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Abstract

Increased attention to RISC-V open Instruction Set Architecture (ISA), has fueled its move from

embedded devices to the high-performance computing arena, with the proliferation of RISC-V-based

accelerators. However, the absence of powerful performance monitoring tools often results in poorly

optimized applications and, consequently, limited computing performance. While the RISC-V ISA already

defines a Hardware Performace Monitor and offers support for the Linux perf_events subsystem, research

and development on RISC-V-based devices have been more focused on architectures and compilers

rather than tools to support monitoring performance. To overcome this limitation, the introduction of PAPI

library support for RISC-V processors is proposed in this thesis, and a Precise Event Sampling system

specification compatible with future PAPI integration is presented along with a minimal implementation

proof-of-concept. The conducted testing and evaluation of the PAPI port were carried out on a SiFive

Unmatched board, but the proposed changes, and the corresponding implementation, are easily portable

to other systems. The proof of concept for RISC-V Precise Event Sampling was implemented on a CVA6

processor.

It was found that, when compared to directly using perf_events, PAPI presents a large overhead;

83360µs in comparison with perf_events 100.24µs . Nevertheless, most of it (81200µs) is concentrated in

the initialization of the library, which only occurs once per program execution.

Keywords: RISC-V Processors, Performance Monitoring, Precise Event Sampling,
PAPI
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Resumo

A crescente atenção dada à arquitetura de código aberto RISC-V impulsionou a sua transição de

dispositivos embedded para a arena de computação de alto desempenho, com a proliferação de acelera-

dores baseados em RISC-V. No entanto, a ausência de ferramentas de monitorização de desempenho

frequentemente resulta em aplicações pouco otimizadas e, consequentemente, num desempenho de

computação limitado. Embora a arquitetura RISC-V já defina um Monitor de Desempenho de Hardware e

ofereça suporte para o subsistema perf_events do Linux, a pesquisa e o desenvolvimento em dispositivos

baseados em RISC-V têm-se concentrado mais em arquiteturas e compiladores do que em ferramentas

de suporte à monitorização de desempenho. Para superar essa limitação, a introdução do suporte à

biblioteca PAPI para processadores RISC-V é proposta neste documento, juntamente com a apresenta-

ção de uma especificação do sistema de Amostragem Precisa de Eventos compatível com uma futura

integração no PAPI, juntamente com uma prova de conceito de implementação mínima. Os testes e a

avaliação do PAPI foram realizados em uma placa SiFive Unmatched, mas as alterações propostas e a

implementação correspondente são facilmente portáveis para outros sistemas. A prova de conceito para

a Amostragem Precisa de Eventos em RISC-V foi implementada num processador CVA6.

Foi constatado que, em comparação com o uso direto do perf_events, o PAPI apresenta um overhead

significativo; 83360µs em comparação com 100.24µs do perf_events. No entanto, a maior parte (81200µs)

está concentrada na inicialização da biblioteca, que ocorre apenas uma vez por execução do programa.

Palavras-Chave: Processadores RISC-V, Monitorização de Desempenho, Amostragem
Precisa de Eventos, PAPI
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CHAPTER 1

Introduction
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In recent decades, microprocessors and computing technologies have found a way into almost all

aspects of both our personal and collective lives. They have allowed humanity to develop in most areas

of knowledge and given us the tools to enhance our standard of living to previously unimaginable heights.

For example, areas like autonomous systems, medicine research and climate modeling have substantially

benefited from the advancements in computing technology. In more recent times, the pursuit of High

Performance Computing (HPC) in conjunction with data storage improvements allowed for a proliferation

of cloud, data science and machine learning applications that together have created a platform in which

even more scientific work can be developed.

For this trend to continue, all of the aforementioned technologies must be optimized to their greatest

potential. The performance of computing technologies is evaluated not only purely in calculations per

second, but also in how energetically efficient they are, being that the latter is recognized as the main

challenge to achieve the milestone of exascale computing, or in other terms, executing 1018 calculations

per second. Even though this barrier has been crossed, there is much to be done in terms of efficiency.

The European Commission has acknowledged the strategic benefits of energetically efficient HPC

by supporting the creation of the EuroHPC Joint Undertaking, an entity that has the objective of pooling

European resources to buy, build and deploy supercomputers in the European Union (EU). EuroHPC is

trying to achieve this by doing two things: firstly, creating a pan-European supercomputing infrastructure;

and secondly, supporting the research and innovation of microprocessor and computing technologies

inside the EU. The latter culminated in the formation of the European Processor Initiative (EPI), an initiative

to develop a high-end, RISC-V-based microprocessor. The ISA represents the most widely adopted for

open-source architecture projects and has gained substantial support not only from academia but also

from emerging commercial vendors.

To achieve a goal such as exascale computing or even beyond that, programmers must be able to

utilize as efficiently as possible all of the available hardware resources. This is a significant challenge,

as it is generally hard to pinpoint the cause of a slowdown given the ever-increasing complexity of the

microprocessor’s architecture. In particular, this often requires the application of profiling techniques to

correctly identify the bottleneck. On the other hand, during architecture codesign, this may be useful to

optimize the architecture to the target application domains.

There are several ways to profile the performance of a system when running an application. One can

use simple profiling techniques, like counting the time elapsed, but even if the programmer manages to

identify the part of the source code that generates the unexpected slowdown, this technique does not

explain why the slowdown occurred. If a well-tailored model of the processor exists, a simulator can be

used to go over the execution and profile the usage of each component of the system, but this is often not

the case, either due to commercial constraints or intellectual property limitations. Moreover, there are

always modeling limitations that may impose a bias in the observation of performance bottlenecks.

Another way would be to utilize an Hardware Performace Monitor (HPM), usually packaged inside

modern microprocessors. These devices can count a set of fixed and/or programmable events that occur

inside the processor’s pipeline (like instruction-cache misses or branches taken). With this information, a

better image of the architecture components responsible for the performance bottlenecks can be observed.

2



This, in turn, allows tuning the application to account for the limitations found, or the design of the hardware

to mitigate the observed problem.

Additionally, larger microprocessor manufacturers such as Intel or Arm offer catch-all tools that combine

HPM event sampling with other techniques to aid the user with identifying which parts of their software

need more attention. Again, open-source architectures based on the RISC-V ISA rarely, if ever, have this

level of support from their manufacturers.

Although the RISC-V Foundation specifies that performance counters and a HPM must be packaged

into a RISC-V core implementation [26], its open-source nature provides limited software support for

accessing hardware performance counters. The official Linux kernel only supports the sampling of the

cycles and instructions retired counters, leaving a lot of functionality out of bounds for anyone who desires

to run Linux on their RISC-V processor.

This gap started to be bridged when support for the latest RISC-V HPM specification was introduced

in the Linux Perf Kernel Driver [3], but there is yet no way to easily access the performance counters

through a higher level interface library, like PAPI, and no further functionality is offered to the user besides

manually specifying what events should be counted and reading them explicitly.

These are clear disadvantages when comparing RISC-V to any other already established architecture

and may prevent the porting of user-level applications to the platform by setting a high barrier to entry for

application developers who wish to utilize the available hardware to its full potential.

1.1 Objectives

It has become clear that, with today’s computing technology, to achieve higher productivity and

performance it is pivotal that great attention is given to process optimization, even if that means tailoring

an application to a specific architecture to take advantage of its specificities or, if early enough in the

architecture co-design phase, tailoring the architecture to the target application.

It is also evident that although support for the profiling tool perf_events is available for RISC-V systems,

no higher-level library is available to easily access the Hardware Performance Counters inside the

application source code, as is usual to be done on other popular architectures.

Furthermore, the RISC-V specification for the HPM is still very simple when compared with the

feature-rich implementations of architectures such as x86 or ARM.

To help more efficient RISC-V software development and facilitate architecture codesign, this work is

defined by two objectives. The first is to port an open-source and commonly used C library that offers

higher-level access to the HPM. The second is to propose a new hardware/software system that offers

more in-depth detail of the processor’s state when profiling an application and presents a proof-of-concept

implementation of it.

1.2 Contributions

This work hopes to offer to the RISC-V community the following contributions:
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• Port the PAPI library to RISC-V while providing support for the SiFive U74-MC processor;

• Explanation of what steps need to be replicated or changed if PAPI support for new RISC-V

processors is desired;

• Proposal of a Precise Event Sampling (PES) facility inside of RISC-V’s HPM that could be integrated

into PAPI;

• Minimum viable implementation of a PES facility on a CVA6 processor.

1.3 Document Outline

This dissertation will continue with the background and state-of-the-art in Chapter 2, where the

concepts and background knowledge necessary to understand the work developed are presented, as well

as modern uses and techniques for HPMs. Then, in Chapter 3, the changes necessary to port the PAPI

library to RISC-V are discussed and the results of the implementation are presented and analyzed. After,

Chapter 4 goes over the design, implementation, results and shortcomings of a proof-of-concept PES

facility for RISC-V processors. Finally, Chapter 5 wraps up the document with the achieved contributions

and future work.
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CHAPTER 2

Background and State-Of-The-Art
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Following the objectives exposed in Section 1.1, the bulk of this work will revolve around HPM

implementations on RISC-V processors and how the information obtained through them can be used to

aid the development of more efficient software that fully utilizes the resources available to it.

Hence, this chapter describes the current state-of-the-art uses of hardware performance counters and

the background to understand how they are defined in the context of RISC-V, how they are implemented,

and modern tools to access them when using a Linux-based operating system.

In practice, Sections 2.1, 2.2 and 2.3 focus on the RISC-V definition for HPMs, the SiFive U7 imple-

mentation of HPM and the OpenHardware Group CVA6 implementation of HPM, respectively. Section

2.4 reviews some current developments on how Hardware Performance Counters are being improved.

Sections 2.5 and 2.6 go over modern software that simplifies access to the HPM facilities in a processor.

Section 2.7 explains how PES can be used to generate more useful information by studying how Intel

PEBS and AMD IBS work.

2.1 RISC-V ISA

RISC-V [26], [27] is an open source ISA that was designed to support computer architecture research

and education and also to become a free and open standard for industry implementations. The RISC-V

ISA is purposely defined without implementation details to guarantee freedom for the vendor to adapt an

architecture implementation to its needs.

This subsection will start with an overview of what the base RISC-V integer ISA is and the standard

extensions available and defined by the RISC-V Foundation. Then, the specification given for a RISC-V

HPM in [27] is run through.

2.1.1 Base Integer ISA and Extensions

A RISC-V ISA is defined as a base integer ISA, that is required for all implementations, in conjunction

with optional extensions. The base integer ISA is meant to offer sufficient functionality for custom

accelerators and educational purposes. Together with standard extensions, it can become an ISA suitable

for more advanced computing and even general-purpose and high-performance computing. For this

reason, and although RISC-V is usually referred to as a single ISA, it is a family of related ISAs. RISC-V

ISAs are named based on a code that identifies the specific base ISA: "RV" followed by a number that

indicates the length of the address space and either the letter "I", which indicates the existence of the

standard number of 32 general purpose registers, or the letter "E", that stands for embedded and means

that the only 16 general purpose registers exist. Additionally, a variety of letters can be concatenated

to the end of the base name to indicate the ISA extensions present in the specific implementation. The

address space length is also referred to as MXLEN (i.e., an RV64 system has MXLEN=64 and an RV32

system has MXLEN=32).
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2.1.2 Hardware Performance Monitor

As mentioned in Section 2.1, the RISC-V specification does not provide implementation details. With

this in mind, the present subsection goes over the general definition for a RISC-V HPM as described in

[27]. Later sections will go over specific implementations of HPMs for the cores used in the development

and testing of this thesis.

The HPM specification was first introduced in version 1.7 of the privileged specification and had the

most recent change introduced in version 1.11 of the same document.

Fixed And Programmable Event Counters

The counters available in RISC-V HPM are: mcycle that counts the number of executed cycles in the

core, minstret that counts the number of retired instructions and an additional 29 programmable event

counters mhpmcounter3-mhpmcounter31. All of these counters are machine-level read and write Control

Status Registers (CSRs) and have 64-bit precision in both RV64 and RV32 systems.

Event selector CSRs mhpmevent3-mhpmevent31 are MXLEN-bit wide registers that are used to control

which event is being counted on the corresponding counter (e.g., mhpmevent3 controls the event that

causes mhpmcounter3 to increment). The meaning of the programmable events and their encoding should

be defined by the vendor of the specific implementation except event 0 which always means "no event".

The specification indicates that all 29 programmable counters and their respective event selectors should

be implemented while also stating a valid implementation is to make unused programmable counters and

their respective selectors read-only 0.

As previously stated, the programmable event counters always have 64-bit precision. To comply

with this in RV32 access to 64-bit registers is made in two steps: reads/writes of mcycle, minstret

and mhpmevent3-mhpmevent31 return/change only bits 31-0 and reads/writes of mcycleh, minstreth and

mhpmevent3h-mhpmevent31h return/change bits 63-32.

Counter Availability To Lower Privilege Levels

The mcycle, minstret and mhpmevent3-mhpmevent31 registers are machine-level read and write CSRs,

meaning reads/writes from lower privilege levels will trigger an illegal instruction exception. The cycle,

instret and hpmevent3-hpmevent31 CSRs are read-only shadows of mcycle, minstret and mhpmevent3-

mhpmevent31. Their availability to the next implemented privilege level is controlled through the mcounteren

CSR. The mcounteren is a 32-bit register and is organized in a one-hot encoding of all hardware perform-

ance counters plus the memory-mapped mtime register, as shown in Figure 2.1. As an example, when

bit 0 is clear, reads of cycle from a privileged mode lower than machine mode will generate an illegal

instruction exception. When bit 0 is set, access for reads is permitted to the next implemented privilege

mode (i.e., supervisor-mode if implemented or user-mode otherwise).

The mcounteren must always be implemented if the system implements user-mode but it may be set

to read-only 0.

7



Figure 2.1: Counter-enable register mcounteren, [27].

Figure 2.2: Counter-inhibit register mcountinhibit, [27].

Counter Inhibition

The counter-inhibit register mcountinhibit is a 32-bit register that controls whether a hardware

performance counter increments when the programmed event occurs or not. It is implemented using

a one-hot encoding of the available counters, as shown in Figure 2.2. As an example, when bit 0 of

mcountinhibit is clear, the mcycle register will increment normally. When bit 0 of mcountinhibit is set,

mcycle register will not increment.

The mcountinhibit register can not be implemented and, in that case, the implementation should

behave as if the register were set to read-only 0.

Overflow Or Threshold Handling

At the time of writing, no specification for a mechanism that generates an interrupt when an HPM

counter overflows or reaches a previously chosen threshold exists.

2.2 SiFive U7 Core

The U7 core was designed by SiFive and is included in the U74-MC core complex [23]. A block

diagram of U74-MC is presented in Figure 2.3. Its ISA is RV64IMAFDC, which means, a base RISC-V

integer ISA with a 64bit address space that also has the standard extensions: "M" (integer multiplication),

"A" (atomic instructions), "F" (single-precision floating-point), "D" (double-precision floating-point) and "C"

(compressed instructions). The standard instructions "M", "A", "F" and "D" are often bundled together into

the single denomination "G", as they are essential for a general-purpose microprocessor.

The U7 core processor core implements a basic HPM that is divided into two classes of counters:

fixed-function counters and event programmable counters.

2.2.1 Fixed-Function Performance Monitoring Counters

The fixed class of counters consists of a set of fixed counters and their corresponding counter-enable

registers. As the name indicates, a fixed-function performance monitor counter is hardwired to one specific

event and that event cannot be changed. The only flexibility provided by this class of counters is the ability

to enable or disable the counting through the counter-enable registers and to change the counter value.
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Figure 2.3: U74-MC Series Block Diagram [23]

The following fixed-function counters are provided in the U74-MC core:

mcycle

The fixed-function performance monitoring counter mcycle holds the count for the number of clock

cycles executed since an arbitrary time in the past. It is 64 bits wide and reading the CSR will return all 64

bits.

minstret

Likewise, the fixed-function performance monitoring counter minstret holds the count of the number

of instructions retired since an arbitrary time in the past. The counter is 64 bits wide and reading the CSR

will return all 64 bits.

This implementation of the fixed-function performance monitor counters corresponds with the require-

ments defined by the RISC-V Foundation in [27].

2.2.2 Event-Programmable Performance Monitoring Counters

The programmable class of counters is composed of event-programmable counters and event-selector

registers. The U7 HPM boasts two of these counters: mhpmcounter3 and mhpmcounter4. They are

implemented as 40-bit counters and can be written to initialize their count value. To control the event

being counted by the programmable counters, two event-selector CSRs are provided: mhpmevent3 and

mhpmevent4. These CSRs are 64-bit wide and are partitioned into three fields (as shown in Figure 2.4),

with the 8 least significant bits representing the event class; bits 8 through 55 forming a mask for the

events in said class; bits 56 and 57 are reserved and do not currently have an associated functionality;

bits 58 through 62 inhibit the count of events when the core is in the associated privilege level (refer to

Table 2.1 for specific privilege level related to each bit), which means that if all are set to zero, the count
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Machine Hardware Performance Monitor Event Register
Bits Name Attr Description
[7:0] Class WARL Selects the Event Class to make available for counting
[55:8] EventSel WARL Bit-mask of Event(s) to count
[57:56] Reserved -
58 VUINH WARL Reserved
59 VSINH WARL Reserved
60 UINH WARL If set, counting of events in U-mode is inhibited
61 SINH WARL If set, counting of events in S-mode is inhibited
62 MINH RW If set, then counting of events in M-mode is inhibited
63 OF RW Overflow status and interrupt disable bit. Set by hardware when counter overflows.

Table 2.1: mhpmeventX Register bit layout for overflow and filtering [23].

occurs in all privilege levels; and bit 63 indicates whether the associated counter as overflown and in such

case remains set until it is written by software.

According to the RISC-V Foundation [27], the programmable counters mhpmcounter5 through mhp-

mcounter31 must also physically exist in the processor but is a legal implementation to have both the

unused counters and their corresponding event selector CSR be read-only zero registers.

In Section 2.2.3 an explanation of how the events are encoded into the mhpmeventX CSR is presented

and an example is given.

Figure 2.4: Event selector fields [23].

2.2.3 Event Selector Encodings

On the U7 core, events are categorized into classes, which are selected by setting the correct bits in

the mhpmeventX CSR. Specific events are selected by setting the corresponding bit on the Event Mask

field of mhpmeventX. Multiple events from a given class can have their corresponding bit set on a given

mhpmeventX. In that case, the count is incremented every time any of the selected events occurs. If all the

bits in the Event Mask are set to 0, nothing is counted.

All the events available to program the two programmable counters, their class and their Event Mask

encoding are present in Table 2.2. In the implementation of the U7 core used during the development of

this work, setting a bit in the Event Mask that is not defined in the specified Event Class does not affect

the count, but is discouraged as it might make software incompatible with future implementations that

may expand the list of available events.

As a quick example: if the mhpmevent3 CSR is set to 0x4200 (activating solely bits 9 and 14), it can be

verified by referencing Table 2.2 that mhpmcounter3 will increment every time either the events "Integer

load instruction retired" or "Conditional branch retired" occur.
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Machine Hardware Performance Monitor Event Register
Instruction Commit Events, mhpmeventX[7:0]=0x0

Bits Description
8 Exception taken
9 Integer load instruction retired
10 Integer store instruction retired
11 Atomic memory operation retired
12 System instruction retired
13 Integer arithmetic instruction retired
14 Conditional branch retired
15 JAL instruction retired
16 JALR instruction retired
17 Integer multiplication instruction retired
18 Integer division instruction retired
19 Floating-point load instruction retired
20 Floating-point store instruction retired
21 Floating-point addition retired
22 Floating-point multiplication retired
23 Floating-point fused multiply-add retired
24 Floating-point division or square-root retired
25 Other floating-point instruction retired

Microarchitectural Events, mhpmeventX[7:0]=0x1
Bits Description
8 Address-generation interlock
9 Long-latency interlock
10 CSR read interlock
11 Instruction cache/ITIM busy
12 Data cache/DTIM busy
13 Branch direction misprediction
14 Branch/jump target misprediction
15 Pipeline flush from CSR write
16 Pipeline flush from other event
17 Integer multiplication interlock
18 Floating-point interlock

Memory System Events, mhpmeventX[7:0]=0x2
Bits Description
8 Instruction cache miss
9 Data cache miss or memory-mapped I/O access
10 Data cache write-back
11 Instruction TLB miss
12 Data TLB miss
13 UTLB miss

Table 2.2: mhpmevent Register on SiFive U7 [23].
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Machine Hardware Performance Monitor Event Register
Value Description
0x1 L1 I-Cache misses
0x2 IL1 D-Cache misses
0x3 ITLB misses
0x4 DTLB misses
0x5 Load accesses
0x6 Store accesses
0x7 Exceptions
0x8 Exception handler returns
0x9 Branch instructions
0xA Branch mispredicts
0xB Branch exceptions
0xC Call
0xD Return
0xE MSB full
0xF Instruction fetch empty
0x10 L1 I-Cache accesses
0x11 L1 D-Cache accesses
0x12 Eviction
0x13 I-TLB flush
0x14 Integer instructions
0x15 Floating point instructions
0x16 Pipeline bubbles/Stall

Table 2.3: mhpmevent Register on CVA6.

2.3 CVA6

Designed to provide insight into the energy cost and tradeoffs associated with projecting a RISC-V core

with support for fully-fledged operating systems [33], CVA6 (previously known as Ariane), is a 6-stage,

single-issue, in-order CPU that implements an RV64IMAFDC ISA. It supports the M, S and U RISC-V

privilege modes, which allows compatibility with Unix-like operating systems.

2.3.1 Performance Monitoring Unit

Similarly to the implementation presented for the SiFive U7 core (Section 2.2), the CVA6 core imple-

ments the mcycle and minstret fixed counters, following the RISC-V privileged specification [27].

CVA6 implements 6 programmable counters, all of which can count all events but without the ability to

multiplex the counters to more than 1 event at a time. The mhpmcounterX counters are programmed by

setting the corresponding mhpmeventX CSR to the mask that encodes the desired event, with mhpmeventX

set to 0 meaning no event is to be counted. All available events and their encoding are provided in Table

2.3.

Additionally, the HPM implementation includes the mcountinhibit CSR to allow for the counting to be

halted in a specific counter, also following the most recent RISC-V privileged specification.

12



Figure 2.5: PLIC communication flow, [10]

2.3.2 Platform-Level Interrupt Controller

The PLIC included in the CVA6 processor follows the RISC-V International specification, [10], and is

used in RISC-V computers to generate external interrupts that the cores can then handle.

The working of the PLIC can be divided into 4 steps. First, an interrupt source (like a keyboard or a

signal coming from the core itself) activates letting the PLIC gateway know that the source device needs

the core to handle something. The gateway then sends an interrupt request to the PLIC core, and if the

Interrupt Enable for that source is set, the target for that external interrupt is not pending the resolution

of a previous interrupt and the interrupt priority for the desired interrupt overcomes the currently defined

priority threshold, the PLIC core sends an interrupt pending signal to the correct privilege mode of the

target hart, or what the specification calls a context.

When the RISC-V core is notified that it has an interrupt pending it should read a specified memory

location (as an example, the M mode of Hart 0 should write to the memory location base + 0x200004,

with base meaning the PLIC base memory address which in CVA6 is 0xC000000). When the core finishes

the execution of the interrupt handler, it should write the value it read before to that same memory address

to let the PLIC know the handler has completed and the context is ready to receive external interrupts.

The specification mentions that the value written is not verified so although the value written should be

the same it will work even if it is not. This communication flow is illustrated in Figure 2.5.
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2.4 Modern development on Hardware Performance Counters

2.4.1 Hardware Multiplexing

Due to the limited number of physical counters usually available in comparison with the number

of selectable events to count on a processor (as an example, the SiFive U7 can count 35 different

programmable events but only offers 2 programmable counters), in 2001 [15] proposed a novel way to

count more than one event at a time in one programmable counter. The MPX method, as it was called,

proposed that if the occurrence of an event e during a certain time T was fairly constant, the time T could

be divided into equally long slots in which more than one event would be counted in round-robin fashion.

The actual amount of times that e occurred would be approximately equal to the counted amount of e

multiplied by the ratio between the total time T and the time event e was being counted. Or, in other

words, MXP proposed that Hardware Performance Counters should be time-multiplexed. The results

shown in the paper were positive, managing to have their prediction for four concurrent events stay within

5% of measurements done without multiplexing, in most cases. However, due to the inherent memory

inefficiency of the software that controls MXP, demonstrated inaccuracies reach as high as 70% and there

is no bound for how inaccurate a count can be due to the unknown consistency of the event occurrence.

In order to try and overcome these limitations, several solutions were proposed over the years and, in

2021, [32] suggested a paradigm shift from deterministic counters to an architecture based on approximate

counting algorithms. This architectural philosophy allows for great reductions of memory usage, which

was the MXPs Achilles’ heel. As such, hardware events related to memory are more accurate when

compared to the other method of time multiplexation. Also, the approximate algorithms counter approach

has a theoretical maximum for relative error: 89%.

2.5 Perf_events

As previously discussed, most modern processors include in their architecture some implementation

of the concept of hardware performance monitoring through event counters. Often, direct access to these

counters is restricted to code executing at the supervisor-level. To overcome this restriction, libraries that

provide an interface between the user and the operating system kernel started emerging, like Oprofile,

Perfctr or Perfmon2.

Until 2009, the Linux kernel did not ship with integrated support for performance counter access and

all existing implementations had to be patched into the kernel. With the release of Linux kernel version

2.6.31, the perf_events subsystem was introduced [30] as the default interface for accessing hardware

performance counters. It was designed with functionality and abstraction in mind to make it simple to

operate.

Unlike previously available interfaces, that used pseudo-filesystems or emulated devices to access

the performance counters, perf_events uses the perf_event_open() [11] system call to allocate file

descriptors with the events to be counted specified at the open time in the fields of the perf_event_attr
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[11] structure and counters can be enabled and disabled with ioctl() or prctl() system calls. As the

communication with the kernel is done through file descriptors, a read() system call is used to read the

values counted.

The perf_event_attr has a high number of variables and not all of them are relevant to this work.

The ones that deserve the most attention in this context are:

type

This variable specifies the general event type to be configured. It can take predefined values such as

PERF_TYPE_HARDWARE if it is a general event provided by the kernel or PERF_TYPE_RAW if the user intends

to use an implementation-specific event to configure the hardware performance counter.

config

This variable specifies the actual event to be set. It works following the value set in the type variable

to determine the event. Following the previous examples, if type is PERF_TYPE_HARDWARE, the user can

select PERF_COUNT_HW_CPU_CYCLES to select an event that counts executed processor cycles for example;

if type is PERF_TYPE_RAW, this variable needs to be set to a specific value determined by the vendor. The

libpfm4 library can be used to translate between event names and their hexadecimal encoding; more in

Section 2.6.2.

The front-end of the Perf_events subsystem is the perf [7] profiler. perf is especially well suited to

conduct microprocessor analysis as it is capable of profiling processor stack traces, tracing CPU scheduler

behaviors and probe performance monitoring counters.

In the context of this work, Perf_events is used to interface with the performance monitoring counters

of RISC-V processors. Every specific implementation of a processor has its configuration codes to

indicate what hardware events should be counted by the programmable performance monitoring counter,

like the codes discussed in Section 2.2.3. perf does not expect the user to know every single code a

processor might have listed in its manual and provides human-readable mappings for supported processor

implementations. As an example, instead of the user having to remember the code for counting exceptions

taken on the SiFive U74-MC is (0x0100), they simply have to remember the event name "exception_taken".

Full support for every event mappable in the SiFive U7 processor core is available on Perf_events [3],

a work previously developed within EPI.

2.6 Performance API - PAPI

Even when most processor platforms started adopting hardware performance monitoring counters

in the late 1990s, access to them was still poorly documented, unstable and not available to user-level

programs. These conditions made it difficult for performance tool developers to implement their solutions

and for users to easily use such tools or to monitor and profile the processor usage of their applications.
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PAPI [1], [5], [25], [31] was created with the main focus of providing an easy-to-use set of interfaces

that could gain access to the hardware performance counters of the major processor platforms. This

could free developers of the unnecessary difficulties of obtaining such information to tune and optimize

their software, run performance analysis or model the processor usage of their implemented solutions.

PAPI provides two interfaces to the hardware counters. One is a simple and high-level interface to

acquire simple measurements and another is low-level and allows for more refined functionality. The

high-level interface only allows the user to start, stop and read counters for a specified list of events. On

the low-level interface, the user can manually manage the hardware event groups to be measured; which

are called EventSets.

PAPI was also implemented with portability in mind. When a program is written using PAPI functions

to profile its performance, that code should not have to be altered if it is to be used in another computer

for which the architecture is supported by PAPI and it is installed.

2.6.1 Original Design

In this subsection, a brief discussion of how PAPI works is presented.

Layers

Figure 2.6 is a simple representation of PAPI layered approach. PAPI is internally split into two parts:

a portable part and a machine-dependant part.

The portable part contains both the high and low-level interfaces and is independent of the architec-

ture it is running on, so it does not require much work when porting PAPI to new implementations of

already supported architectures. All the API functions and utilities that manage state handling, memory

management, data structure manipulation and thread safety are defined here.

The machine-dependent code composes the internal PAPI layer and is denominated substrate. The

portable layer calls function defined on the substrate as a means to access the hardware counters.

Having its interface and functionality well defined but no implementation method specifics, the substrate

can be easily updated and changed with no great incompatibilities. Any architecture/operating system

combination needs only one new substrate layer to provide PAPI support.

Portability

The PAPI API allows source code portability through a common interface, but it does not solve any

problems related to decoding the machine-specific settings for accessing HPMs. To address this, PAPI

defines a list of predefined events, or presets, that represent most of the events that are commonly used

in a modern processor. Some of these events are, for example, total cycles, total instructions used, total

branch instructions completed or floating-point instructions completed per second.

A PAPI substrate should implement as many presets as possible without providing misleading or

wrong results. This simplification could potentially confuse if the same preset event is compared between

different systems which may, of course, have distinct implementations for counting the specified event. As

such, directly comparing two systems is not the intention of PAPI providing presets, but rather to introduce
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Figure 2.6: PAPI architecture, modified from [1].

standard names for the metrics available. Because of this, it is still necessary for the user to possess a

working knowledge of the system that they are testing to be able to correctly interpret the data collected

with PAPI.

EventSets

EventSets are used in PAPI as an abstraction from singular hardware events and are composed of

events the user wishes to count as a group. Two major reasons are presented to follow this approach,

one technical and one practical.

The first one is that aggregating events together increases efficiency when accessing counters through

the operating system. Since most operating systems support using a single system call to move the value

of more than one counter, grouping events greatly reduces the overhead of multiple system calls. This is

especially important when PAPI is used to monitor small regions of code inside loops that iterate many

times.

The second reason for the existence of EventSets is to allow users to create their counter groupings,

catered to their specific application areas. The necessity for such groupings arises from the fact that in

some instances, a singular event count is not enough to explain the performance of a certain region of

code. Commonly, the more relevant information is only attainable by relating different metrics.

When using PAPI, the user is allowed to create as many EventSets as needed. Providing the substrate

can provide the necessary resources. They are also allowed to use them simultaneously and share

counters between them. If more events are added to the EventSet than are simultaneously countable by

the HPM and the user has not explicitly enabled software multiplexing, an appropriate error is returned.

An error is also returned if the user tries to use an EventSet improperly.
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Multiplexing

Although most modern processor architectures provide hardware performance counters, usually only

a very small number of them are present, and consequently, the amount of events that can be counted at

the same time is also low. This constraint means that the quantity of information acquirable in each run is

sharply diminished and, in the eventuality that the application under study takes a long time to execute,

the necessity to obtain various metrics might compound the run time of the test into several hours, days,

or even weeks.

To avoid such limitation, PAPI subdivides the usage of counting hardware over time, or what is called

multiplexing. By using multiplexing the user perceives that more hardware events are countable at the

same time.

Although multiplexing incurs a small overhead and negatively affects the counting accuracy, the

advantage of monitoring several metrics concurrently vastly outweighs the disadvantages. Even so, to

prevent the user from unwittingly using multiplexing without being aware of the loss of precision, in both

the low and high-level interfaces, it has to be activated manually with a specific API call.

Threshold Handling

PAPI provides the user with the possibility to define handlers for when a specific hardware event

surpasses a predetermined threshold. This functionality is implemented by using a high-resolution interval

timer and setting a timer interrupt handler. If the system does not support counter overflow, SIGPROF

and ITIMER_PROF are used instead.

The handler is called from the signal context bundled with some arguments whenever the counter

value is greater than the defined threshold. The user can then use the arguments given to determine the

event that overflowed, by how much and where in the source code it happened.

PAPI uses the same functionality to handle counter value overflow.

Statistical Profiling

The functionality of constructing statistical profiling of where a certain event count overflows is also

offered by PAPI. It uses the method described in Section 2.6.1 to detect when the event surpasses the

threshold and receives a signal that contains some arguments, namely: the stack pointer and program

counter. Then it uses some underlying performance tool to get the address at which the program was

interrupted and hash it into a histogram. At the end of the program execution, the user is given a line-by-line

analysis of where the counter overflow happened. This study can be done with any implemented event.

To create a histogram of the type described, the user can use the PAPI_profile() call.

Thread Support

Since Symmetric Multiprocessing (SMP) was already popular in HPC applications by the time PAPI

was created, thread awareness was part of its implementation since the beginning.
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Being thread-aware implies that every globally writeable variable or structure is locked before it is

modified and unlocked afterward. PAPI only has one global data structure to store process-wide options

and thread-specific pointer maps. As this structure is only modified by two API calls and mostly at

initialization or termination time of the PAPI library, assuring thread awareness does not represent a great

overhead drawback when accessing hardware performance counters.

Another difficulty relates to the accuracy of the counters as, to be thread-aware, the operating system

has to save and restore the HPM counters when context switching between active threads and processes.

PAPI must also keep copies of every thread’s counter data structure and values. PAPIs thread-awareness

functionalities are only activated if more than one thread initializes the PAPI library or executes a PAPI

API call.

Furthermore, some main-stream threading APIs don’t explicitly present the concept of user-level or

kernel-level threads to the user, like Pthreads and OpenMPI. In the case user-level threads are used, the

values read are likely inaccurate and so, the user must explicitly bind the threads to kernel-level. In the

HPC community this should not be of much concern as kernel-level threads are the standard.

Counter Accuracy

When PAPI was designed, it attempted to keep the overhead as small as possible to maintain

disturbance to the performance analysis to a minimum. Even then, it is impossible to not contaminate

the counter values at all and some inaccuracy can still occur due to other programs contending for the

resources of the system or even because of the operating system background tasks.

In the original paper [1], the authors of PAPI did not provide any study on the accuracy of hardware

performance counters or the PAPI library itself but [5] briefly refers to [12], where it is concluded that

some accuracy problems when using hardware performance counters are prevalent when the granularity

is used is too small to guaranty that the overhead of counting the events is not prevalent in the said count.

The same study also found that the accuracy when attributing a hardware event to a specific instruction in

out-of-order architectures is problematic.

In [30], it was shown that PAPI had a combined start, stop and read performance overhead of around

14000 cycles on an Intel Core 2 system, but also shows that further optimization is possible.

2.6.2 libpfm4

As mentioned in Section 2.6.1, the implementation of the substrate was not defined in the original

PAPI specification and over the years, several approaches to access the hardware performance counters

have been used. Since PAPI version 4, libpfm4 has been used to communicate with perf, [28].

libpfm4 [6] is a library used to develop monitoring tools that make use of performance monitoring

events. This library can be used to convert an event name, given in a human-readable string, to a raw

hardware event encoding compliant with the vendor specifications or to an OS-specific encoding, in which

case it prepares the adequate data structure that the kernel requires. In the case of modern versions of

PAPI, the events are set up through the kernel tool perf.
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Figure 2.7: Basic structure for hardware performance counting using PAPI.

The data structure perf uses to interface with programs is the perf_event_attr [11] mentioned in

Section 2.5.

2.6.3 How PAPI Reads Event Count Values

Summarizing all information in Section 2.6, what follows is a very brief explanation of how PAPI can be

used to read hardware performance monitoring counter values. Figure 2.7 provides a visual representation

of it.

The user writes a program and identifies what events they want to count to optimize or profile their

software. They initialize the PAPI library and make the necessary API calls using event names in the

form of human-readable strings. PAPI, in its most recent substrate version, inputs the Event name and

machine-specific information to libpfm4, which translates this information into a perf_event_attr structure

perf can use and gives this structure back to PAPI. The structure is then sent as an argument in a system

call to the kernel’s perf_events subsystem. The return is a file descriptor PAPI utilizes to start, stop and

read the counter values.

2.7 Precise Event Sampling

PES is a robust profiling technique supported by most modern processors HPMs that can sample

hardware events and locate the instructions that trigger said events, [21]. It has been merged into modern

software profiling tools to better identify performance bottlenecks and has been shown to enable the

detection of inter-thread coherence traffic [20], false sharing [14], long latency remote memory accesses in

NUMAmulticore systems [13], data locality problems [22], performance degrading bandwidth consumption

[8] and conflict cache misses [19]. Because this kind of sampling allows for the analysis of instruction

pointers and addresses of data being operated, fully fleshed-out implementations of PES can help pinpoint

bottlenecking instructions or data objects. Additionally, these tools offer lower time and memory overheads

in comparison with options like cycle-accurate hardware simulators and it achieves this by sampling

hardware information directly through implemented specialized hardware without adding much software
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control.

This technology is already supported by major players like Intel PEBS, AMD IBS, IBM MRK and ARM

SPE. They are not implemented in precisely the same way but all share similar characteristics, like the

existence of specialized hardware on the HPM to enable PES. Currently, no RISC-V implementation has

been presented in detail, having only been mentioned briefly in [2] as a means to other HPM uses.

In this section, an in-depth breakdown of Intel’s PEBS is presented. This is the PES implementation

presented because the proof-of-concept presented in this thesis for a RISC-V PES facility more closely

follows Intel PEBS than the other mentioned implementations.

2.7.1 Intel PEBS

In Intel processors, since the Nehalem architecture, PES facilities have been present on Performance

Monitoring Unit (PMUs) and can use all the programmable event counters available in them [9]. Intel

PMU is governed by what are called global control registers. They can enable and disable both the

event counters themselves (similar to the mcounteren CSR in RISC-V) as well as the PES functionality

of each counter. To use PES, the global control registers are set so a programmable counter and its

PES functionality are enabled, the corresponding event select register is programmed with the mask of

the event the user wants to count and an overflow is defined so that every time the count in the counter

reaches the predefined overflow, a sample is gathered. This number of events is also called the sampling

period. When an overflow occurs, the PMU is rigged to capture the next occurrence of the event and

when that happens, PEBS copies the machine state to a PEBS buffer in the form of PEBS records, what

is called sampling. When the amount of PEBS records reaches a predefined amount, an interrupt is

triggered so that the profiling software can retrieve the recorded information. This process is exemplified

in Figure 2.8 for the case where retired load and store instructions are being profiled. The process works

as follows: (1) Global control register IA32_PERF_GLOBAL_CTRL enables PMC0 and PMC1 by setting its

bits corresponding to both counters to one; (2) Global control register IA32_PEBS_ENABLE enables PEBS

in PMC0 and PMC1 by setting the bits corresponding to both counters to one; (3) The event select

registers IA32_PERFEVTSEL0 and IA32_PERFEVTSEL1 are programmed to make PMC0 and PMC1 count

retired loads and retired stores, respectively; (4) The configured Perfomance Monitoring Counters (PMCs)

are preloaded with the sampling interval, N, so that they overflow on elapsing N events. During execution,

PMC1 counter overflows after N stores occur. Since PEBS is armed to trap the next store, PMC 1 is

preloaded with N again. When another store occurs after the overflow PEBS traps the access and a

microcode routine records the machine state in a PEBS buffer. If the number of records has reached a

specified threshold (1 in this case), an interrupt is triggered, and an interrupt handler transfers the PEBS

records to user space [21].

2.7.2 Precise Event Sampling Support in PAPI

As was discussed in Section 2.6.1, PAPI offers a simple event sampling functionality that records the

overflow address and gives the user-defined handler the user thread context so it can also record any
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Figure 2.8: One possible execution scenario of Intel PEBS. [21]

information accessible through it if it so wishes to.

Nevertheless, [29] identified the problems of this approach and proposed an integration of PES

functionalities already present in modern processors, like PEBS and IBS as a way to solve them.

The paper highlights that the currently present statistical sampling implementation of PAPI incurs a

greater overhead when compared to hardware/software PES systems because every overflow implies

an interruption to store the overflow address and execute the user-defined handler function. The other

identified problem is that through the user thread context made available to the user-defined handler, it is

impossible to access higher-privileged level information, like kernel- and machine-level register states.

To overcome this issues, new PAPI interfaces are proposed, from which the one that would better

integrate with PEBS would work by setting up existing PES facilities in the processors HPM and define an

internal PAPI buffer that would be populated from the PES buffer when it was notified by the HPM to do

so, via an interrupt. When the PAPI buffer fills up, a user-defined handler would be called to process the

data or store it in a file.

2.8 Summary

The chapter begins by highlighting the central theme of hardware performance monitoring and PES.

The background section delves into the essential concepts of hardware performance monitoring. It

outlines the significance of tracking a processor’s performance and the role of event counters in this

process. Special attention is given to RISC-V processors and their event counters.

Moving on to PAPI, this chapter elucidates its pivotal role as a versatile tool for accessing hardware

performance counters. PAPI is presented as a valuable solution to the challenge of monitoring and

profiling software execution efficiently.

The functionalities of PAPI are unveiled through its high-level and low-level interfaces. The high-level

interface simplifies the process by allowing users to initiate, terminate, and retrieve counter data for a

selected list of events. On the other hand, the low-level interface provides more fine-grained control by

enabling users to manage event groups known as EventSets.

A core feature of PAPI is its portability, facilitating compatibility across different computer architectures.

It ensures that code written with PAPI functions remains unaltered when transferred to another system

supported by PAPI, emphasizing ease of use and cross-platform flexibility.
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The chapter touches on the concept of PES, a robust profiling technique. PES has gained prominence

due to its ability to capture hardware events and identify the specific instructions or data operations

responsible for these events.

Intel’s implementation of PES, known as PEBS, is highlighted as an example of this technology. PEBS

is integrated into Intel processors and uses the PMU to capture samples when specific event thresholds

are reached. This feature provides insight into performance bottlenecks and allows the identification of

problematic instructions and data objects.

This chapter also covers PAPI’s support for event sampling. PAPI provides basic event sampling,

but it has limitations, including high overhead and restricted access to privileged information through

user-defined handlers. To overcome these issues, [29] proposes integrating PES features like PEBS

into PAPI. This integration would reduce overhead by using existing processor facilities and allow better

access to performance data.
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CHAPTER 3

Porting PAPI to RISC-V
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During this part of the work, a great effort was made to develop the PAPI source code in a way that

resembles the structure already existing in that project as well as in the libpfm4 library. This was done for:

1. Possible merging of this work into the main project itself, requiring the least possible changes;

2. Ease the understanding of this work by developers already familiar with the source code of the

project;

3. Facilitate the addition of support to more RISC-V processors in the future, following the already

well-designed abstraction levels of the PAPI project source code.

This decision might have added an unnecessary burden to development in the closed context of

achieving results for this thesis but offers a better chance of this work being helpful to anyone who might

want to contribute to this port, available publicly at https://github.com/hpc-ulisboa/RISC-V-PAPI.

Getting to understand the underlying workings of this 24-year-old, almost 8500-commit program posed

one of the most significant challenges of this thesis. And to overcome it several weeks were spent

step-by-step debugging executions of PAPI calls and consulting the documentation to understand the data

structures and functions that allow PAPI to abstract the access to the Hardware Performance Counters.

This effort can not be observed directly by the reader but it granted the knowledge necessary to compile

the relatively small list of steps that were taken to port PAPI to RISC-V and, in particular to the SiFive U7

core, that will be dissected in the following sections of this chapter. But, before that, it would be pertinent

to point out that the process of porting PAPI to a RISC-V processor can be divided into two distinct parts:

• General RISC-V support - PAPI is not yet compatible with RISC-V architectures at all. This means

that the substrate (the underlying layer of PAPI discussed in Section 2.6.1) must be built upon to

add this new architecture to the already large list offered at this time;

• Device-Specific support - After compatibility with RISC-V is achieved, support for a specific existing

RISC-V processor is needed in order to verify and test the port. For this new parts need to be added

to the substrate as well.

Given this, and taking into account the objectives of this thesis, when discussing the steps required for

device-specific, greater attention will be given to how to replicate them, documenting how to expand PAPI

with more RISC-V implementations.

3.1 General RISC-V Support

The first step to port PAPI to RISC-V was to make it compilable on the platform. The already existing

PAPI source code utilizes preprocessor directives to stop compilation when an architecture-specific

definition is missing. So, in order to compile three of these sections had to be defined, namely: (1) a way

for PAPI to interface with the Linux thread context of the running user-level thread; (2) inline assembly to

create a memory barrier; (3) a way to read the cycle counter.
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...
typedef unsigned long int __riscv_mc_gp_state[32];
...
#define REG_PC 0
...
typedef struct mcontext_t {

__riscv_mc_gp_state __gregs;
union __riscv_mc_fp_state __fpregs;

} mcontext_t;
...
typedef struct ucontext_t {

unsigned long int __uc_flags;
struct ucontext_t *uc_link;
stack_t uc_stack;
sigset_t uc_sigmask;
char __glibc_reserved[1024 / 8 - sizeof (sigset_t)];
mcontext_t uc_mcontext;

} ucontext_t;
...

Listing 3.1: Definitions in ucontext.h.

...
#elif defined(__riscv)
#define REG_PC 0
#define OVERFLOW_ADDRESS(ctx) ctx.ucontext->uc_mcontext.__gregs[REG_PC]
...

Listing 3.2: Changes to src/linux-context.h.

3.1.1 Thread Context For Counter Overflow

Starting with the file src/linux-context.h, PAPI needs to be able to access the program counter of the

currently running user-level thread in case of a counter overflow. It does so through the ucontext_t type

structure, ctx.ucontext, that can be obtained with the getcontext() function. ctx.ucontext contains

a mcontext_t type structure, uc_mcontext, that itself contains a __riscv_mc_gp_state type variable,

__gregs. __riscv_mc_gp_state is a typedef of an array of 32 unsigned long integers. It is also known

that the context for the program counter is stored in position 0 of a __riscv_mc_gp_state type variable.

All these definitions are presented in Listing 3.1.

Given this information, the file src/linux-context.h can be appended with the contents of Listing 3.2

and PAPI can access the thread context in RISC-V.

3.1.2 Memory Barrier

The file src/mb.h contains the definition for the memory fence instruction in inline assembly for each

supported architecture. According to the RISC-V Unprivileged Manual, [26], the memory fence instruction

is fence. Also, according to GCC documentation [24], instructions that operate over memory other than

those listed on the input and outputs listed in the inline assembly (which in the case of the fence instruction

is none), should include the clobber "memory". As such, the changes needed in the src/mb.h file can be

done by adding the lines presented in Listing 3.3.
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...
#elif defined(__riscv)
#define rmb() asm volatile("fence":::"memory")
...

Listing 3.3: Changes to src/mb.h.

...
#elif defined(__riscv)
static inline long long
get_cycles( void ) {

return 0;
}
...

Listing 3.4: Changes to src/linux-timer.c.

3.1.3 Access To Cycle Counter

The file src/linux-timer.c needs a definition for a get_cycles(void) function for each supported

architecture. Because the firmware of the SiFive system blocked user-level reads of the cycle counter for

security reasons and analyzing the solutions for other architectures this seems to be a common issue

among them. The solution used is to define a dummy function that always returns a long long integer

zero, as presented in Listing 3.4.

The 3 changes just discussed allow for PAPI to be compiled on a RISC-V computer. Following are the

changes necessary for PAPI to abstract the Hardware Performance Counters on all RISC-V systems.

3.1.4 Vendor Identification

The next step is for PAPI to identify what processor vendor it is targeting. The library does it by parsing

the /proc/cpuinfo in Linux-based systems, so to keep the new code consistent with the already existing

one, the same method was followed. Nevertheless, other alternatives could also be used, like reading

and interpreting the mvendorid CSR. It first identifies the general type of architecture by searching the

file for a word that can identify the architecture and is followed by a string that can identify the specific

component vendor (as an example, the string "CPU implementer" indicates that the target is an ARM

CPU followed by a string that identifies the vendor of that specific CPU, "ARM_FUJITSU" for example). In

the case of RISC-V computers1, and in particular for the SiFive Unmatched board, the /proc/cpuinfo file

is structured as shown in Listing 3.5.

The string that precedes the vendor identification string is "uarch" and as such, the block of code

necessary to identify, in general, that the target is a RISC-V processor is presented in Listing 3.6. The

search_cpu_info() function is already defined in PAPI and returns anything after the ":" character in the

line that starts with the given string, in this case, "uarch". Usually, as in this case, what comes after is a

string containing two parts separated by a comma. The first part is the vendor name and the second is the
1It is possible that vendors with tailored Linux versions define this file in a different way than the one presented here. If so, the

vendor identification may require a different implementation.
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processor : 0
hart : 2
isa : rv64imafdc
mmu : sv39
uarch : sifive,u74-mc
...

Listing 3.5: /proc/cpuinfo file on a RISC-V computer.

s = search_cpu_info(f, "uarch");
if (s) {

char *v;
v = strtok(s, ",");
if (v) {

// Nested if (or switch-case) section that would analyze the vendor string and identify
↪→ the vendor

}
}

Listing 3.6: Changes to src/linux-common.c for RISC-V identification.

processor name. The vendor name would then be compared against several known strings (in a nested

if or switch-case) until a match is found. A code representing the vendor is stored in a PAPI_hw_info_t

type structure kept by PAPI during the execution of the library.

In Section 3.2, it will be shown how the specific vendor was identified for the port to an actual RISC-V

processor.

The changes presented thus far are sufficient for PAPI-proper code to support RISC-V, but not the

libpfm4 library it so heavily relies upon.

libpfm4 needs also to identify the correct implementation of the architecture. This is done with the

pfm_riscv_detect() that works by using an already existing libpfm4 function, pfmlib_getcpuinfo_attr()

to obtain whatever information /proc/cpuinfo contains after the string "uarch". It then compares the

returned string with all supported implementation’s code strings until it finds a match. Then it sets the

implementation enum defined in Listing 3.9. The definition of pfm_riscv_detect() is presented in Listing

3.7.

3.1.5 RISC-V Event List Entry Type, Register Type and PMU Configurtion Type

The libpfm4 library encodes the events for each processor in a list of [INSERT_ARCH_NAME]_entry_t

type structures that need to be defined for RISC-V as well. Given that the RISC-V privileged manual

[27] does not constraint the implementations of the HPM, it is assumed that the encoding for the events

is not masked or divided into sections. The same can be said for how the mhpmeventX registers are

encoded, which is a definition that is also needed by the libpfm4 library. Given this, the riscv_entry_t

and pfm_riscv_reg_t were defined in a new src/libpfm4/lib/pfmlib_riscv_priv.h file, as presented

in Listing 3.8.

A pfm_riscv_cfg variable is also needed. This variable is used by libpfm4 to store the specific part

being used when in the identification phase and later used to decide which PMU model should be used.
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int pfm_riscv_detect(void *this) {
int ret;
char buffer[128];

ret = pfmlib_getcpuinfo_attr("uarch", buffer, sizeof(buffer));
if (ret == -1)

return PFM_ERR_NOTSUPP;
if (strcmp(buffer, "[IMPLEMENTAION_CODE]") == 0)

pfm_riscv_cfg.implementation = [IMPLEMENTAION_ENUM];
else if (strcmp(buffer, "[ANOTHER_IMPLEMENTAION_CODE]") == 0)

pfm_riscv_cfg.implementation = [ANOTHER_IMPLEMENTAION_ENUM];
...
else

return PFM_ERR_NOTSUPP;

return PFM_SUCCESS;
}

Listing 3.7: Definition of pfm_riscv_detect().

...
typedef struct{

const char *name; /* event name */
unsigned int code; /* event code */
const char *desc; /* event description */

} riscv_entry_t;

typedef union pfm_riscv_reg {
unsigned int val;

} pfm_riscv_reg_t;
...

Listing 3.8: Definition of riscv_entry_t and pfm_riscv_reg_t.
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...
typedef enum {

// List of supported implementations
} pfm_riscv_implementation_t;

typedef struct {
pfm_riscv_implementation_t implementation;

} pfm_riscv_config_t;

extern pfm_riscv_config_t pfm_riscv_cfg;
...

Listing 3.9: Definition of pfm_riscv_cfg.

...
int pfm_riscv_get_event_first(void *this) {

return 0;
}

Listing 3.10: Definition of pfm_riscv_get_event_first().

There are no restraints on how this variable should be defined due to every use of it also having to be

defined for the new architecture supported, as will be seen later. It was chosen to implement it simply, using

an enum of all supported RISC-V implementations (which is just 1 at the moment) but abstracting the new

enum type so it can be easily changed in the future if, for example, it is desirable to support two versions

of the same processor. As an example, if support for PAPI is introduced to the processors developed by

the EPI project, it would be of great importance that the library can correctly identify which version of the

implementation it is running on. The definitions appended to file src/libpfm4/lib/pfmlib_riscv_priv.h

are presented in Listing 3.9.

Next are a series of functions libpfm4 will associate with the PMU model of a RISC-V implementation

that allows it to iterate over the available event list, get its encoding and perf_events encoding and also

identify if the machine PAPI is being run on is, in fact, of that implementation.

3.1.6 Functions To Interact With The Event List

All functions shown in this section were declared in src/libpfm4/lib/pfmlib_riscv_priv.h and

defined in src/libpfm4/lib/pfmlib_riscv.c

The PAPI PMU model requires a function to return the index of the first event available in said PMU.

Instead of just defining that the first event available for a processor on a given event list is the one with

index 0, PAPI allows for the flexibility of letting the developer of the PMU model define which event is the

first. The advantage here is that if two closely related versions of an implementation (let their names be

V1 and V2) share almost all configurable events, but V2 has a new event not available in version 1. In this

case, they can share the same event list by placing the new event in the first position of the list definition

and programming the pfm_riscv_get_event_first() to return 0 if V2 is detected and 1 if V1 is detected.

For the context of this work, pfm_riscv_get_event_first() was simplified to return 0, as is presented

in Listing 3.10.
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int pfm_riscv_get_event_next(void *this, int idx) {
pfmlib_pmu_t *p = this;

if (idx >= (p->pme_count - 1))
return -1;

return idx + 1;
}

Listing 3.11: Definition of pfm_riscv_get_event_next().

int pfm_riscv_event_is_valid(void *this, int pidx) {
pfmlib_pmu_t *p = this;
return pidx >= 0 && pidx < p->pme_count;

}

Listing 3.12: Definition of pfm_riscv_event_is_valid().

The function to get the next event on the list, pfm_riscv_get_event_next(), needs just to verify that

the next index is not greater than the last index of the event list, or the number of available events in the

PMU model (pme_count) minus 1. It is presented in Listing 3.11.

The function that, given an event index, checks if that index is valid for a specified PMU model,

pfm_riscv_event_is_valid(), needs to check if the index is not lower than 0 and lower than or equal to

the last index, or lower than the number of events available for the model. It is presented in Listing 3.12.

The function that validates the available event list (or table) for a given RISC-V implementations PMU

model, pfm_riscv_validate_table() needs to iterate over the list of events and verify they have a name

and a description and if the codes defined are all different from each other. These were the 3 variables

defined to be part of the riscv_entry_t structure and that identify each event on a RISC-V event list.

This can be done by iterating over all events of the list, where the variable pme_count is the number of

events in the list. In this loop, it is first checked if a name variable has a value different that NULL; if not, an

error is printed to the console informing of which event index generated the problem. A similar verification

is done for the event description variable, desc. To check for repeated event encodings a nested loop

starting on the next event of the list is iterated over where the code variable of both events is compared.

The definition is presented in Listing 3.13.

The function that returns all available information about a given event, pfm_riscv_get_event_info()

needs to fill out a variable (info) with the events information: name, description, code, equivalent (or alias

event if such exists; it was assumed no aliases exist in RISC-V), index, PMU model it is associated with

and additional architecture-specific attributes that may exist. As no additional attributes were created for

RISC-V, the number of additional attributes (nattrs) must be reported as 0. The definition is presented in

Listing 3.14.

3.1.7 Get Event Encoding and perf_events

The last two functions that libpfm4 needs to be linked with a RISC-V PMU model are the ones that

encode the events one wants to profile. Because of PAPI’s modular nature and its ability to use different
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int pfm_riscv_validate_table(void *this, FILE *fp) {
pfmlib_pmu_t *pmu = this;
const riscv_entry_t *pe = this_pe(this);
int i, j, error = 0;

for (i = 0; i < pmu->pme_count; i++)
{

if (!pe[i].name)
{

fprintf(fp, "pmu: %s event%d: :: no name (prev event was %s)\n", pmu->name, i, i
↪→ > 1 ? pe[i - 1].name : "??");

error++;
}
if (!pe[i].desc)
{

fprintf(fp, "pmu: %s event%d: %s :: no description\n", pmu->name, i, pe[i].name);
error++;

}
for (j = i + 1; j < pmu->pme_count; j++)
{

if (pe[i].code == pe[j].code)
{

fprintf(fp, "pmu: %s events %s and %s have the same code 0x%x\n", pmu->name,
↪→ pe[i].name, pe[j].name, pe[i].code);

error++;
}

}
}
return error ? PFM_ERR_INVAL : PFM_SUCCESS;

}

Listing 3.13: Definition of pfm_riscv_validate_table().

int pfm_riscv_get_event_info(void *this, int idx, pfm_event_info_t *info) {
pfmlib_pmu_t *pmu = this;
const riscv_entry_t *pe = this_pe(this);

info->name = pe[idx].name;
info->desc = pe[idx].desc;
info->code = pe[idx].code;
info->equiv = NULL;
info->idx = idx;
info->pmu = pmu->pmu;

/* no additional attributes defined for RISC-V */
info->nattrs = 0;

return PFM_SUCCESS;
}

Listing 3.14: Definition of pfm_riscv_get_event_info().
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int pfm_riscv_get_encoding(void *this, pfmlib_event_desc_t *e) {
const riscv_entry_t *pe = this_pe(this);
pfm_riscv_reg_t reg;

reg.val = pe[e->event].code;
evt_strcat(e->fstr, "%s", pe[e->event].name);
e->codes[0] = reg.val;
e->count = 1;

return PFM_SUCCESS;
}

Listing 3.15: Definition of pfm_riscv_get_encoding().

underlying middleware layers to access the Hardware Performance Counters, the event encoding occurs

in two steps.

First, the pfm_riscv_get_encoding() function is executed to get the value one would need to set on

the event select register for the event (or events) to be profiled. In the case of RISC-V, this is simply

the value of the code section of a riscv_entry_t type variable. It is stored on a pfm_riscv_reg_t type

variable (both types previously defined in Section 3.1.5). The definition of pfm_riscv_get_encoding() is

presented in Listing 3.15.

Once libpfm4 has the value to populate the event selector register, it needs a function to create a

perf_events control structure that it can pass to the kernel driver with a system call. This function is

called pfm_riscv_get_perf_encoding() and consists of populating a perf_event_attr type structure. It

sets the event type to PERF_TYPE_RAW, meaning the config field will contain an implementation-specific

event code, sets said field to the return of the pfm_riscv_get_encoding() function discussed above and

manually clears the bits that exclude hyper-visor-, kernel- or user-level occurrences of the event from the

count (i.e., inhibits the counter when an event occurs in a mode set to be excluded). This last part has to

be added because if left unchanged PAPI later sets both the Hyper-Visor and kernel-level excludes on

and the platform where the tests were being conducted did not support such exclusions it is unclear if

the problem was caused by a lower software layer or a physical problem with the hardware used. The

pfm_riscv_get_perf_encoding() definition is presented in Listing 3.16.

3.1.8 libpfm4 Makefile Changes

In order for the new RISC-V files for the libpfm4 library to be compiled changes had to be done to the

src/libpfm4/config.mk and src/libpfm4/lib/Makefile.

In the first file, the target architecture for the compilation is identified. It was defined that if the

architecture is riscv64 or riscv64 (RISC-V 32-bit), the environment variable CONFIG_PFMLIB_ARCH_RISCV

is set and the changes are presented in Listing 3.17.

In the second file, the files are added to the to-be-compiled sources as well as the compilation

flag -DCONFIG_PFMLIB_ARCH_RISCV so that libpfm4 only compiles the necessary PMU models instead of

always compiling all (the exact place where this flag is checked will be presented on Section 3.2, where

implementation-specific changes are discussed). These changes are presented in Listing 3.18.
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int pfm_riscv_get_perf_encoding(void *this, pfmlib_event_desc_t *e) {
pfmlib_pmu_t *pmu = this;
pfm_riscv_reg_t reg;
struct perf_event_attr *attr = e->os_data;
int ret;

if (!pmu->get_event_encoding[PFM_OS_NONE])
return PFM_ERR_NOTSUPP;

ret = pmu->get_event_encoding[PFM_OS_NONE](this, e);
if (ret != PFM_SUCCESS)

return ret;

if (e->count > 1)
{

DPRINT("%s: unsupported count=%d\n", e->count);
return PFM_ERR_NOTSUPP;

}

attr->type = PERF_TYPE_RAW;
reg.val = e->codes[0];

attr->config = reg.val;

// risc-v can not set privilege levels
attr->exclude_hv = 0;
attr->exclude_kernel = 0;
attr->exclude_user = 0;

return PFM_SUCCESS;
}

Listing 3.16: Definition of pfm_riscv_get_perf_encoding().

...
ifeq ($(ARCH),riscv64)
override ARCH=riscv
endif
ifeq ($(ARCH),riscv)
override ARCH=riscv
endif
...
ifeq ($(ARCH),riscv)
CONFIG_PFMLIB_ARCH_RISCV=y
endif
...

Listing 3.17: Changes to src/libpfm4/config.mk.
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...
ifeq ($(CONFIG_PFMLIB_ARCH_RISCV),y)

ifeq ($(SYS),Linux)
SRCS += pfmlib_riscv_perf_event.c
endif

INCARCH = $(INC_RISCV)
SRCS += pfmlib_riscv.c [+ IMPLEMENTATION SPECIFIC PMU MODEL FILES]
CFLAGS += -DCONFIG_PFMLIB_ARCH_RISCV
endif
...
INC_RISCV=pfmlib_riscv_priv.h \

events/[IMPLEMENTAION SPECIFIC EVENT LIST FILE] \
events/[IMPLEMENTAION SPECIFIC EVENT LIST FILE] \
[...]

events/[IMPLEMENTAION SPECIFIC EVENT LIST FILE]
...

Listing 3.18: Changes to src/libpfm4/lib/Makefile.

3.2 SiFive U74-MC Support

Having the support for RISC-V processors implemented, the next step is to offer support to a specific

implementation of the ISA. In this project, the computer chosen was a SiFive Unmatched board that is

equipped with a SiFive U74-MC processor that features four SiFive U7 cores as the main computation

facilities. In the context of PAPI, it is more usual to refer to support given to a processor and not the

specific core it bolsters. As such, the processor supported shall be referred to as SiFive U74-MC to keep

coherence with the presented listings as well as the publicly accessible implementation on GitHub.

As mentioned before, this section will contain some remarks on how one could add support for more

RISC-V processors while taking advantage of the general RISC-V support discussed in the previous

section.

3.2.1 Event List

A processor supported in libpfm4 should have a new file created in the folder src/libpfm4/lib/events/

named riscv_[VENDOR NAME]_[IMPLEMENTAION NAME]_events.h and this file should contain a static

constant list of riscv_entry_t structures named riscv_[VENDOR NAME]_[IMPLEMENTAION NAME]_pe[]

and its contents should be the name, code and description of each event offered by the processors HPM.

An example is presented for the case of the U74-MC processor on Listing 3.19. The description and

encoding for each event were taken from the processor manual [23] and the name was copied from the

paper that originally gave perf_events support to the processor [3].

3.2.2 PMU Model

With the preparation for the definition of the PMUmodel almost complete, one needs to insert the model

name into the enum typedef pfm_pmu_t that is maintained by libpfm4 in file src/libpfm4/include/perfmon/pfmlib.h
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static const riscv_entry_t riscv_sifive_u74_pe[] = {
// Instruction Commit Events: .code[7:0]=0
{.name = "EXCEPTION_TAKEN",
.code = 0x0000100,
.desc = "Exception taken"},

[...]
};

Listing 3.19: Example of riscv_sifive_u74_pe[] event list.

typedef enum {
...
PFM_PMU_RISCV_SIFIVE_U74,
PFM_PMU_MAX

} pfm_pmu_t;
...

Listing 3.20: Changes to libpfm4/include/perfmon/pfmlib.h.

to encode such models. A new enum entry needs to be entered right before the PFM_PMU_MAX end marker.

For the U74 the addition made is presented in Listing 3.20.

Finally, the implementation detection described in Section 3.1.4 presented in Listing 3.7 needs to be

completed with the identification present in the Linux /proc/cpuinfo file where it reads [IMPLEMENTAION_-

CODE] and the chosen implementation enum name where it reads [IMPLEMENTAION_ENUM]. In this case,

the implementation code is "sifive,u74-mc" and the chosen enum was SIFIVE_U74_MC.

With all this completed a new file can be created in the src/libpfm4/lib/ named pfm_riscv_[VENDOR

NAME]_[IMPLEMENTAION NAME].c, in this case pfm_riscv_sifive_u74.c.

This file contains a function that libpfm4 can access through the PMU model to detect if the implement-

ation running the library is the one modeled. This uses the pfm_riscv_detect() function and compares

the return with the enum that was defined in Listing 3.20. This function should be named pfm_riscv_de-

tect_[VENDOR NAME]_[IMPLEMENTAION NAME](), in this case pfm_riscv_detect_sifive_u74() and its

definition is presented in Listing 3.21.

The PMUmodel is of type pfmlib_pmu_t and should be named riscv_[VENDOR NAME]_[IMPLEMENTAION

NAME]_support. It should contain the following variables:

static int pfm_riscv_detect_sifive_u74(void *this) {
int ret;

ret = pfm_riscv_detect(this);
if (ret != PFM_SUCCESS)

return PFM_ERR_NOTSUPP;

if (pfm_riscv_cfg.implementation == SIFIVE_U74_MC)
return PFM_SUCCESS;

return PFM_ERR_NOTSUPP;
}

Listing 3.21: Definition of pfm_riscv_detect_sifive_u74().
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• desc - Description of the model;

• name - Name of the model without spaces;

• pmu - Enum previously defined in src/libpfm4/include/perfmon/pfmlib.h;

• pme_count - Number of events present on the event list;

• type - Type of model;

• supported_plm - Supported privilege levels;

• pe - List of available events;

• pmu_detect - Pointer to the pfm_riscv_detect_[VENDOR NAME]_[IMPLEMENTAION NAME]() function;

• num_counters - Number of programmable counters;

• num_fixed_cntrs - Number of fixed counters;

• max_encoding - Maximum number of 64-bit values that can be encoded into each event selector;

• get_event_encoding - Pointer to pfm_riscv_get_encoding() function;

• PFMLIB_ENCODE_PERF - Pointer to pfm_riscv_get_perf_encoding() function;

• get_event_first - Pointer to pfm_riscv_get_event_first() function;

• get_event_next - Pointer to pfm_riscv_get_event_next() function;

• event_is_valid - Pointer to pfm_riscv_event_is_valid() function;

• validate_table - Pointer to pfm_riscv_validate_table() function;

• get_event_info - Pointer to pfm_riscv_get_event_info() function.

Lastly, the model needs to be declared as an extern in file src/pfmlib4/lib/pfmlib_priv.h so the

rest of the library can use it.

In this case, the riscv_sifive_u74_support model is defined as presented in Listing 3.22.

All that is left to change inside libpfm4 is to add the new files to the Makefile. In the general case,

Listing 3.18 had two device-specific fields, the first one ([+ IMPLEMENTATION SPECIFIC PMU MODEL FILES])

should be replaced with pfmlib_riscv_sifive_u74.c and the second one ([IMPLEMENTAION SPECIFIC

EVENT LIST FILE]) with riscv_sifive_u74_events.h

3.2.3 PAPI Vendor Identification

Following what was described in Section 3.1.4 the _linux_get_cpu_info() function in file src/linux-

common.c was completed with the specific vendor information for SiFive so that PAPI can correctly identify

it. Additionally, the decode_vendor_string in the same file was also completed with the SiFive information.

The PAPI_VENDOR_RISCV_SIFIVE was defined in file src/papi.h with the value 9 (next available value).

37



pfmlib_pmu_t riscv_sifive_u74_support = {
.desc = "RISC-V SiFive U74",
.name = "riscv_sifive_u74",
.pmu = PFM_PMU_RISCV_SIFIVE_U74,
.pme_count = LIBPFM_ARRAY_SIZE(riscv_sifive_u74_pe),
.type = PFM_PMU_TYPE_CORE,
.supported_plm = RISCV_PLM,
.pe = riscv_sifive_u74_pe,
.pmu_detect = pfm_riscv_detect_sifive_u74,
.num_cntrs = 2,
.num_fixed_cntrs = 2,
.max_encoding = 1,

.get_event_encoding[PFM_OS_NONE] = pfm_riscv_get_encoding,
PFMLIB_ENCODE_PERF(pfm_riscv_get_perf_encoding),
.get_event_first = pfm_riscv_get_event_first,
.get_event_next = pfm_riscv_get_event_next,
.event_is_valid = pfm_riscv_event_is_valid,
.validate_table = pfm_riscv_validate_table,
.get_event_info = pfm_riscv_get_event_info,

};

Listing 3.22: Definition of riscv_sifive_u74_support.

static void decode_vendor_string( char *s, int *vendor ) {
...
else if ( strcasecmp( s, "RISCV_SIFIVE" ) == 0)

*vendor = PAPI_VENDOR_RISCV_SIFIVE;
...

}
...
int _linux_get_cpu_info( PAPI_hw_info_t *hwinfo, int *cpuinfo_mhz ) {

s = search_cpu_info(f, "uarch");
if (s) {

char *v;
v = strtok(s, ",");
if (v) {

if ((strcasecmp(v, "sifive") == 0))
strcpy(hwinfo->vendor_string, "RISCV_SIFIVE");

}
}
...

}

Listing 3.23: Changes to src/linux-common.c for RISC-V Vendor identification.
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#####################
# RISC-V SiFive U74 #
#####################
CPU,riscv_sifive_u74
#
PRESET,PAPI_L1_DCM,NOT_DERIVED,DCACHE_MISS_MMIO_ACCESSES
PRESET,PAPI_L1_ICM,NOT_DERIVED,ICACHE_RETIRED
PRESET,PAPI_L1_TCM,DERIVED_ADD,DCACHE_MISS_MMIO_ACCESSES,ICACHE_RETIRED
PRESET,PAPI_TLB_DM,NOT_DERIVED,DATA_TLB_MISS
PRESET,PAPI_TLB_IM,NOT_DERIVED,INST_TLB_MISS
PRESET,PAPI_TLB_TL,DERIVED_ADD,DATA_TLB_MISS,INST_TLB_MISS
#
PRESET,PAPI_BR_UCN,DERIVED_ADD,JAL_INSTRUCTION_RETIRED,JALR_INSTRUCTION_RETIRED
PRESET,PAPI_BR_CN,NOT_DERIVED,CONDITIONAL_BRANCH_RETIRED
PRESET,PAPI_BR_MSP,DERIVED_ADD,BRANCH_DIRECTION_MISPREDICTION,BRANCH_TARGET_MISPREDICTION
PRESET,PAPI_BR_PRC,DERIVED_SUB,CONDITIONAL_BRANCH_RETIRED,

↪→ BRANCH_DIRECTION_MISPREDICTION,BRANCH_TARGET_MISPREDICTION
#
PRESET,PAPI_FMA_INS,NOT_DERIVED,FP_FUSEDMADD_RETIRED
PRESET,PAPI_TOT_INS,NOT_DERIVED,INSTRUCTIONS
PRESET,PAPI_INT_INS,DERIVED_ADD,INTEGER_LOAD_RETIRED,INTEGER_STORE_RETIRED,

↪→ INTEGER_ARITHMETIC_RETIRED,INTEGER_MULTIPLICATION_RETIRED,INTEGER_DIVISION_RETIRED
PRESET,PAPI_FP_INS,DERIVED_ADD,FP_LOAD_RETIRED,FP_STORE_RETIRED,FP_ADDITION_RETIRED,

↪→ FP_MULTIPLICATION_RETIRED,FP_FUSEDMADD_RETIRED,FP_DIV_SQRT_RETIRED,OTHER_FP_RETIRED
PRESET,PAPI_LD_INS,DERIVED_ADD,INTEGER_LOAD_RETIRED,FP_LOAD_RETIRED
PRESET,PAPI_SR_INS,DERIVED_ADD,INTEGER_STORE_RETIRED,FP_STORE_RETIRED
PRESET,PAPI_BR_INS,DERIVED_ADD,JAL_INSTRUCTION_RETIRED,JALR_INSTRUCTION_RETIRED,

↪→ CONDITIONAL_BRANCH_RETIRED
PRESET,PAPI_TOT_CYC,NOT_DERIVED,CYCLES
PRESET,PAPI_LST_INS,DERIVED_ADD,INTEGER_LOAD_RETIRED,FP_LOAD_RETIRED,INTEGER_STORE_RETIRED,

↪→ FP_STORE_RETIRED
#
PRESET,PAPI_FML_INS,NOT_DERIVED,FP_MULTIPLICATION_RETIRED
PRESET,PAPI_FAD_INS,NOT_DERIVED,FP_ADDITION_RETIRED
PRESET,PAPI_FP_OPS,DERIVED_ADD,FP_ADDITION_RETIRED,FP_MULTIPLICATION_RETIRED,

↪→ FP_FUSEDMADD_RETIRED,FP_DIV_SQRT_RETIRED,OTHER_FP_RETIRED

Listing 3.24: Changes to src/papi_events.csv.

3.2.4 PAPI Presets

As discussed in Section 2.6.1, preset events are a major feature of the library and should be supported

to its full extent. As such, every processor supported by PAPI should have its entry in the file src/papi_-

events.csv, where the preset mapping is done. All existing PAPI preset events are defined in [16].

The contents of Listing 3.24 were appended to the src/papi_events.csv file. The parser for the file

ignores lines that start with #. Additions to the file should specify the beginning of a new processor by

starting with the line CPU,[IMPLEMENTAION NAME]. Then, the presets have to be inserted one per line,

starting with the word PRESET followed by a comma and the preset event being mapped (PAPI_L1_DCM

in the first event of the listing). Next, one needs to indicate if the mapping is derived or not. Deriving a

mapping means that the preset is mapped to a combination of the events available on the processor. The

combination here can mean several things, like summing up event counts (DERIVED_ADD), subtracting

(DERIVED_SUB), other simple operations or even specifying a complex operation (with DERIVED_POSTFIX).
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Function Call perf_events PAPI Library
Initialization 57.98µs 81200µs
Start count 11.67µs 947.11µs
Read count 7.76µs 13.95µs

Stop count and read 15.89µs 19.41µs
Termination 15.79µs 1190µs

Total 100.24µs 83360µs

Table 3.1: Measured execution time overheads (average) of PAPI Library calls in relation to
perf_events calls.

Exec. Event perf_events PAPI Library Abs. error
Time ID (a) (b) ((b) i.r.t (a))

10s

FP_LOAD 495450012 495450012 0.00%
FP_STORE 124722512 124722512 0.00%
FP_MADD 372222502 372222502 0.00%
D$_BUSY 1639038926 1610686782 1.73%

BR_TARGET_MISS 1659736 1665510 0.35%
FP_INTERLOCK 1397108171 1409479181 0.89%

I$_MISS 193767 203070 4.80%
D$_MISS 18586915 18567696 0.10%
D$_WB 77905 83298 6.92%
CYCLES 12928115705 12622306130 2.37%

30s CYCLES 38883173173 38121784778 1.96%
60s CYCLES 84688102810 83346239838 1.58%

Table 3.2: PAPI Library and perf_events event monitoring comparison with Gemm benchmark.

3.2.5 Case-Specific Note

The GCC version installed on the SiFive Unmatched used for development and testing did not support

one library needed to compile Fortran test files. Because of this, that compilation step was commented.

3.3 Implementation Evaluation and Result Discussion

To determine the overhead introduced by this implementation of PAPI and compare it to a direct

interface with perf_events three tests were designed and conducted.

First, the average total overhead for initialization, termination, and events start, read, and stop on

PAPI and perf_events were measured and compared. To do so, the total time elapsed while running

each step was controlled with the time.h library clock_gettime() function. As detailed in Table 3.1, the

observed overheads for PAPI are higher than for perf_events, with the typical case accounting for 13.95µs

for a PAPI event read (vs 7.76µs on perf_events) and 947µs for event start (vs 11.67µs on perf_events).

The initial PAPI start overhead is due to the underlying mechanism of base PAPI code, which requires

creating an event structure (including memory allocation and structure initialization), calling the libpfm4

library to translate event names to event codes, and then issuing a system call for perf_events. Therefore,

when considering the typical cumulative use case of event count plus event stop and read, an average

overhead of 966.52µs is observed for PAPI , which compares with 27.56µs for perf_events. Finally, there

is also an initial overhead for library initialization and termination which (on average) takes 81.2ms and

1.19ms for PAPI, respectively, compared with the 57.98µs and 15.79µs for perf_events.
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Although the observed overheads are consistent with previous research [30], a second analysis was

performed by using Strace to count the system calls invoked by each library during program profiling.

Strace showed 7716 system calls for PAPI and 43 calls for perf_events, with most calls being associated

with the initialization step, particularly to allocate initial memory structures, read the configuration files for

the current architecture and initialize and test perf_events functionalities.

The measurements obtained by using PAPI were further validated by performing a detailed profiling

of the GEMM kernel [17] (configured to last about 10s when running on the SiFive U7 core). This is

done by measuring average counts for multiple events across 100 runs of the kernel. The obtained

results (presented in Table 3.2) show that the counts for deterministic events (e.g., floating-point stores,

fused-multiply-add operations, etc.) present the same measured count using perf_events and PAPI .

However, other events such as cache operations and cycles, show slight variations due to OS-related

interference during the execution and the PAPI software infiltrating the counts while it starts, stops and

reads them. By increasing the execution time of the GEMM kernel to 30s and 60s , we observe that the

OS interference is mitigated, decreasing variations from 2.37% to 1.58% (see Table 3.2).

Taking all of this into mind, it is evident the PAPI library causes a big overhead over simply using

perf_events directly but most of that overhead is spent on initialization and termination, which would be

more hidden in normal use cases where the application being tested would be much larger than the minute

test kernel used here. It was also demonstrated that some types of events do not have their count affected

at all by PAPI overhead, namely events that count instruction retirements or stores/loads. Nevertheless,

events related to cache access or device utilization are affected indirectly by PAPI due to the computer

having to divide its resources between the actual program being profiled and the profiling software. All

that said, the point of this work is to provide developers with an easy-to-use way of gathering performance

data with acceptable accuracy, and that seems to have been achieved with the results presented.

3.4 Summary

This chapter outlines the process of implementing PAPI support for the RISC-V architecture, with a

particular focus on the SiFive U74-MC processor.

The foundation of the implementation lies in the creation of a custom RISC-V PMU model. This model

encapsulates the core attributes of a PMU, including descriptions, names, event lists, and encoding

methods. The model is not limited to a specific RISC-V processor but can serve as a template for other

RISC-V implementations.

A central aspect of the implementation is the definition of an event list. This list contains information

about the events that can be monitored on the RISC-V architecture. It encompasses event names, codes

and descriptions.

The process of event encoding involves determining the values to set in the event select register for

monitoring specific events.

Changes are made to the PAPI source code to ensure that the library correctly identifies SiFive as

a vendor. While the focus is on the SiFive U74-MC processor, this is a general step applicable to all

41



RISC-V-based processors.

This chapter also evaluates the overhead introduced by PAPI compared to direct usage of perf_events.

The measured overhead, especially during initialization and termination, highlights the trade-offs between

using PAPI for its ease of use and the more streamlined but complex perf_events interface.

The evaluation extends to measuring events when executing a GEMM kernel, validating the consistency

of event counts between PAPI and perf_events. This validation underscores the suitability of PAPI for

accurate performance data gathering on RISC-V processors.

While the primary focus is on implementing PAPI support for the SiFive U74-MC processor, the

underlying processes and concepts have broader applications across the RISC-V architecture. The imple-

mentation serves as a foundational reference for enabling performance analysis capabilities on various

RISC-V-based processors, demonstrating the adaptability of PAPI in a diverse hardware ecosystem.
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CHAPTER 4

Precise Event Sampling on RISC-V
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As has been discussed, PES offers very robust profiling techniques that allow the user to acquire

more in-depth information about the execution of the profiled software. This chapter focuses on proposing

a specification for a RISC-V PES facility and how it could be integrated into modern profiling tools. The

chapter starts by defining the objectives of the system and the requirements to achieve them. Then a

minimal implementation of the system on a CVA6 processor is presented.

4.1 Precise Event Sampling Specification

When it came to designing a PES system for RISC-V, it was attempted to provide basic functionalities

compatible with those of Intel PEBS, described in [21] and Section 2.7.1 of this document. The require-

ments for integration into PAPI were also taken into account, by considering previous work on the subject

[29].

4.1.1 Objectives

The objectives for this system are to be able to sample the processor state with a sampling triggered

by a performance counter reaching a predefined threshold. It is desired that once the sample is triggered,

an external interrupt stops the processor’s execution and stores information about the processor state

in a memory-mapped buffer. This buffer should be able to be mapped with a variable size and, once

full, should trigger a software interrupt so the user-level software using the PES system can gather its

contents and process or store them.

The control of the new hardware introduced should be done by kernel-level software, like perf_events,

and communicate with the hardware only through an OpenSBI interface, respecting the RISC-V CSRs

Machine privilege level inside the HPM.

This user-level software using PES system could be PAPI, as an example, or any other sampling tool

that can interface with perf_events.

4.1.2 Requirements

Following the aforementioned objectives for the system, the requirements are:

• A method to manage the buffer, considering its location in physical memory, the current buffer status

and the next available position;

• A mechanism to control the thresholds of all counters and to trigger register storage on the shared

buffer whenever this threshold is exceeded;

• A method for the system to notify the user-level tool to read the buffer.

• A method for the Kernel to control the HPM;

• A method for the user-level tool to communicate with the Kernel;
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Figure 4.1: Overview of the system software structure.

4.1.3 Specification

The objectives defined require that new hardware inside the HPM is specified.

The PES buffer requires 3 new CSRs: the mhpmmmaped to store the address of the mapped memory,

the mhpmmsize to store the size of the buffer and mhpmmoffset to keep the address of the next writable

memory position. All three are MXLEN-bit Write Any Read Legal (WARL) registers.

A way to store the threshold values is also necessary. That can be done by having 32 new CSRs: mhp-

mthresholdcyc to store the cycle counter threshold, mhpmthresholdinstret to store the instruction retired

counter threshold and mhpmthreshold3-mhpmthreshold31 to store the programmable counters thresholds.

All of them are MXLEN-bit WARL registers. When MXLEN=32, mhpmthresholdcyc,mhpmthresholdinstret

and mhpmthreshold3-mhpmthreshold31 store bits 31-0 of the corresponding counter threshold and new

mhpmthresholdcych to store the cycle counter threshold, mhpmthresholdinstreth to store the instruction

retired counter threshold and mhpmthreshold3h-mhpmthreshold31h CSRs are used to store bits 63-32.

For the sampling to occur, a comparator must be implemented in hardware for each performance

counter. When the value of the counter is equal to or higher than the respective threshold, a signal

should be sent to the PLIC so a machine-level interrupt handler can store any processor information in the

memory-mapped buffer. This handler should also advance the value of the next available buffer position,

mhpmmoffset by the size of the information just written.

When the buffer is full, detected by a comparator in hardware that checks if mhpmmsize=mhpmmoffset.

When this is true, an interrupt must be generated for the user-level tool to gather the information stored on

the buffer.

For the user-level to be able to access the HPM, kernel-level software must handle its requests and

relay them to machine-level. The kernel-level software would ideally be perf_events as an example, but

could also be a collection of tailored system calls, as long as it provides communication with the HPM.

The communication between kernel-level and machine-level also requires work, namely the addition of

read and write functions to new CSRs to an existing OpenSBI extension that already supports the current

RISC-V HPM specification. An overview of how the software structure should look is presented in Figure

4.1.

45



RISC-V
Core

PC

HPM

mhpmmapped mhpmeventXmhpmthresholdX mhpmcounterX

mhpmmsize

mhpmmoffset

Memory

mhpmmapped
1st Sampled Data

mhpmmapped+mhpmmoffset
2nd Sampled Data

...

n-th Sampled Data
mhpmmapped+mhpmmsize

General
Purpose
Registers

1

2

543

7

6

Figure 4.2: Precise Event Sampling on RISC-V system architecture. Parts in white already existed,
parts in blue were implemented, and parts in red were not implemented.

4.2 Precise Event Sampling Architecture

The system implemented in the CVA6 processor follows the specification discussed in Section 4.1.3.

Due to time constraints, it was not possible to implement an entire system but it was possible to demonstrate

that without, significant modifications to the hardware resources and the Kernel underlying layers, this

method of software profiling can be achieved.

The system architecture specified is represented in Figure 4.2 and would work as follows: (1) The

kernel-level software maps a section of memory to be used as a buffer and stores it in the mhpmmmaped

CSR; (2) The size of the buffer is stored in mhpmmsize; (3) The chosen threshold value to work as the

sampling rate is stored in the mhpmthresholdX CSR; (4) The event encoding is stored in the mhpmeventX

CSR as it happens in current implementations of RISC-V HPMs; (5) The mhpmcounterX increments at

each event occurrence; (6) When the count is equal to the defined threshold, a signal is sent to the PLIC

so that an external interrupt is generated. Some collection of data about the core’s state is appended to

the memory-mapped location and the counter is reset; (7) The mhpmmoffset is incremented by the size of

the written information. Once the buffer is full, an interrupt is generated so that the profiling software can

retrieve the information.

From this architecture, some parts were not implemented in the work described in the following sections,

but comments will be given on what is missing in each part of the design presented to function.

4.2.1 New CSRs

In the RISC-V privileged specification [27] the CSR address ranges are explained to be comprised

of encoded into the first 4 bits of the 12-bit encoding. The first 2 bits indicate if the CSR is read/write

(encoded 00, 01 or 10) or read-only (encoded with 11) and the second 2 bits encoded the lowest privilege

level that can access them (00 for user-level, 01 for Superior-level, 10 for Hypervisor-level and 11 for

machine-level). All existing machine-level HPM CSRs are encoded in the 0xB00-0xB7F address range.

To implement the proposed functionality, new CSRs were needed. With the RISC-V specification in

mind, they are declared in the same address range as the existing machine-level HPM CSRs, making
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them readable and writable only in machine-mode. Their implementation is done on the file core/in-

clude/riscv_pkg.sv and the added registers where:

• mhpmthresholdcyc with address 0xB21;

• mhpmthresholdinstret with address 0xB22;

• mhpmthreshold3-8 with addresses 0xB23-0xB28;

• mhpmmmaped with address 0xBC0.

4.2.2 Memory-Mapped Location Address

It was decided the address for the memory-mapped location should be stored in a new CSR and

have its content managed inside the HPM. For this, 7 new registers were created in the file core/perf_-

counters.sv of the CVA6 source-code: treshhold[6:1] and mmaped_addr and are represented by the d

and q signals of a D Flip Flop. Functionality was added for these registers to be readable and writeable

and update their q values at each clock cycle, unless of course, the reset signal is clear (active on low), in

which case the q values are set to 0. These changes are presented in Listing 4.1 where: addr_i is the

CSR address passed to the HPM to read or write to and we_i is the input signal write enable.

4.2.3 SBI-Like Interface Extension

As alluded to in Section 4.2.1, the newly created CSRs, as well as the mhpmeventX and mhpmcounterX,

are not writeable in User Mode and need firmware support to be written. During testing, the underlying

software used to run user-level binaries was the RISC-V Proxy Kernel and Boot Loader [18], which does

not support any environment calls for the user to write to the HPM CSRs. It did, however, support an

SBI-like interface for other environment calls.

The interface was extended with four new calls: SBI_HPM_SET_MEVENT, SBI_HPM_SET_MTHRESHOLD,

SBI_HPM_SET_MCOUNTER, SBI_HPM_SET_MMAPED. These calls are implemented in the simplified manner

presented in Listing 4.2.

It is pertinent to point out that the SBI_HPM_SET_MTHRESHOLD also sets the Machine external interrupt

enable bit on the machine interrupt enable CSR. This arms the PES system by letting the machine-level

know that it should trap external interrupts.

SBI calls are, of course, accessed exclusively by the supervisor-level. As such it was also necessary

to modify the user-level trap vector so that the Supervisor immediately runs an environment call again

with the same arguments when the system call code corresponds with one of the newly defined calls.

4.2.4 External Interrupt Request Control

In the same file, functionality to alert the PLIC to a counter threshold overflow was also added. This

control is done by comparing the value of the programmable counter to its corresponding threshold register

and, if the count is greater or equal to the threshold the output signal perf_counter_irq_o is set. The

description of this behavior is presented in Listing 4.3. This signal is propagated out of the core and
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...
// Signal Declaration
logic [63:0] threshold_d[8:1];
logic [63:0] threshold_q[8:1];
logic [63:0] mmaped_addr_d;
logic [63:0] mmaped_addr_q;
...
always_comb begin : generic_counter

...
// Unless Changed, last value is maintained
threshold_d = threshold_q;
mmaped_addr_d = mmaped_addr_q;
...
unique case (addr_i)

// Read from CSR_MHPM_THRESHOLD_X
riscv::CSR_MHPM_THRESHOLD_CYC,
riscv::CSR_MHPM_THRESHOLD_INST_RET,
riscv::CSR_MHPM_THRESHOLD_3,
riscv::CSR_MHPM_THRESHOLD_4,
riscv::CSR_MHPM_THRESHOLD_5,
riscv::CSR_MHPM_THRESHOLD_6,
riscv::CSR_MHPM_THRESHOLD_7,
riscv::CSR_MHPM_THRESHOLD_8 : begin data_o =

↪→ threshold_q[addr_i-riscv::CSR_MHPM_THRESHOLD_CYC + 1];end
...
// Read from CSR_MHPM_MMAPED
riscv::CSR_MHPM_MMAPED : begin data_o = mmaped_addr_q; end
...

endcase

if(we_i) begin
unique case(addr_i)

// Write to CSR_MHPM_THRESHOLD_X
riscv::CSR_MHPM_THRESHOLD_CYC,
riscv::CSR_MHPM_THRESHOLD_INST_RET,
riscv::CSR_MHPM_THRESHOLD_3,
riscv::CSR_MHPM_THRESHOLD_4,
riscv::CSR_MHPM_THRESHOLD_5,
riscv::CSR_MHPM_THRESHOLD_6,
riscv::CSR_MHPM_THRESHOLD_7,
riscv::CSR_MHPM_THRESHOLD_8 : begin

↪→ threshold_d[addr_i-riscv::CSR_MHPM_THRESHOLD_CYC + 1] = data_i; end
...
// Write to CSR_MHPM_MMAPED
riscv::CSR_MHPM_MMAPED : begin mmaped_addr_d = data_i; end
...

endcase
end

end
...
always_ff @(posedge clk_i or negedge rst_ni) begin

if (!rst_ni) begin
...
// If reset signal is clear (active on low) CSRs are reset
threshold_q <= '{default:0};
mmaped_addr_q <= '{default:0};

end else begin
...
// Else, flip flop saves value
threshold_q <= threshold_d;
mmaped_addr_q <= mmaped_addr_d;

end
end

Listing 4.1: Changes to core/perf_counters.sv.
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void mcall_trap(uintptr_t *regs, uintptr_t mcause, uintptr_t mepc) {
write_csr(mepc, mepc + 4);

uintptr_t n = regs[17], arg0 = regs[10], arg1 = regs[11], retval, ipi_type;
switch (n){
case SBI_HPM_SET_MEVENT:
if (arg0 >= 3 && arg0 <= 8) {
write_csr(mhpmevent3 + arg0 - 3, arg1);
retval = 0;}

else
retval = -EINVAL;

break;
case SBI_HPM_SET_MTHRESHOLD:
if (arg0 >= 1 && arg0 <= 8) {
set_csr(mie, MIP_MEIP);
write_csr(0xb21 + arg0 - 1, arg1); // 0xb21 = mhm_threshold_3
retval = 0;}

else
retval = -EINVAL;

break;
case SBI_HPM_SET_MCOUNTER:
if (arg0 >= 3 && arg0 <= 8) {
write_csr(mhpmcounter3 + arg0 - 3, arg1);
retval = 0;}

else
retval = -EINVAL;

break;
case SBI_HPM_SET_MMAPED:
write_csr(0xbc0, arg1); // 0xbc0 = mhm_mmaped
retval = 0;
break;

...
}
regs[10] = retval;

}

Listing 4.2: Changes to machine/mtrap.c in riscv-pk library.
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always_comb begin : perf_irq_ctrl
perf_counter_irq_o = 'b0;
for (int unsigned i = 1; i <= 8; i++) begin
if (generic_counter_q[i] >= threshold_q[i] && threshold_q[i] != 'b0) begin
perf_counter_irq_o = 'b1;

end
end

end

Listing 4.3: HPM External Interrupt Request Control.

...
assign irq_sources[ariane_soc::NumSources-1:8] = '0;
...
assign irq_sources [7] = perf_counter_irq_i;
...

Listing 4.4: Changes to corev_apu/tb/ariane_peripherals.sv.

into the PLIC, inside the peripherals module (file corev_apu/tb/ariane_peripherals.sv), in the form of

an interrupt request source. CVA6 supports 30 external interrupt request sources but only 7 (indexes

0 through 6) are used, having the remaining reserved. It was chosen to use source 7 to represent the

performance monitoring threshold overflow, as shown in Listing 4.5. Inside the PLIC the request is treated

by a gateway as described in Section 2.3.2.

4.2.5 External Interrupt Handler

When the count reaches the predefined threshold and the PLIC signals a pending external Machine

interrupt, the RISC-V Proxy Kernel’s trap table is called. This library did not originally support machine-

mode external interrupts so that had to be added and is done in the first lines of Listing 4.5. Because no

other Machine external interrupts exist, there was no case selector for which handler should be run. The

handler starts by letting the PLIC know the interrupt is being treated. Then proceeds to stop the counting

of mhpmcounter3. Then the handler saves the value of MEPC to the memory location whose address is

stored in mhpmmmaped.

The reader might be already questioning the correctness of the last step, which is, in fact, at the very

least incomplete. In Machine mode, the CVA6 processor does not translate memory addresses, expecting

to be given a physical address instead of a virtual one. This means that the address stored mhpmmmaped

that was mapped in User mode could not be passed directly to a store instruction on machine-level code.

And, of course, this instruction runs without problem, writing to some other memory location no one

claims. This error was not detected until very late in development because the simulator used to test the

implementation was malfunctioning when variables were printed to stdout, which rendered reading the

memory location in the User mode test program useless and not even attempted. Some way to translate

the address should be added before storing the contents of MEPC or, the memory could be mapped in

Machine mode and some kind of interrupt could be used to later retrieve the contents of the memory

location in User mode.
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li a0, IRQ_M_EXT * 2
bne a0, a1, .Lbad_trap

# Yes.
# Handler
li a2, 0xc200004 // Signal to the PLIC that
lw a0, 0(a2) //the interrupt was taken
li a0, 8 // Inhibit the counting of
csrs 0x320, a0 //events in mhpmcounter3

csrr a0, mepc
csrr a2, 0xbc0
sw a0, 0(a2)

csrw mhpmcounter3, x0 // Reset mhpmcounter3
li a2, 0xc200004 // Signal to the PLIC that
sw a0, 0(a2) //the interrupt handler is done
li a0, 8 // Clears inhibition
csrc 0x320, a0 //of mhpmcounter3
j .Lmret

Listing 4.5: Changes to corev_apu/tb/ariane_peripherals.sv.

Version Total LUTs Logic LUTs LUTRAMs SRLs FFs
Original 75749 73124 1996 629 48927
With PES 75377 72752 1996 629 49390

∆ -372 -372 0 0 463
Table 4.1: Reported resource utilization for the CVA6 processor.

The handler continues by resetting the counter, signaling the PLIC that the handler is finished so new

interrupts can be generated and re-enable the count. These three steps allow for the sampling to occur

indefinitely.

Besides the error already discussed, several upgrades could be introduced to this handler to render

the system more usable in real-world applications instead of being a simple proof of concept. In particular,

the handler should support all counters instead of just mhpmcounter3, the values stored in the sampling

should include more information about the core’s state than just the MEPC and the samples should not

overwrite each other, like it was defined in Section 4.1.3.

Even so, this handler manages to prove that the hardware changes introduced to the CVA6 processor

are enough to support PES.

4.3 Evaluation and Result Discussion

In order to understand the impact of the added hardware on resource utilization, the CVA6 project

was synthesized and implemented with and without modifications in Vivado 2019.2 with the AMD Virtex

7vx485t-ffg1761 FPGA as the target device. Although the "Runtime Optimized" strategy was used to

reduce optimization-introduced discrepancies the resource utilization report, gathered in Table 4.1, shows

that the implementation with the PES facilities use fewer look-up tables and marginally more flip-flops

when comparing the top-level module. This means that the inherent uncertainty of the optimization path

taken by Vivado was enough to overshadow the resources used in the newly added software. In terms of
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the clock period, the original targeted 20ns was still achieved with no reported timing errors. Furthermore,

analyzing the 100 lowest slacks in the timing report, it is noticeable the great majority of them, all apart

from one, are unrelated to the changes, belonging to the RAM module and the single one related to

the core belongs to the cache submodule and has a slack greater than 1.5ns . In other words, the PES

facilities implemented have no impact on the working frequency of the processor.

To test the PES functionality, a simple test program was written and is presented in Listing 4.6.

The application consists of doing a mmap and storing the returned address to the newly created

mhpmmmaped, setting the count threshold to 3, programming the event "Floating Point Instructions" to be

counted and executing a float sum operation 15 times.

This test serves the purpose of generating more than one sample and allows for the analysis of the

simulation waveforms to confirm that the implemented hardware and software modification produce the

desired result of storing samples in memory.

A waveform file was obtained from running the binary of this program in the Verilator simulator and a

few snippets will be discussed below. In the images, the $ symbol means the value is in hexadecimal

format, the % symbol means it is in binary and no symbol means decimal format.

In Figure 4.3 it is possible to see the values of the HPM CSRs at the beginning of the count. The

mapped memory address is 0x12000, the threshold is correctly set to 3 and the event selector to 21. It is

also visible that the count started and reached 3, where it stopped and the interrupt request signal was

activated. The irq_sources_i signal (interrupt request sources) from the PLIC almost immediately is

set to 0x80 which is the one-hot encoding for the 7th source that was defined to be the count threshold

interrupt request. Following, the PLIC gateway sets the interrupt pending to the same value which means

it has notified the hart of the pending interruption.

Jumping ahead in time, displayed in Figure 4.4 is the initial read (indicated by the operation=0x25

signal) of the PLIC memory position vaddr=0xc200004 to notify of the claim. The claim is confirmed by the

signal claim at the end of the figure being equal to the one-hot encoding for the count threshold source.

Advancing to Figure 4.5, the first thing to point out is the mcountinhibit_q being set to 8, meaning

the mhpmcounter3 is stopped. Then, the value of MEPC (represented by the signal data=mepc_q) is stored

(indicated by the signal operation=0x27) in the memory location pointed to by mhpmmmaped (represented

by the signal vaddr=mmaped_addr_d). This store is where the actual sampling occurs.

In Figure 4.6, the counter is reset to 0 and, as a consequence the perf_counter_irq_o and irq_-

sources_i signals are unset. The PLIC memory location is written to notify the handler is ending.

Finally, the mcountinhibit is cleared and the PLIC process ends by temporarily setting the complete

signal with the one-hot encoding of the source, as shown in Figure 4.7.

All the snippets shown demonstrate that the implemented system has the basic functionality to sample

the processor state and that this kind of facility can be easily standardized and added into RISC-V

computers as a powerful tool to profile software.
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uintptr_t sysCallMmap() {
long result = 0;
__asm__ volatile("addi a7, x0, 222":::); // Syscall to mmap
__asm__ volatile("addi a0, x0, 0":::); // Address = NULL
__asm__ volatile("addi a1, x0, 8":::); // Length = 8B
__asm__ volatile("addi a2, x0, 3":::); // prot = PROT_READ|PROT_WRITE
__asm__ volatile("addi a3, x0, 0x22":::); // flags = MAP_PRIVATE|MAP_ANONYMOUS
__asm__ volatile("addi a4, x0, -1":::); // fd = -1
__asm__ volatile("addi a5, x0, 0":::); // offset = 0
__asm__ volatile("ecall":::);
__asm__ volatile("mv %0, x10":"=r"(result)::);
return result;

}

int main(int argc, char const *argv[])
{

float a = 0.3, b = 0.5;
uintptr_t *ptr = NULL;

ptr = (uintptr_t *)sysCallMmap();

// Set mhpmmmaped address to mmaped address
__asm__ volatile("add a1, x0, %0"::"r"(ptr):);
__asm__ volatile("addi a7, x0, 12":::);
__asm__ volatile("ecall":::);

// Set threshold to 3
__asm__ volatile("addi a1, x0, 3":::);
__asm__ volatile("addi a7, x0, 10":::);
__asm__ volatile("ecall":::);

// Set event to be counted - Floating Point Instructions
__asm__ volatile("addi a1, x0, 21":::);
__asm__ volatile("addi a7, x0, 9":::);
__asm__ volatile("ecall":::);

for (int i = 0; i < 15; i++) {
a = a + b;

}
return 0;

}

Listing 4.6: PES test program.
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1728600 ps 1728700 ps 1728800 ps 1728900 ps 1729 ns 1729100 ps
$0000000000012000
3
21
0 1 2 3 0 1 2 3

$00000000 $00000080 $00000000 $00000080
$00000000 $00000080 $00000000 $00000080

Time
mmaped_addr_d[63:0]

threshold_q(1)[63:0]

mhpmevent_q(1)[4:0]

generic_counter_q(1)[63:0]

perf_counter_irq_o

irq_sources_i[29:0]

ip[29:0]

clk_i

Figure 4.3: Register values during counting and interrupt request generation.

1729206 ps 1729209 ps 1729212 ps 1729215 ps 1729218 ps 1729221 ps
3

%000000000000000000000010000000
$00000080 $00000000
$00000000 $00000080 $00000000
$00 $25 $00
$0000000000000000
$000+ $000000000C200004 $0000000000000000

Time
generic_counter_q(1)[63:0]

perf_counter_irq_o

irq_sources_i[29:0]

ip[29:0]

claim[29:0]

operation[7:0]

data[63:0]

vaddr[63:0]

clk_i

Figure 4.4: Handler claim notification.

4.4 Summary

This chapter outlines the design and implementation of a PES system for RISC-V, emphasizing its

specification and integration into contemporary profiling tools. The PES system is defined with specific

objectives and requirements, including the ability to sample the processor’s state based on predefined

performance counter thresholds. Key components of the architecture include new CSRs to manage

buffer locations and threshold values. A hardware-based comparator is used to trigger interrupts when

performance counters reach their specified thresholds. Communication between kernel-level software,

such as perf_events, and the hardware occurs through an OpenSBI interface, respecting the RISC-V

CSRs Machine privilege level. The chapter also discusses an SBI-like interface extension, external

interrupt control, and the implementation of an external interrupt handler. A test program is used to

validate the PES system’s basic functionality for profiling software, showing its potential to standardize

and integrate PES into RISC-V-based computers as a valuable tool for software profiling.

In summary, the chapter presents a comprehensive overview of the PES system’s design and imple-

mentation for RISC-V, covering its specification, architecture, and practical validation. It highlights the

system’s potential to serve as a standardized and integrated solution for profiling software in RISC-V-based

computing environments, offering valuable insights into its development and usage.
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1728864 ps 1728866 ps 1728868 ps 1728870 ps 1728872 ps 1728874 ps 1728876 ps
$0000000000012000
3
%000000+ %000001000
$0000000000010208
$00 $27 $00
$0000000000000000 $0000000000010208 $0000000000000000
$0000000000000000 $0000000000012000 $0000000000000000

Time
mmaped_addr_d[63:0]

generic_counter_q(1)[63:0]

mcountinhibit_q[8:0]

mepc_q[63:0]

operation[7:0]

data[63:0]

vaddr[63:0]

clk_i

Figure 4.5: Counter inhibition and sampling of the MEPC.

1728882 ps 1728884 ps 1728886 ps 1728888 ps 1728890 ps 1728892 ps 1728894 ps
3 0

$00000080 $00000000
%000001000
$00 $27 $00
$0000000000000000 $0000000000010208 $0000000000000000
$0000000000000000 $000000000C200004 $0000000000000000
$00000000

Time
generic_counter_q(1)[63:0]

perf_counter_irq_o

irq_sources_i[29:0]

mcountinhibit_q[8:0]

operation[7:0]

data[63:0]

vaddr[63:0]

complete[29:0]

clk_i

Figure 4.6: Counter reset.

1728894 ps 1728897 ps 1728900 ps 1728903 ps 1728906 ps 1728909 ps
0
%000001000 %000000000
$00000000 $00000080 $00000000

Time
generic_counter_q(1)[63:0]

mcountinhibit_q[8:0]

complete[29:0]

clk_i

Figure 4.7: Counting resumed and PLIC complete signal.
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CHAPTER 5

Conclusion
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5.1 Contributions Achieved

This work set out with the objective of enabling RISC-V software development by introducing higher-

level access to the RISC-V HPM and proposing a new development path to this still-simple facility by

designing a proof-of-concept for PES functionality.

Higher-level access was achieved by porting the PAPI library to RISC-V and giving it support the

SiFive Unmatched board in a modular way and following the principles of the already existing repository

code to facilitate future integration into the main project and the introduction of any RISC-V processor that

is compatible with the current HPM specification.

The implemented version of PAPI is fully usable and introduces only a small amount of overhead

in comparison with directly using the perf_events subsystem, which is much more laborious due to the

necessity of knowing the event encodings and all the necessary configuration options. Furthermore, the

overhead was shown to be associated with PAPI initialization, which is only counted once per program

execution. The work developed in this implementation of PAPI was published in:

• Joao Mario Domingos et al. ‘Supporting RISC-V Performance Counters Through Linux Performance

Analysis Tools’. In: 2023 IEEE 34th International Conference on Application-specific Systems,

Architectures and Processors (ASAP). 2023, pp. 94–101. doi: 10.1109/ASAP57973.2023.00027

In regards to the newly proposed PES functionality, the complete implementation plan was, unfortu-

nately, not completed. Nevertheless, the facilities and software handlers implemented were enough to

demonstrate the basic functionality of sampling the core state by using a programmable event as the

sampling rate and storing the corresponding information to memory. With this in mind, it is possible to say

the objective of presenting a proof-of-concept for PES functionality was successful.

The work developed for this thesis has been shown to provide developers with easier access to the

HPM, not available until now and also presented a new path of development for the HPM specification

that could further help the porting of software to RISC-V.

5.2 Future Work

The possible future works launched by this thesis could go in several directions.

The PAPI library modifications could be submitted to be merged into the main project. Support for

new RISC-V processors could be added, like the ones developed by the EPI project.

The PES functionality introduced is but a very crude proof-of-concept. It should be further developed,

adjusting the original design presented if so is deemed necessary, and compiled into a RISC-V extension

proposition that could be submitted to the RISC-V Foundation. Bringing the PES system to a complete

state would require new modifications: to the Hardware, to introduce the not yet implemented registers

already deemed necessary for the full system; to the Kenel, to implement complete handlers instead of

simplified versions of them; to the OpenSBI layer, to allow full communication with the new registers; to

the perf_events driver, to allow seamless control of the system without the need for the user to manually
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program and initiate the system; and to the PAPI library, to be able to correctly interface with perf_events

when attempting to program the HPM to do event-based sampling.

Other possible works derived from the experience developing this work could be to develop new tools,

built upon the PAPI library to analyze more specific metrics, such as the energy efficiency of certain

operations, for example.
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