric absorption can be

included with (i) uniform or (ii) non-uniform attenuation. The ground may be (i) rigid or have (ii)

a uniform impedance or (iii) a reflection coefficient with specified amplitude and phase. Some of these

many possibilities were illustrated, namely the influence of source and observer heights, relative horizontal

distance and frequency on sound intensity and phase, for: (i) flat ground, either rigid or with complex

reflection coefficients; (ii) non-flat ground with sinusoidal shape allowing a choice of two parameters,

namely height and length of undulations. The rough ground models allow for arbitrary terrain profiles

and are by no means restricted to the simple sinusoidal shape used.
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4 | On the countering of free vibra-

tions by forcing: non-resonant or

resonant forcing with phase shifts

“All truths are easy to understand once they are discovered; the point is to discover them.”

— Galileo Galilei
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The research in the present chapter relates to the active suppression of (a) acoustic oscillations and

(b) vibrations of beams. Concerning the first topic (a) of acoustic oscillations, the simplest one-

dimensional case is the classical problem of sound propagation in ducts [21, 22, 45–48], including active

noise reduction [49, 50]. The extensions include the duct acoustics of generally varying cross-section

that is studied most simply for quasi-one-dimensional propagation [51, 52], when the wavelength is larger

than the transverse dimensions of the duct; in this case, the classical wave equation is replaced by the

horn wave equation, for which a variety of solutions exist [53–60]. An extension including mean flow is

the quasi-one-dimensional propagation of sound in a duct of varying cross-section [61–64]. A different

extension, without flow, is the acoustics of curved [65–73] or twisted [74] tubes. The applications of duct

acoustics include the noise of jet engines and air conditioning systems.

The topic (b) of vibration of beams is based on the classic Bernoulli [75] and Euler [76] theory that is a

standard introductory subject in textbooks on elasticity [77–81] and leads to the phenomenon of buckling
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[82], which has been considered in several conditions: (i) geometric and material non-linearities [83], as in

the chapter 8; (ii) in combination with shear [84, 85] that is more significant for thin-walled beams [86–90];

(iii) constraints [91–93], such as hyper or non-local elasticity [94, 95]; (iv) vibrations [96, 97] that can be

excited by unsteady applied forces [98–101], leading to control problems [102]; (v) steady mechanical [103]

or thermal [104–106] effects; and (vi) vibrations of tapered beams [107–116], with multiple applications

like airplane wings, flexible aircraft and helicopters [117–122]. The applications include active vibration

suppression [123–125].

There are generic topics applicable to active vibration suppression [126] independent of the specific

application. The active suppression of (a) noise is based on (A) boundary or radiation conditions in-

troducing sound waves with opposite phases. The active suppression of (b) vibration of beams is based

on (B) forcing by applied forces and moments either concentrated or continuously distributed or a su-

perposition of both. The contrast between the two approaches suggests a hybrid case concerning the

active suppression of transverse oscillations of an elastic string instead of (A) superimposing oscillations

with opposite phases through the boundary using (B) forcing by concentrated or distributed forces. The

hybrid case is investigated by considering whether the energy of free transverse oscillations of an elastic

string can be reduced by forcing. The (α) undamped and (β) damped cases are described by different

equations, namely the (α) classical wave equation and (β) the wave-diffusion or telegraph equation. This

suggests considering (α) the undamped case first in the present chapter to assess the interaction of free

and forced oscillations, including non-resonant and resonant cases; the additional effects of damping (β)

are considered in a follow-on chapter.

In this introduction, different problems have been identified by distinct symbols: (i) acoustic os-

cillations (a) and vibration of beams (b); (ii) active partial or total suppression introducing opposite

oscillations from sources or through the boundaries (A) or by forcing with applied forces and moments

(B); (iii) models without (α) and with (β) damping; (iv) cases of non-resonant (I) or resonant (II) forcing.

An additional criterion (v) would be forcing by point or continuous forces. With this classification, this

chapter concerns the transverse oscillations of an elastic string (a), without damping (α), whereas the

damping (β) is deferred in the next chapter. The applications are undamped systems described by the

classical wave equation (chapter 4) and damped systems described by the wave-diffusion or telegraph

equation (chapter 5). The wave equation applies to acoustic, elastic and electromagnetic waves, and

damping effects can be thermal conduction or radiation, viscosity, electrical resistance and mass diffu-

sion. The theory of oscillations applies not only to continuous systems, but also to discrete systems such

as: (i) mechanical oscillators consisting of masses, springs, dampers and forcing actuators; (ii) electrical

circuits consisting of inductors, capacitors and resistors powered by batteries; (iii) analogous circuits in

acoustics, hydraulics and other fields.

Thus, the transverse oscillations of an elastic string are used as a sample case on the use of forcing

for active suppression of material vibration. There are two cases to be considered [127], depending on

whether the forcing is (II) or not (I) at a natural frequency of the undamped system. Assuming the

free oscillation of the system at its natural frequency (or frequencies), the forcing at any other non-

resonant frequency (case I) will increase the total energy because the energy of the forced vibration adds
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to that of the free vibration. Thus, no vibration suppression will occur, unless forcing is applied at the

natural frequency, leading to the resonant case (case II). Concerning the remaining second case (case II),

with resonance: (i) the free oscillations are sinusoidal, with constant amplitude; (ii) the forced resonant

oscillation is sinusoidal with amplitude increasing linearly with time; (iii) the total, free plus forced,

oscillation, has amplitude varying with time. It is clear that the oscillation cannot be totally suppressed,

and the total energy will eventually increase. Thus, the question can be modified: how long can the

energy of oscillation of an undamped system be prevented from increasing by optimising the resonant

forcing relative to the free oscillation? This is the fundamental question addressed in the present chapter.

The question of vibration suppression is answered by an exact, analytical solution for the “simplest”

vibrating system and forcing: (i) the transverse vibrations of an elastic string fixed at both ends; (ii)

resonant forcing by a single or several concentrated forces or a distributed force; (iii) minimisation of the

energy over the first period of oscillation. After outlining the problem in this chapter, the method of

solution is presented as follows: calculation of the free oscillations, as a superposition of natural modes,

and of the response to a concentrated force, in non-resonant cases (section 4.1); calculation of the total

(kinetic plus elastic) energy density, averaged over a period, for free, forced and combined oscillations

(section 4.2), showing that the energy adds in the non-resonant case, but not in the resonant case; thus,

the energy integrated over the length of the string can be minimised with regard to the magnitude of

the force, to the position where it is applied or both simultaneously (section 4.3). In this way, the total

energy can be reduced marginally (by less than 2%), by optimum forcing, over the first period, but not

much longer, as shown (section 4.4) by plotting the total oscillation and its energy over a period for

optimal and non-optimal forcing conditions (figures 4.7 to 4.10). The case of several concentrated forces

at different locations is equivalent to a single overall force and location (section 4.5), leading to the same

result. In the case of a continuously distributed force (section 4.6), it is shown that it is possible to

reduce the total energy of the oscillation over the first period by, at best, one-fourth of the energy of

the free oscillation. This requires an optimal choice of the forcing, as concerns spatial distribution and

amplitude relative to the free oscillation, and shows (section 4.7) that continuously distributed forces are

more effective vibration suppressors than point forces.

This kind of analysis could be applied to more general vibrating systems [21, 22, 45–48, 128, 129].

4.1 Free oscillations and forcing by concentrated force

Consider the linear free vibrations ỹ of an elastic string that are described by the classical wave

equation [1, 4, 7, 45]
∂2ỹ

∂x2 −
1
c2
∂2ỹ

∂t2
= 0, (4.1a)

with wave speed c specified by [45]

c ≡

√
T

ρ
, (4.1b)
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where ρ is the mass density per unit length and T is the tangential tension, both assumed to be constant.

The string is fixed at the two ends at x = 0 and x = L:

ỹ (0, t) = 0 = ỹ (L, t) . (4.2)

The transverse displacement is given by a superposition of normal spatial modes [45],

yn (x) = sin
(nπx
L

)
, (4.3a)

with sinusoidal oscillations in time:

ỹ (x, t) =
∞∑

n=1
yn (x)

[
Pn cos

(
nπct

L

)
+Qn sin

(
nπct

L

)]
. (4.3b)

The last solution is obtained with the method of separation of variables t and x. The amplitudes are

determined by the initial deflection,

ỹ (x, 0) =
∞∑

n=1
Pn sin

(nπx
L

)
, (4.4a)

and the initial velocity,
∂ỹ

∂t
(x, 0) = πc

L

∞∑
n=1

nQn sin
(nπx
L

)
, (4.4b)

of the string at time t = 0. From the sine series (4.4a) and (4.4b) follows that the coefficients Pn and Qn

are specified respectively by the initial displacement,

Pn = 2
L

∫ L

0
ỹ (x, 0) sin (knx) dx, (4.5a)

and the initial velocity,

Qn = 2
πcn

∫ L

0

∂ỹ

∂t
(x, 0) sin (knx) dx, (4.5b)

where kn denotes the wavenumber of the mode n:

kn ≡
nπ

L
. (4.6a)

The corresponding wavelength is λn ≡ 2π/kn = 2L/n. The wave period is

τn ≡
λn

c
= 2L
nc

(4.6b)

and the frequency is

ωn ≡
2π
τn

= nπc

L
= knc. (4.6c)
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The partial amplitudes (Pn, Qn) may be replaced by the amplitude An and phase αn,

Pn ≡ An cos (αn) , (4.7a)

Qn ≡ An sin (αn) , (4.7b)

with inverses given by

An =
(
P 2

n +Q2
n

)1/2
, (4.7c)

tanαn = Qn

Pn
. (4.7d)

In particular, if the string has no deformation at the initial time, ỹ (x, 0) = 0, then Pn = 0 or equivalently

αn = π/2. In contrast, if the string is released without velocity, ∂ỹ/∂t (x, 0) = 0, then Qn = 0 and

therefore αn = 0. Substituting the partial amplitudes Pn and Qn in (4.3b), the total oscillation is given

by

ỹ (x, t) =
∞∑

n=1
An sin (knx) cos (ωnt− αn) . (4.8)

The phase αn of each mode may be eliminated by changing time to

t′ ≡ t− αn

ωn
, (4.9a)

so that

cos (ωnt− αn) = cos (ωnt
′) . (4.9b)

Therefore there is no loss of generality in the following figures to set αn = 0, since this is equivalent to a

time shift.

The figure 4.1 shows the values of the dimensionless transverse displacement, ỹ/An, of the free os-

cillations for the first three natural frequencies, n = {1, 2, 3}. The plots show the oscillations along the

string as a function of the dimensionless coordinate, x/L. In the case of figure 4.1, the string is released

without velocity, therefore Qn = 0 = αn and An = Pn. Otherwise, if the string is released with some

velocity, then αn ̸= 0 and that case is equivalent to a time shift (4.9a), implying (4.9b), of the plots in

the figure 4.1. According to (4.8), once the value of time shift αn is defined, the shape of the string is

dependent on the dimensionless parameter x/L and for each natural frequency the shape is plotted at

six different times:

t = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0}L/c. (4.10)

The total deformation of the string is the sum of all the contributions of each natural mode of shape (for

each value of n). The deformation is dominated by the natural modes with larger values of An. That

influence depends only on the initial deflection, that is, on the shape of the string at the initial time,

when it is released without velocity; otherwise, that influence depends only on the initial velocity, that is,

the velocity of the string at the initial time, when it has no deformation initially; if the string has some

deformation and is released with some velocity initially, the factor An depends on both factors.
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Figure 4.1: Dimensionless transverse displacement of the free oscillation of a string fixed at the two
ends and released without velocity, with αn = 0, for the first three natural frequencies, n = {1, 2, 3}. The
plots are shown for six distinct dimensionless times.

The figure 4.1 illustrates the shape of the string at six equally spaced times between t = 0 and

t = 2L/c. Each term of ỹ is proportional to cos (ωnt) that is a periodic function. Its period is given by

(4.6b). Consequently, the first mode of deformation has period equal to 2L/c. Considering the second

mode, the lowest period is 2L/ (2c) = L/c, implying that 2L/c is also a period of the second mode.

Generally, each mode of deformation of frequency ωn has the lowest period equal to 2L/ (nc) (increasing

the mode of deformation n, the period decreases) and therefore, multiplying it by n, 2L/c is also the

period of each mode. That is the reason why the figure 4.1 illustrates the deformation from the initial time

t = 0 until the instant t = 2L/c because it is the period of each mode of deformation (note that the plots

are the same for the two instants). In particular, for n = 2 the string made two complete oscillations, and

for n = 3 the string made three complete oscillations, at the final instant t = 2L/c. The figure 4.1 shows

that the string is always fixed at the two ends for any mode of deformation all the time. Furthermore, for

each mode n, the string has n peaks and n−1 nodes (not counting both ends of the string). These nodes

and peaks remain at the same positions all the time due to the separation of variables t and x in the

solution. According to the figure 4.1, the plots are the same for the instants t = 0.4L/c and t = 1.6L/c.

The temporal dependence of the oscillation ỹ is cos (ωnt) and because cos (t1) = cos (2L/c− t1) for any

instant t1, the free oscillation has the property ỹ (x, t) = ỹ (x, 2L/c− t). The plots are also the same

when t = 0.8L/c and t = 1.2L/c for the same reasons. However, the direction of the movement of the

oscillation, that is determined by ∂ỹ/∂t, is not the same. For example, at the instant t = 0.4L/c, the

string of the first natural mode oscillation (n = 1) is moving downwards while the same string at the

instant t = 1.6L/c is moving upwards.

Consider next y the vibrations caused by a force , of frequency ω and amplitude F , concentrated at
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the point x = ξ,
∂2y

∂x2 −
1
c2
∂2y

∂t2
= Fδ (x− ξ) cos (ωt+ β) , (4.11)

where δ is the Dirac delta function [130, 131], that can be used to represent a concentrated force. The

time dependence of the concentrated force is sinusoidal with applied frequency ω; this is one term of

the representation by a Fourier series of any function of time with bounded fluctuation [39]. In (4.11)

was introduced a phase shift β of the forced oscillation generally distinct from the phase shift αn of the

free oscillations (4.8), that is determined through the equation (4.7d) by the initial conditions (4.5a) and

(4.5b). The response will have the same frequency and the same phase shift as the applied force,

y (x, t) = B (x) cos (ωt+ β) , (4.12a)

leading to the differential equation

d2B

dx2 +
(ω
c

)2
B (x) = Fδ (x− ξ) , (4.12b)

that can be solved by expanding the Dirac delta function in sine series in the interval (0, L):

δ (x− ξ) =
∞∑

n=1
an sin

(nπx
L

)
. (4.13a)

This assumes that mathematically F is repeated at all ξ + mL positions with m = 1, 2, 3, . . ., and with

reversed sign −F at −ξ −mL with m = 0, 1, 2, . . ., so that it specifies an odd function of x, represented

by the sine series (4.13a) with coefficients

an = 2
L

∫ L

0
δ (x− ξ) sin

(nπx
L

)
dx = 2

L
sin
(
nπξ

L

)
. (4.13b)

Substituting (4.13b) in (4.13a) follows that the Dirac delta function is represented by the Fourier sine

series. Then, substituting the function δ (x− ξ) in (4.12b), with k ≡ ω/c, leads to

d2B

dx2 + k2B = 2F
L

∞∑
n=1

sin (knx) sin (knξ) , (4.14)

and suggests the solution

B (x) =
∞∑

n=1
bn sin (knx) , (4.15a)

leading to the condition (
k2 − k2

n

)
bn = 2F

L
sin (knξ) . (4.15b)

Substituting (4.15b) in (4.15a) and then in (4.12a), the forced oscillations are given by

y (x, t) = 2F
L

cos (ωt+ β)
∞∑

n=1

1
k2 − k2

n

sin (knξ) sin (knx) , (4.16)

75



for a wavenumber k outside of resonance, k ̸= kn, and including all modes of oscillation with n = 1, . . . ,∞.

In the resonant case, k = km for some integer m, hence the m-th term of (4.16) would appear to be

infinite. This is physically absurd, because the oscillation cannot have infinite amplitude or energy. It is

the result of mathematical error, namely dividing (4.15b) by zero, k2− k2
m = 0, when k = km. Thus, the

m-th term of (4.16) is invalid as a solution of (4.14) if k = km or ω = ωm. To find a valid solution in

this case [127, 132], the equation (4.15b) is rewritten with the time dependence:

(
ω2 − ω2

m

)
bm cos (ωt+ β) = 2Fc2

L
sin (kmξ) cos (ωt+ β) . (4.17)

Differentiating with regard to ω in both sides of (4.17) leads to

−
(
ω2 − ω2

m

)
bmt sin (ωt+ β) + 2ωbm cos (ωt+ β) = −2Fc2

L
sin (kmξ) t sin (ωt+ β) , (4.18)

and letting ω tending to ωm yields

bm cos (ωmt+ β) = − Fc2

ωmL
sin (kmξ) t sin (ωmt+ β) . (4.19)

Using the last equality (4.19) in the m-th term of (4.15a) and (4.15b), while the remaining terms n ̸= m

are unchanged, leads to the forced response

y (x, t) = − F

k2
mL

sin (kmξ) sin (kmx)ωmt sin (ωmt+ β)

+ 2F
L

∞∑
n=1
n ̸=m

(
k2

m − k2
n

)−1 sin (knξ) sin (knx) cos (ωmt+ β) , (4.20)

consisting of oscillations of constant maximum amplitude (when the cosine function is equal to 1) at all

wavenumbers kn ̸= km, except km, for which the amplitude increases linearly with time.

The figure 4.2 shows the dimensionless forced displacements y/ (FL) of the forced oscillations for

the first three natural frequencies, n = {1, 2, 3}. As in the figure 4.1, the plots shown the oscillations

along the string as a function of the dimensionless coordinate, x/L. According to (4.20), and bearing in

mind (4.6a), the position x appears always divided by L, in the dimensionless coordinate x/L. The total

deformation of the string due to the external force is the sum of all the contributions of each natural

mode of shape (for each value of n). The first three contributions are plotted in the figure 4.2. In contrast

with the free oscillation, the force F contributes equally to each deformation plotted in the figure 4.2

for each value of n (and to the contributions not depicted in figure 4.2 for n ≥ 4) because forcing by

an impulse in (4.13a) is equivalent to “white noise”. The total forced deformation is obtained summing

each deformation and then multiplying it by F/L. Also, in contrast to the free oscillations, the forced

oscillations do not depend on boundary conditions, that is, on the coefficients Pn and Qn. In the figure

4.2, it is assumed that the point force applied at ξ = 0.25L. Consequently, the term sin (knξ) that appears

in the solution is equal to sin (nπ/4). The forced frequency of the excitation is equal to the first natural

mode of free oscillation, that is, the figure is obtained with ωm = ω1 = πc/2L (m = 1). Consequently, at
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the initial time (t = 0), the string remains horizontal (y = 0) for the first mode of deformation (n = 1)

because, according to (4.20), the resonant term is proportional to the time. Moreover, the figure 4.2 is

obtained with β = 0, which corresponds to a maximum amplitude of the oscillatory applied force at the

initial time, according to the right-hand side of (4.11). The plots would be similar with β ̸= 0, since β

only introduces a phase shift to the results. Therefore, the plots of the figure 4.2 can be obtained with

β ̸= 0, but for times distinct than those indicated above each plot of the figure. The exception is the

resonant term because it also depends on the term ωmt.
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Figure 4.2: Forced displacements of the forced oscillations of a string fixed at the two ends, with β = 0,
for the first three natural frequencies, n = {1, 2, 3}. The point oscillatory force is applied at 25% of
the length of the string, measured from its beginning. The frequency of the force ω is equal to the first
natural frequency ω1 = πc/L of the oscillation of the string. The plots are shown for the same six distinct
dimensionless times as in the figure 4.1.

The figure 4.2 shows the string at six times between t = 0 and t = 2L/c, the same as in the figure 4.1.

Each non-resonant term of y is proportional to cos (ωt) that is a periodic function. Its period is 2π/ω and

in the particular case of figure 4.2 is equal to 2π/ω1 = 2L/c. For that reason, the figure 4.2 illustrates

the deformation from the initial time t = 0 until the instant t = 2L/c because it is the period of all

non-resonant modes of deformation (note that the plots are the same for the two instants, although the

deformation of the resonant mode, n = 1, is not periodic because it is proportional to ωmt.). As opposed

to the free oscillations, the period of each mode of oscillation is the same and it depends only on the

frequency ω of the force. This was already imposed by the solution in (4.12a). However, in the resonant

mode, when the frequency of the force is equal to one of the natural frequencies of the free oscillation,

the resonant term is not periodic because the oscillation grows linearly with ωmt.

As in the free oscillations, the figure 4.2 shows that the string is always fixed at the two ends for

any mode of forced deformation all the time. Furthermore, for each mode n, the string has n peaks

and n − 1 nodes (not counting both ends of the string). These nodes and peaks remain at the same
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positions all the time due to the separation of variables t and x in the solution. Moreover, the nodes

and peaks of the forced oscillations are at the same position as those of free oscillations. Therefore, all

the terms of forced oscillations have the same properties as the free oscillations (the only difference is

the period of the oscillations as explained before). The only exception is in the resonant term where the

amplitude of oscillation increase with time due to the term ωmt. Another property in common with free

oscillations is that the plots of the non-resonant forced oscillations are the same for the instants t = 0.4L/c

and t = 1.6L/c. The temporal dependence of the non-resonant oscillation y is again cos (ωt+ β) and

therefore theses oscillations have the property y (x, t) = y (x, 2π/ω − t), or in particular case of the figure

4.2, y (x, t) = y (x, 2L/c− t). However, as in the free oscillations, the direction of the movement of the

oscillation, that is determined by ∂y/∂t, is not the same. The plots of the non-resonant oscillations are

also the same when t = 0.8L/c and t = 1.2L/c for the same reasons. This property does not hold with

the resonant term due to the term ωmt (in the figure 4.2, the resonant oscillation is the plot of n = 1).

It should also be noted that the resonant and non-resonant oscillations have phases in quadrature, hence

when the non-resonant oscillation has maximum amplitude in modulus, the resonant oscillation has zero

deformation, and vice-versa. This property is true for any value of phase β and for any mode of resonant

oscillation m.

The total oscillation, that is free plus forced oscillation, y (x, t) = ỹ (x, t)+y (x, t), is given, for ω ̸= ωn,

by

y (x, t) =
∞∑

n=1
sin (knx)

{
An cos (ωnt− αn) + 2F

L

(
k2 − k2

n

)−1 sin (knξ) cos (ωt+ β)
}

(4.21a)

in the absence of resonance, and, for ω = ωm, by

y (x, t) =
∞∑

n=1
n ̸=m

sin (knx)
{
An cos (ωnt− αn) + 2F

L

(
k2

m − k2
n

)−1 sin (knξ) cos (ωmt+ β)
}

+ sin (kmx)
{
Am cos (ωmt− αm)− F

k2
mL

sin (kmξ)ωmt sin (ωmt+ β)
}

(4.21b)

in the presence of resonance. Note that even in the case of zero phase shift, αn = 0 = β, in neither

case the forced oscillation can exactly cancel the free oscillation, because: (i) in the non-resonant case

(4.21a) the frequencies ω ̸= ωn are different; (ii) in the resonant case (4.21b) the frequency is the same

(ω = ωm in the last term), but the amplitudes are different, since it is constant for the free oscillation,

but is increasing linearly with time for the forced oscillation.

The upper left plot of the figure 4.3 shows the maximum amplitude (in modulus) of the free oscillations

over time for the first three natural modes of oscillation, n ≤ 3. The other three plots of the figure 4.3

show the maximum amplitude (in modulus) of the forced oscillations, each one for a different location of

the applied force. In all three plots, the frequency of the force is equal to the first natural mode of the

free oscillation, that is, ω = ω1 = πc/L. Therefore, the plots for n = 1 represent the maximum amplitude

of the resonant term. The figure 4.3 shows the results for the instants between t = 0 and t = 2L/c

because 2L/c is the period of all free oscillations. Since 2L/c is also the period of the applied force, then
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the forced oscillations have the same period. Note that in these plots, there is no phase shift of the free

oscillations and applied force, αn = 0 = β. If αn ̸= 0, there is a phase shift on the result of n mode of

oscillation, visualised in the upper left plot of the figure 4.3. Setting β ̸= 0 introduces a phase shift on

all n non-resonant modes of forced oscillations, while on the m resonant mode, the plot is also modified,

but not with a phase shift due to the term ωmt.
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Figure 4.3: Maximum amplitude of the free or forced oscillations over time of a string fixed at the two
ends and released without velocity, αn = 0. There is no phase shift of the applied force, β = 0. The
frequency of the point force ω is equal to the first natural frequency of the free oscillation ω1 = πc/L.

The maximum amplitude of the free oscillations over time has also an oscillatory behaviour. Indeed,

the maximum amplitudes over time can be deduced from (4.8), knowing the parameters αn and An, and

assuming the maximum value for |sin (knx)|, equal to 1. Consequently, the maximum amplitude of free

oscillations, for each mode of vibration n, is proportional to cos (ωnt− αn). Therefore, the maximum

amplitude can reach the value An when t = Lp/ (nc) + Lαn/ (ncπ) with p being a natural number. The

number of times the maximum amplitude of the free oscillations occurs is greater when the value of n

increases because the period of the oscillations is lower. These conclusions are similar when αn ̸= 0.

The oscillatory behaviour is also present in the forced oscillations over time. The times at which the

maximum amplitude occurs depend on the frequency of the applied force, not on its location, as shown

in the figure 4.3 for β = 0. In this situation, all the non-resonant terms have maximum amplitude when

t = pπ/ω (in this case, when t = Lp/c) with p being a natural number. The maximum amplitudes occur

when the applied oscillatory force is also maximum. Indeed, this result can be deduced from (4.21a)

assuming cos (ωt) = ±1. For the non-resonant oscillations, the maximum amplitude is greater when

kn approaches the value k from the applied force (in the case of figure 4.3, the greatest amplitudes of

non-resonant forced oscillations are for n = 2 because it is the mode of oscillation that is closest to

the frequency of the applied force n = 1). However, this property is not always true due to the value
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sin (knξ). For instance, when the force is applied at the middle of the beam, ξ = 0.5L, the non-resonant

oscillation for n = 2 is null (therefore, the oscillation for n = 3 is greater). This exception results from

(4.21b) for the second term (n = 2), knowing that sin (k2ξ) = 0. The figure 4.3 also shows that the

maximum amplitudes of the resonant term (in this case for n = 1) increases over time because of the

term ωmt in (4.21b). Also, the maximum amplitudes of the non-resonant oscillations happen when the

resonant oscillation is zero, because when cos (ωt) = ±1, then sin (ωt) = 0. The maximum amplitudes of

the resonant oscillation occur when sin (ωt) + ωt cos (ωt) = 0. These conclusions are similar when β ̸= 0.

Next it is investigated to what extent the forced oscillation can be used to reduce the energy of the

free oscillation.

4.2 Minimisation of total (kinetic plus elastic) energy

The time average over a period τ is defined by [127]

⟨h (ωt)⟩ ≡ 1
τ

∫ τ

0
h (ωt) dt, (4.22a)

and can be reduced to an integration along a unit circular arc, assuming the period τ as 2π/ω, specified

by:

0 ≤ t < τ = 2π/ω ⇔ 0 ≤ θ ≡ ωt < ωτ = 2π. (4.22b)

The total energy density per unit length averaged over a period,

ẽ (x) = ρ

2

〈∣∣∣∣∂ỹ (x, t)
∂t

∣∣∣∣2
〉

+ T

2

〈∣∣∣∣∂ỹ (x, t)
∂x

∣∣∣∣2
〉
, (4.23)

is the sum of the kinetic energy [127] that involves the mass density per unit length ρ and of the elastic

energy [129] that involves the tangential tension T . For a free oscillation with displacement (4.8), each

mode n of vibration has period equal to τ = 2π/ωn, as in (4.6c). The velocity has a mean square over a

period given by〈∣∣∣∣∂ỹ (x, t)
∂t

∣∣∣∣2
〉

=
∞∑

n=1

∞∑
r=1

AnArωnωr sin (knx) sin (krx) ⟨sin (ωnt− αn) sin (ωrt− αr)⟩ (4.24a)

and the strain has a mean square over a period given by〈∣∣∣∣∂ỹ (x, t)
∂x

∣∣∣∣2
〉

=
∞∑

n=1

∞∑
r=1

AnArknkr cos (knx) cos (krx) ⟨cos (ωnt− αn) cos (ωrt− αr)⟩ . (4.24b)

The average over a period of the product of sines and cosines with different phases is given by (B.1) and

(B.2) in the appendix B, repeated here for convenience,

⟨sin (ωnt− αn) sin (ωrt− αr)⟩ = 1
2δnr = ⟨cos (ωnt− αn) cos (ωrt− αr)⟩ (4.25)
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where δnr is the identity matrix. Hence the average kinetic energy is given by

ẽk ≡
ρ

2

〈∣∣∣∣∂ỹ (x, t)
∂t

∣∣∣∣2
〉

= ρ

4

∞∑
n=1

(ωnAn)2 sin2 (knx) , (4.26a)

and the average elastic energy is equal to

ẽe ≡
T

2

〈∣∣∣∣∂ỹ (x, t)
∂x

∣∣∣∣2
〉

= T

4

∞∑
n=1

(knAn)2 cos2 (knx) . (4.26b)

Using the wave speed (4.1a) in ρ (ωn)2 = ρ (knc)2 = Tk2
n, the total energy per unit length of string, which

is the sum of average kinetic and elastic energies, is constant and equal to

Ẽ ≡ 4ẽ (x)
T

= 4ẽk (x) + 4ẽe (x)
T

=
∞∑

n=1
(Ankn)2

> 0 (4.27)

for the free oscillation.

The table 4.1 shows the total dimensionless energy density of the free oscillations along the string aver-

aged over one period, for the first four modes of the vibration n. In this case, the total energy is constant

along the string, not depending on explicit values of position x. The results of the table 4.1 are obtained

from (4.27) which follows from the mean square velocity (4.26a) and the mean square strain (4.26b). To

obtain the mean squares, the values of ⟨sin (ωnt− αn) sin (ωrt− αr)⟩ and ⟨cos (ωnt− αn) cos (ωrt− αr)⟩

were needed. The time averages of the product of sines and cosines are calculated over a period

in appendix B; the period of both functions for the time average, sin (ωnt− αn) sin (ωrt− αr) and

cos (ωnt− αn) cos (ωrt− αr), is 2L/c for any combination of the values n and r (although in some cases

the lowest period is L/c or even lower). The phase shifts αn and αr do not change the period of both

functions. Therefore, in the table 4.1, the first period is from t = 0 until t = 2L/c, the second period is

from t = 2L/c to t = 4L/c, and so on.

Order of
vibration n

First
period

Second
period

Third
period

Fourth
period

n = 1 2.467 2.467 2.467 2.467
n = 2 9.870 9.870 9.870 9.870
n = 3 22.207 22.207 22.207 22.207
n = 4 39.478 39.478 39.478 39.478

Table 4.1: Total dimensionless energy density per unit length of the free oscillations averaged over some
period. The first period is from t = 0 to t = 2L/c, the second period is from t = 2L/c to t = 4L/c, and
so on. The numerical results correspond to the dimensionless parameter ẽL2/

(
TA2

n

)
.

As indicated by the equation (4.27), the energy density is constant along the string for each mode

of free oscillation n. The energy density increases with n2 because kn appears to the square in (4.27).

Also modes with larger An (noting that An is always positive) contribute more to the energy. For the

same value of An, modes of higher order n contribute more to the energy because kn increases with n

in the respective energy density. Another property is that the contribution of each mode of oscillation n
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to the energy density is independent of the other modes of oscillation. Therefore, it is possible to show

in a tabular form the contribution to the energy for each mode of oscillation separately, as outlined in

the table 4.1. The energy remains unchanged when the oscillations advance one period, because the time

averages have the same values, so the results in the table 4.1 are the same for different periods. Hence,

the period used to perform the time average is irrelevant in the evaluation of the energy density of free

oscillations.

The total energy averaged over a period for the forced oscillation is given by

e (x) = 1
2ρ
〈∣∣∣∣∂y (x, t)

∂t

∣∣∣∣2
〉

+ 1
2T
〈∣∣∣∣∂y (x, t)

∂x

∣∣∣∣2
〉
, (4.28a)

leading by (4.12a) to

e (x) = 1
4ρω

2 |B (x)|2 + 1
4T
∣∣∣∣dB (x)

dx

∣∣∣∣2 . (4.28b)

To obtain the last result, one of the intermediate steps is to evaluate the time averages of sin2 (ωt+ β)

and cos2 (ωt+ β) because, according to (4.12a), the forced oscillation is proportional to cos (ωt+ β). The

period of both functions is 2π/ω (although the lowest period is π/ω), noting that the phase shift of the

applied force β does not change the period. Both time averages are equal to 1/2, as shown in appendix

B. Using (4.15a) in (4.28b), it follows that the energy of forced oscillations is

E ≡ 4e (x)
T

= k2

[ ∞∑
n=1

bn sin (knx)
]2

+
[ ∞∑

n=1
knbn cos (knx)

]2

. (4.29)

In the non-resonant case, where the frequency of the force ω is not equal to any of the natural frequencies

of the free oscillation ωn, the equation (4.15b), for which k ̸= kn, leads to

E = k2

[
2F
L

∞∑
n=1

1
k2 − k2

n

sin (knξ) sin (knx)
]2

+
[

2F
L

∞∑
n=1

kn

k2 − k2
n

sin (knξ) cos (knx)
]2

> 0, (4.30)

showing that the total energy density of the forced oscillation (4.30) is not constant along the string,

unlike for the free oscillation (4.27), although both are positive. Moreover, the external force supplies

energy to all forced n modes of oscillation, in contrast with the free oscillations, where in some n modes

the contribution to the energy is zero when An = 0.

The figure 4.4 shows the dimensionless energy density of the forced oscillations along the string

averaged over some period, for the first tree modes of the vibration n. The results are obtained from

(4.30). Contrary to the free oscillations, the energy of forced oscillations for a certain mode n is coupled

to the energy of all other modes of oscillation, as shown in (4.30). It is not possible to plot the energy for

a single mode of oscillation, in contrast to the table 4.1 in which the energy values are indicated for each

mode separately. Therefore, in the figure 4.4: the solid line represents the contribution of the first mode

of oscillation, n = 1; the dashed line corresponds to the first two modes of oscillation, n = 1 and n = 2

combined, as if the two series in (4.30) were truncated after the second term; the dotted line is obtained

with the same two series truncated after the third term, n = 1 to n = 3. As explained before, the period
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τ in which the time averages were performed is 2π/ω. Hence, in the figure 4.4, specifically in the upper

plots, the period 1 is from t = 0 until t = 2π/ω and the period 2 is from t = 2π/ω until t = 4π/ω.
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Figure 4.4: Total dimensionless energy density per unit length of the forced oscillations averaged over
some period. The period 1 is from t = 0 to t = 2π/ω, the period 2 is from t = 2π/ω to t = 4π/ω, and
so on. The force is applied at x = 0.25L, x = 0.5L or x = 0.75L. In this figure, ω is equal to 1.5πc/L,
hence not being equal to any of the natural frequencies ωn of the free oscillations.

As indicated by the equation (4.30), the energy density is not constant along the string and exhibits

an almost oscillatory behaviour. The plots also show that using only the first three terms in the series

of (4.30) is not accurate to represent the energy density and therefore more terms of the series should be

used. The contribution of each mode of oscillation n to the forced energy density is coupled to all the other

modes. Similar to the free oscillations, the energy remains unchanged when the forced oscillations advance

one period, hence the upper plots of the figure 4.4 are the same for different periods. Consequently, the

period used to perform the time average is also irrelevant in the evaluation of the energy density of forced

oscillations (that is the reason why in the bottom plots the period number is not stated because they are

equal whatever the period). This property holds for any location ξ and frequency ω of the applied force.

Concerning the total energy of the total or combined (free plus forced) oscillation,

e (x) = 1
2ρ
〈∣∣∣∣∂y (x, t)

∂t

∣∣∣∣2
〉

+ 1
2T
〈∣∣∣∣∂y (x, t)

∂x

∣∣∣∣2
〉
, (4.31)

since in the outside resonance the frequencies are different with ω ̸= ωn, the cross-products of sines and

cosines have zero average over a period if the ratio of ω to some natural frequency ωn is equal to a rational

number. Recalling the equations (B.3) to (B.5) in the appendix B, repeated here for convenience,

⟨cos (ωnt− αn) cos (ωt+ β)⟩ = 0 = ⟨sin (ωnt− αn) sin (ωt+ β)⟩ , (4.32)
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the energy is the sum of the parts due to the free and forced oscillations,

e (x) = ẽ (x) + e (x) , (4.33a)

with

E = 4e (x)
T

= Ẽ + E > Ẽ. (4.33b)

If the frequency of the force ω is not equal to some rational number times the natural frequency ωn, the

functions cos (ωnt− αn) cos (ωt+ β) and sin (ωnt− αn) sin (ωt+ β) may not be periodic and consequently

their time averages to evaluate the integral in (4.22a) may result in a non-zero value. In that case, an

additional term appear on the right-hand side of (4.33a) that represents the coupling between free and

forced oscillations. Anyway, if starting with a free vibration consisting of normal modes, forcing at any

other frequency will only serve to increase the energy. Thus, if the energy of the free oscillation can

be reduced at all, it must be through forcing at a natural frequency, which then leads to resonance. It

is investigated next whether it is feasible or not to prevent energy growth at an undamped resonance

condition, and for how long.

Concerning forcing at a natural frequency with ω = ωm, the functions cos (ωnt− αn) cos (ωmt− αm)

and sin (ωnt− αn) sin (ωmt− αm), for all terms n ̸= m, are always periodic (appendix B) with τ = 2L/c

(it may not be the lowest period). Hence, the result (4.32) holds when ω = ωm for certain m. Then,

forcing at a natural frequency, for all terms n ̸= m, leads to the same result (4.33b) as before; the energies

of the free and non-resonant forced oscillations add up to (4.33b), however there are also additional terms

due to the coupling between free and forced resonant oscillations that are not considered in the final

expression of the total energy. If Am is much greater than any other amplitude An, it can be singled out

for further analysis only the resonant term, specifically the second term on the right-hand side of (4.21b):

ym (x, t) = sin (kmx)
{
Am cos (ωmt− αm)− F

k2
mL

sin (kmξ)ωmt sin (ωmt+ β)
}
. (4.34)

The subscript m can be omitted in the sequel, corresponding to the change of notation {km, ωm, Am, αm}

to {k, ω,A, α}, which cannot cause any confusion henceforth.

The total energy (kinetic plus elastic) of the total (free plus forced) resonant oscillation, for the

resonant mode n = m, written explicitly in (4.34), is

2em

ρ
=
〈∣∣∣∣∂ym (x, t)

∂t

∣∣∣∣2
〉

+ c2

〈∣∣∣∣∂ym (x, t)
∂x

∣∣∣∣2
〉
. (4.35)

It involves two terms: the first term, evaluated for the first period, is〈∣∣∣∣∂ym (x, t)
∂x

∣∣∣∣2
〉

= k2 cos2 (kx)
{
A2 〈cos2 (ωt− α)

〉
+
(

F

k2L

)2
sin2 (kξ)

〈
(ωt)2 sin2 (ωt+ β)

〉

− 2
(
AF

k2L

)
sin (kξ) ⟨(ωt) cos (ωt− α) sin (ωt+ β)⟩

}
(4.36a)
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and the second term, also evaluated for the first period, is〈∣∣∣∣∂ym (x, t)
∂t

∣∣∣∣2
〉

= ω2 sin2 (kx)
{
A2 〈sin2 (ωt− α)

〉
+
(

F

k2L

)2
sin2 (kξ)

〈
[sin (ωt+ β) + (ωt) cos (ωt+ β)]2

〉
+ 2

(
AF

k2L

)
sin (kξ) ⟨sin (ωt− α) [sin (ωt+ β) + (ωt) cos (ωt+ β)]⟩

}
. (4.36b)

In the last two equations appear the following averages over a period 2π/ω = 2L/ (mc), evaluated in

appendix B as (B.6) to (B.11b). The first result,

〈
cos2 (ωt− α)

〉
= 1

2 =
〈
sin2 (ωt− α)

〉
, (4.37a)

is independent of the period (for instance, if the integral in (4.22a) is evaluated from t = 2L/ (mc) to

t = 4L/ (mc), the last result would be equal). Since the last result is independent of the period, the

last time average can be evaluated from t = 0 to t = 2π/ω because τ = 2π/ω is always a period of the

function, regardless the value of α. In the calculation of the energy of forced resonant oscillations, the

following averages over a period are also needed:

⟨ωt cos (ωt− α) sin (ωt+ β)⟩ = π

2 sin (α+ β)− 1
4 cos (β − α) , (4.37b)〈

(ωt)2 sin2 (ωt+ β)
〉

= 2π2

3 − π

2 sin (2β)− 1
4 cos (2β) , (4.37c)〈

[sin (ωt+ β) + ωt cos (ωt+ β)]2
〉

= 1
2 + 2π2

3 + π

2 sin (2β)− 1
4 cos (2β) , (4.37d)

⟨sin (ωt− α) [sin (ωt+ β) + ωt cos (ωt+ β)]⟩ = cos (α+ β)
2 − cos (β − α)

4 − π

2 sin (α+ β) . (4.37e)

These last results are only valid for the first “period”, that is, when the integral (4.22a) is evaluated from

t = 0 to t = 2π/ω. Indeed, none of the last functions to do the time average are periodic functions, due

to the term ωt. However, the results are deduced assuming τ = 2π/ω. Substitution of (4.37a) to (4.37e)

in the total resonant energy equation (4.35) shows that the total energy in the resonant case, averaged

over the first period, depends on phase values and on position of the applied force:

2em (x)
ρω2 = A2

2 +
(

F

k2L

)2
sin2 (kξ)

[
2π2

3 + 1
2 sin2 (kx)

]
+
(
AF

2k2L

)
sin (kξ)

[
cos (β − α) cos (2kx) + 2 cos (α+ β) sin2 (kx)− 2π sin (α+ β)

]
−
(

F

2k2L

)2
sin2 (kξ) [cos (2β) + 2π sin (2β) cos (2kx)] . (4.38)

The phase α of the free oscillation can be set to zero by suitable choice of initial time. The total energy

of the free plus forced resonant oscillation has four terms on the right-hand side of (4.38): (i) the first is

the energy of the free oscillation; (ii) the second term, being non-negative, adds to the total energy, and
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is independent of the phases α and β; (iii) in the third term, when α = 0, the factor in square brackets

is simplified to cosβ − 2π sin β, and hence this term does not have a fixed sign, but reduces the total

energy most for the forcing phase shift β = 2 arctan
[(

1 +
√

1 + 4π2
)

(2π)−1
]
, when the factor in square

brackets is −
(
1 + 4π2) (1 +

√
1 + 4π2

) (
1 + 4π2 +

√
1 + 4π2

)−1 ≈ −6.362; (iv) the fourth term does not

depend on the phase of free oscillations, does not have a fixed sign and the reduction of the total energy

due to that term depends not only on the phase β, but also on the value kx. For instance, choosing the

phases α = 0 and β = 0, the total energy is simplified to

2em (x)
ρω2 = A2

2 +
(

F

2k2L

)2
sin2 (kξ)

[
8π2

3 − cos (2kx)
]

+
(
AF

2k2L

)
sin (kξ) . (4.39)

The figure 4.5 shows the dimensionless energy density of the total resonant oscillation (4.34) along

the string averaged over one period, for the resonant mode of oscillation n = m. For the first period,

the upper left plots of the figure 4.5 are obtained from (4.39). The only difference to the other periods

are the results of the time averages in (4.37b) to (4.37e). Independently of the period, the energy of the

resonant oscillation em has always three terms (as in (4.39) for the first period).
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Figure 4.5: Total dimensionless energy density per unit length of the free plus forced resonant oscillations
averaged over one period. The frequency of the force ω is equal to πc/L, that is, equal to the first natural
frequency ω1. The period 1 is from t = 0 to t = 2L/c, the period 2 is from t = 2L/c to t = 4L/c,
and so on. The force is applied at x = 0.5L. The solid line represents the term of the resonant energy
em proportional to A2/L2, the dashed line represents the term proportional to F 2 and the dotted line
corresponds to the term proportional to AF/L. The plots are obtained with α = 0 = β.

One term is proportional to A2/L2 and represents the free oscillation for the resonant mode of os-

cillation n = m. It is represented by the solid lines in the figure 4.5. As usual with free oscillations, it

is constant along the string and does not change with the period. A second term is proportional to F 2

and is due to the forced oscillation in the resonant mode. It corresponds to the dashed lines. As usual
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with forced oscillations, it is not constant along the string and has an oscillatory term, not dominant

because cos (2kx) ≤ 1 ≪ 8π2/3 ≈ 26.32 in (4.39). It also changes with the period because of the time

averages (4.37b) to (4.37e) that appear in this contribution. The last term is proportional to AF/L and

corresponds to the dotted lines. This term represents the coupling between free and forced oscillations in

the resonant energy. It is constant along the string and does not change with the period when α = 0 = β

as in the figure 4.5 (nevertheless, when any of the phase shits is not zero, the term can be not constant

along the string). The second and third terms can be negative, useful to reduce the energy em, if one

chooses other values for α and β. Furthermore, the second term is proportional to 1/k4 while the third

term is proportional to 1/k2; therefore, both terms are dependent on the square of the frequency of the

force ω2. Therefore, for different frequencies of the force, the numeric values would be different, but the

shape of the plots (constant for the solid and dotted lines; oscillatory for the dashed line) are unchanged.

Bearing in mind that (4.39) is the resonant energy density, or energy per unit length, for α = 0 = β,

the total resonant energy for the string of length L (with the next definition, the dimensions are m2),

G (F, ξ) ≡ 2
ρω2L

∫ L

0
em (x) dx, (4.40a)

is given by

G = 1
2A

2 +
(

F

k2L

)2
sin2 (kξ) +

(
AF

2k2L

)
sin (kξ) . (4.40b)

The term “total” energy has been used with three distinct meanings: (i) kinetic plus elastic energies; (ii)

energy of the total or combined oscillation, that is free plus forced oscillation; (iii) energy of the string,

that is energy density integrated over its length. The function (4.40b), to be optimised, is the “total”

energy in all of these three senses, that is the kinetic plus elastic energy density, averaged over one period,

for the free plus forced resonant oscillation, integrated along the length of the string. This total energy

should be minimised, by optimising the magnitude F and location ξ of the force; the aim is to check

whether, due to the presence of resonant forcing, the total resonant energy over the first period (4.40b),

can be made smaller than the energy A2/2 of the free oscillation in the first term.

4.3 Optimisation of strength and location of forcing effect

Consider first the dependence of the total energy (4.40b), with respect to the magnitude F of the

applied force. The latter F = F+ is chosen in order to minimise the energy, accomplishing the conditions

∂G/ (∂F+) = 0 and ∂2G/
(
∂F 2

+
)
> 0. From (4.40b) it follows that the energy does have a minimum with

respect to the magnitude of the force,

∂2G

∂F 2 = 4π2

3k4L2 sin2 (kξ) > 0. (4.41)

when sin (kξ) ̸= 0. Equating to zero the first derivative of the total energy,

∂G

∂F
= sin (kξ)

[
4π2F

3k4L2 sin (kξ) + A

2k2L

]
, (4.42a)
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specifies the magnitude of the optimal force,

F+ = − 3
8π2 k

2LA csc (kξ) , (4.42b)

which minimises the total energy:

G+ ≡ G (F+, ξ) = 1
2A

2
(

1− 3
16π2

)
. (4.42c)

This optimal result does not depend on the point of application of the force. Compared with the energy

of the free oscillation,

G0 = 1
2A

2, (4.43a)

optimal forcing at resonance provides a very small reduction of energy,

G+

G0
= 1− 3

16π2 = 0.981, (4.43b)

of less than 2%, over the first period. Since resonant forcing causes an oscillation of amplitude increasing

with time, it is clear that even with optimal forcing, the total energy will exceed that of the free vibration,

for a time span slightly longer than a period. Thus, active suppression of a normal mode by a resonant

point force can be achieved very marginally, for a time span of at most one period.

It is shown next that the total energy has a maximum with respect to the point of application ξ of the

concentrated force, following the conditions ∂G/ (∂ξ±) = 0 and ∂2G/
(
∂ξ2

±
)
< 0. Substituting (4.40b) in

the first condition of optimisation leads to

0 = ∂G

∂ξ
= F

kL
cos (kξ)

[
A

2 + 4π2

3

(
F

k2L

)
sin (kξ)

]
. (4.44)

There are two sets of stationary values: one coincident with (4.42b),

sin (kξ+) = − 3
8π2

Ak2L

F+
, (4.45a)

and one different,

cos (kξ−) = 0. (4.45b)

Since the minimisation with regard to F did not depend on ξ in (4.42c), it may be expected that the

second set (4.45b) is not a minimum. Indeed, from (4.40b) or (4.44), it follows that

∂2G

∂ξ2 = −AF2L sin (kξ) + 4π2

3

(
F

kL

)2 [
1− 2 sin2 (kξ)

]
. (4.46)

In particular for the second set of roots (4.45b), it implies sin (kξ−) = ±1, and the second condition of

optimisation leads to
∂2G

∂ξ2

∣∣∣∣
ξ=ξ−

= F

2L

[
∓A− 8π2

3

(
F

k2L

)]
; (4.47a)
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where the last expression must be positive; however the last expression is negative with − sign in A for

a positive force F > 0 or when F < −3Ak2L/
(
8π2) and the last expression with + sign is also negative

for a negative force F < 0 or when F > 3Ak2L/
(
8π2), so the second condition of optimisation is not

always met. For the first set of roots (4.45a),

∂2G

∂ξ2

∣∣∣∣
ξ=ξ+

= 1
3

(
2πF
kL

)2
− 3

(
kA

4π

)2
= 4π2

3k2L2

[
F 2 −

(
3k2LA

8π2

)2]
< 0, (4.47b)

so the second condition of optimisation is met for |F | < 3Ak2L/
(
8π2). Thus, the case F = F+ is a

minimum at constant ξ, but ξ = ξ+ can be a maximum at constant F . The critical point ξ = ξ− at

constant F in (4.45b) would correspond in (4.42b) to

F− = −3k2LA

8π2 csc (kξ−) = ∓3k2LA

8π2 . (4.48)

The minimum for F in (4.42b) with ξ fixed, and the critical point for ξ in (4.45a) and (4.45b) with F

fixed, are particular cases of the general case when both F and ξ can vary.

The most general approach is to regard the total energy (4.40b) as a joint function of magnitude F and

location ξ of the applied force, so that the conditions of stationarity are ∂G/ (∂F ) = 0 and ∂G/ (∂ξ) = 0.

The condition related to being a maximum or minimum is related to the second-order differential equal

to

d2G =
(
∂2G

∂F 2

)
dF 2 +

(
∂2G

∂ξ2

)
dξ2 + 2

(
∂2G

∂F∂ξ

)
dFdξ. (4.49)

The second-order differential specifies (i) a local minimum if it is positive, (ii) a maximum if it is negative,

and (iii) an inflexion or higher-order extremum if it is zero. Since G is (a) maximum or minimum with

regard to ξ at fixed F and (b) minimum with regard to F at fixed ξ, this suggests the case (iii) of inflexion

or higher-order extremum, with the condition

∆ ≡

∣∣∣∣∣∣∣∣
∂2G/∂F 2 ∂2G/∂F∂ξ

∂2G/∂F∂ξ ∂2G/∂ξ2

∣∣∣∣∣∣∣∣ = 0. (4.50)

The condition (4.50) involves a cross-derivate which can be evaluated from (4.42a) leading to

∂2G

∂F∂ξ
= cos (kξ)

[
8π2F

3k3L2 sin (kξ)− A

2kL

]
. (4.51)

The second order derivatives of (4.40b) in (4.41), (4.46) and (4.51) are given, for the case (4.42b) equiv-

alent to (4.45a), which includes (4.48), by:

∂2G

∂F 2

∣∣∣∣
ξ=ξ+

= 3
(

A

4πF

)2
, (4.52a)

∂2G

∂ξ2

∣∣∣∣
ξ=ξ+

= 1
3

(
2πF
kL

)2
− 3

(
kA

4π

)2
, (4.52b)
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∂2G

∂F∂ξ

∣∣∣∣
ξ=ξ+

= ∓ A

2kL

[
1−

(
3k2LA

8π2F

)2]1/2

. (4.52c)

It can be checked that the determinant is zero, independent of the value of F ,

∆ = ∂2G

∂F 2
∂2G

∂ξ2 −
(
∂2G

∂F∂ξ

)2

= 0, (4.53)

confirming (4.50).

The figure 4.6 provides an overview of the total resonant energy, given by (4.40b), in the plane of the

parameters F/L and ξ/L, the last one between 0 and 1. The values of the contour lines result from the

difference between the total resonant energy and the free oscillation energy, that is, G − A2/2, for the

first period. It means that the value 0 of the contour plot happens when the sum of forced and coupled

resonant energy is zero, in other words, when the total resonant energy equals only the free oscillation

energy, G = A2/2. The values of the contour plots depend also on the explicit value of A, because of

the third term of (4.40b). In this case, the figure 4.6 is obtained setting A = 1. Each plot corresponds

to a different resonant frequency. For example, the upper left plot of the figure 4.6 corresponds to the

frequency of the applied force ω equal to the first natural frequency of the free oscillation, ω1. The thick

red line highlights the combination of the values of the parameters F/L and ξ/L for a minimum possible

resonant energy G.

Figure 4.6: Difference between the total resonant energy G, given by (4.40b), and the free oscillation
energy A2/2, in m2, for a given pair of the parameters (ξ/L, F/L). The thick red line represents the
combination of the values of ξ/L and F/L to obtain the minimum possible resonant energy G. Each plot
corresponds to a different resonant frequency. The plots are obtained for A = L.

Although the resonant energy depends on the two parameters F and ξ simultaneously, according to

(4.40b), the parameters are combined only in the form F sin (kξ). The resonant energy can be interpreted
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as a quadratic equation of the combined parameter F sin (kξ), that is, G = c1 [F sin (kξ)]2+c2 [F sin (kξ)]+

c3 with c1 > 0. Consequently, the minimum of the value of the resonant energy G is given by F sin (kξ) =

−c2/ (2c1) which corresponds to the equation (4.42b) and to the thick red lines presented in the figure 4.6.

The figure shows therefore that the minimum value of the resonant energy can be obtained with a force

applied at any position of the string, except at the points where sin (kx) = 0. In those positions, regardless

the value of the applied force F , the resonant energy equals the free oscillation energy, G = A2/2, the

same effect as if there is no applied force, F = 0. The contour values, as mentioned before, depend on the

value of A; the minimum value of G, according to (4.42c), also depends on the value of A. Furthermore,

due to the thick red lines of the figure 4.6, there are infinite combinations of the values of both parameters

to get the minimum possible resonant energy. Observing the red lines, to reduce the resonant energy,

the point force must be applied at a position where cos (kx) = 0 if it is intended that the force has the

lowest possible value. For instance, when ω = ω1, the best position to apply a force is at the middle of

the string. The worst locations to apply a force are in the vicinity of the positions where sin (kx) = 0

that are the ends of the string. The number of these best or worst locations to apply a force increases

with the resonant frequency. Moreover, when the frequency ω increases, looking at the red dashed lines

in the figure 4.6, the value of the force |F | to minimise G also increases. This observation agrees with

the equation (4.42b) since F increases for a greater value of k or ω.

4.4 Oscillation and energy for optimal and non-optimal forcing

The free vibrations of an elastic string consist of a superposition of normal modes. The question

addressed in this chapter is whether forcing can be used to suppress totally normal modes, or in a case

of failing that, at least reduce the energy of the total free plus forced oscillation relative to the energy of

the free oscillation alone. Clearly, forcing at a frequency distinct from all natural frequencies will not do:

it does not couple to the free motion and just increases the total energy. Forcing at a natural frequency

will cause resonance, that is an amplitude increasing linearly with time, for the forced vibration,

y (x, t) = − F

k2L
sin (kξ) sin (kx)ωt sin (ωt) , (4.54a)

compared to the free vibration

ỹ (x, t) = A sin (kx) cos (ωt) . (4.54b)

The phases are zero in the last two relations. The total energy over the first period can be marginally

reduced regarding (4.42b) if

F = −ε0Ak
2L csc (kξ) , (4.55a)

with

ε0 ≡
3

8π2 ≈ 0.038, (4.55b)

but for longer time spans it will be increased by any choice of the magnitude of the forcing. The preceding

result holds optimising the magnitude F of the forcing at a fixed location.
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The total or combined oscillation is given by

y (x, t) = ỹ (x, t) + y (x, t) = sin (kx)
[
A cos (ωt)− F

k2L
sin (kξ)ωt sin (ωt)

]
, (4.56)

which can be written in the form

y (x, t) = A sin (kx) g (θ, ε) (4.57a)

with the independent variable θ defined by θ ≡ ωt in (4.22b) and the other independent variable ε as

ε ≡ F/
(
Ak2L

)
sin (kξ) , (4.57b)

leading to

g (θ, ε) ≡ cos θ + εθ sin θ, (4.57c)

where all the time dependence appears in (4.57c). The equation h (θ, ε) ≡ [g (θ, ε)]2 gives an indication

of the energy. The functions g and h are plotted respectively in figures 4.7 and 4.8 for small values of ε

around ε0 in (4.55b):

ε = {0.00, 0.01, 0.02, 0.03, ε0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10} ; (4.58)

the thick line corresponds to ε0 and leads to the oscillation (in figure 4.7) with the smallest energy or

area below the curve in figure 4.8. For larger values of ε (except ε = 0.0), specifically

ε = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} , (4.59)

the resonance dominates the total oscillation even in the first period, leading to large amplitude (in figure

4.9) and energy (in figure 4.10).

The conclusion that the energy of the combined oscillation cannot be kept below the energy of the

free oscillation, for much longer than a period, applies to a single concentrated force. Use of several

concentrated forces or a distributed force would be possible also, and is investigated next.

4.5 Forcing by multiple concentrated forces

In the case of M forces Fm concentrated at the points x = ξm with m = 1, . . . ,M , the undamped

resonant response (4.54a) would be replaced by

y (x, t) = − 1
k2L

sin (kx)ωt sin (ωt)
M∑

m=1
Fm sin (kξm) . (4.60)

This is equivalent by (4.54a) to a single force F concentrated at ξ, such that

F sin (kξ) =
M∑

m=1
Fm sin (kξm) . (4.61)
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Figure 4.7: Peak spatial amplitude of the oscillation of the string, normalised to free oscillation ampli-
tude, as a function of dimensionless time θ ≡ ωt = 2πt/τ over one period 0 ≤ t ≤ τ or 0 ≤ θ ≤ 2π. The
magnitude of forcing relative to the amplitude of free oscillation is given with values around the optimum
for minimum total energy (thick line).
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Figure 4.8: As in figure 4.7 for the square of peak spatial amplitude of the oscillation of the string,
normalised to free oscillation amplitude, representing dimensionless energy.
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Figure 4.9: Amplitude as in figure 4.7 for larger values of the forcing parameter.
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Figure 4.10: Energy as in figure 4.8, for the same values of forcing parameter as in figure 4.9.

Thus, the conclusions are the same; for instance, regarding (4.55a), the energy over the first wave period

can be marginally reduced if
M∑

m=1
Fm sin (kξm) = −ε0Ak

2L, (4.62)
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where A is the amplitude of the free oscillation (4.54b) and ε0 is the constant (4.55b). The difference

between (4.62) and (4.55a) is that there is a greater choice of pairs (Fm, ξm). A further case deserves

investigation, namely that of continuously distributed forces.

4.6 Optimisation of continuously distributed forces

In the case of an applied force, which is harmonic in time, with frequency ω and continuously dis-

tributed in space, the forced wave equation (4.11) is replaced by

∂2y

∂x2 −
1
c2
∂2y

∂t2
= f (x) cos (ωt) (4.63)

which has a solution (4.12a), where B (x) satisfies

d2B

dx2 + k2B = f (x) . (4.64)

If the spatial force distribution f (x) is a function of bounded fluctuation in 0 ≤ x ≤ L, it has [133] a

Fourier series representation:

f (x) = f0 +
∞∑

n=1
[fn cos (knx) + f−n sin (knx)] . (4.65)

A solution of (4.64) may be sought as a series,

B (x) =
∞∑

n=−∞
Bn (x) , (4.66)

in which the terms satisfy

d2B0

dx2 + k2B0 = f0, (4.67a)

d2Bn

dx2 + k2Bn = fn cos (knx) , (4.67b)

d2B−n

dx2 + k2B−n = f−n sin (knx) , (4.67c)

with given fn, k and kn.

In the non-resonant case k ̸= kn, the solution of (4.67a) to (4.67c) is a sinusoidal oscillation with

constant amplitude for all terms with n ̸= 0,

Bn (x) = fn

k2 − k2
n

cos (knx) , (4.68a)

B−n (x) = f−n

k2 − k2
n

sin (knx) , (4.68b)

except for the term n = 0 that is constant, B0 = f0/k
2. In the case of resonance, k = km for some m and

the solution may be obtained as in (4.17) to (4.20), that is differentiating the numerator and denominator
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with regard to kn, leading to

Bm (x) = fm

2km
x sin (kmx) , (4.69a)

B−m (x) = −f−m

2km
x cos (kmx) . (4.69b)

The first boundary condition of (4.2) is not satisfied by (4.68a), and the second boundary condition is

not satisfied by (4.69b) in general, implying

f−m = f0 = f1 = . . . = fm−1 = fm+1 = fm+2 = . . . = 0, (4.70a)

as restrictions on the applied force (4.65), that simplifies to

f (x) = fm cos (kmx) +
∞∑

n=1
n ̸=m

f−n sin (knx) . (4.70b)

The forced response of the string is

B (x) = fm

2km
x sin (kmx) +

∞∑
n=1
n ̸=m

f−n

k2 − k2
n

sin (knx) . (4.71)

Taking a free oscillation of the form (4.54b), it cannot be suppressed for the same reasons as before:

(i) if n ̸= m, the last terms on the right-hand side of (4.71) have a different wavenumber; (ii) if the

wavenumber coincides, k = km, the first term on the right-hand side of (4.71) shows that the undamped

resonance has a growing amplitude which cannot be matched to the remaining term of (4.71), that is the

total, free (4.54b) plus forced (first term on the right-hand side of (4.71)) oscillation is

y∗ (x, t) =
(
A+ f

2kx
)

sin (kx) cos (ωt) , (4.72)

where the index m is again suppressed for brevity, substituting {fm, km, ωm} by {f, k, ω}.

As in (4.33a) and (4.35), the energy of the total oscillation per unit length of string is given by

2E∗ (x)
ρ

≡

〈∣∣∣∣∂y∗

∂t

∣∣∣∣2
〉

+ c2

〈∣∣∣∣∂y∗

∂x

∣∣∣∣2
〉

(4.73)

where the time averages (4.22a) are evaluated readily, by (B.6) and (B.7), after substituting (4.72) into

(4.73), leading to

2E∗ (x)
ρ

= ω2

2

(
A+ f

2kx
)2

sin2 (kx) + k2c2

2

[(
A+ f

2kx
)

cos (kx) + f

2k2 sin (kx)
]2
, (4.74a)

which can be simplified to

2E∗ (x)
ρ

= ω2

2

[(
A+ f

2kx
)2

+
(

f

2k2

)2
sin2 (kx) + f

2k2

(
A+ f

2kx
)

sin (2kx)
]
. (4.74b)
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The total energy over the length of the string is defined as in (4.40a), namely

G∗ (x) ≡ 2
ρω2L

∫ L

0
E∗ (x) dx, (4.75)

and substitution of (4.74b) in (4.75) leads to two integrals: (i) the first integral uses kL = 2π,

f2

8k4L

∫ L

0
sin2 (kx) dx = f2

16k4 ; (4.76a)

(ii) the second integral uses γ = kx,

1
2L

∫ L

0

f

2kx
f

2k2 sin (2kx) dx = f2

8k5L

∫ 2π

0
β sin (2γ) dγ = − πf2

8k5L
= − f2

16k4 . (4.76b)

Since (4.76a) and (4.76b) add to zero, the total energy over the length of the string (4.75) follows

G∗ (f) = A2

2 + AfL

4k + f2L2

24k2 . (4.77)

The total energy has a minimum, since the second-order derivative of G∗ is positive. That minimum

corresponds to dG∗/df = 0 leading to the applied force

f∗ = −3kA
L

, (4.78a)

or in dimensionless form f∗L
2/A = −3kL = −6π. The minimum energy is

G∗ (f∗) = A2

8 = 1
4G0, (4.78b)

25% of the energy of oscillation, that is a 75% reduction. Thus, choosing the continuously distributed

force (4.78a) leads, by (4.72), to a resonant oscillation:

y (x, t) = f∗

2kx sin (kx) cos (ωt) = −3
2A

x

L
sin (kx) cos (ωt) ; (4.78c)

the latter adds to the free oscillation, to produce a combined oscillation,

y (x, t) = A

(
1− 3

2
x

L

)
sin (kx) cos (ωt) , (4.78d)

which reduces the energy by a factor 0.25 in (4.78b), which is the lowest (because the second derivative

is negative) attainable value. This value is lower than the obtainable (4.43b) with single force, specified

by (4.42b), or multiple point forces, specified by (4.62).

4.7 Main conclusions of the chapter 4

The question addressed in the present chapter is whether the linear undamped free vibrations of an

elastic string can be suppressed, or at least their total energy reduced, by using applied external forces
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concentrated or distributed along its length. The linear undamped free vibrations of an elastic string

consist of the superposition of a fundamental mode and harmonics, and two cases are considered, namely

the applied frequency of the external forces: (case I) does not coincide with any natural frequency, for

non-resonant forcing; (case II) coincides with one of the natural frequencies for resonant forcing. The two

cases are quite distinct because: (I) the non-resonant forcing has constant amplitude and energy; (II) the

resonant forcing has amplitude increasing linearly with time, and hence energy increases quadratically

with time until non-linear effects come into play.

Starting with (I) non-resonant forcing at an applied frequency distinct from all natural frequencies: (i)

the energy, that is the sum of kinetic and elastic energies, is constant both for the (a) linear undamped free

oscillation and for the (b) linear forced non-resonant oscillation; (ii) the applied frequency being distinct

from all natural frequencies, there is no interaction with the free oscillations, whose energy remains the

same; (iii) the forced non-resonant oscillation adds a constant energy, so the total energy of free plus

forced oscillation is larger than the energy of the free oscillation alone; (iv) this is the reverse of the

result sought, and thus non-resonant forcing cannot decrease and instead increases the total energy when

superimposed on free oscillations. Thus, if it is possible at all to reduce the energy of free oscillations, it

can only be through (II) resonant forcing using either (IIa) concentrated or (IIb) distributed forces, that

can be optimised to minimise the total energy.

The reduction of the total energy of oscillation by resonant forcing is possible with two limitations:

(i) it applies only to the free oscillation whose natural frequency coincides with the applied frequency

and has no effect on all the other modes; (ii) since the energy of the resonant forced oscillation increases

quadratically with time, it will ultimately dominate the total energy over a sufficiently long time, so that

total energy reduction is possible only over a short initial time, say the first period of oscillation. Thus,

the question being addressed can be rephrased: can the resonant forcing reduce the total energy over the

first period of oscillation? Although the answer is “yes” in both cases, the result is quite different for

(IIa) concentrated and (IIb) distributed applied forces, using optimisation in each case.

In the case (IIa) of single or multiple point forces, the total energy over the first period of oscillation,

relative to the free oscillation, can be reduced by a maximum of no more than 2% by resonant forcing

at an applied frequency equal to the natural frequency. The less than 2% reduction is a minimum of the

total energy obtained by optimising the magnitude of the applied concentrated force at a fixed location.

Since the energy of the forced resonant oscillation increases quadratically with time, this slight reduction

is quickly overwhelmed beyond the first period of oscillation. The case (IIb) is somewhat more favourable

since by optimising the magnitude and spatial variation of the continuously distributed force applied along

the length of the string, the resonant forcing reduces the total energy over the first period of oscillation by

75% relative to the free oscillation alone. Since the energy of the forced oscillation increases quadratically

with time, it becomes dominant for times moderately beyond one period. These results exclude the effects

of damping, which is present in many practical situations, and is considered in the follow-on chapter.
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5 | On the countering of free vibra-

tions by forcing: damped oscilla-

tions and decaying forcing

“Mathematics compares the most diverse phenomena and discovers the secret analogies

that unite them.”
— Joseph Fourier
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The active suppression of oscillations is considered: (i) in acoustics [21, 22, 45–48] by considering

anti-noise sources that generate sound with opposite phase [49, 50]; (ii) in solid mechanics [77–

81, 129, 133] using forces and moments to oppose the vibrations [82, 107, 109–112, 114, 116, 122]. In the

chapter 4 that has an extensive bibliography was considered a hybrid approach using forced oscillations

superimposed on the free oscillations of an elastic string, in the simplest case of constant tangential

tension and with constant mass density per unit length, in the absence of damping. The countering

of free vibrations by forcing without damping was considered in chapter 4 for non-resonant forcing by

point and distributed forces, allowing for different phases of the free oscillation and the forcing. After

considering some possible cases without damping, it was found that suppression of oscillations or reduction

of their energy was of limited effectiveness and for short periods. These not-so-promising results motivate
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the extension in the present chapter to include damping, which causes amplitude decay and introduces

a third phase. Again, non-resonant and resonant forcing is considered, and the inclusion of damping

still does not lead to effective vibration suppression for constant damping amplitude. The countering of

vibrations or partial vibration suppression is quite effective for forcing decaying exponentially with time

with a suitably chosen decay rate. Therefore the main difference between chapters 4 and 5 is the inclusion

of damping and allowing for forcing decaying exponentially in time. This implies replacing the classical

wave equation for the transverse displacement of the elastic string with the wave-diffusion or telegraph

equation.

The background literature addresses two distinct problems: (i) the transverse vibrations of an elastic

string, corresponding to one-dimensional acoustics (references [21, 22, 45–74, 134–148], also cited in the

first paragraph of chapter 4), for which active sound cancellation corresponds to superposition of a wave

with the same amplitude and opposite phase; (ii) transverse vibrations of elastic bars for which active

vibration suppression is done by applied forces or moments (references [75–107, 109–125, 149, 150], also

cited in the second paragraph of chapter 4). The present problem is a hybrid since it considers (i)

transverse vibrations of an elastic string and (ii) attempts suppression by applied forces. There are four

combinations of the superposition of free and forced oscillations: (a) absence or presence of damping; (b)

non-resonant or resonant forcing. The cases of superposition of resonant and non-resonant forcing with

free oscillations were considered without damping in chapter 4, as a baseline to add damping effects in

the present chapter. The distinction starts with the fundamental equation, namely the classical wave

equation in chapter 4 is extended to the wave-diffusion or telegraph equation to include damping in the

present chapter.

The free or unforced solutions are (section 5.1) sinusoidal waves in space-time with amplitude decaying

exponentially in time due to dissipation; the wavenumbers and frequencies are determined by boundary

conditions fixing the string at the two ends (subsection 5.1.1) and the amplitude and phase are specified by

the initial displacement and velocity (subsection 5.1.2). The sinusoidal forcing of the damped space-time

oscillation with applied frequency and phase leads (section 5.2) to two cases: (i) non-resonant case if the

applied frequency is distinct from the natural frequency leading (subsection 5.2.1) to forced space-time

oscillations with constant amplitude and a phase shift such that the work of the applied force balances

the dissipation; (ii) resonant case if the applied frequency equals the natural frequency and (subsection

5.2.2) the space-time oscillations have a constant amplitude with a phase shift of π/2. In both cases, the

decaying free oscillation is dominated (subsection 5.2.3) for a long time by the forced (i) non-resonant or

(ii) resonant oscillation with constant amplitude.

The total energy (section 5.3) is the sum of (i) kinetic energy associated to the transverse velocity

and mass density with (ii) elastic energy associated to the slope and tangential tension. The total energy

decays for the damped free oscillation, but not when the forced oscillation is superimposed either in the (i)

non-resonant (subsection 5.3.1) or (ii) resonant (subsection 5.3.2) cases, because forcing leads to constant

amplitude. Thus, an energy of the total, free plus forced, oscillation less than for the free oscillation is

possible only: (i) by selecting the forcing to oppose the free oscillation; (ii) matching the applied phase

to the phase of free oscillation and phase shift due to damping; (iii) for a sufficiently short time.
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Total cancellation of the free oscillation by forcing is not possible because: (i) the amplitudes vary

differently in time, namely exponential decay for the free oscillation and constant amplitude for the forced

non-resonant or resonant oscillation; (ii) the phases are different for the free and forced oscillations, with

the frequency being the same for the forced resonant oscillation or with the frequency being also different

for the forced non-resonant oscillation. In conclusion, even optimizing the forcing, the total energy of the

free plus forced oscillation can be less than the energy of the free oscillation only for a short time, usually

a small fraction of the first period of oscillation.

It follows that the objective of substantial suppression of free oscillations over several periods is

not attainable by the four standard strategies I-IV of superimposing: (I) non-resonant undamped, (II)

resonant undamped, (III) non-resonant damped and (IV) resonant damped oscillations.

This is the motivation to consider two novel strategies, namely (V) resonant and (VI) non-resonant

forcing with exponential time decay. The forcing with exponential time decay (section 5.4) can be

considered with: (i) opposite free and forcing amplitudes; (ii) matched free, applied and damping phases;

(iii) applied frequency equal to the oscillation frequency. This leads to resonance (subsection 5.4.2) if the

forcing decay equals damping, but no resonance otherwise (subsection 5.4.1).

Considering the energy of the total free plus forced oscillation in the strategy V of forcing decay equal

to damping (section 5.5), the forced oscillation has amplitude initially increasing linearly with time until

dominated by exponential time decay at a later time. The build-up of energy of the forced oscillation

(subsection 5.5.1) may be too slow to compensate the damping of the free oscillation with little or no

benefit of overall energy reduction (subsection 5.5.2).

The final most effective strategy VI is to avoid resonance by having a forcing decay distinct from

damping (section 5.6), which is compatible with: (i) applied frequency equal to oscillation frequency; (ii)

opposite free and forcing amplitudes; (iii) matched free, damping and applied phases. In this case, both

the free and forced oscillations decay exponentially with time (subsection 5.6.1) at different damping

and decay rates, both leading to finite energy over all time. Their ratio can be adjusted to achieve

a reduction of the energy over all time of the total oscillation of more than 96% relative to the free

oscillation (subsection 5.6.2). In conclusion (section 5.9), the strategy VI is the most effective at partial

suppression of free oscillations (section 5.7). It also suggests a redefinition of the concept of resonance

for more general types of forcing than constant amplitude (section 5.8).

5.1 Free damped modes with dissipation

The free damped waves are described by the unforced wave diffusion equation with boundary con-

ditions, specifying the wavenumbers and frequencies (subsection 5.1.1), and with the initial conditions,

specifying the amplitudes and phases (subsection 5.1.2).

5.1.1 Wavenumbers and frequencies from wave-diffusion equation

The classical wave equation applies to the linear transverse vibration ỹ of an elastic string with con-

stant tangential tension T and mass density per unit length ρ. In the presence of damping µ proportional
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to the velocity, the wave equation is extended to

ρ
∂2ỹ

∂t2
+ µ

∂ỹ

∂t
− T ∂

2ỹ

∂x2 = 0, (5.1a)

that can be written in the form of a wave-diffusion equation,

∂2ỹ

∂x2 −
1
χ

∂ỹ

∂t
− 1
c2
∂2ỹ

∂t2
= 0, (5.1b)

involving, besides the wave speed c ≡
√
T/ρ, also the diffusivity χ ≡ T/µ. In the absence of damping,

µ = 0, the diffusivity is infinite, χ = ∞, and the wave-diffusion equation (5.1b) reduces to the classical

wave equation:
∂2ỹ

∂t2
− c2 ∂

2ỹ

∂x2 = 0. (5.2)

Considering an elastic string of length L held at the two ends, ỹ (0, t) = 0 = ỹ (L, t), the spatial

eigenfunctions [45] are

ỹn (x) = sin (knx) (5.3)

with wavenumbers kn = nπ/L. The solution of the wave-diffusion equation is sought by separation of

variables [45] in the form

ỹ (x, t) =
∞∑

n=1
Tn (t) ỹn (x) , (5.4a)

leading to
d2Tn

dt2 + c2

χ

dTn

dt + (knc)2
Tn = 0. (5.4b)

There is a solution exponential in time, Tn (t) = exp (vnt), with vn satisfying

v2
n + c2

χ
vn + (knc)2 = 0, (5.4c)

whose roots are

v±
n = − c

2

2χ ±

√(
c2

2χ

)2
− (knc)2

, (5.4d)

and thus

Tn (t) = Pn exp
(
v+

n t
)

+Qn exp
(
v−

n t
)

(5.4e)

where Pn and Qn are constants determined by initial conditions.

5.1.2 Amplitudes and phases from initial displacement and velocity

In the case of high diffusivity or sub-critical damping, kn > c/ (2χ), the roots (5.4d) are v±
n = −δ±iω̃n

where

δ = c2

2χ (5.5)
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plays the role of damping and

ω̃n =

√
(knc)2 −

(
c2

2χ

)2
=
√

(knc)2 − δ2 (5.6)

plays the role of oscillation frequency. Knowing that v±
n are the two complex roots of the characteristic

equation (5.4d), then the equation can have solutions proportional to e−δt cos (ω̃nt) and e−δt sin (ω̃nt)

which are linear combinations of the solutions ev+
n t = e(−δ+iω̃n)t and ev−

n t = e(−δ−iω̃n)t as written in

(5.4e). In this way, the two solutions only take real values when the time t is a real number. The

exponential solution in time can therefore be written as

Tn (t) = e−tδ [Pn cos (ω̃nt) +Qn sin (ω̃nt)] . (5.7)

Choosing the amplitude An and phase αn by

Pn = An cos (αn) , (5.8a)

Qn = An sin (αn) , (5.8b)

as in the case of undamped oscillations in subsection 4.1 with inverses equal to (4.7c) and (4.7c), leads

to the real solution

Tn (t) = e−tδAn cos (ω̃nt− αn) . (5.9)

Substitution of (5.9) in (5.4a) specifies the free vibrations of the string,

ỹ (x, t) = e−tδ
∞∑

n=1
An sin (knx) cos (ω̃nt− αn) , (5.10)

that consist of a superposition of modes: (i) all with the same damping (5.5); (ii) with wavenumbers

kn = nπ/L related to the wavelength λn by λn ≡ 2π/kn = 2L/n; (iii) with oscillation frequencies (5.6)

given by

ω̃n = c

√
k2

n −
(
c

2χ

)2
; (5.11)

(iv) with amplitudes An and phases αn determined by the initial displacement,

ỹ (x, 0) =
∞∑

n=1
An sin (knx) cosαn, (5.12a)

and initial velocity,
∂ỹ

∂t
(x, 0) = −

∞∑
n=1

An (δ cosαn − ωn sinαn) sin (knx) . (5.12b)

The Fourier sine series (5.12a) and (5.12b) may be inverted to specify the coefficients:

Xn ≡ An cosαn = 1
L

∫ L

0
ỹ (x, 0) sin (knx) dx, (5.13a)
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Yn ≡ An sinαn −
δ

ωn
An cosαn = 1

ωnL

∫ L

0

∂ỹ

∂t
(x, 0) sin (knx) dx. (5.13b)

Rewriting (5.13b) in the form

An sinαn = δ

ωn
Xn + Yn, (5.13c)

it follows that the amplitudes and phases are given by

An =
[
X2

n +
(
Yn + δ

ωn
Xn

)2
]1/2

, (5.14a)

tanαn = Yn

Xn
+ δ

ωn
. (5.14b)

In the non-dissipative case, δ = 0, the shape of the string is given by

ỹ (x, t) =
∞∑

n=1
An sin (knx) cos (ωnt− αn) , (5.15)

with ωn = knc in agreement with the equation (4.6c) or with the equation (5.6) when δ = 0.

The figure 5.1 shows the dimensionless displacements, ỹ/A, of the free oscillations (for instance,

of a string), without forcing, versus dimensionless axial coordinate x/L. All the oscillations shown in

the figure result from the equation (5.10). Each line corresponds to one term of the series in (5.10),

depending on the mode of oscillation n (or depending on the row of the figure). The total deformation

of the string is the sum of all the contributions of each natural mode n of oscillation. The deformation

is dominated by the natural modes with greater values of An (these constants are always positive) which

depend on the boundary conditions. The blue solid lines correspond to oscillations without damping,

δ = 0, whereas the red dashed lines are for oscillations with damping, δ = 0.5c/L. The figure 5.1 shows

three distinct situations regarding the values of the mode of oscillation n and consequently the values of

wavenumber kn. The upper plots are obtained for {n, kn} = {1, π/L}, the plots at the middle row are for

{n, kn} = {2, 2π/L} and the bottom plots correspond to {n, kn} = {3, 3π/L}. The oscillation frequencies

ω̃n are obtained from (5.6). In all the three cases, the oscillations are shown for three distinct times:

t = {0, 0.5, 1}L/c. The plots are obtained with no phase shift, αn = 0. There is no loss of generality

in the next figure to set αn = 0 because the phase αn of each mode may be eliminated by changing the

time t to t′ ≡ t− αn/ω̃n. In all the plots, the vibration is always fixed with ỹ = 0 at the two ends of the

string because that was imposed as the boundary conditions.

By comparing the lines of the figure 5.1, the effect of changing the mode of oscillation n, which

corresponds to one term of the series in (5.10), can be observed. The mode of oscillation n has direct

effects on the values of spatial wavenumber kn and consequently on the temporal frequency ωn. The two

effects can be studied separately because the solution of the differential equation (5.1b) was deduced by

separation of the temporal and spatial variables, t and x respectively. The first effect, specifically the

changing of the value of spatial wavenumber kn, can be noticed by comparing the plots of the figure

5.1 for the same time, for instance, at times t = 0 and t = 1L/c. The bottom plots are obtained for a

higher value of n, therefore for a higher value of wavenumber kn, compared to the top plots. Increasing
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Figure 5.1: Free damped oscillations (for instance, of a string) at three distinct times. The blue
solid lines are shown for no damping and the red dashed lines represent the oscillations with damping,
δ = 0.5c/L. Each row corresponds to a distinct set of values of the mode of free oscillation n and
consequently on the value of wavenumber kn: the upper row is for {n, kn} = {1, π/L}, the middle row
is for {n, kn} = {2, 2π/L} and the bottom row is for {n, kn} = {3, 3π/L}. The plots are obtained for
αn = 0.

the wavenumber means reducing the wavelength of the vibration, according to the relation λn ≡ 2π/kn.

Therefore, the bottom plots show a vibration with a higher number of crests, troughs and nodes, since

the vibration is spatially more “compact”. For each mode n, the string has n peaks and n− 1 nodes (not

counting the both ends of the string). These peaks and nodes remain at the same positions all the time

due to the separation of the variables x and t in the solution. For a higher mode of oscillation n, the

temporal frequency ω̃n also increases and consequently the movement of the vibration is faster (the period

of oscillations is lower), that is, it increases the velocity of the wave for the same velocity of propagation

c and decay rate δ; this property is verified in (5.6). For instance, in the case of the figure 5.1, in the

upper plots where the frequency is lower (the period is greater), the stage of vibration at t = 1L/c is the

same as at t = 0.5L/c in the intermediate plots where the frequency is greater (the period is lower). The

stage of vibration at t = 1L/c of the intermediate row is only reached by the vibration of the upper row

at t = 2L/c (these equivalences of stages of vibration neglect the effect of damping). Another difference

is related to the direction of the movement of the oscillation. For instance, although the upper and lower

plots of the figure 5.1 are identical at the time t = 0.5L/c, the direction of the movement is not the same:

in the upper plot the string is moving downwards whereas in the lower plot the string is moving upwards.

The figure 5.1 also shows the effect of the value of decay rate δ. At the initial time, there is no difference

between the plots with and without damping. When δ = 0, as in the blue solid lines of the plots, there

is no damping and the maximum amplitudes (in modulus) of the vibration remain constant over time.

When δ ̸= 0, the vibrations are damped and the amplitudes of the vibrations are decreasing over time
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(the vibrations cease to exist when t → ∞). The greater the damping value, the faster the oscillations

are damped. Also, the presence of damping changes the temporal frequency ω̃n, according to (5.6). With

damping, the temporal frequency decreases and consequently the period of the oscillation is greater.

The damped oscillations are considered both free (section 5.1) and with forcing (section 5.2).

5.2 Forced oscillations with applied frequency and phase

Next is considered forcing of the wave diffusion equation (section 5.1) with constant amplitude, and

an arbitrary frequency and phase shift (subsection 5.2.1). The cases of applied frequency distinct from

or equal to the natural frequency lead respectively to non-resonant or resonant forcing (subsection 5.2.2).

This allows a comparison of total, free plus forced, oscillations in the non-resonant and resonant cases

(subsection 5.2.3).

5.2.1 Damped non-resonant forced oscillations with phase shift

Next is considered the forced oscillations y with damping δ and forcing F (the unit of F is per meter

m−1) of the dissipative wave-diffusion equation (5.1b), with the same wavenumber kn ≡ k as one mode

of natural oscillation, applied frequency ω and phase shift β in

∂2y

∂x2 −
1
χ

∂y

∂t
− 1
c2
∂2y

∂t2
= F sin (kx) exp (−iωt− iβ) , (5.16)

knowing that the phase shift β can be distinct from the free oscillation (5.10) when each mode n has

a phase shift αn. The solution of (5.16) is sought as a plane wave with the same wavenumber kn ≡ k,

applied frequency ω and phase shift β:

y (x, t) = B sin (kx) exp (−iωt− iβ) . (5.17)

Substitution of (5.17) in (5.16) and omission of common space-time dependence leads to

c2F

B
= ω2 + iωc2

χ
− k2c2. (5.18a)

The substitution of the damping (5.6) gives

c2F

B
= ω2 − k2c2 + 2iωδ ≡ Ceiϕ, (5.18b)

corresponding to: (i) the amplitude factor

C =
∣∣∣(ω2 − k2c2)2 + 4ω2δ2

∣∣∣1/2
; (5.19a)

(ii) the phase factor

tanϕ = 2ωδ
ω2 − k2c2 . (5.19b)
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Using the oscillation frequency (5.6) in (5.18b) leads to the alternative results,

c2F

B
= ω2 − ω̃2 − δ2 + 2iωδ = Ceiϕ, (5.20)

and hence to the amplitude factor

C =
∣∣∣(ω2 − ω̃2 − δ2)2 + 4ω2δ2

∣∣∣1/2
(5.21a)

and phase factor

tanϕ = 2ωδ
ω2 − ω̃2 − δ2 . (5.21b)

In the non-resonant case of distinct applied and natural frequencies, ω ̸= kc, then the equation (5.18b)

can be solved for B, and substitution in (5.17) specifies the forced damped oscillation:

y (x, t) = c2F

C
sin (kx) exp [−i (ωt+ β + ϕ)] . (5.22)

Taking real parts, the forced wave diffusion equation (5.16),

∂2y

∂x2 −
1
χ

∂y

∂t
− 1
c2
∂2y

∂t2
= F sin (kx) cos (ωt+ β) , (5.23)

leads to the forced oscillations

y (x, t) = c2F

C
sin (kx) cos (ωt+ β + ϕ) = c2F

∣∣∣(ω2 − k2c2)2 + 4ω2δ2
∣∣∣−1/2

sin (kx) cos (ωt+ β + ϕ) .

(5.24)

The figure 5.2 shows the dimensionless displacements, y/
(
FL2), of the forced oscillations at three

distinct times: t = {0, 0.5, 1}L/c. All the oscillations shown in the figure result from the equation (5.24).

The blue solid lines correspond to oscillations without damping, δ = 0, whereas the red dashed lines are

for oscillations with damping, δ = 0.5c/L. The figure 5.2 shows three distinct situations regarding the

values of the mode of oscillation n (or as a consequence in the wavenumber k = nπ/L) and forced ω

frequency. The upper plots are obtained for {n, ω} = {1, 4πc/L}, the plots at the middle row are for

{n, ω} = {2, 4πc/L} and the bottom plots correspond to {n, ω} = {1, 3πc/L}. In all the three cases,

ω ̸= kc which means that the oscillations are not resonant.

The values of the mode of oscillation n and forced frequency ω influence the amplitude and phase of the

oscillation. The presence of damping attenuates the amplitude of oscillations. Indeed, the equation (5.19a)

shows that when the value of damping δ increases, the amplitude factor C is greater and consequently

the amplitude of oscillation decreases. The other effect of damping that can be visualised in figure 5.2 is

that it delays the stage of oscillation. This property can be confirmed by the equation (5.19b) with the

existence of damping δ. As opposed to the free oscillations, the maximum and minimum amplitudes of

the forced oscillations remain constant over time. The maximum amplitude of the oscillation does not

depend on time.
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Figure 5.2: Forced non-resonant oscillations at three distinct times. The blue solid lines correspond to
no damping, δ = 0, whereas the red dashed lines correspond to oscillations with damping, δ = 0.5c/L.
Each row corresponds to a distinct set of values of the mode of oscillation n (which influences the
value of spatial wavenumber k) and ω: the upper row is for {n, ω} = {1, 4πc/L}, the middle row is for
{n, ω} = {2, 4πc/L} and the bottom row is for {n, ω} = {1, 3πc/L}. In all the cases, the wavenumber is
related to n by kn = nπ/L. The plots are obtained for β = 0.

The free oscillation is considered for the mode n with the simplified notation {kn, ω̃n, An, αn} replaced

by {k, ω̃, A, α} in

ỹ (x, t) = A exp (−tδ) sin (kx) cos (ω̃t− α) , (5.25)

and adds to the forced oscillation (5.24) in the total oscillation,

y (x, t) = ỹ (x, t) + y (x, t) = sin (kx)
[
Ae−tδ cos (ω̃t− α) + c2F

C
cos (ωt+ β + ϕ)

]
, (5.26)

showing that the cancellation for all time is not possible because: (i) the applied ω and oscillation ω̃ (5.6)

frequencies are generally distinct,

ω ̸= ω̃ =
√
k2c2 − δ2; (5.27)

(ii) the free damped oscillations decay exponentially with time,

lim
t→∞

ỹ (x, t) = 0; (5.28)

(iii) the forced oscillations have constant amplitude and dominate for a long-time,

lim
t→∞

y (x, t) = y (x, t) = c2F

C
sin (kx) cos (ωt+ β + ϕ) . (5.29)
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Choosing the forcing amplitude

F = −CA
c2 = −A

c2

∣∣∣(ω2 − k2c2)2 + 4ω2δ2
∣∣∣−1/2

(5.30a)

still does not cancel the total oscillation at any time,

y (x, t) = A sin (kx)
[
e−tδ cos (ω̃t− α)− cos (ωt+ β + ϕ)

]
, (5.30b)

because y (x, t) = 0 would require the real part of exp (iω̃t− iα− tδ) being equal to the real part of

exp (iωt+ iβ + iϕ); that equality is equivalent to iω̃t− iα− tδ = iωt+iβ+iϕ+i2πp, where p is an integer;

solving the last relation leads to a complex time

t = α+ β + ϕ+ 2πp
ω̃ − ω + iδ , (5.31)

and thus the total oscillation (5.30b) cannot vanish for real time.

The figure 5.3 shows the dimensionless displacements, y/A, of the total (free plus forced) oscillations

at three distinct times: t = {0, 0.5, 1}L/c, and equating the unknown constants of both oscillations,

A = FL2. All the oscillations shown in the figure result from the equation (5.26), by defining the values

of ω, k (or mode of oscillation n) and δ, as in the figures 5.1 and 5.2. The phase shifts are equal to zero,
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Figure 5.3: Total, free plus forced, non-resonant oscillations at three distinct times. The blue solid lines
correspond to no damping, δ = 0, whereas the red dashed lines correspond to oscillations with damping,
δ = 0.5c/L. Each row corresponds to a distinct set of values of the mode of oscillation n (which influences
the value of spatial wavenumber k) and ω: the upper row is for {n, ω} = {1, 4πc/L}, the middle row is
for {n, ω} = {2, 4πc/L} and the bottom row is for {n, ω} = {1, 3πc/L}. In all the cases, the wavenumber
is related to n by k = nπ/L. The plots are obtained for α = 0 = β. The plots are also obtained by
setting A = FL2.
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α = 0 = β. The blue solid lines correspond to oscillations without damping, δ = 0, whereas the red

dashed lines are for oscillations with damping, δ = 0.5c/L. The figure 5.3 shows three distinct situations,

one for each line. The three situations, regarding the values of mode of oscillation n and forced frequency

ω, are the same as in the figure 5.2. In all the three cases, the wavenumber is related to the mode of

oscillation by k = nπ/L. Consequently, in all the cases, ω ̸= kc meaning non-resonant oscillations.

In this particular set of values of forced frequency, wavenumber and damping ratio, the amplitudes

of forced oscillations are much smaller than the amplitudes of free oscillations. Therefore, the total

oscillation is almost reduced to only free oscillations, unless the value of the force F is much greater than

the value of the constant A. Ultimately for sufficiently long time, the forced oscillation with constant

amplitude will always dominate the exponentially decaying free oscillation, as stated in (5.29).

5.2.2 Resonant forced oscillation with dissipation and phase shift

The resonant case corresponds to applied frequency ω equal to the natural frequency,

ω = kc, (5.32)

implying that (5.18b) simplifies to

c2F

B
= i2ωδ = i2kcδ = Ceiϕ, (5.33)

corresponding to the amplitude factor C = 2ωδ = 2kcδ and phase shift of 90 degrees, ϕ = π/2. From

(5.33) follows B = −icF/ (2kδ), implying by (5.17) the resonant forced oscillation:

y∗ (x, t) = − cF2kδ sin (kx) sin (kct+ β) . (5.34)

The non-resonant case, ω ̸= kc, is valid for zero damping, δ = 0, when the amplitude factor (5.19a)

simplifies to C = ω2 − k2c2 and the phase (5.19b) reduces to zero, ϕ = 0, leading by (5.24) to the

undamped non-resonant forced oscillation:

y (x, t) = F

ω2/c2 − k2 sin (kx) cos (ωt+ β) . (5.35)

In the case of resonant forcing (5.32), the limit of zero damping δ → 0 is not valid, because it involves

a division by zero in (5.34); the correct solution, as explained in chapter 4, involves a linear increase of

amplitude with time. Henceforth only the case with damping will be considered comparing (subsection

5.2.3) non-resonant (subsection 5.2.1) with resonant (subsection 5.2.2) forcing.

5.2.3 Comparison of total free damped oscillation plus resonant or non-

resonant forcing

The comparison of non-resonant forcing (5.24) with ω ̸= kc and resonant forcing (5.34) with ω = kc

shows that: (i) the amplitude is constant both for non-resonant forcing (5.24) and for resonant forcing
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(5.34); (ii) the resonant amplitude factor C = 2kcδ coincides with the second term in the non-resonant

factor (5.19a), excluding the first term, ω = ±kc, that would be zero for resonance; (iii) the non-resonant

phase shift (5.19b) reduces to the resonant phase shift ϕ = π/2 for coincident applied and natural

frequencies, ω = ±kc since tanϕ = ∞ implies ϕ = ±π/2, meaning that (iv) the resonant case (5.34)

has a phase shift of π/2 relative to the forcing (5.23) because sin (kct+ β) = cos (kct+ β − π/2). In the

resonant case, the total free (5.25) plus forced (5.34) oscillation,

y∗ (x, t) = ỹ (x, t) + y∗ (x, t) = sin (kx)
[
Ae−tδ cos (ω̃t− α)− cF

2kδ sin (kct+ β)
]
, (5.36)

cannot be zero, even though the applied and natural frequencies coincide, ω = ω̃ = kc, because: (i)

the free oscillation decays exponentially with time as in (5.28) while the forced oscillation has constant

amplitude and thus dominates for long time,

lim
t→∞

y∗ (x, t) = y∗ (x, t) = cF

2kδ sin (kx) sin (kct+ β) ; (5.37)

(ii) even if the amplitudes are opposite,

F = 2kδ
c
A, (5.38a)

there is still a phase shift of π/2,

y∗ (x, t) = A sin (kx)
[
e−tδ cos (ω̃t− α)− cos

(
kct+ β − π

2

)]
, (5.38b)

besides the phase shifts of −α for the free oscillation and β for the forced oscillation. Choosing for the

forced oscillation a phase shift

β = π

2 − α, (5.39a)

the total cancellation of (5.38b),

y∗ (x, t) = A sin (kx)
[
e−tδ cos (ω̃t− α)− cos (kct− α)

]
, (5.39b)

would be zero at time zero: y∗ (x, 0) = 0. The oscillation would not be zero at other times because: (i)

the free oscillation decays exponentially and the forced oscillation has constant amplitude; (ii) the free

oscillation frequency (5.27) coincides with the natural frequency (5.32) only for weak damping, δ2 ≪ k2c2

with

ω̃ =
√
k2c2 − δ2 ∼ kc. (5.40a)

In the latter case of weak damping (5.40a) and forcing out-of-phase to the free oscillation (5.39a), the

total oscillation,

y∗ (x, t) = A sin (kx) cos (kct− α)
(
e−tδ − 1

)
, (5.40b)

does not vanish due to the damping effect alone.

The figure 5.4 shows the dimensionless amplitudes, y∗/A, of the total (free plus forced) resonant
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oscillations at three distinct times: t = {0, 0.5, 1}L/c. In this case, the applied frequency and wavenumber

are related by (5.32). All the oscillations shown in the figure are from the equation (5.39b), which are

deduced assuming that the amplitudes of the free and forced oscillations are opposite, as in (5.38a).

Furthermore, there is a phase shift difference of π/2 between α and β, according to (5.39a). The value

of α is set as zero. The blue solid lines correspond to oscillations without damping, δ = 0, whereas

the red dashed lines are for oscillations with damping, δ = 0.5c/L. The figure 5.4 shows three distinct

situations, one for each line, depending on the values of the mode of oscillation n and consequently on

the wavenumber k given by k ≡ kn = nπ/L. The first row is considered as the default case, when

{n, kn} = {1, π/L}; in the second row, the value of n is greater, in which {n, kn} = {2, 2π/L}; in the last

row, the value of n is even greater compared to the second row, because {n, kn} = {3, 3π/L}. In all the

cases, ω = kc implying resonant oscillations.
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Figure 5.4: Total, that is free plus forced, resonant oscillations with opposing amplitudes at three
distinct times. The blue solid lines correspond to no damping, δ = 0, whereas the red dashed lines
correspond to oscillations with damping, δ = 0.5c/L. In all the cases, the wavenumber is related to n
by k = nπ/L. Each row corresponds to a distinct set of values of the mode of free oscillation n and
consequently on the value of wavenumber kn: the upper row is for {n, k} = {1, π/L}, the middle row is
for {n, k} = {2, 2π/L} and the bottom row is for {n, k} = {3, 3π/L}. The forced frequency is given by
ω = kc. The plots are obtained for α = 0 and β = π/2− α.

Comparing the rows of the figure 5.4, the effect of changing the mode of oscillation n can be observed.

The second row shows the oscillations for a greater value of the mode of oscillation n than in the first

row and the third row shows the oscillation for an even greater value of n. With a greater value of n, the

free and forced frequencies increase and therefore the period of oscillations is lower, which means that the

velocity of oscillations is slower. Moreover, the effect of changing the value of mode of oscillation n is also

present in the value of spatial wavenumber k. For a greater value of n, the wavenumber k also increases.

Increasing the wavenumber means reducing the wavelength of the vibration. Therefore, the bottom plots
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show a vibration with a higher number of crests, troughs and nodes, similar to the figure 5.1. The figure

5.4 also shows the effect of the damping δ. When δ = 0, as in the blue solid lines of the plots, there is no

damping and the maximum amplitudes (in modulus) of the vibration remain constant over time. In this

particular case, the forced and free frequencies coincide and because the amplitudes of the free and forced

oscillations are opposite, according to (5.38a), there is no oscillation when there is no damping. When

δ ̸= 0, the free and forced oscillations are different and hence the free oscillation is not opposite to the

forced oscillation; consequently the difference between them does not result in a zero deformation. Even

with the presence of damping, the total oscillation is zero only at the initial time. With some attenuation,

the vibrations are also damped and the amplitudes of the vibrations are decreasing over time. There

will be an instant when the damping significantly attenuates the free oscillations, meaning that the total

oscillation will be reduced to a forced oscillation (with maximum amplitude in modulus equal to A). The

greater the damping value, the faster the oscillations decay.

The decay of the free oscillation and dominance of the forced oscillation for long time, both in non-

resonant (5.26) and resonant (5.36) cases, imply that the reduction of total energy is possible only for

a limited time (section 5.6), because the free oscillation decays due to dissipation, whereas the forced

oscillation remains for a constant applied force.

5.3 Total energy of free plus forced oscillations

The superposition of free oscillations (section 5.1) with forced oscillations (section 5.2) can lead to

partial suppression of the total oscillation that can be assessed considering the energy (section 5.3). The

total energy consists of kinetic and elastic energies. It is compared between (i) the free oscillation and (ii)

the total free plus forced oscillation. The comparison is made in the cases of non-resonant (subsection

5.3.1) and resonant (subsection 5.3.2) forcing.

5.3.1 Energy of total oscillations in non-resonant case

The total energy density per unit length of the string is the sum of kinetic [127] and elastic [129]

energies:

E = 1
2ρ
∣∣∣∣∂y∂t

∣∣∣∣2 + 1
2T
∣∣∣∣∂y∂x

∣∣∣∣2 . (5.41)

The resonant forced oscillation (5.34) is the particular case, according to (5.32), of the non-resonant

forced oscillation (5.24), so only the latter needs to be considered in the total, free plus forced, oscillation

(5.26). Choosing the forcing (5.30a) leads to the total oscillation (5.30b) that can be zero at time zero,

but not at other times.

The figure 5.5 shows the dimensionless amplitudes, y/A, of the total (free plus forced) non-resonant

oscillations at three distinct times: t = {0, 0.5, 1}L/c. The constants of free and forced oscillations follow

the relation (5.30a), given by F = −CA/c2, remembered here for convenience. All the oscillations shown

in the figure result from the equation (5.30b), similar to the figure 5.3 which is obtained from the equation

(5.26), but with the relation between F and A according to (5.30a). The blue solid lines correspond to
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oscillations without damping, δ = 0, whereas the red dashed lines are for oscillations with damping,

δ = 0.5c/L. The figure 5.5 shows three distinct situations, one for each line. The three situations,

regarding the values of frequencies, are the same as in the figures 5.2 and 5.3. In all the three cases,

the wavenumber is given by nπ/L. Consequently, regardless the case, ω ̸= kc meaning non-resonant

oscillations. The plots are obtained with no phase shifts, α = 0 = β.
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Figure 5.5: Total non-resonant oscillations, at three distinct times, with forcing cancelling the initial
free oscillation at time zero. The blue solid lines correspond to no damping, δ = 0, whereas the red
dashed lines correspond to oscillations with damping, δ = 0.5c/L. Each row corresponds to a distinct
set of values of the mode of oscillation n (which influences the values of spatial wavenumber k and free
oscillation ω̃) and ω: the upper row is for {n, ω} = {1, 4πc/L}, the middle row is for {n, ω} = {2, 4πc/L}
and the bottom row is for {n, ω} = {1, 3πc/L}. In all the cases, the wavenumber is related to n by
k = nπ/L. The plots are obtained for α = 0 = β.

The parameters of the oscillations, such as the applied frequency, the damping factor, the oscillation

frequency and wavenumber (with the last two defined by the mode of oscillation n), are the same in the

figure 5.5 and figure 5.3. The only difference is in the value of F . In the figure 5.5, the force F is opposite

to the amplitude A, following the relation (5.30a) whereas in the figure 5.3 the relation is A = FL2. The

figure 5.5 shows that, even with this relation, the total oscillation is not cancelled at all time. Indeed, only

at time zero the oscillation is totally cancelled when there is no damping. Otherwise, with damping, the

total oscillation is not cancelled at any time, including the initial instant. This property can be verified

using the equation (5.30b) at time zero,

y (x, 0) = A sin (kx) [cosα− cos (β + ϕ)] ̸= 0, (5.42)

unless β + ϕ = α; in the figures, β = 0 = α and ϕ ̸= 0 so this last condition is not met. This would

be zero only if ϕ is zero which corresponds to no damping. In this last case, with no damping (with
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δ = ϕ = 0), when the phase shifts are related by α = −β, as in the blue solid lines of figure 5.5, there is

no oscillation if the natural ω̃ = kc and applied ω frequencies coincide. However, in that lines of figure 5.5,

the two frequencies do not coincide and they show zero oscillation only at instants when ω̃t = ωt+ 2πp

or ω̃t = −ωt+ 2πp with p being an integer number.

In the case (5.30a) of forcing F and natural amplitude A having opposite signs, the total oscillation

(5.30b) does not vanish at all time and leads to the energy

2E (x, t)
A2 = Tk2 cos2 (kx)

[
e−tδ cos (ω̃t− α)− cos (ωt+ β + ϕ)

]2
+ ρ sin2 (kx)

{
ω sin (ωt+ β + ϕ)− e−tδ [ω̃ sin (ω̃t− α) + δ cos (ω̃t− α)]

}2
. (5.43)

When averaging the energy (5.43) over the length of the string denoted by the symbol ⟩. . .⟨, appear the

factors

〉
cos2 (kx) , sin2 (kx)

〈
≡ 1
L

∫ L

0

[
1
2 ±

1
2 cos (2kx)

]
dx = 1

2 ±
1

2L

[
1
2k sin (2kx)

]L

0
= 1

2 , (5.44)

and thus the average energy as a function of time is given by

4e (t)
A2 = 4

A2 ⟩E (x, t)⟨ = Tk2 cos2 (ωt+ β + ϕ) + ρω2 sin2 (ωt+ β + ϕ)

− 2e−tδ
{
Tk2 cos (ωt+ β + ϕ) cos (ω̃t− α)

+ ρω sin (ωt+ β + ϕ) [ω̃ sin (ω̃t− α) + δ cos (ω̃t− α)]
}

+ e−2tδ
[
Tk2 cos2 (ω̃t− α) + ρω̃2 sin2 (ω̃t− α) + 2ρω̃δ sin (ω̃t− α) cos (ω̃t− α)

]
, (5.45a)

where was used the assumption of weak damping (5.40a) implying ρω̃2 = ρk2c2 = k2T and leading to

4e (t)
A2 = Tk2 cos2 (ωt+ β + ϕ) + ρω2 sin2 (ωt+ β + ϕ)− 2e−tδ

{
Tk2 cos (ωt+ β + ϕ) cos (kct− α)

+ ρω sin (ωt+ β + ϕ) [kc sin (kct− α) + δ cos (kct− α)] + e−2tδ
[
Tk2 + ρkcδ sin (2kct− 2α)

]
.

(5.45b)

The total energy simplifies further in the case of resonant forcing.

5.3.2 Energy of total oscillations in resonant case

The resonant forcing is the particular case (5.32) of non-resonant forcing, simplifying the forced non-

resonant oscillation (5.24) to the forced resonant oscillation (5.34). Choosing the forcing amplitude to

oppose the free oscillation (5.38a) leads to the total oscillation (5.38b). The total energy is (5.45b) with
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(5.32) leading to

4e∗ (t)
Tk2A2 = 1− 2e−tδ

{
cos (kct+ β + ϕ) cos (kct− α)

+ sin (kct+ β + ϕ)
[
sin (kct− α) + δ

kc
cos (kct− α)

]}
+ e−2tδ

[
1 + δ

kc
sin (2kct− 2α)

]
,

(5.46a)

or equivalently

4e∗ (t)
Tk2A2 = 1− 2e−tδ cos (α+ β + ϕ) + e−2tδ

+ e−tδ δ

kc

[
−2 sin (kct+ β + ϕ) cos (kct− α) + e−tδ sin (2kct− 2α)

]
. (5.46b)

Choosing the phase β + ϕ = π/2− α, the energy (5.46b) simplifies further to

4e∗ (t)
Tk2A2 = 1 + e−2tδ + e−tδ δ

kc

[
−2 cos2 (kct− α) + e−tδ sin (2kct− 2α)

]
. (5.47)

Taking the average over a period, denoted by ⟨. . .⟩, the time average
〈
cos2 (kct− α)

〉
equal to 1/2 and the

time average ⟨sin (2kct− 2α)⟩ equal to 0 can be used to evaluate the average total energy that becomes

4
Tk2A2 ⟨e∗ (t)⟩ ≡ G∗ = 1 + e−2tδ − δ

kc
e−tδ. (5.48)

The free oscillation has energy corresponding to the terms in (5.43) with factor exp (−tδ):

2Ẽ∗ (x, t)
A2 e2tδ = Tk2 cos2 (kx) cos2 (ω̃t− α) + ρ sin2 (kx) [ω̃ sin (ω̃t− α) + δ cos (ω̃t− α)]2 . (5.49)

Using (5.44) in (5.49) simplifies the energy of the free oscillation,

4ẽ∗ (t)
A2 = 4

A2 ⟩E∗ (x, t)⟨ = e−2tδ
[
Tk2 cos2 (ω̃t− α) + ρω̃2 sin2 (ω̃t− α) + ρω̃δ sin (2ω̃t− 2α)

]
; (5.50)

with the weak damping approximation (5.40a) and regarding ρω̃2 = k2T , it simplifies to

4ẽ∗ (t)
Tk2A2 = e−2tδ

[
1 + δ

kc
sin (2kct− 2α)

]
. (5.51)

Using again the result ⟨sin (2kct− 2α)⟩ = 0, the average over a period for the free oscillation (5.51) is

4
Tk2A2 ⟨ẽ∗⟩ ≡ G̃∗ = e−2tδ. (5.52)

Consequently the ratio of energies of the total oscillation to the free oscillation is

G∗

G̃∗
= 1− δ

kc
etδ + e2tδ > 1, (5.53)

showing that there is an increase, because the forced oscillation has constant amplitude and dominates
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the damped free oscillation.

The figure 5.6 shows the ratio of energies of forced oscillation G∗ to free oscillation G̃∗ as function

of dimensionless time. The plots are based on the equation (5.53). Therefore the plots follow that

equation which is a composition of exponential functions and so the ratio of energies increases over

time. That ratio increases faster for a greater value of damping δL/c because as damping increases the

free oscillation decays faster and has less energy compared with the forced oscillation that has constant

amplitude. Although it seems that the plots in the subfigures of figure 5.6 are the same for different

values of k, in fact the values of the graphs are slightly different. Changing the value of k only has effect

on the second term on the right-hand side of (5.53). In all the cases, the value of δ/ (kc) is almost zero

and therefore this term is negligible with respect to the plots of figure 5.6. For weak damping (5.40a)

from etδ > 1 > δ/ (kc) follows G∗ (t) /G̃∗ (t) > 1, that the total energy of the free plus forced oscillation

will exceed the energy of the free oscillation. Thus, forcing with constant amplitude is not an effective

method of suppressing damped free oscillations. This suggests the consideration of forcing with amplitude

decaying exponentially with time (sections 5.4 and 5.5).
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Figure 5.6: Energy of total oscillation G∗ divided by the energy of free oscillation G̃∗ as a function of
dimensionless time tc/L. The plots are shown as functions of k and δL/c whereas in all cases k = nπ/L.

5.4 Forcing with applied frequency, phase and decay

Next, the forcing is reconsidered still with arbitrary applied frequency and phase, replacing constant

magnitude (section 5.2) by magnitude decaying exponentially with time (section 5.4), with a decay rate

that does not need to coincide with the damping. The applied frequency may be distinct or coincident

with the natural frequency respectively in non-resonant (subsection 5.4.1) and resonant (subsection 5.4.2)
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cases. The forced oscillation is considered with: (i) amplitude opposing the free oscillation; (ii) exponential

decay in time of the forcing equal to the damping of the free oscillation; (iii) matching of the applied and

free phases due to damping.

5.4.1 Non-resonant forcing with exponential time decay

Next, the wave-diffusion equation (5.1b) is forced not only with applied frequency ω, but also with

exponential decay ε in time,

∂2y

∂x2 −
1
χ

∂y

∂t
− 1
c2
∂2y

∂t2
= F sin (kx) exp (−εt) exp (−iωt− iβ) , (5.54)

retaining the phase shift β relative to −α for the free oscillation. The forced oscillation is sought in a

similar form,

y (x, t) = B sin (kx) exp (−εt) exp (−iωt− iβ) , (5.55)

and substitution of (5.55) in (5.54) gives

c2F

B
= − (iω + ε)2 + (iω + ε) c2

χ
− k2c2 = ω2 + iω

(
c2

χ
− 2ε

)
− k2c2 + c2ε

χ
− ε2, (5.56a)

that simplifies to (5.18a) for ε = 0. Introducing the damping (5.5) and oscillation frequency (5.27) in

(5.56a) leads to

c2F

B
= ω2 − k2c2 − ε2 + 2εδ + 2iω (δ − ε) = ω2 − ω̃2 − (δ − ε)2 + 2iω (δ − ε) ≡ Ceiϕ, (5.56b)

with amplitude

C =
∣∣∣∣[ω2 − ω̃2 − (δ − ε)2

]2
+ 4ω2 (δ − ε)2

∣∣∣∣1/2
(5.57a)

and phase

tanϕ = 2ω (δ − ε)
ω2 − ω̃2 − (δ − ε)2 . (5.57b)

Setting ε = 0 in (5.57a) and (5.57b) leads back respectively to (5.21a) and (5.21b). Substituting (5.56b)

in (5.55) and taking the real part, the forced oscillation with applied frequency ω, phase β and decay ε

is given by

y (x, t) = c2F

C
sin (kx) e−εt cos (ωt+ β + ϕ) , (5.58)

as the solution of the real part of the differential equation (5.54),

∂2y

∂x2 −
1
χ

∂y

∂t
− 1
c2
∂2y

∂t2
= F sin (kx) e−εt cos (ωt+ β) , (5.59)

that is the wave diffusion equation with sinusoidal forcing with applied frequency ω, phase shift β and

amplitude F decaying exponentially with time at rate ε.
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Adding to the forced oscillation (5.58) the free oscillation (5.10) still leads to the next oscillation,

y (x, t) = ỹ (x, t) + y (x, t) = sin (kx)
[
Ae−tδ cos (ω̃t− α) + c2F

C
e−εt cos (ωt+ β + ϕ)

]
, (5.60)

where: (i) both oscillations have the same spatial dependence (5.3); (ii) the amplitudes are different, and

choosing opposite values,

F = −CA
c2 = −A

∣∣∣∣∣∣
[
ω2 − ω̃2

c2 − (δ − ε)2

c2

]2

+ 4ω2 (δ − ε)2

c4

∣∣∣∣∣∣
1/2

, (5.61a)

leads to

y (x, t) = A sin (kx)
[
e−tδ cos (ω̃t− α)− e−εt cos (ωt+ β + ϕ)

]
; (5.61b)

(iii) the damping δ (5.5) of the free oscillation is generally distinct from the decay ε of the forced oscillation,

and if they coincide,

ε = δ = c2

2χ, (5.62a)

then the forcing amplitude F , opposite to A, is related to the free wave amplitude A by

F = −A
c2

(
ω2 − ω̃2) , (5.62b)

and the forced oscillation simplifies to

y (x, t) = Fc2

ω̃2 − ω2 sin (kx) e−tδ [cos (ω̃t− α)− cos (ωt+ β + ϕ)] . (5.62c)

Choosing an applied phase shift

β = −ϕ− α (5.63a)

simplifies further the total oscillation to

y (x, t) = Fc2

ω̃2 − ω2 sin (kx) e−tδ [cos (ω̃t− α)− cos (ωt− α)] . (5.63b)

Choosing an applied frequency equal to the oscillation frequency (5.6),

ω = ω̃ =
√
k2c2 − δ2, (5.64)

leads to resonance, that is considered next.

5.4.2 Resonant forcing with exponential time decay

Next is considered the resonant forcing, with: (i) applied frequency equal to the oscillation frequency

(5.64), that reduces to the natural frequency (5.32) in the absence of damping; (ii) exponential temporal

decay of the forcing (5.62a) equal to the damping of the free oscillation (5.5); (iii) applied phase (5.63a)
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matched to the phase of free oscillation (5.14b) and phase shift due to damping (5.19b). This corre-

sponds to the limit ω → ω̃ in (5.63b), for which both the numerator and denominator vanish. Applying

L’Hôpital’s rule [39], the 0/0 indeterminacy is solved differentiating with regard to ω the numerator,

∂

∂ω
[cos (ω̃t− α)− cos (ωt− α)] = t sin (ωt− α) , (5.65a)

and denominator,
∂

∂ω

(
ω̃2 − ω2) = −2ω; (5.65b)

then, taking the limit ω → ω̃ leads to a finite solution:

y∗ (x, t) = lim
ω→ω̃

y (x, t) = −Fc
2t

2ω̃ sin (kx) e−tδ sin (ω̃t− α) . (5.65c)

Note that the linear amplitude growth in time typical of resonance is ultimately dominated by the

exponential time decay of the forcing.

An alternative method to obtain the result (5.65c) is to reconsider (5.63b) when the natural frequency

ω̃ and applied frequency ω are close, in other words, when the frequency difference 2∆ω is small compared

with the average frequency ω̂:

2∆ω ≡ ω − ω̃ ≪ ω̂ ≡ ω̃ + ω

2 . (5.66a)

That is equivalent to assume

ω = ω̂ + ∆ω (5.66b)

and

ω̃ = ω̂ −∆ω. (5.66c)

Noting also the property ω2 − ω̃2 = (ω − ω̃) (ω + ω̃) = 2ω̂∆ω and substituting these last relations in

(5.63b) gives

y (x, t) = −Fc
2

2ω̂ sin (kx) e−tδ {cos [(ω̂ + ∆ω) t− α]− cos [(ω̂ −∆ω) t− α]}

= − Fc2

2ω̂∆ω sin (kx) e−tδ sin (ω̂t− α) sin (t∆ω) , (5.66d)

demonstrating the phenomenon of “beats”, that is sinusoidal oscillation at the average frequency ω̂ with

a slow ∆ω ≪ ω̂ sinusoidal amplitude modulation. The limit ω → ω̃ corresponds to ∆ω → 0 and using

lim
∆ω→0

sin (t∆ω)
∆ω = t (5.67a)

in (5.66d) leads to the resonant solution

y∗ (x, t) = lim
∆ω→0

y (x, t) = − lim
ω̂→ω̃

Fc2t

2ω̂ sin (kx) e−tδ sin (ω̂t− α) = −Fc
2t

2ω̃ sin (kx) e−tδ sin (ω̃t− α) ,

(5.67b)
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which coincides with (5.65c).

The forced resonant oscillation is considered: (i) for zero phase α = 0 choosing initial time suitably,

t→ t+ α/ω̃; (ii) introducing the dimensionless time,

θ ≡ ω̃t− α, (5.68)

in the resonant oscillation (5.65c)

Y ∗ (x, θ) = y∗ (x, t) = D sin (kx) g (θ) , (5.69)

where the time dependence appears in

g (θ) ≡ (ω̃t+ α) e−tδ sin (ω̃t) = (θ + α) e−qθ sin θ (5.70a)

with q denoting the ratio of damping (5.5) to oscillation frequency (5.6),

q ≡ δ

ω̃
= δ√

k2c2 − δ2
=
∣∣∣∣k2c2

δ2 − 1
∣∣∣∣−1/2

=
∣∣∣∣∣
(

2kχ
c

)2
− 1
∣∣∣∣∣
−1/2

, (5.70b)

and with amplitude

D ≡ −Fc
2

2ω̃2 exp
(
−αδ
ω̃

)
. (5.71)

The time dependence (5.70a) is illustrated in figure 5.7 for several values of the parameter:

q = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30} . (5.72)

The initial linear growth in θ is ultimately dominated by the exponential, with maximum at the root of

0 = dg
dθ = e−qθ [sin θ + (θ + α) (cos θ − q sin θ)] . (5.73a)

Thus, the maximum is at
1

θm + α
= q sin θm − cos θm

sin θm
= q − cot θm. (5.73b)

The table 5.1 indicates for each value of (5.72) the values of θm, corresponding to the time tm as fraction

of the period: tm/τ = ω̃tm/ (2π) = θm/ (2π). The peak amplitude at the time tm is

g (θm) = (θm + α) exp (−qθm) sin θm. (5.73c)

The oscillation has a lower peak earlier as q increases, implying a reduction in the energy of oscillation.

The figure 5.7 illustrates the temporal dependence of the forced resonant oscillations (5.70a) as a

function of dimensionless time (5.68) for different ratios (5.70b) of damping to oscillation frequency.

Resonance requires three conditions: (i) applied frequency equal to oscillation frequency (5.64); (ii)

decay of the forcing equal to the damping (5.62a); (iii) matching (5.63a) of the phases of forcing β,
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damping ϕ and free oscillations α. The amplitude is given by (5.71). The oscillations with amplitude

initially growing linearly with time are ultimately dominated by the exponential decay, sooner for larger

decay.

q θm (rad) θm (◦) tm/τ g (θm)

0.05 1.9949 114.3 0.3175 1.6456
0.10 1.9600 112.3 0.3119 1.4906
0.15 1.9251 11.03 0.3064 1.3527
0.20 1.9650 108.0 0.3000 1.2297
0.25 1.8535 106.2 0.2950 1.1198
0.30 1.8169 104.1 0.2892 1.0217

Table 5.1: Resonant forcing with exponential time decay. The results are obtained for α = 0.
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Figure 5.7: Temporal dependence of the forced resonant oscillations g of a linear damped oscillator as a
function of dimensionless time θ ≡ ω̃t where the applied frequency ω is equal to the oscillation frequency
ω̃, that is, ω = ω̃. The plots are obtained for α = 0. The forcing decays exponentially with time at the
same rate as the free wave damping. The phases are matched to lead to oscillations initially increasing
with time, ultimately decaying to damping, sooner for stronger damping.

5.5 Comparison of the energies of total and free oscillations

The total energy density (5.41) is the sum of kinetic and elastic energies. It may be averaged (5.44)

over the length of the string. The time average over a period may be taken not including a slowly decaying

exponential term. The latter ensures a finite oscillation energy over all time (subsection 5.5.1) that is

compared between (i) the free damped oscillation and (ii) the resonant forced oscillation with the same

decay (subsection 5.5.2).
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5.5.1 Energy averaged over period and length of string

The energy density (5.41) is given in terms of the dimensionless time (5.68) by

2E (x, θ) = ρω̃2
∣∣∣∣∂Y∂θ

∣∣∣∣2 + T

∣∣∣∣∂Y∂x
∣∣∣∣2 . (5.74)

The free oscillation corresponds to the first term in (5.61b),

Ỹ (x, θ) = A sin (kx) e−qθ cos θ, (5.75)

and the corresponding energy is

2Ẽ (x, θ)
A2 = e−2qθ

[
k2T cos2 (kx) cos2 θ + ρω̃2 sin2 (kx) (sin θ + q cos θ)2

]
. (5.76)

The spatial average (5.44) leads to

2
A2

〉
Ẽ (x, θ)

〈
= e−2qθ

2

{
ρc2k2

[
cos2 θ + (sin θ + q cos θ)2

]
− ρδ2 (sin θ + q cos θ)2

}
, (5.77)

that simplifies for weak damping δ2 ≪ ω̃2 ∼ k2c2 or q2 ≪ 1 to

ẽ (θ) ≡
4
〉
Ẽ (x, θ)

〈
ρc2k2A2 = e−2qθ [1 + q sin (2θ)] . (5.78)

Knowing the result ⟨sin (2θ)⟩ = 0, evaluated in the appendix B.1, the average over a period leads to

G̃ (θ) ≡ ⟨ẽ (θ)⟩ = exp (−2qθ). The total energy over all time of the damped oscillation is finite,

H̃ ≡
∫ ∞

0
G̃ (θ) dθ =

∫ ∞

0
e−2qθ dθ = 1

2q = ω̃

2δ , (5.79)

and larger for higher oscillation frequency and smaller damping. If there is no damping, δ → 0, the

amplitude is constant and the energy is infinite over infinite time.

For the total oscillation, the forced oscillation (5.69) and (5.70a) is added to the free oscillation (5.75):

Y∗ (x, θ) = Ỹ (x, θ) + Y ∗ (x, θ) = e−qθ [A cos θ +D (θ + α) sin θ] sin (kx) . (5.80)

Choosing opposite amplitudes, D = −A, and setting α = 0 lead to

Y∗ (x, θ) = A sin (kx) e−qθ (cos θ − θ sin θ) . (5.81)

The corresponding energy density is given by

2E∗ (x, θ)
A2 = e−2qθ

{
Tk2 cos2 (kx) (cos θ − θ sin θ)2

+ρω̃2 sin2 (kx) [(θ cos θ + 2 sin θ)− q (cos θ − θ sin θ)]2
}
. (5.82a)
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The weak damping approximation (5.40a) implies q2 ≪ 1 in (5.70b) and simplifies the last equation to

2E∗ (x, θ)
ρc2k2A2 = e−2qθ

{
cos2 (kx) (cos θ − θ sin θ)2

+ sin2 (kx)
[
(θ cos θ + 2 sin θ)2 − 2q (θ cos θ + 2 sin θ) (cos θ − θ sin θ)

]}
. (5.82b)

The spatial average (5.44) leads to

e2qθe∗ (θ) ≡ 4 ⟩E∗ (x, θ)⟨
ρc2k2A2 e2qθ = θ2 + cos2 θ + 4 sin2 θ + θ sin (2θ)

− 2q
[
θ cos2 θ − 2θ sin2 θ + sin (2θ)− θ2

2 sin (2θ)
]
. (5.83)

The averages over a period are calculated in the appendix B.1 and are repeated here for convenience:

〈
cos2 θ

〉
= 1

2 =
〈
sin2 θ

〉
, (5.84a)

⟨sin (2θ)⟩ = 0, (5.84b)

⟨θ sin (2θ)⟩ = −1
2 , (5.84c)〈

θ cos2 θ
〉

= π

2 =
〈
θ sin2 θ

〉
, (5.84d)〈

θ2 sin (2θ)
〉

= −π. (5.84e)

Thus, the average energy of the total oscillation is

G∗ (θ) = ⟨e∗ (θ)⟩ = e−2qθ
(
θ2 + 2

)
. (5.85)

The total energy over all time is given by

H∗ ≡
∫ ∞

0
G∗ (θ) dθ = I + 1

q
, (5.86a)

where

I ≡
∫ ∞

0
θ2e−2qθ dθ (5.86b)

is evaluated next to compare with the total energy of the free oscillation.

5.5.2 Total energy of total oscillation over all time

Noting the property
∂

∂q

(
e−2qθ

)
= −2θe−2qθ, (5.87a)

the integral (5.86b) is evaluated by

I =
(
−1

2
∂

∂q

)2 ∫ ∞

0
e−2qθ dθ = 1

4
∂2

∂q2

(
1
2q

)
= 1

4q3 . (5.87b)

124



Therefore the energy of the total oscillation (5.86a) is

H∗ = 1
4q3 + 1

q
. (5.87c)

The ratio to the energy of the free oscillation (5.79) is

J ≡ H∗

H̃
= 1

2q2 + 2 = ω̃2

2δ2 + 2 = k2c2

2δ2 + 2 = 2k2χ2

c2 + 2 (5.88)

where were used (5.70b), (5.64) and (5.5) in the weak damping approximation ω̃ ∼ kc. The figure 5.8

shows as a function of 0.05 < q < 0.3 ≪ 1 the energy over all time of the free oscillation (5.79), total

oscillation (5.87c) and their ratio (5.88).
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Figure 5.8: Total energy over all time of the total oscillation H∗, total energy over all time of the
free oscillation H̃ and the ratio J ≡ H∗/H̃, plotted as functions of the ratio of damping to oscillation
frequency, q ≡ δ/ω̃.

The weak damping approximation (5.40a) implies q2 ≪ 1 that is satisfied by q < 0.3. A positive

value J > 0 in (5.88) requires 1/
(
2q2)+ 2 > 0 that is met by all positive values of q and thus the results

are consistent with the weak damping approximation. The suppression of damped free oscillations by

resonant forcing at the same frequency (5.64) with opposite amplitude (5.62b), matched phase (5.63a) and

decay equal to damping (5.62a), is limited because: (i) the forced oscillations have amplitude initially

increasing with time; (ii) the time decay is slow to limit the amplitude growth for weak decay equal

to weak damping; (iii) the forced oscillation, in spite of starting at zero, may at intermediate times

overwhelm the free oscillation, although both ultimately decay to zero; (iv) the final outcome may be

that the energy over all time of the total oscillation may not be smaller, or indeed exceed the energy of

the free oscillation for all time. This suggests the consideration of decaying forcing without resonance.
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5.6 Non-resonant and resonant forcing with time decay

The forcing of damped oscillations with the applied frequency equal to the oscillation frequency (5.64)

leads to resonance (sections 5.4 and 5.5) if the decay rate of forcing equals the damping (5.62a). Making

the latter distinct avoids resonance (subsection 5.6.1) and the initially growing amplitude. This allows

a comparison of the energy over all time of the total compared with the free oscillation for all ratios of

forcing decay to damping (subsection 5.6.2).

5.6.1 Matched oscillations with unequal damping and forcing decay

The total oscillation (5.60) consists of the superposition of free oscillations with amplitude A, damping

δ, oscillation frequency ω̃ and phase α, with the forced oscillations with amplitude c2F/C, decay ε, applied

frequency ω and phase β − ϕ. If the oscillation ω̃ and applied ω frequencies are distinct, the energies of

the free and forced oscillations add together, which is the opposite of the countering of vibrations sought.

Hence the oscillation and applied frequencies are assumed to be equal (5.64), and choosing also opposing

amplitudes (5.61a), the total oscillation (5.60) simplifies to

ŷ (x, t) = A sin (kx)
[
e−tδ cos (ω̃t− α)− e−εt cos (ω̃t+ β + ϕ)

]
. (5.89a)

Matching also the phase (5.63a) leads to

ŷ (x, t) = A sin (kx)
(
e−tδ − e−εt

)
cos (ω̃t− α) . (5.89b)

The magnitude of the forcing (5.61a) is given by

F = −Aδ − ε
c2

∣∣∣(δ − ε)2 + 4ω2
∣∣∣1/2

, (5.90a)

and for weak damping,
{
δ2, ε2, εδ

}
≪ ω̃2 ∼ k2c2, the forcing simplifies to

F = −2Aω
c2 (δ − ε) = −2Ak

c
(δ − ε) . (5.90b)

The case of resonance (sections 5.4 and 5.5) is excluded from (5.89b) to (5.90b) by having a forcing decay

ε ̸= δ distinct from the damping.

The total, kinetic plus elastic, energy density (5.41) of the oscillation (5.89b) is

2
A2 Ê (x, t) = Tk2 cos2 (kx)

(
e−tδ − e−εt

)2 cos2 (ω̃t− α)

+ ρ sin2 (kx)
[
ω̃
(
e−tδ − e−εt

)
sin (ω̃t− α) +

(
δe−tδ − εe−εt

)
cos (ω̃t− α)

]2
. (5.91)

Averaging over the length of the string (5.44) leads in the weak damping and decay approximation

126



{
δ2, ε2, εδ

}
≪ ω̃2 ∼ k2c2 to

4
ρc2k2A2

〉
Ê (x, t)

〈
= ê (t) =

(
e−tδ − e−εt

)2

+ 2
(
e−tδ − e−εt

) (
δe−tδ − εe−εt

)
cos (ω̃t− α) sin (ω̃t− α) . (5.92)

Averaging over a period, and using the results in the appendix B.1, the second term on the right-hand

side of (5.92) vanishes leading to

Ĝ (t) ≡ ⟨ê (t)⟩ =
(
e−tδ − e−εt

)2 = e−2tδ + e−2εt − 2e−(ε+δ)t. (5.93)

5.6.2 Comparison of free and total energies over all time

The energy of the total oscillation over all time is

Ĥ ≡
∫ ∞

0
Ĝ (t) dt = 1

2δ + 1
2ε −

2
ε+ δ

; (5.94a)

comparing to the energy of the free oscillation,

H̃ =
∫ ∞

0
e−2tδ dt = 1

2δ , (5.94b)

the ratio is
Ĥ

H̃
= 1 + δ

ε
− 4δ
ε+ δ

= 1− δ

ε

3ε− δ
ε+ δ

. (5.94c)

Therefore the energy of the total oscillation is less than the energy of the free oscillation, Ĥ < H̃, if

the forcing decay exceeds one third of the damping, ε > δ/3. The ratio of energy for all time of the total

to the free oscillation depends only on the ratio of damping to forcing decay, ψ ≡ ε/δ:

R (ψ) ≡ Ĥ

H̃
= 1− 1

ψ

3ψ − 1
ψ + 1 . (5.95)

The ratio of energies must be positive, R > 0, requiring 3ψ− 1 < ψ (ψ + 1). This last condition is always

met for positive values of ψ, except ψ = 1, since

0 ≤ ψ2 − 2ψ + 1 = (ψ − 1)2
. (5.96)

The extrema of the energy of total oscillation corresponds to ψ as a root of

0 = dR
dψ = (2ψ + 1) (3ψ − 1)− 3ψ (ψ + 1)

ψ2 (ψ + 1)2 , (5.97a)

implying

0 = 3ψ2 − 2ψ − 1 = (ψ − ψ+) (ψ − ψ−) . (5.97b)
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The two roots are

ψ± = 1± 2
3 =

{
−1

3 , 1
}
. (5.97c)

Consequently: (i) the negative root is unphysical since the ratio of decays ψ must be positive, ψ > 0,

in (5.95) and the negative root would lead to R (ψ−) = −8 < 0; (ii) the positive root marginally meets

the condition R ≥ 0 and leads to R (ψ+) = 0 that would be a minimum with zero energy, but is actually

invalid because it is the resonant case ε = δ when (5.89b) does not apply. Thus, the forcing decay should

not be too close to the damping. Moderate deviations lead to values of ψ with energy reduction as seen

in the plot of R (ψ) in figure 5.9 and confirmed by the nine particular values indicated in the table 5.2.

1/3 1/2 2/3 1 4/3 3/2 5/3 2 3

1/28

1/15

1/10

1/6

1/3

1

Figure 5.9: Ratio of the total to the free energy of oscillations as a function of the ratio of forcing decay
ε to free damping δ showing a minimum at ψ = 1 in agreement with table 5.2.

Formulas Values

ψ 1/3 1/2 2/3 1 4/3 3/2 5/3 2 3
R (ψ) 1 1/3 1/10 0 1/28 1/15 1/10 1/6 1/3
R (ψ) 1 0.330 0.100 0 0.036 0.067 0.100 0.167 0.333

Table 5.2: Several values of the ratio ψ of forcing decay to free damping and the corresponding total
energy of oscillation as a fraction R of the energy of the free oscillation, showing large reductions, which
means strong vibration suppression.

The case ε = δ corresponds to resonance (sections 5.4 and 5.5) so the value R = 0 of zero total energy

for ψ+ = 1 in (5.97c) is excluded. The resonance has similarities and differences to “beats”, according

to (5.67b), when the applied frequency ω is close to the oscillation frequency ω̃, leading to the total

oscillation (5.66d). When the forcing decay is close to the damping, the factor in curved brackets in

(5.89b) becomes

e−tδ − e−εt = (ε− δ) t+O
[(
ε2 − δ2) t2] , (5.98a)
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and to the leading order there is, using (5.90b), an amplitude growth linear on time,

y (x, t) = A (ε− δ) t sin (kx) cos (ω̃t− α) = Fc

2k t sin (kx) cos (ω̃t− α) , (5.98b)

that is typical of resonance. Values of ε not too close to δ are valid in (5.89b) and lead to the results

indicated in table 5.2. The figure 5.9 shows the ratio R of the energy of the total oscillation to the energy

of the free oscillation as a function of the ratio ψ of the forcing decay ε to the damping δ. For example,

a forcing decay equal to 4/3 of the damping reduces the total energy over all time to 3.6% of the energy

of the free oscillation:

ψe ≡
ε

δ
= 4

3 ⇒ R (ψe) = 0.036. (5.99a)

These values of the forcing decay ε and damping δ in (5.99a) are sufficiently different,

ε− δ = (ψe − 1) δ = δ

3 =
(

1− 1
ψe

)
ε = ε

4 , (5.99b)

to be far from resonance ε = δ. The figure 5.10 shows that the oscillation is nearly suppressed by the

forced oscillation for all time, including the first few periods when damping and forcing decay have not

significantly reduced the oscillation.
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Figure 5.10: Free oscillation for the first mode of oscillation leading to k = k1 = π/L, with damping
δ = 0.5c/L, no phase shift, α = 0, and at the middle of the string, x = L/2 (dashed line); forced
oscillation, also for the first mode of oscillation, k = k1 = π/L, with opposing amplitude to the free
oscillation, F = −CA/c2, with applied phase shift, β = −ϕ−α, and with damping ε = 4δ/3 ≈ 0.667c/L,
representing the case VI (dotted line); total oscillation as the sum of free and forced oscillations, in
these conditions given by (5.89b) (solid line). The three oscillations are represented as functions of
dimensionless time tc/L.

The substantial reduction of the energy of oscillation, corresponding to a significant partial suppression

of the free oscillation for an intermediate decay of forcing can be explained as follows: (i) if the decay of
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forcing is much smaller than the damping, ε < ψeδ, the forced oscillation decays slowly, and dominates the

faster damped free oscillation; (ii) if the decay of the forcing is much larger than the damping, ε > ψeδ,

the forced oscillation decays too quickly to counter the energy of the free oscillation; (iii) the effective

forcing decay ε = ψeδ is such that it extracts most energy from the free damped oscillation by decaying

neither too slow (adds energy) or too fast (small effect). Thus, of the six strategies for suppression of free

oscillations (table 5.4), the most effective, with over 96% reduction, for ψe = ε/δ = 4/3 or ε = 4δ/3 in

table 5.2, is forcing: (i) at applied equal to oscillation frequency (5.64); (ii) applied phase (5.63a) equal

to the sum of free oscillation phase (5.14b), and damping phase (5.19b); (iii) forcing with exponential

time decay the fraction 4/3 of the damping; (iv) amplitude of the forcing F related to the amplitude of

the free oscillation A by (5.90b),

−F
A

= 2k (δ − ε) = 2kδ (1− ψe) = kc2

χ

(
1− 4

3

)
= −kc

2

3χ . (5.100)

Values of the forcing decay closer to the damping (table 5.3) would lead to greater reductions of the total

energy relative to the energy of free oscillation, at the risk of triggering resonance, which would render the

result invalid. In order to avoid excessive proximity to resonance, the choice of effective forcing decay 4/3

of the damping, regarding the equations (5.99a) to (5.100), may be a safe compromise. A closer proximity

to resonance may be possible depending on (i) the accuracy of the determination of the damping and (ii)

the precision of application of the forcing decay, bearing in mind that the margins of error in both (i)

and (ii) should not lead to overlap.

Formulas Values

ψ 4/3 5/4 6/5 7/6 8/7 9/8 10/9 11/10
R (ψ) 1/28 1/45 1/66 1/91 1/120 1/153 1/171 1/210
R (ψ) 0.0357 0.0222 0.0152 0.0110 0.0083 0.0065 0.0058 0.0048

Table 5.3: As the forcing decay comes closer to the damping, the reduction of total relative to free
oscillation energy is more significant at the risk of coming too close to resonance which could invalidate
the result.

This sixth most effective strategy of countering free oscillations is compared next (section 5.7) with

the five preceding strategies (table 5.5).

5.7 Strategies for partial vibration suppression

The usual method of active vibration suppression is to add to the oscillation (5.15) another out-of-

phase by half a period,

y̌ (x, t) = A exp (−tδ) exp
{

i
[
kx∓ ω

(
t+ τ

2

)
− α

]}
= A exp (−tδ) exp [i (kx∓ ωt)∓ iπ − iα]

= −A exp (−tδ) exp [i (kx∓ ωt− α)] = −ỹ (x, t) , (5.101)
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so that the sum is zero. This is best done by inserting through the boundary the opposite oscillation

(5.101) to cancel (5.15). The opposite oscillation has: (i) the same wavenumber k; (ii) the same frequency

ω; (iii) the same amplitude A; (iv) the opposite phase. The question of whether the “opposite” oscillation

can be generated by forcing can be posed in the non-dissipative (chapter 4) and dissipative (present

chapter) cases, where it is shown that perfect cancellation is not possible. The question can be relaxed

to question whether the addition of a forced oscillation can lead to a total energy less than that of the

free oscillation and the answer is that this can be achieved with constraints that are mentioned next. Six

cases I to VI of partial vibration suppression, using forced oscillations to counter free oscillations have

been considered and evaluated comparing (table 5.4) the energy of the total oscillation with that of the

free oscillation.

Oscillations Free Forced

Amplitude A F = −CA/c2

Frequency ω̃ =
√
k2c2 − δ2 ω

Phase −α β

Exponential decay in time δ = c2/ (2χ) ε

Table 5.4: Comparison of free and forced oscillations.

The six strategies to counter free oscillations are listed in the table 5.5. The first four strategies

I-IV are standard combinations of undamped or damped free oscillations with non-resonant and resonant

forcing, and lead at best to 75% reduction in energy. Two novel strategies V-VI are resonant and non-

resonant forcing with magnitude decaying in time, and can lead to energy reduction, of over 96%. These

six strategies I-VI are discussed briefly as a conclusion.

Number Case Main phenomenon Energy

I Non-resonant forcing
Distinct frequency

adds energy
Increases

II Resonant forcing
Applied frequency equal

to natural frequency
Up to 75% reduction

in first period

III Non-resonant without decay
Forcing with constant
amplitude dominates

Small reduction
in first period

IV Resonant without decay
Forcing with constant
amplitude dominates

Small reduction over
fraction of first period

V Resonant with decay
Damping slow to

dominate resonant growth
Reduction only for

strong damping

VI Non-resonant with decay Decay of total oscillation
Reduction up to over 96%

in energy over all time

Table 5.5: Six cases to counter free oscillations (I-II: undamped; III-VI: with damping) and forcing with
constant (III-IV) or decaying (V-VI) amplitude. Both non-resonant (I, III, VI) and resonant (II, IV, V)
cases are considered.

Starting with the non-dissipative case, the free oscillations are sinusoidal with constant amplitude.
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In the absence of damping, the (case I) non-resonant forced oscillations have a constant amplitude and

different frequency from free oscillation and do not interact; thus, the energies of the free and forced

oscillations add, that is the opposite of what was intended. The (case II) resonant forced oscillations

have the same frequency as the free oscillations, but their amplitude increases linearly with time, thus

eventually increasing the energy of the total oscillation. Considering a limited time span, say the first

period of oscillation, it is possible to optimise the forcing to bring the total energy below that of the free

oscillation by at most 75%.

Turning to the dissipative case, the free oscillations are sinusoidal in space-time with amplitude

decaying exponentially with time due to damping. The (case III) dissipative non-resonant forcing involves

a different frequency, a constant amplitude and a phase shift, which prevent perfect cancellation. The

(case IV) dissipative resonant forcing involves the same frequency, and a constant amplitude, and there

is a phase shift of π/2, again not allowing perfect cancellation. Furthermore, the decaying free oscillation

is eventually dominated by the forced oscillation with constant amplitude both in the non-resonant and

resonant cases, so the total energy increases in both cases of forcing for a sufficiently long time. In

the resonant case, the forced oscillation is 90 degrees out-of-phase to the free oscillation which tends to

increase the total energy, but may be countered by a forcing phase.

In summary, there are four standard cases for the evolution of total energy as a function of time:

– Undamped non-resonant forcing (case I): the free and forced oscillations have constant amplitude

and different frequencies, so the energies are constant and added; the total energy increases and is

independent of time;

– Undamped resonant forcing (case II): the free oscillation has constant amplitude and is ultimately

dominated by the forced oscillation that is out-of-phase and has amplitude increasing linearly with

time; optimised forcing may reduce the total energy over the first period (concentrated forces)

or somewhat longer (distributed forces) before being overwhelmed by the energy of the forced

oscillation growing like the square of time; the highest possible energy reduction is 75% over the

first period using distributed forcing optimised along the string; this favourable result is lost for

times exceeding significantly one period, because for the forced resonant oscillation the amplitude

increases linearly with time and the energy like the square;

– Damped non-resonant forcing (case III): the free oscillation decays exponentially due to damping

and is dominated by the forced oscillation with constant amplitude; since the natural and applied

frequencies are different, the energies of the free and forced oscillation add, with the former decaying

relative to the latter; thus, the decay of the free oscillation is overwhelmed by the non-decaying

forced oscillation, that is counter productive;

– Damped resonant forcing (case IV): although the natural and applied frequencies coincide, there

is again the contrast between the free oscillations decaying exponentially in time and the forced

oscillations out-of-phase and with constant amplitude; even optimizing the forcing to counter the

free oscillation, the total energy is ultimately dominated by the forced oscillation, which is counter

productive as in case III.
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Since none of the standard cases I-IV is very effective at countering free oscillations over time for

several periods, two novel cases V-VI are introduced. They apply to damped free oscillations and use

forcing that decays in time. It is possible to consider: (i) opposing amplitudes of the free and forced

oscillations; (ii) matched phases; (iii) equal oscillation and applied frequencies. The case of forcing decay

equal to damping (case V) leads to resonance with the forcing causing an amplitude growing linearly

with time, but ultimately dominated by the exponential time decay. This is less favourable than having

distinct forcing decay and damping (case VI) for which both the energy of the free and forced oscillation

are finite when integrated over all time. Tuning the decay of the forcing to a suitable fraction of the

damping, ψe = ε/δ = 4/3, the total energy can be reduced, R (ψe) = 0.036, by more than 96%. This case

is represented by the figure 5.10, that provides a graphic display of how the forced oscillation counters

the free oscillation in an effective way, leading to substantial reduction or almost suppression, in the first

few periods of oscillation, before the ultimate damping and decay for long time.

The consideration of forcing with non-constant amplitude suggests a generalised definition of resonance

(section 5.8).

5.8 A generalised definition of resonance

The usual concept of resonance in its simplest terms can be considered for the classical wave equation

(5.2) with free wave solution (5.10) without damping δ = 0 for one mode,

ỹ (x, t) = A sin (kx) cos (kct− α) , (5.102)

with amplitude A, wavenumber k, frequency ω̃ = kc and phase shift −α. The forcing with a generally

distinct applied frequency ω, but with a same phase shift −α, and with a certain amplitude F spatially

distributed with the same wavenumber k,

∂2y

∂t2
− c2 ∂

2y

∂x2 = F sin (kx) cos (ωt− α) , (5.103)

leads to distinct solutions in two cases. The non-resonant case of applied frequency ω distinct from the

natural frequency ω̃ = kc has the constant amplitude and the same phase,

y (x, t) = F

c2k2 − ω2 sin (kx) cos (ωt− α) , (5.104)

but does not hold for ω = ±kc. The latter is the resonant case,

∂2y∗
∂t2

− c2 ∂
2y∗
∂x2 = F sin (kx) cos (kct− α) , (5.105)

leading to oscillations with amplitude increasing linearly with time,

y∗ (x, t) = F

2kct sin (kx) sin (kct− α) , (5.106)
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and with a phase shift of π/2. This suggests two definitions of “resonance”: (A) the usual “physical”

definition of applied frequency ω equal to natural frequency; (B) the equivalent “mathematical” definition

that the amplitude grows linearly with time. It is shown next that (B) is the more general definition, by

considering a more general case.

Consider: (i) instead of the classical wave equation (5.2), the wave-diffusion or telegraph equation

(5.1b); (ii) instead of forcing (5.103) with same wavenumber k and applied frequency ω, a forcing (5.54)

with also a generally distinct phase shift β and an amplitude F decaying exponentially with time at

a decay rate ε. Now there are four forcing parameters (table 5.4) and the resonance, in the sense of

amplitude of forced oscillation initially growing linearly with time (5.65c), requires three conditions: (i)

applied frequency equal (5.64) to the oscillation frequency (5.6), that is the natural frequency kc modified

by damping; (ii) matching (5.63a) of the phases of the forcing β in (5.54), of the free oscillation −α in

(4.7d) and of the damping ϕ in (5.19b); (iii) exponential decay ε of the forcing in (5.54) equal (5.62a)

to the damping (5.5); (iv) matching of free A and forced F amplitudes (5.61a). Clearly the definition A

of equal oscillation and applied frequencies, corresponding to one condition (i), is not sufficient to have

oscillation with amplitude initially growing with time, because other conditions are needed as well.

This suggests the following definition of resonance: resonant forcing leads to oscillations with ampli-

tude initially increasing with time, and requires matching of all parameters of forcing with those of the

free oscillation, namely (table 5.4): (i) the applied frequency must equal the free oscillation frequency; (ii)

the forcing phase plus the damping phase must equal the phase of the free oscillation; (iii) the damping

of the free oscillation must be matched by the exponential decay in time of the forcing. The linear growth

with time of the forced oscillations for short time may be ultimately dominated by damping. To prevent

resonance, it is sufficient to break one of the three conditions (i) to (iii) above. The most effective strategy

VI for the suppression of free damped oscillation is: (α) to keep (i) applied equal to natural frequency

and (ii) match applied, damping and free phases; (β) avoid resonance by a forcing decay different from

damping, being selected to substantially decrease the total energy (table 5.2 and figure 5.9); (γ) choose

opposite amplitudes for the forced and free oscillations. Choosing (β) a forcing decay ε related to damp-

ing δ by ψe = ε/δ = 4/3 in table 5.2 reduces the total energy of oscillation over all time to 3.6% of the

energy of the free oscillation, (5.99a) and (5.99b), and nearly suppresses the free oscillation (figure 5.10)

in the critical first periods before damping and decay take over.

5.9 Main conclusions of the chapter 5

The present chapter has considered forcing as a physical mechanism to reduce the energy of free

transverse oscillations of an elastic string with two contrasting results: (chapter 4) limited effectiveness

in all cases for undamped oscillations, which is a “negative” but genuine result, indicating the limitations

arising from laws of physics; (present chapter) good effectiveness for damped oscillations using decaying

forcing, that is a “desirable” result compatible with the laws of physics. The implementation of the most

effective forcing is a follow-on problem, not addressed here, for which the results of the present chapter

provide the objective. Implementing forcing decaying exponentially in time should be simple and well
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within the capabilities of control systems using actuators, sensors and processing.

The main difference between this chapter and the previous chapter is that chapter 4 deals with

undamped and this chapter with damped oscillations, hence the two chapters 4 and 5 deal with different

equations, namely wave equation in chapter 4 and wave-diffusion equation in chapter 5. The present

chapter considers only continuously distributed forces, whereas the chapter 4 considers also forcing at a

single point and forcing at multiple points. Both chapters 4 and 5 comprehensively cover non-resonant

and resonant forcing with constant amplitude, with significant differences between the two undamped

cases in chapter 4 and the four damped cases in this chapter. Since forcing with constant amplitude is of

limited effectiveness in partial vibration suppression, the present chapter considers forcing with amplitude

decaying exponentially in time. The assessment of effectiveness of partial vibration suppression is assessed

by comparing the energy of the free vibration with the energy of the total, free plus forced, oscillation;

this is done for all cases of undamped (chapter 4) and damped (present chapter) oscillations resulting in

somewhat extensive calculations.

The calculations in the present chapter are extensive because there are five cases to consider: (i)

damped free oscillations (section 5.1); (ii-iii) oscillations forced with constant amplitude without and

with resonance (sections 5.2 and 5.3) including associated energies (section 5.5); (iv-v) oscillations forced

with amplitude decaying exponentially with time in resonant and non-resonant cases (sections 5.5 and

5.6), including associated energies that are relevant to a comparison of strategies for partial vibration

suppression (section 5.7). This leads to a generalised definition of resonance (section 5.8) before the

conclusion (section 5.9). The innovation in the chapter 5 is outlined in its introduction.

The four key elements for effective vibration suppression are the following: (i) the applied frequency

equals the natural frequency so that the forced oscillation can be kept at all times in opposition to the

free oscillation; (ii) the free and forced oscillations will be in opposition for all time if the phases of the

free oscillation and forcing are matched at initial time taking into account the phase associated with

damping; (iii) the amplitude of the forced oscillation equals that of the free oscillation with opposite

sign or phase at initial time; (iv) the forcing decays exponentially in time at a rate “close to but not

equal to” the damping, because: (iv-a) if the forcing decay equals the damping, there is resonance, and

the amplitude grows initially in time linearly, adding energy that is eventually dissipated, and failing

to suppress oscillations in the near term; (iv-b) if the forcing decay is very different from the damping,

one of the free and forced oscillations decays much faster than the other, preventing effective vibration

suppression; (iv-c) a forcing decay “not equal to” the damping avoids resonance (iv-a), and being “close

to” the damping allows a comparable decay in time (iv-b), so that partial vibration suppression (i-iii) is

effective over time until both the free and forced oscillations become negligible.

In conclusion, free damped oscillations have finite energy E0 over infinite time due to damping. Due to

decay, the forced oscillation with exponential decay in time also has finite energy E∗ over all time. Partial

vibration suppression reduces the total energy to E0−E∗ by keeping the free and forced oscillations out-

of-phase. This requires (i) equal free and applied frequencies, (ii) matching of free, forced and damping

phases, and (iii) equal initial amplitudes with opposite signs or phases. The forcing decay and damping

should not be equal to avoid resonance, but may be close enough to suppress more than 90% of the
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energy of vibration. The verification of this theoretical prediction of the most effective strategy for

partial vibration suppression can be subject to experimental demonstration that is beyond the scope of

the present thesis.

The applications of the present theory of partial vibration suppression are undamped systems de-

scribed by the classical wave equation (chapter 4) and damped systems described by the wave-diffusion

or telegraph equation (presented chapter). The wave equation applies to acoustic, elastic and electromag-

netic waves, and damping effects can be thermal conduction or radiation, viscosity, electrical resistance

and mass diffusion. The most effective method of reduction of vibration energy by more than 90% is

forcing at the natural frequency with amplitude decaying exponentially with time. It applies not only to

continuous systems, but also to discrete systems such as: (i) mechanical oscillators consisting of masses,

springs, dampers and forcing actuators; (ii) electrical circuits consisting of inductors, capacitors and

resistors powered by batteries; (iii) analogous circuits in acoustics, hydraulics and other fields.
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6 | On the energy density and energy

flux in elastic bodies

“If I have seen further than others, it is by standing upon the shoulders of giants.”

— Isaac Newton

Contents
6.1 Energy density, flux and power . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Isotropic/anisotropic and dispersive/non-dispersive waves . . . . . . . . . 143

6.3 Elastic waves in crystals and amorphous matter . . . . . . . . . . . . . . . 148

6.4 Superposition of longitudinal and transversal waves . . . . . . . . . . . . 155

6.5 Main conclusions of the chapter 6 . . . . . . . . . . . . . . . . . . . . . . . 159

The vast literature on theory of elasticity [7, 77, 78, 80, 81, 151–153] and solid mechanics [154–168]

considers in detail the energy density, but gives less emphasis to the energy flux and associated

energy equation in the unsteady case involving motion and dynamics. The purpose of the present chapter

is to consider the energy flux, in general, in inelastic and elastic solids and some of its implications in the

particular case of elastic waves.

The total energy density per unit volume in a solid consists of: (i) the kinetic energy involving the

mass density and velocity, with the latter equal to the time derivative of the displacement vector; (ii) the

deformation energy involving the stress and strain tensors, with the latter specified by spatial derivatives

of the displacement vector. Using the balance of forces and stresses, the rate of change in time of the total

energy leads to an energy conservation equation (section 6.1) involving: (i) the power or work per unit

time of the external forces; (ii) the divergence of the energy flux. This shows that the energy flux equals

(subsection 6.1.1) minus the product of the velocity vector by the stress tensor, for general matter without

assumptions on constitutive properties. The simplest particular case is isotropic stresses, for which the

energy flux equals the product of pressure by velocity, as for sound waves in a fluid. The energy flux is

given for: (i) linear and non-linear transverse waves in elastic strings and membranes (subsection 6.1.2);

(iii) linear elastic waves in three-dimensional elasticity of crystals and amorphous or isotropic matter

(subsection 6.1.3).
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Before applying the energy flux (section 6.1) to longitudinal and transversal waves in an isotropic

elastic medium (section 6.3), some general properties of waves are considered (section 6.2). The waves

may be classified into: (a) isotropic if the wave speed is equal in all directions, which is independent of

wave normal direction, and anisotropic otherwise; (b) non-dispersive if the wave speed is independent of

wavenumber, when a “wave packet” propagates in a permanent waveform, and dispersive otherwise, if the

components with different wavenumbers of a wave packet spread out as they propagate. It is possible to

determine if the waves are (a) isotropic or non-isotropic and (b) non-dispersive or dispersive, by inspecting

the wave equation with no need to solve it, as follows: (a) if all spatial derivatives appear in Laplacians, the

waves are isotropic, otherwise if there are other spatial derivatives, the waves are anisotropic (subsection

6.2.1); (b) if all space, time and combined derivatives are of the same order, the waves are non-dispersive,

otherwise if there are derivatives of different orders, the waves are dispersive (subsection 6.2.2). It follows

that isotropic non-dispersive waves are specified by the classical wave equation (subsection 6.2.3) for

which the energy or group velocity equals the wave speed in the wave normal direction. Thus, in this

case, the energy flux lies in the direction of propagation.

Applying the general wave theory (section 6.2) to the energy flux of elastic waves in isotropic media

(section 6.1), follow several conclusions (sections 6.3 and 6.4): (i) longitudinal (subsection 6.3.1) and

transversal (subsection 6.3.2) elastic waves are isotropic non-dispersive, thus both satisfy separately

the classical wave equation and both have energy fluxes in the direction of propagation, with different

longitudinal and transverse wave speeds (subsection 6.3.3); (ii) the superposition of the longitudinal and

transversal elastic waves (section 6.4) satisfies a second-order wave equation that does not coincide with

the classical wave equation, and thus the waves are non-dispersive and anisotropic (subsection 6.4.1),

implying that the energy flux has a component transverse to the direction of propagation (subsection

6.4.2); (iii) although the total energy of elastic waves is the sum of the energies of longitudinal and

transversal waves, the energy flux has three terms, with a cross-flux between longitudinal and transversal

waves that is transverse to the direction of propagation and has zero divergence (subsection 6.4.3).

The discussion (section 6.5) highlights the two main conclusions: (i) the general expression for the

energy flux in elastic and inelastic solids, including one-dimensional (strings and bars), two-dimensional

(membranes and plates) and three-dimensional crystalline and amorphous elastic media; (ii) the implica-

tion that the superposition of longitudinal and transversal elastic waves in isotropic uniform media, while

adding the energy densities, concerning the energy flux, leads to a cross-term namely a cross-coupled

longitudinal-transversal wave energy flux that has zero divergence and is transverse to the direction of

propagation.

6.1 Energy density, flux and power

The energy equation (subsection 6.1.1) balances the power of external forces versus the sum of: (i) the

rate-of-change in time of the total energy density per unit volume, consisting of kinetic and deformation

energies; (ii) the divergence of energy flux that crosses the unit area in unit time, and is shown to equal

minus the velocity vector multiplied by the stress tensor. The energy flux is considered in the one and
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two-dimensional cases of an elastic string and membrane respectively, with non-linear or large transverse

vibrations (subsection 6.1.2). Also, the energy flux is considered for three-dimensional linear elastic waves

(subsection 6.1.3) in anisotropic and isotropic media like crystals and amorphous matter respectively.

6.1.1 Balance of forces, stresses and energies

The deformation of the medium is represented by the displacement vector uj (xk, t) as a function of

position vector xk and time t. The time derivative is the velocity vj , that multiplied by the mass density

per unit volume ρ specifies the linear momentum ρvj [3]. Its time derivative is the inertia force,

∂

∂t

(
ρ
∂uj

∂t

)
= gj + ∂Tjr

∂xr
, (6.1)

that balances the force density per unit volume gj and the divergence of the stress tensor Tjr. The work

per unit time of the inertia force in an infinitesimal displacement duj is the rate of change with time of

the kinetic energy Ek [3]:
∂Ek

∂t
≡ ∂uj

∂t

∂

∂t

(
ρ
∂uj

∂t

)
. (6.2)

If the mass density is independent of time, ∂ρ/ (∂t) = 0, the kinetic energy is one half of the product of

mass density by the square of the modulus of velocity [3]:

Ek = 1
2ρ
(
∂uj

∂t

)2
. (6.3)

It is possible to do the reverse: the kinetic energy is defined by (6.3), and then the independence of mass

density with respect to time implies (6.2).

The differential of the deformation energy is the product of the stress tensor by the differential of the

strain tensor [3]:

dEu ≡ TjrdSjr. (6.4)

For linear or small deformations, the strain tensor consists of symmetric spatial derivatives of the dis-

placement vector [79]:

2Sjr ≡
∂uj

∂xr
+ ∂ur

∂xj
= 2Srj . (6.5)

The balance of moments of forces implies that the stress tensor is symmetric, Tjr = Trj [79]. Substituting

(6.5) in (6.4) and using the symmetry of the stress tensor lead to

dEu = Tjr d
(
∂uj

∂xr

)
(6.6)

for the differential of the energy of deformation.

The total energy density per unit volume is the sum of kinetic and deformation energies, E ≡ Ek +Eu,

and from (6.2) and (6.6) follows its rate of change in time:

∂E

∂t
= ∂Ek

∂t
+ ∂Eu

∂t
= ∂uj

∂t

∂

∂t

(
ρ
∂uj

∂t

)
+ Tjr

∂2uj

∂t∂xr
. (6.7)
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Substituting the force balance (6.1) in the first term on the right-hand side of (6.7) gives

∂E

∂t
= gj

∂uj

∂t
+ ∂uj

∂t

∂Tjr

∂xr
+ Tjr

∂2uj

∂t∂xr
. (6.8a)

The first term on the right-hand side of (6.8a) is the power or work per unit time of the volume forces:

Ẇ ≡ gj
∂uj

∂t
. (6.8b)

Therefore the relation (6.8a) can be rewritten as

∂E

∂t
− ∂

∂xr

(
Tjr

∂uj

∂t

)
= Ẇ , (6.8c)

that takes the form of an energy conservation equation,

∂E

∂t
+ ∂Fr

∂xr
= Ẇ , (6.8d)

with energy flux

Fr ≡ −Tjr
∂uj

∂t
, (6.8e)

equal to minus the product of the velocity vector by the stress tensor. The simplest particular case

is isotropic stresses corresponding to a pressure p in Tjr = −pδjr, for which the energy flux (6.8e)

equals the product of pressure by velocity, Fr = p∂ur/ (∂t), as for sound waves in a perfect fluid. The

general expression of the energy flux (6.8e) for linear strains (6.5) is valid for arbitrary matter, since no

constitutive relation, elastic or otherwise, was used in the derivation of the energy equation from (6.1)

to (6.8d). The energy flux is considered next in particular for: (a) non-linear transverse vibrations of

elastic strings and membranes (subsection 6.1.2); (b) three-dimensional linear elastic waves in crystals

and isotropic matter (subsection 6.1.3).

6.1.2 Non-linear vibrations of strings and membranes

The shape of an elastic string is given in Cartesian coordinates by the transverse displacement, uz ≡

ζ (x, t), as a function of longitudinal coordinate x and time t. The transverse velocity is given by

vz = ∂ζ

∂t
(6.9)

and the tangential tension T specifies the shear stress [130],

Txz = T
dζ
ds
, (6.10)

involving the arc-length, (ds)2 = (dx)2 + (dζ)2. Substituting the expression of arc-length in (6.10) gives

Txz = T

(
∂ζ

∂x

)[
1 +

(
∂ζ

∂x

)2
]−1/2

(6.11)
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for the shear stress.

The energy flux (6.8e) is given by Fx = −vzTxz, implying from (6.9) and (6.11) the expression

Fx = −T ∂ζ
∂t

∂ζ

∂x

[
1 +

(
∂ζ

∂x

)2
]−1/2

(6.12)

for non-linear transverse vibration of the elastic string with large slope. In the linear case of small slope,

[∂ζ/ (∂x)]2 ≪ 1, the energy flux simplifies to

Fx = −T ∂ζ
∂t

∂ζ

∂x
. (6.13)

The energy flux (6.12) for the general non-linear vibrations and the energy flux (6.13) for the particular

case of linear vibrations can be obtained directly from an energy balance (6.8d) for elastic strings using

methods (subsection 6.1.1) similar to the equations (6.1) to (6.8c).

The shape of an elastic membrane is given in Cartesian coordinates by the transverse displacement,

uz ≡ ζ (x, y, t), as a function of in-plane Cartesian coordinates (x, y) and time t. The transverse velocity

is given by (6.9) and the spatial derivatives for the string, ∂ζ/∂x, are replaced by the gradient for the

membrane [130]:

∇ζ = ex
∂ζ

∂x
+ ey

∂ζ

∂y
. (6.14)

It follows that the energy flux for non-linear transverse vibrations of an elastic string (6.12) is obtained

replacing ∂ζ/∂x by (6.14) for an elastic membrane with isotropic tangential tension T leading to

F = −T ∂ζ
∂t

∇ζ [1 + ∇ζ ·∇ζ]−1/2
, (6.15a)

with Cartesian components

{Fx, Fy} = −T ∂ζ
∂t

[
1 +

(
∂ζ

∂x

)2
+
(
∂ζ

∂y

)2
]−1/2{

∂ζ

∂x
,
∂ζ

∂y

}
. (6.15b)

In the case of linear vibrations with small slope,

1≫ |∇ζ|2 =
(
∂ζ

∂x

)2
+
(
∂ζ

∂y

)2
, (6.16a)

the energy flux is given by

F = −T ∂ζ
∂t

∇ζ (6.16b)

with Cartesian components

{Fx, Fy} = −T ∂ζ
∂t

{
∂ζ

∂x
,
∂ζ

∂y

}
. (6.16c)

After the one and two dimensional examples (subsection 6.1.2) of energy flux (subsection 6.1.1) for

elastic strings and membranes respectively, are given three-dimensional examples (subsection 6.1.3) for

anisotropic and isotropic media like crystals and amorphous matter respectively.
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6.1.3 Elastic waves in crystals and isotropic matter

The differentials of the stress Tjk and strain Smn tensors are related linearly by the stiffness double

tensor Gjkmn for general matter [79],

dTjr = GjrpqdSpq, (6.17a)

that equals the derivatives of the stress tensor with regard to the strain tensor:

Gjrpq ≡
∂Tjr

∂Spq
. (6.17b)

The first-order derivatives of the elastic energy (6.4) with regard to the strain tensor specify the stress

tensor [4, 79],

Tjr = ∂Eu

∂Sjr
, (6.18)

and from (6.17b) the second-order derivatives specify the stiffness double tensor:

Gjrpq = ∂2Eu

∂Sjr∂Spq
. (6.19)

The stiffness double tensor has symmetries, Gjrpq = Grjpq = Gjrqp = Gpqjr [4], following the first equality

from the symmetry of stress tensor, the second equality from the strain tensor (6.5) and the third equality

from the elastic energy (6.19).

In an elastic medium, the stiffness double tensor does not depend on the strain tensor, that is,

∂Gjrpq/ (∂Smn) = 0. In a steady medium, it does not depend on time, ∂Gjrpq/ (∂t) = 0, and in a

homogeneous medium it does not depend on position, ∂Gjrpq/ (∂xm) = 0. If all these conditions are met,

the stiffness double tensor is constant, Gjrpq = const, and thus: (i) the stress-strain constitutive relation

(6.17a) is linear, omitting residual stresses [3, 4], in

Tjr = GjrpqSpq; (6.20)

(ii) the deformation energy density (6.4) is simplified [79] to

Eu = 1
2GjrpqSjrSpq = 1

2TjrSjr; (6.21)

(iii) the energy flux (6.8e) is given by

Fr = −∂uj

∂t
GjrpqSpq = −Gjrpq

∂uj

∂t

∂up

∂xq
, (6.22)

where were used the symmetries (6.5) and the symmetries of the stiffness double tensor.

The preceding relations from (6.20) to (6.22), valid for an elastic crystal, simplify for isotropic media,

like amorphous matter, when the stiffness double tensor is specified by the Lamé elastic moduli (λ, µ)
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multiplied by identity matrices [1, 3]:

Gjrpq = µδjpδrq + µδjqδrp + λδjrδpq. (6.23a)

The last expression follows all the symmetries of the stiffness double tensor. The Lamé moduli of elasticity

may be replaced by the Young modulus E and Poisson ratio σ [1, 3]:

2µ ≡ E

1 + σ
, (6.23b)

λ ≡ 2µσ
1− 2σ . (6.23c)

For isotropic matter (6.23a), follows: (i) regarding (6.20) the stress-strain relation [79]

Tjr = 2µSjr + λSppδjr = µ

(
∂uj

∂xr
+ ∂ur

∂xj

)
+ λ (∇ · u) δjr; (6.24)

(ii) according to (6.21) the deformation energy density [79]

2Eu = 2µSjrSjr + λ (Spp)2 = µ

2

(
∂uj

∂xr
+ ∂ur

∂xj

)2
+ λ (∇ · u)2 ; (6.25)

(iii) from (6.22) the energy flux

Fr = −∂uj

∂t
[2µSjr + λSppδjr] = −µ∂uj

∂t

(
∂uj

∂xr
+ ∂ur

∂xj

)
− λ (∇ · u) ∂ur

∂t
. (6.26)

The consideration of the energy balance (section 6.1) for elastic waves (sections 6.3 and 6.4) is preceded

by some general properties of isotropic/anisotropic and dispersive/non-dispersive waves (section 6.2).

6.2 Isotropic/anisotropic and dispersive/non-dispersive waves

By inspection of the linear wave equation in steady, homogeneous media (subsection 6.2.1), with-

out actually obtaining a solution, it is possible to ascertain whether: (a) the waves are isotropic when

they propagate equally in all directions, or are anisotropic and propagate differently in some directions

(subsection 6.2.2); (b) the waves are non-dispersive when the velocity of propagation is independent of

wavelength and a “packet” of waves with different wavelengths propagates together in a “permanent”

waveform, whereas for dispersive waves the “packet” spreads out as waves of different lengths travel at

distinct velocities.

6.2.1 Linear waves in steady, homogeneous media

The wave variable Φ is a scalar or a component of a vector or a component of a tensor, and is the

dependent variable Φ (xj , t) depending on position vector xj and time t. The dependent variable Φ has: (i)

time derivatives of the first order, denoted by ∂tΦ ≡ ∂Φ/ (∂t), up to the M -th order, ∂m
t Φ ≡ ∂mΦ/ (∂tm),

for m = {1, . . . ,M}; (ii) spatial derivatives of the first order, denoted by ∂jΦ ≡ ∂Φ/ (∂xj), up to the N -th
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order, ∂j1...jn
Φ ≡ ∂nΦ/ (∂xj1 . . . ∂xjn

), for n = {1, . . . , N}, where each index jn spans the dimension of

space,

j1 = {1, . . . , P} , j2 = {1, . . . , P} , . . . , jn = {1, . . . , P} , (6.27)

with P = {1, 2, 3}; for strings or bars P = 1, for membranes or plates P = 2, or for three-dimensional

bodies P = 3; (iii) mixed temporal and spatial derivatives, ∂m
tj1...jn

Φ ≡ ∂m+nΦ/ (∂tm∂xj1 . . . ∂xjn
). A

wave equation is a relation among the wave variable Φ, time, position vector and derivatives of the

variable Φ with regard to the time up to order M or regard to the position up to order N :

F
(
Φ; t, xj ; ∂tΦ, ∂j1Φ, ∂2

t Φ, ∂tj1Φ, ∂j1j2Φ, . . . , ∂M
t Φ, ∂j1...jN

Φ, ∂M
tj1...jN

Φ
)

= 0. (6.28)

It corresponds to a partial differential equation of order M in time and order N in position.

For linear waves with small amplitude and/or space-time derivatives, there are no powers or cross-

products and the linear wave equation is

B (x, t) =
M∑

m=0

N∑
n=0

Am
j1...jn

(x, t) ∂m+nΦ
∂tm∂xj1 . . . ∂xjn

(6.29)

where: (i) the repeated indices (j1, . . . , jn) are summed over their range (6.27)1; (ii) the forcing term

is zero, B = 0, for free waves; (iii) the coefficients Am
j1...jn

may depend on position for inhomogeneous

media or may depend on time for unsteady media. The variable m in the coefficients Am
j1...jn

is merely

a superscript; it does not mean a mathematical power of an exponentiation. For homogeneous media,

the coefficients do not depend on position, ∂jA
m
j1...jn

= 0, and for steady media, the coefficients do not

depend on time, ∂tA
m
j1...jn

= 0. If and only if the last two conditions are met, the coefficients are constant,

Am
j1...jn

= const. Thus, linear free waves in a steady homogeneous medium are specified by a wave variable

Φ in space-time (x, t), satisfying a linear unforced partial differential equation with constant coefficients,

{
PM,N

(
∂

∂t
,
∂

∂xj

)}
Φ (x, t) = 0, (6.30a)

which is the wave operator, with a characteristic polynomial

PM,N

(
∂

∂t
,
∂

∂xj

)
=

M∑
m=0

N∑
n=0

Am
j1...jn

∂m+n

∂tn∂xj1 . . . ∂xjn

(6.30b)

of derivatives with regard to time and position of degree M and N respectively.

The solution exists as a superposition of plane waves (for example sinusoidal plane waves) with

frequency ω, wave vector k and amplitude Ψ represented by the Fourier transform in space-time:

Φ (x, t) =
∫ +∞

−∞
dω
∫ +∞

−∞
d3k Ψ (k, ω) exp [i (k · x− ωt)] . (6.31)

1In (6.29) it occurs an abuse of notation since the equation omits n sums, so the more correct expression is

B (x, t) =
M∑

m=0

[
Am ∂mΦ

∂tm
+

N∑
n=1

P∑
j1=1

. . .

P∑
jn=1

Am
j1...jn

(x, t)
∂m+nΦ

∂tm∂xj1 . . . ∂xjn

]
.
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Since temporal or spatial derivatives of the wave variable are equivalent to multiplying the Fourier

spectrum Ψ by −i times the frequency or by +i times the wave vector,

{∂tΦ, ∂jΦ} ←→
∫ +∞

−∞
dω
∫ +∞

−∞
d3k {−iω, ikj}Ψ (k, ω) exp [i (k · x− ωt)] , (6.32)

the wave equation (6.30a) leads to PM,N (−iω, ikj) Ψ (k, ω) = 0. A non-trivial solution, Ψ (k, ω) ̸= 0,

implies the dispersion relation

0 = PM,N (−iω, ik) ≡ DM,N (ω,k) , (6.33a)

that is, by (6.30b), a polynomial of degree M and N in frequency and wave vector respectively,

DM,N (ω,k) =
M∑

m=0

N∑
n=0

(−1)m in+mωmAm
j1...jn

kj1 . . . kjn
, (6.33b)

with M roots,

DM,N (ω,k) = (−i)M
N∑

n=0
inAM

j1...jn
kj1 . . . kjn

M∏
s=1

[ω − ωs (k)] . (6.33c)

The variable s in the root ωs is merely a subscript and it does not mean an index of a multiplicity2.

These roots or temporal modes specify the frequency as a function of wave vector:

ω = ωs (k) = ωs (k,n) , (6.34a)

The wavevector consists on a wavenumber, k ≡ |k|, and a wave normal,

n = k
k
. (6.34b)

The wavefronts travel at phase speed cs ≡ ωs/k and the energy at group velocity

ws ≡
∂ωs

∂k . (6.34c)

The waves are isotropic (subsection 6.2.2) or non-dispersive (subsection 6.2.3) if and only if the phase

speed depends only on wavenumber or wave normal respectively.

6.2.2 Laplacian and isotropic/anisotropic waves

The waves are isotropic if and only if they propagate equally in all directions, thus when the frequency

(6.34a) cannot depend on the wave normal (6.34b) and depends only on wavenumber k,

ω = ωs (k) , (6.35a)
2Not only in the variable ωs, but also in the variables ws and cs, all present in this chapter 6, the subscript s does not

mean an index of a multiplicity since these variables are scalars and not vectors. The subscript s is written in italic because
it represents a term of the sum in (6.33c).
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as well as the phase speed,

cs (k) = ωs (k)
k

; (6.35b)

From (6.34b) follows
∂k
∂k

= n = ∂k

∂k (6.36a)

and

ws = ∂ωs

∂k = ∂ωs

∂k

∂k

∂k = n∂ωs

∂k
, (6.36b)

implying that the group velocity (6.34c) lies in the wave normal direction (6.36b) for isotropic waves.

From (6.32) follows that the square of the wavenumber corresponds to minus the Laplacian:

k2 = k · k←→ −i ∂

∂xj

(
−i ∂

∂xj

)
= − ∂2

∂xj∂xj
= −∇2. (6.37a)

Therefore the waves are isotropic if and only if in the wave equation (6.29) all spatial derivatives appear

as Laplacians:

B (x, t) =
M∑

m=0

N∑
n=0

Am
n

∂m

∂tm
(
∇2nΦ

)
. (6.37b)

In this case, for free waves B (x, t) = 0 and from (6.32) follows the dispersion relation,

0 =
M∑

m=0

N∑
n=0

(−1)n+m imAm
n ω

mk2n = DM,N (ω, k) , (6.38a)

whose roots

0 = DM,N (ω, k) = (−i)M
N∑

n=0
(−1)n

AM
n k2n

M∏
s=1

[ω − ωs (k)] (6.38b)

specify isotropic waves as stated from (6.35a) to (6.36b).

In other words, if the wave equation (6.29) contains any spatial derivatives that are not part of

Laplacians, the waves are anisotropic. For example, the vibration in an infinite elastic medium is generally

anisotropic since the Lamé equation in z-direction, which governs the transversal displacement ζ, when

the inertial forces correspond to the acceleration, is [1, 4]

B (x, t) = µ

(
∂2ζ

∂x2 + ∂2ζ

∂y2 + ∂2ζ

∂z2

)
+ (λ+ µ)

(
∂2ux

∂x∂z
+ ∂2uy

∂y∂z
+ ∂2ζ

∂z2

)
− ρ∂

2ζ

∂t2
, (6.39)

however, in particular the shear waves which produce transverse motion (say in the z-direction) while

cause no volume change and no extensional deformation, therefore setting ∂ui/ (∂xi) = 0 in the previous

equation [4], lead to a Laplacian in

B (x, t) = µ

(
∂2ζ

∂x2 + ∂2ζ

∂y2 + ∂2ζ

∂z2

)
− ρ∂

2ζ

∂t2
= µ∇2ζ − ρ∂

2ζ

∂t2
. (6.40)

and induce isotropy. Another example of isotropy is related to the transverse vibrations of a stiff elastic

plate [6], governed by

ρ
∂2ζ

∂t2
= D

(
∂4ζ

∂x4 + ∂4ζ

∂y4 + 2 ∂4ζ

∂x2∂y2

)
= D∇4ζ, (6.41)
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where D is the flexural stiffness of the plate, and the vibrations are isotropic because the spatial derivatives

appear in a biharmonic operator, that is a double Laplacian. If instead of depending on wavenumber

for isotropic waves (subsection 6.2.1) the phase speed depends only on wave normal, the waves are non-

dispersive.

6.2.3 Conditions for non-dispersive/dispersive waves

The waves are non-dispersive if a wave packet consisting of waves of different lengths propagates

together preserving a permanent wave form. Thus, the phase speed cannot depend on wavenumber and

only on wave normal, implying that the frequency is a linear function of wave vector,

ωs = cs (n) k = ws · k, (6.42)

whose constant coefficient is the group velocity (6.34c) since (6.42) implies ∂ωs/∂k = ws in agreement

with (6.34c). In this case, the dispersion relation must be of the form

0 = DM,N (ω,k) = (−i)M
AM

M∏
s=1

(ω −ws · k) , (6.43)

that is a polynomial of (ω,k) with all powers equal to M . In the term AM , the variable M is a superscript

and not a power of an exponentiation.

Thus, the waves are non-dispersive if and only if in the wave equation (6.29) all derivatives are of the

same order M :

B (x, t) =
M∑

n=0
AM−n

j1...jn

∂M Φ
∂tM−n∂xj1 . . . ∂xjn

. (6.44)

For free waves B (x, t) = 0 and this leads to the dispersion relation

0 =
M∑

n=0
(−i)M−n inAM−n

j1...jn
ωM−nkj1 . . . kjn

, (6.45)

that is a homogeneous polynomial of degree M , whose roots are a linear relation between frequency and

wave vector.

Thus, if a wave equation has derivatives of different orders, the waves are dispersive. For example, the

waves where the term b ·∇ is typical of inhomogeneous media [130] (α, β and ν are general parameters),

α
∂2Φ
∂t2

= ν∇2Φ + (b ·∇) ∂Φ
∂t
, (6.46)

are non-dispersive, because all derivatives are of second-order, and are anisotropic because of the spatial

derivative b ·∇ that is not a Laplacian. Some wave equations have the form

α
∂2Φ
∂t2

+ β
∂Φ
∂t

= ν∇2Φ (6.47)

and represent dispersive waves due to the first-order derivative with regard to time corresponding to
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damping. The wave equation [130]

ρ
∂2Φ
∂t

= T∇2Φ + b ·∇Φ (6.48)

is anisotropic and dispersive because the term b ·∇Φ contains first-order spatial derivatives that are not

Laplacians.

The most general second-order isotropic non-dispersive wave equation is the classical wave equation

with Laplacian and second-order time derivatives [2]:

B (x, t) = ρ
∂2Φ
∂t2
− T∇2Φ. (6.49)

The next isotropic non-dispersive wave equation is of fourth-order,

B (x, t) = ρ
∂4Φ
∂t4
− T∇4Φ + ν

∂2

∂t2
(
∇2Φ

)
, (6.50)

with double Laplacian, fourth-order time derivative and a cross-term with Laplacian and second-order

time derivative. The general wave theory (section 6.2) is applied to the energy flux (section 6.1) of elastic

waves in isotropic (section 6.3) and anisotropic (section 6.4) cases.

6.3 Elastic waves in crystals and amorphous matter

The elastic waves in a steady homogeneous medium are non-dispersive, with up to three modes in the

case of anisotropic matter (subsection 6.3.1) like crystals. For amorphous matter, there are two modes,

longitudinal/transversal waves, that are isotropic if considered separately (subsections 6.3.2 and 6.3.3)

and become anisotropic if superimposed (section 6.4).

6.3.1 Three elastic modes in crystals

The force balance equation (6.1) in the absence of external forces, gi = 0, for an elastic material with

stress-strain constitutive relation (6.20) becomes

∂

∂t

(
ρ
∂uj

∂t

)
= 1

2
∂

∂xr

[
Gjrpq

(
∂up

∂xq
+ ∂uq

∂xp

)]
, (6.51a)

that can be rewritten as

ρ
∂2uj

∂t2
− 1

2Gjrpq

(
∂2up

∂xr∂xq
+ ∂2uq

∂xr∂xp

)
= 1

2

(
∂up

∂xq
+ ∂uq

∂xp

)
∂Gjrpq

∂xr
− ∂ρ

∂t

∂uj

∂t
. (6.51b)

If the mass density depends on time or the stiffness double tensor depends on position, then the equation

(6.51b) has derivatives of different orders and the elastic waves are dispersive. If the mass density is

independent of time, ∂ρ/ (∂t) = 0, and the stiffness double tensor independent of position in divergence

form, ∂Gjrpq/ (∂xr) = 0, the equation (6.51b) reduces to the left-hand side with all derivatives of the
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same second-order:

ρ
∂2uj

∂t2
= 1

2Gjrpq

(
∂2up

∂xr∂xq
+ ∂2uq

∂xr∂xp

)
. (6.52)

Therefore, the elastic waves are non-dispersive.

For constant mass density, ρ = const, and constant stiffness double tensor, Gjrpq = const, the

anisotropic elastic wave equation (6.52) has plane wave solutions,

uj (x, t) = u0
jf± (n · x∓ ct) , (6.53)

in which: (i) the amplitude is constant, u0
j = const; (ii) the waveform is a twice differentiable function,

f (ϕ±) ∈ D2 (R), where the space-time dependence appears only through the phase,

ϕ± (x, t) ≡ n · x∓ ct. (6.54)

The phase (6.54) is a linear function of position vector through the wave normal, n = k/k, and a linear

function of time through the minus the phase speed, c = ω/k, so that constant phase, ϕ± (x, t) = const,

implies propagation at phase speed c along +n or opposite −n to the wave normal:

n · dx
dt = ±c, (6.55)

A sinusoidal plane wave (6.31),

uj (x, t) = u0
j exp [i (k · x∓ ωt)] , (6.56a)

is a particular case of (6.53) with a sinusoidal function,

f± (ϕ±) = exp (ikϕ±) , (6.56b)

of the phase (6.54) with wavenumber k. Since the waves are non-dispersive, the propagation is indepen-

dent of wavenumber and the sinusoidal plane wave (6.56a) can be replaced by a plane wave (6.53) with

arbitrary twice differentiable waveform, f (ϕ±) ∈ D2 (R).

Denoting by prime the total derivative with regard to the phase, f ′
± ≡ df±/ (dϕ±), it follows that the

gradient equals the product by the wave normal,

∂uj

∂xr
= u0

jf
′
±nr, (6.57a)

and the partial time derivative equals the product by the minus or plus the phase speed,

∂uj

∂t
= ∓cu0

jf
′
±. (6.57b)

Substituting the plane wave solution (6.53) in the wave equation (6.52), while using the partial derivatives
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(6.57a) and (6.57b), leads to

f ′′
±

[
ρc2u0

j −
1
2Gjrpqnr

(
nqu

0
p + npu

0
q

)]
= 0 (6.58a)

and that is equivalent to

f ′′
±u

0
p

[
ρc2δjp −

1
2nrnq (Gjrpq +Gjrqp)

]
= 0, (6.58b)

using the identity matrix δjp. A non-trivial solution, ρf ′′
±u0 ̸= 0, of the homogeneous linear system

(6.58b) requires the determinant to be zero:

det
[
c2δjp −

nrnq

2ρ (Gjrpq +Gjrqp)
]

= 0; (6.59a)

thus, the last dispersion relation is a cubic polynomial on the square of the phase speed,

3∏
s=1

{
c2 − [cs (n)]2

}
= 0, (6.59b)

whose roots are three anisotropic phase speeds, c = ±cs (n), corresponding to the frequencies

ωs± = ±k cs (n) (6.60a)

and group velocities

ws± = ∂ωs±

∂k = ±cs (n) n± ∂cs (n)
∂n ∓ nj

∂cs (n)
∂nj

n. (6.60b)

Therefore, the group velocity also lies in the wave normal direction, as in the case of isotropic waves.

The anisotropic elastic waves in a crystal (subsection 6.3.1) reduce, as particular case for isotropic or

amorphous matter, to two modes, namely longitudinal and transversal elastic waves (subsection 6.3.2).

6.3.2 Longitudinal and transversal elastic waves

Substituting in the dispersion relation (6.59a) the stiffness double tensor (6.23a) for isotropic elasticity

leads to

0 = det
[
c2δjp −

nrnq

ρ
(µδjpδrq + µδjqδrp + λδjrδpq)

]
= det

(
c2δjp −

µ

ρ
δjpnrnr −

µ+ λ

ρ
njnp

)
= det

[(
c2 − µ

ρ

)
δjp −

µ+ λ

ρ
njnp

]
. (6.61)

The x-axis is chosen along the wave normal, n = ex, and the y-axis in such a way that that the displace-

ment vector u lies in the (x, y)-plane, u = exul + eyus, so that ul is the longitudinal displacement along

the wave normal and us is the transversal displacement orthogonal to the wave normal. Substitution of

n and u in (6.61) leads to ∣∣∣∣∣∣∣∣
c2 − 2µ+λ

ρ 0

0 c2 − µ
ρ

∣∣∣∣∣∣∣∣ = 0, (6.62a)
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showing that there are two elastic waves,

(
c2 − 2µ+ λ

ρ

)(
c2 − µ

ρ

)
=
[
c2 − (cl)2

] [
c2 − (cs)2

]
= 0, (6.62b)

with longitudinal

cl ≡

√
2µ+ λ

ρ
=
√

E/ρ

1 + σ

1− σ
1− 2σ (6.62c)

and transversal

cs ≡
√
µ

ρ
=
√
E/ (2ρ)
1 + σ

(6.62d)

phase speeds in terms of Lamé moduli or equivalently, by (6.23b) and (6.23c), in terms of Young modulus

E and Poisson ratio σ, as denoted in the two last equations. The longitudinal phase speed is greater than

the transversal phase speed, cl > cs.

Instead of obtaining the longitudinal (6.62c) and transversal (6.62d) wave speeds as particular cases

of the determinant evaluated in (6.61) to (6.62b), knowing the equations (6.52) to (6.60a) of elastic waves

in crystals, they can be obtained directly from the force balance equation (6.52) with isotropic double

stiffness tensor (6.23a) leading to

ρ
∂2uj

∂t2
= µ

∂

∂xr

(
∂uj

∂xr
+ ∂ur

∂xj

)
+ λ

∂

∂xj

(
∂ur

∂xr

)
= µ

∂2uj

∂xr∂xr
+ (λ+ µ) ∂2ur

∂xj∂xr
, (6.63a)

that can be written in vector notation:

ρ
∂2u
∂t2
− µ∇2u− (λ+ µ) ∇ (∇ · u) = 0. (6.63b)

A vector field can be represented by

u = ∇ψ + ∇ ∧ h = ul + us (6.64)

where: (i) the first term represents a longitudinal displacement, ul ≡∇ψ, without rotation,

∇ ∧ ul = 0, (6.65a)

that accounts for the dilatation,

∇ · ul = ∇ · u; (6.65b)

(ii) the second term represents a transversal displacement, us ≡∇ ∧ h, without dilatation,

∇ · us = 0, (6.66a)

that accounts for the rotation,

∇ ∧ us = ∇ ∧ u. (6.66b)

The longitudinal, ul, and transversal, us, displacements lead to separate wave equations as shown next.

151



Using the identity ∇2u = ∇ (∇ · u)−∇ ∧ (∇ ∧ u), the force balance (6.63b) is rewritten as

ρ
∂2u
∂t2
− (2µ+ λ) ∇ (∇ · u) + µ∇ ∧ (∇ ∧ u) = 0. (6.67)

Substituting (6.64), while using the properties (6.65a) and (6.66a), lead to

∂2ul

∂t2
− 2µ+ λ

ρ
∇
(
∇ · ul) = −µ

ρ
∇ ∧ (∇ ∧ us)− ∂2us

∂t2
= 0. (6.68a)

Since the right-hand and left-hand sides of (6.68a) are vectors that are orthogonal to each other, the

equality is possible only if both sides vanish, as stated in the last equality. This leads to the longitudinal,

∂2ul

∂t2
= 2µ+ λ

ρ
∇
(
∇ · ul) = 2µ+ λ

ρ
∇2ul = (cl)2 ∇2ul, (6.68b)

and transversal,
∂2us

∂t2
= −µ

ρ
∇ ∧ (∇ ∧ us) = µ

ρ
∇2us = (cs)2 ∇2us, (6.68c)

wave equations that are classical wave equations with the longitudinal (6.62c) and transversal (6.62d)

phase speeds respectively. The longitudinal and transversal elastic waves considered separately are

isotropic non-dispersive (subsection 6.3.3), but their superposition, while remaining non-dispersive is

anisotropic (section 6.4) because the differential equation (6.67) is not a classical wave equation.

6.3.3 Energy balance for longitudinal and transversal waves

Both the longitudinal (6.68b) and transversal (6.68c) elastic wave equations have, by (6.53), plane

wave solutions in a steady homogeneous medium, {ρ, λ, µ} = const, respectively given by

ul (x, t) = u0lf±l (n · x∓ clt) , (6.69a)

us (x, t) = u0sf±s (n · x∓ cst) , (6.69b)

with: (i) constant amplitude since u0l = const and u0s = const; (ii) waveform as a twice differentiable

function, then f±l
(
ϕl

±
)
∈ D2 (R) and f±s

(
ϕs

±
)
∈ D2 (R); (iii) phase differing only on the phase speed,

that is,

ϕl
± (x, t) = n · x∓ clt, (6.70a)

ϕs
± (x, t) = n · x∓ cst, (6.70b)

and with the same unit wave normal vector, n · n = 1, which is parallel to the longitudinal displacement

for the longitudinal waves,

n · ul = ul, (6.71a)
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whose its amplitude satisfies n ·u0l = u0l, and orthogonal to the transversal displacement for the transver-

sal waves,

n · us = 0, (6.71b)

whose its amplitude satisfies n · u0s = 0.

The kinetic energy (6.3) is given for longitudinal waves, regarding (6.69a) and (6.62c), by

2Ekl = ρ

(
∂ul

∂t
· ∂ul

∂t

)
= ρ

(
u0lf ′

±lcl
)2 = (2µ+ λ)

(
u0lf ′

±l
)2
. (6.72)

For transversal waves, considering (6.69b) and (6.62d), it is equal to

2Eks = ρ

(
∂us

∂t
· ∂us

∂t

)
= ρ

(
u0sf ′

±scs
)2 = µ

(
u0sf ′

±s
)2
. (6.73)

For transversal waves, knowing (6.66a), the elastic energy in (6.25) involves only the first term on the

right-hand side of the last equality,

2Eus = µ

2

(
∂us

j

∂xr
+ ∂us

r

∂xj

)2

= µ

2
(
f ′

±s
)2 (

u0s
j nr + u0s

r nj

)2 = µ

2
(
f ′

±s
)2 (

u0s
j nr + u0s

r nj

) (
u0s

j nr + u0s
r nj

)
= µ

(
f ′

±s
)2 (

u0s
j u

0s
j nrnr + u0s

j nju
0s
r nr

)
= µ

(
u0sf ′

±s
)2 = 2Eks, (6.74)

and equals the kinetic energy (6.73) of transversal waves. For the elastic energy of longitudinal waves,

the first term on the right-hand side in the last equality of (6.25) is evaluated as in the previous relations

and the second term added,

2Eul = µ

2

(
∂ul

j

∂xr
+ ∂ul

r

∂xj

)2

+ λ

(
∂ul

j

∂xj

)2

=
(
f ′

±l
)2
[
µ
(
u0l

j u
0l
j nrnr + u0l

j nju
0l
r nr

)
+ λ

(
u0l

j nj

)2]
= (2µ+ λ)

(
u0lf ′

±l
)2 = 2Ekl, (6.75)

with the result being equal to the kinetic energy (6.72) of longitudinal waves.

The energy flux for transversal waves (6.69b) is specified by the first term on the right-hand side of

the second equality in (6.26):

F s
r = −µ

∂us
j

∂t

(
∂us

j

∂xr
+ ∂us

r

∂xj

)
= ±µcs

(
f ′

±s
)2 (

u0s
j nr + u0s

r nj

)
u0s

j = ±µcs
(
u0sf ′

±s
)2
nr. (6.76)

The energy flux for longitudinal waves (6.69a) adds the second term on the right-hand side of the second

equality in (6.26):

F l
r = −µ

∂ul
j

∂t

(
∂ul

j

∂xr
+ ∂ul

r

∂xj

)
− λ∂u

l
r

∂t

∂ul
j

∂xj

= ±
(
f ′

±l
)2
cl
[
λu0l

r u
0l
j nj + µu0l

j

(
u0l

j nr + u0l
r nj

)]
= ± (λ+ 2µ) cl

(
u0lf ′

±l
)2
nr. (6.77)

For longitudinal waves, the elastic energy (6.75) equals the kinetic energy (6.72) and thus the total
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energy, that is their sum, equals twice either of them leading to

El = Ekl + Eul = 2Ekl = 2Eul = (2µ+ λ)
(
u0lf ′

±l
)2
. (6.78)

The energy flux for longitudinal waves (6.77) equals the energy density (6.78) multiplied by longitudinal

phase speed (6.62c) along or opposite to the wave normal,

Fl = ±clE
ln = ±Elwl, (6.79)

corresponding to the longitudinal group velocity, wl = cln.

For transversal waves, the elastic energy (6.74) also equals the kinetic energy (6.73) and the total

energy, that is their sum, is twice either of them being equal to

Es = Eks + Eus = 2Eks = 2Eus = µ
(
u0sf ′

±s
)2
. (6.80)

The energy flux of transversal waves (6.76) equals the energy density (6.80) multiplied by the transversal

phase speed (6.62d) along or opposite to the wave normal,

Fs = ±Escsn = ±Esws, (6.81)

corresponding to the transversal group velocity, ws = csn.

The longitudinal total energy density (6.78) and energy flux (6.79) satisfy, through (6.8d), the energy

conservation equation,
∂El

∂t
+ ∇ · Fl = Ẇ l, (6.82a)

while the transversal total energy density (6.80) and energy flux (6.81) satisfy, also through (6.8d), the

energy conservation equation,
∂Es

∂t
+ ∇ · Fs = Ẇ s, (6.82b)

both splitting the power (6.8b) of external applied forces,

Ẇ = g ·
(
∂ul

∂t
+ ∂us

∂t

)
= Ẇ l + Ẇ s, (6.83a)

into longitudinal and transversal contributions, respectively

{
Ẇ l, Ẇ s} =

{
g · ∂ul

∂t
,g · ∂us

∂t

}
. (6.83b)

In the absence of external force, g = 0, as assumed for free or unforced waves in (6.51a), the right-hand

sides of (6.82a) and (6.82b) are zero, Ẇ l = 0 = Ẇ s. The energy balance for separate longitudinal waves,

given by (6.82a), (6.78) and (6.79), and transversal waves, given by (6.82b), (6.80) and (6.81), must be

reconsidered for their superposition (section 6.4) that leads to anisotropic waves, because the classical

wave equation, given respectively by (6.68b) and (6.68c), is replaced by (6.63b) or equivalently (6.67).
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6.4 Superposition of longitudinal and transversal waves

The superposition of longitudinal and transversal waves adds: (i) the kinetic and elastic energies (sub-

section 6.4.1) and hence the total energies; (ii) the power of external forces (subsection 6.4.2). However,

the total energy flux does not lie along the wave normal because the superposition of longitudinal and

transversal waves, with different phase speeds, is anisotropic. Since longitudinal and transversal waves

separately are isotropic and have an energy flux along the wave normal, their superposition leads to the

appearance of a coupling energy flux (subsection 6.4.3) transverse to the wave normal, and hence with

zero divergence, that does not affect the total energy balance (subsection 6.4.3).

6.4.1 Kinetic and elastic energy densities

Since the longitudinal displacement is parallel to the wave normal as stated in (6.71a) and the trans-

verse displacement is orthogonal to the wave normal as stated in (6.71b), the two displacements are

orthogonal to each other, ul · us = 0 = u0l · u0s, and the total kinetic energy (6.3) is the sum of the

longitudinal (6.72) and transversal (6.73) kinetic energies:

Ek = ρ

2

(
∂u
∂t
· ∂u
∂t

)
= ρ

2

(
∂ul

∂t
+ ∂us

∂t

)
·
(
∂ul

∂t
+ ∂us

∂t

)
= ρ

2
∣∣∓clu0lf ′

±l ∓ csu0sf ′
±s
∣∣2

= ρ

2
(
clu

0lf ′
±l
)2 +

(
csu

0sf ′
±s
)2 + ρclcsf

′
±lf

′
±s
(
u0l · u0s) = Ekl + Eks. (6.84)

Concerning the elastic energy (6.4) for an isotropic elastic medium (6.25), the second term on the

right-hand side, knowing the property (6.65b), involves only the longitudinal displacement,

λ (∇ · u)2 = λ
(
∇ · ul)2 = λ

(
nju

0l
j f

′
±l
)2 = λ

(
u0lf ′

±l
)2
, (6.85)

and the first term involves both longitudinal and transversal displacements. The expression

∂uj

∂xr
+ ∂ur

∂xj
=
∂ul

j

∂xr
+ ∂ul

r

∂xj
+
∂us

j

∂xr
+ ∂us

r

∂xj
= f ′

±l
(
u0l

j nr + u0l
r nj

)
+ f ′

±s
(
u0s

j nr + u0s
r nj

)
(6.86a)

appears to the square in the first term on the right-hand side of the second equality in the elastic energy,

presented in the equation (6.25):

(
∂uj

∂xr
+ ∂ur

∂xj

)2
=
(
f ′

±l
)2 (

u0l
j nr + u0l

r nj

)2 +
(
f ′

±s
)2 (

u0s
j nr + u0s

r nj

)2

+ 2f ′
±lf

′
±s
[(
u0l

j nr + u0l
r nj

) (
u0s

j nr + u0s
r nj

)]
. (6.86b)

The cross-term between longitudinal and transversal displacements in square brackets on the right-hand

side of (6.86b) is zero:

u0l
j nru

0s
j nr + u0l

j u
0s
r nrnj + u0l

r u
0s
j njnr + u0l

r u
0s
r njnj = 2

(
u0l · u0s)+ 2

(
u0l · n

) (
u0s · n

)
= 0, (6.86c)
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and thus on the right-hand side of (6.86b) only remain the separate terms for the longitudinal and

transversal waves. To evaluate the terms of longitudinal waves, the equation (6.86c) is used with the

substitution s→ l in all the terms; to evaluate the terms of transversal waves, the equation (6.86c) is used

again, but making the substitution l→ s. With this calculations, the equation (6.86b) reduces further to

(
∂uj

∂xr
+ ∂ur

∂xj

)2
= 4

(
u0lf ′

±l
)2 + 2

(
u0sf ′

±s
)2
. (6.86d)

Substituting (6.86d) in the first term on the right-hand side of the second equality in (6.25) and us-

ing (6.85) in the second term specify the total elastic energy as the sum of the elastic energies of the

longitudinal (6.75) and transversal (6.74) waves:

Eu =
(
µ+ λ

2

)(
u0lf ′

±l
)2 + µ

2
(
u0sf ′

±s
)2 = Eul + Eus. (6.87)

Thus, the total kinetic plus elastic energy (6.7) is the sum, regarding (6.84) and (6.87), of the total

kinetic and elastic energies,

E = Ek + Eu = Ekl + Eks + Eul + Eus = El + Es, (6.88)

or of the total longitudinal (6.78) and transversal (6.80) waves. The power of external applied forces

(6.83a) is also the sum of the contributions of longitudinal and transversal waves. The comparison of the

total energy balance (subsection 6.4.2) with the energy balances for longitudinal (subsection 6.3.2) and

transversal (subsection 6.3.3) waves shows that the total energy flux is not the sum of the energy fluxes

for longitudinal and transversal waves because there is a coupling cross-flux term when both are present.

6.4.2 Longitudinal, transversal and total energy balances

In the total energy balance (6.8d),

∂E

∂t
− Ẇ = −∇ · F, (6.89a)

the energy density (6.88) and power of external forces (6.83a) are the sum of contributions of longitudinal

and transversal waves without cross-terms:

∂El

∂t
− Ẇ l + ∂Es

∂t
− Ẇ s = −∇ · F. (6.89b)

Substituting the energy balances for longitudinal (6.82a) and transversal (6.82b) waves leads to 0 =

∇ ·
(
F− Fl − Fs) = ∇ · Fsl, showing that the difference between the total energy flux of superimposed

longitudinal with transversal waves and the energy flux of separate longitudinal with transversal waves

must have zero divergence. This implies that the cross-coupling energy flux must be transversal to the

wave normal, n · Fsl = 0.

Since both the longitudinal (6.68b) and transversal (6.68c) waves satisfy the classical wave equation
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(6.48), the waves are isotropic non-dispersive and their energy fluxes, given respectively by (6.77) and

(6.76), lie along the wave normal:

Fl ∧ n = 0 = Fs ∧ n. (6.90)

The superposition of longitudinal and transversal waves satisfies a wave equation (6.63b) or (6.67) that:

(i) has all space-time derivatives of the same second-order, so the waves are not dispersive; (ii) not all

spatial derivatives appear in the Laplacian, and thus the superposition of longitudinal and transversal

waves is anisotropic because they propagate at different phase speeds, given by (6.62c) and (6.62d). Thus,

the total energy flux does not lie along the wave normal:

F ∧ n ̸= 0. (6.91)

From (6.90) and (6.91), it follows that a cross-coupling energy flux between longitudinal and transversal

waves must exist,

0 ̸= n ∧
(
F− Fl − Fs) = n ∧ Fsl, (6.92)

and it is transverse to the wave normal.

The total energy flux consists of the energy fluxes of longitudinal (6.79) plus transversal (6.81) plus

cross-coupling terms:

F = Fl + Fs + Fsl. (6.93a)

The total group velocity is obtained dividing the energy flux (6.93a) by the energy density (6.88):

w = F
E

= Fl + Fs + Fsl

El + Es . (6.93b)

Considering longitudinal and transversal waves propagating in the same direction, both along +n or

opposite −n to the wave normal, the group velocity is given by:

w = ±nclE
l + csE

s

El + Es + Fsl

El + Es . (6.93c)

In order to specify completely the group or energy velocity (6.93c), the cross-coupling energy flux be-

tween longitudinal and transversal waves is calculated explicitly (subsection 6.4.3), confirming that it is

transversal to the direction of propagation (6.92) and hence has zero divergence.

6.4.3 Cross-coupling longitudinal-transversal energy flux

The total energy flux is given for an isotropic elastic material by (6.26) and the second-term on the

right-hand side is

−λ (∇ · u) ∂ur

∂t
= −λ

(
∇ · ul)(∂ul

r

∂t
+ ∂us

r

∂t

)
= ±λu0lf ′

±l
(
clu

0l
r f

′
±l + csu

0s
r f

′
±s
)

(6.94)

where: (i) the first term on the last equality of (6.94) appears in the longitudinal energy flux (6.77); (ii)

the second term is a cross-coupling of longitudinal and transversal waves. The remaining term of the
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total energy flux (6.26) is

−µ∂uj

∂t

(
∂uj

∂xr
+ ∂ur

∂xj

)
= ±µ

(
clu

0l
j f

′
±l + csu

0s
j f

′
±s
) [
f ′

±l
(
u0l

j nr + u0l
r nj

)
+ f ′

±s
(
u0s

j nr + u0s
r nj

)]
, (6.95)

that consists of three terms. The term for longitudinal waves,

±µcl
(
f ′

±l
)2 (

u0l
j u

0l
j nr + u0l

r u
0l
j nj

)
= ±2µcl

(
u0lf ′

±l
)2
nr, (6.96)

appears in the last equality of (6.77); thus, the sum of (6.96) and the first term on the right-hand side

of the last equality in (6.94) accounts for the energy flux of longitudinal waves. The second term on the

right-hand side of (6.95) corresponding to transversal waves,

±µcs
(
f ′

±s
)2
u0s

j

(
u0s

j nr + u0s
r nj

)
= ±µcs

(
u0sf ′

±s
)2
nr, (6.97)

is the energy flux of transversal waves (6.76). The remaining third cross-term on the right-hand side of

(6.95) simplifies to

± µf ′
±lf

′
±s
[
clu

0l
j

(
u0s

j nr + u0s
r nj

)
+ csu

0s
j

(
u0l

j nr + u0l
r nj

)]
= ±µf ′

±lf
′
±s
[
(cl + cs)

(
u0l · u0s)nr + clu

0s
r

(
u0l · n

)
+ csu

0l
r

(
u0s · n

)]
= ±µf ′

±lf
′
±sclu

0lu0s
r . (6.98)

Thus, the cross-coupling flux between the longitudinal and transversal waves is given by the sum of (6.98)

with the second term on the right-hand side of (6.94):

F sl
r = ± (csλ+ clµ) f ′

±lf
′
±su

0lu0s
r . (6.99)

Using the formulas

∂us

∂t
= ∓csf

′
±su0s, (6.100a)

∇ · ul = nrf
′
±lu

0l
r = f ′

±lu0l · n = f ′
±lu

0l (6.100b)

in (6.99) leads to the cross-coupling energy flux between longitudinal and transversal waves that can be

written in vector notation,

Fsl = −
(
λ+ cl

cs
µ

)(
∇ · ul) ∂us

∂t
, (6.101a)

as the product of: (i) the dilatation that is non-zero if and only if longitudinal waves are present; (ii) the

velocity of transverse waves, that confirms that the cross-flux is transversal since

Fsl · n = −
(
λ+ cl

cs
µ

)(
∇ · ul) ∂

∂t
(us · n) = 0, (6.101b)
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in agreement with the orthogonality between energy flux and wave normal; (iii) the factor

−ϑ ≡ −
(
λ+ cl

cs
µ

)
= −λ− µ

√
2 + λ

µ
= −ρ

(
c2

l + clcs − 2c2
s
)
, (6.101c)

relating to the longitudinal (6.62c) and transversal (6.62d) phase speeds. The divergence of the cross-flux

(6.101a) is zero,

∇ · Fsl = −ϑ
[(

∇ · ul) ∂
∂t

(∇ · us) +
(
∂us

∂t
·∇
)(

∇ · ul)] = 0, (6.102)

confirming that the divergence is zero. Substitution of (6.77), (6.76) and (6.99) in (6.93a) specifies the

total energy flux of longitudinal plus transversal waves in an isotropic elastic medium in terms of Lamé

moduli and wave speeds,

F = Fl + Fs + Fsl = ±
[
(λ+ 2µ) cl

(
u0lf ′

±l
)2 + µcs

(
u0sf ′

±s
)2
]

n± (csλ+ clµ) f ′
±lf

′
±su

0lu0s, (6.103a)

or using (6.62c) and (6.62d) in terms of only wave speeds and mass density,

F = ±ρ
[
c3

l
(
u0lf ′

±l
)2 + c3

s
(
u0sf ′

±s
)2
]

n± ρcs
[
cl (cl + cs)− 2c2

s
]
f ′

±lf
′
±su

0lu0s. (6.103b)

In the case of sinusoidal waves (6.56b), the derivative of the wave forms with regard to the phase is specified

by the wavenumber, that is, f ′
±l = ikf±l and f ′

±s = ikf±s, implying
(
f ′

±l
)2 = −k2f2

±l = −k2 exp
(
2ikϕl

±
)

and
(
f ′

±s
)2 = −k2f2

±s = −k2 exp
(
2ikϕs

±
)
. The energy flux, considering the equations (6.103a) and

(6.103b), is given by

F = ∓ρk2
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u0l)2 exp

(
2ikϕl

±
)

+ µcs
(
u0s)2 exp

(
2ikϕl

±
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}
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u0l)2 exp

(
2ikϕl

±
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u0s)2 exp

(
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n

+ cs
[
cl (cl + cs)− 2c2

s
]
u0l exp

[
ik
(
ϕl

± + ϕs
±
)]

u0s
}
. (6.104)

Among its multiple possible applications in elastodynamics, the conclusion (section 6.5) mentions impact

damage associated with wave generation and propagation.

6.5 Main conclusions of the chapter 6

The energy flux is a fundamental concept in elastodynamics as it specifies the energy transport across

an elastic (or inelastic) body. As a simple example, consider a parallel-sided plate subject to the impact

of a projectile or a similar type of impact that generates waves. In the case of elastic waves propagating

perpendicular to the plate: (i) the longitudinal waves can cause “spalling” or deformation of material on

the side opposite to the impact; (ii) the transversal waves cause shear between the two sides and may

lead to cracks that can open further under fatigue loads; (iii) if the longitudinal and transversal waves

coexist, and even if they propagate normal to the sides of the plate, there is a cross energy flux parallel

159



to the sides of the plates implying a lateral spread of strains and stresses. The preceding example is

just a simple particular case of the energy flux associated with any unsteady deformation of an elastic or

inelastic material.

In general, the energy flux appears in the energy balance (6.8d), together with the power (6.8b) of

external forces (6.1) and the energy density (6.7). The energy density consists of the sum of kinetic

(6.2) and deformation (6.4) energies. The energy flux (6.8e) equals the contracted product of minus

the velocity by the stress tensor, with the assumption of linear strains (6.5). The energy flux for the

transverse vibrations of an elastic string (6.13) or membrane (6.16b) in the linear case, respectively

[∂ζ/ (∂x)]2 ≪ 1 and (6.16a), can be extended to the non-linear case of unrestricted slope, by (6.12) and

(6.15b) respectively. The energy flux in elasticity (6.22) is related to the spatial and temporal derivatives

of the displacement vector through the stiffness double-tensor for anisotropic matter (6.17b), leading to

three types of elastic waves (6.56a) in crystals, given in the relations from (6.59a) to (6.60b). In the case

of isotropic elasticity, (6.23a) to (6.23c), there are longitudinal (6.68b) and transversal (6.68c) waves that

can be superimposed (6.64) to (6.66b), equivalently in (6.63b) or (6.67).

Concerning the general properties of linear waves in steady homogeneous media that are described

by linear partial differential equations with constant coefficients (6.30a) and (6.30b), they represent:

(i) isotropic waves, propagating equally in all directions, if and only if all spatial derivatives appear as

Laplacians (6.37b); (ii) non-dispersive waves, propagating at the same speed for all wavelengths, thus

retaining the permanent waveform of a wave packet, if and only if all derivatives are of the same order

(6.44). It follows that: (i) if there are spatial derivatives outside Laplacians, the waves are anisotropic;

(ii) if there are derivatives of different orders, the waves are dispersive. Thus, it is possible by inspection

of the wave equation, with no need to solve it, to ascertain if the waves are (i) isotropic or anisotropic

and (ii) dispersive or not. Concerning the elastic wave equation in a homogeneous steady medium, all

space and time derivatives are of second order (6.52). Therefore elastic waves are anisotropic and non-

dispersive, both in crystals and amorphous matter. In the case of inhomogeneous or unsteady media, the

elastic waves (6.51b) are dispersive and anisotropic.

In isotropic elasticity, the wave equation for: (i) separate longitudinal (6.68b) and transversal (6.68c)

waves involves only Laplacians, and hence the waves are isotropic; (ii) the superposition of longitudinal

and transversal waves (6.63b) involves spatial derivatives other than Laplacians, and hence the waves

are anisotropic. The anisotropy is a consequence of longitudinal waves travelling faster than transversal

waves in any direction. The anisotropy of the superposition of longitudinal and transversal waves: (i)

does not prevent the power (6.83a) and (6.83b) and the energy density (6.88) from adding together; (ii)

implies that the sum of energy fluxes, that lie in the wave normal direction for isotropic waves, cannot

equal the total energy flux, that does not lie in the wave normal direction for anisotropic waves. Thus,

the total energy flux of the superposition of longitudinal and transversal waves (6.103a) consists of: (i-ii)

the sum of the energy fluxes of separate longitudinal (6.79) and transversal waves (6.81) that lie in the

wave normal direction; (iii) plus a cross-coupling flux (6.99) involving the product of the dilatation of

longitudinal waves by the velocity of transversal waves (6.101a).
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7 | Alfvén wave propagation along a

circle using dipolar coordinates

“It is with logic that one proves; it is with intuition that one invents.”

— Henri Poincaré

Contents
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A general magnetic field due to an arbitrary steady distribution of electric charges [24] leads to a vector

Poisson equation, whose solution is a multipolar expansion [169, 170]. The multipolar expansion

extends to electromagnetic waves due to unsteady electric charges and currents as a solution of the forced

wave equation [25]. Since the multipolar expansion is considered only for the background magnetic field,

the steady case [130] is reconsidered briefly (see appendix C), showing that the higher-order terms are

important in the near field. In contrast, the far field is dominated by the lowest-order term, which decays

more slowly, like a dipole [39]. For this reason, the simplest far-field model of the magnetic field of the

Earth, Sun and other celestial bodies is a magnetic dipole. The monopole that exists for an irrotational

field cannot exist for solenoidal fields because it does not meet the conservation of magnetic flux across

a closed surface unless a split monopole is used. The dipolar magnetic far field of most celestial bodies

permeates a plasma, like the ionosphere of the Earth or the atmosphere of the Sun and other stars. A

plasma can support Alfvén waves [128, 171–175] that are transverse hydromagnetic motions propagating

along magnetic field lines. This motivates the study of Alfvén waves propagating along the field lines of a

magnetic dipole, using a new orthogonal curvilinear coordinate system: dipolar coordinates. Conformal

coordinates are specified by the real and imaginary parts of a complex analytic function; it follows

immediately that they are a plane orthogonal coordinate system with equal scale factors along the two

(generally curvilinear) coordinate axes. It can be readily shown that the common scale factor is the

modulus of the inverse of the derivative of the function. Among the conformal coordinates, only four
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allow separation of variables in the two-dimensional Laplace operator, namely [19]: Cartesian, polar,

parabolic and confocal. Besides these four best known plane orthogonal coordinate systems, there are

many others, e.g. every analytic function specifies one. An example is spiral coordinates [176], and in

the present chapter, another example is considered, viz. multipolar coordinates (see section 7.1.1).

A particular case is dipolar coordinates (see section 7.1.2) for which the two sets of coordinate curves

(figure 7.1) are circles with the centre on one coordinate axis and tangent to the other. These coordinate

systems are particularly convenient for problems for which quantities vary only along one of the coordinate

curves, e.g. Alfvén waves propagating along a spiral [176], as relevant to the magnetic field in the solar

wind, or along a circle (see section 7.2.1), as appropriate to the Earth’s dipolar magnetic field (see section

7.1.3), in the present chapter. The exact analytical solution of the Alfvén wave equation in conformal

coordinates depends on the scale factor and is distinct for different coordinate systems; for example,

the propagation along a logarithmic spiral is specified by Bessel functions, whereas in the present case of

propagation along a circle an extended form of the Gaussian hypergeometric function is needed (see section

7.2.2). The original Gaussian hypergeometric differential equation has three regular singularities [132];

however, in the present case, an extended form appears for which one of the singularities is irregular. The

extended Gaussian hypergeometric differential equation has series solutions, whose recurrence formulas

for the coefficients are less straightforward than the original; using these solutions, the velocity and

magnetic field perturbations spectra of the Alfvén waves (see section 7.3.1) are computed and plotted

(figures 7.3 to 7.6) for several values of the dimensionless frequency (see section 7.4) which is the only

parameter in the problem.

In terms of mathematical complexity, Alfvén waves propagating along a circle are one echelon above

the cases solvable using (I) elementary functions, (II) Bessel functions and (III) Gaussian hypergeometric

functions. The first class (I) of problems, solvable in terms of elementary functions, concerns non-

dissipative [172, 177, 178] and dissipative [171, 173, 174, 179] Alfvén waves in homogeneous media, for

which the wave speed and diffusivities are constant. The second class (II) of problems, solvable in terms

of Bessel functions, includes Alfvén waves in an isothermal atmosphere, under a uniform background

magnetic field [128, 175, 180–182], as well as extensions to include displacement [183] and Hall [184]

currents; other cases include Alfvén waves in a linear temperature gradient [185], and spherical Alfvén

waves [186]. The third class (III) of problems, solvable using Gaussian hypergeometric functions, concerns

Alfvén waves with a critical layer, viz. due to the Hall effect [187], and viscous and resistive dissipation

[188–190]. Other methods have been used to study Alfvén waves in a non-uniform background magnetic

field [191, 192], in moving media [193–195] and in the presence of viscous and resistive dissipation [196,

197].

The theoretical developments of Alfvén waves can be fundamental to understanding some features

taking place in the Earth’s magnetosphere. Plasma turbulence exists in space and astrophysical plasmas

under some conditions [198]. Therefore the study of magnetic field fluctuations is important because

they influence the dynamics of the Earth’s magnetosphere, the energy and mass inflows from the solar

wind to the magnetosphere and, at the atomic scale, the heating and acceleration of particles. The solar

wind influences the plasma processes within the magnetosheath and this research topic is significant to
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Figure 7.1: The dipolar coordinates in the plane have, for coordinate curves, circles with centres in one
axis tangent to the other axis forming two families of orthogonal curves with the same conformal scale
factor.

understanding the plasma turbulence close to the Earth. Several researchers undertook a comparison be-

tween experimental results and simulations. For instance, in work by [199], the measurement of magnetic

field turbulence spectra in the magnetosheath region of the Earth, obtained by the Cluster-1 magnetome-

ter [200] and the Cluster Ion Spectroscopy experiment [201], are compared with the numerical results

obtained by the two-fluid model and the dynamical equations of kinetic Alfvén waves to research the

turbulent dynamics of the magnetosheath plasma using spectral analysis of magnetic field fluctuations.

Otherwise, the nonlinear kinetic Alfvén waves can describe the nature of small-scale turbulence. The

processes of particles acceleration at the Earth’s bow shock and Alfvén wave generation by accelerated

particles are also investigated in several research articles [202, 203], by comparing calculated spectra of

accelerated ions with the experimentally observed spectra of accelerated ions [204]. These processes are

accompanied by a significant increase in the level of turbulence induced by Alfvén waves. Therefore

a consistent description must include the generation of these waves by accelerated ions. For instance,

the paper by [205] shows that using a refined growth rate of the Alfvén waves excited by accelerated

particles based on results from [206] yields that, while the equilibrium state is approached, the amplitude
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of Alfvén waves increases monotonically. The comparison between the calculated accelerated ions and

Alfvénic turbulence spectra with the measurements shows that the theory agrees well with the main

features observed in experiments.

There is conjointly an enormous quantity of research devoted to studying the problem of determining

a relationship between the field of Alfvén waves and electromagnetic oscillations on the Earth’s ground.

A theoretical treatment of the penetration of the Alfvén wave field from the magnetosphere to the

ground through the ionosphere and atmosphere is formed in several articles [207, 208]. The ionospheric

effects in the Alfvén wave penetration method are also explained briefly in these papers since they act

to drive currents within the ionospheric layer which are associated with magnet sound waves inducing

the pulsations on the ground. These effects act differently depending on the frequency of the waves.

Particularly, in work by [209], the boundary conditions on the ionosphere for standing Alfvén waves and

the analytical expressions to describe the field of electromagnetic oscillations induced on the terrestrial

surface by the same waves in the magnetosphere have been obtained. It was also concluded that the

process of penetration to the ground of the poloidal part of the electromagnetic field originated from the

magnetospheric Alfvén oscillations is induced mainly by the Pedersen conductivity of the ionosphere. A

numerical model, used by [210], of the magnetospheric Alfvén wave interaction with the ionosphere and

penetration to the ground based on the solution of multi-fluid magnetohydrodynamic full-wave equations

in a realistic ionosphere was developed. This model predicts that the upper part of the Pc1 spectrum

(approximately 0.2 to 5 Hz) is severely absorbed upon wave transmission through the daytime ionosphere

to the ground. At night time, the transmission coefficient of Alfvén waves has an oscillatory dependence

on frequency. Moreover, modelling the ground signatures of waves externally generated in the outer

magnetosphere, such as Pc1 oscillations, is complicated because the electromagnetic skin depth [211]

is comparable to the ionospheric thickness and, consequently, resolving the vertical structure of the

ionosphere is necessary. Furthermore, the Hall conductivity and shear Alfvén waves in the ionosphere are

coupled to compressional mode waves that can propagate across field lines. In the model developed by

[212], the interactions of Alfvén waves can be described in the 1 Hz frequency band with the ionosphere.

These interactions can determine the ground observations of Pc1 oscillations not only on the field lines

on which they are generated but also as they propagate horizontally through the ionospheric waveguide.

A strong point in that model is the ability to determine the ground magnetic field produced by a model

run and compare these fields with those produced on the ground. Some well-known results, such as

the “Hughes rotation” of the magnetic field, the production of 1 Hz waves by the inhomogeneity of

the ionosphere and the ducting of compressional waves through an ionospheric waveguide, have been

reproduced by the model.

These works prove, therefore, that developing mathematical models that can describe the propaga-

tion of the Alfvén waves can be useful to prove some experimental results provided by observations on

the ground and this chapter, therefore, intends to construct a model that describes the Alfvén waves

propagating along a dipolar magnetic field.
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7.1 Conformal coordinates and atmospheric equilibrium

Among the conformal coordinates (see section 7.1.1), the dipolar coordinates are chosen (see section

7.1.2). The atmospheric equilibrium is also adopted (see section 7.1.3) as a preliminary to the consider-

ation of Alfvén wave propagation.

7.1.1 Conformal coordinates and equal scale factors

Conformal coordinates (α, β) are specified by the real and the imaginary conjugate parts of a complex

function w,

α− iβ ≡ w = f(z), (7.1)

which specifies its relation with Cartesian (x, y) or polar (r, θ) coordinates,

z = x+ iy = reiθ. (7.2)

If the function is analytic, dw = df (dz)−1 dz, then the arclength (dl)2 = |dz|2 = |df/ (dz)|−2 |dw|2

is given by

(dl)2 = s2 [(dα)2 + (dβ)2] (7.3)

which shows that the conformal coordinate system is orthogonal (no dαdβ term) and the scale factor s

is the same along both coordinate axes,

s ≡
∣∣∣∣dfdz

∣∣∣∣−1
=
∣∣∣∣dwdz

∣∣∣∣−1
, (7.4)

and equal to the modulus of the inverse of the function’s derivative.

As an example, reconsider spiral coordinates [176] which can be specified by the complex function

w = (1 + ik) log z (7.5)

where k is a constant. It follows from α = log r − kθ and −β = k log r + θ that coordinate curves of α

and β are logarithmic spirals,

1
r

(
dr
dθ

)
α

= k ≡ cotϕ, (7.6a)

1
r

(
dr
dθ

)
β

= −1
k

= − tanϕ = cot
(
ϕ+ π

2

)
, (7.6b)

making a constant angle, respectively ϕ ≡ arctan(1/k) and π/2 + ϕ, with every radial line. The scale

factor is given by (7.4) and (7.5), viz.

s =
∣∣∣∣ z

1 + ik

∣∣∣∣ = r√
1 + k2

, (7.7)

165



or using the inverse coordinate transformation,

r = exp
(
α− kβ
1 + k2

)
, (7.8a)

θ = −β + kα

1 + k2 , (7.8b)

the scale factor is given by

s =
∣∣1 + k2∣∣−1/2 exp

(
α− kβ
1 + k2

)
. (7.9)

This result could have been obtained by substituting the expressions of r and θ in the arclength in polar

coordinates,

(dl)2 = (dr)2 + r2(dθ)2, (7.10)

and then showing it takes the form (7.3) with s given by (7.9).

As another example, consider multipolar coordinates, which are specified by w = z−n, with n an

integer. They relate (7.1) and (7.2) to polar coordinates by

α = r−n cos(nθ), (7.11a)

β = r−n sin(nθ), (7.11b)

whose inverse is

r =
(
α2 + β2)−1/(2n)

, (7.12a)

θ = 1
n

arctan
(
β

α

)
. (7.12b)

The scale factor is s =
∣∣−nz−n−1

∣∣−1 = n−1rn+1 or, using (7.12a),

s = 1
n

(
α2 + β2)−1/2−1/(2n)

. (7.13)

This result could also be obtained by substituting both equations of (7.12) in (7.10), and writing it in

the form (7.3) to show that the scale factors are given by (7.13).

7.1.2 Plane dipolar coordinates

Further consideration is given to the particular case n = 1 of multipolar coordinates, w = z−1. Using

(7.1) and (7.2), the transformation from polar (r, θ) to dipolar (α, β) coordinates is

α = 1
r

cos θ, (7.14a)

β = 1
r

sin θ (7.14b)
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and the inverse transformation from dipolar to polar coordinates is

r = 1
|α2 + β2|1/2 , (7.16a)

θ = arctan
(
β

α

)
. (7.16b)

The scale factor is

s =
∣∣∣∣d(1/z)

dz

∣∣∣∣−1
=
∣∣z2∣∣ = r2 (7.17a)

in polar coordinates and

s = 1
α2 + β2 (7.17b)

in dipolar coordinates, leading to

(dl)2 = (dα)2 + (dβ)2

(α2 + β2)2 (7.18)

as the dipolar arc element, according to (7.3).

The α coordinate curve α = r−1 cos θ = const is a circle (figure 7.1) with centre on the OX axis at

(1/(2α), 0) and radius R/2 = 1/(2α) such that it is tangent to the OY axis at the origin, id est (i.e.) the

diameter is given by R ≡ 1/α. The coordinate curve β = const is an orthogonal circle, with centre on

the OY axis at (0, 1/(2β)) and radius 1/(2β) such that it is tangent to the OX axis at the origin.

Considering the wave propagation along the α circle of diameter R, regarding the α coordinate curve

and the expression of diameter, r = cos θ/α = R cos θ along which the coordinate β varies according to

β = sin θ/r = tan θ/R. The scale factor is now given by

s = r2 = R2 cos2 θ (7.19)

and derivatives with regard to β can be transformed according to

d
dβ = R cos2 θ

d
dθ (7.20)

into derivatives with regard to θ. The scale factors of the plane dipolar coordinates (α, β) are the same

and equal to hα =
(
α2 + β2)−1 = hβ = s.

The plane dipolar coordinates can be extended by translation or rotation to respectively cylindrical

and spherical dipolar coordinates in space. These systems of coordinates are detailed in the appendix D.

7.1.3 Magnetic field and atmospheric equilibrium

The background magnetic field is assumed to be dipolar and to lie along the circle α = const. The

transverse, unsteady velocity v and magnetic field perturbations h are assumed to be parallel and tangent
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to the coordinate curves β = const (according to figure 7.2),

V = v(β, t)eα, (7.21a)

H = B(β)eβ + h(β, t)eα, (7.21b)

and all quantities depend on β, which varies along the curve α = const. Note that the motion is not

incompressible,

∇ · V = 1
s2
∂(sv)
∂α

= v

s2
∂s

∂α
, (7.22a)

where, from (7.17b),
∂s

∂α
= − 2α

(α2 + β2)2 = −2αs2 (7.22b)

and consequently the equation (7.22a) shows that the dilatation is non-zero,

∇ · V = −2αv = −2 v
R

; (7.22c)

thus, there is near incompressibility only for large R or small α, i.e. a circle of large radius.
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Figure 7.2: Alfvén wave propagating along a circle with transverse perturbations.
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The background magnetic field is divergence free,

0 = ∇ · (B(β)eβ) = 1
s2
∂(sB)
∂β

, (7.23)

if it varies like the inverse of the scale factor, Bs = const, viz.

B(r) = bR2

s
= bR2

r2 = b sec2 θ (7.24)

where b is the magnetic field strength at radius R, b ≡ B(R). The background magnetic field is, to

the level of approximation O(1/R), current free, ∇ × (B (β) eβ) = 0, and hence force free, so that the

hydrostatic equilibrium, ∇p = ρg, applies to the mean state pressure p, mass density ρ and gravity g,

the latter with polar symmetry,

g = −g0
R

r
er, (7.25)

where g0 is the magnitude of the gravity field at radius R, that is, g0 ≡ |g(R)|. Although a uniform

magnetic field, B = const, would be exactly current free, it would not be divergence free and thus it is

excluded from the present analysis.

In the case of an incompressible fluid, the density is constant (it does not vary with the radius)

and therefore we assume ρ = const ≡ ρ0. In this case, the hydrostatic equilibrium implies dp/ (dr) =

−ρ0g0R/r. The pressure profile is then given by

p (r) = p0 − ρ0g0R log
( r
R

)
, (7.26)

where p0 is the pressure at radius r = R, that is, p0 ≡ p(R). The Alfvén speed, defined as

A ≡ B
√

1
µρ

(7.27)

using the International System (SI) of units convention, where µ is the magnetic permeability and ρ is

the mass density, is given, according to (7.24), by

A(r) = aR2

s
= aR2

r2 = a sec2 θ (7.28)

where a is the Alfvén speed at radius r = R and therefore a ≡ b
√

1/ (µρ0) = A(R).

In the case of a perfect gas of constant Rg, at temperature T , with molar mass M , the equation of

state

p = ρRgT

M
(7.29)

may be substituted in the condition of hydrostatic equilibrium with

∇ (log p) = ρg

p
= Mg

RgT
(7.30)
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and in isothermal conditions, T = const ≡ T0, with

d (log p)
dr = −Mg0

RgT0

R

r
, (7.31a)

the pressure profile is a polytropic,
ρ(r)
ρ0

= p(r)
p0

=
( r
R

)−ϑ

, (7.31b)

whose index ϑ is given by ϑ ≡ g0MR/ (RgT0) where the subscript 0 refers to quantities at radius r = R.

In this case, ρ0 is the density only at r = R (the density depends on the radius) while p0 continues to be

the value at the same location. Using Rg = 8.31 J K−1 mol−1 for the ideal gas constant, the polytropic

index can be calculated for the atmosphere of Earth and the end of the solar corona, whose values are

indicated in table 7.1. The values of the temperature and the radius for solar corona are established for

the location where the solar wind emerges, in other words, where a stream of particles starts to travel

outward to form the heliosphere [figure 1 of 175, 213]. The solar corona is constituted of ionised hydrogen

and therefore its molar mass is 1.0×10−3 kg mol−1. As the values correspond to the height approximately

equal to 2% of the solar radius, the value of the gravitational acceleration is almost the same as at the

solar surface. The exponent ν applies to the Alfvén speed (7.27), then substituting (7.24) and (7.31b)

leads to

A = a
( r
R

)−ν

= a secν θ = a

(
R2

s

)ν/2

(7.32)

with ν ≡ 2− ϑ/2. Comparing (7.32) with (7.28) it follows that ν = 2 for an incompressible fluid.

Quantity Symbol
Earth’s

atmosphere
Solar

corona
Unit

Acceleration of gravity g0 9.8 2.7× 102 m s−2

Radius R 6.4× 106 7.1× 108 m
Temperature T0 288 1.6× 106 K
Molar mass M 2.9× 10−2 1.0× 10−3 kg mol−1

Polytropic index ϑ 7.6× 102 1.4× 101 –
Alfvén index ν −3.8× 102 −5.2 –

Table 7.1: Values of several quantities for the atmosphere of Earth and the solar corona [175, 213].

7.2 Alfvén wave equation and extended hypergeometric func-

tion

The Alfvén wave equation for propagation along a dipolar magnetic field (see section 7.2.1) can be

solved in terms of Gaussian hypergeometric functions in the limit of zero frequency (see section 7.2.2)

and otherwise requires the solution of an extended Gaussian hypergeometric differential equation (see

section 7.2.3).
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The case of zero frequency is considered because it leads to a closed form solution in terms of Gaus-

sian hypergeometric functions. This serves as the stepping stone to the more general case of non-zero

frequency that leads to the extended Gaussian hypergeometric differential equation and also has power

series solutions with a less simple three-term recurrence formula for the coefficients.

7.2.1 Alfvén wave equation and polarisation relation

The equations of magnetohydrodynamics, in conformal coordinates, for the case (7.21) read [see 176,

§4]

sḣ = (Bv)′, (7.33a)

s2v̇ = B

µρ
(sh)′, (7.33b)

where the terms for the acceleration which are quadratic in the velocity have been neglected. The dot and

prime denote derivatives with respect to respectively time t and dipolar coordinate β, that is, ḟ ≡ ∂f/∂t

and f ′ ≡ ∂f/∂β. The definition of Alfvén speed (7.27) is introduced in (7.33b) leading to

s2v̇ = A2

B
(sh)′. (7.34)

It is possible to eliminate between (7.33a) and (7.34) either for the velocity (7.35a) or for the magnetic

field perturbations (7.35b),

s2v̈ = A2

B
(Bv)′′, (7.35a)

sḧ =
[(

A

s

)2
(sh)′

]′

. (7.35b)

Since the mean state is steady, it is convenient to use a Fourier transform in time, viz.

v(β; t) ≡
+∞∫

−∞

Ṽ (β;ω)e−iωt dω, (7.36a)

h(β; t) ≡
+∞∫

−∞

H̃(β;ω)e−iωt dω, (7.36b)

where Ṽ and H̃ denote respectively the velocity and magnetic field perturbations spectra, for a wave of

frequency ω, at position β. Substituting (7.36a) and (7.36b) in the Alfvén wave equations for the velocity

(7.35a) and magnetic field perturbations (7.35b) respectively lead to

Ṽ ′′ + 2
(
B′

B

)
Ṽ ′ +

[(ωs
A

)2
+ B′′

B

]
Ṽ = 0, (7.37a)

H̃ ′′ + 2
(
A′

A

)
H̃ ′ +

[(ωs
A

)2
+ s

A2

(
A2s′

s2

)′]
H̃ = 0, (7.37b)
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hence ordinary instead of partial differential equations.

It is sufficient to solve one of the previous wave equations, e.g. the simplest, because once one of Ṽ

or H̃ is known, the other can be determined from the polarisation relations,

H̃ = i
ωs

(
BṼ

)′
, (7.38a)

Ṽ = iA2

ωs2B

(
sH̃
)′
, (7.38b)

which follow from substitution of (7.36a) and (7.36b) in (7.33a) and (7.34). Rather than start from the

two Alfvén wave equations, in (7.37), it is simpler to introduce a magnetic field perturbation spectrum

modified by a scale factor,

G(β;ω) ≡ s(β)H̃(β;ω), (7.39)

which satisfies a simpler wave equation, starting from (7.35b),

0 = ω2G+
[(

A

s

)2
G′

]′

, (7.40a)

and that may be re-written in the following form:

G′′ + 2
[
log
(
A

s

)]′

G′ +
(ωs
A

)2
G = 0. (7.40b)

This equation has only one coefficient with derivative, in contrast with the two equations (7.37), that

have several coefficients with derivatives. This coefficient is evaluated from (7.19) and (7.32),

A

s
= aRνs−1−ν/2 = a

R2 cos−ν−2 θ, (7.41)

and the derivative with regard to β is replaced, using (7.20), by a derivative with regard to θ,

[
log
(
A

s

)]′

= R cos2 θ
d
dθ [(−ν − 2) log (cos θ)] = R (ν + 2) cos θ sin θ. (7.42)

After substituting the last two equations in (7.40b), viz.

G′′ + 2R(ν + 2) cos θ sin θG′ +
(
ωR2

a

)2

cos2ν+4 θG = 0, (7.43)

it is appropriate to replace the derivatives with regard to β, e.g. G′′ ≡ ∂2G/∂β2, by derivatives with

regard to θ, e.g. ∂2Φ/∂θ2 ≡ Φ′′, noting that Φ (θ; Ω) ≡ G (β;ω), and using (7.20), viz.

cos2 θΦ′′ + 2 (ν + 1) cos θ sin θΦ′ + Ω2 cos2ν+2 θΦ = 0; (7.44)

the Alfvén wave equation (7.44) involves only one parameter, namely, the dimensionless frequency Ω ≡

ωR/a.

The Alfvén wave equation (7.44) has coefficients which are trigonometric functions of θ in the range
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0 ≤ θ ≤ 2π, and these can be transformed to polynomial coefficients, via the change of independent

variable,

ζ = cos2 θ, (7.45a)

Ψ (ζ; Ω) = Φ (θ; Ω) , (7.45b)

where 0 ≤ ζ ≤ 1,

4ζ2 (1− ζ) Ψ′′ − 2ζ [1 + 2ν (1− ζ)] Ψ′ + Ω2ζν+1Ψ = 0. (7.46)

The degree of the polynomial coefficients of the highest derivative Ψ′′, viz. three in (7.46), can be

depressed to two via the change of dependent variable,

Ψ (ζ; Ω) = ζσQ (ζ; Ω) , (7.47)

where the constant σ can be chosen at will, e.g. so that

4 (1− ζ) ζ2Q′′ − 2 [1− 2 (2σ − ν) (1− ζ)] ζQ′ +
[
Ω2ζ1+ν − 4σζ (σ − 1− ν) + 2σ (2σ − 3− 2ν)

]
Q = 0

(7.48)

can be divided through by ζ. This is the case if the term in the last curved brackets vanishes,

σ = 3
2 + ν, (7.49a)

Ψ (ζ; Ω) = ζν+3/2Q (ζ; Ω) , (7.49b)

in which case the wave equation simplifies to

4 (1− ζ) ζQ′′ − 2 [1− 2 (3 + ν) (1− ζ)]Q′ +
(
Ω2ζν − 3− 2ν

)
Q = 0. (7.50)

A dipolar magnetic field is an approximate first-order representation of the Earth’s field, remembering

that ν is given by ν ≡ 2 − ϑ/2, with ϑ ≡ g0MR/ (RgT0), in the case of Alfvén waves in the ionosphere,

which is gaseous, or ν = 2 in (7.28) for Alfvén waves in the molten core, which is incompressible. This

application is limited by our consideration of a planar rather than spherical problem, and neglect of

rotation, a non-central symmetry. In the case of an incompressible fluid, e.g. a liquid, the Alfvén wave

equation (7.50) simplifies, with ν = 2, to

4 (1− ζ) ζQ′′ + 2 (9− 10ζ)Q′ +
(
Ω2ζ2 − 7

)
Q = 0. (7.51)

The differential equation (7.51) reduces to the Gaussian hypergeometric type, leading to an analytic closed

form solution, in the limit of zero frequency, corresponding to the steady magnetic field (see section 7.2.2)

in contrast with the case of the unsteady magnetic field for Alfvén waves when a power series solution also

exists (see section 7.2.3) with a three-term instead of a two-term recurrence formula for the coefficients.
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7.2.2 Limit of zero frequency and hypergeometric functions

In the limiting case of zero frequency, i.e. quasi-steady field, the differential equation for an incom-

pressible fluid (7.51) simplifies, with Ω = 0, to

(1− ζ) ζQ′′ +
(

9
2 − 5ζ

)
Q′ − 7

4Q = 0 (7.52)

which is of the Gaussian hypergeometric type,

(1− ζ) ζQ′′ + [γ − (α+ ϵ+ 1) ζ]Q′ − αϵQ = 0, (7.53)

with parameters satisfying γ = 9/2, δ+ ϵ = 4 and δϵ = 7/4, leading to δ = 1/2 and ϵ = 7/2. The general

integral of the Gaussian hypergeometric differential equation (7.52) is

Q (ζ; 0) = c1F (δ, ϵ; γ; ζ) + c2ζ
1−γF (1 + δ − γ, 1 + ϵ− γ; 2− γ; ζ) (7.54)

where γ is not an integer while c1 and c2 are arbitrary constants of integration. In this case, it is

Q (ζ; 0) = c1F

(
1
2 ,

7
2 ; 9

2 ; ζ
)

+ c2ζ
−7/2F

(
−3, 0;−5

2 ; ζ
)
. (7.55)

Recalling the expressions (7.19), (7.39), the definition of Φ, (7.45) and (7.49) the magnetic field

perturbation is

H̃ (β;ω) = G (β;ω)
s

= Φ (θ; Ω)
R2 cos2 θ

=
Ψ
(
cos2 θ; Ω

)
R2 cos2 θ

=
cos2ν+1 θ Q

(
cos2 θ; Ω

)
R2 . (7.56)

If the magnetic field decays like O (1/R) the magnetic flux across a sphere of radius R is not conserved,

unless the angular dependence leads to a zero integral over the surface of the sphere. All the solutions for

the magnetic field in this chapter decay like O
(
1/R2) implying that the magnetic flux crossing a sphere

of radius R is constant for any angular dependence, and thus the Gauss’s law for magnetism is met.

Defining a magnetic field perturbation spectrum h̃ (θ; Ω) that does not depend on the radius R of the

circle and depends only on the angle θ along the circle; in the case ν = 2 and Ω = 0, it simplifies to

h̃(θ; 0) ≡ b−1H̃ (θ; 0) = C1 cos5 θF

(
1
2 ,

7
2 ; 9

2 ; cos2 θ

)
+ C2 sec2 θF

(
−3, 0;−5

2 ; cos2 θ

)
(7.57)

where in the second equality the constants b−1 and R−2 were incorporated in the constants of integration,

that is, C1 ≡ b−1R−2c1 and C2 ≡ b−1R−2c2. The second hypergeometric function on the right-hand side

of (7.57), knowing that

F (δ, ϵ; γ; ζ) = 1 + δϵ

1!γ ζ
1 + δ (δ + 1) ϵ (ϵ+ 1)

2!γ(γ + 1) ζ2 + . . .

+ δ (δ + 1) . . . (δ + n− 1) ϵ (ϵ+ 1) . . . (ϵ+ n− 1)
n!γ (γ + 1) . . . (γ + n− 1) ζn + . . . , (7.58)
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reduces to unity because ϵ is zero,

F

(
−3, 0;−5

2 ; cos2 θ

)
= 1, (7.59)

implying that ζ−7/2 is a solution of (7.52), as can be checked directly. It can be noted in passing that,

since a solution ζ−7/2 is known, another solution can be obtained [132], viz.

ζ−7/2
∫

(1− ζ)−1/2ζ5/2 dζ, (7.60)

which must be a linear combination of the two in (7.55). These two algebraic solutions would avoid

the use of hypergeometric functions, whereas the latter are more closely linked to the case of non-zero

frequency and Alfvén waves. However, the factor sec2 θ is singular for θ = ±π/2 and a finite magnetic

field requires C2 = 0, simplifying (7.57) to

h̃(θ; 0) = C1 cos5 θF

(
1
2 ,

7
2 ; 9

2 ; cos2 θ

)
(7.61)

that vanishes for θ = ±π/2. The hypergeometric series in the first term is finite for |cos θ| < 1. Since

γ − δ − ϵ = 1/2 the hypergeometric series converges [214, 215] on its radius of convergence |cos θ| = 1 or

θ = 0, π. Using the property

F (δ, ϵ; γ; 1) = Γ (γ) Γ (γ − δ − ϵ)
Γ (γ − δ) Γ (γ − ϵ) (7.62)

where Γ is the gamma function [216] specifies the constant of integration C1 from the magnetic field at

θ = 0,

h̃ (0; 0) = C1F

(
1
2 ,

7
2 ; 9

2 ; 1
)

= C1
Γ (9/2) Γ (1/2)

Γ (4) Γ (1) = C1

7
2

5
2

3
2
[
Γ
( 1

2
)]2

3! = 35π
16 C1, (7.63)

using in the last equality Γ (1/2) =
√
π [217, 218]. Thus, the magnetic field in the incompressible case

ν = 2, for zero frequency Ω = 0, simplifies from (7.57) to (7.61) to be bounded for all 0 ≤ θ ≤ 2π with

the constant C1 determined by the value (7.63) at θ = 0, so that

h̃ (θ; 0) = h̃ (0; 0) 16
35π cos5 θF

(
1
2 ,

7
2 ; 9

2 ; cos2 θ

)
. (7.64)

This closed form solution shares the angular dependence of the leading term cos5 θ with the more

interesting case of non-zero frequency, leading to an extension of the Gaussian hypergeometric differential

equation.

7.2.3 Non-zero frequency and extended hypergeometric equations

In the more interesting case of non-zero frequency, the wave equation (7.51) is of the extended Gaussian

hypergeometric type, so-called because: (i) ζ = 0, 1 are regular singularities, as for the original Gaussian

hypergeometric equation (7.52); (ii) the point-at-infinity ζ =∞ is a regular singularity for the latter, and

an irregular singularity for the former, in this case of degree two. Since ζ = 0 is a regular singularity,

solutions exist, with radius of convergence unity, |ζ| < 1, limited by the nearest singularity, in terms of a
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Frobenius-Fuchs series,

Q (ζ; Ω) ≡ b−1R−2Q (ζ; Ω) =
∞∑

n=0
cn (χ) ζn+χ, (7.65)

with index χ and the recurrence formula for the coefficients cn (χ) to be determined. Substitution of

(7.65) in (7.51) leads to the recurrence formula for the coefficients

(n+ χ+ 1)
(
n+ χ+ 9

2

)
cn+1 (χ) =

[
(n+ χ) (n+ χ+ 4) + 7

4

]
cn (χ)−

(
Ω
2

)2
cn−2 (χ) . (7.66)

In the case of zero frequency, Ω = 0, this would reduce to the simple recurrence formula for Gaussian

hypergeometric functions

cn+1 (χ) =
[

(n+ χ) (n+ χ+ 4) + 7/4
(n+ χ+ 1) (n+ χ+ 9/2)

]
cn (χ) = c0 (χ)

n∏
m=0

[
(m+ χ+ 1/2) (m+ χ+ 7/2)
(m+ χ+ 1) (m+ χ+ 9/2)

]
(7.67)

in agreement with the values of γ, δ and ϵ for zero frequency; otherwise, for non-zero frequency Ω ̸= 0,

the recurrence relation (7.66) has three terms. Setting n = −1 yields in both cases the indicial equation

χ

(
χ+ 7

2

)
= 0 (7.68)

whose roots χ = 0 and χ = −7/2 specify two linearly independent particular integrals, respectively

Q0 (ζ; Ω) ≡
∞∑

n=0
cn(0)ζn, (7.69a)

Q1 (ζ; Ω) ≡
∞∑

n=0
cn

(
−7

2

)
ζn−7/2, (7.69b)

whose linear combination, for 0 < ζ < 1, is the general integral

h̃ (ζ; Ω) = cos5 θ Q0 (ζ; Ω) + cos5 θ Q1 (ζ; Ω) . (7.70)

Substituting in (7.56) leads, for 0 < θ < π, to the magnetic field perturbation spectrum

h̃ (θ; Ω) = cos5 θ

∞∑
n=0

cn (0) cos2n θ + sec2 θ

∞∑
n=0

cn

(
−7

2

)
cos2n θ (7.71)

where the role of arbitrary constants, to be consistent with the zero frequency case, is played by C1 ≡ c0 (0)

and C2 ≡ c0 (−7/2). The second term of the wavefield (7.71) is singular at θ = ±π/2; thus, a finite solution

over the whole circle 0 ≤ θ ≤ π requires C2 = 0.

The first term corresponds to the series (7.69a) which converges for |ζ| < 1 or cos2 θ < 1 or 0 < θ < π,

so that the wavefield is finite in this range. The points θ = 0, π correspond to the boundary of convergence.

In order to find out whether the wavefield is finite at θ = 0, π in the case Ω ̸= 0, as for Ω = 0, it

is necessary to determine h̃ (0; Ω). Since generalisations of the relations (7.62) are not available for

extended hypergeometric functions, it is necessary to go back to the differential equation (7.51) and
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perform the change of variable

ξ ≡ 1− ζ = sin2 θ, (7.72a)

J (ξ; Ω) = Q (ζ; Ω) ; (7.72b)

this transforms the wave equation (7.51) to

4ξ (1− ξ) J ′′ + 2 (1− 10ξ) J ′ +
(
Ω2ξ2 − 2Ω2ξ + Ω2 − 7

)
J = 0. (7.73)

Since ζ = 1 is a regular singularity of (7.51), ξ = 0 is a regular singularity of (7.73), and a solution as a

Frobenius-Fuchs series exists:

J (ξ; Ω) ≡ b−1R−2J (ξ; Ω) =
∞∑

n=0
dn (ι) ξn+ι. (7.74)

The recurrence formula for the coefficients

(n+ ι+ 1)
(
n+ ι+ 1

2

)
dn+1 (ι) =

[
(n+ ι) (n+ ι+ 4) + 7

4 −
Ω2

4

]
dn (ι)

+ Ω2

2 dn−1 (ι)−
(

Ω
2

)2
dn−2 (ι) (7.75)

leads to the indicial equation

ι

(
ι− 1

2

)
= 0 (7.76)

with the roots ι = {0, 1/2}. It is clear that the wavefield will be finite J0 (ξ) ∼ O (1) or vanish J1/2 (ξ) ∼

O
(√
ξ
)

at ξ = 0, i.e. for θ = 0 and θ = π; therefore both of (7.69a) and (7.69b), which are linear

combinations of J0 and J1/2, must be finite at θ = 0 and θ = π. As before, the general integral may be

written as

h̃ (θ; Ω) = cos5 θ

[ ∞∑
n=0

dn (0) sin2n θ + sin θ
∞∑

n=0
dn

(
1
2

)
sin2n θ

]
(7.77)

where the arbitrary constants of integration, again to be consistent with the zero frequency case, are now

D1 ≡ d0 (0) and D2 ≡ d0 (1/2). This formula shows that at θ = {0, π} the wavefield is finite because

h̃ (0; Ω) = d0 (0) = D1 = −h̃ (π,Ω).

7.3 Velocity and magnetic field perturbations

The solution of the Alfvén wave equation (see section 7.2) leads to series expansions for the velocity

and magnetic field perturbations (see section 7.3.1) which converge rapidly (see section 7.3.2) and allow

plotting of the wavefields.
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7.3.1 Boundary conditions and wave perturbations

The pairs of arbitrary constants C1 and C2 are determined by two non-trivial, independent and

compatible boundary conditions, e.g. specifying the magnetic field perturbation at two points,

h̃ (θ1; Ω) ≡ h̃1 (Ω) , (7.78a)

h̃ (θ2; Ω) ≡ h̃2 (Ω) , (7.78b)

or the magnetic field perturbation and its derivative at one point,

h̃ (θ0; Ω) ≡ h̃0 (Ω) , (7.79a)

dh̃
dθ

∣∣∣∣
θ=θ0

≡ h̃′
0 (Ω) . (7.79b)

Note that the polarisation relation (7.38b) implies that the derivative of the magnetic field perturbation

spectrum is related to the velocity perturbation spectrum (7.36) by

Ṽ (β;ω) = ia
2R2

ωb
s−3 d[sH̃(β;ω)]

dβ (7.80)

where (7.24) and (7.28) were used, followed by (7.19) and (7.20) leading to

X(θ; Ω) ≡ bṼ (β;ω) = i a
2

ωR
sec4 θ

d
dθ
[
cos2 θH̃(θ; Ω)

]
. (7.81)

The two components of the magnetic field perturbation, according to (7.71), are given by

e0 ≡ 1 : h1 (θ; Ω) =
∞∑

n=0
en cos2n+5 θ, (7.82a)

f0 ≡ 1 : h2 (θ; Ω) =
∞∑

n=0
fn cos2n−2 θ, (7.82b)

where the coefficients en ≡ cn (0) and fn ≡ cn (−7/2), beginning from (7.66), satisfy the recurrence

formulas respectively

n

(
n+ 7

2

)
en =

[
(n− 1) (n+ 3) + 7

4

]
en−1 −

(
Ω
2

)2
en−3, (7.83a)

n

(
n− 7

2

)
fn =

[(
n− 1

2

)(
n− 9

2

)
+ 7

4

]
fn−1 −

(
Ω
2

)2
fn−3. (7.83b)

Introducing a dimensionless velocity perturbation spectrum

W (θ; Ω) ≡ iωR
ba2 X (θ; Ω) (7.84)

leads, using (7.81), to

Wm (θ; Ω) = − sec4 θ
d
dθ
[
cos2 θhm (θ; Ω)

]
(7.85)
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where was used Hm = bhm. The velocity perturbations corresponding to the magnetic field perturbations

(7.82a) and (7.82b) are thus given respectively by

W1 (θ; Ω) = sin θ
∞∑

n=0
en (2n+ 7) cos2n+2 θ, (7.86a)

W2 (θ; Ω) = sin θ
∞∑

n=0
fn (2n) cos2n−5 θ. (7.86b)

Since the magnetic field perturbations (7.82a) and (7.82b) are symmetric functions of θ and the velocity

perturbations (7.86a) and (7.86b) are skew-symmetric, it is sufficient to plot them over half a circle.

The figures that are indicated in table 7.2 correspond to the plots of the magnetic field and velocity

perturbations.

Wave
perturbation

Magnetic
field H̃

Velocity
Ṽ

First component Figure 7.3 Figure 7.5
Second component Figure 7.4 Figure 7.6

Table 7.2: Figures that represent both components of magnetic field and velocity perturbations.

7.3.2 Polarisation relation and improvement of convergence

The series for the magnetic field perturbation spectrum (7.82a) and (7.82b) have a unit radius of

convergence, and thus the coefficients (7.83a) and (7.83b) may be expected to be O(1) as n→∞; in this

case the series obtained by differentiation (7.86a) and (7.86b) would diverge because the coefficients would

be O(n) as n → ∞, viz. it is well known that differentiation worsens the convergence of trigonometric

series. The convergence would be improved, i.e. the coefficients would become O(1/n) as n → ∞, by

integration of (7.82a) and (7.82b), and to do this it is necessary to start from the polarisation relation

(7.38a), instead of (7.38b), viz.

H̃ (β;ω) = i
ωs

(
BṼ

)′ = ibR2

ωs

d
(
Ṽ /s

)
dβ (7.87)

where (7.24) was used. From the equations (7.19) and (7.20), it follows that

h̃ (θ; Ω) = i
ωR

d
dθ
[
sec2 θṼ (β;ω)

]
(7.88)

which, regarding the definition of the velocity perturbation spectrum, corresponds to

hm (θ; Ω) =
( a

ωR

)2 d
dθ
[
sec2 θWm (θ; Ω)

]
(7.89)
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and has to be integrated for Wm, with (7.82a) and (7.82b) known. In the case m = 1, the integration of

h1 (θ; Ω) =
∞∑

n=0
en cos2n+5 θ =

( a

ωR

)2 d
dθ
[
sec2 θW1 (θ; Ω)

]
(7.90)

can be made via the substitution

( a

ωR

)2
W1 (θ; Ω) = sin θ

∞∑
n=0

en cos2n+q θ (7.91)

with en and q to be chosen, viz.

∞∑
n=0

en cos2n+5 θ =
∞∑

n=0
en

[
(2n+ q − 1) cos2n+q−1 θ − (2n+ q − 2) cos2n+q−3 θ

]
(7.92)

which is satisfied for q = 6, with

∞∑
n=0

cos2n+5 θ [en − (2n+ 5) en + (2n+ 6) en+1] = 0. (7.93)

Thus, the velocity perturbation spectra corresponding to (7.82a) and (7.82b) are respectively

( a

ωR

)2
W1 (θ; Ω) = sin θ

∞∑
n=1

en cos2n+6 θ, (7.94a)

( a

ωR

)2
W2 (θ; Ω) = sin θ

∞∑
n=1

fn cos2n−1 θ, (7.94b)

with coefficients given by

en = (2n+ 5) en − (2n+ 6) en+1, (7.95a)

fn = (2n− 2) fn − (2n− 1) fn+1. (7.95b)

where q = 6 for (7.95a) and q = −1 for (7.95b). Note that the pairs of formulas (7.82a) and (7.82b),

(7.94a) and (7.94b), (7.95a) and (7.95b) are similar replacing 2n + 5 by 2n − 2. Also, setting n = −1

in (7.95a) and (7.95b) yields e0 = f0 = 0, so the series (7.94a) and (7.94b) start with n = 1; besides,

setting n = 0 in (7.95a) and (7.95b), the starting values of e1 and f1 are obtained, e1 = −e0/6 = −1/6

and f1 = f0 = 1, where the relations (7.82a) and (7.82b) were used. The successive coefficients en+1

and fn+1 can be calculated from the preceding en and fn, and from (7.83a) and (7.83b), that is, for

n = 1, 2, . . ., we have

en+1 = (2n+ 5) en − en

2n+ 6 , (7.96a)

fn+1 = (2n− 2) fn − fn

2n− 1 . (7.96b)

Thus, all coefficients in the magnetic field and velocity perturbations spectra are specified.
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7.4 Main conclusions of the chapter 7

The incompressibility condition ∇ · V = 0 is met by these waves to O (1/R), according to (7.22c);

similarly, using (7.22b) the force-free condition

∇× (B (β) eβ) = 2ezs
−2 ∂ (Bs)

∂α
= 2ezBs

−2 ∂s

∂α
= −4αBez = −4B

R
ez (7.97)

is met only to O (1/R). The Gauss’s law for magnetism ∇ · h = 0 is also met to O (1/R) since ∇ · h =

−2h/R as in (7.22c). Note that all these results arise because the scale factor s = s(α, β) depends on both

dipolar coordinates, according to (7.17b). The criterion for the Gauss’s law for magnetism ∇ · h = 0 to

be approximately satisfied may be chosen by |∇ · h| ≪ |∇× h|, where ∇× h = µj specifies the electric

current associated with the Alfvén wave. Noting that |∇× h| ∼ hk = 2πh/λ where k is the wavenumber,

and λ the wavelength, and ∇ ·h ∼ h/R, it follows that |∇ · h| ≪ |∇× h| implies 1/R≪ 2π/λ. Thus, the

Maxwell equation |∇ · h| = 0 is approximately satisfied; also, the pair of laws ∇ · v = 0 and ∇×B = 0

is satisfied as well, if 1≪ 2πR/λ = ωR/a = Ω in terms of the dimensionless parameter Ω.

A typical application of the present problem of Alfvén wave propagation in a dipolar magnetic field

concerns planetary fields. In the case of the Earth, Alfvén waves in the ionosphere correspond to a gaseous

background, and in the molten core, to an incompressible liquid medium. Taking for the ionospheric

magnetic field B0 = 5.0 × 10−9 T at approximately the Earth’s radius R0 = 6.4 × 106 m, in the core

at one-tenth of the radius R1 = 0.1R0 = 6.4 × 105 m a dipolar magnetic field, which scales like the

inverse cube of distance ∼ 1/R3, is one thousand times bigger B1 = 103B0 = 5.0 × 10−6 T. For a mass

density ρ = 5.5 × 103 kg m−3 and the value of magnetic permeability equal to the permeability of the

free space, this leads to a low Alfvén speed a1 = B1/
√
µρ = 6.0 × 10−5 m s−1. Taking the period of

one day, τ = 24 × 3600 s = 8.64 × 104 s, or frequency ω = 2π/τ = 7.3 × 10−5 s−1, leads to the value

Ω1 = ωR1/a1 = 7.7 × 105 ≫ 1, which meets the conditions stated in the preceding paragraph. As a

second example, deeper in the core, at one-hundredth of the Earth’s radius R2 = 10−2R0 = 6.4× 104 m,

the magnetic field B2 = 106B0 = 5.0×10−3 T leads to an Alfvén speed a2 = B2/
√
µρ = 6.0×10−2 m s−2.

The corresponding value of the parameter Ω2 = ωR2/a2 = 7.8× 101 still meets the condition Ω≫ 1.

For the purpose of illustration of the velocity and magnetic field perturbations, the parameter is given

by the values Ω = {10, 20, 50} which satisfy Ω≫ 1, and also given the symmetries of the fields over the full

circle 0 ≤ θ ≤ 2π, only one half is plotted, 0 ≤ θ ≤ π. Since θ = π/2 corresponds to the magnetic north

pole, the range for plotting 0 ≤ θ ≤ π corresponds to the upper hemisphere. Starting with the magnetic

field perturbation and the component (7.82a), which is finite over the whole circle 0 ≤ θ ≤ 2π, it is a

symmetric function of θ. Hence, the plot over the northern hemisphere (figure 7.3) can be repeated on the

lower hemisphere by symmetry on the equator. The field vanishes at the magnetic poles h1 (±π/2; Ω) = 0,

and is skew-symmetric relative to the polar axis because h1 (π/2− θ; Ω) = −h1 (π/2 + θ; Ω). Away from

the poles θ = ±π/2, i.e., towards the equator θ = 0 or θ = π, the magnetic field perturbation oscillates

with smaller amplitude, and shorter wavelength, for larger Ω.

The component (7.82b) of the magnetic field perturbation is unbounded at the poles θ = ±π/2. Thus,
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Figure 7.3: Component of magnetic field perturbation spectrum (7.82a), which is finite over the whole
circle, versus radial angle along a half-circle, for three values of the dimensionless frequency Ω.

the general wavefield

h̃ (θ; Ω) = C⋆
1h1 (θ; Ω) + C⋆

2h2 (θ; Ω) (7.98)

is finite over the whole circle only if C⋆
2 = 0 is met, in which case the remaining constant of integration

C⋆
1 can be determined using

h̃ (0; Ω) = C⋆
1

∞∑
n=0

en (7.99)

and knowing the magnetic field perturbation spectrum h̃ (0; Ω) at θ = 0. It follows that the dimensionless

magnetic field perturbation is a constant multiple C⋆
1 of h1 (θ; Ω) plotted in figure 7.3. In order to plot

h2 (θ; Ω) it is convenient to remove the singularity at θ = ±π/2, by inserting the factor cos2 θ, viz.

h2 (θ; Ω) ≡ cos2 θh2(θ; Ω) =
∞∑

n=0
fn cos2n θ. (7.100)

The magnetic field perturbation is symmetric on the southern and northern hemispheres. It vanishes at

the poles, h2 (±π/2; Ω) = 0, is symmetric relative to the polar axis, h2 (π/2− θ; Ω) = h2 (π/2 + θ; Ω),

and oscillates with larger amplitude and shorter wavelength for larger Ω (figure 7.4). The range of values

of h2 in figure 7.4 is more than one order of magnitude larger than the range of values of h1 in figure 7.3,

so the latter is plotted separately to aid visibility. Comparing h1 and h2 as Ω increases, there are more

nodes for both; also, as Ω increases the amplitude decreases for h1 and increases for h2.

Concerning the component of the velocity perturbation (7.86a), which is finite over the whole circle

0 ≤ θ ≤ 2π, it is skew-symmetric, W1 (θ; Ω) = −W1 (−θ; Ω), so that in the lower hemisphere it has

the opposite sign to the upper hemisphere (figure 7.5). It vanishes at the magnetic poles and equator

θ = ±π/2, 0, π, and is symmetric relative to the polar axis because W1 (π/2 + θ; Ω) = W1 (π/2− θ; Ω).

For Ω = 10, there is a single large extremum, and on increasing Ω, the number of local extrema increases

and their magnitude decreases. The other component of the velocity perturbation spectrum (7.86b) is
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Figure 7.4: Component of magnetic field perturbation spectrum (7.82b), which is singular, versus radial
angle along a half-circle, with singularity removed (7.100), for three values of the dimensionless frequency
Ω.

singular at the magnetic poles θ = ±π/2. The singularity is suppressed by inserting a suitable factor:

( a

ωR

)2
W 2 (θ; Ω) ≡

( a

ωR

)2
cos θW2 (θ; Ω) = sin θ

∞∑
n=0

fn cos2n θ. (7.101)

The velocity perturbation is a skew-symmetric function of θ, i.e. has opposite signs in the upper and lower

hemispheres. It vanishes at the magnetic poles and equator, and it is symmetric relative to the polar

axis (figures 7.5 and 7.6). For increasing Ω, the wavelength is larger and the amplitude of oscillations

also larger. Comparing W1 and W 2, it is clear that there are more oscillations for both as Ω increases;

for increasing Ω, the amplitude is smaller for W1 and larger for W 2. Also, W 2 has an oscillatory sign,

i.e. is alternatively positive and negative, whereas W1 is always negative.

0.0 0.5 1 1.5 2 2.5 3 3.5
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0.00

Figure 7.5: Component of velocity perturbation spectrum (7.94a), which is finite over the whole circle,
versus radial angle along a half-circle, for three values of the dimensionless frequency Ω.

In figures 7.3 to 7.6 , the circular magnetic field lines are described from θ = 0 to θ = π. If the

field lines (and magnetic poles) do not follow the geographical positioning, that is, if the field lines were
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Figure 7.6: Component of velocity perturbation spectrum (7.94b), which is singular, versus radial angle
along a half-circle, with singularity removed (7.101), for three values of the dimensionless frequency Ω.

not measured between 0 and π, the effect on the propagation of Alfvén waves would be a translation

θ → θ + θ0, and therefore it would lead to different starting values.

Since one component, each of the magnetic and velocity perturbations, is singular, a relevant factor

was introduced to obtain a finite value and to make the plots in figures 7.4 and 7.6 visible over the whole

range of values 0 < θ < π. The scale in figure 7.4 would be larger without this factor and could be

reduced by an additional constant factor like 0.1. In all cases of figures 7.3 to 7.6, the objective was

to plot the dependence of the wavefields visibly along the whole of the circular magnetic field lines of a

dipole for several values of the dimensionless frequency.

The main feature of this chapter is to consider the Alfvén wave propagation along a closed magnetic

field line, in fact, the most straightforward closed curve: the circle. In situations in which the closed

magnetic field is not a circle, like the magnetic field of the Earth, Sun and other planets and stars, the

local curvature would replace the radius of the circle; this approximation is valid if the wavelength λ is

much smaller (or the wavenumber κ is much greater) than the length scale of the change of curvature

λ = 2π
κ
≤ R (θ)
R′ (θ) = d

dθ{log [R (θ)]} (7.102)

where and R (θ) is the radius of curvature at the angular position θ of the closed magnetic field line.

The present model considers a constant Alfvén speed (7.27) with the direction varying along a circle.

The case of an Alfvén wave propagating with constant direction and changing Alfvén speed has been

studied in detail in the case of atmospheres like the Sun and radial flows like the solar wind (see references

in the third paragraph of the introduction of this chapter [128, 171–175, 177–197]). An Alfvén speed

increasing with distance leads to a waveform stretching with an increasing spacing of the nodes, smaller

waveform slope and less dissipation; the reverse occurs for Alfvén speed decreasing with distance.
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8 | On the generation of harmonics

by the non-linear buckling of an

elastic beam

“Logic is the foundation of the certainty of all the knowledge we acquire.”

— Leonhard Euler

Contents
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The Bernoulli [75] and Euler [76] theory of beams is a standard introductory subject in textbooks on

elasticity [77–81] and leads to the phenomenon of buckling, which has been considered in several

conditions: (i) geometric and material non-linearities [83]; (ii) in combination with shear [84, 85] that

is more significant for short stubby beams [86–90]; (iii) constraints [91–93], such as hyper or non-local

elasticity [94, 95]; (iv) vibrations [96, 97], that can be excited by unsteady applied forces [98–101],

leading to control problems [102]; (v) steady mechanical [103] or thermal [104–106] effects; and (vi)

vibrations of tapered beams [107–116], with multiple applications like airplane wings and flexible aircraft

and helicopters [117–121]. Among this wide range of topics related to the buckling of elastic beams, the

present chapter focuses on geometric non-linearities associated with a large slope of the elastica.

The equation of the elastica of a beam is usually written in one of the two forms: (i) in Cartesian

coordinates, y = ζ (x), with the x-axis along the undeformed beam; or (ii) in curvilinear coordinates,

s = ξ (θ), with the arc length s as a function of the angle of inclination. The linear theory assumes for

y = ζ (x) a small slope,

(ζ ′)2 ≡
(

dζ
dx

)2
≪ 1, (8.1)

where the prime in this chapter denotes the derivative with x, and implies that the maximum deflection

185



is small, compared with the length, (ζmax)2 ≪ L2, as explained in the figure 8.1. However, the latter

condition of small maximum deflection relative to length does not imply [130] linearity (8.1) in the case

of “ripples” with a large slope (figure 8.2). The condition of linearity can be expressed in terms of a small

angle of inclination, θ2 ≪ 1, that is equivalent to cos θ ∼ 1 and sin θ ∼ θ ∼ tan θ = ζ ′.

x

y

L

ζmax

Figure 8.1: A linear deflection is defined by a small slope and implies that the maximum deflection is
small compared with the distance between the supports.

x

y

Figure 8.2: The converse to the figure 8.1 may not be true; for example, if the maximum deflection is
small, but the slope is large due to the presence of steep “ripples”, the deflection of the beam is non-linear.

The Euler–Bernoulli theory of beams states that the bending moment M is proportional to the

curvature k,

M (x) = −EIk (x) , (8.2)

that is the product of the Young modulus E of the material by the moment of inertia I of the cross-

section. For a beam of constant cross-sections made of a homogeneous material, the bending stiffness EI

is constant. In the case of a uniform beam [219], that is, with constant bending stiffness, geometric non-

linearities can arise from the curvature, k ≡ dθ/ds, that is, the rate of change of the angle of inclination

with the arc length

ds =
[
(dx)2 + (dζ)2

]1/2
= dx

(
1 + ζ ′2)1/2

. (8.3)

The curvature is given by

k (x) = dx
ds

d
dx (arctan ζ ′) , (8.4)
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thus, it is only in the case of a small slope (8.1) that the equation of the elastica is linear:

M (x) = −EIζ ′′ (x) . (8.5)

If the slope of the elastica is not small, its shape is specified by non-linear ordinary differential equations

[127, 132, 220, 221].

The linear theory shows that if a critical buckling load Tc is reached, a beam in the compression

deforms and gains a buckled shape. Applying higher critical loads Tc,n, with n = 1, 2, . . . ,∞, leads to

a succession of harmonics y = ζn (x). In the present chapter, it is shown that geometric non-linearities

associated with a large slope,

M (x) = −EIζ ′′
[
1 + (ζ ′)2

]−3/2
, (8.6a)

do not affect the critical buckling load, but change the shape of the elastica that becomes a superposition

of harmonics of the linear case:

ζ (x) =
∞∑

m=1
Amζm (x) . (8.6b)

The coefficients Am are determined in this chapter for the three cases of (i) cantilever, (ii) clamped, and

(iii) pinned beams, and the shape of the elastica is illustrated taking into account non-linear geometric

effects associated with a large slope. Before proceeding to discuss non-linear geometric effects in the

Euler–Bernoulli theory [75–81], the preceding classification of the references [83–121] is complemented

by a brief discussion of some additional references. The method of the elastica for non-linear beams,

schematised in figure 8.3, involves the solution of ordinary differential equations [127, 132, 219–221]. The

exact analytical solutions can be obtained using elliptic functions [39, 222, 223] for simpler loading cases.

x

y

L

y = ζ (x) s

ζ

θ = arctan
(

dζ
dx

)

Figure 8.3: The Euler–Bernoulli theory of the elastica y = ζ (x) of beams is usually presented (i) in
the linear case of a small slope, ζ ′2 ≪ 1, with ζ ′ ≡ dζ/dx using Cartesian coordinates with x along
and y normal to the undeflected position; (ii) in the non-linear case of an unrestricted slope, ζ ′ ∼ O (1),
using curvilinear coordinates along the deflected position, namely, the arc length s and angle of deflection
θ = arctan (ζ ′). In the present chapter, the Cartesian coordinates (x, y) are used as in (i), but without
the restriction on slope, that is with dζ/dx ∼ O (1) as in (ii), corresponding to the non-linear bending of
an Euler–Bernoulli beam with unrestricted slope.

The articles [224, 225] show that a combination of incomplete and complete elliptic integrals specifies

large deflections. The results of these two articles are given with limited accuracy because, at that time,

the calculations were performed with something other than digital computers. More accurate results of
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elliptic integrals are presented, for instance, in [226, 227]. Furthermore, to obtain highly precise numerical

results, these problems may also be solved using the shooting-optimisation technique. The aforementioned

two methods for solving large deflections of beams are presented in [228], where an inextensible elastic

beam is hinged at one end, while the other end is assumed to be a frictionless support where the beam can

slide freely. Additionally, the beam is under a moment gradient, and the moment at each end of the beam

can be varied from zero to a full moment by a scaling parameter. In [228], the elastica theory serves to

formulate the elliptic-integral method, and an iterative process obtains the results. At the same time, the

governing set of differential equations is needed for the shooting-optimisation technique and is numerically

integrated using the fourth-order Runge–Kutta method. The results obtained from both methods are in

close agreement with each other. The paper [229] continues in this line of research, but considers the

double curvature bending of the elastica under two applied moments in the same direction applied at

the supports and complements earlier studies that confined bending to one of the single curvature-type

bendings. The two aforementioned methods are used. The elliptic integral technique provides analytical

solutions to the governing non-linear differential equation for elasticas, while the shooting optimisation

method numerically integrates the equation using the fifth-order Cash–Karp Runge–Kutta method. Both

methods provide almost the same stable and unstable equilibrium solutions and, for some cases of the

unstable equilibrium configuration, the elastica can form a single loop or snap-back bending.

Continuing in this line of investigation, the paper [230] considers the large deflection problem of

variable deformed arc-length beams, also with a uniform flexural rigidity, but under a point load. In

[230], the ends are partially elastically supported against rotation (it covers both the cases of hinged or

clamped ends). Both previously mentioned methods are also used, and the results obtained are in close

agreement. This kind of problem highlights the possibility of two equilibrium states for a given load,

implying the possibility of a snap-through phenomenon, the existence of a critical load, and a maximum

arc length for equilibrium. The analytic elastica solution of slightly curved cantilever beams, fixed at

one end while being deflected under couples and forces of various directions, is evaluated in [231] using

elliptic integrals. It has been shown that in some cases, the solution is very sensitive to small errors in

calculating elliptic integrals. An analytic elliptic solution for the post-buckling response of a linear-elastic

and hygrothermal beam, subjected to an increase in temperature and moisture content, is presented in

[232]. In [232], the beam is pinned at both ends, and therefore the extensibility of the beam cannot be

ignored. Additionally, it shows that the critical load is a maximum and, in the post-buckling regime, the

magnitude of the load decreases. The beam theory can be extended to more complex structures [233].

Other methods using the elastica approximation are helpful for more complex loadings. The paper

[234] determines a parametric solution to the elastic pole-vaulting problem, where the pole is taken to

be a thin uniform elastic column with the upper end being subjected to lateral and transverse forces

and a bending moment at the same time as the bottom end is free to pivot during the vaulting. The

parametric solution is given in terms of tabulated elliptic integrals. The investigation [235] provides a

closed-form solution for the problem of a non-linear elastica and buckling analysis of a straight bar, due to

concentrated and uniformly distributed loads, while the flexural rigidity varies along the bar. It achieves

an integral closed-form solution of the equation governing the equilibrium of the bar by applying successive
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functional transformations. The paper [236] presents the buckling analysis of a continuous elastic bar

on several rigid supports subjected to end-compressive forces and assumes that the compressive forces

and flexural rigidities vary from one span to the next. The closed-form solution expressed by elliptic

integrals is derived for each span. The same authors presented an analytic solution for the problem of

non-linear elastic buckling of a straight bar subjected to bending compression due to forces and couples

at the ends superimposed to a uniformly applied transverse load along its length in [237], by using

functional transformations. The same authors also analysed the problem of non-linear buckling for a

straight uniform bar, fixed at its base and free at its upper end, due to the bar’s weight in [238]. It yields

reliable results in agreement with the physical problem. The same procedure was used in [239] to study

the problem of non-linear buckling for a straight bar of uniform cross-sections and flexural rigidity, lying

on a continuous elastic medium, and subjected to terminal point-loads and bending moments. In all the

works described above, the effects of transverse deformation due to axial, lateral, and transverse forces

are negligible.

The paper [240] constructs an exact parametric analytic solution for the full non-linear differential

equations of the cantilever elastica due to end loads, end couples, and also including the effects of

transverse deformation, completing, for instance, the work [234]. Translational or torsional springs may

be used [82] to brace a beam increasing its critical buckling load, or to have the opposite effect of

decreasing the critical buckling load to facilitate demolition. The buckling can also be facilitated or

opposed by supporting the beam on a continuous bed of springs [219]. A beam of variable cross-sections

can taper in two directions [122], for example, in the case of a pyramidal beam representing an aeroplane

wing with chords much larger than the thickness affecting the natural frequencies of bending modes.

Following this introduction to the Euler–Bernoulli theory of beams, the chapter’s core focuses on

geometric non-linearities associated with a significant slope of the elastica. The equation of the elastica

of a uniform beam (section 8.1) is obtained without restriction on the slope of the elastica (section 8.1.1).

The well-known solutions for the linear case of a small slope are briefly recalled (section 8.1.2) because

they supply the harmonics for non-linear corrections (section 8.1.3). The linear and non-linear cases are

also compared, as concerns the boundary condition with small and large slopes, respectively, at the free

end of a cantilever beam (section 8.1.4). The cantilever beam is considered first (section 8.2) to obtain the

non-linear shape of the elastica (section 8.2.1) and to compare the linear approximation with non-linear

corrections of all orders (section 8.2.2). The non-linear effects on the shape of the elastica are illustrated

using the representation as a superposition of linear harmonics, by truncating the series in an analytic

approximation (section 8.2.3) and adding a more significant number of terms in a numerical computation

(section 8.2.4). The non-linear buckling is also considered for clamped and pinned beams (section 8.3),

starting with the non-linear effects of a large slope (section 8.3.1), that do not affect the critical buckling

load (section 8.3.2), but do change the shape of the elastica by the generation of harmonics (section

8.3.3), illustrated by numerical calculations (section 8.3.4). The conclusion (section 8.4) highlights the

use of linear buckling harmonics to specify the shape of the elastica for non-linear buckling with a large

slope.
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8.1 Non-linear bending of a beam with large slope

The non-linear bending of a beam with a large slope is considered to specify the relation between

the axial tension, bending moment, and transverse force or shear stress (section 8.1.1). The resulting

equation of the elastica is solved readily in the linear case of a small slope (section 8.1.2), specifying the

harmonics to be used in the non-linear case (section 8.1.3). The linear and non-linear cases of small and

large slopes, respectively, are also compared, as concerns the boundary condition at the free end of a

cantilever beam (section 8.1.4).

8.1.1 Bending moment, transverse force and shear stress

The transversal distributed and point forces F at the end sections, with the longitudinal tension T ,

cause a bending moment M (denoted in the figure 8.4). The variation of the bending moment −dM

along the arc length ds of the elastica is balanced by the transverse force F , plus the vertical component

Ty of the tangential tension T :

−dM = (F + Ty) ds. (8.7a)

The tangential tension and its vertical component are related (figure 8.5) by

Ty = T sin θ = T
dζ
ds , (8.7b)

where dζ = dy is the vertical displacement. Substitution of the last equation in (8.7a) yields the balance

of bending moment, transverse force and tangential tension:

F + T
dζ
ds = −dM

ds . (8.7c)

x

y

−M −M − dM
F

T

Figure 8.4: The bending moment M of a beam is associated with the axial tension T and transverse
force F . Buckling can occur only for compression.

Using (8.2), which has the minus sign because the y axis points downwards, leads to: (i) the transverse

force equal to

F = d
ds (EIk)− T dζ

ds ; (8.8)

(ii) the shear stress defined by the transverse force per unit length, explicitly

f = d
dx

d
ds (EIk)− d

dx

(
T

dζ
ds

)
. (8.9)
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R = 1/k T

Tx

Ty
dy

dx

ds
θ

Figure 8.5: Sketch of the tangential force and its components with respect to the (x, y) reference frame
of the undeflected beam. The dotted line represents the elastica of the beam.

After substituting (8.3) and (8.6a) in (8.7c), it follows that the transverse force is related to the shape of

the elastica by

F =
∣∣∣1 + ζ ′2

∣∣∣−1/2
(
EIζ ′′

∣∣∣1 + ζ ′2
∣∣∣−3/2

)′

− Tζ ′
∣∣∣1 + ζ ′2

∣∣∣−1/2
, (8.10)

while (8.9) leads to the relation between the shear stress and the shape of the elastica by

f =
[∣∣∣1 + ζ ′2

∣∣∣−1/2
(
EIζ ′′

∣∣∣1 + ζ ′2
∣∣∣−3/2

)′
]′

−
(
Tζ ′

∣∣∣1 + ζ ′2
∣∣∣−1/2

)′

. (8.11)

The case considered in this chapter is of uniform axial tension,

T (x) ∼ const, (8.12a)

and constant bending stiffness

E (x) I (x) ∼ const. (8.12b)

A constant bending stiffness (8.12b) applies: (ii-a) to a homogeneous beam, E ∼ const, with uniform

cross-section, I ∼ const; or (ii-b) to an inhomogeneous beam whose Young modulus varies along the length

inversely to the moment of inertia of the cross-section. Since buckling occurs only for axial compression,

T < 0, the buckling parameter p is defined by

p2 ≡ − T

EI
(8.12c)

and has the dimensions of inverse length. It is real for a compression when T < 0 because p2 > 0;

otherwise, it is imaginary for a traction with T > 0 because p2 < 0. For a uniform beam, the buckling

parameter p is constant because EI and T are also constants for that case.

Simplifying the equation (8.10) for a uniform beam, the buckling parameter appears in the transverse
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force, specifically in the form

F

EI
=
∣∣∣1 + ζ ′2

∣∣∣−1/2
(
ζ ′′
∣∣∣1 + ζ ′2

∣∣∣−3/2
)′

+ p2ζ ′
∣∣∣1 + ζ ′2

∣∣∣−1/2
(8.13a)

=
∣∣∣1 + ζ ′2

∣∣∣−1/2
k′ + p2η (8.13b)

=
∣∣∣1 + ζ ′2

∣∣∣−1/2
η′′ + p2η. (8.13c)

It is the first fundamental equilibrium equation for a uniform beam. Simplifying the equation (8.11) for

the same type of beams, the buckling parameter also appears in the shear stress expression, in the form

f

EI
=
[∣∣∣1 + ζ ′2

∣∣∣−1/2
(
ζ ′′
∣∣∣1 + ζ ′2

∣∣∣−3/2
)′
]′

+ p2
(
ζ ′
∣∣∣1 + ζ ′2

∣∣∣−1/2
)′

(8.14a)

=
(∣∣∣1 + ζ ′2

∣∣∣−1/2
k′
)′

+ p2η′ (8.14b)

=
(∣∣∣1 + ζ ′2

∣∣∣−1/2
η′′
)′

+ p2η′. (8.14c)

It is the second fundamental equilibrium equation for a uniform beam. In both equations, there are two

different types of linearity: (i) all terms are non-linear with respect to the slope of the elastica ζ ′, given

by (8.1); (ii) one term is linear if the sine of the angle of inclination θ is used as a variable,

sin θ = dy
ds = ζ ′

∣∣∣1 + ζ ′2
∣∣∣−1/2

≡ η. (8.15a)

The curvature (8.4) is related to (8.15a) by

k =
(
ζ ′
∣∣∣1 + ζ ′2

∣∣∣−1/2
)′

= η′, (8.15b)

that is a non-linear function of the slope of the elastica. Thus, the equation of the elastica for the

transverse force F is: (i) of the third order in terms of the shape of the elastica ζ and has all non-linear

terms in (8.13a); (ii) of the second order involving some terms linear with an auxiliary variable η in

(8.13c), namely, the sine of the angle of inclination θ whose derivative is exactly the curvature k, as

indicated in (8.15b). Furthermore, the equation of the elastica for the shear stress f is: (i) of the fourth

order in terms of the shape of the elastica ζ and has all non-linear terms in (8.14a); (ii) of the third order

involving some linear terms with the sine of the angle of inclination θ in (8.14c). Thus, the non-linearity

does not lie entirely in the auxiliary variable η, and is preferred to solve the non-linear differential equation

in terms of η, since the degree of the equation is reduced by one.

The third fundamental equation (8.6a) is

M(x) = −EIk = −EIζ ′′
∣∣∣1 + ζ ′2

∣∣∣−3/2
= −EI

(
ζ ′
∣∣∣1 + ζ ′2

∣∣∣−1/2
)′

= −EIη′. (8.16)

The bending moment can be evaluated, again, as a function of ζ or as a function of η. The linear case of

a small slope is reviewed briefly, in section 8.1.2, for comparison with the non-linear case of a large slope,
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that is the main focus of this chapter and occupies its remainder.

8.1.2 Linear buckling for small slope

The linear bending corresponds to the small slope (8.1) and leads to the following consequences: (i)

the angle of inclination of the elastica in (8.15a) simplifies to

η = ζ ′ = θ, (8.17)

where the inclination is equal to the derivative of deflection of the beam; (ii) the curvature k of the

elastica, from (8.15b), simplifies to

k = ζ ′′; (8.18)

(iii) the simplification of the curvature leads to the bending moment

M = −EIζ ′′; (8.19a)

(iv) the transverse force (8.10) and shear stress (8.11) simplify, respectively, to

F = (EIζ ′′)′ − Tζ ′, (8.19b)

f = (EIζ ′′)′′ − (Tζ ′)′
. (8.19c)

To deduce the last three equations (the constitutive and equilibrium equations), the only simplification

regarded was to consider linear bending, and thence they can be applied to any type of beam (for instance,

it is not necessary to be uniform).

In the case of linear deflection, when (8.1) is taken into account, and simultaneously of a uniform

beam, when the equations (8.12a) and (8.12b) are considered (again, when it is valid the assumptions

EI ∼ const and T ∼ const), the transverse force and shear stress simplify further, respectively, to

F = EIζ ′′′ − Tζ ′, (8.20a)

f = EIζ ′′′′ − Tζ ′′. (8.20b)

The beam is elastically stable if, and only if there is no deflection in the absence of shear stress. Otherwise,

the beam is elastically unstable if, and only if there is deflection in the absence of shear stress. For a

uniform beam, considering again the assumptions that T and EI are both constants, in the absence of

shear stress, f = 0, instability is possible only if the buckling parameter is positive, p2 > 0, in (8.14c),

that is, under compression T < 0, corresponding to

T = − |T | ⇒ p2 = |T |
EI

, (8.21a)
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and leading to the linear differential equation of fourth order with constant coefficients

ζ ′′′′ + p2ζ ′′ = 0 (8.21b)

for the shape of the elastica, whose solution is

ζ(x) = A+Bx+ C cos (px) +D sin (px) , (8.21c)

where A, B, C and D are four arbitrary real constants. However, there is also a fifth indeterminate

constant, namely, the buckling parameter p, that is intrinsically related to the critical axial tension.

For subsequent comparison with the non-linear theory, two sets of well-known results are quoted from

the literature [77–79, 219] on linear buckling of beams: (i) firstly, the critical buckling load, that is, the

magnitude of the compressive axial load at the onset of buckling, is highest for a clamped beam,

−T1 = 4π2EI

L2 , (8.22a)

lowest for a cantilever beam,

−T3 = π2EI

4L2 , (8.22b)

and for a pinned beam, the value is in between, because

−T1 > −T2 = π2EI

L2 > −T3; (8.22c)

(ii) secondly, the shape of the buckled elastica in the linear approximation is, respectively, ζ1 for the

clamped, ζ2 for the pinned, and ζ3 for the cantilever cases, given, respectively, by

ζ1(x) = b

[
1− cos

(
2πx
L

)]
, (8.23a)

ζ2(x) = b
[
sin
(πx
L

)]
, (8.23b)

ζ3(x) = b
[
1− cos

(πx
2L

)]
, (8.23c)

where the arbitrary real constant b is an amplitude and L is the length of the beam. The last results are

deduced for the fundamental mode of buckling, that is, for the lowest possible value of T that buckles the

beam. The linear results will be compared in the sequel with the lowest-order non-linear theory in the

next subsection. The fundamental mode shapes of the buckled elastica using the linear approximation

are plotted in the figure 8.6.
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Figure 8.6: The critical buckling load for a beam under compression (figure 8.2) is the same in the
linear and non-linear cases of small and large slope, respectively, and depends on the type of support. It
is largest for clamping at both ends (right beam), intermediate if both ends are pinned (middle beam),
and smallest for a cantilever beam clamped at one end and free at the other (left beam).

8.1.3 Lowest-order non-linear buckling for large slope

In the linear case of a small slope without forcing, the elastica satisfies a linear differential equation

with constant coefficients of fourth order for the transverse displacement, as stated in the equation (8.21b).

However, in the non-linear case of a large slope without forcing, regarding the definition (8.15a) that is

equivalent to

ζ ′ = η
∣∣1− η2∣∣−1/2 (8.24a)

used to derive the non-linear variable ζ as a function of η, the elastica satisfies a non-linear differential

equation with constant coefficients of order three, using the equation (8.14c) with f = 0,

(∣∣1− η2∣∣1/2
η′′
)′

+ p2η′ = 0, (8.24b)

using the sine of the angle of inclination as a dependent variable that is non-linear. The last two expres-

sions are valid for small or large deflections and can be linearised for small deflection, as in the section

8.1.2. However, although the relation (8.24a) is valid for any type of beam because it is a definition, the

equation (8.24b) is only correct for uniform beams, in the absence of shear stress (to study the buckling

phenomenon). Indeed, only uniform beams will be studied in the remainder of this chapter, and therefore,

the comparison between different theories will be made only for that type of beams.

The differential equation (8.24b), for p2 ∼ const because the beam is uniform, has a first integral

(
A

2 − p
2η

) ∣∣1− η2∣∣−1/2 = η′′ = η′ dη′

dη , (8.25a)
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where A is an arbitrary constant. After rearranging the last expression in the form

2η′dη′ = A
∣∣1− η2∣∣−1/2 dη − 2p2 |1− η|−1/2

ηdη, (8.25b)

it can be integrated [133] as

η′2 = B +A arcsin η + 2p2 ∣∣1− η2∣∣1/2
, (8.25c)

where B is another arbitrary constant. The last equation is still exact for a uniform beam without shear

stress. Henceforth, there are two distinct approximations that can be done. The linear approximation of

a small slope (8.1) implies η2 ≤ ζ ′2 ≪ 1 in (8.15a). Otherwise, the lowest-order non-linear approximation

implies

ζ ′4 ∼ η4 ≪ 1, (8.26a)

and if it is applied to (8.25c), then it results in

η′2 = B + 2p2 − p2η2 +Aη, (8.26b)

using only the leading terms of the power series for the square root or binominal [130] and for the arc of

circular sine [39]. The integration of (8.26b) introduces another arbitrary constant C in

x+ C =
∫ ∣∣B + 2p2 +Aη − p2η2∣∣−1/2 dη, (8.26c)

which relates to the sine of the angle of inclination with the longitudinal coordinate of the beam, and is

valid only for the lowest-order non-linear approximation (8.26a) and for the uniform beam, being valid

(8.12a) and (8.12b).

The shape of the elastica, derived without any simplification, is given by the definition (8.24a) involving

another constant of integration D in

ζ(x) = D +
∫ x

η(ξ)
∣∣∣1− [η(ξ)]2

∣∣∣−1/2
dξ. (8.27)

Thus, in the linear case of a small slope (8.1) and for a uniform beam, the shape of the elastica is given by

(8.21c), while otherwise, in the lowest-order non-linear approximation (8.26a) also for a uniform beam,

the shape of the elastica is given by (8.26c) and (8.27), in both cases involving four arbitrary constants

plus the indeterminate value p. The four boundary conditions, two at each end of the beam: (i) specify

three constants in terms of one, that is an arbitrary amplitude; and (ii) determine the eigenvalues p,

of which the smallest specifies the critical buckling load, according to the definition (8.12c). It will be

investigated in the sequel whether (i) the critical buckling load and (ii) the shape of the elastica are equal

or different in the linear and non-linear cases of small (8.1) and moderate (8.26a) slopes, respectively.

This will be ascertained by considering three classical cases of support by order of increasing critical

buckling load in the linear case, namely: (i) cantilever beam in the section 8.2; (ii) pinned and clamped
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beams, both in section 8.3. In the case (i) of the cantilever beam, there is a boundary condition at the

free end that is compared next (section 8.1.4) between the linear and non-linear cases of small and large

slopes respectively.

8.1.4 Linear and non-linear boundary conditions at a free end

A cantilever beam, represented in the left scheme of the figure 8.6, is clamped at one end and free

at the other end. Four boundary conditions must be known to evaluate the critical buckling load and

the shape of the elastica. For a cantilever beam, the bending moment at the end of the beam is zero,

M (L) = 0, and the transverse force must also vanish at that point, F (L) = 0. To obtain the force

boundary condition at the free end, the equations (8.13a) to (8.13c) are used. The two aforementioned

boundary conditions, regarding (8.13c) and (8.16) respectively, lead to the non-linear boundary conditions

in terms of η, explicitly

η′(L) = 0, (8.28a)∣∣1− [η(L)]2
∣∣1/2

η′′(L) + p2η(L) = 0. (8.28b)

In the linear case of a small slope (8.1), the boundary conditions become

ζ ′′(L) = 0, (8.29a)

ζ ′′′(L) + p2ζ ′(L) = 0. (8.29b)

On the other hand, in the non-linear case of an unrestricted slope, the free-end boundary condition

of a zero-bending moment (8.16) is, in terms of the sine of the inclination of the elastica, equal to

η′(L) = 0 (8.30a)

or, regarding (8.15a), in terms of the displacement of the elastica,

ζ ′′(L)
∣∣∣1 + [ζ ′(L)]2

∣∣∣−3/2
= 0. (8.30b)

The free-end boundary condition of transverse force, again (8.13c) with (8.24a) for the case of an unre-

stricted slope, is

η′′(L) + p2 ∣∣1− [η(L)]2
∣∣−1/2

η(L) = 0, (8.31a)

or in terms (8.13a) of the displacement of the elastica

p2ζ ′(L) +
∣∣∣1 + [ζ ′(L)]2

∣∣∣−5/2 {
ζ ′′′(L)

∣∣∣1 + [ζ ′(L)]2
∣∣∣− 3ζ ′(L) [ζ ′′(L)]2

}
= 0. (8.31b)

The passage from (8.30a) to (8.30b) uses the equation (8.15a), while the passage from (8.31a) to
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(8.31b) uses the next relation:

η′′ =
(
ζ ′′
∣∣∣1 + ζ ′2

∣∣∣−3/2
)′

=
∣∣∣1 + ζ ′2

∣∣∣−5/2 [
ζ ′′′
(

1 + ζ ′2
)
− 3ζ ′ζ ′′2

]
. (8.32)

The boundary conditions for the displacement at the free end in the linear and non-linear cases of small

and unrestricted slopes, respectively, of a uniform beam (when the equations (8.12a) to (8.12c) are valid):

(i) coincide for the vanishing of the bending moment because (8.29a) is equivalent to (8.30b); (ii) however,

do not coincide for the transverse force because (8.29b) is different from (8.31b), since the second term

in (8.31b) differs from the first term in (8.29b).

8.2 Non-linear buckling of a cantilever beam

The non-linear equation of the elastica is integrated first for a cantilever beam (section 8.2.1) specifying

the linear approximation (in agreement with section 8.2.2). The non-linear corrections are considered

analytically for lowest-orders (section 8.2.3) and numerically for higher orders (section 8.2.4).

8.2.1 Non-linear elastica of a cantilever beam

The first integral of the differential equation for the elastica is (8.25a), arising from the integration of

(8.24b), that is valid only for a uniform beam (and therefore the parameter p is constant because T and

EI are also constants); however, it can be applied not only for linear, but also for the non-linear case. It

involves a constant A and is rearranged in the next form:

∣∣1− η2∣∣1/2
η′′ + p2η = A/2. (8.33)

In the case of a cantilever beam, the transverse force must vanish at the free end, leading to the boundary

condition (8.28b). Comparing to the last expression, then A/2 = 0, or A = 0. Consequently, the last

condition simplifies the second integral (8.25c). Henceforth, in this section, the results are deduced with

the lowest-order non-linear approximation (8.26a). With this approximation, the equation (8.26c) with

A = 0 simplifies to

(x+ C)
√
B + 2p2 =

∫ ∣∣1− q2η2∣∣−1/2 dη = 1
q

arcsin(qη), (8.34a)

involving the constant

q = p√
B + 2p2

. (8.34b)

The primitive (8.34a) can be written in the form

η(x) = 1
q

sin
[
q(x+ C)

√
B + 2p2

]
=

√
2 + B

p2 sin [p(x+ C)] . (8.34c)
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Up to this point, two assumptions were used: uniform beam and lowest-order non-linear approxima-

tion. The clamping boundary condition at the fixed end, ζ ′ (0) = 0 (the slope of the elastica at that point

must be zero), from (8.15a) which is an exact relation, implies η (0) = 0, and hence

0 = η (0) =

√
2 + B

p2 sin(pC) (8.35)

leading to the second result from the boundary conditions, C = 0. One could set 2 +Bp−2 = 0 to verify

the last boundary condition, but in that case, η would be equal to zero along the beam, and we are

interested only in non-zero solutions of η and ζ. Substituting C = 0 in (8.34c) and introducing another

non-zero arbitrary constant,

G ≡

√
2 + B

p2 , (8.36a)

lead to

η(x) = G sin(px). (8.36b)

In spite of C = 0 being valid, the more general solution of the last boundary condition would be

sin (pC) = 0 and consequently η = G sin (px) cos (pC). However, in that case, the successive buckling

loads and the shape of the elastica are the same as setting C = 0, which is simpler. The boundary condi-

tion stating that the bending moment vanishes at the free end, M (L) = 0, repeated here for convenience,

is η′ (L) = 0 in the non-linear case, and applied to (8.36b), considering that η′(x) = pG cos (px), it arrives

at the condition cos (pL) = 0. Thus, the successively buckling loads that make the beam unstable are

p3,nL =
(
n− 1

2

)
π, (8.37)

where the first subscript 3 stands for the cantilever case, and the second subscript n stands for the n-th

mode of the buckling.

Consequently, the critical buckling load is evaluated with the lowest possible value of the buckling

parameter and it is equal to

p3,1 = π

2L ⇒ −T3 = π2EI

4L2 , (8.38)

which is the same in the linear (8.22b) and lowest-order non-linear (8.38) cases for a cantilever beam that

is free to move at the free end. Knowing the sine of the slope of the elastica η, the non-linear slope ζ ′
3 is

obtained substituting (8.36b) in the exact kinematic relation (8.24a):

ζ ′
3(x) = G sin(px)

∣∣1−G2 sin2(px)
∣∣−1/2

. (8.39)

To compare with the linear case, a relation between the constant G and another constant from the linear

results is needed. In the linear case, (ζ ′
3)2 ≪ 1 and the factor with the square root can be omitted. Then,

the equation (8.39) in the linear case concerning the first mode of buckling (the results for this mode are
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shown in the section 8.1.3) leads to

ζ ′
3(x) = G sin (p3,1x) = G sin

(πx
2L

)
. (8.40a)

In agreement with the linear result (8.23c), the arbitrary constants G and b are related by

G = πb

2L, (8.40b)

but generally, the relation must be G = pb.

In the non-linear case, the square root in (8.39) cannot be omitted. The assumption that the slope

does not exceed unity, |ζ ′
3| < 1, leads, considering the exact relation (8.15a), to

G = |η3(x)|max = |ζ ′
3|
∣∣∣1 + ζ ′

3
2
∣∣∣−1/2

< |ζ ′
3| < 1, (8.41)

and thus the inverse square root in (8.39) can be expanded [39] in a binomial series,

∣∣1−G2 sin2 (px)
∣∣−1/2 =

∞∑
m=0

amG
2m sin2m (px) , (8.42)

with coefficients

am ≡ (−1)m

(
−1/2
m

)
= (−1)m

m!

(
−1

2

)(
−1

2 − 1
)
. . .

(
−1

2 −m+ 1
)

= 1
m!

1
2

3
2 . . .

2m− 1
2 = (2m− 1)!!

m!2m
= (2m− 1)!!

(2m)!! = (2m)!
[(2m)!!]2

= (2m)!
(m!)222m

. (8.43)

The double factorial is used in the coefficients, whose its definition with some properties are reviewed in

the next equations [39]:

(2m− 1)!! ≡ (2m− 1)(2m− 3) . . . 5 · 3,

(2m)!! ≡ 2m(2m− 2) . . . 4 · 2 = m!2m,

(2m− 1)!! = 2m(2m− 1) . . . 3 · 2 · 1
2m(2m− 2) . . . 4 · 2 = (2m)!

(2m)!! = (2m)!
m!2m

.

(8.44)

The first seven coefficients are indicated in table 8.1.

Coefficient a0 a1 a2 a3 a4 a5 a6

Numerical value 1 1
2

3
8

5
16

35
128

63
256

231
1024

Table 8.1: Numerical values for the first seven coefficients of the equation (8.43).

The coefficients (8.43) are valid for m = 0, 1, . . .. The table 8.1 highlights the numerical results of the

first seven coefficients. Thus, the slope of a uniform cantilever beam under axial compression is given by
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substituting the equation (8.42) in (8.39) that is equivalent to

ζ ′
3(x) =

∞∑
m=0

amG
2m+1 sin2m+1 (px) =

∞∑
m=0

ζ ′
3,m (x) . (8.45)

The leading term, corresponding to m = 0 in the previous series, is the linear slope (deduced from the

linear approximation) by comparing the last result with the equation (8.40a). The following terms are

non-linear corrections of increasing order. Furthermore, the displacement can be obtained by integration

of (8.45), and thus consists of the lowest-order linear approximation plus non-linear corrections of all

orders that are evaluated next. At this point, in spite of having four boundary conditions for a cantilever

beam, only three of them were used: the bending moment vanishing at x = L, the transverse force also

vanishing at the same position, and the derivative of the elastica (its slope) at the beginning of the beam

being zero.

8.2.2 Linear approximation and non-linear corrections of all orders

There is one last boundary condition that was not used yet: the beam is fixed at its beginning, and

hence, the transversal displacement at that point is zero, ζ (0) = 0. Integrating the equation (8.45), the

displacement is given by a sum,

ζ3(x) =
∞∑

m=0
ζ3,m+1(x), (8.46a)

of terms

ζ3,m+1(x) ≡ amG
2m+1

∫ x

0
sin2m+1(pξ) dξ. (8.46b)

Note that in the equation (8.46a), there is no arbitrary constant of integration that is equal to zero,

because of the boundary condition ζ (0) = 0. Therefore, at this point, all four boundary conditions were

used. The zero-order term is the linear approximation

ζ3,1(x) = a0G

∫ x

0
sin(pξ) dξ = G

p
[1− cos(px)] = 2GL

π
[1− cos(px)]

= b [1− cos(px)] = 2b sin2
(px

2

)
, (8.47)

where (8.38) and (8.40b) were used to prove the third and fourth equalities successively in agreement

with (8.23c). The lowest-order non-linear correction is

ζ3,2(x) = a1G
3
∫ x

0
sin3(pξ) dξ = G3

2

∫ x

0
sin(pξ)

[
1− cos2(pξ)

]
dξ

= G3

2p

{
1− cos(px) + 1

3
[
cos3(px)− 1

]}
= G3

6p
{

2− cos(px)
[
3− cos2(px)

]}
= G3

24p [8− 9 cos(px) + cos(3px)] = G3

12p

[
9 sin2

(px
2

)
− sin2

(
3px
2

)]
(8.48)
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where the value of a1, indicated in table 8.1, and some elementary trigonometric relations [133] were used

in the determination of ζ3,2.

The two lowest-order terms in (8.46a) have been evaluated explicitly in (8.47) corresponding to the first

term, and (8.48) corresponding to the second term, in the case of a lowest-order non-linear approximation

(ζ ′)4 ≪ 1. To estimate the error of the truncation of the series (8.46a), the higher-order terms in (8.46b)

may be considered. In order to explicitly evaluate the m-th order, the expansion of the odd power of sine

[133] is used as a sum of sines of multiple angles:

sin2m+1(pξ) = (−1)m2−2m
m∑

j=0

{
(−1)j

(
2m+ 1

j

)
sin[(2m− 2j + 1)pξ]

}
. (8.49)

Substituting the last expression in the m-th order, the non-linear correction (8.46b) becomes

ζ3,m+1(x) = amG
2m+1

∫ x

0
sin2m+1(pξ) dξ

= am

p
G2m+1(−1)m2−2m

m∑
j=0

{
(−1)j

(
2m+ 1

j

)
1− cos[(2m− 2j + 1)px]

2m− 2j + 1

}
(8.50)

= am

p
G2m+1(−1)m21−2m

m∑
j=0

{
(−1)j

2m− 2j + 1

(
2m+ 1

j

)
sin2

[(
m− j + 1

2

)
px

]}
;

it can be confirmed that substituting m = 0 and m = 1 in the last expression leads, respectively, to

(8.47) and (8.48). The maximum deflection at the tip, considering the fundamental mode of buckling

and regarding (8.38), is given by

ζ3(L) = 2L
π

∞∑
m=0

amG
2m+1(−1)m2−2m

m∑
j=0

(−1)j

2m− 2j + 1

(
2m+ 1

j

) (8.51)

that relates the constant G to the maximum deflection.

8.2.3 Truncation of the series in the shape of the elastica

The exact shape of the buckled cantilever beam is given by the sum of the series (8.46a), having infinite

terms. The series converges when G < 1 and diverges when G > 1. Therefore, G < 1 is a necessary

condition to evaluate the series (8.46a). To obtain accurate results, only the first terms ζ3,m need to be

evaluated, and m can be small. The table 8.2 shows the number of iterations (the number of terms of the

series) needed to calculate the sum (8.46a) with absolute and relative errors smaller than 10−15; that is,

the iterations stop when the difference between two consecutive terms, ζ3,m and ζ3,m+1, is smaller than

10−15, and when the ratio between that difference and the last term evaluated ζ3,m+1 is also smaller than

10−15. To have an error with such a small order of magnitude, few terms are needed, for instance, with

respect to the fundamental mode of buckling (with n = 0, for a beam with length L = 0.8, only the first

10 terms are needed). Furthermore, one can conclude that the number of iterations is intrinsically related

to the value G for each case. When G becomes closer to 1, which is the boundary of convergence of the

series, more iterations are needed to converge with the same error. For instance, looking at the data of
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table 8.2, the case when more iterations are needed is when n = 2 and L = 0.8, because it is the case

when G is closest to 1. The parameter G is equal to pb = (n− 1/2)πb/L. Consequently, for the same

parameter b, more iterations are necessary to obtain accurate results for shorter beams and for higher

modes of buckling, corresponding to larger slope and stronger non-linearity, as highlighted in table 8.2.

Number of Terms | Parameter G

Order n Length L

0.8 1 2 3 4 5 6 7

1 10 | 0.196 9 | 0.157 7 | 0.079 6 | 0.052 5 | 0.039 5 | 0.031 5 | 0.026 5 | 0.022
2 30 | 0.589 21 | 0.471 11 | 0.236 9 | 0.157 8 | 0.118 7 | 0.094 7 | 0.079 6 | 0.067

Table 8.2: Number of non-linear terms necessary to evaluate the sum in (8.46a) with absolute and
relative errors smaller than 10−15, for each length L of the beam and for the first two orders of the
buckling load. It also shows the constant G for each case. The parameter b is equal to 0.1.

One specific example of the non-linear theory of buckling is illustrated next in the case of a cantilever

beam, for which the linear approximation to the shape of the elastica (8.46a) is just the first term of the

sum, substituting m = 0 in (8.50), or equivalently, the result (8.47). However, the exact shape using the

lowest-order non-linear approximation is given by the infinite sum in (8.46a), and the table 8.2 highlights

that when G is close to 1, the number of necessary terms increases very rapidly, possibly requiring a

larger computational effort to obtain accurate results. Therefore, in the case of an arbitrary amplitude,

the value G = 0.8, that satisfies (8.41) being close to the limit, is chosen to understand if the shape can

be deduced with very few terms. The linear approximation (m = 0) of the shape of the elastica is

pζ3,1(x) = 0.8[1− cos(px)] = 1.6 sin2
(px

2

)
. (8.52)

The dimensionless variables pζ and px are used for plotting the successive iterations of the sum (8.46a)

in the figure 8.7, to make the results not dependent on the explicit values of the order of buckling n and

the length L. Considering now the non-linear terms, the corresponding lowest-order non-linear correction

(m = 1) is

pζ3,2 ≈ 0.02133[8− 9 cos(px) + cos(3px)] ≈ 0.04266
[
9 sin2

(px
2

)
− sin2

(
3px
2

)]
, (8.53)

that is also plotted in the figure 8.7.

The total non-linear deflection of the buckled cantilever beam, using the lowest-order non-linear

approximation (also plotted in the figure 8.7), shows that the maximum deflection of the fundamental

mode of buckling, that occurs at pL = π/2, is pζ3,1 = 0.8 in the linear approximation, to which the first

non-linear correction adds pζ3,2 ≈ 0.1707, leading to the total value p (ζ3,1 + ζ3,2) ≈ 0.9707. The linear

approximation (8.52), over its whole length, 0 ≤ px ≤ π/2, leads to a monotonic shape of the elastica

because

dpζ3,1

dx = 0.8 sin(px) > 0. (8.54)
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Figure 8.7: Different mode shapes of the buckled elastic cantilever beam for the fundamental mode of
buckling.

The lowest-order non-linear correction (8.53) is also monotonic, since

dpζ3,2

dx ≈ 0.064[3 sin(px)− sin(3px)] > 0, (8.55)

thus increasing the deflection everywhere, and consequently, the maximum deflection is at the end of the

beam. It is at that point where the difference between the linear approximation and the lowest-order

non-linear correction is at its maximum.

The non-linear corrections of all higher orders (8.46a) are specified by (8.50), including the maximum

deflection at the tip (8.51), and since they go beyond the hypothesis (ζ ′)4 ≪ 1, they serve only as order-of-

magnitude estimates of the error caused by truncating the non-linear series after the first non-linear term.

The second-order non-linear correction, setting m = 2 in (8.50), would introduce the factor a2 = 3/8

multiplied by a term, giving the result of order 3G5/64 ≈ 0.015, that is a correction of approximately

6.3% compared with p (ζ3,1 + ζ3,2). This would be hardly visible in the plot of the figure 8.7 that is

limited to the sum of the linear approximation (8.52) plus the lowest-order non-linear correction (8.53).

Thus, the buckled shape of a cantilever beam, for 0 ≤ px ≤ π/2, is given exactly by (8.50) to all orders in

the amplitude G, with the lowest-order non-linear approximation consisting of the linear approximation

(8.47) and lowest-order non-linear correction (8.48). The higher-order terms go beyond the approximation

(ζ ′)4 ≪ 1 and apply only as an indication of the order of magnitude of the error due to stopping at the

lowest-order non-linear correction; for example, the order of magnitude of the lowest-order non-linear

approximation is sufficient, summing (8.52) with (8.53) in the case G = 0.8 to obtain the shape of the

elastica using only the first two iterations (figure 8.7) with less than 7% in the accuracy error.

The non-linear shape of the buckled elastica in the post-buckling regime can be represented as a

superposition of harmonics of the elastica in the linear approximation. In the case illustrated of a

cantilever beam with moderate non-linearity, the buckled shape is approximated by a superposition of

the fundamental and second harmonics with a suitable ratio of the amplitudes of the two terms, calculated

using the method detailed in this chapter.
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8.2.4 Numerical results for the buckling of a cantilever beam

The figures 8.8 to 8.10 are obtained using many more iterations of the series (8.46a) than the first

two terms; they are obtained with 30 terms, that is, calculating the first 30 terms of the series, to obtain

more accurate results, although the difference is not as significant as using only the first two terms. The

figures show a solution for each case of the differential equation that specifies the shape of the elastica of

a cantilever beam. To obtain the solution, it was assumed that C = 0; however, a more general condition

would be sin (pC) = 0, leading to η = G sin (px) cos (pC) with cos (pC) = ±1. The plots of the figures are

obtained with cos (pC) = 1, but one can assume cos (pC) = −1, meaning that −η is also a valid solution,

and consequently, −ζ. Therefore, ζ and −ζ are the two possible solutions for each case (in the plots, only

one of them is sketched), meaning that the beam can buckle on one side or on the opposite side with

equal probability.
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Figure 8.8: Different mode shapes of the buckled elastic cantilever beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.

The figure 8.8 shows the effect of varying the indeterminate real constant b on the several mode shapes

of the buckled elastic cantilever beam for the first four orders of buckling. The constant b only serves

to obtain numerical results of ζ and does not influence the shape of the elastica. The effect of b is only

on the magnitude of the elastica, not altering the positions of maximum and minimum deflection of the

beam. These observations are valid independently of the order n and length of the beam L. For the

fundamental mode of buckling, the shape of the beam increases monotonically, leading to a maximum

amplitude at the tip, and for higher modes of buckling, the shape oscillates along the beam, leading to

alternate peaks and nulls of the oscillation. Increasing the order n leads to more peaks and nulls because

the period of the trigonometric functions is shorter.

The effect of length L on the shapes of the buckled elastic cantilever beam for the first four orders
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Figure 8.9: Different mode shapes of the buckled elastic cantilever beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.

of buckling is shown in the figure 8.9. Changing the length L does not significantly influence the values

of maximum deflection, although this effect is more significant for higher modes of buckling. For longer

beams, the maximum deflection of the buckled beam is lower. The reason is because, according to the

equation (8.50), each term of the series (8.46a) is proportional to G2m = (pb)2m, and consequently, is

proportional to L−2m. The length L has a more significant effect in the positions of maximum deflection

of the beam. While L is increasing, the period of the sine functions also becomes longer, and therefore,

looking at the plots of figure 8.9 in a down-top approach, one can conclude that the first maximum occurs

for the shorter beam, while the last maximum occurs for the longer beam.

In the figure 8.10, the difference between the linear approximation (m = 0) and the higher-order

terms of the non-linear approximation (m ≥ 1) is shown for several lengths and for the first four orders of

buckling. The linear approximation is less accurate for shorter beams and for higher orders of buckling.

The conclusion is the same as in the table 8.2. According to the table 8.2, more iterations are needed for

shorter beams and for higher values of n, and therefore, the difference induced by the non-linear terms of

the series (8.46a) is higher for these cases. A shorter beam and higher-order modes lead to “ripples” with

a large slope (see figure 8.2), and thus larger non-linear effects. Furthermore, the maximum difference

between the two levels of approximation occurs at the extreme amplitudes of the deformation of the

beam, independently of the parameters n and L. The maximum difference therefore occurs when the

derivative of ζ is zero, and is again more noticeable for shorter beams and higher values of n. For

the fundamental mode of buckling (n = 1), the difference is negligible, and therefore, one can use the

linear approximation to obtain accurate results. Moreover, comparing the two approximations, the beam

buckles more when the lowest-order non-linear approximation is used than the linear approximation;
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Figure 8.10: Comparison of the mode shapes of the buckled elastic cantilever beam assuming a small
slope (thick lines), (ζ ′)2 ≪ 1, or assuming the lowest-order non-linear slope (thin lines), (ζ ′)4 ≪ 1, for
the four lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the length
of the beam is L = 2 or L = 3.

that is, for the same axial tension and parameters of the beam, the value of the deflection obtained

with the linear approximation is lower than with the non-linear approximation. Consequently, the linear

approximation underestimates the strength of the buckling loads, and the rigidity of the beam appears

to be higher in the linear case.

The lowest-order non-linear theory of the elastica of a buckled beam (section 8.1) is extended next

from the cantilever beam (section 8.2) to pinned and clamped beams (section 8.3).

8.3 Non-linear buckling of clamped and pinned beams

The lowest-order non-linear theory of buckling (section 8.3.1) applies not only to a cantilever beam

(section 8.2), but also to clamped and pinned beams (section 8.3.2), showing that, in all cases, the critical

buckling load is the same as in the linear case (section 8.3.3), but the shape of the buckled elastica is due

to the generation of linear harmonics, that is illustrated numerically (section 8.3.4).

8.3.1 Non-linear effects of large slope

The critical buckling load for a cantilever beam was shown to coincide in the linear (8.22b) and lowest-

order non-linear (8.38) cases. Two possible explanations are that: (i) a cantilever beam can move at the

free end; or (ii) the buckling is a linear phenomenon, and thus its onset is not affected by non-linear

effects. The first explanation (i) can be tested by determining the critical buckling load of non-cantilever

beams using the lowest-order non-linear theory. For a non-cantilever beam, the simplification A = 0 does
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not hold, because F (L) = 0 is not a boundary condition for pinned nor clamped beams. In the equation

(8.26c), valid for uniform beams and simultaneously using the lowest-order non-linear approximation, the

argument of the square root is written as

2p2 +B +Aη − p2η2 = 2p2 +B + A2

4p2 −
(
pη − A

2p

)2
. (8.56)

The constant G is now defined by

G2 ≡ 2 + B

p2 +
(
A

2p2

)2
, (8.57a)

so that in the case of a cantilever beam, A = 0 and then G coincides with the earlier definition (8.36a),

and in (8.56) appears the square of a new dependent variable

z = η − A

2p2 . (8.57b)

Substitution of (8.57a) and (8.57b) in (8.26c) leads to the integration [39]:

p (x+ C) =
∫ dη√

G2 − z2
= 1
G

∫ dz√
1− z2/G2

= arcsin
( z
G

)
. (8.58)

Inverting (8.58), while using the new variables (8.57a) and (8.57b), specifies the sine of the slope, given

by

η = H +G sin [p (x+ C)] , (8.59a)

hence it specifies the respective curvature and the bending moment, using (8.15b), given by

M = −EIGp cos [p (x+ C)] (8.59b)

with amplitudes

H = A

2p2 , (8.59c)

G2 = 2 + B

p2 +H2. (8.59d)

The three arbitrary constants (A, B, C) may be replaced by (H, G, C), and the equations from (8.59a)

to (8.59d) are valid for uniform clamped and pinned beams, considering the lowest-order non-linear

approximation. Although H and G can simultaneously be zero, η would also be equal to zero and be a

valid solution, but we are interested in only non-zero solutions of η and ζ.

8.3.2 Coincidence of linear and non-linear critical buckling loads

In the case of a beam clamped at both ends (right beam of the figure 8.6), from (8.15a) follow the

boundary conditions η (0) = 0 and η (L) = 0, stating that the slope is zero at the start and end of the
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beam, and the two boundary conditions imply by (8.59a) that

H +G sin (pC) = 0, (8.60a)

H +G sin (pC + pL) = 0. (8.60b)

The compatibility of (8.60a) and (8.60b) requires

sin (pC) = sin (pC + pL) , (8.61a)

that leads to the next buckling forces:

p1,nL = 2nπ, (8.61b)

where the subscript 1 stands for a clamped beam; thus, the critical buckling load for a clamped beam is

determined by substituting the lowest possible value, n = 1, in the last expression,

p1,1 = 2π
L
. (8.61c)

By comparing the results (8.22a) and (8.61c), the critical buckling load for the uniform clamped beam is

the same in the linear theory and in the lowest-order non-linear theory.

From (8.59a), the curvature of the elastica (8.15b) is given by

k (x) = pG cos [p (x+ C)] . (8.62)

In the case of a beam pinned at both ends (middle beam of the figure 8.6), the vanishing of the curvature

at the start and end of the beam, respectively k (0) = 0 and k (L) = 0, leads to

cos (pC) = 0 (8.63a)

and

cos (pC + pL) = 0 (8.63b)

that are compatible for

p2,nL = nπ, (8.63c)

where the subscript 2 stands for a pinned beam; thus, the critical buckling load for a pinned beam is

obtained by substituting the lowest possible value n = 1 in the last expression, and is the same in the

linear (8.22c) and lowest-order non-linear theories, repeated here for convenience

p2,1 = π

L
. (8.63d)

This dismisses the conjecture (i) and supports the conjecture (ii) at the beginning of this section,

showing that the critical buckling load coincides in the linear and lowest-order non-linear theories because
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buckling is an instability triggered at linear level. The results for the linear theory are indicated in (8.22a)

to (8.22c). The coincidence of the critical buckling loads does not extend to the shape of the buckled

elastica (section 8.3.3) because the square of the slope appears in the curvature in the equation (8.6a).

8.3.3 Non-linear effects of the harmonics in the shape of the buckled elastica

The lowest-order non-linear approximation for the slope suggests (8.26a) and includes one order

beyond the linear approximation for the shape (8.27) of the elastica,

ζ (x) =
∫ x

0
η (ξ)

{
1 + 1

2 [η (ξ)]2
}

dξ. (8.64)

The constant D can be omitted either for clamped or pinned beams, because the transversal displacement

is zero at the start of both beams, ζ (0) = 0. The substitution of (8.59a) leads to

ζ(x) =
∫ x

0

[
H

(
1 + H2

2

)
+G

(
1 + 3H2

2

)
sin (pξ + pC)

+ 3HG2

2 sin2 (pξ + pC) + G3

2 sin3 (pξ + pC)
]

dξ. (8.65)

The change of variable

Ψ = pξ + pC (8.66a)

leads to

pζ(x) =
∫ px+pC

pC

[
H

(
1 + H2

2 + 3G2

4

)
+G

(
1 + 3H2

2 + G2

2

)
sin Ψ

− 3HG2

4 cos(2Ψ)− G3

2 sin Ψ cos2 Ψ
]

dΨ. (8.66b)

Some trigonometric relations [133] are used to allow immediate integration:

ζ(x) = H

(
1 + H2

2 + 3G2

4

)
x+ G

p

(
1 + 3H2

2 + G2

2

)
[cos(pC)− cos(px+ pC)]

+ 3HG2

8p [sin(2pC)− sin(2px+ 2pC)] + G3

6p
[
cos3(px+ pC)− cos3(pC)

]
. (8.66c)

To deduce the last equation, valid for uniform clamped or pinned beams and using the lowest-order

non-linear approximation, only one boundary condition was used, ζ (0) = 0, when there was a total of

four boundary conditions to be used. The shape of the elastica (8.66c) involves not only the buckling

parameter or eigenvalue p, but also the constants G, H and C, adding up to four values to be determined,

while there are three boundary conditions to be applied. Consequently, with four unknowns and three

boundary conditions, there is always an arbitrary constant in the final results of the elastica, and thus it

is only possible to determine its shape, but not explicit values.

In the case of the clamped beam, the possible buckling loads are given by the equation (8.61b), and
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using those values on the equation (8.66c), two boundary conditions have implicitly been used because

the value of p is deduced from two boundary conditions, as demonstrated in the section 8.3.2. The fourth

and last boundary condition to be used for the clamped beam is ζ (L) = 0. For the successive values of

p in the case of a clamped beam, sin (pL) = 0 and cos (pL) = 1. Consequently, for the clamped beam,

cos (pL+ pC) = cos (pC) and sin (2pL+ 2pC) = sin (2pC). These two results are important to apply the

last boundary condition. Substituting it in (8.66c) and knowing the last two results, the first relation

between constants is

H

(
1 + H2

2 + 3G2

4

)
= 0; (8.67a)

the second relation is one of (8.60a) or (8.60b), for example, the first one which is simpler and is repeated

here,

H +G sin(pC) = 0. (8.67b)

The two previous relations express two constants in terms of the third constant. The pair of equations

has two solutions other than the trivial case G = 0 = H, namely: (i) choosing H = 0, then, from (8.67b)

follows sin(pC) = 0; (ii) otherwise, from (8.67a), one can set G2 = −4/3− 2H2/3, and consequently, the

equation (8.67b) implies csc (pC) = −G/H. However, in the case (ii), independently of the value H, the

real constant G2 is negative, which is an impossible condition. Therefore, only the case (i) is possible,

setting H = 0, and consequently, sin (pC) = 0 with cos (pC) = ±1. Regarding these last conditions in

the equation (8.66c), the shape of the elastica for a clamped beam, assuming cos (pC) = 1, is

ζ1 (x) = G

p

(
1 + G2

2

)
[1− cos (px)] + G3

6p
[
cos3 (px)− 1

]
. (8.68)

Assuming cos (pC) = −1 would lead to the solution −ζ1, that is also a valid shape of the elastica.

In the case of a pinned beam, the successive valid buckling loads (8.63c) were inferred from two

boundary conditions, as explained in the section 8.3.2. The fourth and last boundary condition to be

used is again ζ (L) = 0. Knowing that the buckling parameter is p = nπ/L, then sin (pL) = 0 and

cos (pL) = 1; consequently, sin (2pL+ 2pC) = sin (2pC), and therefore the last boundary condition leads

to

0 = H

(
1 + H2

2 + 3G2

4

)
+ G

p

(
1 + 3H2

2 + G2

2

)
[cos(pC)− cos (pL+ pC)]

+ G3

6p
[
cos3 (pL+ pC)− cos3 (pC)

]
; (8.69)

the other boundary conditions indicated in the subsection 8.3.2 for pinned beams, (8.63a) and (8.63b),

simplify (8.69) to (8.67a), and for the same reason as in the clamped beam, H is also zero for the pinned

beam. Hence, the shape of the elastica for this case is (8.66c) with H = 0 and cos (pC) = 0, and then
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simplifies to

ζ2 (x) = G

p

(
1 + G2

2

)
sin (px)− G3

6p sin3 (px) . (8.70)

To deduce the above expression, it was assumed that sin (pC) = 1, but it is also possible to assume

sin (pC) = −1, meaning that not only ζ2, but also −ζ2 are valid solutions of the differential equation.

Thus, the shape of the buckled elastica in the lowest-order non-linear theory, therefore assuming

(8.26a), is given by (8.66c) for a uniform beam clamped or pinned at the two ends, and then the sine of

the slope (8.15a) of the buckled elastica in both beams is given by (8.59a). The critical buckling load

is the same in linear and lowest-order non-linear theories, and is equal to (8.22a) or (8.22c) for a beam

clamped or pinned, respectively. With respect to the shape of the elastica, the three constants (G, H

and C), for a clamped beam, satisfy H = 0 and sin (pC) = 0; for a pinned beam, they satisfy H = 0 and

cos (pC) = 0. In all the cases, there is one undetermined constant, namely G, and in both situations the

parameter can be related to the parameter of linear approximation, b. The absence of non-linear effects

on the critical buckling load and the presence of non-linear effects on the shape of the elastica can be

explained in terms of the non-linear generation of harmonics, as shown next.

In the simplest case of a cantilever beam (8.37), the fundamental mode (8.23a) is the particular case

n = 1 of the succession (8.37) of buckling harmonics,

ζ3,n(x) = Q

{
1− cos

[
πx

L

(
n− 1

2

)]}
, (8.71a)

using the linear approximation in the last equation and with increasing loads of buckling,

−T3,n = π2EI

L2

(
n− 1

2

)2
= −4T3,1

(
n− 1

2

)2
. (8.71b)

The critical buckling load (8.22b) is the lowest load that corresponds to the fundamental buckling mode

(8.23c). The non-linear theory (8.46a) leads to the generation of harmonics (8.50), changing the shape

of the buckled elastica, but not the lowest critical buckling load.

In the case of clamped beams, where the equation (8.61b) can be used, and considering the linear

approximation, there is also a succession of buckling harmonics,

ζ1,n(x) = Q

[
1− cos

(
2πnx
L

)]
, (8.72a)

with increasing loads,

−T1,n = 4π2EIn2

L2 = −n2T1,1, (8.72b)

defining again the critical buckling load being the lowest load, which is equal to (8.22a) and corresponds

to the fundamental buckling mode (8.23a).

In the case of pinned beams, using in this case the equation (8.63c) and again the linear approximation,

a succession of buckling harmonics also exists,

ζ2,n(x) = Q sin
(nπx
L

)
, (8.73a)
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with increasing loads,

−T2,n = π2EIn2

L2 = −n2T2,1, (8.73b)

and the critical buckling load in this type of beam is equal to (8.22c) that corresponds to the fundamental

buckling mode (8.23b).

Otherwise, although the critical buckling loads are the same, the shape of the elastica changes if the

linear approximation is not used. Considering the lowest-order non-linear approximation, for the clamped

beam, the shape of the elastica (8.68), for instance when assuming n = 1 to deduce the fundamental

mode of buckling, is given by

ζ1(x) = GL

2π

(
1 + G2

2

)[
1− cos

(
2πx
L

)]
− G3L

12π

[
1− cos3

(
2πx
L

)]
. (8.74a)

For the pinned beam, the shape of the elastica (8.70), assuming again the fundamental mode, therefore

using in this case the equations (8.63d), is given by

ζ2(x) = GL

π

(
1 + G2

2

)
sin
(πx
L

)
− G3L

6π sin3
(πx
L

)
. (8.74b)

For the cantilever beam, and assuming again the fundamental mode, the lowest-order non-linear approx-

imation is the sum of (8.47) and (8.48), ζ3(x) = ζ3,1(x) + ζ3,2(x), leading to

ζ3(x) = 2GL
π

[
1− cos

(πx
2L

)]
+ G3L

π

[
1− cos

(πx
2L

)
+

cos3 (πx
2L

)
− 1

3

]

= 2GL
π

(
1 + G2

2

)[
1− cos

(πx
2L

)]
− G3L

3π

[
1− cos3

(πx
2L

)]
, (8.75)

that coincides with the case equivalent to (8.72a) of clamping at x = 0 with the free end at x = L

implying A = 0 and H = 0, hence following the conditions A/2 = 0 and H = A/
(
2p2).

8.3.4 Numerical results for the buckling of a clamped and pinned beams

The figures 8.11 to 8.13 are obtained using the lowest-order non-linear expression (8.68) and show

the shape of the elastica using the lowest-order non-linear approximation for the clamped beams. To

obtain the solution, it was assumed that cos (pC) = 1; however, a more general condition would be

cos (pC) = ±1, leading to ζ = ±ζ1 with ζ1 given by the expression (8.68). The plots of the figures are

obtained with cos (pC) = 1, but cos (pC) = −1 can also be assumed, meaning that −ζ1 is also a valid

solution. Therefore, ζ1 and −ζ1 are the two possible solutions for each case (in the plots, only one of

them is sketched), meaning that the beam can buckle on both sides with equal probability.

The figure 8.11 shows the effect of varying the indeterminate real constant b on the several mode

shapes of the buckled elastic clamped beam for the four first orders of buckling. The constant b, as in

the case of a cantilever beam, only serves to specify the amplitude of ζ1 and does not influence the shape

of the elastica. The effect of b is only on the magnitude of the elastica, not altering the positions of

maximum and minimum deflection of the beam. These observations are valid independently of the order
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Figure 8.11: Different mode shapes of the buckled elastic clamped beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.

n and length of the beam L. However, for the fundamental mode of buckling, the shape of the beam

does not increase monotonically, and the maximum amplitude is not at the tip, but is at the middle

span of the beam. Not only for the fundamental mode, but also for higher modes of buckling, the shape

oscillates along the beam, leading to alternate peaks and nulls of the oscillation. Increasing the order n

leads to more peaks and nulls because the period of the trigonometric functions is shorter. The number

of peaks and nulls (with nulls meaning points where there is no deflection) are, respectively, n and n+ 1,

where n is the order of the mode (two nulls are at the beginning and end of the beam due to the imposed

boundary conditions on the displacement).

The effect of length L on the shapes of the buckled elastic clamped beam for the first four orders of

buckling is shown in the figure 8.12. As in the case of the cantilever beam, changing the length L does

not significantly influence the maximum values of deflection, although this effect is more significant for

higher modes of buckling. For longer beams, the maximum deflection of the buckled beam is higher.

According to the equation (8.68), and in agreement to the linear approximation, the relation between the

constants G and p is given by the relation

G

(
1 + G2

2

)
= pb (8.76a)

and therefore the equation (8.68) can be simplified to

ζ1 = b [1− cos (px)] + G3

6p
[
cos3 (px)− 1

]
. (8.76b)

Keeping constant the variables n and b, from (8.76a) for G2 < 1, then G ∼ pb, and thus G3/p ∼ p2b ∼
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Figure 8.12: Different mode shapes of the buckled elastic clamped beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.

n2π2b/L2 decreases with increasing the length of the beam. Thus, the coefficient in the second term on

the right-hand side of (8.76b) decreases for increasing L, and since the term in square brackets is negative,

the value of ζ1 increases. Therefore, the non-linear correction in the second term on the right-hand side

of (8.76b) leads to a larger maximum deflection for the increasing length of the beam, as seen in figure

8.12. The length L has a more significant effect in the positions of maximum deflection of the beam. As

in the case of a cantilever beam, while L is increasing, the period of the cosine functions also becomes

longer, and therefore, looking at the plots of figure 8.12 from a down-top approach, one can conclude

that the first maximum occurs for the shorter beam, while the last maximum occurs for the longer beam.

In the figure 8.13, the difference between the linear approximation and the lowest-order non-linear

approximation is shown for several lengths and for the first four orders of buckling. The linear approxima-

tion is less accurate for shorter beams and for higher orders of buckling. It is the same conclusion as in the

case of a cantilever beam. Furthermore, the maximum difference between the two levels of approximation

occurs at the extreme amplitudes of the deformation of the beam, independently of the parameters n

and L. The maximum difference therefore occurs when the derivative of ζ is zero, and again is more

noticeable for shorter beams and higher values of n. For the fundamental mode of buckling (n = 1), the

difference is negligible, and therefore, one can use the linear approximation to obtain accurate results.

Moreover, comparing the two approximations, the beam buckles less when the lowest-order non-linear

approximation is used than the linear approximation; that is, for the same axial tension and parameters

of the beam, the value of the deflection obtained with the linear approximation is higher than with the

non-linear approximation (it is opposite to the cases of cantilever and clamped beams). Consequently,

the linear approximation overestimates the strength of the buckling loads, and the rigidity of the beam
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Figure 8.13: Comparison of the mode shapes of the buckled elastic clamped beam assuming small slope
(thick lines), (ζ ′)2 ≪ 1 or assuming a lowest-order non-linear slope (thin lines), (ζ ′)4 ≪ 1, for the four
lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the length of the
beam is L = 1 or L = 2.

appears to be lower in this case.

The figures 8.14 to 8.16 were obtained using exactly the expression (8.70), and show the shape of the

elastica using the lowest-order non-linear approximation for the pinned beams. To obtain the solution,

it was assumed that sin (pC) = 1; however, a more general condition would be sin (pC) = ±1, leading to

ζ = ±ζ2 with ζ2 given by the expression (8.70). The plots of the figures are obtained with sin (pC) = 1,

and assuming instead sin (pC) = −1 means that −ζ2 is also a valid solution. Therefore, ζ2 and −ζ2 are

the two possible solutions for each case (in the plots, only one of them is sketched), meaning that the

beam can buckle on the one side or in a symmetric way with equal probability.

The figure 8.14 shows the effect of varying the indeterminate real constant b on the several mode

shapes of the buckled elastic clamped beam for the four first orders of buckling. The conclusions about

the effect of varying b are the same as in the case of clamped beams. The number of peaks is equal to n,

and the number of nulls (points where there is no deflection) is equal to n + 1, where n is the order of

the mode.

The effect of length L on the shapes of the buckled elastic pinned beam for the first four orders of

buckling is shown in figure 8.15. In this case, changing the length L does not significantly influence the

values of maximum deflection, even for higher modes of buckling. By increasing the length of the beam,

the maximum deflection of the buckled beam remains almost constant. As in the case of a cantilever and

clamped beams, while L is increasing, the period of the sine functions also becomes longer, and therefore,

looking at the plots of figure 8.15 from a down-top approach, one can conclude that the first maximum

occurs for the shorter beam, while the last maximum occurs for the longer beam.
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Figure 8.14: Different mode shapes of the buckled elastic pinned beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.
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Figure 8.15: Different mode shapes of the buckled elastic pinned beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.

In the figure 8.16, the difference between the linear approximation and the lowest-order non-linear

approximation is shown for several lengths and for the first four orders of buckling. The linear approxi-

mation is less accurate for shorter beams and for higher orders of buckling. Moreover, comparing the two

approximations, the beam buckles more when the lowest-order non-linear approximation is used than the
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Figure 8.16: Comparison of the mode shapes of the buckled elastic pinned beam assuming a small slope
(thick lines), (ζ ′)2 ≪ 1 or assuming a lowest-order non-linear slope (thin lines), (ζ ′)4 ≪ 1, for the four
lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the length of the
beam is L = 1 or L = 2.

linear approximation; that is, for the same axial tension and parameters of the beam, the value of the

deflection obtained with the linear approximation is lower than with the non-linear approximation (it is

similar to the case of the cantilever beam and opposite to the case of a pinned beam). Consequently,

the linear approximation underestimates the strength of the buckling loads, and the rigidity of the beam

appears to be higher in this case. These conclusions are the same as in the cantilever beam and opposite

to the pinned beams.

Shorter beams and higher-order modes lead to “ripples” with larger slope (figure 8.2) and stronger

non-linear effects for all cases of support (cantilever, pinned or clamped).

8.4 Main conclusions of the chapter 8

For a cantilever or pinned or clamped beam, the linear buckling (using the linear approximation)

corresponds to a succession of increasing axial loads, given respectively by (8.71b), (8.72b), and (8.73b),

and corresponding harmonics, given respectively by (8.71a), (8.72a), and (8.73a) for the buckled shape of

the elastica. Buckling first occurs for the smallest axial load corresponding to the fundamental buckled

shape. The non-linear effect is to add harmonics to the fundamental mode; therefore, the first consequence

is: (i) not changing the critical buckling load, which remains the lowest; (ii) changing the buckled shape

of the elastica by superimposing on the fundamental linear mode its harmonics with specified amplitudes.

The non-linear shape of the buckled elastica has been illustrated (a) for cantilever, pinned and clamped

beams, respectively, in the figures 8.8–8.16; (b) each figure consists of four panels, one each for the

fundamental mode n = 1, and for the following three modes n = {2, 3, 4}; (c) the first of each set of
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the three figures, namely, the figures 8.8, 8.11 and 8.14, shows the effect of changing amplitudes among

four values; (d) the second of each set of the three figures, namely, the figures 8.9, 8.12 and 8.15, shows

the effect of changing the length of the beam among four values; (e) the last of each set of three figures,

namely, the figures 8.10, 8.13 and 8.16, indicates the magnitude of non-linear effects relative to the linear

approximations. In all cases, the non-linear effects are more significant for higher-order modes of shorter

beams, leading to “ripples” with a large slope (figure 8.2) compared with the smoother or less undulated

fundamental mode (figure 8.1).

The table 8.3 compares the values of the successive loads (the first five orders) that can buckle the

beam for the three cases studied between the linear and lowest-order non-linear approximations. Because

the expressions to deduce the buckling loads are precisely the same in the two approximations, the table

8.3 shows that the critical values obtained in this chapter are exactly the same as that in the literature

[77–79, 219] which considers linearisation of the equations.

Buckling orders
(
×EI/L2)

Beam Reference 1st 2nd 3rd 4th 5th

Clamped Present method 39.478 157.914 355.306 631.655 986.960
Literature [77–79] 39.478 157.914 355.306 631.655 986.960

Pinned Present method 9.870 39.478 88.826 157.914 246.740
Literature [77–79] 9.870 39.478 88.826 157.914 246.740

Cantilever Present method 2.467 22.207 61.685 120.903 199.859
Literature [77–79] 2.467 22.207 61.685 120.903 199.859

Table 8.3: Successive buckling orders for clamped, pinned and cantilever beams, and comparison of
numerical values between the method proposed on this chapter and the cited literature [77–79].

The critical buckling load can be changed by using translational or rotational springs that favour or

oppose buckling [82], and the shape of the buckled elastica is further modified by transverse concentrated

or distributed forces [130]. The two aspects of (i) the critical buckling load and (ii) the shape of the

buckled elastica are implicit in the vast literature on the non-linear buckling of beams and have been

made explicit using the theory of Euler–Bernoulli beams in its simplest form. The tables 8.4, 8.5 and

8.6 show the maximum numerical absolute errors between the linear approximation, used in the vast

literature, and the lowest-order non-linear approximation, used in this chapter, for several lengths L of

the beam, for the first four orders of buckling n and for each type of beam. For all three types of beams,

the difference is more significant for shorter beams and for higher orders of buckling.

The solution of (8.6a) shows that the exact non-linear shape of the elastica is a superposition of

harmonics of the linear problem (8.6b) where: (i) the fundamental buckling mode is determined from the

linear approximation (ζ ′)2 ≪ 1; and (ii) the generation of harmonics is a non-linear effect. The current

approach to the non-linear theory of bending with a large scale of Euler–Bernoulli beams uses therefore

a method that is different from the classical and more recent research, in that it represents non-linear

effects as a generation of harmonics.

The representation of the non-linear buckled elastica by a series of linear harmonics is an alternative
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Order n Length L

1 2 3 4 5 6 7

1 0.866 0.288 0.137 0.079 0.051 0.036 0.027
2 1.909 0.866 0.469 0.288 0.193 0.137 0.102
3 2.612 1.423 0.861 0.563 0.392 0.286 0.217
4 3.131 1.909 1.252 0.866 0.626 0.469 0.363

Table 8.4: Maximum difference between the linear and lowest-order non-linear approximations of the
deformation of the buckled clamped beam for several lengths of the beam and for the first four orders of
the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

Order n Length L

1 2 3 4 5 6 7

1 0.144 0.040 0.018 0.010 0.007 0.005 0.003
2 0.433 0.144 0.069 0.040 0.026 0.018 0.013
3 0.0714 0.283 0.144 0.085 0.056 0.040 0.029
4 0.955 0.433 0.235 0.144 0.096 0.069 0.051

Table 8.5: Maximum difference between the linear and lowest-order non-linear approximations of the
deformation of the buckled pinned beam for several lengths of the beam and for the first four orders of
the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

Order n Length L

1 2 3 4 5 6 7

1 0.083 0.021 0.009 0.005 0.003 0.002 0.002
2 1.716 0.383 0.167 0.093 0.059 0.041 0.030
3 6.975 1.135 0.477 0.263 0.167 0.085 0.079
4 – 2.484 0.976 0.528 0.332 0.229 0.167

Table 8.6: Maximum difference between the linear and lowest-order non-linear approximations of the
deformation of the buckled cantilever beam for several lengths of the beam and for the first four orders
of the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

to the classical solutions in terms of elliptic functions. This is an example of the fact that the answer

to the same problem can have quite different representations. Two equivalent representations can be

quite different in terms of the information they highlight, and this is the case here. There are three

main differences: (i) the use of a series of elementary functions is more straightforward than the use of

special functions; (ii) the elliptic functions are difficult to visualise, whereas the linear harmonics are more

intuitive; (iii) the decomposition into linear harmonics shows, through their amplitudes, which are excited

most, and give a more significant contribution to the final shape of the elastica. The latter information

(iii) is totally missing from the solution in terms of elliptic functions. Among the different solutions to

the same problem, it is often the simplest one that is most illuminating.
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9 | On twin perturbation expansions

for non-linear bending of plates

“If you would be a real seeker after truth, it is necessary that at least once in your life you

doubt, as far as possible, all things.”
— René Descartes

Contents
9.1 Coupling of the stress function and transverse displacement . . . . . . . 223

9.2 Energy method for the balance equations and boundary conditions . . . 227

9.3 Solution via perturbation expansions explicit to all orders . . . . . . . . . 231

9.4 Exact solution to all orders for arbitrary loading . . . . . . . . . . . . . . 235

9.5 Strong bending of heavy circular plate under compression . . . . . . . . 240

9.6 Determination of parameter in perturbation expansion . . . . . . . . . . 248

9.7 Main conclusions of the chapter 9 . . . . . . . . . . . . . . . . . . . . . . . 254

The weak bending of a plate [129, 152, 241] is described by the transverse displacement and causes

negligible in-plane stresses. The in-plane stresses [77, 133, 153, 242] are described by a stress

function and, in the linear approximation, are decoupled from bending. The non-linear bending [79, 243,

244] corresponds to a large slope of the directrix that may be associated with large displacements and non-

uniform in-plane stresses. The mathematical model used is based on the Föppl-von Kármán equations

that assume (i) a linear or elastic stress-strain relation and (ii) small cross-terms of the displacement. The

solution of a non-linear problem may be reduced to a sequence of linear problems employing perturbation

expansions [245–247] that are widely used, including in the context of the theory of elasticity [248].

Thus, the strong non-linear bending is described by two variables (section 9.1), namely the transverse

displacement and stress function, and they satisfy two differential equations that must be: (i) non-linear

due to the large displacements, strains and stresses; (ii) coupled because a large bending displacement

is associated with non-uniform in-plane stresses and vice-versa. The particular case of strong bending of

a circular plate has received the most attention [249] by several methods, including analytical [250] or

asymptotic [251] solutions and wavelet [252] or perturbation [253, 254] methods. A variational principle
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[255] can obtain the fundamental equations and a uniqueness theorem has been proved [256]. The non-

linear bending has been extended from homogeneous to functionally graded thin plates [257].

The first non-linear differential equation is the stress balance for the transverse displacement in the

weak bending of a plate, which also applies to strong bending with non-constant in-plane stresses specified

by the stress function (subsection 9.1.1). A second coupled equation relating the stress function and

transverse displacement is obtained (subsection 9.1.3) from the exact strain tensor. The strain tensor

has contributions from the transverse displacement, in-plane linear displacements and in-plane non-linear

displacements (subsection 9.1.2). Neglecting the latter, the elastic energy (section 9.2) has contributions

from the transverse displacement, in-plane displacements and their non-linear coupling (subsection 9.2.1):

equating the variation of the total elastic energy to the work of transverse and in-plane forces leads to

the balance equations (subsection 9.2.2) and boundary conditions (subsection 9.2.3). The boundary

conditions involve: (i) the stress couples; (ii) the augmented turning moment, including the effect of

in-plane stresses. The augmented turning moment adds, to the usual turning moment for the linear

bending of elastic plates, an additional term involving the gradient of the normal displacement.

The solution of the balance equations together with the boundary conditions can be obtained (section

9.3) using twin perturbation expansions for the transverse displacement and in-plane stress function. In

most applications of perturbation expansions [245–247], only the second or third order can be obtained

explicitly. Exceptionally in the present case, the perturbation expansions for the Föppl-von Kármán

equations can be obtained exactly and explicitly to all orders (subsection 9.3.1). The perturbation

equations form a linear causal chain of ordinary differential equations, with biharmonic operators and

forcing specified by the lower orders. In the axisymmetric case (subsection 9.3.2), the infinite system of

double recurrent equations is simplified (subsection 9.3.3).

The non-linear coupling of bending and in-plane stresses can be calculated precisely to all orders

(section 9.4) if the transverse force is a polynomial of the radius or an analytic function of the radius

specified by a power series; the solution is set in finite terms in the case of a polynomial transverse force

and by a convergent power series in the case when the transverse force is an analytic function of the radius

(subsection 9.4.1). It is proved that if the perturbation parameter is less than unity, the perturbation

expansion is bounded and the perturbation series is convergent. A simple particular example is a heavy

circular plate (subsection 9.4.2) under axial compression (subsection 9.4.3). The method determines

(section 9.5) the coupled transverse displacement and stress function (subsection 9.5.1), leading to all

strain and stress components (subsection 9.5.2) and checking compliance with the boundary conditions

(subsection 9.5.3).

The perturbation expansion provides a family of solutions. A unique choice to the perturbation

parameter is made (section 9.6) such that the work of the external forces equals the elastic energy of

deformation (subsection 9.6.1). The value of the perturbation parameter is (subsection 9.6.2) a real

root of a polynomial of degree M = 2N − 1 in the case of a perturbation expansion to order N . A

single root, with M = 1, is obtained for a first-order perturbation expansion, N = 1. The value of

the perturbation parameter increases for thicker plates relative to the radius and stiffer plates relative

to the weight (subsection 9.6.3). This completes the illustration of the general theory (section 9.7) of
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strong bending of elastic plates taking into account the non-linear coupling with in-plane stresses. The

fundamental coupled non-linear equations for an elastic isotropic plate [151, 158, 258] can be extended

to a pseudo-isotropic orthotropic plate (appendix E).

9.1 Coupling of the stress function and transverse displacement

The Föppl-von Kármán equations [79] for the coupling of the transverse displacement and in-plane

stresses (subsection 9.1.1) in the strong bending of an elastic plate are derived (subsection 9.1.2) by

a direct method (subsection 9.1.3) that is consistent with an alternative energy method (section 9.2).

The direct method indicates the conditions of validity of the balance equations; these are confirmed by

the variational method that also provides the boundary conditions. The boundary conditions add a

cross-term to the separate boundary conditions for bending and in-plane stresses of plates.

9.1.1 Transverse displacement with non-uniform in-plane stresses

The balance equation [79, 129, 243, 244] specifying the transverse displacement for the weak bending

of a plate under in-plane stresses also applies to the strong bending of the plate allowing for non-uniform

in-plane stresses,

f = ∇2 (D∇2ζ
)
− hTαβ∂αβζ − h (∂αζ) (∂βTαβ) , (9.1)

where the indices α and β can assume the values 1 and 2 representing, for instance, the in-plane coor-

dinates rα or the in-plane velocity components vα, ζ is the transverse displacement, h is the thickness

of the plate, Tαβ are the in-plane stresses represented by the second-order Cauchy stress tensor, D is

the flexural rigidity, f is the transverse force per unit area and the vector ∇ ≡ (∂/∂r1, ∂/∂r2) is the

in-plane gradient operator. The variable ∂α ≡ ∂/∂rα denotes the derivative with respect to rα while

∂αβ ≡ ∂2/ (∂rα∂rβ) is the second derivative with respect to rα and rβ . Repeated indices in a single

term represent a summation over them, using the Einstein summation convention. The balance of the

moments induced by forces implies that the Cauchy stress tensor is symmetric, that is, Tαβ = Tβα [79].

In the absence of inertia and in-plane volume forces,

fα = 0 = ∂

∂t
(ρvα) , (9.2a)

the momentum equation states that the divergence of the stress tensor is zero [79],

∂βTαβ = 0, (9.2b)

implying that: (i) the last term on the right-hand side of (9.1) is zero; (ii) the in-plane stresses derive

from a stress function,

Txx = ∂yyΘ, Tyy = ∂xxΘ, Txy = −∂xyΘ. (9.2c)
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Assuming a constant flexural rigidity for an isotropic elastic plate [79, 129],

D ≡ Eh3

12 (1− σ2) , (9.3a)

the balance equation (9.1) becomes

f

h
= Eh2

12 (1− σ2)∇4ζ − (∂yyΘ) (∂xxζ)− (∂xxΘ) (∂yyζ) + 2 (∂xyΘ) (∂xyζ) . (9.3b)

In the balance equation (9.3b), the first bending term on the right-hand side is linear for a transverse

displacement with small slope, |∂αζ|2 ≪ 1, and the other terms on the right-hand side are non-linear

couplings to the in-plane stresses.

In order to close the system, a second relation between the transverse displacement and stress function

is needed,

E
[
(∂xyζ)2 − (∂xxζ) (∂yyζ)

]
= ∇4Θ = ∂xxxxΘ + ∂yyyyΘ + 2∂xxyyΘ, (9.4)

that will be obtained in the sequel (in subsections 9.1.2 and 9.1.3). Thus, the strong non-linear bending of

a plate is specified by the biharmonic equation for the transverse displacement (9.3b) and stress function

(9.4) with non-linear coupling through cross-terms. The coefficients involve the Young modulus E and

Poisson ratio σ for an isotropic plate of thickness h, while the transverse force per unit area f appears

as a forcing term. If the curvatures are small and the cross product with the stresses also,

(∂αβζ)2 ∼ 0 ∼ Tαβ∂αβζ, (9.5a)

the transverse displacement and stress function both satisfy decoupled biharmonic equations,

D∇4ζ − f = 0 = ∇4Θ, (9.5b)

respectively with forcing by the external transverse force per unit area f and without forcing. The strains

and stresses are considered in the next subsection to prove (9.4) including the non-linear terms coupling

to (9.3b). The extension of the coupled equations (9.3b) and (9.4) from isotropic to pseudo-isotropic

orthotropic elastic plate is considered in the appendix E.

9.1.2 Linear and non-linear terms in the strain tensor

The total displacement U in the strong non-linear bending of a plate consists of a transverse displace-

ment ζez plus an in-plane displacement vector u:

U− ezζ (x, y) = u (x, y) = exux (x, y) + eyuy (x, y) . (9.6)

The arc length in the undeflected plane,

(dl)2 = (dx)2 + (dy)2
, (9.7a)
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is increased in a bent plate by the in-plane displacement vector du and transverse displacement dζ leading

to

(dL)2 = (dx+ dux)2 + (dy + duy)2 + (dζ)2
. (9.7b)

The difference of square arc lengths is a quadratic form whose coefficients specify the Cartesian compo-

nents of the exact strain tensor [3]:

(dL)2 − (dl)2

2 = Sxx (dx)2 + Syy (dy)2 + 2Sxy dx dy. (9.8a)

From (9.7a) and (9.7b) follows

(dL)2 − (dl)2 = [(1 + ∂xux) dx+ (∂yux) dy]2 − (dx)2 − (dy)2

+ [(∂xuy) dx+ (1 + ∂yuy) dy]2 + [(∂xζ) dx+ (∂yζ) dy]2 . (9.8b)

Thus, equating the coefficients of (dx)2, (dy)2 and dxdy in (9.8a) and (9.8b) leads respectively to

2Sxx = (∂xζ)2 + 2∂xux + (∂xux)2 + (∂xuy)2
, (9.9a)

2Syy = (∂yζ)2 + 2∂yuy + (∂yux)2 + (∂yuy)2
, (9.9b)

2Sxy = (∂xζ) (∂yζ) + (∂xuy + ∂yux) + [(∂xux) (∂yux) + (∂xuy) (∂yuy)] . (9.9c)

Hence, the exact non-linear in-plane strains (9.6) due to strong non-linear bending of plate with in-plane

stresses are given by

2Sαβ = (∂αζ) (∂βζ) + ∂αuβ + ∂βuα + (∂αuγ) (∂βuγ) (9.10)

where the repeated index γ in the last term on the right-hand side of (9.10) is summed over the two

Cartesian coordinates x and y. The exact non-linear strains (9.10) consist of three terms: (i) the product

of the gradients of the transverse displacement that is non-linear as for a membrane; (ii) the symmetrised

partial derivatives of the in-plane displacement, that correspond to the infinitesimal strain tensor or

symmetric part of the displacement tensor; (iii) the cross-products of the displacement tensor that are

non-linear, and are neglected in the sequel (subsection 9.1.3) compared with (ii).

9.1.3 Relation between the stresses and in-plane and transverse displace-

ments

The theory of strong non-linear bending of a plate considers in the exact strain tensor (9.10) only the

lowest-order terms, that is: (i) the linear in-plane strains omitting the non-linear part, with

(∂αuγ) (∂βuγ)≪ 1; (9.11a)
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(ii) the gradients of the transverse displacement appear quadratically to lowest order and are retained in

2Sαβ = (∂αζ) (∂βζ) + ∂αuβ + ∂βuα. (9.11b)

Thus, neglecting the non-linear in-plane strains (9.11a), the strain tensor (9.11b) has the in-plane com-

ponents,

∂xux + 1
2 (∂xζ)2 = Sxx = Txx − σTyy

E
= 1
E

(∂yyΘ− σ∂xxΘ) , (9.12a)

∂yuy + 1
2 (∂yζ)2 = Syy = Tyy − σTxx

E
= 1
E

(∂xxΘ− σ∂yyΘ) , (9.12b)

∂xuy + ∂yux + (∂xζ) (∂yζ) = 2Sxy = 21 + σ

E
Txy = −21 + σ

E
∂xyΘ, (9.12c)

where were used in succession [79, 133]: (i) the inverse Hooke law with zero out-of-plane normal stresses;

(ii) the in-plane components of the stress tensor in terms of the stress function (9.2c).

Eliminating the in-plane displacements from (9.12a) to (9.12c), with

0 = E [∂yy (∂xux) + ∂xx (∂yuy)− ∂xy (∂xuy + ∂yux)]

= −E2

{
∂yy (∂xζ)2 + ∂xx (∂yζ)2 − 2∂xy [(∂xζ) (∂yζ)]

}
+ ∂yy (∂yyΘ− σ∂xxΘ) + ∂xx (∂xxΘ− σ∂yyΘ) + 2 (1 + σ) ∂xyxyΘ, (9.13a)

leads to the relation between the transverse displacement and the stress function,

E−1 (∂xxxxΘ + ∂yyyyΘ + 2∂xxyyΘ) = E−1∇4Θ = ∂y [(∂xζ) (∂xyζ)]

+ ∂x [(∂yζ) (∂xyζ)]− ∂x [(∂xyζ) (∂yζ) + (∂xζ) (∂yyζ)]

= (∂xyζ)2 − (∂xxζ) (∂yyζ) , (9.13b)

proving (9.13b) from (9.13a). Thus, the transverse ζ along with in-plane displacements ux and uy for the

non-linear strong bending of a plate (9.6) specify the strains and stresses given by (9.12a) to (9.12c), using

the lowest-order terms (9.11a) in the exact strains (9.10). Thus, the derivation of the Föppl-von Kármán

equations (9.3b) and (9.4) has involved two assumptions: (i) linear stress-strain relations specified by the

Hooke’s law of elasticity in (9.12a) to (9.12c); (ii) small in-plane cross-strains (9.11a) in the total strain

tensor (9.10) leading to (9.11b). The transverse displacement alone specifies the stress function (9.4)

in the coupled system (9.3b), involving the existence of the elastic energies of deflection, bending and

in-plane tension.
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9.2 Energy method for the balance equations and boundary con-

ditions

The energy method (subsection 9.2.1) can be applied to the strong bending of an elastic plate including

coupling to the in-plane stresses leading to: (i) the same pair of non-linearly coupled balance equations

for the stress function and transverse displacement (subsection 9.2.2) as had been obtained before by

the direct method (section 9.1); (ii) in addition, the boundary conditions for the in-plane displacement

vector and for the transverse displacement (subsection 9.2.3), with the latter involving the normal stress

couple and augmented turning moment. The designation augmented turning moment is used because in

addition to the usual turning moment due to bending there is an extra term involving the gradient of the

transverse displacement.

9.2.1 Elastic energies of deflection, bending and in-plane deformation

The non-linear strong bending of a plate with in-plane stresses involves the total elastic energy per

unit area,

ET ≡ E1 + E2 + E3, (9.14a)

consisting of three terms [129] due to: (i) bending, as for an isotropic plate,

2E1 = D
(
∇2ζ

)2 + 2D (1− σ)
[
(∂xyζ)2 − (∂xxζ) (∂yyζ)

]
; (9.14b)

(ii-iii) the work of the in-plane elastic stresses on the total strains (9.11b) derived from the transverse

and in-plane displacements,

2 (E2 + E3) = hTαβSαβ = h

2 [Tαβ (∂αζ) (∂βζ) + Tαβ∂αuβ + Tαβ∂βuα] , (9.14c)

corresponding respectively to transverse deflection and in-plane deformation. In (9.14c), the elastic energy

per unit volume in square brackets on the right-hand side must be multiplied by the thickness h of the

plate to specify the elastic energy per unit area that appears on the left-hand side. The principle of

virtual work equates the variation of each contribution of the elastic energy with the corresponding form

of work: (i-ii) the variation of the elastic energies of bending E1 (9.14b) and transverse deflection E2

(9.14c) equals the work in a transverse displacement due to the contribution of the total transverse force

per unit area, that leads to

∫
C

(f1 + f2) δζ dS ≡
∫

C
fδζ dS ≡ δW1 + δW2 =

∫
C
δE1 dS +

∫
C
δE2 dS (9.15)

for the sum of the corresponding elastic energies; (iii) the elastic energy per unit volume of the in-plane

deformation E3 is associated to the work of the in-plane forces in a plane displacement,

∫
C
fαδuα dS ≡ δW3 =

∫
C
δE3 dS = h

4

∫
C
δ (Tαβ∂αuβ + Tαβ∂βuα) dS, (9.16)
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multiplied by the thickness h of the plate to convert to the elastic energy per unit area. The symmetric

property of the stress tensor can be used to write the expression between curved parentheses in the last

integral as 2Tαβ∂βuα.

The variation of the elastic energy corresponding to in-plane deformation (9.16) is evaluated by

h−1
∫

C
δE3 dS =

∫
C
Tαβ∂β (δuα) dS =

∫
C

[∂β (Tαβδuα)− δuα (∂βTαβ)] dS

=
∫

∂C
Tαβδuαnβ ds−

∫
C

(∂βTαβ) δuα dS (9.17a)

where: (i) the variation δ applies only to the displacement tensor, not to the stress tensor due to their

linearity for an elastic material; (ii) the variation δ commutes with the differential ∂ in the first equality;

(iii) an integration by parts is performed in the second equality; (iv) the divergence theorem is used in the

last equality to transform the integral over the surface into one over its boundary. Substituting (9.17a)

in (9.16) leads to the equality

∫
C

(fα + h∂βTαβ) δuα dS = h

∫
∂C
Tαβnβδuα ds = 0 (9.17b)

between surface and boundary integrals, implying that both must vanish. In the absence of inertia force,

∂

∂t

(
ρ
∂uα

∂t

)
= 0, (9.18a)

the vanishing of the integrand on the left-hand side of (9.17b) leads to the force balance equation in the

plane,

h−1fα + ∂βTαβ = 0, (9.18b)

involving the force per unit area fα converted to unit volume by dividing it by the thickness h of the

plate.

The vanishing of the integrand in the right-hand side of (9.17b) leads to

0 = Tαβnβδuα = Tαδuα = T · δu, (9.19a)

that is, to the boundary condition stating that the projection of the in-plane stress vector [129],

Tα = Tαβnβ , (9.19b)

on the in-plane displacement is zero. This condition can be satisfied by

0 = Tαδuα = T · δu⇒


T ⊥ δu orthogonal stress, (9.20a)

δu = 0 fixed, (9.20b)

T = 0 free, (9.20c)

corresponding to: (i) orthogonal in-plane displacement and stress vector for (9.20a) the plate; (ii) zero

in-plane displacement if (9.20b) the plate is fixed at the boundary; (iii) zero stress vector if (9.20c) the
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plate is free at the boundary.

The principle of virtual work may also be applied to the sum of elastic energies of bending, transverse

deflection and in-plane deformation leading to the balance equations (subsection 9.2.2) and boundary

conditions (subsection 9.2.3) for the strong bending of a thin plate.

9.2.2 Balance equations for the strong bending of a stressed plate

The total work in the non-linear strong bending of a plate is done by the transverse f and in-plane

fα forces respectively on the transverse δζ and in-plane δuα displacements,

δW = δW1 + δW2 + δW3 =
∫

C
(fδζ + fαδuα) dS =

∫
C

(δE1 + δE2 + δE3) dS, (9.21a)

and equals the variation of the elastic energies of bending (9.14b) plus deflection stretching (9.14c). The

variation of the elastic energy is given: (i-ii) for bending and deflection, as respectively for a plate and

a membrane with the transverse force per unit area corresponding to the f1 and f2 contributions to the

total force f , by (9.15); (iii) for in-plane deformation by (9.17a). These substitutions in (9.21a) lead to

0 =
∫

C

{
f −∇2 (D∇2ζ

)
+ h∂β [Tαβ (∂αζ)]

}
δζ dS +

∫
C

(fα + h∂βTαβ) δuα dS

= h

∫
∂C
Tαβnβδuα ds+ h

∫
∂C
Tαβnβ (∂αζ) δζ ds+

∫
∂C

[Nnδζ −Mnδ (∂nζ)] ds, (9.21b)

introducing the normal stress couple Mn and turning moment Nn in the third and last terms on the

right-hand side of (9.21b). The surface and boundary integrals respectively on the right-hand side and

left-hand side of (9.21b) can be equal only if both vanish. Also, both in the right-hand side and left-

hand side of (9.21b) the variations of the transverse δζ and in-plane δuβ displacements are independent,

so the coefficient of each must vanish separately. These remarks applied to both sides of (9.21b) lead

respectively to the balance equations and boundary conditions for the strong bending of a thin plate.

From (9.21b) follows that the non-linear strong bending of a plate involves three terms in the total

elastic energy (9.14a) due to bending of a plate (9.14b) and the work of the in-plane stresses on the

transverse and in-plane displacements (9.14c) corresponding respectively to deflection and extension,

contraction and/or shear. The variation of the elastic energy of bending and deflection plus in-plane

deformation is balanced by the work of respectively the transverse f and in-plane fα forces per unit area,

respectively (9.15) and (9.16), on the transverse δζ and in-plane δuα displacements, leading to the identity

(9.21b) where: (i) the surface and boundary integrals respectively on the left-hand side and right-hand

side must vanish leading to the balance equations and boundary conditions; (ii) the transverse δζ and

in-plane δuα displacements are independent leading to two balance equations and two sets of boundary

conditions. The vanishing of the integrand of the surface integral,

{
f −∇2 (D∇2ζ

)
+ h∂β [Tαβ (∂αζ)]

}
δζ + (fα + h∂βTαβ) δuα = 0, (9.22)

originates the transverse (9.3b) and in-plane (9.18b) balance equations. The vanishing of the boundary
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integral,

hTαβnβδuα +Nnδζ −Mnδ (∂nζ) + hTαβnβ (∂αζ) δζ = 0, (9.23a)

implies that the first and last three terms vanish leading respectively to the boundary conditions for the

in-plane displacements,

Tαβnβδuα = Tαδuα = T · δu = 0, (9.23b)

and transverse displacement,

h−1 [Nnδζ −Mnδ (∂nζ)] = −Tαβnβ (∂αζ) δζ = −Tα (∂αζ) δζ = − (T ·∇ζ) δζ, (9.23c)

where was introduced the in-plane stress vector (9.19b).

9.2.3 Normal stress couple and augmented turning moment

The first boundary condition (9.23b) for the in-plane displacements leads to the same cases, stated

in (9.20a) to (9.20c), as for in-plane stresses. The second set of boundary conditions (9.23c) involves

[79, 129] the normal components of the stress couple,

Mn ≡ −D
{

∇2ζ + (1− σ)
[
sin (2θ) ∂xyζ − sin2 θ ∂xxζ − cos2 θ ∂yyζ

]}
, (9.24)

and turning moment,

Nn ≡ −D
{
∂n
(
∇2ζ

)
− (1− σ) ∂s [sin θ cos θ (∂xxζ − ∂yyζ)− cos (2θ) ∂xyζ]

}
, (9.25)

where ∂n and ∂s are the derivatives respectively along the normal and tangent to the boundary, and θ

is the angle of the outward normal to the boundary with the x-axis, as in the figure 9.1. The boundary

condition (9.23c) can be written in the form

−Mnδ (∂nζ) +Nnδζ = 0 (9.26)

where: (i) the normal stress couple (9.24) is the same for weak or strong bending; (ii) the normal turning

moment for weak bending (9.25) is replaced for strong bending by the augmented normal turning moment,

Nn ≡ Nn + hTαβnβ (∂αζ) = Nn + hTα∂αζ = Nn + hT ·∇ζ, (9.27)

that adds to the normal component of the turning moment (9.25) the projection of the in-plane stress

vector (9.19b) on the gradient of the transverse displacement. The second set of boundary conditions,

0 = Nnδζ −Mnδ (∂nζ)⇒


ζ = ∂nζ = 0 clamped, (9.28a)

ζ = Mn = 0 pinned or supported, (9.28b)

Mn = Nn = 0 free, (9.28c)
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Figure 9.1: The unit vectors n and s are respectively normal and tangential to the boundary of a plate,
while θ is the angle of the vector n with the x-axis.

includes the cases of clamped (9.28a), pinned or supported (9.28b), and free (9.28c) boundaries.

Having established by the two methods, namely the direct (section 9.1) and energy (section 9.2)

methods, the balance equations and boundary conditions for the strong bending of an elastic plate

including in-plane stresses, a general method of solution is presented next. The Föppl-von Kármán

equations are considered in classical textbooks on elasticity [5, 6, 79, 152] and mathematically more

rigorous derivations starting with three-dimensional elasticity [259] including asymptotic methods [260].

In the sequel expansion methods are used as perturbation methods, not to derive the Föppl-von Kármán

equations, but rather to obtain solutions that: (i) are exact to all orders (section 9.3); (ii) are explicit

in the axisymmetric case (section 9.4); (iii) are shown to converge as series for perturbation parameter

less than unity; (iv) are calculated in detail in an example to lowest order of non-linearity (section 9.5);

(v) include the specification of the asymptotic parameter in terms of geometric and material properties

of the plate (section 9.6).

9.3 Solution via perturbation expansions explicit to all orders

A general method of solution of the coupled non-linear equations for the strong bending of an elastic

plate including in-plane stresses is to use perturbation expansions for the transverse displacement and

stress function (subsection 9.3.1). The perturbation equations are obtained explicitly for all orders, and

simplify in the axisymmetric case (subsection 9.3.2).

9.3.1 Perturbation expansions for the transverse displacement and stress

function

The perturbation expansions for the transverse displacement,

ζ = εζ1 + ε2ζ2 + . . .+ εnζn, (9.29a)

and stress function,

Θ = εΘ1 + ε2Θ2 + . . .+ εnΘn, (9.29b)
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omit order zero assuming ζ0 = 0 = Θ0 and assume for small perturbation parameter ε either (i) a

convergence as a series or (ii) a reasonably accurate approximation by truncation to some order n ≥ 2.

Substitution of the perturbation expansions (9.29a) and (9.29b) in the coupled equations (9.3b) and (9.4)

for the strong bending of a plate leads at: (i) order one to decoupled stress function,

∇4Θ1 = 0, (9.30a)

and transverse displacement,

D∇4ζ1 = f, (9.30b)

satisfying respectively unforced and forced biharmonic equations, where the forcing in (9.30b) is due to

the transverse force force per unit area that is assumed to be of the first order f ∼ O (ε); (ii) order two

to the first non-linear coupling with biharmonic operators forced by order one terms,

1
E

∇4Θ2 = (∂xyζ1)2 − (∂xxζ1) (∂yyζ1) , (9.31a)

D

h
∇4ζ2 = (∂yyΘ1) (∂xxζ1) + (∂xxΘ1) (∂yyζ1)− 2 (∂xyΘ1) (∂xyζ1) ; (9.31b)

order n ≥ 2 to biharmonic equations forced by all lower orders up to n− 1,

1
E

∇4Θn =
n−1∑
m=1

[(∂xyζm) (∂xyζn−m)− (∂xxζm) (∂yyζn−m)] , (9.32a)

D

h
∇4ζn =

n−1∑
m=1

[(∂yyΘm) (∂xxζn−m) + (∂xxΘm) (∂yyζn−m)− 2 (∂xyΘm) (∂xyζn−m)] , (9.32b)

where the sums end at m = n− 1 because ζ0 = 0.

The first-order equations (9.30a) and (9.30b) are linear in (Θ1, ζ1) with constant coefficient D and

forcing f . The second order equations (9.31a) and (9.31b) are linear in (Θ2, ζ2) with forcing by the

derivatives of first-order (Θ1, ζ1). The n-th order equations (9.32a) and (9.32b) are linear in (Θn, ζn)

with forcing by all lower orders (Θn−1, ζn−1) down to (Θ1, ζ1). This is a typical causal chain of linear

differential equations where each order n depends only on the preceding n − 1, n − 2, . . . , 2, 1. This can

be confirmed writing the system (9.32a) and (9.32b) in decoupled matrix form,

 1
E ∇4 0

0 D
h ∇4


Θn

ζn

 =

Fn

Gn

 , (9.33a)

where the n-th order equation is linear on the dependent variables (Θn, ζn) because: (i) the matrix

differential operator applies only to (Θn, ζn) that are decoupled since the matrix is diagonal; (ii) in the
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forcing terms,

Fn ≡
n−1∑
m=1

[(∂xyζm) (∂xyζn−m)− (∂xxζm) (∂yyζn−m)] , (9.33b)

Gn ≡
n−1∑
m=1

[(∂yyΘm) (∂xxζn−m) + (∂xxΘm) (∂yyζn−m)− 2 (∂xyΘm) (∂xyζn−m)] , (9.33c)

appear derivatives of all lower orders (ζ1,Θ1) up to (ζn−1,Θn−1), but not (ζn,Θn). Thus, the perturbation

expansions (9.29a) and (9.29b) substituted in a system of non-linear coupled differential equations lead to

a sequence of linear differential equations that: (i) are decoupled at the lowest order; (ii) become coupled

first at next order; (iii) at order n are coupled by all lower orders as in a causal chain, that is a sequence

of problems in which each iteration depends only on the preceding or “past” and not on the following

or “future”. To be more specific, the term “causal chain” is used as a short-hand to mean a sequence of

deterministic ordinary differential equations in which the solution of each equation depends only on the

solutions of preceding equations, in contrast with a fully coupled system. The perturbation expansions

are applied next to the strong bending of a circular plate with axial symmetry.

9.3.2 Non-linear coupling of bending and in-plane deformation with axial

symmetry

The relation between the Laplacian [130] in the plane in Cartesian coordinates and in polar coordinates

with axial symmetry,

∂xx + ∂yy = ∇2 = r−1∂r (r∂r) = ∂rr + r−1∂r, (9.34a)

suggests the transformation [129] from Cartesian coordinates in the plane to axisymmetric polar coordi-

nates for the first and second order derivatives:

{∂x, ∂y} ↔ {dr, 0} , {∂xx, ∂yy, ∂xy} ↔
{

drr, r
−1dr, 0

}
. (9.34b)

Substituting (9.34b) in the non-linear bending equations (9.3b) and (9.4) leads to

1
E

∇4Θ = −ζ ′′ ζ
′

r
= −

(
ζ ′2)′

2r , (9.35a)

D∇4ζ − f = h

r
(Θ′ζ ′′ + Θ′′ζ ′) = h

r
(Θ′ζ ′)′

. (9.35b)

In the case of axial symmetry, the stress function specifies the stresses [79, 133] by

Trr = Θ′

r
, Ttt = Θ′′, Trt = 0. (9.36a)
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The inverse Hooke law [79, 133] specifies the strains

ESrr = Trr − σTtt, EStt = Ttt − σTrr,

ESrt = (1 + σ)Trt, ESzz = −σ (Trr + Ttt) (9.36b)

leading to

ESrr = Θ′

r
− σΘ′′, EStt = Θ′′ − σ

r
Θ′, Srt = 0, ESzz = −σ

(
Θ′′ + Θ′

r

)
(9.36c)

by (9.36a). The strains are given by (9.11b) with axial symmetry (9.34a) leading to

Srr = u′
r + ζ ′2

2 , Stt = ur

r
, Srt = 0, Szz = − σ

1− σ

(
u′

r + ur

r
+ ζ ′2

2

)
, (9.36d)

for plane stresses [129]. The radial component of the stress couple is unaffected by in-plane stresses,

Mr = −D
(
ζ ′′ + σ

r
ζ ′
)
. (9.37a)

The radial component of the augmented turning moment,

N r = −D
(
∇2ζ

)′ + hTrrζ
′ = −D

[
(ζ ′r)′

r

]′

+ h

r
Θ′ζ ′, (9.37b)

consists of two terms, namely: (i) the turning moment (9.25) with axial symmetry due to bending;

(ii) augmented turning moment by the in-plane stresses (9.27). Thus, the axial symmetry, that is the

dependence only on the distance from the axis, leads to: (i-ii) the stresses (9.36a) and strains (9.36d);

(iii-iv) the radial stress couple (9.37a) and augmented turning moment (9.37b). All four relations (i-iv)

depend on the stress function and transverse displacement that satisfy the system (9.35a) and (9.35b) of

coupled non-linear differential equations specifying the strong bending of a thin isotropic plate.

The solution (subsection 9.4.1) for a clamped (subsection 9.4.3) heavy circular plate under axial

compression (subsection 9.4.2) is obtained as an example of the use of perturbation expansion (subsection

9.3.1) with axial symmetry (subsection 9.3.3).

9.3.3 Strong bending of a circular plate by transverse loads

Consider a circular plate, sketched in the figure 9.2, under strong bending by a transverse force per

unit area, f (r), with axial symmetry (9.34b), leading to

∇4Θ = −E2r
(
ζ ′2)′

, f = D∇4ζ − h

r
(Θ′ζ ′)′

. (9.38)

The perturbation expansions (9.29a) and (9.29b) substituted in the coupled non-linear strong bending

equations (9.38) lead to the causal chain of differential equations that: (i) are decoupled at lowest order,

O (ε) , ∇4Θ1 = 0, D∇4ζ1 = f, (9.39a)
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Figure 9.2: The method of perturbation expansions for the strong bending in an elastic plate, including
in-plane stresses, simplifies in the axisymmetric case.

assuming that f is of the order ε; (ii) are first coupled at order two,

O
(
ε2) , ∇4Θ2 = −E2r

(
ζ ′2

1
)′
, ∇4ζ2 = h

Dr
(Θ′

1ζ
′
1)′ ; (9.39b)

(iii) are coupled at order n by all lower orders,

O (εn) , ∇4Θn = −E2r

[
n−1∑
m=1

(
ζ ′

mζ
′
n−m

)]′

, ∇4ζn = h

Dr

[
n−1∑
m=1

(
Θ′

mζ
′
n−m

)]′

, (9.39c)

where the sums end at m = n − 1 because, due to the perturbation expansions, ζ ′
0 = 0. Thus, the non-

linear strong bending of a circular plate with axial symmetry is specified by the perturbation expansion

(9.29a) and (9.29b) whose terms are the solutions of the causal chain of differential equations decoupled

at lowest order (9.39a), first coupled at next order (9.39b) and increasingly coupled at higher orders

(9.39c). This system is readily solved in the case of forcing by powers, polynomial or series of the radius

in the next section.

9.4 Exact solution to all orders for arbitrary loading

Assuming that the transverse force per unit area is an analytic function of the radius, that is an

axisymmetric power series or polynomial, the perturbation equations can be solved exactly for all orders,

using the closed form solution of the axisymmetric biharmonic equation forced by a power (subsection

9.4.1). This is illustrated by the parametric expansions to the lowest non-linear order (subsection 9.4.3)

for a heavy circular plate under axial compression (subsection 9.4.2).

9.4.1 Radially symmetric biharmonic equation forced by a power

The bending of the plate and associated in-plane stresses are caused by the transverse force per

unit area that appears as the forcing terms of the coupled system of equations (9.3b) and (9.4). In the

axisymmetric case, the transverse force per unit area (and in-plane stresses) is a function of the radius

only, and if it is analytic, f ∈ A (R), it has a Taylor series [130],

f (r) =
∞∑

k=0

rk

k! f
(k) (0) , (9.40)

that is a linear combination of powers, and terminates in the case of a polynomial. In this case, the

whole sequence of perturbation equations, from (9.39a) to (9.39c), to all orders consists of biharmonic
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equations forced by powers. The biharmonic operator with axial symmetry (9.34a) is given by [130]

∇4ζ = 1
r

d
dr

{
r

d
dr

[
1
r

d
dr

(
r

dζ
dr

)]}
= ζ ′′′′ + 2

r
ζ ′′′ − 1

r2 ζ
′′ + 1

r3 ζ
′. (9.41a)

In the case of an axially symmetric biharmonic equation forced by a power,

Ckr
k = ∇4ζ = ζ ′′′′ + 2

r
ζ ′′′ − 1

r2 ζ
′′ + 1

r3 ζ
′, (9.41b)

a particular integral may be sought in the form

ζ = Jrk+4, (9.42a)

leading to

Crk = ∇4 (Jrk+4) = Jrkp4 (k) (9.42b)

and involving the quartic polynomial

p4 (k) = (k + 4) (k + 3) (k + 2) (k + 1) + 2 (k + 4) (k + 3) (k + 2)− (k + 4) (k + 3) + k + 4

= (k + 4) (k + 2) [(k + 3) (k + 1) + 2 (k + 3)− 1]

= (k + 4) (k + 2)
[
(k + 3)2 − 1

]
= (k + 4)2 (k + 2)2

. (9.42c)

Thus, an axially symmetric equation forced by a power (9.41b) has the particular integral

ζ (r) = Crk+4

(k + 4)2 (k + 2)2 . (9.42d)

This result can be used to obtain by superposition the particular integrals,

ζ̃ (r) =
K∑

k=0

Ckr
k+4

(k + 4)2 (k + 2)2 , (9.43a)

of the axially symmetric biharmonic equation forced by an analytic function [39] of the radius that can

be approximated by a polynomial:

∇4ζ̃ =
K∑

k=0
Ckr

k. (9.43b)

If the transverse force is a polynomial of degree K in (9.43b), the transverse displacement is given in finite

terms by (9.43a) as a polynomial of degree K+ 4. A transverse force which is an analytic function (9.40)

corresponds to a series K =∞ in (9.43b) with Ck ≡ f (k) (0) /k!, in this case the transverse displacement is

given by the series (9.43a) with K =∞; the series for the transverse force (9.40) converges for an analytic

function, and hence the series for the transverse displacement ζ̃ also converges, because its coefficients are

of order Ck/k
4 and thus decay faster with a factor k−4 → 0 as k → ∞. Next is proved the convergence

of the perturbation expansions (9.29a) and (9.29b) when the loads are analytic functions of the radius

(9.40). The series (9.43a) with K finite or infinite converge at all orders and thus each n term of the series
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representing the transversal displacement, designated ζn as in the perturbation expansion, is bounded:

|ζn (r)| ≤ B ≤ ∞. (9.44a)

Thus, the perturbation expansion for finite order is bounded [39] by

|ζ (r)| =
∣∣∣∣∣

N∑
n=1

εnζn (r)
∣∣∣∣∣ ≤

N∑
n=1

εn |ζn (r)| ≤
N∑

n=1
εnB = ε

1− εN

1− ε B. (9.44b)

For perturbation parameter less than unity, the limit N → ∞ in (9.44b) shows that the perturbation

series converges with upper bound:

ε < 1, |ζ (r)| =
∣∣∣∣∣

∞∑
n=1

εnζn (r)
∣∣∣∣∣ ≤ Bε

1− ε . (9.44c)

In both cases of finite (9.44b) or series (9.44c) perturbation expansion, the error of truncation RN at the

N -th term (or the remainder of the series) does not exceed:

RN ≡

∣∣∣∣∣
∞∑

n=N+1
εnζn (r)

∣∣∣∣∣ ≤
∞∑

n=N+1
εnB = εN+1

1− εB. (9.44d)

It has been shown that in the case of forcing by a polynomial (9.43b) or analytic function (9.40) of the

radius, the asymptotic expansion (9.29a) for the transverse displacement becomes a convergent series

with the upper bound (9.44c) or with the remainder (9.44d) if the series is truncated after N terms as

in (9.44b). The distinction between “asymptotic expansion” and “asymptotic series” can be made as

follows. An “asymptotic expansion” is considered with a finite number of terms N , and is more accurate

for smaller parameter ε; if the number of terms tends to infinity, the asymptotic expansion will diverge,

so the best accuracy is limited and is obtained for an optimum number of terms. The asymptotic series

is a stronger case than an asymptotic expansion, since it can be summed with any number of terms,

and becomes exact as the number of terms tends to infinity, for any value of the parameter ε within its

domain of convergence. Both the asymptotic expansion and series have a remainder RN after N terms,

and the distinction is that as the number of terms N tends to infinity, N → ∞, the remainder diverges

for an asymptotic expansion, RN →∞, whereas it tends to zero for an asymptotic series, RN → 0. It can

be confirmed that within the domain of convergence ε < 1 of the parameter ε in (9.44c), as N →∞, the

remainder after N terms tends to zero in (9.44d), RN → 0; therefore the solution (9.44b) is an asymptotic

series, that is a stronger result than an asymptotic expansion; for an asymptotic expansion, RN → 0 only

for ε→ 0. An asymptotic series can be seen as particular stronger case of an asymptotic expansion: (i)

the asymptotic expansion is exact only for ε→ 0, whereas the asymptotic series is exact for all ε < 1; (ii)

for ε ̸= 0 the asymptotic expansion can be summed with limited accuracy using a finite number of terms

because it diverges for N → ∞, whereas the asymptotic series can be summed exactly with an infinite

number of terms because it converges as N → ∞. For that reason there is no limit to the accuracy of

an asymptotic series in contrast with an asymptotic expansion; a truncated asymptotic series is also an
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asymptotic expansion, but that is not using fully its properties.

Since the solution is an asymptotic series convergent for 0 < ε < 1, it can be summed with any desired

accuracy Rd by adding more terms to the convergent series (9.44b) to make the remainder (9.44d) smaller.

To be more precise, an accuracy better than Rd corresponds to RN < Rd in (9.44d),

εN+1

1− εB = RN < Rd, (9.44e)

and is obtained after N terms:

N + 1 >
∣∣∣∣ log [(1− ε)Rd/B]

log ε

∣∣∣∣ . (9.44f)

The proof of (9.44f) can be made as follows: (i) taking logarithms on both sides of (9.44e) leads to

(N + 1) log ε < log
[
Rd

B
(1− ε)

]
; (9.44g)

(ii) since ε < 1 in (9.44c), the left-hand side of (9.44g) is negative, so log ε < 0; (iii) for small error Rd

less than the n-th term B, Rd < B, then (Rd/B) (1− ε) < 1 because also 1− ε < 1, and hence the term

in square brackets on the right-hand side of (9.44g) is less than unity, therefore its logarithm is negative;

(iv) since both sides of the inequality < in (9.44g) are negative, the sign is reversed to > when taking

the modulus,

(N + 1) |log ε| >
∣∣∣∣log

[
Rd

B
(1− ε)

]∣∣∣∣ , (9.44h)

proving the relation (9.44f) that is equivalent to the last equation.

Thus, this method of solution applies to any order, and has minimum algebra when illustrated by the

application to a heavy circular plate under axial compression.

9.4.2 Heavy circular plate under axial compression

At lowest order, there is a decoupling of: (i) the transverse deflection,

ζ1 (r) = H
(
r2 − a2)2 (9.45a)

of a circular plate of radius a under its own weight,

f = ρgh, (9.45b)

where g is the gravitational acceleration, that is the solution [79] of

D∇4ζ1 = ρgh, (9.45c)

with coefficient

H ≡ ρgh

64D =
3ρgh

(
1− σ2)

16Eh3 ; (9.45d)
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(ii) a uniform axial compression,

Trr = −p (9.46a)

with pressure p, for which the biharmonic equation for the stress function,

∇4Θ1 = 0, (9.46b)

has solution [133]

Θ1 = −1
2pr

2. (9.46c)

With the substitution of (9.45a) and (9.46c), the perturbation equations (9.39b) and (9.39c) are bihar-

monic with forcing (9.43b) by polynomials, so the particular integral (9.43a) can be applied to all orders.

For the purpose of illustrating the method, it is sufficient to consider the second order, that is the lowest

for which non-linear coupling of bending and in-plane deformation occurs.

9.4.3 Non-linear coupling of bending and compression

The lowest order stress function (9.46c) and transverse displacement (9.45a) have zero order radial

derivatives, respectively

Θ′
1 (r) = −pr (9.47a)

and

ζ ′
1 (r) = 4Hr

(
r2 − a2) , (9.47b)

that appear in the next order forced biharmonic equations:

∇4Θ2 = −8EH2

r

[
r2 (r2 − a2)2

]′
= −16EH2 (3r4 − 4a2r2 + a4) (9.48a)

and

∇4ζ2 = −4pHh
Dr

[
r2 (r2 − a2)]′ = −8pHh

D

(
2r2 − a2) . (9.48b)

The biharmonic equations (9.48a) and (9.48b) are forced by a polynomial (9.43b) and its particular

integral (9.43a) specifies respectively the second-order stress function,

Θ2 (r) = −16EH2
(

3r8

8262 −
4a2r6

6242 + a4r4

4222

)
= −16EH2r4

8262

(
3r4 − 4 · 22a2r2 + 62a4)

= −EH
2r4

144
(
3r4 − 16a2r2 + 36a4) , (9.49a)

and transverse displacement,

ζ2 (r) = −8pHh
D

(
2r6

6242 −
a2r4

4222

)
= −8pHhr4

6242D

(
2r2 − 32a2) = −pHhr

4

72D
(
2r2 − 9a2) . (9.49b)
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Figure 9.3: An example of the axisymmetric case is a heavy circular plate under axial compression at
the rim.

The total stress function,

Θ (r) = B4r
2 log r +B3r

2 +B2 log r +B1 −
1
2pr

2 − EH2r4

144
(
3r4 − 16a2r2 + 36a4) , (9.50a)

and transverse displacement,

ζ (r) = C4r
2 log r + C3r

2 + C2 log r + C1 +H
(
r2 − a2)2 − pHhr4

72D
(
2r2 − 9a2) , (9.50b)

for the non-linear strong bending of a heavy circular plate under compression, as indicated in the figure

9.3, are given by the sum of: (i) the general integral,

ϕ (r) = A4r
2 log r +A3r

2 +A2 log r +A1, (9.51a)

of the unforced biharmonic equation

∇4ϕ = 0, (9.51b)

involving four arbitrary constants of integration, A1 to A4, that are distinct from the four constants of

the stress function, B1 to B4, and from the four constants of transverse displacement, C1 to C4; (ii)

the lowest decoupled, (9.46c) and (9.45a), and next coupled order, (9.49a) and (9.49b), that introduces

coupling to the lowest order two in the particular integral. The complete integral is the sum of (i) and

(ii). The two sets of four arbitrary constants of integration, B1 to B4 and C1 to C4, are determined from

boundary conditions, for example, for a clamped plate under axial compression at the boundary.

9.5 Strong bending of heavy circular plate under compression

The boundary conditions for a clamped circular plate are used to determine the arbitrary constants

in the stress function and transverse displacement (subsection 9.5.1). These specify all other dependent

variables in the problem such as the radial displacement vector and all components of the stress and

strain tensors (subsection 9.5.2). As a final check, the final compliance with the boundary conditions is

verified by computation of all the terms involved (subsection 9.5.3).
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9.5.1 Transverse displacement and stress function with clamping

The stress function (9.50a) leads by (9.36a) to the tangential stress

Ttt (r) = B4 (2 log r + 3) + 2B3 −
B2

r2 − p−
EH2r2

6
(
7r4 − 20a2r2 + 18a4) . (9.52)

A finite stress at the centre, Ttt (0) <∞, implies B2 = B4 = 0 in (9.52), leading in (9.50a) to the stress

function

Θ (r) = B3r
2 − 1

2pr
2 − EH2r4

144
(
3r4 − 16a2r2 + 36a4) , (9.53)

where the constant B1 = 0 can be omitted because it does not affect the stresses (9.36a), either tangential

(9.52) or radial,

Trr (r) = 2B3 − p−
EH2r2

6
(
r4 − 4a2r2 + 6a4) . (9.54)

The boundary condition specifying the compression, −p = Trr (a), determines the remaining constant of

integration,

B3 = EH2a6

4 , (9.55a)

that substituted in (9.53) determines the stress function:

Θ (r) = −1
2pr

2 − EH2r2

144
(
3r6 − 16a2r4 + 36a4r2 − 36a6) . (9.55b)

In the transverse displacement (9.50b), two constants are zero, C2 = C4 = 0, because the transverse

displacement must be finite and there is no concentrated force at the centre, leading to

ζ (r) = C3r
2 + C1 +H

(
r2 − a2)2 − pHhr4

72D
(
2r2 − 9a2) . (9.56a)

The slope and displacement vanish on the boundary,

0 = ζ ′ (a) = 2C3a+ pHha5

3D , (9.56b)

0 = ζ (a) = C1 + C3a
2 + 7pHha6

72D (9.56c)

determining respectively the two remaining constants of integration:

C1 = 5pHha6

72D , C3 = −pHha
4

6D . (9.56d)

Substituting the two constants in (9.56a) specifies the transverse displacement:

ζ (r) = H
(
r2 − a2)2 − pHh

72D
(
2r6 − 9a2r4 + 12a4r2 − 5a6) . (9.56e)

A clamped heavy circular plate under axial compression at the boundary, as sketched in the figure 9.4,

has the stress function (9.55b) and transverse displacement (9.56e) to the second or lowest non-linear
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ρg

−p −p

Figure 9.4: One of the possible boundary conditions is clamping.

approximation of transverse bending and in-plane deformation leading to the stresses, strains and in-

plane displacements, obtained next in subsection 9.5.2. The slope, stress couple and augmented turning

moment are obtained in subsection 9.5.3.

The figure 9.5 is an illustrative example of the application of strong bending of a circular plate under

compression, showing the first two contributions ζ1 (top plot) and ζ2 (middle plots) in the perturbation

expansion up to second order of vertical displacement ζ (bottom plots). The results apply to a steel

plate1 with Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.265 and mass density ρ = 7850 kg/m3.

To get the results, the thickness of the plate is h = 10 mm while its radius is a = 500 mm. Note that

the first contribution ζ1 does not depend explicitly on the value of the pressure p. In this particular

case, the contribution of ζ2 is much smaller than the contribution of ζ1. The reason is due to the factor

H/D ∼ 1/D2 in the expression of ζ2 which has the order of magnitude equal to 10−8, in opposition with

the expression of ζ1 which is proportional to H ∼ 1/D with order of magnitude equal to 10−4. The

figure 9.5 also depicts the influence of the pressure p in the contribution ζ2 and consequently in the total

normal displacement (in the bottom plots that show the displacement ζ, the solid line overlaps the dotted

and dashed lines); it shows that when the pressure p has greater values, the normal displacement is also

greater. The total displacement ζ follows the boundary conditions of no displacement and no angle of

inclination at the boundary of the plate. Moreover, the displacement and its contributions are symmetric

with respect to the axis r = 0 of the plate and reaches the maximum value at the centre of the plate

r = 0.

9.5.2 Stresses, strains and radial displacement

The stress function (9.55b) specifies, by (9.36a), the non-zero stresses, namely radial,

Trr (r) = −p− EH2

6
(
r6 − 4a2r4 + 6a4r2 − 3a6) , (9.57a)

and tangential,

Ttt (r) = −p− EH2

6
(
7r6 − 20a2r4 + 18a4r2 − 3a6) . (9.57b)

The radial and tangential stresses: (i) differ at the boundary where they respectively equal and are less

than the compression,

Trr (a) = −p > −p− EH2a6

3 = Ttt (a) ; (9.58a)

1The data associated to a steel plate, needed for the figures 9.5 to 9.7, is obtained from the site The Engineering ToolBox.
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Figure 9.5: Vertical displacement ζ up to the second order (in the z-direction) of the steel plate
with the next characteristics: Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.265, mass density
ρ = 7850 kg/m3, thickness h = 0.01 m and radius a = 0.5 m. The dotted, dashed and solid lines result
from an applied pressure p of 10, 15 and 20 kN respectively.

(ii) coincide and are higher than the compression at the centre,

Trr (0) = −p+ EH2a6

2 = Ttt (0) . (9.58b)

The non-zero stresses (9.57a) and (9.57b) specify, by (9.36b), the non-zero strains, for example, the

tangential strain,

Stt (r) = −1− σ
E

p− H2

6
[
(7− σ) r6 − 4 (5− σ) a2r4 + 6 (3− σ) a4r2 − 3 (1− σ) a6] (9.59a)

specifies the radial displacement,
ur (r)
r

= Stt (r) , (9.59b)

where on the right-hand side of (9.59a) the first term is the linear approximation and the second term is

the lowest order non-linear correction. The tangential strain (9.59a) and radial displacement (9.59b) are

respectively: (i) non-zero and zero at the centre,

Stt (0) = (1− σ)
(
− p
E

+ H2a6

2

)
, ur (0) = 0; (9.60a)
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(ii) both non-zero at the boundary,

Stt (a) = ur (a)
a

= −1− σ
E

p− H2a6

3 , (9.60b)

with the non-linear effect decreasing the strain and displacement in all non-zero cases.

The remaining non-zero strains are radial,

Srr (r) = −1− σ
E

p− H2

6
[
(1− 7σ) r6 − 4 (1− 5σ) a2r4 + 6 (1− 3σ) a4r2 − 3 (1− σ) a6] , (9.61a)

and out-of-plane with the latter specifying the normal displacement,

uz (r)
z

= Szz (r) = σ

[
2p
E

+ H2

3
(
4r6 − 12a2r4 + 12a4r2 − 3a6)] , (9.61b)

where on the right-hand side of (9.61a) and (9.61b) the first term is the linear approximation and the

second term is the lowest order non-linear correction. The radial strain (9.61a) equals the tangential

strain at the centre where it is larger than at the boundary only for σ < 3/5:

Srr (0) = (1− σ)
(
− p
E

+ H2a6

2

)
= Stt (0) > Srr (a) = −1− σ

E
p+ H2a6

3 σ. (9.62)

The transverse displacement is zero on the axis, uz (0) = 0, and the out-of-plane strain (9.61b) is lower

at the centre than at the boundary:

Szz (0) = σ

(
2p
E
−H2a6

)
< σ

(
2p
E

+ H2a6

3

)
= Szz (a) . (9.63)

The area and volume changes [3],

D2 (r) ≡ Srr (r) + Stt (r) = (1− σ) (Trr + Ttt)
E

= − (1− σ)
σ

Szz (r) , (9.64a)

D3 (r) ≡ D2 (r) + Szz (r) = −1− σ
σ

Szz (r) + Szz (r) = 2σ − 1
σ

Szz (r) (9.64b)

follow from (9.59a) and (9.62). The compliance with the boundary conditions is checked next.

The figure 9.6 shows the two non-zero and independent components of stress tensor (top plots) and

the three independent components of strain tensor (bottom plots) due to the pressure applied at the

rim of the plate and to the gravitational force. The results correspond to the same steel plate as in

the figure 9.5. The dotted, dashed and solid lines are associated to the pressure p of 10 kN, 15 kN and

20 kN respectively, as in the last figure 9.5. The plots confirm several observations previously mentioned.

The radial stress Trr (red lines) is equal to the compressive pressure −p at the boundary of the plate,

specifically at the positions r = −a and r = a. Increasing the value of the pressure increases also the

values in modulus of the stress components. The radial stress is radially symmetric and reaches the

maximum value at the centre of the plate r = 0. This observation also applies to the tangential stress Ttt

(blue lines). Furthermore, the tangential stress is lower than the radial stress at all positions, except at
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Figure 9.6: Stresses Tij and strains Sij in the steel plate with the next characteristics: Young’s modulus
E = 200 GPa, Poisson’s ratio ν = 0.265, mass density ρ = 7850 kg/m3, thickness h = 0.01 m and radius
a = 0.5 m. The dotted, dashed and solid lines result from an applied pressure p of 10, 15 and 20 kN
respectively.

the centre of the plate where they coincide. The bottom plots show the values of the strain components.

As in the case of stress tensor, the tangential strain Stt (blue lines) is lower than the radial strain Srr (red

lines) at all positions, except at the centre of the plate, r = 0, where both strain components coincide

and reach the minimum value (in modulus) in this particular case. The axial strain Szz (black lines) is

also minimum at the centre of the plate. The absolute values of the three strain components increase for

a greater value of the pressure p.

9.5.3 Slope, stress couple and augmented turning moment

From transverse displacement (9.56e), follows the slope

ζ ′ (r) = 4Hr
(
r2 − a2)− pHhr

6D
(
r4 − 3a2r2 + 2a4) (9.65)

that vanishes both at the boundary and centre, ζ ′ (a) = ζ ′ (0) = 0. The radial and tangential curvatures

are given respectively by [4]

kr (r) ≡ ζ ′′ (r) = 4H
(
3r2 − a2)− pHh

6D
(
5r4 − 9a2r2 + 2a4) , (9.66a)

kt ≡
ζ ′ (r)
r

= 4H
(
r2 − a2)− pHh

6D
(
r4 − 3a2r2 + 2a4) . (9.66b)
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They respectively do not and do vanish on the boundary,

kt (a) = 0 ̸= kr (a) = Ha2
(

8 + pa2h

3D

)
, (9.67a)

and coincide at the centre,

kt (0) = Ha2
(
−pha

2

3D − 4
)

= kr (0) . (9.67b)

The radial stress couple (9.37a) is given by

Mr (r) = −D [kr (r) + σkt (r)] = −4HD
[
(3 + σ) r2 + (1 + σ) a2]

+ pHh

6
[
(5 + σ) r4 − 3 (3 + σ) a2r2 + 2 (1 + σ) a4] . (9.68)

It is non-zero at the centre,

Mr (0) = (1 + σ)Ha2
(

4D + pha2

3

)
, (9.69a)

while on the boundary it is also non-zero,

Mr (a) = Ha2
(
−pha

2

3 − 8D
)
, (9.69b)

because the plate is clamped. It has a lowest-order non-linear correction in both cases.

The Laplacian of the transverse displacement (9.34a) is the sum of the radial (9.66a) and tangential

(9.66b) curvatures and is given by

∇2ζ = ζ ′′ + ζ ′

r
= kr (r) + kt (r) = 8H

(
2r2 − a2)− pHh

3D
(
3r4 − 6a2r2 + 2a4) . (9.70)

The turning moment is specified by the first term on the right-hand side of (9.37b) that equals the radial

derivative of the bending stiffness multiplied by the Laplacian,

Nr (r) =
(
D∇2ζ

)′
, (9.71a)

and in the case of constant bending stiffness is specified by

Nr (r) = D

(
ζ ′′′ + ζ ′′

r
− ζ ′

r2

)
= 32HDr − 4pHhr

(
r2 − a2) . (9.71b)

The augmented turning moment (9.37b) adds to the turning moment (9.71b) a term involving the deriva-

tives of the transverse displacement (9.56e) and stress function (9.55b) leading to

N r (r)−Nr (r) = h

r
Θ′ζ ′ = hTrrζ

′, (9.72)

where may be substituted (9.65) and (9.57a). At the centre, the turning moment (9.71b) vanishes,

Nr (0) = 0, and also the augmented turning moment, N r (0) = 0. On the boundary, the turning moment

and augmented turning moment (9.72) coincide and so do not vanish, N r (a) = Nr (a) = 32HDa, because
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the plate is clamped. The strong bending of a heavy clamped circular plate to the lowest order of non-

linearity is an example of the method of perturbation expansions that, in the axisymmetric case, with

transverse force and in-plane stresses, polynomial functions apply exactly to all orders of non-linearity.

The figure 9.7 shows not only the two components of the curvature (top plots), but also the radial

stress couple, the turning moment and the augmented turning moment (bottom plots) due to the pressure

applied at the boundary of the plate and to the gravitational force. The results correspond to the same

steel plate as in the figures 9.5 and 9.6. The dotted, dashed and solid lines correspond to the pressure p of

10 kN, 15 kN and 20 kN respectively, as in the last figures 9.5 and 9.6. Both the curvatures are symmetric

with respect to the axis of the circular plate. The radial curvature kr (red lines of top plots) is greater

than the tangential curvature kt (blue lines of top plots), except at the centre of the plate, r = 0, where

both curvatures coincide. Furthermore, the tangential curvature vanishes at the extreme radial positions

of the plate, r = −a and r = a. The radial stress couple Nr (black lines of bottom plots) has radial

symmetry and has a maximum value at the centre of the plate, r = 0. Otherwise, the turning moment

Mr (black lines of bottom plots) and augmented turning moment M r (black lines of bottom plots) do not

have radial symmetry and they both vanish at r = 0. Moreover, they have symmetric extreme values at

the boundary of the plate and at that positions, the turning moments coincide. Although they are not

visible, the dotted and dashed lines exist in the figure 9.7, but the solid lines overlap them. It means

that with this set of values in the pressure p, there is not such a large influence on the final values of the

stress couple and turning moment.

Figure 9.7: Radial curvature kr, tangential curvature kt, radial stress couple Nr, turning moment Mr
and augmented turning moment M r of the steel plate with the next characteristics: Young’s modulus
E = 200 GPa, Poisson’s ratio ν = 0.265, mass density ρ = 7850 kg/m3, thickness h = 0.01 m and radius
a = 0.5 m. The dotted, dashed and solid lines associate respectively to the pressure p of 10, 15 and 20 kN.
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9.6 Determination of parameter in perturbation expansion

The parameter in the perturbation expansions (9.29a) and (9.29b) can be determined equating the

elastic energy to the work of external forces (subsection 9.6.1). If the perturbation expansion is taken

to order N , the perturbation parameter is the root of a polynomial of degree M = 2N − 1, implying

that it is unique M = 1 for the lowest order N = 1 of perturbation (subsection 9.6.2). This specifies the

perturbation parameter as a function of loads, stiffness and geometry of the plate (subsection 9.6.3).

9.6.1 Balance of work versus gravity and elastic energy

The work of the pressure in a radial displacement is

dW ≡ −pdur (9.73a)

and for a displacement from zero to ur is given by

W = −p
∫ ur

0
dur = −pur. (9.73b)

The total work is its integral over all directions, 0 ≤ θ ≤ 2π, and radius, 0 ≤ r ≤ a, leading to

W ≡ −ph
∫ 2π

0
dθ
∫ a

0
ur (r) dr = −2πhp

∫ a

0
ur (r) dr, (9.73c)

multiplied by the thickness h of the plate.

Besides the work of the pressure in a radial displacement (9.73a), there is work of the weight in a

transverse displacement:

dΦ ≡ ρghdζ; (9.74a)

for a given displacement from 0 to ζ, this leads to the gravity potential energy

Φ = ρgh

∫ ζ

0
dζ = ρgζ. (9.74b)

The total gravity potential energy integrated over the circular plate of radius a is

Φ ≡ h
∫ 2π

0
dθ
∫ a

0
Φ (r) r dr = 2πρgh

∫ a

0
ζ (r) r dr. (9.74c)

The deformation energy per unit volume related to the work of the in-plane elastic stresses on the total

strains, regarding (9.14c), and in the case of linear elastic stress-strain relation, is given by

2Ed ≡ 2E2 + E3

h
= TαβSαβ = TrrSrr + TttStt, (9.75a)

involving the non-zero stresses in (9.36a). Multiplying by the thickness h of the plate and integrating
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over the area specify the total energy of deformation:

2E ≡ h
∫ 2π

0
dθ
∫ a

0
2Ed (r) r dr = 2πh

∫ a

0
[Trr (r)Srr (r) + Ttt (r)Stt (r)] r dr. (9.75b)

The sum of the work of the pressure (9.73c) and gravity potential energy (9.74c) must equal the total

deformation energy (9.75b),

W + Φ = E, (9.76)

and this relation is used to determine the parameter ε in the asymptotic expansions (9.29a) and (9.29b).

9.6.2 Perturbation expansions to lowest and highest orders

The perturbation expansions (9.29a) and (9.29b) apply to the transverse ζ and radial ur displacements,

and strain and stress tensors:

{ζ (r) , ur (r) , Sαβ (r) , Tαβ (r)} =
N∑

n=0
εn {ζn+1 (r) , ur,n+1 (r) , Sαβ,n+1 (r) , Tαβ,n+1 (r)} , (9.77)

using n = 0 for the lowest order and perturbations up to order N . The choice ε0 = 1 for the lowest

order and ε1 = ε for the next order is made because: (i) the work of the pressure forces (9.73c) and

gravity potential energy (9.74c) is linear and starts at lowest order ε0 = 1 with next order ε1 = ε; (ii)

the energy of deformation (9.76) is quadratic, hence with lowest order ε0 = 1, and next orders ε and

ε2; (iii) starting the sum in (9.77) at n = 0 allows the lowest orders of work of the pressure and energy

of deformation to be matched since ε0 = 1 does not appear; (iv) this also ensures that higher order

matchings are consistent. The perturbation expansions (9.29a) and (9.29b) corresponding to (9.77) can

be taken to any order N =∞ since the corresponding series (9.44a) and (9.44c) converge. Using (9.77),

the work of the pressure is given by a single perturbation expansion,

W =
N∑

n=0
εnWn, (9.78a)

with terms

Wn ≡ −2πph
∫ a

0
ur,n+1 (r) dr, (9.78b)

and the gravity potential energy is also specified by the single perturbation expansion,

Φ =
∞∑

n=0
εnΦn, (9.79a)

with terms

Φn ≡ 2πρgh
∫ a

0
ζn+1 (r) r dr, (9.79b)
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whereas the deformation energy (9.75b) is given by a double perturbation expansion,

E =
N∑

n=0

n∑
m=0

εn+mEn,m, (9.80a)

with diagonal n = m and cross n ̸= m terms:

En,n ≡ πh
∫ a

0
Tαβ,n+1 (r)Sαβ,n+1 (r) r dr, (9.80b)

En,m ≡ πh
∫ a

0
[Tαβ,n+1 (r)Sαβ,m+1 (r) + Tαβ,m+1 (r)Sαβ,n+1 (r)] r dr. (9.80c)

Equating, as in (9.76), the work of the pressure (9.78a) plus the gravity potential energy (9.79a) to

the elastic energy of deformation (9.80a) leads to

N∑
n=0

εn
(
Wn + Φn

)
=

N∑
n=0

n∑
m=0

εn+mEn,m, (9.81)

so that the left-hand side is a polynomial of degree N and the right-hand side is a polynomial of degree

2N , and the perturbation parameter ε is a real root. Using the identity (9.76) at lowest order,

W 0 + Φ0 = E0,0, (9.82)

cancels the leading terms on both sides of (9.81) and allows a division by ε in

N∑
n=1

εn−1 (Wn + Φn

)
=

N∑
n=1

n∑
m=0

εn+m−1En,m, (9.83)

so that the left-hand side is a polynomial of degree N − 1 and the right-hand side is a polynomial of

degree 2N − 1. For the lowest order perturbation N = 1, there is a single root 2N − 1 = 1 and unique

value of the asymptotic parameter ε. This can be confirmed using the lowest order N = 1 in the work of

the pressure (9.78a),

W = W 0 + εW 1, (9.84a)

in the gravity potential energy (9.79a),

Φ = Φ0 + εΦ1, (9.84b)

and in the elastic energy of deformation (9.80a),

E = E0,0 + εE1,0 + ε2E1,1. (9.84c)

The equality (9.81) with N = 1 for (9.84a), (9.84b) and (9.84c) becomes

W 0 + Φ0 + ε
(
W 1 + Φ1

)
= E0,0 + εE1,0 + ε2E1,1 (9.85a)
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and using (9.82) simplifies to

W 1 + Φ1 = E1,0 + εE1,1, (9.85b)

that is equivalent to

ε = W 1 + Φ1 − E1,0

E1,1
. (9.85c)

This specifies uniquely the expansion parameter, that is given by a ratio with: (i) numerator equal to

the first-order work of the pressure W 1 plus the first-order gravity potential Φ1 minus the deformation

energy E1,0 of cross-orders zero and one; (ii) denominator equal to the deformation energy E1,1 of order

one. From (9.85c) follows the dependence of the perturbation expansion parameter on external loads,

material properties and geometric properties.

9.6.3 Dependence on loads, material and geometry

The radial displacement is given by (9.59a) and (9.59b) with the first term on the right-hand side for

the lowest order,

ur,1 (r) = −1− σ
E

pr, (9.86a)

and remaining terms for the lowest order perturbation,

ur,2 (r) = −H
2r

6
[
(7− σ) r6 − 4 (5− σ) a2r4 + 6 (3− σ) a4r2 − 3 (1− σ) a6] . (9.86b)

Likewise, the transverse displacement is given at the lowest order by (9.45a), equivalent to

ζ1 (r) = H
(
r2 − a2)2

, (9.87a)

and the second order perturbation is equal to

ζ2 (r) = pHh

72D
(
2r6 − 9a2r4 + 12a4r2 − 5a6) , (9.87b)

by the remaining terms on the right-hand side of (9.56e). Also, the radial (9.57a) and azimuthal (9.57b)

stresses are constant at lowest order,

Trr,1 = −p = Ttt,1, (9.88a)

and at the second order are given by:

{Trr,2 (r) , Ttt,2 (r)} = −EH
2

6
{
r6 − 4a2r4 + 6a4r2 − 3a6, 7r6 − 20a2r4 + 18a4r2 − 3a6} . (9.88b)

The radial (9.61a) and azimuthal (9.59a) strains are constant at lowest order,

Srr,1 = −1− σ
E

p = Stt,1, (9.89a)
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and given by

{Srr,2 (r) , Stt,2 (r)} = −H
2

6
{

(1− 7σ) r6 − 4 (1− 5σ) a2r4 + 6 (1− 3σ) a4r2 − 3 (1− σ) a6,

(7− σ) r6 − 4 (5− σ) a2r4 + 6 (3− σ) a4r2 − 3 (1− σ) a6} . (9.89b)

for the second order perturbation.

At lowest order: (i) the work of the pressure in a radial displacement (9.78b), using (9.86a), is given

by

W 0 = −2πph
∫ a

0
ur,1 (r) dr = 2πh1− σ

E
p2
∫ a

0
r dr = πh

1− σ
E

p2a2; (9.90)

(ii) the elastic energy (9.82) associated with the stresses (9.88a) and strains (9.89a) due to the pressure

at zero order,

E0,0 = πh

∫ a

0
(Trr,1Srr,1 + Ttt,1Stt,1) r dr = 2πh1− σ

E
p2
∫ a

0
r dr = πh

1− σ
E

p2a2 = W 0, (9.91)

balances the work of the pressure (9.90); (iii) the gravity potential energy (9.79b) is given to zero order

by

Φ0 = 2πρghH
∫ a

0

(
r4 − 2a2r2 + a4) r dr = π

3 ρghHa
6; (9.92)

it corresponds to the cross-strains Srz, whose square is neglected in (9.11a), so that the corresponding

energy does not appear in the zero-order energy balance (9.82). This does not affect the first and second-

order energy terms in (9.85b), that specify the perturbation parameter (9.85c).

The perturbation parameter (9.85c) involves four quantities: (i) the first order work (9.78b) involving

(9.86b) given by

W 1 = −2πph
∫ a

0
ur,2 (r) dr = πphH2a8

3 X1, (9.93a)

with a numerical factor equal to

X1 ≡ a−8
∫ a

0

[
(7− σ) r7 − 4 (5− σ) a2r5 + 6 (3− σ) a4r3 − 3 (1− σ) a6r

]
dr

= 7− σ
8 − 10− 2σ

3 + 9− 3σ
2 − 3− 3σ

2 = 13
24 (1 + σ) ; (9.93b)

(ii) the first order gravity potential (9.79b) involving (9.87b) given by

Φ1 = πρgpHh2

36D

∫ a

0

(
2r6 − 9a2r4 + 12a4r2 − 5a6) r dr

= πρgpHh2

36D a8
(

1
4 −

3
2 + 3− 5

2

)
= −πρgpHh

2

48D a8 = − 3
64
πpρ2g2 (1− σ2)2

a8

E2h3 ; (9.94)

(iii) the zero-first order cross energy (9.80c),

E1,0 = πh

∫ a

0
(Trr,1Srr,2 + Trr,2Srr,1 + Ttt,1Stt,2 + Ttt,2Stt,1) r dr, (9.95a)
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involving all the relations from (9.88a) to (9.89b) and leading to

E1,0 = πphH2

3 a8 (1− σ)X2 (9.95b)

with numerical factor

X2 ≡ a−8
∫ a

0

(
8r6 − 24a2r4 + 24a4r2 − 6a6) r dr = 1− 4 + 6− 3 = 0, (9.95c)

showing that the cross deformation energy between the two lowest orders is zero; (iv) the first-order

energy (9.80b),

E1,1 = πh

∫ a

0
(Trr,2Srr,2 + Ttt,2Stt,2) r dr, (9.96a)

involving (9.88b) and (9.89b) in

E1,1 = πphH4

36 a14X3, (9.96b)

with numerical factor calculated by

X3 ≡ a−14
∫ a

0

{(
r6 − 4a2r4 + 6a4r2 − 3a6)

×
[
(1− 7σ) r6 − 4 (1− 5σ) a2r4 + 6 (1− 3σ) a4r2 − 3 (1− σ) a6]

+
(
7r6 − 20a2r4 + 18a4r2 − 3a6)

×
[
(7− σ) r6 − 4 (5− σ) a2r4 + 6 (3− σ) a4r2 − 3 (1− σ) a6]} r dr

= 50− 14σ
14 − 288− 96σ

12 + 680− 280σ
10 − 816− 432σ

8 + 504− 360σ
6 − 1441− σ

4 + 18
2

= 18
7 , (9.96c)

as the integral of 2 × 4 × 4 = 32 products, corresponding to powers of r13, r11, r9, r7, r5, r3 and r1,

leading to a sum of seven terms, that does not depend on σ.

At zero order, the ratio of the total gravity potential energy (9.92) to the total work of the pressure

in a radial displacement (9.90) is

Φ0

W 0
= E

3
ρgH

1− σ
a4

p2 = 1 + σ

16

(
ρgh

p

)2 (a
h

)4
, (9.97)

using (9.45d). Likewise the ratio of first-order perturbations (9.94) and (9.93a) is

Φ1

W 1
= − 3

26
1

1 + σ

ρgh

DH
= −96

13
1

1 + σ
. (9.98)

Since the ratio (9.98) is neither too large nor too small, both terms should be included in the evaluation

of asymptotic perturbation parameter (9.85c) using (9.93a), (9.94), (9.95b) and (9.96b), leading to

ε = X4

a6H2 , (9.99a)
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with the coefficients

X−1
3 X4 ≡ 12X1 −

3
4
ρgh

DH
− 12 (1− σ)X2 = 13

2 (1 + σ)− 48. (9.99b)

Substitution of (9.45d) and (9.99b) in (9.99a) shows that the perturbation parameter,

ε = −256
7

83− 13σ
(1− σ2)2

(
E

ρgh

)2(
h

a

)6
, (9.99c)

indicates when coupling of bending and in-plane stresses is stronger, that is for larger: (i) ratio of thickness

to diameter to the sixth power, that is thick plates; (ii) ratio of Young modulus to weight per unit area to

the square, that is stiff light plates. The negative sign of the asymptotic expansion parameter implies that

the first-order coupling reduces the zero-order decoupled values. The assumption (9.11a) of neglecting

the square of cross-strains implies that at zero order the work of the pressure (9.90) balances the elastic

energy (9.91), so that in (9.82) the gravity potential energy must be negligible, implying

Φ0 ≪W 0 ⇒ ∧ ≡
(
ρgh

E

)2 (a
h

)4
≪ 16

1 + σ
, (9.100)

from (9.97). Substituting (9.100) in (9.99c) sets a lower bound for the modulus of the perturbation

parameter:

|ε| = 256
7

83− 13σ
(1− σ2)2

(
h

a

)2 1
∧
≫ 16

7
83− 13σ

(1− σ2) (1− σ)

(
h

a

)2
. (9.101)

The restriction (9.101) arises from the zero order energy balance, that must be satisfied regardless of

higher-order terms specifying the perturbation parameter (9.99c). The restriction (9.101) for thin plates

may be consistent with small perturbation parameter ε < 0.3, whose square is negligible, ε2 = 0.09≪ 1,

so that the second-order approximation applies in the perturbation expansions (9.77). For larger ε >

0.3, more terms are needed in the perturbation expansion (9.77) with truncation error (9.44d) and the

perturbation parameter is a real root of (9.83). The full perturbation expansion as a series with N =∞

converges, as stated in (9.44c), with remainder (9.44d) for real roots smaller than unity of the series

equality (9.83). These remarks are not a full discussion of the conditions of validity of the Föppl-von

Kármán equations, that can be found in the literature [259, 260], and concern only the present application.

9.7 Main conclusions of the chapter 9

The present chapter contributes to the theory of non-linear elasticity [248] with a focus on the strong

bending of plates [243, 244] coupling to in-plane stresses. The Föppl-von Kármán equations are obtained

by two distinct methods, non-variational (section 9.1) and variational (section 9.2). They assume linear

stress-strain relations for elasticity and neglect cross-strains. The variational method also specifies the

boundary conditions involving the stress couples and augmented turning moment. The augmented turning

moment adds a term involving the in-plane stresses to the turning moment for the bending of a plate.

The solution method is a perturbation expansion that is obtained explicitly to all orders (section 9.3).
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In the axisymmetric case, all orders can be solved exactly for any loading that is an analytic function of

the radius. It is shown that the perturbation series converges for perturbation parameter less than unity

(section 9.4). The method is illustrated for a heavy circular plate under axial compression, including

the lowest-order non-linear coupling between transverse and in-plane displacements, strains and stresses

(section 9.5). The perturbation parameter is shown to scale (section 9.6) on (i) the sixth power cube of

the ratio of the thickness to the radius of the plate and on (ii) the square of the Young modulus divided

by the weight per unit area, indicating when coupling of bending with in-plane stresses is stronger.

The general method of perturbation expansions for the strong bending of an elastic plate, including

in-plane stresses, is summarised next, starting with the axisymmetric case and proceeding to the general

case. It has been shown that the strong bending, under the equations (9.3b) and (9.4), with axial

symmetry (9.34b), of a heavy plate under uniform axial compression (9.58a) at its circular clamped

boundary with radius a, is specified to first order, that is the lowest order of non-linearity, by the stress

function (9.55b) and transverse displacement (9.56e) that lead in the interior of the plate, respectively:

(i) at the centre, to the stresses (9.58b), strains (9.62) and (9.63) and radial stress couple (9.69a); (ii)

at the boundary, to the stress (9.58a), strains (9.60b), (9.62) and (9.63) and radial stress couple (9.69b).

The unaugmented (9.71b) and augmented (9.72) radial turning moments do not generally coincide except

at the centre where they vanish and at the boundary where they are non-zero.

This case is an example of the general method of solution of the non-linear equations (9.3b) and (9.4)

for the strong bending of plates via perturbation expansions (9.29a) and (9.29b), leading to the causal

chain of linear differential equations in which each depends on all the preceding. In the case of axial

symmetry (9.34b), the equations for non-linear bending (9.38) lead to the perturbation sequence (9.39a),

(9.39b) and (9.39c). If the transverse force per unit area and in-plane stresses at the lowest linear order

are polynomials of the radius, the solutions (9.43b) and (9.43a) apply to all higher orders, specifying

the stress function (9.29b) and transverse displacement (9.29a) to any order of accuracy. From them,

it can be calculated the stresses (9.36a), strains (9.36b), in-plane and out-of-plane displacements, the

radial stress couple (9.37a) and the augmented turning moment (9.37b). The boundary conditions can

be applied, such as (9.28a) to (9.28c) and (9.20a) to (9.20c) respectively for the transverse and in-plane

displacements. The preceding theory for isotropic elastic plates can be extended to pseudo-isotropic

orthotropic plates (appendix E)

Among the many applications of perturbation expansions [79, 133, 243–248], the present case of non-

linear bending of elastic plates coupled to in-plane stresses is exceptional, in that explicit perturbation

equations for the transverse displacement and in-plane stress function are obtained to all orders. A second

notable feature is that an explicit analytical solution can be obtained for all orders in the axisymmetric

case with shear stress represented by a polynomial or analytic function of the radius. A third feature

is the proof of convergence of the perturbation expansion to infinite order as a series for perturbation

parameter less than unity. A fourth feature is the extension of the Föppl-von Kármán equations from

isotropic plates to a more general subclass of orthotropic plates, designated pseudo-isotropic orthotropic

plates [249–253].
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A | Further research on multipath ef-

fects due to a corner
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A.1 Effect of relative elevation angles of observer and source

The relative elevation angles of observer α and source β lead to three cases: (i) observer above (figures

2.1 and 2.2), already considered in subsection 2.1.4; (ii) source above (figure A.1), treated next in appendix

A.1.1; (iii) observer and source on the same elevation angle (figure A.2) which is the intermediate case

between the preceding two, that will be considered in appendix A.1.2. The far field approximation (in

subsection 2.2.3) for source elevation above the observer is also considered in appendix A.1.3. In the

intermediate case of observer and source on the same elevation angle, the exact directivity takes a simple

form at arbitrary distance, that will be treated in appendix A.1.4.

A.1.1 Case of observer elevation angle lower than the source elevation angle

The direct signal, using the equations (2.1a) to (2.2), the signal reflected at the ground, using the

equations (2.5a) to (2.6b), and the signal reflected at the wall, using the equations (2.7a) to (2.8b),

apply to any relative position of observer and source. The fourth signal is given by the equations (2.9a)

to (2.10c) when the first reflection is on the ground and the second on the wall, that is, for source at

elevation below than the observer elevation, β ≤ α (figure 2.2). In the opposite case of source elevation

above than the observer elevation (figure A.1), the first reflection is on the wall at (0, y31) and the second

on the ground at (x32, 0), where the height y31 and horizontal distance x32 are determined by the coupled
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equations

yS − y31

xS
= y31

x32
, (A.1a)

x32

y31
= xO − x32

yO
. (A.1b)

Solving the equations above for y31 gives the equalities

x32yS

xS + x32
= y31 = x32yO

xO − x32
(A.2)

from which follows

yO (xS + x32) = yS (xO − x32) , (A.3a)

which specifies the second reflection point x32 on the ground,

x32 = xOyS − yOxS

yS + yO
= −x31; (A.4a)

the first reflection point, on the wall, is obtained substituting (A.3a) in one of the relations (A.2), leading

to

y31 = xOyS − yOxS

xS + xO
= −y32. (A.4b)

Note that the two last relations coincide with (2.9e) and (2.9f) respectively with reversed sign. From the

last two relations, the three distances are determined: (i) from the source to the first reflection on the

wall,

r31 =
[
x2

S + (yS − y31)2
]1/2

= |xS|

[
1 + (yS + yO)2

(xS + xO)2

]1/2

; (A.5a)

(ii) between reflection points on the wall and on the ground,

r32 =
[
(x32)2 + (y31)2

]1/2
= |xOyS − yOxS|

[
1

(xS + xO)2 + 1
(yS + yO)2

]1/2

; (A.5b)

(iii) from the reflection point on the ground to the observer,

r33 =
[
(xO − x32)2 + y2

O

]1/2
= |yO|

[
1 + (xS + xO)2

(yS + yO)2

]1/2

. (A.5c)

The last three equations are valid if β ≥ α. Comparing the cases of observer at higher elevation angle

than the source, that is, the equations (2.10a) to (2.10c), with the reverse case, that is, the equations

(A.5a) to (A.5c), it is clear that: (i) only the distance between the reflection points r32 coincide; (ii) the

distance from the reflection point on the ground exchanges yS if it is measured the distance r31 from the

source in (2.10a) by yO if it is measured the distance r33 from the observer in (A.5c); (iii) the distance

from the reflection point on the wall exchanges xO if it is measured the distance r33 from the observer in

(2.10c) by xS if it is measured the distance r31 from the source in (A.5a). In both cases, the last term of
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(2.3) holds, with distinct expressions for the distances r3i with i = {1, 2, 3}. The remaining terms of the

total signal (2.3) are unchanged.

S

r31

y31

r32

x32

r33

O

q

s

yO

xO

yS

xS

α

β

β > α

Figure A.1: The same as the figure 2.2, but with the difference that the elevation angle β for the source
is larger than for the observer α, that is, α < β, showing again the double reflection path as the figure
2.2, where in this case the first reflection is on the wall and the second reflection is on the ground.

A.1.2 Case of observer and source on the same azimuth

The case when the observer is on the same elevation angle than the source (figure A.2) can be treated

as intermediate case between observer above (figures 2.1 and 2.2) and observer below (figure A.1). In

this case, both formulas, (2.9a) to (2.10c) for β ≤ α, and (A.1a) to (A.5c) for β ≥ α, must hold. From

(A.2), it follows that the reflection point is the origin, at the corner,

x31 = x32 = 0 = y31 = y32, (A.6a)

when the condition
yS

xS
= tan β = tanα = yO

xO
(A.6b)

of source and observer on the same azimuth angle is met. The distance between the “two” coincident

reflection points is zero, therefore

r32 = 0 (A.7a)

in (2.10b) or (A.5b); the distance from the source to the origin is, regarding (2.10a) or (A.5a),

r31 =
(
x2

S + y2
S
)1/2 = s, (A.7b)
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and from the observer to the origin is, regarding (2.10c) or (A.5c),

r33 =
(
x2

O + y2
O
)1/2 = q, (A.7c)

where comparison with (2.1a) and (2.1b) was made. These values simplify the last term of (2.3), which

remains valid as an expression for the total signal.

q

O

S

s

yO

xO

yS

xS

β = α

β = α

Figure A.2: The intermediate case between the figures 2.2 and A.1 is that of the observer and source
with the same elevation angle, that is, α = β and “double reflection” at the origin.

A.1.3 Far field approximation for all elevation angles

The far field approximations for the direct signal (2.14), reflected signal on the ground, (2.15a) and

(2.15b), and reflected signal on the wall, (2.16a) and (2.16b), hold regardless of the relative positions

of observer and source. For the fourth signal, involving double reflection, the far field approximation,

(2.17a) to (2.17c), for the observer elevation above than the source elevation, is replaced in the opposite

case by the equations (A.5a) to (A.5c), leading to

r31 = s− q tan β sin (β − α) , (A.8a)

r32 = q secβ cscβ sin (β − α) , (A.8b)

r33 = q sinα cscβ. (A.8c)

The last three expressions are valid if α ≤ β and considering that the distance from the corner to

the source is much larger than the distance from the corner to the observer, that is, q2 ≪ s2. These

expressions affect only the last term of (2.3), so (2.18a) remains valid with (2.18b) and (2.18c) unchanged

whilst (2.18d) is replaced by

C (α, β) = cos (α− β) + sinα cscβ + sin (β − α) secβ (cscβ − sin β) ; (A.9)
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thus, (A.9) is similar to (2.18d) with the exchanges cosα ↔ sinα and secβ ↔ cscβ, plus some sign

changes as the elevation of source and observer are reversed. This result is valid for a source in the far

field and an observer in the near field, and can be replaced by the exact formula (2.3) using (2.1a) and

(2.1b) in the formulas for the distances in the multipath factor (2.12b). In the case (A.6b) of equal source

and observer elevation angles, β = α, not only the relations (2.18b) and (2.18c) are simplified, but also

(2.18d) and (A.9) coincide,

A (α, α) = 2 sin2 α, (A.10a)

B (α, α) = 2 cos2 α, (A.10b)

C (α, α) = 2, (A.10c)

then the multipath factor (2.18a), for β = α and q2 ≪ s2, simplifies to

F = 1 +Rh

(
1− 2q

s
sin2 α

)
exp

(
i2kq sin2 α

)
+Rv

(
1− 2q

s
cos2 α

)
exp

(
i2kq cos2 α

)
+RhRv

(
1− 2q

s

)
exp (i2kq) . (A.11)

The correction factor (A.11) will be next written exactly, to all orders in q/s.

A.1.4 Exact directivity for equal elevations of observer and source

The exact multipath factor is calculated next, for the observer and source at arbitrary distances with

the same elevation angle, using: (i) the distance (2.14), for α = β, from the source to the observer

r =
∣∣s2 + q2 − 2sq

∣∣1/2 = s− q; (A.12)

(ii) the distances from the source (2.6a) and observer (2.6b) to the reflection point on the ground, for

α = β, in the case of single reflection,

r11 =
[

sin2 α+
(
s− q
s+ q

)2
cos2 α

]1/2

s, (A.13a)

r12 =
[

sin2 α+
(
s− q
s+ q

)2
cos2 α

]1/2

q; (A.13b)

(iii) the distances from the source (2.8a) and observer (2.8b) to the reflection point on the wall, for α = β,

in the case of single reflection,

r21 =
[

cos2 α+
(
s− q
s+ q

)2
sin2 α

]1/2

s, (A.14a)

r22 =
[

cos2 α+
(
s− q
s+ q

)2
sin2 α

]1/2

q; (A.14b)
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(iv) in the case of double reflection, the distances from the source to the reflection point, given by (2.10a)

or (A.5a), from the observer to the same reflection point, given by (2.10c) or (A.5c), and between the

two reflection points, given by (2.10b) or (A.5b), noting that both reflection points are at the corner, and

therefore these distances simplify to

r31 = s, (A.15a)

r32 = 0, (A.15b)

r33 = q. (A.15c)

Substituting the equations (A.13a) to (A.15c) in (2.12b), for α = β, specifies the exact multipath factor

F = 1 +RhRv
s− q
s+ q

exp (i2kq) + exp [ik (q − s)]

×

Rh

[
cos2 α+

(
s+ q

s− q

)2
sin2 α

]−1/2

exp
(

ik
√

(s+ q)2 sin2 α+ (s− q)2 cos2 α

)

+Rv

[
sin2 α+

(
s+ q

s− q

)2
cos2 α

]−1/2

exp
(

ik
√

(s+ q)2 cos2 α+ (s− q)2 sin2 α

)  . (A.16)

The approximation of (A.16) to O
(
q2/s2) coincides with (A.11).

A.2 Multipath factor as a function of frequency

The exact expression (2.12b) and far field approximation (2.18a) of the multipath factor are shown to

be quite consistent in the figure 2.9, for fixed observer location in the near field with xO = 3 and yO = 2

meters, rigid walls, Rh = Rv = 1, large source distance, s = 700 m, and fixed frequency, f = 1 kHz, over

all source directions, 0 ≤ β ≤ 90°. In the figures A.3 to A.6, the modulus (top) and phase (bottom)

of the multipath factor are shown over the full audible frequency range, 20 ≤ f ≤ 20000 Hz, for four

fixed angles of the source, respectively β = 2.45°, β = 30°, β = 45° and β = 60°. The exact expression

(2.12b) and far field approximation (2.18a) are indistinguishable in all figures, because the thin and

solid lines are very close, and the graphs are very dense. The shape of the envelopes of amplitude and

phase is strongly affected by the angle of the source: (i) for a small angle, β = 2.45°, corresponding to

grazing incidence (figure A.3), the amplitude envelope is a rectified sinusoid (top) and the phase envelope

is a sequence of parallelograms (bottom); (ii) for a low angle, β = 30°, below the diagonal, both the

amplitude and phase (figure A.4) have a jagged appearance like random noise; (iii) for the intermediate

angle, β = 45°, bisecting the corner (figure A.5), the amplitude (top) and phase (bottom) have a solid

core with many protruding peaks; (iv) for a high angle, β = 60°, above the diagonal (figure A.6), the solid

core has modulation and the peaks are broadened into sinusoids. As an overall conclusion for a single

monochromatic source of waves (sound, light or electromagnetic) the reflection in a corner can lead to

complex interference patterns both for amplitude and phase.
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Figure A.3: The same as figure 2.9 with fixed grazing source direction, β = 2.45°, showing the amplitude
(top) and phase (bottom) of the multipath factor as a function of frequency over the audible range,
20 ≤ f ≤ 20000 Hz.

0 2 4 6 8 10 12 14 16 18 20

f [kHz]

0

0.5

1

1.5

2

2.5

3

3.5

4

|F
|

0 2 4 6 8 10 12 14 16 18 20

f [kHz]

-180

-120

-60

0

60

120

180

a
rg

(F
)
[d
eg
]

Figure A.4: The same as figure A.3 for low source direction, β = 30°, below the diagonal.
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Figure A.5: The same as figure A.3 for intermediate source direction, β = 45°, along the diagonal of
the two walls.
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Figure A.6: The same as figure A.3 for high source direction, β = 60°, above the diagonal.

A.3 Reflection factors from a variety of surfaces

When an incident sound wave of pressure I crosses an interface between two different media, for

instance, when a wave impinges on the ground, making an angle θ with the normal to the surface, only

a transmitted wave of pressure T escapes through the interface and travels through the second medium

while the wave may also be reflected from the interface to propagate in the same medium than the incident
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wave with the value of the pressure being R. At all times and at all points on the plane discontinuity,

the pressures of the two sides of the boundary must be equal and the particle displacements, normal

to the interface, must also be identical. Setting these boundary conditions, the reflection coefficient, or

equivalently, the ratio between the pressures of the reflected and incident waves depends on the specific

acoustic impedances of both media and the inclination of the incident wave, leading to the expression

R

I
= ρ1c1/ cosϕ− ρ0c0/ cos θ
ρ1c1/ cosϕ+ ρ0c0/ cos θ ≡ Rp (A.17)

where ρ is the density, c is the sound speed and for a harmonic wave is equal to ω/k (k is the wavenumber

and ω is the angular frequency), and ϕ is the angle the transmitted wave makes with the normal of the

interface, specified by the Snell’s law [27]. The reflection coefficient (A.17) depends on the plane wave

impedances ρ1c1 and ρ0c0 on the two sides of the interface, modified to take into account the angle with

the normal for the incident θ and transmitted ϕ waves, that affect the normal velocities in the impedances

p1/u1 = ρ1c1/ cosϕ and p0/u0 = ρ0c0/ cos θ. In the case of a sound incident on a plane material layer

dividing a fluid with uniform acoustics properties, ρ and c, for instance, a wall of the building, and making

an angle θ with the normal of the layer, some sound will be reflected and some will be transmitted through

the wall. Setting the continuity of the normal displacement of the waves at the wall and equating the

pressure difference across the wall with the inertia of the surface material of mass m per unit area, the

ratio between the pressures of the reflected and incident waves is

R

I
= iωm cos θ

2ρc+ iωm cos θ . (A.18)

The high-frequency waves are mostly reflected, whereas the low-frequency waves are mainly transmitted

and get through all, but the most massive walls with very little attenuation [27]. In both cases, the

acoustic pressure is obtained by adding the pressure of a direct wave from the source with the pressure

of a reflected wave from the surface, the latter being the pressure of the incident wave multiplied by

the reflection coefficient, determined in one of the last two equations. The equations (A.17) and (A.18)

are derived for plane waves. In the case of a point source emitting a spherical wave, the plane wave

approximation is inadequate since the boundary conditions at the surface can be met only in the presence

of a lateral wave that significantly changes the sound field for grazing incidences.

The reflection of a spherical wave by a plane wall was first considered by Sommerfeld [29], using a

method of virtual sources that is relevant to outdoor sound propagation. Rudnick [30] wrote the velocity

potential of sound waves as the sum of the potentials of the direct wave function due to the point

source with the secondary wave function due to the reflection on the ground. Knowing that elementary

cylindrical waves can represent a sound wave in a homogeneous medium, Rudnick [30] applied the same

previously mentioned boundary conditions to evaluate the velocity potentials and obtained the reflection

coefficient for spherical waves, leading to the expression

R

I
= Rp + (1−Rp)

1 + 2i
√
we−w

∞∫
−i

√
w

e−u2
du

 (A.19)
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where the term in parentheses is usually called the boundary loss factor and w is given by

w = i 4k1R2

(1−Rp)2

(
ρ1c1

ρ2c2

)2
[

1−
(
k1

k2
cos θ

)2
]

(A.20)

with R2 being the distance travelled by the reflected wave. As pointed out by Rudnick [30], when

the receiver is very far from the source compared to the wavelength in air, w becomes very large and

consequently the term in curved parentheses approaches 0, approximating the reflection coefficient to

Rp that is the solution of a plane incident wave. Rudnick used a boundary between two semi-infinite

homogeneous media and the conditions of continuity of pressure and normal displacement. The final

result was to express the last two equations explicitly in terms of the propagation constants of the media.

Ingard [31] studied the same problem, but the boundary conditions at the wall were expressed in terms of

a normal impedance independent of the angle of incidence and arrived at a very similar expression to the

reflected wave to the one obtained by Rudnick. Furthermore, in both cases, the spherical wave reflection

coefficient depends on the plane wave reflection coefficient and the boundary loss factor. This factor is a

function of the normal impedance and the position of the field point (in the former case, it is a function

of the acoustic impedance of both media and the position of the field point). The difference lies in the

expression for that parameter. If the normal impedance of the wall is ρc, the reflection coefficient is

R

I
= Rp + (1−Rp) [1 + ρ1eρ1Ei (−ρ1)] (A.21)

with ρ1 given by

ρ1 = ikR2 (1 + cos θ) (A.22)

in which R2 and θ are again the distance travelled by the reflected wave and the angle of incidence,

respectively, whereas Ei is an “exponential integral” function [31]. This means that the reflection co-

efficient depends on several parameters and it is not only the frequency that influences the reflection,

having a minor role in this characteristic. Taraldsen [32] rewrote the exact solution given by Ingard and

proved that the boundary loss factor, a term in the reflection coefficient, is a function of only two complex

dimensionless quantities and it is sufficient to have the general solution where the source and receiver

are on the ground. Because the frequency alone is not the main parameter that predicts sound waves’

reflection, the spectral dependence of reflection effects is not considered. Although the study of acoustic

waves is made for a wide range of frequencies, the reflection coefficient is considered to be a constant for

each surface, independent of the frequency, to simplify the problem.

Despite that, several experimental studies were performed to understand the outdoor acoustic prop-

agation. Parkin and Scholes measured the pressure level of acoustic waves originated from a jet engine

(at 1.82 m above the ground) and propagating at nearly grazing incidence above different grounds, at

two distances from the source [28]. The measurements were taken when the temperature difference be-

tween monitoring points at 1.2 m and 12.2 m heights was less than 0.3 °C and with wind speeds less

than 1.52 ms−1. The experiments show that acoustic waves, when propagating near grassland, snow, or

cultivated land, have much stronger attenuation (they are mostly transmitted to the ground), usually
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between 250 Hz and 800 Hz than either at frequencies below 250 Hz or frequencies in the range of 800 Hz

to 2000 Hz. Thus, the sound pressure level far away from the source is much lower than at a point near

the source due only to ground effects, making a ground effect dip in the plot of sound pressure level

versus frequency. Moreover, waves with frequencies below 250 Hz are enhanced compared with the same

waves if the ground surface does not exist (mainly due to the reflection on the ground). Attenborough

[28] reviewed the theory of the sound interaction with the ground and developed theoretical models for

the prediction of sound propagation near the ground surface, applied to the Parkin and Scholes data.

The interaction has been shown to depend upon the positions of the source and receiver and upon the

acoustical properties of the ground. Attenborough pointed out that at frequencies less than 300 Hz and

for ranges greater than 50 m over grassland, the reflection coefficient gives rise to surface waves decaying

principally as the inverse square root of horizontal range and exponentially with height above the ground,

and concluded that they are the major carriers of acoustic noise over long distances because they fit well

to the experimental data for low frequencies [28].

287



288



B | Time averages over a period

Contents
B.1 Further averages over a period for damped oscillations . . . . . . . . . . . 291

Several averages over a period, for instance in the equations (4.22a) to (4.22b), were used in the

chapters 4 and 5. In all cases, the period τ of the function to be integrated must be determined.

(i) To evaluate the relation (4.25), the period of the function sin (ωnt− αn) sin (ωrt− αr) has to be

determined. The period of the trigonometric function sin (ωnt− αn) is 2π/ωn = 2L/ (nc) while the period

of sin (ωrt− αr) is 2L/ (rc). Generally, the product of the two functions does not result in a periodic

function. In this case, 2L/c is a period of both functions and therefore 2L/c is also a period of the

multiplication of both (however, this does not imply that 2L/c is the lowest period; in some cases, the

lowest period is L/c). For that reason, the value of τ in (4.22a) is 2L/c for any combination of the values

of n and r. The integrals in (4.25) are then given by

⟨sin (ωnt− αn) sin (ωrt− αr)⟩ = 1
2 ⟨cos [(ωn − ωr) t+ αr − αn]⟩

+ 1
2 ⟨cos [(ωn + ωr) t− αr − αn]⟩ = 1

2δnr, (B.1)

⟨cos (ωnt− αn) cos (ωrt− αr)⟩ = 1
2 ⟨cos [(ωn + ωr) t− αn − αr]⟩

+ 1
2 ⟨cos [(ωn − ωr) t+ αr − αn]⟩ = 1

2δnr (B.2)

where δnr is the identity matrix. This result follows from the fact that when ωn ̸= ωr, the time average

is zero, otherwise it is cos (αr − αn) /2. But in this last case, when ωr = ωn, meaning the same mode of

oscillation, then αr = αn, and so the result is simplified to 1/2.

(ii) In (4.32), the time averages are

⟨cos (ωt+ β) cos (ωnt− αn)⟩ = 1
2 ⟨cos [(ω + ωn) t+ β − αn]⟩+ 1

2 ⟨cos [(ω − ωn) t− β − αn]⟩ = 0, (B.3)

⟨sin (ωt+ β) sin (ωnt− αn)⟩ = 1
2 ⟨cos [(ω − ωn) t+ β + αn]⟩ − 1

2 ⟨cos [(ω + ωn) t+ β − αn]⟩ = 0, (B.4)
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assuming that ω/ωn = p/q is a rational number so that cos [(ω ∓ ωn) t] is a periodic function with period

τ = 2π
ω ∓ ωn

= 2π
ωn

1
p/q ± 1 = τnq

p± q
. (B.5)

Generally, let τ1 be a period of f (t) and let τ2 be a period of g (t). Suppose that there are two positive

integers c1 and c2 such that c1τ1 = c2τ2 = τ . Then, the product of the two functions is also a periodic

function. The period is τ . On the other hand, if it is not possible to get the positive integers c1

and c2, maybe the function f (t) g (t) is not periodic. For example, if f (t) is sin (ωnt− αn) and has

τ1 = 2π/ωn = nπc/L as a period, and g (t) is sin (ωt+ β) and has τ2 = 2π/ω as a period, then f (t) g (t)

is a periodic function if c12π/ω = c22π/ωn (meaning that ω/ωn must be equal to a rational number)

or equivalently if ω = (nc2/c1) (πc/L). In this case, if the period of ωn is 2L/ (nc), then 2L/c is also a

period of the same function, regardless of the value of n. Consequently, sin (ωt) sin (ωnt) is a periodic

function if ω = (c2/c1) (πc/L) or if ωL/ (πc) = c2/c1. The period of the product of both functions is

τ = c1τ1 = c1πc/L = c2τ2 = c22π/ω.

(iii) The time averages evaluated in (i) can be simplified when ωn = ωr ≡ ω and αn = αr ≡ α, leading

to the time averages (4.37a) given by

〈
sin2 (ωt− α)

〉
= 1

2 , (B.6)

〈
cos2 (ωt− α)

〉
= 1

2 (B.7)

where (B.6) and (B.7) follow from (B.1) and (B.2) respectively with n = r;

(iv) The function in (4.37b) is not periodic due to the term ωt. In this case, it is assumed that

τ = 2π/ω. With this assumption, this last result depends on which “period” the integration is evaluated.

For instance, if the limits of the integral are 2π and 4π, the result of the integration would not be the

same. Using a trigonometric identity and the integration by parts, the time average for the first “period”

is equal to

⟨ωt cos (ωt− α) sin (ωt+ β)⟩ = 1
2π

∫ 2π

0
θ cos (θ − α) sin (θ + β) dθ

= 1
4π

∫ 2π

0
θ [sin (α+ β)− sin (α− β − 2θ)] dθ

= π

2 sin (α+ β)− 1
4 cos (β − α) . (B.8)

(v) In (4.37c), the integration for the first period is given by

〈
(ωt)2 sin2 (ωt+ β)

〉
= 1

4π

∫ 2π

0
θ2 [1− cos (2θ + 2β)] dθ = 2π2

3 − I, (B.9a)

with

I ≡ 1
4π

∫ 2π

0
θ2 cos (2θ + 2β) dθ = π

2 sin (2β) + 1
4 cos (2β) . (B.9b)
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To evaluate the integral I, it was performed another integration by parts. Substituting (B.9b) in (B.9a)

gives

〈
(ωt)2 sin2 (ωt+ β)

〉
= 2π2

3 − π

2 sin (2β)− 1
4 cos (2β) . (B.9c)

(vi) The time average (4.37d), from t = 0 to t = 2π/ω (the function is not periodic), is given by

〈
[sin (ωt+ β) + ωt cos (ωt+ β)]2

〉
=
〈
sin2 (ωt+ β)

〉
+
〈

(ωt)2 cos2 (ωt+ β)
〉

+ 2 ⟨ωt sin (ωt+ β) cos (ωt+ β)⟩

= 1
2 + 2π2

3 + π

2 sin (2β)− 1
4 cos (2β) , (B.10)

using (B.6) for the first time average and (B.8) for the third time average, both with α = −β. The second

time average is obtained similarly to (B.9a), knowing that cos2 (θ + β) = 1 + cos (2θ + 2β), so the time

average of (ωt)2 cos2 (ωt+ β) is equal to 2π2/3 + I.

(vii) In (4.37e), knowing that

⟨sin (ωt− α) sin (ωt+ β)⟩ = 1
2 cos (α+ β)− 1

2 ⟨cos (β − α+ 2ωt)⟩ = 1
2 cos (α+ β) , (B.11a)

the time average is equal to

⟨sin (ωt− α) [sin (ωt+ β) + ωt cos (ωt+ β)]⟩ = 1
2 cos (α+ β)− π

2 sin (α+ β)− 1
4 cos (β − α) , (B.11b)

where were used the results (B.11a) and (B.8) with the transformation α→ β and β → −α.

B.1 Further averages over a period for damped oscillations

In the equations (5.84a) to (5.84e), written in the chapter 5, that explains how to counter damped

oscillations by forcing, are used several averages over a period. The following results were deduced from

the usual integration rules and following the same reasoning than at the beginning of this appendix. The

first one is

⟨{sin (2θ) , cos (2θ)}⟩ = 1
2π

∫ 2π

0
{sin (2θ) , cos (2θ)} dθ = 1

4π [− cos (2θ) , sin (2θ)]2π
0 = 0 (B.12)

that follows from an immediate integration. Consequently, using trigonometric relations and knowing

the last result, the following integration can be performed immediately:

〈{
cos2 θ, sin2 θ

}〉
=
〈

1
2 ±

1
2 cos (2θ)

〉
= 1

2 . (B.13)
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The next integration is done by parts, and with the result (B.12), one can obtain the following result:

⟨θ sin (2θ)⟩ = 1
2π

∫ 2π

0
θ sin (2θ) dθ

= − 1
4π [θ cos (2θ)]2π

0 + 1
4π

∫ 2π

0
cos (2θ) dθ = −1

2 . (B.14)

Doing again an integration by parts, and using not only trigonometric relations, but also the previous

results, the following time average can be done:

〈
θ
{

sin2 θ, cos2 θ
}〉

= 1
2π

∫ 2π

0
θ
{

sin2 θ, cos2 θ
}

dθ = 1
4π

∫ 2π

0
[θ ∓ θ cos (2θ)] dθ

= (2π)2

8π ∓ 1
8π [θ sin (2θ)]2π

0 ±
∫ 2π

0
sin (2θ) dθ = π

2 . (B.15)

The last time average can be done integrating by parts twice and knowing the result (B.12):

〈
θ2 sin (2θ)

〉
= 1

2π

∫ 2π

0
θ2 sin (2θ) dθ = − 1

4π
[
θ2 cos (2θ)

]2π

0 + 1
2π

∫ 2π

0
θ cos (2θ) dθ

= − (2π)2

4π + 1
4π [θ sin (2θ)]2π

0 −
1

4π

∫ 2π

0
sin (2θ) dθ = −π. (B.16)
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C | Multipolar expansion for steady

magnetic fields

The Maxwell equations for a steady magnetic field (assuming ∂/∂t = 0), particularly the Gauss’s law

for magnetism and Ampère-Maxwell equation [24–26], are

∇ ·B = 0, (C.1a)

∇×H = J (C.1b)

where H is the magnetic field, B is the magnetic induction and J is the electric current density per

unit volume. For an isotropic medium with constant magnetic permeability (µ = const), the constitutive

relation [24–26]

B = µH (C.2a)

leads to

∇ ·H = 0. (C.2b)

Using the vector identity [24–26]

∇2H = ∇ (∇ ·H)−∇× (∇×H) , (C.3)

the curl of (C.1b) is given by

∇× J = ∇× (∇×H) (C.4a)

leading to

∇× J = −∇2H (C.4b)

by use of the equations (C.3) and (C.2b). Thus, the steady magnetic field satisfies a vector Poisson

equation

∇2H = Q (C.5a)

forced by the curl of the electric current

Q = −∇× J . (C.5b)
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For a distribution of electric currents over a domain D with source coordinates y, the magnetic field at

an observer position x is given by the Poisson integral [169, 170]

H(x) = 1
4π

∫
D

Q (y)
|x− y|

d3y. (C.6)

If the observer x lies outside the source y region, the distance |x− y| is not zero and its inverse may be

expanded in a Maclaurin series of powers of y around y = 0

1
|x− y|

= 1
|x|

+
∞∑

n=1

Mn

|x|n
(C.7)

with coefficients

Mn (x,y) =
3∑

i1,...,in=1
yi1 . . . yin

lim
y→0

∂n

∂yi1 . . . ∂yin

(
1

|x− y|

)
. (C.8)

Substitution of (C.8) in (C.6) leads to the multipolar expansion

H (x) = N0

|x|
+

∞∑
n=1

Nn

|x|n
(C.9)

showing that the magnetic field is the sum of a series of inverse powers of the distance with: (i) lowest-

order vector coefficient

N0 =
∫

D
Q (y) d3y (C.10a)

specified by the integral of the “source” term (C.5b) in (C.5a) over the domain D, corresponding to a

dipole; (ii) the remaining terms in (C.9) that are higher-order multipoles with moments given by

Nn =
∫

∂D
Q (y)Mn (x,y) d3y (C.10b)

involving the source term (C.5b) and the relative positions of source and observer (C.8). In the near field

for small |x|, all terms in the multipolar expansion (C.9) have to be considered. In the far field for large

|x|, the multipolar expansion (C.9) is dominated by the lowest-order dipole term (C.10a).
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D | Cylindrical and spherical dipolar

coordinates

The plane dipolar coordinates can be extended to three dimensions as cylindrical dipolar coordinates

(α, β, z) by adding an orthogonal Cartesian coordinate z with unit scale factor, hz = 1. Thus, the

cylindrical dipolar coordinates where z is a Cartesian axis orthogonal to the (α, β) plane,

dl2 = s2
[
(dα)2 + (dβ)2

]
+ (hz)2 (dz)2

, (D.1)

have the arclength equal to

dl2 = 1
α2 + β2

[
(dα)2 + (dβ)2

]
+ (dz)2

. (D.2)

The coordinate surfaces (figure D.1) are: (i) α = const as a cylinder, with axis parallel to the Oz-axis,

passing through the Ox-axis at (1/ (2α) , 0, 0), with radius 1/ (2α), so that the Oz-axis is a generator;

(ii) β = const that is also a cylinder, with axis parallel to the Oz-axis, passing through the Ox-axis at

(0, 1/ (2β) , 0), with radius 1/ (2β), so that the Oz-axis is a generator; (iii) a plane z = const, orthogonal

to the α and β cylinders. The coordinate curves are: (i) {α, z} = const as a circle, on the plane z = const,

with centre at (1/ (2α) , 0, z), and radius 1/ (2α), touching the Oz-axis at (0, 0, z); (ii) β, z = const as

a circle, on the plane z = const, with centre at (0, 1/ (2β) , z), and radius 1/ (2β), touching the Oz-axis

at (0, 0, z); (iii) and {α, β} = const as a straight line parallel to the Oz-axis, passing through the point

(α, β, 0), which is the common generator of the two cylinders {α, β} = const.

Spherical dipolar coordinates (α, β, ϕ) are obtained by rotating plane dipolar coordinates (α, β)

around the Ox-axis, thus adding as third coordinate the azimuthal angle ϕ whose corresponding scale

factor is

hϕ = r sin θ = β

(α2 + β2) = βs (D.3)

where (7.14b) and (7.17b) were used. The arclength

(dl)2 = s2
[
(dα)2 + (dβ)2

]
+ (hϕ)2 (dϕ)2 = s2

[
(dα)2 + (dβ)2 + β2 (dϕ)2

]
(D.4)
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y

z

z = const

β = const
α = const

eα

eβ

ez

1/(2α)

1/(2β)

β, z = constα, z = const

α, β = const

(1/(2α), 0, 0)

(0, 1/(2β), 0)

Figure D.1: The translation of plane dipolar coordinates (figure 7.1) along the normal to their plane
leads to cylindrical dipolar coordinates whose coordinate surfaces are: (i) a cylinder with vertical axis
passing through the x coordinate axis and a generator along the z axis; (ii) another cylinder with vertical
axis passing through the y coordinate axis and a generator along the z axis; (iii) horizontal plane that is
orthogonal to both families of cylinders that are also orthogonal to each other.

is given by

(dl)2 = 1
(α2 + β2)2

[
(dα)2 + (dβ)2 + β2 (dϕ)2

]
. (D.5)

The coordinate surfaces (figure D.2) are: (i) α = const as a sphere, with centre on the Ox-axis at

(1/ (2α) , 0, 0) and radius 1/ (2α), so that it is tangent to the yOz plane at the origin; (ii) β = const as

a torus, with cross-section a circle of radius 1/ (2β), along the Ox-axis, and line of centres a circle in

the yOz-plane, of radius 1/ (2β) and centre at the origin, so the torus touches itself at the origin; (iii)

ϕ = const as a semi-plane, passing through the Ox-axis, and making an angle ϕ with the Oz-axis. The

coordinate curves are: (i) {α, ϕ} = const as a circle of radius 1/ (2α) with centre on the plane ϕ = const

at a distance 1/ (2α) from the Oy-axis, to which it is tangent; (ii) {β, ϕ} = const as a circle of radius

1/ (2β) with centre on the plane ϕ = const at a distance 1/ (2β) from the Ox-axis, to which it is tangent;

(iii) {α, β} = const as a circle on a plane perpendicular to the Ox-axis, at a distance r from the origin,
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with centre on the Ox-axis at (x, 0, 0) and radius y given by

x = r cos θ = r2α = α

α2 + β2 , (D.6a)

y = r sin θ = r2β = β

α2 + β2 , (D.6b)

where both equations of (7.14) and equation (7.16a) were used.

x

z

y

z = const

β = const
α = const

eα

eβ

ez

1/(2α)

1/(2β)

β, z = constα, z = const

α, β = const

(1/(2α), 0, 0)

(0, 1/(2β), 0)

Figure D.2: Rotating the plane dipolar coordinates (figure 7.1) around the x axis leads to spherical
dipolar coordinates whose coordinate surfaces are: (i) a sphere α = const with centre on the x axis
passing through the origin; (ii) a torus β = const with the origin as the interior point where touch all
circular cross-sections through planes passing through the x axis; (iii) any plane ϕ = const that pass
through the x axis is orthogonal both to the sphere (i) and torus (ii).
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E | Strong bending of an orthotropic

or pseudo isotropic plate

The stress-strain relation for an orthotropic elastic material [129] is specified by the stiffness matrix



Txx

Tyy

Tzz

Txy

Txz

Tyz



=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





Sxx

Syy

Szz

Sxy

Sxz

Syz



. (E.1)

The case of a pseudo-isotropic orthotropic material imposes two additional relations [129],

C33 (C22 − C11) = (C23)2 − (C13)2
, (E.2a)

C44C33 = C33 (C11 − C12) + C13 (C23 − C13) , (E.2b)

and as a consequence of the preceding, the both relations leads to

C44C33 = C33 (C22 − C12)− C23 (C23 − C13) . (E.2c)

The notable property of a pseudo-isotropic orthotropic elastic material is that it generalises the isotropic

elastic material while satisfying the same bending balance equation (9.1) with the generalised bending

stiffness:

D = h3

12

(
C11 − C13

C13

C33

)
. (E.3)

In the case of an isotropic elastic material, the generalised bending stiffness simplifies to (9.3a). Thus,

the balance equation (9.3b) remains valid, with

f

h
= D

h
∇4ζ − (∂yyΘ) (∂xxζ)− (∂xxΘ) (∂yyζ) + 2 (∂xyΘ) (∂xyζ) , (E.4)

299



replacing the first bending stiffness for an isotropic plate (9.3a) by that for a pseudo-isotropic orthotropic

plate (E.3),
Eh3

12 (1− σ2) ← D → h3

12

(
C11 − C13

C13

C33

)
. (E.5)

Concerning the second complementary equation (9.4) of the pair: (i) the derivation from (9.6) to the first

equalities in (9.12a) to (9.12c) is independent of the type of material; (ii) the elimination of the in-plane

displacement is made as in (9.13a) retaining the strains from the first equalities in (9.12a) to (9.12c),

leading to

1
2

[
∂yy (∂xζ)2 + ∂xx (∂yζ)2 − 2∂xy (∂xζ) (∂yζ)

]
= ∂yySxx + ∂xxSyy − 2∂xySxy; (E.6)

(iii) the left-hand side of (E.6) is simplified as in (9.13b), leading to

(∂xyζ)2 − (∂xxζ) (∂yyζ) = ∂yy (A11Txx +A12Tyy) + ∂xx (A12Txx +A22Tyy)− 2∂xy (A44Txy) , (E.7)

and on the right-hand side is used the compliance matrix, with the relation between strains and stresses

given by [129] 

Sxx

Syy

Szz

Sxy

Sxz

Syz



=



A11 A12 A13 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66





Txx

Tyy

Tzz

Txy

Txz

Tyz



, (E.8)

that is the inverse of the stiffness matrix in (E.1) for an orthotropic material bearing in mind that for a

plate there are only in-plane stresses Tzz = Txz = Tyz = 0; (iv) substituting (9.2c) in (E.7), it follows that

the complementary equation relating the transverse displacement to the stress function for the strong

bending of an orthotropic plate is

(∂xyζ)2 − (∂xxζ) (∂yyζ) = A22∂xxxxΘ +A11∂yyyyΘ + 2 (A12 +A44) ∂xxyyΘ, (E.9)

assuming that the components of the compliance matrix are constant, Aab = const. The first (E.4)

and second (E.9) equations of the coupled pair are valid respectively for a pseudo-isotropic and general

orthotropic plate.
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Writing the compliance matrix present in (E.8) in the form



Sxx

Syy

Szz

Sxy

Sxz

Syz



=



1
Ex

−σyx
Ey

−σzx
Ez

0 0 0

−σxy
Ex

1
Ey

−σzy
Ey

0 0 0

−σxz
Ex

−σyz
Ey

1
Ez

0 0 0

0 0 0 1
2Gxy

0 0

0 0 0 0 1
2Gxz

0

0 0 0 0 0 1
2Gyz





Txx

Tyy

Tzz

Txy

Txz

Tyz



, (E.10)

in terms of the generalised Young moduli and Poison ratios [129], leads to (E.1), equivalent to the next

equation, for its inverse, that is the stiffness matrix given by



Txx

Tyy

Tzz

Txy

Txz

Tyz



=



1−σyzσzy
C0EyEz

σyx+σyzσzx
C0EyEz

σzx+σzyσyx
C0EyEz

0 0 0

σxy+σxzσzy
C0ExEz

1−σxzσzx
C0ExEz

σzy+σzxσxy
C0ExEz

0 0 0

σxz+σxyσyz
C0ExEy

σyz+σyxσxz
C0ExEy

1−σxyσyx
C0ExEy

0 0 0

0 0 0 2Gxy 0 0

0 0 0 0 2Gxz 0

0 0 0 0 0 2Gyz





Sxx

Syy

Szz

Sxy

Sxz

Syz



(E.11)

where C0 = Det (Cij) for i, j = {1, 2, 3} and ExEyEzC0 = 1− σxyσyx − σxzσzx − σyzσzy − 2σxyσyzσzx.

In the complementary equation (E.9) there are three coefficients specified by the compliance matrix

(E.10),

A11 = 1/Ex (E.12a)

A22 = 1/Ey (E.12b)

2 (A12 +A44) = −2σxy/Ex + 1/Gxy. (E.12c)

Several coefficients of the stiffness matrix in (E.11) are needed,

C11 = 1− σyzσzy

C0EyEz
, (E.13a)

C22 = 1− σxzσzx

C0ExEz
, (E.13b)

C33 = 1− σxyσyx

C0ExEy
, (E.13c)

C44 = 2Gxy, (E.13d)

C12 = σyx + σyzσzx

C0EyEz
, (E.13e)
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C13 = σzx + σzyσyx

C0EyEz
, (E.13f)

C23 = σzy + σzxσxy

C0ExEz
, (E.13g)

namely: (i) three in the first bending stiffness (E.5),

D = h3

12C0EyEz

[
1− σyzσzy −

Ex

Ez

(σzx + σzyσyx)2

1− σxyσyx

]
; (E.14a)

(ii) one in the second bending stiffness,

C44 ≡
h3

12C44 = h3Gxy

6 ; (E.14b)

(iii) five in the first condition (E.2a) condition for a pseudo-isotropic orthotropic material,

Ez (1− σxyσyx) [Ey (1− σxzσzx)− Ex (1− σyzσzy)]

= [Ey (σzy + σzxσxy)]2 − [Ex (σzx + σzyσyx)]2 ; (E.15a)

(iv) six in the second condition (E.2b) for a pseudo-isotropic orthotropic material,

Ez (1− σxyσyx) {2C0ExEyEzGxy − Ex [1− σyx − σyz (σzx + σzy)]}

= Ex (σzx + σzyσyx) [Ey (σzy + σzxσxy)− Ex (σzx + σzyσyx)] . (E.15b)

In conclusion, the transverse displacement and stress function in the strong non-linear deflection of an

elastic plate made of a pseudo-isotropic orthotropic material satisfy the coupled non-linear fourth-order

partial differential equations (E.4) and (E.9) where: (i) the first bending stiffness (E.5) is given by (E.14a);

(ii) the second bending stiffness is given by (E.14b). Four and seven terms of the compliance (E.10) and

stiffness (E.11) matrices appear respectively in the balance equations (i-ii) and boundary conditions (iii-

iv). The three Young moduli Ei, six Poison ratios σij and the three shear moduli Gij satisfy the symmetry

relations in the compliance matrix (E.10) implying

σijEj = σjiEi, (E.16a)

while the symmetry of the stiffness matrix (E.11) implies

(σij + σikσkj)Ej = Ei (σji + σjkσki) . (E.16b)

In the two previous relations, the repeated indices do not mean summation. They are valid when each

index – i, j and k – takes a value between 1 and 3, meaning one of the Cartesian directions, and when none

of the three indices have the same value. In addition, a pseudo-isotropic orthotropic material satisfies

two additional relations (E.2a) and (E.2b), equivalent to (E.15a) and (E.15b).
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