
IndoorExplorers: an OpenAI Gym environment for
Multi-UAV Exploration Algorithms

Alexandra Isabel Fernandes

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. António Manuel Raminhos Cordeiro Grilo
Prof. João Paulo Carvalho

Examination Committee

Chairperson: Prof. Pedro Filipe Zeferino Aidos Tomás
Supervisor: Prof. António Manuel Raminhos Cordeiro Grilo

Member of the Committee: Prof. Alberto Manuel Martinho Vale

November 2023

I declare that this document is an original work of my own authorship and
that it fulfills all the requirements of the Code of Conduct and Good Practices

of the Universidade de Lisboa.

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to thank my family for caring and supporting over all these years, for always being there

for me through thick and thin.

I would like to show my deepest gratitude to all the medical team from Hospital dos Capuchos and

health care professionals that accompanied me during my recovery.

I would also like to acknowledge my dissertation supervisors Prof. António Manuel Raminhos Cordeiro

Grilo and Prof. João Paulo Carvalho for their insight, support and sharing of knowledge that has made

this thesis possible.

To all my friends and colleagues that helped me grow as a person and have accompanied me through

my academic years. Thank you for all the memories and support.

Last but not least, to my girlfriend, thank you for always being there, during the good and bad times,

specially when there is a mess in my head and I wanted to give up. Thank you for listening, encouraging

me and for all the love and support you have shown me.

To each and every one of you – Thank you.

Abstract

The goal of this work was to create an OpenAI Gym environment to simulate indoor exploration scenarios

by a swarm of autonomous Unmanned Aerial Vehicles (UAVs), each equipped with Light Detection And

Ranging (LiDAR) sensors and with safe flying capabilities, including the detection and avoidance of any

objects, across the space in question. The exploration tasks consists in determining the optimal path

that gathers as much information about the space as possible, in this case to create a map of the space.

Using a swarm of UAVs, it is possible to achieve these tasks faster, with fewer costs and safely for

humans.

The developed OpenAI Gym-based environment was then used to test a Reinforcement Learn-

ing (RL) algorithm for path planning, specifically Dueling Double Deep Q-Learning (DDDQN). The de-

veloped environment currently allows tests in 2D maps with up to four UAVs equipped with a simplified

simulated LiDAR sensor, with or without communications.

The results obtained compare two approaches to accelerate the training of the DDDQN. Further-

more, an analysis of the impact of more than one agent and whether communications affect the perfor-

mance was done.

Keywords

Indoor Exploration, UAV Swarm, DRL, OpenAI Gym

ii

Resumo

O objetivo deste trabalho é o desenvolvimento de um ambiente de simulação de OpenAI Gym para

a exploração de um espaço interior, com recurso a um enxame de Unmanned Aerial Vehicles (UAVs),

Aeronaves Não Tripuladas em português. Cada UAV estará equipado com sensores Light Detection And

Ranging (LiDAR) e deverá ter a capacidade de navegar de forma segura pelo espaço em questão, ou

seja, deverá ser capaz de detetar e evitar qualquer tipo de objetos. A exploração de um espaço consiste

em planear um caminho ótimo para recolher o máximo de informação possível sobre o mesmo, neste

caso para a criação do seu mapa. O recurso a enxames de UAVs permite a concretização de tarefas

mais complexas, rapidamente, com menos custos e de forma mais segura para as pessoas.

O ambiente foi desenhado para ser compatível com a infraestrutura de OpenAI Gym e foi utilizado

para testar um algoritmo de Reinforcement Learning (RL) para o planeamento de trajetórias, concre-

tamente Dueling Double Deep Q-Learning (DDDQN). De momento, o ambiente desenvolvido permite

realizar testes em mapas 2D com até quatro UAVs, cada um equipado com um sensor LiDAR simulado,

em cenários com e sem comunicação entre UAVs.

Os resultados obtidos comparam duas abordagens para acelerar o treino da DDDQN. Adicional-

mente, também foi feita uma análise do impacto que o número de agentes tem e como é que a comu-

nicação afeta a performance do algoritmo .

Palavras Chave

Exploração de espaços interiores, Enxame de UAVs, DRL, OpenAI Gym

iii

Contents

1 Introduction 1

1.1 Objective . 4

1.2 Document outline . 4

2 Background and Related work 5

2.1 Architecture . 6

2.1.1 Data acquisition . 7

2.1.1.A Choice of sensors . 7

2.1.1.B Choice of data storage/type of map . 8

2.1.2 SLAM (Simultaneous Localization and Mapping) 9

2.1.3 Path Planning . 9

2.1.3.A Frontier-based methods . 11

2.1.3.B Sampling-based methods . 11

2.1.3.C Swarm Intelligence (SI) . 11

2.1.3.D Deep Reinforcement Learning (DRL) . 12

2.2 Simulation Environment . 14

2.2.1 Necessary components . 14

2.2.2 Available options . 15

2.2.2.A Autopilot . 15

2.2.2.B Physics simulator and rendering . 16

2.2.2.C Network simulators . 17

2.2.2.D AI framework . 17

2.2.3 Related projects . 18

2.3 Summary . 24

3 Developed work 25

3.1 Assumptions . 26

3.2 Description of the developed environment . 26

3.3 Integration of Reinforcement Learning (RL) algorithm . 33

iv

3.4 Features . 34

3.5 Limitations . 35

3.6 Summary . 35

4 Results and Analysis 36

4.1 Experimental setup . 37

4.2 Results . 37

4.3 Discussion . 49

5 Conclusion 51

5.1 Conclusions . 52

5.2 System Limitations and Future Work . 52

Bibliography 52

A Code of Project 62

B Larger figures 67

v

List of Figures

2.1 Brief architecture scheme . 6

2.2 Framework of simulation from [1] . 7

2.3 Some decomposition methods, images from [2] . 10

2.4 DQN vs. Dueling DQN, image from [3] . 14

2.5 Simplified software architecture used in OpenAI Gym for robotics, from [4] 18

2.6 Overview table from gym-pybullet-drones github repository 21

3.1 IndoorExplorers environment with 4 agents . 27

3.2 Example of specific behaviour of the Light Detection And Ranging (LiDAR) emulation . . 28

3.3 Flowchart of a basic OpenAI Gym application . 29

3.4 Merging of maps demo - before merging . 31

3.5 Merging of maps demo - after merging . 31

3.6 Architecture of Dueling Double Deep Q-Learning (DDDQN) (image based on image from

[5]) . 33

4.1 Scores per episode in scenario 1 with no obstacles . 40

4.2 Percentage of the area explored with respect to the number of steps, in a 16x16 area with

no obstacles in scenario 1 . 40

4.3 Illustration of the optimal trajectory learnt in a 16x16 area with no obstacles in scenario 1

with stuck method 1 and 2 . 41

4.4 Scores per episode in scenario 2 with no obstacles . 41

4.5 Percentage of the area explored with respect to the number of steps, in a 16x16 area with

no obstacles in scenario 2 . 42

4.6 Scores per episode in scenario 3 with no obstacles . 43

4.7 Percentage of the area explored with respect to the number of steps, in a 16x16 area with

no obstacles in scenario 3 . 44

vi

4.8 Overview of percentage of the area explored with respect to the number of steps, in a

16x16 area with no obstacles . 44

4.9 Score per episode for a single agent in scenario 1 and stuck method 2 with 5 obstacles . 45

4.10 Illustration of a trajectory learnt in a 16x16 area with 5 obstacles in scenario 1 with stuck 2 45

4.11 Score per episode with two agents and rewards from scenario 1, with stuck method 2 and

no communication . 46

4.12 Example of the trajectories by 2 agents with no communication 46

4.13 Score per episode with two agents, in scenario 1, with stuck method 2 and communication

range 1.0 . 46

4.14 Score per episode with two agents, in scenario 1, with stuck method 2 and communication

range 3.0 . 47

4.15 Example of the trajectories by 2 agents with communication range 1.0 47

4.16 Percentage of the area explored with respect to the number of steps, by 2 agents various

communication ranges in a 16x16 area with 5 obstacles 47

4.17 Example of the trajectories by 4 agents with no communication - evaluation in episode

48.500 . 48

4.18 Score per episode with four agents and rewards from scenario 1, with stuck method 2 and

no communications . 48

4.19 Percentage of the area explored with respect to the number of steps, by various number

agents and no communication ranges in a 16x16 area with 5 obstacles 49

4.20 Overview of the percentage of the area explored with respect to the number of steps, in a

16x16 area with 5 obstacles . 49

B.1 [Fig.4.2 zoomed out] Percentage of the area explored with respect to the number of steps,

in a 16x16 area with no obstacles in scenario 1 . 67

B.2 [Fig.4.5 zoomed out] Percentage of the area explored with respect to the number of steps,

in a 16x16 area with no obstacles in scenario 2 . 68

B.3 [Fig.4.7 zoomed out] Percentage of the area explored with respect to the number of steps,

in a 16x16 area with no obstacles in scenario 3 . 68

B.4 [Fig.4.8 zoomed out] Overview of percentage of the area explored with respect to the

number of steps, in a 16x16 area with no obstacles . 69

B.5 [Fig.4.16 zoomed out] Percentage of the area explored with respect to the number of

steps, by 2 agents various communication ranges in a 16x16 area with 5 obstacles 69

B.6 [Fig. 4.19 zoomed out] Percentage of the area explored with respect to the number of

steps, by various number agents and no communication ranges in a 16x16 area with 5

obstacles . 70

vii

B.7 [Fig.4.20 zoomed out]Overview of the percentage of the area explored with respect to the

number of steps, in a 16x16 area with 5 obstacles . 70

viii

List of Tables

2.1 List of software . 15

2.2 Overview of OpenAI Gym and Gymnasium environments from the official websites 22

3.1 Meaning of values in each agent’s map . 28

3.2 Meaning of each action . 29

3.3 Overview of the global matrices created . 32

4.1 DDDQN’s hyperparameters . 37

4.2 List of rewards for different scenarios . 39

ix

Listings

3.1 Example of step function for a multi-agent OpenAI gym class 30

A.1 requirements.txt . 62

A.2 settings.py . 63

A.3 Agent class . 65

A.4 Example of a basic OpenAI gym code . 66

x

Acronyms

A3C Asynchronous Advantage Actor Critic

ACO Ant colony optimization

AEC Agent Environment Cycle

CPP Coverage Path Planning

DFS Depth First Search

DQN Deep Q-Learning

DDDQN Dueling Double Deep Q-Learning

DRL Deep Reinforcement Learning

FANET Flying Ad-hoc Network

FoV Field of View

GBS Ground Base Station

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSO Glow-worm Swarm Optimization

IMU Inertial Measurement Unit

LiDAR Light Detection And Ranging

MAV Micro Aerial Vehicle

MDP Markov Decision Process

POSG Partially Observable Stochastic Game

POMDP Partially Observable Markov Decision Process

PRM Probabilistic Road Maps

PRM* Probabilistic Road Maps Star

xi

PSO Particle Swarm Optimization

PPO Proximal Policy Optimization

RL Reinforcement Learning

ROS Robot Operating System

RRT Rapidly exploring Random Trees

RRT* Rapidly exploring Random Trees Star

SAC Soft Actor-Critic

SI Swarm Intelligence

SITL Software In-The-Loop

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

xii

1
Introduction

Contents

1.1 Objective . 4

1.2 Document outline . 4

1

Unmanned Aerial Vehicles (UAVs), as the name suggests, are airborne devices that do not have

any onboard crew or passengers, meaning that they can be controlled remotely or perform autonomous

tasks. UAVs can be fixed wing or rotary wings, in the latter case they can be called drones. The

predecessors of the current UAVs were developed during the First World War, being used for military

reconnaissance missions or as missiles. Nowadays, these devices have a broad diversity of applications

that range from security and surveillance [7], cinematographic filming [8], disaster management (which

includes search and rescue operations or response to natural disasters) [9], monitoring of specific areas

or infrastructure (such as borders, power lines, dams, etc.) [10], agriculture [11], to name a few.

The increasing demand of UAV technology is due to their potential to be faster, more efficient and

safer than using human labour and putting human lives at risk for some of the applications mentioned

above. They can vary in weight, range, size, configuration, payload, engine type and performance

characteristics. According to these attributes, it is possible to customise what sensors, cameras, com-

munication protocol and navigation methods to use according to the application in mind. [15]

UAVs can work as a single unit or in coordinated groups. The latter option presents benefits such

as dividing the workload among all units, being faster and able to accomplish larger and more complex

tasks. One way to achieve this coordinated behaviour is to look at how nature works, for instance,

how groups of animals share information between each member of the group and coordinate in order

to achieve the greater reward for the whole group. This happens with birds for example, the whole

flock communicates their findings between each other to get sustenance and provisions. This is what

some Nature Inspired Algorithms are designed upon, more specifically what Swarm Intelligence (SI)

algorithms are all about.

A swarm consists of a coordinated group of entities that communicate with one another, sharing cru-

cial information and working together towards a common goal. SI algorithms with UAVs are commonly

used for path planning or exploration tasks.

The goal of the exploration task consists in gathering as much information about the space as pos-

sible in an optimal way. Concurrently, with the information gathered, it is possible to combine this with

a mapping task when it comes to unknown environments. There is a wide range of spaces that can be

explored, such as indoor or outdoor, static or dynamic environments, or even a mix of the two. Each type

of space has unique challenges to be faced, for instance, an indoor space does not have the influence

of weather conditions that affect the UAV’s flight manoeuvrability, but on the other hand it is deprived

of any Global Navigation Satellite System (GNSS) such as Global Positioning System (GPS), so other

localization methods are needed. As for the difference between static and dynamic spaces, it relies on

the existence or non-existence of moving environmental elements, such as any obstacles like a person

walking by or a random object falling.

Autonomous exploration grants the ability to achieve tasks in a more efficient way and without risking

2

human lives in hazardous environments and in emergency situations.

Focusing on indoor dynamic environments, autonomous exploration using UAVs is useful for surveil-

lance purposes, for instance finding an intruder in a household, or in search-and-rescue scenarios,

where UAVs are able to pass through crevices and the middle of debris, in a more agile and faster way

than any human could.

In most exploration scenarios, a group of UAVs reveals to perform better than a single UAV [22]. As

explained above, a swarm of UAVs is capable of jointly and efficiently performing the tasks mentioned

above. In addition, they can cover larger and more complex spaces faster than a single UAV. Although

the term SI was first defined in [14], its popularity has recently increased, especially with UAV appli-

cations that require the coverage of large areas or the division of tasks. There are several levels of

autonomy and different UAV swarm communication and control architectures that are described in [16].

In simpler terms, there are three types of possible approaches and then some variations in each, they

differ in the way communication and organization is processed:

1. Centralized system - There is a Ground Base Station (GBS) that receives information (data from

sensors and other peripherals) from each UAV and then sends back updates on how each one

should operate.

2. Decentralized system - Each UAV works independently and communicates with the other UAVs.

By sharing information, they can coordinate how each one should act.

3. Hybrid system - The GBS can divide the space under analysis into smaller areas and then assign

different UAVs to each. The UAVs would then organize themselves within each area.

In centralized and hybrid systems, GBS is usually a computer that performs all or most of the com-

putational processing necessary. In the case of a decentralized system, all processing must be done

on board, which presents challenges with respect to the specifications of the real-life UAV and what it

is able to carry without compromising its integrity (the UAV’s payload) or how long does its battery last.

This means when having a specific application in mind, there must be a compromise between the UAV’s

characteristics, and consequently its capabilities, and the sensors and peripherals necessary for the

task. Most of the sensors and peripherals used are stereo cameras,Inertial Measurement Unit (IMU) ,

ultrasound sensors, Light Detection And Ranging (LiDAR), among others. [12]

One problem that occurs is maintaining the communication between nodes, in this case UAVs, they

can communicate only with their closest neighbours and information should be spread to all nodes. For

this purpose, Flying Ad-hoc Networks (FANETs) are useful, where each UAV may work as a router for

others, maintaining the network connected by adjusting their positions, furthermore there needs to be at

least one UAV connected to the GBS [13].

3

Having this context in mind, a suited simulation environment was necessary to simulate the intended

behaviour. Given the emergence of the topic, there are a few existing solutions but each with its own

specifications, such as having integration with a standardised Reinforcement Learning (RL) platform

such as OpenAI Gym, being suited for single-agent or multi-agent training, scalability, compatibility and

so on (all these specification will be further analysed in Chapter 2). In the midst of diversity there was no

standardised simple solution that could accommodate all the features intended, specifically a solution

that allowed multi-agent Deep Reinforcement Learning (DRL) training, with communications in GNSS-

denied unknown environments, which is the goal of this project.

1.1 Objective

The scope of this work consists of creating a simulation environment that allows the development and

testing of RL solutions for indoor exploration problems, using an autonomous UAV swarm equipped with

emulated LiDAR sensors - that is able to fly safely, including the detection and avoidance of any objects,

across the space in question.

The environment aims to simulate a decentralized system of UAVs, where each UAV will communi-

cate with its peers and process its own acquired data in order to achieve the task in hand. The developed

environment can be found in [101].

A specific DRL algorithm will be tested in the developed environment, the Dueling Double Deep

Q-Learning (DDDQN), which will be described in more detail in Chapter 2 and Chapter 3.

1.2 Document outline

The rest of the thesis is structured as follows:

• Section 2: presents the intended architecture to simulate on the developed environment. Final-

izing with an overview of the existing simulation environments and software accompanied by their

features;

• Section 3: describes how the presented objective was achieved, by presenting the developed

OpenAI gym environment, according to some assumptions and the simulation setup available and

exposing its limitations and features;

• Section 4: summarizes the obtained results accompanied by a brief analysis;

• Section 5: presents the conclusions and possible further developments.

4

2
Background and Related work

Contents

2.1 Architecture . 6

2.2 Simulation Environment . 14

2.3 Summary . 24

5

In this chapter, the architecture of the target system for each UAV is presented, exploring how each

component could be integrated in the simulated environment and possibly in a real life implementation.

Specifically, which sensors would be used to acquire data, how to perform localization and mapping and

so on. Moreover, at the end of the chapter, an extensive survey is done regarding existing simulation

environments and other relevant packages and frameworks that could accommodate the requirements

for the desired architecture and the scenario previously exposed.

2.1 Architecture

Exploration problems are usually separated in several components depicted in Figure 2.2

Figure 2.1: Brief architecture scheme

In a general exploration scenario, each robot or UAV must be able to do the following:

1. Data Acquisition In order to identify obstacles and the current location, the sensors and peripher-

als chosen gather information about the environment. The data gathered may be of different types,

such as images or video (using cameras), distance measurements (LiDAR or SONAR), etc;

2. Localization and Mapping - For this Simultaneous Localization and Mapping (SLAM) algorithms

are used. In order to be able to explore an unknown place, it is necessary to know with some

degree of certainty the current location. This step is important to plan the next path to take;

3. Communication and Coordination - Since the goal is to use multiple UAVs, they must be able to

communicate, in order to coordinate their movements for more efficient exploration;

4. Path Planning - With the gathered information from the sensors and other UAVs, each UAV can

then plan its next movement;

6

5. Path Following - After the path is set, the flight controller will move according to what was planned

and taking into consideration possible obstacles;

It is important to denote that the arrows in Figure 2.2 are merely indicative of the data flow and the

frequency at which some of these tasks is done is not the same. For example, data is constantly being

acquired (through the sensors and communication channels), so the localization and mapping will be

done with the available data at the time and so forth, path planning is then done using the data available

from the localization and mapping at the time it is requested.

According to the initial choice of simulation environment, the simulation framework would be similar

to the one found in [1] and depicted in Figure 2.2.

Figure 2.2: Framework of simulation from [1]

2.1.1 Data acquisition

Initially the author seeked to find the most reliable data source and some research was done to figure

out which LiDAR would fit best, for simulation and having in mind future possible real tests. Alongside

the sensor choice, a brief analysis of which data storage method would be more efficient. Even though

in the development of the present project the focus shifted to a simpler approach, this information might

be important to consider for future developments and enhancements.

2.1.1.A Choice of sensors

In order to gather information about the environment and the status of each UAV a set of sensors are

necessary. It is important to know the pose of each UAV on the map and if there are any changes to

the map, given that in a first instance, it will be considered that the shape and size of the area will be

provided a priori.

7

Firstly, that are two main approaches related to mapping and localization in GNSS-denied environ-

ments: LiDAR-based and vision-based (or photogrammetry). The first option relies on laser beams to

measure distances and create images based on point cloud maps. Meanwhile, the second one relies on

images captured from cameras. In [24] it is possible to check some of the available LiDAR scanners for

airborne systems in the market and get an insight about the variety and specifications of these scanners.

According to the information found on [25], relatively to the pros and cons of using LiDAR and pho-

togrammetry, in this case, the photo-realistic maps provided by photogrammetry are not necessary (such

as texture information or real images). But instead, it is important to get the general contour of obstacles

to have safe navigation, maybe for search and rescue operations photogrammetry may be useful jointly

with computer vision technology to identify who or what is being rescued.

In [43] , a solution is proposed to the problems associated with each of these two main approaches.

On one hand using a rotary 3D LiDAR, whose vibrations affect the result or may even damage the

scanner. On the other hand, with the vision based approach, the result has relatively lower mapping

resolution when compared to LiDAR based mapping, due to the limited image pixels and other technical

difficulties. They tackle the problems by using 100% solid-state LiDAR (SSL) and test them in different

configurations. They conclude that LiDAR approaches are more mature and solutions, while vision-

based ones seem to be the direction of research for the future.

According to [1], the authors state in two short lines the pros and cons of photogrammetry and

LiDAR-based approaches: "The LiDAR sensors have a wide detection range and can directly provide

high-precision depth information. However, they are also expensive, heavy, and large, which limits the

application scenarios of LiDAR on the UAV platform. In contrast, the camera has simple structure, light

weight, and cheap price". In their work, they provide a simulation platform with all of the localization,

mapping, and path-planning kits in one simulator.

To conclude, a LiDAR approach was chosen, given that in this case there is no cost associated to

using it. If a real prototype was to be built, the use of a camera would have a better cost-efficiency ratio.

A camera has a lower cost and with the correct data processing achieves similar results. For simplicity

and since it is not the focus of this work, it was chosen a 3D LiDAR that provides an omnidirectional Field

of View (FoV) jointly with a IMU to know the pose of each UAV. Even though vision-based approaches

will be the future, the author chose to use a mature and solid know approach. In addiction, 3D LiDAR is

well supported by the initial chosen simulation environment, which will be mentioned further.

2.1.1.B Choice of data storage/type of map

In addition to the sensors needed to gather information, it is necessary to find how the map data should

be stored.

According to [1], there are three types of maps (ways to store information about the environment)

8

used in the context of UAV navigation:

1. Point cloud map - the data obtained directly from the sensor.

2. Occupancy map or OctoMap - This method would be a good choice since the size of the map is

known.

3. Euclidean Signed Distance Fields (ESDFs) map - this method is useful when there is a dynam-

ically growing map. Since it is considered that the size of the area to explore is know, this method

does not make sense for this work.

Since a simpler approach was taken, there was no need to choose amongst these three options. But

the author thought this information should be coupled with the choice of sensors.

2.1.2 SLAM (Simultaneous Localization and Mapping)

SLAM algorithms based on images obtained from cameras will be discarded for simplicity, only solutions

around LiDAR sensors are being considered. Given that a Robot Operating System (ROS)-based solu-

tion was in order, some toolkits and resources were object of study, having found the following options:

• gmapping [27]

• hector-slam [45]

• slam_toolbox [46]

As explained in [46], slam_toolbox seeks to bridge the gaps found in previously used packages and

furthermore mentions two other packages (Cartographer [47] and KartoSLAM [28]) and states that given

their complexity it is hard to modify them, thus making them unfit for many applications. Compared to

gmapping and hector-slam, on one hand, hector-slam is unsuitable for reliable mapping of large spaces

or when using laser scanners with low update rates. On another hand, gmapping is also not well suited

for large spaces and fails to accurately close loops at an industrial scale. Additionally, since it is a filter-

based approach, it cannot be easily reinitialized across multiple sessions. To this extend, slam_toolbox

is the best solution, providing an approach for multi-session mapping and localization at industry scale.

Once again, even though this information was not used in the final product, it was part of the research

process and it is succinctly mentioned since it might be useful for future projects.

2.1.3 Path Planning

The exploration problem may be also seen as a Coverage Path Planning (CPP) problem, where the

objective is to plan the optimal path to cover a determined area or space.

9

In [2], a survey of coverage path planning is presented according to the decomposition methods,

such as no decomposition, exact, and approximate decomposition methods. It addresses some offline

and online algorithms, to clarify:

• Offline algorithms - plan a path with prior information of the area;

• Online algorithms - use the real-time data retrieved from onboard sensors about the environment

area to plan the path.

Some examples of decomposition methods can be found in Figure 2.3 to illustrate some of the

simplest type of patterns that exist.

(a) Boustrophedon pat-
tern

(b) Square
pattern

(c) Trapezoidal decompo-
sition

(d) Boustrophedon de-
composition

Figure 2.3: Some decomposition methods, images from [2]

After some research and reading (some more references are given in the bibliography, even though

they were not mentioned), the author came to the conclusion that CPP solutions might not be quite

that similar to what is intended with the proposed work. CPP methods rely on cellular decomposition

methods and are more focused in covering the whole area, but in exploration problems, what is more

important is collecting information about it. In this line of thought, these solutions were disregarded.

A comparison of several path planning strategies for autonomous exploration and mapping of un-

known environments was examined in [22]. Its authors concluded that the selection of the best explo-

ration algorithm varies according to the application in mind. Furthermore, some requirements, such as

the exploration time and the map’s quality and robustness may conflict with each other, by improving

one of them, the other may worsen.

The two main approaches to the exploration and optimal path planning problem: (a) Frontier-based

algorithms; and (b) Sampling-based algorithms. A brief explanation of each will be provided, alongside

with some examples of work developed where these were used.

10

2.1.3.A Frontier-based methods

The concept of this type of algorithm was first introduced in [17] and, as the name suggests, relies on a

frontier. A frontier distinguishes the boundary line between the explored and unexplored regions on the

map. As the robot or UAV navigates, the gathered information is always increasing, making the frontier

advance further. The exploration process comes to an end when there are no more frontiers to analyze.

For instance in [20], a single UAV is capable of autonomously exploring and mapping an unknown

environment, without any prior information about it. It is inferred that to store the information about the

3D space‘s cubicle voxels representation, an Octree structure is better than normal occupancy grids,

since (a) the access time is smaller; and (b) it is memory efficient since the map size is smaller.

2.1.3.B Sampling-based methods

Points are sampled from the environment and there is a weight associated with each. The robot or UAV

will move to the point with the highest weight at that time. This weight is associated with a cost function

that is determined by several factors, such as the expected area to be covered while moving to that

point, the distance to it, and other factors.

In [18] , popular sampling-based algorithms, such as Rapidly exploring Random Trees (RRT) and

Probabilistic Road Maps (PRM), are analyzed according to the quality of the solutions they find. They

prove that most cannot find an optimal solution, even with infinite samples. On the counterpart, they

provide efficient versions of the latter algorithms (RRT* and PRM*) that are asymptotically optimal, which

means “they will return a solution to the path planning problem with high probability if one exists, but the

cost of the solution returned by the algorithm will not converge to the optimal cost as the number of

samples increases”. In [19], J. D. Gammell and M. P. Strub continued their work in a more extensive

way, achieving the same results for these algorithms.

2.1.3.C Swarm Intelligence (SI)

Nature inspired algorithms mimic the behaviour of living organisms or their corresponding communities,

if it is the case. SI is an example of one type of these algorithms that focuses on a group’s behaviour to

coordinate efforts.

Even though there are several SI algorithms, Particle Swarm Optimization (PSO) appears to be

a good option given the context of this work, which is indoor autonomous exploration by a swarm of

UAVs. [33] In this reference, a comparison of several SI algorithms was done, outlining their purpose, ad-

vantages and disadvantages. Other SI algorithms included are Glow-worm Swarm Optimization (GSO)

or Ant colony optimization (ACO).

In [34]’s study, it is concluded that using the PSO algorithm is a viable approach to multi-agent

11

navigation in dynamic environments, as the basis of a path finding algorithm. They propose a PSO path

finding algorithm, jointly with Drone Flock Control (DFC) to model several modules for a controller for

systems of agent in 3D environments, minimizing collisions.

After careful consideration, it can be stated that PSO is a good approach for navigation problems with

one defined destination point. Since in PSO, one particle would correspond to one possible trajectory

for each UAV and then all particles would converge to the defined point, resulting in a single trajectory

that minimizes the desired cost function (having into account the chosen factors, for example battery or

fuel consumption, time and distance covered, etc). In the context of this work, it would not be feasible,

given that an online approach was necessary. For every time each UAV needs to adjust its trajectory

with the new information it finds (from its sensors and information gathered from other UAVs), it would

not the computationally feasible and very time consuming to have PSO compute a new route for each.

Additionally, two other nature algorithms are presented given their relevance, even though there are

several more. Firstly, one interesting algorithm found was a variation of the original bug algorithm, the

Swarm Gradient Bug Algorithm (SGBA), that was developed in the thesis [21]. The author states that in

an indoor exploration scenario, Micro Aerial Vehicles (MAVs) are preferred, since they are safer to use

near people and are also cheaper to replace in the event of a collision. In this work it was possible to

have up to 6 MAVs navigating completely autonomously in a multi-room exploration scenario and return

to their initial position. Its main application was search and rescue missions, so no external positioning

system or outside processing were available. All of the sensing and processing must be on-board and

the pocket drones need to have direct inter-drone communication. An original version of a bug algorithm

was developed, which does not over-rely on perfect location as other bug algorithms do. With SGBA,

the pocket drones can avoid each other based on the signal strength of the intra-drone communication,

and can also locally coordinate their search based on their transmitted preferred exploration direction.

Secondly, another interesting approach is Bat algorithms, that was just briefly explored. In [40], an

Improved Bat Algorithm (IBA) is proposed that integrates several ideas from bee colonies and that in

some of the exploration scenarios designated by the authors had better results than PSO.

2.1.3.D Deep Reinforcement Learning (DRL)

In general terms, Reinforcement Learning (RL) consists on having an agent which interacts with an envi-

ronment, in the context of this work that would be each UAV and the conjunction of the real environment

with the other UAVs of the swarm, respectively. The agent affects the environment through actions, and

the environment responds to those actions, giving back its state and a reward value that evaluates how

well the action contributed to the overall goal of the agent. On the other hand, DRL has the same prin-

ciple but uses a neural network that is trained to improve the function that maximizes rewards, having

12

as inputs the information about the state and reward and as output an action. Through the established

feedback loop, it is possible to keep training the neural network.

The solution that is going to be explored is DDDQN, but to explain it, it is necessary to first explain

its predecessor, the Deep Q-Learning (DQN). DQN is based on the Q-learning algorithm, a classic

RL technique. Q-learning is used for estimating optimal action-selection policies in a Markov Decision

Process (MDP) when the rewards are unknown initially.

A side note about MDP, basically it provides a mathematical framework for solving RL problems.

Almost all RL problems can be modelled as an MDP or Partially Observable Markov Decision Process

(POMDP). Any MDP can be defined by five variables:

• S - a set of states

• A - a set of actions

• R - a reward function

• ρ - a transition function

• γ - a discounting factor

There is also a policy π, that is learned and defines the agent’s behaviour in an environment. It defines

the next action to be taken according to a certain state.

There are also value functions that determine what is good for the agent in the long run, unlike the

immediate reward (R). There are two types of value functions:

• V(s) - maps value to each state, measuring how good being in each state(s) is;

• Q(s,a) - maps each action to a value, measures how good a certain action(a) is, given a certain

state(s).

On the other hand, a POMDP [48] models an agent’s decision process in which it is assumed that

the agent cannot directly observe the underlying state, even though the dynamics are still determined

by an MDP, for instance, there are sensor uncertainties or the environment is not entirely visible.

Advancing onto Deep Q-Learning (DQN), it was first introduced in [49] and it consists of a neural

network architecture that learns to make decisions by estimating the quality (Q-value) of actions in a

given state. In the context of RL, it’s used to train agents on how to take actions in an environment

to maximize a reward. As stated in [3], DQN is suitable for problems with limited states and discrete

action space, meanwhile DDDQN is suitable for unlimited states and discrete action space - which is

appropriate for the exploration problem in unknown environments, given the uncertain nature of the

unknown environment it is not possible to quantify the number of states, but the available action space

is well defined and discrete, for example in can be composed of movements such as left, right, up or

down. Additionally, AlMahamid et al. explains how DDDQN appeared to solve problems in its previous

versions, the Double DQN and Dueling DQN.

13

The Double DQN uses two networks to solve the overestimation problem found in DQN, the Policy

Network and the Target Network. The first one, optimizes the Q-value, and the second one is a replica

of the first network, and it is used to produce the estimated Q-value. [50] The target network parameters

are updated after a certain number of time steps by copying the weights of the policy network.

Figure 2.4: DQN vs. Dueling DQN, image from [3]

Dueling DQN decomposes the Q-value function into two functions, in an attempt to better evaluate

the Q-value (also seen in Figure 2.4):

• State-Value function V(s) measures how good is for the agent to be in state s;

• Advantage-Value function A(s, a) captures how good is an action compared to other actions at

a given state.

Finally, Dueling Double Deep Q-Learning (DDDQN) combines Dueling DQN with Double DQN to find

the optimal Q-value, where the output from the Dueling DQN is passed to Double DQN. [61]

2.2 Simulation Environment

In this section an overview of components necessary is collected, followed by a brief description of

software available for each component. Afterwards, some past projects that used these software are

gathered.

2.2.1 Necessary components

In a first instance, the necessary requirements to develop and test the work proposed in this thesis were:

1. Physics simulator and Rendering - these are interlinked and will be used to visualize the correct

operation of the proposed algorithm and attempt to get the most accurate representation of the

real word;

14

2. Network simulator - to have accurate simulation of all communication between several UAVs and

the GBS;

3. Robotics framework - to program each UAV’s operating routine;

4. Autopilot - attached to the previous framework an autopilot will be required, being the bridge

between robotics routines and control of the UAV model.

5. AI framework - to test the RL algorithms.

2.2.2 Available options

Amongst the several options the author came across in the literature, the preliminary research resulted in

the options summarized in Table 2.1, for the Robotics framework, ROS clearly stood out as the preferred

choice given its popularity. ROS2 was not considered since most of the relevant projects found were

developed in ROS. Given the author’s lack of experience with any, the safest decision to learn was ROS

since more resources in the context of UAV exploration were found for this version.

The main criteria to choose which software to use were:

• being open-source;

• popularity, which meant more resources would be expected to be available and also maintained;

• scalability, given it was expected to test a multi-agent system;

Autopilot Physics simulator and rendering Network Simulators AI framework
PX4 Autopilot Gazeboo ns-3 OpenAI gym

Ardupilot V-REP (CoppeliaSim) OMNeT+ RLlib
AirSim

Unity Engine

Table 2.1: List of software

Proceeding to describing and analysing each option presented in Table 2.1, by category, starting

with ROS, it would be used to program each UAV, allied to an autopilot system. ROS is an open-source

software framework for building robot applications. It provides a set of libraries and tools for developing

distributed and decentralized systems, including multi-robot coordination and control. ROS includes

a range of packages and plugins for UAVs, such as the MAVROS package (which will be addressed

bellow) for communication with PX4-based UAVs.

2.2.2.A Autopilot

As for PX4 Autopilot, it is an open-source autopilot system for UAVs, that supports decentralized coordi-

nation and control. It provides a modular architecture that allows users to configure and customize the

15

behavior of multiple UAVs in a swarm. PX4 also includes support for a range of sensors and communi-

cation protocols, providing some models to use in ROS, thus making it well-suited for indoor exploration

and mapping applications, such as the case of this work.

An alternative to PX4 Autopilot is ArduPilot, given that both systems have ROS packages that enable

communication between the autopilot and ROS, allowing for the integration of UAVs with ROS-based

applications and simulations.

2.2.2.B Physics simulator and rendering

Gazebo would be used to visualize in real time the scenarios that are being tested. According to the

official website [29] , Gazebo is a accurate physics simulator, allowing for easier visualization. It has

the advantage of having integration with ROS and given its popularity there is a lot of documentation

and resources for developing, namely available scenarios and robot models, in particular UAV models.

Gazebo’s modular architecture includes a plugin system that permits users to extend and customize

the simulator’s functionality. Custom plugins can model specific sensors, control algorithms, or even

entire robotic platforms, which means several sensors and noise models are already developed and

maintained, specifically LiDAR sensors, and in the future they can be easily exchanged.

An alternative to Gazebo would be CoppeliaSim, also known as V-REP (Virtual Robot Experimen-

tation Platform). It is a versatile and advanced robot simulation software. It is widely used for various

purposes, including robotics algorithm development, simulation, and control. Users can design robots,

program their behaviors, and simulate their interactions with the surrounding environment. It supports a

wide range of sensors, actuators, and robotic platforms, making it suitable for simulating diverse robotic

systems in 3D scenarios. CoppeliaSim’s user-friendly interface and powerful simulation capabilities

make it a popular choice in the field of robotics research and development, but given its simplicity and

lack of documentation it was hard to integrate in the desired architecture.

Unity Engine is a powerful and versatile real-time 3D development platform widely used for creating

interactive simulations, video games, Virtual Reality (VR), and Augmented Reality (AR) applications.

The major setback of this option is the fact it does not have integration with ROS on its own, making it

unfit for the desired architecture, despite offering robust graphics and extensive customization options,

that enable the creation of visually appealing and interactive environments.

AirSim [30], short for "Air Simulation," is an open-source simulator that specifically targets the simu-

lation of autonomous systems, including UAVs and other robotic platforms. It provides a realistic physics

engine and sensor simulation, making it suitable for training and testing AI algorithms. It is compatible

with various platforms, including ROS, PX4-Autopilot and Unreal Engine, and it enables the experimen-

tation of state-of-the-art perception, planning, and control algorithms in a safe and controlled virtual

environment. At the time, Gazebo was more explored than AirSim given its popularity and the fact that

16

AirSim was tested on Ubuntu 18.04 LTS, as mentioned in the official website [31]. This option was still

mentioned since it is a complete and possible alternative.

2.2.2.C Network simulators

NS-3 [32] would be used to simulate the interactions between UAVs. NS-3 stands for Network Simulator

Version 3, it is an open-source discrete-event network simulator. It allows the simulation of complex

network scenarios and study their behavior under various conditions. On the other hand, OMNeT+ is

also an open-source and based on discrete-event simulation but follows a component-based modeling

approach, having a modular and more general approach. It also allows the study of the behavior and

performance of UAV communication systems in various scenarios. OMNeT+ may be easier to use

given it has Graphical User Interface (GUI) and a high-level simulation language called NED (Network

Description Language). [41] In the final scope of this project a network simulator was not used, but

usually researchers choose between these tools based on their specific requirements, familiarity with

the platform, and the complexity of the simulation scenarios they aim to explore.

2.2.2.D AI framework

OpenAI Gym would be used to efficiently iterate and perfect the DRL algorithms developed. Is an open-

source toolkit for developing and comparing RL algorithms. It provides a collection of environments,

ranging from simple to complex, like Atari games, robotics simulations or automation of industrial pro-

cesses. Additionally, it seamlessly integrates with popular RL libraries such as TensorFlow and PyTorch.

The first official formal documentation about it can be found in [51] alongside the developing documen-

tation for Gym [52]. A side note is that, Gym has been updated to Gymnasium in 2022 as announced

in the official website [42]. OpenAI gym was chosen instead of Gymnasium given that more resources

were available and several incompatibilities arose.

In addition, RLlib [100] is the industry-standard RL Python framework built on Ray. Designed for quick

iteration and a fast path to production, it includes more than twenty five of the latest algorithms that are

all implemented to run at scale and in multi-agent mode. It supports both TensorFlow and PyTorch.

It can be swiftly integrated with OpenAI Gym’s environments. This would be one of the next steps to

implement in future developments.

The initial choice was to use Gazebo and ROS allied to PX4 Autopilot with OpenAI Gym, given their

popularity and the fact that the author had no prior knowledge at that time in any of the softwares that she

came across, so it was expected that more resources for learning would be available. To summarize in a

simpler view, the base goal architecture would be similar to what is represented in Figure 2.5. According

17

to this base structure the author searched for existing projects given the lack of prior knowledge with the

software, these would serve as a model or starting point.

It is important to note that, using this architecture would easily allow the transition between simulation

and real-life tests, given that ROS and PX4 Autopilot are ready to do this transition just by getting the

correct hardware.

Figure 2.5: Simplified software architecture used in OpenAI Gym for robotics, from [4]

A short side note, MAVROS [53] would be used as the bridge between the autopilot and ROS.

It is ROS package that provides communication drivers for various autopilots (compatible with PX4

and Ardupilot) with MAVLink communication protocol. Additionally, it provides UDP MAVLink bridge

for ground control stations (e.g. QGroundControl [54], this was not necessary in this thesis, since a

decentralized system was idealized and all the information in a simulated environment is accessible).

In the following subsection an overview of the main projects found that use the software mentioned

in Table 2.1 and some further information are described.

2.2.3 Related projects

Starting with a project that involved RL, but did not match to the presented architecture is the work of

Battocletti et al. [56], it presents a coordinated fleet approach where there are two different RL agents

were developed: the first one coordinates the exploration task and delegates waypoints for each UAV in

the fleet and the second agent is tasked with path planning and assigning the best routes for each UAV.

It uses a Deep Deterministic Policy Gradient (DDPG) learning algorithm [57], which is a model-free1,

off-policy2 learning algorithm suitable to work in continuous action space. It uses an actor-critic type
1model-free refer to a class of techniques where the agent learns to make decisions directly from interactions with the environ-

ment, without explicitly building an internal model of the environment’s dynamics.
2off-policy refers to a class of algorithms where the agent learns a policy (a strategy for taking actions) that is different from the

policy it uses to explore the environment and collect data.

18

of architecture, to concurrently learn a Q-value function and a policy. In this work a custom simulation

environment has been implemented using Python 3.8.3, with some relevant libraries such as Tensorflow

2.3.0, Keras 2.4.3 and OpenCV 4.4.0. It does not have any integration with ROS or OpenAI Gym. The

results obtained are for a 2D approach, but there is a simple implementation of the 3D environment

available. The environment was traversed by a total of four UAVs with safe and dynamically-efficient

trajectories, in environments rich in obstacles.

On the same note, a project that is ROS-based, but it is not an RL-based solution is RACER [58], it

stands for RApid Collaborative ExploRation approach. It uses a fleet of decentralized UAVs for indoor

exploration tasks and based on principles similar to frontier-based exploration. More precisely, an hier-

archical planner was designed to find exploration paths and by refining local viewpoints, it can generate

the shortest trajectories time-wise sequentially to explore the unknown space safely and agilely. The

code developed was tested on ROS Kinetic and ROS Melodic, but not on ROS Noetic, which was the

one used in this thesis. Several attempts were made to work with this project, but with no success.

During research, the idea of modeling the problem as a POMDP emerged, since it is commonly

used in robotics navigation problems as previously mentioned. TAPIR [59] implements an algorithm

developed by the authors: Adaptive Belief Tree (ABT) that reuses and improves existing techniques to

quickly find a good approximate solution, and also introduces a novel capability to adapt the solution

online in response to changes in the POMDP model. Furthermore, TAPIR provides an interface to

the commonly-used ROS framework and CoppeliaSim (previously known as V-REP) simulator. The

developed interface seemed promising and even fitted with using the POMDP to model the problem, but

after testing CoppeliaSim, even though it has a simpler and user-friendly interface, it lacked the flexibility

to create a custom application. For this reason, this approach was abandoned.

The work of Seel et al. [60] was the closest to what was intended in this thesis and was used as a

main reference to build the developed environment, since the main goal was also to explore unknown

GNSS-denied indoor environments, relying on IMU and LiDAR data. In [60], a LiDAR framework has

been developed to enable a UAV to autonomously navigate and explore unknown factory environments,

with the intent of mapping it. This framework is designed to meet specific requirements, such as oper-

ating in areas GNSS-denied areas and relying solely on onboard sensors. Data from IMU and LiDAR

sensors is used for independent decision-making and to create a digital replica of the factory. The

system has been implemented in ROS Gazebo, and various training and testing scenarios have been

created for evaluation. Unfortunately, no source code was available for the ROS Gazebo models and

testing environments that were developed. On another hand, a clear idea of which algorithm could be

used was mentioned: DDDQN, which was identified as the best performing DRL algorithm regarding

3D UAV navigation by [63], being an improvement of previous versions, namely Dueling DQN [61] and

Double Deep Q-Learning (DQN) [62], and Deep Q-Learning (DQN) itself as previously mentioned.

19

The following three approaches have integration with OpenAI Gym, but do not use PX4 Autopilot or

Gazebo (in parenthesis is the direct link to the corresponding github repository and a brief description

for each is found bellow):

• Gym-gazebo [64]

• Flightmare [70]

• Gym-pybullet-drones (the updated repository is [67], but at the time of development, the available

repository was the one in the branch "paper")

Gym-gazebo [4] is an extension of OpenAI Gym for robotics using ROS and Gazebo, where a total of

six environments for three different robots: Turtlebot, Erle-Rover and Erle-Copter were developed. Two

RL algorithms were tested and compared using the developed tool kit, specifically Q-Learning and Sarsa

[65]. Even though this repository was archived and the environments for UAVs (Erle-Copter models)

were deprecated, the author still tried to use this in order to learn and build upon it, with no success

given several compatibility issues once again. Moreover, this project did not include any autopilot yet,

but had the desired integration between ROS, Gazebo, OpenAI Gym and had models for UAVs included.

A second version of this software called gym-gazebo2 [71] based on ROS2 was developed in the

mean time but has also been archived, which can be found in [72]. Given that this work was based on

ROS and not ROS2, it was not used.

Flightmare [69] is an open-source simulation platform designed for quadrotors. It is constituted by

two main components: a configurable rendering engine built on Unity and a flexible physics engine for

dynamics simulation. Flightmare is compatible with OpenAI Gym, having a flexible interface with stable

baselines for solving tasks with DRL algorithms, but for a single agent RL workflow and for that reason it

was not used. Additionally, Flightmare offers a ROS wrapper, allowing seamless interaction with widely

used ROS packages.

Gym-pybullet-drones [66] is an open-source OpenAI Gym environment based on PyBullet [68] for

multi-agent RL. A side note about PyBullet, it is an easy to use Python module for physics simulation,

robotics and deep reinforcement learning based on the Bullet Physics engine. It was not mentioned

before since this was the only project found that used it. One major disadvantage, in the context of

this thesis, is that it does not support LiDAR sensors. Even though it supports multi-agent systems, it

only supports vision-based RL interfaces, which for other projects this may be an advantage. In Figure

2.6 is a printscreen of a table found in its official github repository , which highlights the features that

gym-pybullet-drones has compared to other solutions focused on RL or Crazyflie - Crazyflie is a open

source flying development platform with small and lightweight quadrotors compatible with PX4. For more

information check Craze’s online shop [73].

20

For the context of this work, the fact that it supports multi-agent Gym-like API was an advantage, but

it did not meet the remaining criteria. Additionally, the updated version3 has a wrapper for ROS2 and it

was tested on Ubuntu 22.04, which did not match this thesis experimental setup.

Figure 2.6: Overview table from gym-pybullet-drones github repository

Proceeding to solutions with the desired architecture, using OpenAI Gym, PX4 and ROS, the fol-

lowing toolkits and frameworks were found (in parenthesis is the reference to the corresponding github

repository and a brief description for each is found bellow):

• Gym_px4 [74]

• Gym-gazebo-px4 [75]

• MultiUAV-OpenAIGym [77]

Gym_px4 is an OpenAI Gym environment for PX4 Gazebo Software In-The-Loop (SITL) using MAVROS.

This environment enabled the use of any gym RL library available at the time it was developed, such as

baselines, stable-baselines or Keras-RL to train low-level quadcopter controllers. It was developed for

ROS melodic and compatible with python 3.6 or 3.7, which are not compatible with the working settings

of this thesis (ROS noetic and python 3.8), even so an attempt to use this environment was done, trying

to make the necessary adjustments, but with no success and it was very time consuming.

Gym_gazebo_px4 corresponds to the updated version of the previously mentioned gym_gazebo

which integrates PX4 Autopilot. Unfortunately, even though it has integration with PX4, it maintained the

deprecated environments and the documentation was not updated, making it much harder to use this

software as a working base to develop upon.
3[last accessed in 21st October] the repository received updates two weeks ago

21

MultiUAV-OpenAIGym [76] is a versatile environment for autonomous UAVs that has been designed

to support various communication services in different application contexts, such as wireless mobile

connectivity, edge computing, and data gathering. Developed within the OpenAI Gym framework, this

simulation replicates real operational scenarios. The application context of Brunori [76] was to create a

multi-agent system made up by a variable number of UAVs which are able to provide one or more (up to

three) services to cluster(s) of users who request it. The developed environment features the creation

different 2D or 3D environments, but it was so focused on multi-service framework that it did not suit the

context of exploration.

After many months trying and testing, back and forth the mentioned softwares, the decision to sim-

plify and create an environment from scratch was made. It was built upon OpenAI Gym given its simple

structure, compatibility and possibility to scale to multi-agent systems.

An overview of existing OpenAI Gym or Gymnasium environments can be found in Table 2.2, having

into account whether multi-agent training is available or not.

It is important to note, these are third-party environments in the official OpenAI Gym website [78] , the

same list is also available in the official website for Gymnasium [79] , but with a note stating "There are a

large number of third-party environments using various versions of Gym. Many of these can be adapted

to work with gymnasium (see Compatibility with Gym), but are not guaranteed to be fully functional."

and for that reason even though the lists in both websites are almost the same, using Gym instead of

Gymnasium seemed to be the safest choice.

Name Multi-agent OpenAI Gym
or Gymnasium

PyFlyt Yes Gymnasium
gym-pybullet-drones No* Gym

MarsExplorer No Gym

Table 2.2: Overview of OpenAI Gym and Gymnasium environments from the official websites

*this side note refers to the fact that even though gym-pybullet-drones allows simulations with several

UAVs, it only supports the training of a single agent.

PyFlyt [87] is a toolkit for evaluating RL algorithms on different UAVs. Utilizing the Bullet physics

engine, it provides adaptable rendering choices, time-discrete physics simulation and the capability to

accommodate custom drones of diverse designs, including biplanes, quadcopters, rockets. This option

was found at the end of the development of this thesis, thus it was not explored. However it was worth

mentioning given its relevance to the topic.

The following projects were used as inspiration for the development of this thesis and to create

IndoorExplorers environment, only gathering features of all these it was possible to create it.

22

[80] is a study that aims to connect advanced DRL techniques with the challenge of exploring and

covering unknown terrains. To achieve this the MarsExplorer environment was created, designed specif-

ically for exploring unknown areas. It is a OpenAI Gym environment that transforms the original robotics

problem into a RL scenario that can be addressed by various readily available algorithms. Any learned

strategy can be directly applied to a robotic platform without the need for a complex simulation model

of the robot’s dynamics, simplifying the learning and adaptation process. It is based on a grid like

world, where a single agent equipped with a simulated LiDAR explores the unknown area. MarsExplorer

was used as a foundation to develop this thesis, taking most of its features it was possible to create

IndoorExplorers (the name was chosen accordingly to its inspiration). The features used from this envi-

ronment will be further addressed in Chapter 3. Additionally, four different state-of-the-art RL algorithms

at the time were trained on the MarsExplorer environment, namely Asynchronous Advantage Actor

Critic (A3C) [81], Proximal Policy Optimization (PPO) [83], Rainbow [82] and Soft Actor-Critic (SAC) [84].

Their performance was compared to human-level performance. Given the performance of PPO, its per-

formance was then compared to a frontier-based approach. Demonstrating that the policy based on

PPO could efficiently adapt to unknown terrain while ensuring the coverage of areas that are costly to

revisit, highlighting the effectiveness of RL-based approaches in exploration tasks.

Ma-gym [86] is a collection of multi-agent environments based on OpenAI Gym (even though it is

not on the official websites), IndoorExplorers was also based on the Predator-Prey environment of this

collection. Predator-prey involves a grid world, in which multiple predators attempt to capture randomly

slow-moving prey. Each predator has a view mask corresponding to their cardinal direction, which means

that a prey is caught if it is within the field of view of at least one predator. This concept is similar to

having a LiDAR sensor and for this reason it was also used as one of the foundations of this thesis.

Some other important environments that were consulted and are worth mentioning are:

• multiagent-particle-envs [88] (the github repository can be found in [90]) is a multi-agent particle

world with a continuous discrete action space and observation space, which has some basic simu-

lated physics applied - it has a collection of environments with different types of interactions among

particles (the original particle environment in which multiagent-particle-envs was based on is [89])

and was consulted to see how communications could be added to the project.

• Minigrid [91] (the github repository can be found in [92]) consists of a collection of discrete grid-

world environments to conduct research on RL problems and served as inspiration to obtain a

basic knowledge of grid-worlds.

• Miniworld [91] (the github repository can be found in [93]) is a simple 3D interior environment

simulator for RL and robotics research, specially 3D navigation problems where office and home

environments and mazes are available. This could be interesting to integrate in future works.

Finally, from the official documentation of both OpenAI’s Gym and Gymnasium, PettingZoo [85] (the

23

official github repository can be found in [94]) is the major reference for multi-agent environments. It

is a Python library developed by OpenAI themselves, that provides a collection of RL environments for

multi-agent research and allows the creation of custom environments. Unlike traditional single-agent

environments, PettingZoo focuses on scenarios involving multiple agents interacting in various ways. It

offers a diverse range of games and simulations, enabling the study complex interactions, cooperation,

and competition between agents. To create a custom environment, there is a main API that follows Agent

Environment Cycle (AEC) modelling scheme, introduced in [85], in which agents sequentially see their

observation and agents take actions, then rewards are emitted from the other agents, and the next agent

to act is chosen. It is proven in the same document, that Partially Observable Stochastic Game (POSG)

are equivalent to AEC games. And since POMDPs are a specific type of POSG, then it would a com-

patible framework for the exploration problem. Additionally, there is also a secondary parallel API for

environments where all agents have simultaneous actions and observations. Having this in mind and

the fact that it has integration with Ray’s RLlib, it could be an interesting framework to explore in order to

improve IndoorExplorers. This is information was added given its relevance to the topic and part of the

contextualization to proceed to the actual developed environment.

2.3 Summary

To summarize, in this chapter a journey was made from the initial conception of this project to the de-

cision to create a simulation environment from scratch. Analysing all the components that would be

required in a global view of the project and the options available for them. The main reasons for the de-

velopment of a custom environment were due to a series of incompatibilities and outdated solutions that

led to the search for a simpler alternative and simpler solution. This solution will be based on a OpenAI

Gym framework, given its popularity, simplicity, scalability and the fact it resources to accommodate the

desired requirements.

24

3
Developed work

Contents

3.1 Assumptions . 26

3.2 Description of the developed environment . 26

3.3 Integration of RL algorithm . 33

3.4 Features . 34

3.5 Limitations . 35

3.6 Summary . 35

25

In this chapter, a description of the developed environment is provided, alongside the assumptions

that were made, its features and limitations.

3.1 Assumptions

Before describing the environment, a set of assumptions were made in order to simplify the problem and

are listed below:

• The area to be explored is considered to be a discrete space, divided into cells, whose dimensions

are known (its height and width);

• Each agent’s position is known at all times;

• Communication delay, including transmission delay, is negligible, but the communication system

may have a limited range;

• Agents perform their actions sequentially, even though the choice of action is done previously. The

order in which agents take their actions is randomized, so there is no priority amongst agents;

• The maps of agents in communication range are simultaneously and instantaneously merged and

then a copy is saved for each agent;

• There are no collisions amongst agents - this is coded to be impossible;

• Each agent corresponds to one UAV flying at a fixed height.

3.2 Description of the developed environment

This environment can handle up to four agents simultaneously, which can be spawn randomly in the

map or in pre-defined positions set in the "settings.py" file. In this file, it is possible to set everything

related to the topology of the environment (such as the height and width, how many obstacles and

with what size, etc.), configurations of the agents (such as the number of agents, the LiDAR range and

communication range, etc.), values for rewards and some rendering options (for instance, it is possible

to toggle on some auxiliary prompts or the rendering of each agent’s map to aid in debugging and for

easier visualization). In Appendix A.2 an example of this file is provided, with comments that explain

each setting. The maps to be explored are randomly generated and have some parameters to adjust

them, namely the "obstacles" setting that is the absolute number of obstacles to be placed randomly,

"obstacle_size" that sets the range of values to set the shape of the obstacle (which means the first

value must the lower than the second one), the "number_rows" and "number_cols" define a number

of rows and columns of obstacles to be placed in the map. It is also possible to set "noise" which is

applied to the positions generated by the "number_rows" and "number_cols", varying the positions of

26

the obstacles around pre-established positions. Adjusting these settings allows one to control the level

of generalization desired to train the algorithm in question - the map generation functions were used

unchanged from the MarsExplorer environment.

In the folder "multi_agents" is the created environment based on the previously mentioned single-

agent MarsExplorer environment, in which each agent has a designated colour, agent 1 is blue, agent 2

is red, agent 3 is green and finally agent 4 is yellow. The LiDAR emulation was used unchanged from

the MarsExplorer environment, but the rendering was entirely changed and is based on the ma-gym

Predator-Prey environment (both were mentioned in Chapter 2).

Figure 3.1: IndoorExplorers environment with 4 agents

As can be seen in Figure 3.1, the LiDAR field of view can be visualized by the light blue circle that

surrounds each agent, the radius corresponds to the range defined in the settings file, in this case it is

3. There is a known behaviour about this emulation, which was disregarded since for a simple approach

it was not compromising since a grid world is being considered. It consists in the fact that sometimes a

ray of the LiDAR goes through an edge between two obstacle cells, enabling the agent to "see" a little

bit further than it was supposed to - in images 3.2(a) and 3.2(b) it is possible to see this behaviour. In

example 1, the agent in yellow can see a little bit further and in example 2, both agents in yellow and

blue should not be able to see inside the obstacle nearby. This can be explained by the discretisation of

the space in question.

Using OpenAI gym’s simple configuration (more information can be found on the "core" section of

the official website [52]) it is necessary to define four functions, which will be further described:

• step(action) - this function runs one timestep of the environment’s dynamics, it is necessary to

establish the core mechanisms for the environment. It receives an action that will be made effective

inside this function and returns the information about the state, namely the observation, reward,

terminated flag and some extra information.

• reset() - once the end of the episode is reached, this function must be called, which resets the

environment to start a new episode. It only returns the initial observation.

27

(a) Example 1 (b) Example 2

Figure 3.2: Example of specific behaviour of the LiDAR emulation

• render() - function responsible for rendering.

• close() - usually closes the rendering window.

It is also necessary to have the algorithm to choose which actions to take, in this case it would be

the DDDQN that will be addressed briefly. Additionally, the observation space and the action space

must be defined, these specify whether the action space is discrete or continuous and what are their

ranges. In this case, the MultiAgentObservationSpace and MultiAgentActionSpace from ma_gym were

used. The observation space consists of a matrix that represents the map of what the agent sees, with

float values ranging from 0,0 to the number of agents in the environment - each agent has a matrix

called exploredMap which saves the updated real-time view of that agent (check Listing A.3 for the full

description of the Agent class). In Table 3.1 are compiled the meaning of each value of the matrix

corresponding to each agent’s map.

Values Meaning
0.0 Unexplored cell
0.3 Empty/explored cell
0.5 Obstacle

≥ 1 Id of corresponding agent
occupying that cell

Table 3.1: Meaning of values in each agent’s map

With the MultiAgentObservationSpace wrapper, the observation space is defined as a list with the

maps of all the agents, with the indices matching each agent’s id minus one, meaning that the observa-

tion with index zero corresponds to the map of agent number one.

As for the action space, for a single agent it takes one of four possible discrete actions depicted in

Table 3.2, there is one additional action for the multi-agent case, that is no-op standing for no-operation

to allow agents to not move in case it is more favourable. Using the MultiAgentActionSpace, the action

28

Figure 3.3: Flowchart of a basic OpenAI Gym application

space is the same but once again it becomes a list with the length of the number of agents, where each

value is the action assigned to the corresponding agent.

Values Corresponding action
0 Moving down
1 Moving left
2 Moving up
3 Moving right
4 No-op

Table 3.2: Meaning of each action

In Figure 3.3 and Appendix A.4, it is possible to see a flow chart that depicts the typical sequence

of the previously described functions in a OpenAI gym environment for a single-agent scenario. Its

simplicity is one of the reasons for its popularity. It consists of a loop with the desired number of episodes,

that encloses a chain of choosing actions and then applying them in the step function. The step function

then retrieves an observation, reward, the flag to whether the agent has entered a terminal state (done)

and some extra information stored in info. When the done flag is activated the episode ends, triggering

the reset of the environment, starting a new episode. The rendering is optional, but in this case it is done

in the beginning of the loop. Once all episodes have been completed, the environment is closed.

In a multi-agent case, the structure is maintained, but each of the fundamental functions returns a list

of variables, instead of a single reward the step function returns a list with the rewards for each agent,

the same for the observations, and so forth. So, for example, when defining the multi-agent environment

class, the step function would something similar to code found in the Listing 3.1 and the same for the

29

other functions.

Listing 3.1: Example of step function for a multi-agent OpenAI gym class

class MultiAgentEnv(gym.Env):
def step(self, action_n):

obs_n = []
reward_n = []
done_n = []
info_n = {'n': []}
...
return obs_n, reward_n, done_n, info_n

Since the structure for the multi-agent code is the same as the one in A.4, the actions for all agents

are chosen first and stored in action_n array and this array is then used as an argument for the step

function.

Inside the step function the order in which agents take action is randomized, thus avoiding any priority

among agents. Before making the action effective, a verification is done to check if the move is valid, a

collision with an obstacle has happened, if it takes the agent outside the maps’ bounds, or if the agent

gets stuck between positions. If the next move would result in a collision with another agent, then it

is canceled and the agent does not move - this decision was made expecting it would result in faster

learning. Regarding the getting stuck verification methods, this was implemented since a tendency for

an agent to get stuck between positions was verified, this will be explained further in Chapter 4.

Additionally, inside the step function it is verified which agents are in communication range of others.

In Figure 3.1 it is possible to see that the communication range of each agent is depicted by a square

line surrounding the agent with its corresponding colour. The square is formed by a number of c cells to

each direction of the center, where c corresponds to the defined communication range in the "setting.py"

file, in this case it is 3.0. This verification is carried out by checking the connected components in an

indirect graph where each node is an agent, using the auxiliary adjacency matrix comm_range (further

mentioned in Table 3.3 and the Depth First Search (DFS) algorithm (the idea for this comes from [97]).

Having the connected components, each agent’s explored map (corresponds to the updated map of

what it sees, also found bellow in Table 3.3) that is in range is then merged and a copy is saved in each,

replacing the old explored map. In Figures 3.5 and 3.4 it is possible to observe the moment when all

agents are in range of each other.

30

(a) Full view

(b) Each agent’s explored map

Figure 3.4: Merging of maps demo - before merging

(a) Full view

(b) Each agent’s explored map

Figure 3.5: Merging of maps demo - after merging

31

After merging the maps, if possible, the reward is calculated, and a verification on whether each

agent has reached a terminal state is done. The episode only ends when all agents have reached a

terminal state - this includes one of the following options:

• reaching the maximum number of steps (defined as 400, in the settings file);

• a collision with a wall or obstacle has happened;

• the agent goes outside the bounds of the map;

• a cyclic path has been found or in simpler terms the condition to be considered stuck has been

reached;

• the map has been explored by the percentage set in the settings file.

The reward system is explained in Chapter 4, since several values where experimented. The general

idea is that positive outcomes, such as successfully exploring the defined percentage of the map (in

the example in A.2, the value is 90%), the agent is rewarded with a large positive value, whereas in

the other cases (except the reaching the maximum number of steps) which correspond to harmful or

disadvantageous situations, the agent is penalized with a large negative reward. Regarding each new

cell that is explored, a pre-defined value is added for each - a copy of the previously explored map

is saved and then compared with the current map, by subtracting the number of non-zero cells, it is

possible to get the number of newly explored cells.

An overview of each global matrix that was created can be found in Table 3.3, considering that the

area to explore has height n and width m, the number of agents is a and i is an arbitrary index for one

agent. These variables alongside the Agent class gather all the necessary information to know the state

of every part of the environment.

Matrix Dimensions Purpose
groundTruthMap n x m Map with all the cells discovered

lidar_map n x m Simplified map used in lidar scans
_full_obs n x m Map with information gathered from all agents

agents[i].exploredMap n x m Each agent has a map with the information it has gathered

comm_range a x a Adjacency matrix, that represents which agents
are in communication range of other agents

Table 3.3: Overview of the global matrices created

Before advancing into the RL algorithm that chooses which action the agents take, it is worth men-

tioning that one feature related to rendering is the possibility to visualize each agent’s exploredMap by

setting the "printMap" option to true in "settings.py", in Figure 3.5(b) for example, it is possible to see this

feature.

32

3.3 Integration of RL algorithm

Advancing onto the algorithm, as stated the choice was to use DDDQN based on the work of [60]. In

order to add this algorithm to the environment, an implementation from Robbie Estes was used as a

foundation (the official github repository can be found in [98]) , who trained the network to play Joust,

Ms. Pac-Man , Super Mario and Space Invaders, using gym retro [95] (the official github repository can

be found in [96] - which takes classic video game roms into OpenAI Gym environments for RL training

of fully capable player agents and comes with integration for over a thousand games, from different

consoles such as Nintendo, Atari, NEC and Sega.

The architecture of a DDDQN can be seen in Figure 3.6 (this image is based on the image in [5]).

The network was prepared to have as input a stack of image frames of the game being played and

outputting a vector of Q-values for each action possible in the given state, taking the highest Q-value of

this vector will give the best action for that state.

At the time, the dimensions of the network were adapted to receive a matrix which corresponds to

the observation of the agent being trained. Initially, the matrix was converted to an image represented

by three matrices for the RGB values of the corresponding image and these were stacked, but the agent

was not learning as intended since the input space was to sparse. At the present time, the realization

that a misunderstanding happened during this step, since this work was not a video game, then there

was no need to use pre-processing of the video game frames and a few steps were removed - the map

was already represented by a single matrix with well defined values. The belief that one crucial step was

removed, namely, the stacking of frames which gives the network a sense of movement. This means

the results were obtained using a single map, which can be considered as a single frame instead of a

stack of frames - this will be further commented in Chapter 4.

Figure 3.6: Architecture of DDDQN (image based on image from [5])

Moving on to a brief description of the network, the first three layers are used to process the input

frames to extract features. After flattening, the information stream is divided into two components. To

explain this, a reminder that Q-values, Q(s,a), correspond to how good it is to be in a given state s and

33

taking an action a at that given state. This means Q(s,a) can be decomposed as the sum of V(s) - the

value of being at that state s - and A(s,a) - the advantage of taking action a at that state s (how much

better is to take this action versus all other possible actions at that state) - as can be seen in equation

3.1.

Q(s, a) = A(s, a) + V (s) (3.1)

Concerning the aggregation layer, to generate the Q values for each action in that state, it is nec-

essary to subtract the average advantage of all actions possible of the state, as evidenced in equation

3.2, in order to avoid the issue of identifiability in back propagation - not being able to identify A(s,a) and

V(s), given a certain Q(s,a).

Q(s, a) = V (s) +A(s, a)− 1

A

∑
a′

A(s, a′) (3.2)

Finally as explained before DDDQN takes advantage of the features of the Double DQN in order to

avoid overestimation of Q values. The accuracy of Q values depend on what actions have been tried

and what neighboring states have been explored. As a consequence, at the beginning of the training,

there is not enough information about the best action to take. Therefore, taking the maximum Q value

(which is noisy) as the best action to take can lead to false positives. If non-optimal actions are regularly

given a higher Q value than the optimal best action, then the learning will be unstable. The solution is

to use two networks to decouple the action selection from the target Q value generation. This is how

the Double DQN helps to reduce the overestimation of Q values and, as a consequence, helps training

faster and have more stable learning. The weights from the "q_eval" network (which is the name of the

model in the code) are copied to the "q_target" model after update_every number of episodes.

3.4 Features

To summarize, at present time, the main features of this environment are stated as follows:

• It can perform simulations with up to four agents;

• Each agent has a circular field of view with a pre-defined range, constrained by an emulated LiDAR,

this means the data is acquired as if there were laser scans, and each agent cannot "see" through

walls/obstacles - the LiDAR emulation was extracted from [80] and left unchanged;

• There is communication between agents, which allows exchange of information - merging of their

maps. There is an emulated communication range, which is delimited by a square with the agent

in its centers and that extends in cardinal directions by the pre-defined range.

34

3.5 Limitations

There are three limitations to this environment and will be exposed in the following bullet points:

• The behaviour of the LiDAR emulation should be something to be considered and improved in the

future;

• the misunderstanding in implementing the DDDQN did not allow to test the environment to its full

capabilities - by improving the observation space and tuning the network for instance, the algorithm

can be tested to its full capabilities;

• the limited implementation of other RL algorithms, such as stable-baselines3 [99]and other algo-

rithms available in Ray RLlib [100], which would serve as benchmark - given the incompatibilities

and struggles with package versions within the conda virtual environment, this was not imple-

mented given the limited time to develop this project.

3.6 Summary

To summarize, in this chapter an overview of the developed environment is presented, alongside its

features and limitations, the core algorithm used is explained. There is still space for improvements but

in the next chapter, it is possible to see it is a robust environment to develop RL algorithms in the context

of indoor exploration problems.

35

4
Results and Analysis

Contents

4.1 Experimental setup . 37

4.2 Results . 37

4.3 Discussion . 49

36

In this chapter, a compilation of the results obtained are presented. The goal was to test the per-

formance of the developed environment, finding the best parameters for learning, even though the hy-

perparameters of the neural network were not tuned. Nonetheless, some other important aspects were

tested:

1. influence of stuck verification methods, explained further in this chapter;

2. influence of reward values;

3. influence of number of agents

4. influence of communication

4.1 Experimental setup

All the simulations were executed on the author’s personal computer, with a Intel® Core™ i7-8750H

CPU @ 2.20GHz × 12 processor and NVIDIA Corporation GP107M [GeForce GTX 1050 Ti Mobile] /

Mesa Intel® UHD Graphics 630 (CFL GT2) graphics card. In A.1 Listing is a list of the requirements that

were used in a conda virtual environment.

As for the DDDQN’s hyperparameters, the values used are from the original source code for the

DDDQN [98] and are presented in Table 4.1.

Hyperparameter Value Purpose
batch_size 32 batch size
learn_every 10 interval of steps to fit model
update_every 10.000 interval of steps to update target model
alpha 0,0001 learning rate
gamma 0,99 discount factor
epsilon 1,0 exploration factor
epsilon_min 0,01 minimum exploration probability
epsilon_decay 0,99999 exponential decay rate of epsilon
memory_size 100.000 replay memory size

Table 4.1: DDDQN’s hyperparameters

4.2 Results

It was verified that for a single agent in a 16x16 dimension map with no obstacles and a maximum

numbers of 400 steps, it could get stuck between two positions and for that reason two simple methods

to verify if it was stuck were implemented:

37

• no stuck verification (no stuck) - there is no verification and it is shortly designated as "no stuck"

in the following plots.

• stuck verification method 1 (stuck 1) - In this method, if the agent has not discovered any new

cell for height*width of the map steps, then it is stuck. The reason for the height*width value is that

with 100% certainty any agent can transverse the whole map in that amount of steps, even thought

this value is the worst case scenario, since it means the agent passes through each cell one time.

For abbreviation, this method will be referred as "stuck 1".

• stuck verification method 2 (stuck 2) - For this method, an history of the past fifty positions of

the agent is saved, if the most frequent one is repeated at least twenty times, then it is considered

that the agent is stuck. This method will also be referred as "stuck 2".

Three scenarios with different values for rewards were tested, summarized in Table 4.2. The values

for scenario 1 are based on the work [80] and the values for scenario number 2 are based from [60].

Finally, scenario 3 was created from the previous with minor adjustments.

• Scenario 1 has the exact same values as [80], having the movement cost or the cost per step be

half of the reward gained when discovering a new cell, correspondingly -0,5 and +1. Additionally,

all the negative actions (collision with obstacles, going outside the bounds of the map and getting

stuck) have the same value of -400 and the bonus reward, which is assigned when exploring a

given percentage of the map (in this case 90%), with a value of +400.

• Scenario 2 uses the exact values of negative rewards for collisions with obstacles and getting out

of the bounds of the map as [60], precisely -100.000, but a different value for getting stuck, being

-10.000. The aim of having different values is such that collisions and getting out of the bounds

have greater consequences in a real scenario than being stuck. The values for movement cost and

reward for discovering a new cell are also the same as in [60], being -1 and +10 correspondingly.

• Scenario 3 seeks to test the weight of rewarding a bonus as done in [80], adding the assumption

that every negative action has the same value, and the movement cost has the symmetric value of

the reward for exploring a new cell. Basically, all have the same value but negative actions have a

negative value, while positive actions have positive value - therefore, movement cost has a value

of -10, while the reward per new cell discovered is +10. For every negative action the value is

-1.000 and the bonus reward is +1.000. For the value of each movement cost, the value -10 was

chosen to check if the agent would choose shorter routes, making each step more valuable, having

a proportion of one to one, instead of half as done in scenario 1.

In order to see which reward scenario would have a stabler and robust learning, each combination of

the three scenarios with the three possible stuck methods were tested in a 16x16 map with no obstacles

38

ValueName scenario 1 scenario 2 scenario 3 Purpose of the reward

Movement cost -0,5 -1 -10 Value that is discounted per step
Collision -400 -100000 -1000 Negative reward for colliding with an obstacle

Out of bounds -400 -100000 -1000 Negative reward for getting outside
of the bound of the map

Stuck -400 -10000 -1000 Negative reward when it is stuck
between positions

New cell discovered +1 +10 +10 Positive reward for discovering a new cell

Bonus reward +400 +10000 +1000 Positive reward when the given percentage
of the map is explored (in this case 90%)

Table 4.2: List of rewards for different scenarios

for 10.000 episodes. For every trained model, an evaluation was done after a pre determined number

of episodes, in this case every 200 or 500 episodes, and a record of it was saved, these results will be

commented alongside the presented graphs, even though it is not possible to present these videos in

this document. It is important to note that the moments of intermediary evaluation do not affect training,

they are only checkpoints to collect data.

A small note, in Appendix B it is possible to find zoomed out versions of some figures, where the

labels are not readable but the plots are easily discerned - precisely all figures related to the percentage

of the map explored in relation to the number of steps.

In Figure 4.1, it is possible to observe the score per episode for scenario 1, the score corresponds

to the sum of rewards during the entire episode. In each figure it is possible to see how long the training

lasted and in all the cases the time was directly linked with the number of times the agent got stuck, thus

a longer training means the agent got stuck more often.

Having this in mind, it can be verified that negative score values correspond to situations where a

negative outcome happened, but in scenario 1 it is not possible to verify which of the negative outcomes

occurred in each episode. On the other hand, every value of score above the bonus rewards value (400)

is associated to having explored 90% of the map.

By looking at the three graphs and the moving average with a period of 10, it seems that stuck

method 1 produces less negative outcomes and produces a stabler value regarding the score, while

stuck method 2 produces the most negative outcomes. But when looking at the percentage of the area

explored with respect to the number of episodes in each step, in Figure 4.2, it is possible to confirm that

stuck method 2 allows a faster and more complete exploration of the map.

Regarding the recordings of each stuck method, in the last evaluations, the agent learned how to

transverse the map in a circular clockwise or counter-clockwise motion which is the most efficient way,

as illustrated in Figure 4.3, with stuck methods 1 and 2. While with no stuck method the agent persists

to get stuck between positions.

39

(a) No stuck method

(b) Stuck method 1

(c) Stuck method 2

Figure 4.1: Scores per episode in scenario 1 with no obstacles

Figure 4.2: Percentage of the area explored with respect to the number of steps, in a 16x16 area with no obstacles
in scenario 1

40

Figure 4.3: Illustration of the optimal trajectory learnt in a 16x16 area with no obstacles in scenario 1 with stuck
method 1 and 2

Proceeding to scenario 2, in Figure 4.4, it can be observed that the moving average is very similar for

all three stuck methods. Looking at the reward values in this scenario, it is possible do discriminate the

moments in which collisions with obstacles occur or the moments where the agents get out of bounds

from the cases where the agent gets stuck. It appears that in stuck method 2 there are less identifiable

moments where it gets stuck.

(a) No stuck method

(b) Stuck method 1

(c) Stuck method 2

Figure 4.4: Scores per episode in scenario 2 with no obstacles

41

By watching the recordings, the same behaviour is observed, the agent also learns the circular

motion in order to explore the map in any stuck method, nevertheless with no stuck method the agent

still gets stuck. Moreover, in evaluations in the middle of the training, it was observed that the agent

explored longer trajectories, which makes sense given the ration between reward for each new cell

explored (+10) and the negative reward attributed to each step (-1).

It is noticeable in Figure 4.5 that using no stuck method or using stuck method 1 have a stabler

exploring process, however with stuck method 2 the number of steps never reaches the maximum value

of 400, and in some episodes achieves similar results in less steps than the other two approaches.

Figure 4.5: Percentage of the area explored with respect to the number of steps, in a 16x16 area with no obstacles
in scenario 2

42

Proceeding to scenario 3, in Figure 4.6, stuck method 2 seems to have less negative outcomes while

learning earlier how to avoid them - by looking at the moving average which crosses the zero score value

earlier (between the 1.020th and the 2.000th episode).

(a) No stuck method

(b) Stuck method 1

(c) Stuck method 2

Figure 4.6: Scores per episode in scenario 3 with no obstacles

With regard to the recordings, once again the behaviour is similar to the previous scenarios, in every

case, the circular pattern is learnt, although with no stuck method the agent still gets stuck and between

stuck method 2 and method 1, the first one gets stuck less times. Observing Figure 4.7, it is evident that

stuck method 1 seems to have a stabler curve, while stuck method 2 is able to explore more area with

less steps - most of the episodes with this method result in exploring the map in less that 275 episodes

in the successful cases which are the most frequent ones.

43

Figure 4.7: Percentage of the area explored with respect to the number of steps, in a 16x16 area with no obstacles
in scenario 3

As can be seen in Figure 4.8, the method that provides the best coverage in a fewer number of steps

is stuck method 2 with scenario 1.

Figure 4.8: Overview of percentage of the area explored with respect to the number of steps, in a 16x16 area with
no obstacles

Having these three scenarios into account and the results obtained with no obstacles, the combina-

tion of stuck method 2 with scenario 1 will be used for the next tests, in which five obstacles of size 3x3

are now inserted randomly in the map (this will be labeled as "obstacles 5" in some figures for short).

Firstly, a single agent was trained for a longer number of episodes, concretely 50.000 episodes, all

of the following tests were trained with this value. In Figure 4.9, it possible to observe that most of

the episodes result in a negative score which is associated with the augmented number of collisions, as

expected. By observing the moving average, it is visible that it has a small positive slope, which indicates

a tendency for the score to increase and less collisions to be occurring.

44

Figure 4.9: Score per episode for a single agent in scenario 1 and stuck method 2 with 5 obstacles

Looking at the recordings, it is possible to see in the last evaluations that the agent learns how to

avoid some obstacles, such as seen in Figure 4.10 - this evaluation was done on episode 48.000 and in

its next step the agent collides with an obstacle.

Figure 4.10: Illustration of a trajectory learnt in a 16x16 area with 5 obstacles in scenario 1 with stuck 2

In all following tests, the model trained with 50.000 iteration for a single-agent with stuck method 2 is

loaded, and the training of new models is done using only agent 1 (the blue one), while the remaining

agents choose random actions. In evaluation moments, the learnt model until that time is used by all the

other agents to choose their actions. The following models are trained with two agents in the map and

maintaining the stuck method 2, but in different communication scenarios.

Starting with the case where there are no communication, which corresponds to having the com-

munication range equal to zero. In Figure 4.11, it is possible to verify that in this case, with two non-

communicating agents, there is an increase in the number of episodes with a positive score. Observing

the recordings, it is noticeable that if any of the agents do not get stuck, both seem to try to take the

same path. In Figure 4.12, it is possible to see an example of this example, where they take similar

paths, but there are other cases where the path is identical.

45

Figure 4.11: Score per episode with two agents and rewards from scenario 1, with stuck method 2 and no commu-
nication

(a) Initial steps (b) One step before agent 2 col-
lides with an obstacle

Figure 4.12: Example of the trajectories by 2 agents with no communication

The next tests with two agents and the previously defined settings, introduce communication with a

range of 3.0 and 1.0 cells. Comparing the case with communication range 3.0 or just "comms 3" for

short with the case where the range is 1.0 ("comms 1"), the shorter range has a higher incidence of

positive scores, visible in Figures 4.14 and 4.13, respectively. The moving average in all the cases with

two agents has a very similar curve. Looking at the recordings, a similar behaviour to what was found

previously happens, if any of the agents do not get stuck, both seem to try to take the same path, as

can be seen in Figure 4.15 where the two agents do not enter each others communication range. When

agents enter each other’s communication range, they synchronize and start taking the same actions -

an explanation will be provided in the next section.

Figure 4.13: Score per episode with two agents, in scenario 1, with stuck method 2 and communication range 1.0

46

Figure 4.14: Score per episode with two agents, in scenario 1, with stuck method 2 and communication range 3.0

(a) Initial steps - before agent
2 gets out of bounds

(b) Last steps

Figure 4.15: Example of the trajectories by 2 agents with communication range 1.0

In Figure 4.16, it can be observed that the approach with no communication equalises to the ap-

proach with communication range 3.0 with fewer steps. This was expected since one of the goals of

having communication is to reduce the distance each agent as to traverse and avoid visiting areas pre-

viously visited by other agents.

Figure 4.16: Percentage of the area explored with respect to the number of steps, by 2 agents various communi-
cation ranges in a 16x16 area with 5 obstacles

The final test that was done has four agents with no communication, in the same setting as the pre-

vious tests: loading the model learnt by a single agent in a map with five obstacles and only one agent

47

trains the model (agent 1 - the blue one), in evaluation moments the trained model is used by each

agent. The choice to not use communications was due to the fact the agents synchronized movements

and got stuck when in communication range. In Figure 4.18, it can be observed that relatively to the

other previous multi-agent tests, the increased number of agents led to the increase of positive score

values. This was also expected since the higher the number of agents, the higher is the area each can

cover. By observing the recordings, it is possible to visualize that even on the last evaluations moments,

there are several agents that get stuck between positions or choose actions that move them towards

other agents, getting them stuck in the same position repeatedly and generally only one agent manages

to explore the map, as can be seen in Figure 4.17 - where agent 3 (yellow) gets stuck between two po-

sitions, agent 2 (green) and agent 1 (red) choose repeatedly to move in each other’s direction - since no

collisions between agents are allowed, they get stuck - and only agent 1 (blue) does a valuable trajectory.

(a) Initial steps (b) Last steps

Figure 4.17: Example of the trajectories by 4 agents with no communication - evaluation in episode 48.500

Figure 4.18: Score per episode with four agents and rewards from scenario 1, with stuck method 2 and no commu-
nications

Given the unexpected behaviour of several agents synchronizing, the comparison of all the multi-

agent cases with no communications regarding the percentage of the map that is explored per step is

compared in 4.19. As expected, the higher the number of agents, higher is the area covered in less

steps. In the multi-agent cases, the stuck scenarios are associated with the highest number of steps

and that is why the values of the percentage of the area explored decrease and even stagnate with

48

higher number of steps.

Figure 4.19: Percentage of the area explored with respect to the number of steps, by various number agents and
no communication ranges in a 16x16 area with 5 obstacles

Finally, in 4.20 all the multi-agents approaches are compared and it is evident that the four-agent

approach surpassed every other approach. This result was expected, for the reasons mentioned before.

However, the use of communications were expected to have a better performance - this will be further

analysed in the next section.

Figure 4.20: Overview of the percentage of the area explored with respect to the number of steps, in a 16x16 area
with 5 obstacles

4.3 Discussion

The first expected result that was verified was the fact that having more agents reduces the number of

steps it takes to explore a given space. By opposition, an unexpected behaviour was observed when

communications were introduced. A possible explanation can be due to the fact that the agent only

49

receives the explored map as an observation and this has a direct impact in the exploration processing,

concretely in the moments where all agents synchronize their decisions when in communication range,

since what they see is exactly the same. In order to improve this behaviour, changing the observation

space should provide faster learning and a more accurate behaviour, for example using a tuple with

the agent’s id, its position, their explored map and information about the other agents’ positions - a

similar approach was used in the ma-gym’s Predator-Prey environment. With these changes, each

agent should be able to identity themselves and differentiate itself from other agents when they merge

their maps, thus avoiding taking the same action as the other agents. Another improvement could be

providing a list of frontier points and known obstacles instead of the whole map, in an attempt that the

observation space would not be so sparse, hence improving and accelerating the learning process.

Another unexpected behaviour that was seen was the fact that the agents would get stuck between

positions. To explain this and as referred in the previous chapter, there is the belief that one crucial step

in the implementation of the DDDQN is missing, namely the stack of frames which provides the notion

of motion and past movements. The behaviour where the agents get stuck between positions seems to

be deeply related to this missing component. Unfortunately, since this error was detected in at a belated

stage of this thesis, it was not possible to present tests and results, but it is a common practice in the

implementation of the DDDQN whose inclusion can be noticed by the presented results.

Additionally, the fact that there are no collisions allowed between agents adds another undesired

behaviour, it was intended to accelerate the training process but instead it promotes the decision to go

against other agents without consequence, meaning that they get stuck choosing the same action of

moving in the direction of another agent repeatedly and being counter productive.

Another interesting observation, was the fact that with different ratios of reward for each new cell

explored and penalisation for each step taken, the agents seemed to add value to each step taken. For

instance, during training and looking at the recordings, when the reward for each new cell explored was

10 and the step cost was -10, the agent learnt in an earlier stage to take shorter routes, whereas when

the reward was 10 and the penalty was -1, the agent would take longer and more intricate paths. And

the middle term was using the second scenario’s reward system, where the reward was +1 and -0.5 was

the penalty for each step taken.

Despite these behaviours, it is possible to see that the DDDQN allows a single-agent to learn an

optimal path, such as the case where there are no obstacles and the agent learns a circular pattern,

in clockwise or counterclockwise motion. With the corrections mentioned in this section and the proper

tuning of the neural network, DDDQN shows promising results and the developed environment seems

to be simple and robust to develop and test more algorithms.

50

5
Conclusion

Contents

5.1 Conclusions . 52

5.2 System Limitations and Future Work . 52

51

In this final chapter, a summary of the achieved goals and conclusions that this study allowed to

gather, alongside the limitations and improvements that can be done are presented.

5.1 Conclusions

In this work, it was successfully developed a functional multi-agent OpenAI Gym environment for indoor

exploration in GNSS-denied environments, in which up to four agents can be simulated with a simple

emulated communication system where exploration information can be shared, concretely their maps.

It was possible to verify the impact that the lack of frame stacking in the DDDQN implementation has,

precisely, it removes the sense of direction of each agent, thus presenting unexpected behaviour such

as having agents stuck between positions. Before getting to this conclusion, simple methods to detect

whether agents are stuck were implemented, which overall did not solve the main issue.

Additionally, the impact of several agents was tested and as expected more agents is in general

a better solution. Unfortunately the impact of communication could not be properly tested. The results

showed that the agents could not identify themselves and when in reach of each other, they synchronized

their actions, not being able to search the area properly.

5.2 System Limitations and Future Work

Having reached the end of this project, it is far from being a mature solution, but it is a solid starting point

with many aspects to improve, such as:

• Resolving the misunderstanding in the implementation of the DDDQN, which did not allow to test

the environment to its full capabilities and it can be fixed with the proper adjustments mentioned in

Chapter 4;

• properly tuning the DDDQN, it should greatly improve performance and accelerate the training

process;

• it could also be interesting the addition of the 3D component, to which the DDDQN is proven to

have good results, as stated in Chapter 2;

• possibly improve the LiDAR emulation, this should produce more accurate results;

• the implementation of other RL algorithms, these should be added to serve as benchmark, such

as stable-baselines [99] and other algorithms available in Ray’s RLlib [100].

52

Bibliography

[1] S. Chen, W. Zhou, A.-S. Yang, H. Chen, B. Li, and C.-Y. Wen, “An end-to-end uav simulation

platform for visual slam and navigation,” Aerospace, vol. 9, no. 2, 2022. [Online]. Available:

https://www.mdpi.com/2226-4310/9/2/48

[2] G. Fevgas, T. Lagkas, V. Argyriou, and P. Sarigiannidis, “Coverage path planning methods

focusing on energy efficient and cooperative strategies for unmanned aerial vehicles,” Sensors,

vol. 22, p. 1235, 2 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/3/1235

[3] F. AlMahamid, S. Member, and K. Grolinger, “Reinforcement learning algorithms: An overview

and classification.” [Online]. Available: https://www.ieee.org/publications/rights/copyright-

[4] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai gym for

robotics: a toolkit for reinforcement learning using ros and gazebo,” 8 2016. [Online]. Available:

http://arxiv.org/abs/1608.05742

[5] T. Simonini, “Improvements in deep q learning: Dueling double dqn, prioritized experi-

ence replay, and fixed. . . ,” image source. [Online]. Available: https://www.freecodecamp.org/news/

improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

[6] TU Delft/MAVLab, “The drones explore the office environment to find disas-

ter ’victims’,” 2019, source of the cover image [accessed Feb 16, 2023].

[Online]. Available: https://www.imeche.org/news/news-article/swarm-of-tiny-drones-finds-%

27disaster-victims%27-with-minimal-computing-power

[7] N. Boonyathanmig, S. Gongmanee, P. Kayunyeam, P. Wutticho, and S. Prongnuch, “Design

and implementation of mini-uav for indoor surveillance.” IEEE, 3 2021, pp. 305–308. [Online].

Available: https://ieeexplore.ieee.org/document/9440350/

[8] I. Mademlis, V. Mygdalis, N. Nikolaidis, M. Montagnuolo, F. Negro, A. Messina, and

I. Pitas, “High-level multiple-uav cinematography tools for covering outdoor events,” IEEE

Transactions on Broadcasting, vol. 65, pp. 627–635, 9 2019. [Online]. Available: https:

//ieeexplore.ieee.org/document/8630599/

53

https://www.mdpi.com/2226-4310/9/2/48
https://www.mdpi.com/1424-8220/22/3/1235
https://www.ieee.org/publications/rights/copyright-
http://arxiv.org/abs/1608.05742
https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/
https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/
https://www.imeche.org/news/news-article/swarm-of-tiny-drones-finds-%27disaster-victims%27-with-minimal-computing-power
https://www.imeche.org/news/news-article/swarm-of-tiny-drones-finds-%27disaster-victims%27-with-minimal-computing-power
https://ieeexplore.ieee.org/document/9440350/
https://ieeexplore.ieee.org/document/8630599/
https://ieeexplore.ieee.org/document/8630599/

[9] J. Dong, K. Ota, and M. Dong, “Uav-based real-time survivor detection system in post-disaster

search and rescue operations,” IEEE Journal on Miniaturization for Air and Space Systems,

vol. 2, pp. 209–219, 12 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9440534/

[10] H. A. Foudeh, P. C.-K. Luk, and J. F. Whidborne, “An advanced unmanned aerial

vehicle (uav) approach via learning-based control for overhead power line monitoring: A

comprehensive review,” IEEE Access, vol. 9, pp. 130 410–130 433, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9528303/

[11] D. Rakesh, N. A. Kumar, M. Sivaguru, K. V. R. Keerthivaasan, B. R. Janaki, and R. Raffik, “Role

of uavs in innovating agriculture with future applications: A review.” IEEE, 10 2021, pp. 1–6.

[Online]. Available: https://ieeexplore.ieee.org/document/9675612/

[12] A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila, “Swarms of unmanned aerial

vehicles — a survey,” Journal of Industrial Information Integration, vol. 16, p. 100106, 12 2019.

[13] A. Chriki, H. Touati, H. Snoussi, and F. Kamoun, “Fanet: Communication, mobility models

and security issues,” Computer Networks, vol. 163, p. 106877, 11 2019. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1389128618309034

[14] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” pp. 703–712, 1993,

the first time SI was mentioned/defined. [Online]. Available: http://link.springer.com/10.1007/

978-3-642-58069-7_38

[15] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the unmanned aerial

vehicles (uavs): A comprehensive review,” Drones, vol. 6, p. 147, 6 2022. [Online]. Available:

https://www.mdpi.com/2504-446X/6/6/147

[16] M. Campion, P. Ranganathan, and S. Faruque, “Uav swarm communication and control

architectures: a review,” Journal of Unmanned Vehicle Systems, vol. 7, pp. 93–106, 6 2019.

[Online]. Available: http://www.nrcresearchpress.com/doi/10.1139/juvs-2018-0009

[17] B. Yamauchi, “A frontier-based approach for autonomous exploration.” IEEE Comput. Soc.

Press, 1997, pp. 146–151. [Online]. Available: http://ieeexplore.ieee.org/document/613851/

[18] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” vol. 30,

6 2011, pp. 846–894, in this paper it has been presented the results of a thorough analysis of

sampling-based algorithms for optimal path planning.

[19] J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based motion planning methods,”

Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 295–318, 5 2021.

[Online]. Available: https://www.annualreviews.org/doi/10.1146/annurev-control-061920-093753

54

https://ieeexplore.ieee.org/document/9440534/
https://ieeexplore.ieee.org/document/9528303/
https://ieeexplore.ieee.org/document/9675612/
https://linkinghub.elsevier.com/retrieve/pii/S1389128618309034
http://link.springer.com/10.1007/978-3-642-58069-7_38
http://link.springer.com/10.1007/978-3-642-58069-7_38
https://www.mdpi.com/2504-446X/6/6/147
http://www.nrcresearchpress.com/doi/10.1139/juvs-2018-0009
http://ieeexplore.ieee.org/document/613851/
https://www.annualreviews.org/doi/10.1146/annurev-control-061920-093753

[20] M. A. Hassan, G. Kulathunga, and A. Klimchik, “Exploration and mapping of an indoor

environment using multirotor aerial vehicle.” IEEE, 8 2021, pp. 1–5. [Online]. Available:

https://ieeexplore.ieee.org/document/9666129/

[21] K. Mcguire, “Indoor swarm exploration with pocket drones,” 11 2019. [Online]. Available:

https://doi.org/10.4233/uuid:48ed7edc-934e-4dfc-b35c-fe04d55caee1

[22] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning strategies for autonomous

exploration and mapping of unknown environments,” Autonomous Robots, vol. 33, pp. 427–444,

11 2012. [Online]. Available: http://link.springer.com/10.1007/s10514-012-9298-8

[23] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain coverage using an unmanned

aerial vehicle.”

[24] U. S. Technology, “Drone lidar airborne lidar systems for uav.” [Online]. Available:

https://www.unmannedsystemstechnology.com/expo/drone-lidar/

[25] G. Torres, “Photogrammetry vs. lidar: what sensor to choose for a given application.” [Online].

Available: https://wingtra.com/drone-photogrammetry-vs-lidar/

[26] Mathworks, “What is slam?” [Online]. Available: https://www.mathworks.

com/discovery/slam.htmlhttps://www.mathworks.com/discovery/kalman-filter.htmlhttps:

//www.mathworks.com/help/nav/ug/perform-lidar-slam-using-3d-lidar-point-clouds.html

[27] B. Gerkey, “gmapping ros package.” [Online]. Available: https://wiki.ros.org/gmapping

[28] ——, “slam_karto ros package.” [Online]. Available: https://wiki.ros.org/slam_karto

[29] Gazebo, “Gazebo official website.” [Online]. Available: https://gazebosim.org/home

[30] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical

simulation for autonomous vehicles,” in Field and Service Robotics, 2017. [Online]. Available:

https://arxiv.org/abs/1705.05065

[31] AirSim, “Airsim official website.” [Online]. Available: https://microsoft.github.io/AirSim/build_linux/

[32] NS-3, “Ns-3 official website.” [Online]. Available: https://www.nsnam.org/

[33] N. Perumal, T. Kalaiselvi, P. Nagaraja, Z. A. Basith, R. Scholar, and M. P. Scholar, “A

comprehensive study on glowworm swarm optimization,” 2017, has a table comparing 4 SI (Swarm

Intelligence) algorithms. [Online]. Available: https://www.researchgate.net/publication/313401910

55

https://ieeexplore.ieee.org/document/9666129/
https://doi.org/10.4233/uuid:48ed7edc-934e-4dfc-b35c-fe04d55caee1
http://link.springer.com/10.1007/s10514-012-9298-8
https://www.unmannedsystemstechnology.com/expo/drone-lidar/
https://wingtra.com/drone-photogrammetry-vs-lidar/
https://www.mathworks.com/discovery/slam.html https://www.mathworks.com/discovery/kalman-filter.html https://www.mathworks.com/help/nav/ug/perform-lidar-slam-using-3d-lidar-point-clouds.html
https://www.mathworks.com/discovery/slam.html https://www.mathworks.com/discovery/kalman-filter.html https://www.mathworks.com/help/nav/ug/perform-lidar-slam-using-3d-lidar-point-clouds.html
https://www.mathworks.com/discovery/slam.html https://www.mathworks.com/discovery/kalman-filter.html https://www.mathworks.com/help/nav/ug/perform-lidar-slam-using-3d-lidar-point-clouds.html
https://wiki.ros.org/gmapping
https://wiki.ros.org/slam_karto
https://gazebosim.org/home
https://arxiv.org/abs/1705.05065
https://microsoft.github.io/AirSim/build_linux/
https://www.nsnam.org/
https://www.researchgate.net/publication/313401910

[34] L. M. Pyke and C. R. Stark, “Dynamic pathfinding for a swarm intelligence based uav control

model using particle swarm optimisation,” Frontiers in Applied Mathematics and Statistics, vol. 7,

11 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fams.2021.744955/full

[35] A. Tam, “A gentle introduction to particle swarm optimization,” 9 2021. [Online]. Available:

https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/

[36] J. TORRES.AI, “Deep reinforcement learning explained,” pp. 1–2, 7 2020. [Online]. Available:

https://torres.ai/deep-reinforcement-learning-explained-series/

[37] C. Nicholson, “A beginner’s guide to deep reinforcement learning.” [Online]. Available:

https://wiki.pathmind.com/deep-reinforcement-learning#three

[38] Y. Wang, P. Wang, J. Zhang, Z. Cui, X. Cai, W. Zhang, and J. Chen, “A novel bat algorithm

with multiple strategies coupling for numerical optimization,” Mathematics, vol. 7, p. 135, 2 2019.

[Online]. Available: https://www.mdpi.com/2227-7390/7/2/135

[39] M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart, and J. Nieto, “An informative

path planning framework for uav-based terrain monitoring,” Autonomous Robots, vol. 44, pp.

889–911, 7 2020. [Online]. Available: http://link.springer.com/10.1007/s10514-020-09903-2

[40] X. Zhou, F. Gao, X. Fang, and Z. Lan, “Improved bat algorithm for uav path planning in

three-dimensional space,” IEEE Access, vol. 9, pp. 20 100–20 116, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9334996/

[41] J. Weiss, “How do you compare ns-3 and omnet++ for wireless ad hoc net-

work simulations?” 2023. [Online]. Available: https://www.linkedin.com/advice/0/

how-do-you-compare-ns-3-omnet-wireless

[42] F. Foundation, “Announcing the farama foundation,” 10 2022. [Online]. Available: https:

//farama.org/Announcing-The-Farama-Foundation

[43] C.-C. Peng and R. He, “A concept for high precision digital terrain 3d mapping using uavs and

multiple solid state lidars,” in 2022 IEEE International Conference on Consumer Electronics -

Taiwan, July 2022, pp. 457–458.

[44] M. Aljehani, M. Inoue, and T. Yokemura, “Particle swarm optimization algorithm presented in

sysml and applied in multi-uav system,” vol. 2021-January. IEEE, 1 2021, pp. 1–4. [Online].

Available: https://ieeexplore.ieee.org/document/9427618/

[45] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable slam system with

full 3d motion estimation,” in Proc. IEEE International Symposium on Safety, Security and Rescue

Robotics (SSRR). IEEE, November 2011. [Online]. Available: https://wiki.ros.org/hector_slam

56

https://www.frontiersin.org/articles/10.3389/fams.2021.744955/full
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://torres.ai/deep-reinforcement-learning-explained-series/
https://wiki.pathmind.com/deep-reinforcement-learning#three
https://www.mdpi.com/2227-7390/7/2/135
http://link.springer.com/10.1007/s10514-020-09903-2
https://ieeexplore.ieee.org/document/9334996/
https://www.linkedin.com/advice/0/how-do-you-compare-ns-3-omnet-wireless
https://www.linkedin.com/advice/0/how-do-you-compare-ns-3-omnet-wireless
https://farama.org/Announcing-The-Farama-Foundation
https://farama.org/Announcing-The-Farama-Foundation
https://ieeexplore.ieee.org/document/9427618/
https://wiki.ros.org/hector_slam

[46] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic world,” Journal of Open

Source Software, vol. 6, p. 2783, 5 2021. [Online]. Available: https://wiki.ros.org/slam_toolbox

[47] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam.” [Online].

Available: https://wiki.ros.org/cartographer

[48] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov decision processes

in robotics: A survey,” 9 2022. [Online]. Available: http://arxiv.org/abs/2209.10342http:

//dx.doi.org/10.1109/TRO.2022.3200138

[49] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-

miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforce-

ment learning,” Nature, vol. 518, pp. 529–533, 2 2015.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement learning.”

[51] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,

“Openai gym,” 6 2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[52] Gym, “Gym documentation.” [Online]. Available: https://www.gymlibrary.dev/

[53] V. Ermakov, “Mavro ros package.” [Online]. Available: https://wiki.ros.org/mavros

[54] QGroundControl, “Qgroundcontrol simulator.” [Online]. Available: http://qgroundcontrol.com/

[55] M. Calvo-Fullana, D. Mox, A. Pyattaev, J. Fink, V. Kumar, and A. Ribeiro, “Ros-netsim: A

framework for the integration of robotic and network simulators,” 1 2021. [Online]. Available:

http://arxiv.org/abs/2101.10113

[56] G. Battocletti, R. Urban, S. Godio, and G. Guglieri, “Rl-based path planning for autonomous

aerial vehicles in unknown environments.” American Institute of Aeronautics and Astronautics, 8

2021. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2021-3016

[57] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” 9 2015. [Online]. Available:

http://arxiv.org/abs/1509.02971

[58] B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration with a decentralized

multi-uav system,” 9 2022. [Online]. Available: http://arxiv.org/abs/2209.08533

57

https://wiki.ros.org/slam_toolbox
https://wiki.ros.org/cartographer
http://arxiv.org/abs/2209.10342 http://dx.doi.org/10.1109/TRO.2022.3200138
http://arxiv.org/abs/2209.10342 http://dx.doi.org/10.1109/TRO.2022.3200138
http://arxiv.org/abs/1606.01540
https://www.gymlibrary.dev/
https://wiki.ros.org/mavros
http://qgroundcontrol.com/
http://arxiv.org/abs/2101.10113
https://arc.aiaa.org/doi/10.2514/6.2021-3016
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2209.08533

[59] D. Klimenko, J. Song, and H. Kurniawati, “Tapir: A software toolkit for approximating and adapting

pomdp solutions online.” [Online]. Available: http://robotics.itee.uq.

[60] A. Seel, F. Kreutzjans, B. Kuster, M. Stonis, and L. Overmeyer, “Deep reinforcement learning

based uav for indoor navigation and exploration in unknown environments.” IEEE, 4 2022, pp.

388–393. [Online]. Available: https://ieeexplore.ieee.org/document/9782602/

[61] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,

“Dueling network architectures for deep reinforcement learning,” 11 2015. [Online]. Available:

http://arxiv.org/abs/1511.06581

[62] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” 9

2015. [Online]. Available: http://arxiv.org/abs/1509.06461

[63] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Automatic drone navigation in realistic 3d landscapes

using deep reinforcement learning,” in 2019 6th International Conference on Control, Decision

and Information Technologies (CoDIT), April 2019, pp. 1072–1077.

[64] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “gym-gazebo github repository.”

[Online]. Available: https://github.com/erlerobot/gym-gazebo

[65] G. Rummery and M. Niranjan, “On-line q-learning using connectionist systems,” Technical Report

CUED/F-INFENG/TR 166, 11 1994.

[66] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning to fly – a gym

environment with pybullet physics for reinforcement learning of multi-agent quadcopter control,” 3

2021. [Online]. Available: http://arxiv.org/abs/2103.02142

[67] ——, “gym-pybullet-drones github repository.”

[68] Bullet, “Bullet real-time physics simulation.” [Online]. Available: https://pybullet.org/wordpress/

[69] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare: A flexible quadrotor

simulator,” in Conference on Robot Learning, 2020.

[70] Song, Yunlong, Naji, Selim, , Kaufmann, Elia, Loquercio, Antonio, Scaramuzza, and Davide,

“Flightmare github repository.” [Online]. Available: https://github.com/uzh-rpg/flightmare

[71] N. G. Lopez, Y. L. E. Nuin, E. B. Moral, L. U. S. Juan, A. S. Rueda, V. M. Vilches,

and R. Kojcev, “gym-gazebo2, a toolkit for reinforcement learning using ros 2 and gazebo,”

https://github.com/AcutronicRobotics/gym-gazebo2, 3 2019.

58

http://robotics.itee.uq.
https://ieeexplore.ieee.org/document/9782602/
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1509.06461
https://github.com/erlerobot/gym-gazebo
http://arxiv.org/abs/2103.02142
https://pybullet.org/wordpress/
https://github.com/uzh-rpg/flightmare

[72] ——, “gym-gazebo2 github repository.” [Online]. Available: https://github.com/AcutronicRobotics/

gym-gazebo2

[73] Bitcraze, “Crazyflie 2.1.” [Online]. Available: https://store.bitcraze.io/products/crazyflie-2-1

[74] “gym_px4 github repository.” [Online]. Available: https://github.com/Benykoz/gym_px4

[75] Zamora, Iker, Lopez, N. Gonzalez, Vilches, V. Mayoral, Cordero, and A. Hernandez, “gym-

gazebo-px4 github repository.” [Online]. Available: https://github.com/HHM98/gym-gazebo-px4/

tree/master

[76] D. Brunori, S. Colonnese, F. Cuomo, and L. Iocchi, “A reinforcement learning environment for

multi-service uav-enabled wireless systems,” 5 2021. [Online]. Available: http://arxiv.org/abs/

2105.05094http://dx.doi.org/10.1109/PerComWorkshops51409.2021.9431048

[77] ——, “Multiuav-openaigym github repository,” https://github.com/DamianoBrunori/MultiUAV-

OpenAIGym. [Online]. Available: https://github.com/DamianoBrunori/MultiUAV-OpenAIGym

[78] “Third-party environments on openai gym’s official website.” [Online]. Available: https:

//www.gymlibrary.dev/environments/third_party_environments/

[79] “Third-party environments on gymnasium’s official website.” [Online]. Available: https:

//gymnasium.farama.org/environments/third_party_environments/

[80] D. I. Koutras, A. C. Kapoutsis, A. A. Amanatiadis, and E. B. Kosmatopoulos, “Marsexplorer:

Exploration of unknown terrains via deep reinforcement learning and procedurally generated

environments,” Electronics, vol. 10, p. 2751, 11 2021. [Online]. Available: https://www.mdpi.com/

2079-9292/10/22/2751

[81] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2 2016. [Online].

Available: http://arxiv.org/abs/1602.01783

[82] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,

M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” 10

2017. [Online]. Available: http://arxiv.org/abs/1710.02298

[83] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” 7 2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[84] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor,” 1 2018. [Online]. Available:

http://arxiv.org/abs/1801.01290

59

https://github.com/AcutronicRobotics/gym-gazebo2
https://github.com/AcutronicRobotics/gym-gazebo2
https://store.bitcraze.io/products/crazyflie-2-1
https://github.com/Benykoz/gym_px4
https://github.com/HHM98/gym-gazebo-px4/tree/master
https://github.com/HHM98/gym-gazebo-px4/tree/master
http://arxiv.org/abs/2105.05094 http://dx.doi.org/10.1109/PerComWorkshops51409.2021.9431048
http://arxiv.org/abs/2105.05094 http://dx.doi.org/10.1109/PerComWorkshops51409.2021.9431048
https://github.com/DamianoBrunori/MultiUAV-OpenAIGym
https://www.gymlibrary.dev/environments/third_party_environments/
https://www.gymlibrary.dev/environments/third_party_environments/
https://gymnasium.farama.org/environments/third_party_environments/
https://gymnasium.farama.org/environments/third_party_environments/
https://www.mdpi.com/2079-9292/10/22/2751
https://www.mdpi.com/2079-9292/10/22/2751
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1801.01290

[85] J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. Santos, R. Perez,

C. Horsch, C. Dieffendahl, N. L. Williams, Y. Lokesh, and P. Ravi, “Pettingzoo: Gym for multi-agent

reinforcement learning,” 9 2020. [Online]. Available: http://arxiv.org/abs/2009.14471

[86] A. Koul, “ma-gym: Collection of multi-agent environments based on openai gym.” https://github.

com/koulanurag/ma-gym, 2019.

[87] J. J. Tai, J. Wong, M. Innocente, N. Horri, J. Brusey, and S. K. Phang, “Pyflyt – uav simulation

environments for reinforcement learning research,” 4 2023, http://arxiv.org/abs/2304.01305; https:

//pypi.org/project/PyFlyt/.

[88] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-

critic for mixed cooperative-competitive environments,” 6 2017. [Online]. Available: http:

//arxiv.org/abs/1706.02275

[89] I. Mordatch and P. Abbeel, “Emergence of grounded compositional language in multi-agent popu-

lations,” arXiv preprint arXiv:1703.04908, 2017.

[90] R. Low, Y. Wu, A. Tamar, A. Tamar, P. Abbeel, and I. Mordatch, “multiagent-particle-envs github

repository.” [Online]. Available: https://github.com/openai/multiagent-particle-envs

[91] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S.

Castro, and J. Terry, “Minigrid & miniworld: Modular & customizable reinforcement learning en-

vironments for goal-oriented tasks,” CoRR, vol. abs/2306.13831, 2023, [Online] Available: https:

//github.com/Farama-Foundation/Minigrid; https://github.com/Farama-Foundation/Miniworld.

[92] ——, “Minigrid github repository.” [Online]. Available: https://github.com/Farama-Foundation/

Minigrid

[93] ——, “Miniworld github repository,” https://github.com/Farama-Foundation/Miniworld. [Online].

Available: https://github.com/Farama-Foundation/Miniworld

[94] “Pettingzoo github repository.”

[95] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta learn fast: A new benchmark for

generalization in rl,” arXiv preprint arXiv:1804.03720, 2018.

[96] Nichol, Alex, Pfau, Vicki, Hesse, Christopher, Klimov, Oleg, Schulman, and John, “Openai retro

github repository.” [Online]. Available: https://github.com/openai/retro

[97] GeeksforGeeks, “Connected components in an undirected graph.” [Online]. Available:

https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/

60

http://arxiv.org/abs/2009.14471
https://github.com/koulanurag/ma-gym
https://github.com/koulanurag/ma-gym
http://arxiv.org/abs/2304.01305
https://pypi.org/project/PyFlyt/
https://pypi.org/project/PyFlyt/
http://arxiv.org/abs/1706.02275
http://arxiv.org/abs/1706.02275
https://github.com/openai/multiagent-particle-envs
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Miniworld
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Miniworld
https://github.com/openai/retro
https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/

[98] R. Estes, “Github repository with implementation of dddqn.” [Online]. Available: https:

//github.com/rjalnev/DDDQN/tree/master

[99] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-

baselines3: Reliable reinforcement learning implementations,” pp. 1–8, 2021. [Online]. Available:

https://github.com/DLR-RM/stable-baselines3.

[100] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan, and

I. Stoica, “Rllib: Abstractions for distributed reinforcement learning,” 12 2017. [Online]. Available:

http://arxiv.org/abs/1712.09381

[101] A. Fernandes, “Indoorexplorers github repository.” [Online]. Available: https://github.com/

AlexaFernandes/IndoorExplorers/tree/multi_agents

61

https://github.com/rjalnev/DDDQN/tree/master
https://github.com/rjalnev/DDDQN/tree/master
https://github.com/DLR-RM/stable-baselines3.
http://arxiv.org/abs/1712.09381
https://github.com/AlexaFernandes/IndoorExplorers/tree/multi_agents
https://github.com/AlexaFernandes/IndoorExplorers/tree/multi_agents

A
Code of Project

In this appendix, it is possible to find a compilation of parts of the code that are relevant to mention

alongside with some definitions.

The list of requirements to install before using the IndoorExplorers environment:

Listing A.1: requirements.txt

colorama==0.4.4
gym==0.20.0
gym_retro==0.8.0
imageio==2.31.1
ma_gym.egg==info
matplotlib==3.3.2
numpy==1.24.3
opencv_python==4.4.0.46
opencv_python_headless==4.3.0.36
pandas==1.1.4
Pillow==10.0.0

62

Pillow==10.1.0
pygame==2.0.0
scipy==1.5.4
seaborn==0.12.2
setuptools==68.2.0
tensorflow==2.13.0

Example of the settings file that defines important variables, related to each agent, the creation of

the map and the rendering options:

Listing A.2: settings.py

DEFAULT_CONFIG={
======== TOPOLOGY =======
approach (centralized or not centralized)
"approach": False, #centralized approach not implemented
number of agents
"n_agents": 4,
general configuration for the topology of operational area
"random_spawn": True, # if set to true, initial pos are ignored
if random_spawn is set to False, then this list of pos is used to spawn each agent

correspondently:
"initial": [[0,0],

[0,2],
[3,0],
[3,1]
],

"size":[16,16], #size of the map
configuration regarding the movements of uav
"percentage_explored": 0.9, #goal percentage of the map to be explored

======== ENVIROMENT =======
configuration regarding the random map generation
absolute number of obstacles, randomly placed in env
"obstacles":5,
if rows/colums activated the obstacles will be placed in a semi random
spacing
"number_rows":None,
"number_columns":None,
noise activated only when row/columns activated
maximum noise on each axes
"noise":[0,0],
margins expressed in cell if rows/columns not activated

63

"margins":[1, 1],
obstacle size expressed in cell if rows/columns not activated
"obstacle_size":[3,3],

flag to activate the verification check of an agent being stuck
"check_stuck": True,
method to check if it is stuck

#1: count the number of steps where the agent does not discover any new cell, if it
reaches height*width => agent is stuck

#2: registers the last 50 positions, and if the most common one is repeated 10 times,
then it is stuck

"stuck_method": 2,

max number of steps for the environment
"max_steps":400,

======== REWARDS ===========
"movementCost": 10, #this is discounted for every time step/every movement made (don't put

the minus sign!!)
"new_cell_disc_reward": 10, #reward value for each new cell discovered
"bonus_reward": 1000, #reward for exploring "percentage_explored"% of the map
"stuck_reward": -1000, #penalty for getting stuck between positions
"collision_reward":-1000, #penalty for colliding with walls
"out_of_bounds_reward":-1000, #penalty for going out of the bounds of the map

======== SENSORS | LIDAR =======
"lidar_range":3, #defines the LiDAR range
"lidar_channels":32,

======== COMMUNICATION =======
"comm_range": 3.0, #defines the communication range of each agent

======== VIEWER =========
"viewer":{"width":21*30,

"height":21*30,
"title":"Indoor-Explorers-V01",
"drone_img":'/home/thedarkcurls/IndoorExplorers/img/drone.png',
"obstacle_img":'/home/thedarkcurls/IndoorExplorers/img/stone_black2.png',
"background_img":'/home/thedarkcurls/IndoorExplorers/img/wood_floor.jpg',
"light_mask":"/home/thedarkcurls/IndoorExplorers/img/light_350_hard.png",
"night_color":(20, 20, 20),
"draw_lidar":True, #not used
"draw_grid":True, #not used
"draw_traceline":False, #not used

64

"print_map": True, #enables the visualization of the map of each agent
individualy, when rendering is active

"print_prompts": False #enables the visualization of the map of each agent
individualy, when rendering is active

}
}

Definition of the agent class:

Listing A.3: Agent class

class Agent(object):
def __init__(self):

super(Agent, self).__init__()
self.name = ''
self.id = None
self.pos = None #position
self.reward = 0
self.done = False
#each agent has its own explored map
self.exploredMap = []
self.pastExploredMap = []
#flag to signal stuck status
self.stuck = 0
#flag for collisions
self.collision = False
#flag for out of bounds status
self.out_of_bounds = False
#communication range
self.c_range = 3.0
communication noise amount
self.c_noise = None #not implemented
color
self.color = None
state
self.state = None
action
self.action = None

#it's considered in range, inside a square with distance of c_range squares around the
agent

def in_range(self, agent2):
delta_pos = abs(np.subtract(np.array(self.pos), np.array(agent2.pos)))
if delta_pos[0] > self.c_range*2 or delta_pos[1] > self.c_range*2 :

65

return False
else:

return True

#checks if the agent has not collided or out of bounds
def is_alive(self):

return (not self.collision) and (not self.out_of_bounds)

A basic example of an OpenAI Gym code:

Listing A.4: Example of a basic OpenAI gym code

if __name__ == "__main__":
#creation of the environment
env = gym.make('indoor_explorers:exploConf-v01')

#reset environment
observation = env.reset()

#for 100 episodes:
for _ in range(100):

env.render() #render environment

#choose action
action = env.action_space.sample() #your agent here (in this case takes random

actions -> the goal is to use DDDQN)

#apply action inside the step function
observation, reward, done, info = env.step(action, True)

#while the agent is not done the episode does not end
if done:

observation = env.reset() #once it is done, it resets
time.sleep(0.3) #add a little waiting time for visualization

env.close()

66

B
Larger figures

Figure B.1: [Fig.4.2 zoomed out] Percentage of the area explored with respect to the number of steps, in a 16x16
area with no obstacles in scenario 1

67

Figure B.2: [Fig.4.5 zoomed out] Percentage of the area explored with respect to the number of steps, in a 16x16
area with no obstacles in scenario 2

Figure B.3: [Fig.4.7 zoomed out] Percentage of the area explored with respect to the number of steps, in a 16x16
area with no obstacles in scenario 3

68

Figure B.4: [Fig.4.8 zoomed out] Overview of percentage of the area explored with respect to the number of steps,
in a 16x16 area with no obstacles

Figure B.5: [Fig.4.16 zoomed out] Percentage of the area explored with respect to the number of steps, by 2 agents
various communication ranges in a 16x16 area with 5 obstacles

69

Figure B.6: [Fig. 4.19 zoomed out] Percentage of the area explored with respect to the number of steps, by various
number agents and no communication ranges in a 16x16 area with 5 obstacles

Figure B.7: [Fig.4.20 zoomed out]Overview of the percentage of the area explored with respect to the number of
steps, in a 16x16 area with 5 obstacles

70

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Objective
	1.2 Document outline

	2 Background and Related work
	2.1 Architecture
	2.1.1 Data acquisition
	2.1.1.A Choice of sensors
	2.1.1.B Choice of data storage/type of map

	2.1.2 SLAM (Simultaneous Localization and Mapping)
	2.1.3 Path Planning
	2.1.3.A Frontier-based methods
	2.1.3.B Sampling-based methods
	2.1.3.C Swarm Intelligence (SI)
	2.1.3.D Deep Reinforcement Learning (DRL)

	2.2 Simulation Environment
	2.2.1 Necessary components
	2.2.2 Available options
	2.2.2.A Autopilot
	2.2.2.B Physics simulator and rendering
	2.2.2.C Network simulators
	2.2.2.D AI framework

	2.2.3 Related projects

	2.3 Summary

	3 Developed work
	3.1 Assumptions
	3.2 Description of the developed environment
	3.3 Integration of RL algorithm
	3.4 Features
	3.5 Limitations
	3.6 Summary

	4 Results and Analysis
	4.1 Experimental setup
	4.2 Results
	4.3 Discussion

	5 Conclusion
	5.1 Conclusions
	5.2 System Limitations and Future Work
	Bibliography

	Bibliography
	Appendix A

	A Code of Project
	Appendix B

	B Larger figures

