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“Once the game is over, the king and the

pawn go back in the same box.”

Italian Proverb





Abstract

For the last 60 years, games have been an important research subject in the field of Artificial Intelligence.

For some time the focus was mainly on creating strong computer Chess programs. With the rise of

master-level game-playing programs the trend changed. Now, the focus is on determining which games

can effectively be solved and on solving them. The recent breakthrough with Monte-Carlo Tree Search

(MCTS) techniques in complex games, such as Go and Amazons, also led the research away from alpha-

beta. However, MCTS has not yet beaten alpha-beta in more simple games, such as Checkers and Chess.

In this dissertation, we describe a computer program created to play the game of Classical Checkers,

Turska, and, for the first time, we estimate and analyse the complexity of Classical Checkers. Additionally,

some experiments were made with the program. The results are analysed in order to better understand

how each one of the studied search algorithms and techniques behave in the domain under study, and

how they can be improved. Given that the enhancements that take advantage of transpositions were the

ones that accounted for more savings, we tried to improve them. We did so by trying to improve the

information stored in the transposition table and how it was managed.

The program was evaluated by playing some matches against another Classical Checkers computer

program. In short, the results indicate that Turska’s evaluation function needs further work. This is

re-stated in the future work, along with other research suggestions.
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Resumo

Nos últimos 60 anos, os jogos, na sua generalidade, têm sido um importante tema de pesquisa na área da

Inteligência Artificial. Durante muito tempo o objectivo era criar programas de computador que jogassem

bem Xadrez. Com o surgimento de programas que jogam a um ńıvel bastante elevado a tendência mudou.

O foco está agora em determinar que jogos podem ser resolvidos e em resolvê-los. Os recentes avanços

com o método de Monte-Carlo em procura (MCTS) em jogos mais complexos, como Go e o Jogo das

Amazonas, colocaram a procura alfa-beta em segundo plano. No entanto, o MCTS ainda não bateu a

procura alfa-beta em jogos mais simples, como o Jogo das Damas e o Xadrez.

Nesta dissertação descrevemos um programa de computador, denominado Turska, criado para jogar

a variante clássica do Jogo das Damas. O programa foi também utilizado para, através de algumas

experiências, se compreender melhor como cada um dos algoritmos e técnicas de procura estudados se

comportam no domı́nio em estudo, e como podem ser melhorados. Tendo em conta que as técnicas que

tiram partido de transposições foram as responsáveis por mais e maiores ganhos, tentámos melhorá-las.

Pela primeira vez, a complexidade do jogo é estimada e analisada.

Para avaliar o nosso programa jogámos alguns jogos contra outro programa. Os resultados indicam

que a função de avaliação do Turska precisa de ser mais trabalhada. Esta observação é reafirmada nas

sugestões de trabalho futuro, juntamente com outras sugestões de investigação.

Palavras-Chave
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1Introduction

Games have been a leisure for human beings almost as long as civilisation exists. Not only are they fun

to play, but they can also be challenging and competitive. Games have also been known to stimulate the

human brain and help in the development of mathematical reasoning. Because of this, certain games,

such as Checkers or Chess, have been taught in schools in some countries. In the past centuries, some

games, most notably Chess, have gained a certain level of status and even a place in culture. Thus, there

is a stimulus for people to excel in the games they like. Chess is the most extreme example, with lots

of competitions and championships happening regularly all around the globe. The reputation for owning

a Chess title is very high. Although in general most games continue to be played as a leisure, for some

people it has become their profession, the best example being Poker. Given the increased interest and

competitiveness, some games are being studied thoroughly. This led to an increased literature about

some games. Additionally, over the past years the use of computers as a tool to study games has been

increasing.

In the early 1950s, advances in the fields of computer science and artificial intelligence raised a special

interest in games. The hypothesis of creating artificial players for games had just become real. A large

number of game-playing programs has emerged ever since. A small number of games has been solved,

that is, considering that the players play the best they can, the outcome of the game has been determined.

Although in some games the artificial players have challenged and even conquered the human supremacy,

in others they are no match for humans. The first computer program to officially conquer the human

supremacy was Chinook. Chinook became the first computer program to win a championship title from

a human back in 19941. The game in question was English Checkers.

Games are interesting research subjects for several reasons:

• Games have a closed domain with well-defined rules, in contrast to real-world problems, which

makes them easier to represent and analyse.

• Although most games are easy to learn, they are difficult to master. Creating a strong game-playing

program can sometimes provide insights into how people reason, as the way game experts think is

usually studied to devise knowledge that computers can understand.

• Games can be used to test new ideas in problem solving.

1Chinook did not actually won the title from the human. A new championship was created to address competitions
between humans and computers, as the title of World Champion is usually disputed solely between human beings. Instead,
Chinook was declared the World Man-Machine Champion.
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Usually, advances in game research are only applicable to the game in study and to similar games.

Only sometimes can the ideas, algorithms, and techniques be translated to other domains.

1.1 Problem Statement and Contributions

In game-playing research, and search research in general, the objective is to create a computer program

that can autonomously solve a given problem. In our case the problem is to play the game of Classical

Checkers. The main problem addressed in this thesis can be stated as:

Problem Statement 1 How can we develop a computer program to play Classical Checkers?

To answer this question we will study alpha-beta, a game-playing method that has been shown to

perform well in Checkers. Then, we will use Chinook as a case study to better understand how alpha-beta

and enhancements are used in practice, as well as other components, such as opening books and endgame

databases. Following that, we will estimate the complexity of Classical Checkers and compare it to that

of other games, particularly of other Checkers variants. To the best of our knowledge, this is the first

attempt at estimating the complexity of Classical Checkers.

After building our Classical Checkers computer program, Turska, two other questions will arise:

Problem Statement 2 How do the studied search algorithms and techniques behave in the domain

under study, and how can they be improved?

Problem Statement 3 What game-specific knowledge is required to improve our program?

To answer the first question we will compare several of the studied search algorithms and techniques.

Additionally, we will experiment several replacement schemes for transposition tables, including a new

one, and investigate some of the suggestions mentioned by Breuker for additional information in the

transposition table [8]. The research will always be performed in the domain of Classical Checkers. To

answer the second question we will gather some specific knowledge about the game, either by studying

knowledge available in other Checkers variants or by obtaining feedback from a Checkers expert, Veŕıssimo

Dias. We will evaluate the knowledge of our program by running some experiments and by playing some

matches against another program.

1.2 Document Outline

In chapter 2 we present the game in which we focus, Classical Checkers, along with some formal back-

ground behind games: some of their features and categorisations. Then, we introduce the field of ad-

versarial search, specialising in alpha-beta search. The chapter includes an explanation of bounds, the

minimal tree, node types, search enhancements, and problems related with imperfect decisions in games.

The chapter ends with the description of some relevant issues related with solving games and game

complexity. The notions introduced in this chapter are used throughout the document.

2



In chapter 3 we take a look at Chinook, a state-of-the-art English Checkers computer program, and at

the proof procedure used to weakly solve the game of English Checkers. Other components that are used

in game-playing programs, such as opening books and endgame databases, are introduced as well. The

game of English Checkers is also presented, along with an overview of the history of computer Checkers.

In chapter 4 we estimate and analyse the state-space and game-tree complexities of Classical Checkers,

which are then compared to the ones of other games, particularly of other Checkers variants.

In chapter 5 and 6 we describe Turska’s search and knowledge components, similarly to how it was

done with Chinook, in chapter 3. In chapter 5 we analyse the results of the experiments made with

several search algorithms and techniques. The purpose is to determine how the enhancements behave

for different search depths and game phases, as well as the influence of the enhancements on the search

performance. In chapter 6 we describe the program’s evaluation function and quiescence search, and

compare some versions of them. We conclude the chapter by analysing the matches played between

Turska and Windamas.

We conclude this dissertation with chapter 7. We discuss the results obtained, draw some conclusions,

and discuss future work directions.

In appendix A we explain the rules of Checkers, in brief, and introduce the standard board notations

for both Classical and English Checkers. In appendix B we describe AND/OR trees and the basic Proof-

Number Search algorithm. The reading of appendix A is required to better understand chapter 6, and

the reading of appendix B is advised before proceeding with the second part of chapter 3.

3
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2Games and Adversarial Search

Since the birth of Artificial Intelligence games have been one of the main topics of research in the field.

We start by presenting the game in which we will focus, Classical Checkers, along with its properties.

Then, we introduce a method that allows computers to play games, minimax, and an improvement to

it, alpha-beta. Next, we discuss some techniques to enhance alpha-beta and finish by describing some

relevant issues related with solving games and game complexity.

2.1 Classical Checkers

Checkers1 is a kind of board game played between two players that involves diagonal moves of uniform

pieces and mandatory leap captures. Checkers is believed to originate from Alquerque2. The rules for

the game of Checkers can be consulted in appendix A.

Classical Checkers, also known as Portuguese or Spanish Checkers, is the most played Checkers

variant in Portugal, Spain, and in some countries in Northern Africa and Southern America. This

variant is considered to be the oldest and thus is considered as the original Checkers game3. Some

computer programs exist for this variant4. Profound, by Álvaro Cardoso, and Windamas, by Jean-

Bernard Alemanni, are recognized as being the strongest [18].

2.1.1 Game Properties

In game theory, games can have several properties and categorisations:

• Cooperative (or coalitional) vs non-cooperative. The most basic entity in any game model is

the player. A player, or agent, may be interpreted as an individual or as a group of individuals

making a decision. Once the set of players is defined, we may distinguish between two types of

models: cooperative and non-cooperative. In cooperative game models, players can form coalitions

and are supposed to be able to discuss the situations and agree on a rational joint plan of action, an

agreement that should be assumed to be enforceable. On the other hand, in non-cooperative game

models, it is assumed that each player acts independently, without collaboration or communication

with any of the others.

1Depending on the form of the English language used, the term used to refer to the game may differ. Checkers is the
term used in American English, whilst Draughts is the one used in British English. In this document we will use the
American term. In the literature, the terms Checkers and Draughts are often incorrectly used to refer to the games of
English Checkers and International Checkers, respectively.

2As investigated by Arie van der Stoep, http://www.draughtshistory.nl/origin.htm.
3As investigated by Arie van der Stoep, http://www.draughtshistory.nl/Evolution.htm.
4A small survey can be found at http://alemanni.pagesperso-orange.fr/apage_spa_e.html.

5

http://www.draughtshistory.nl/origin.htm
http://www.draughtshistory.nl/Evolution.htm
http://alemanni.pagesperso-orange.fr/apage_spa_e.html


• Sequential (or dynamic) vs simultaneous (or static). In sequential games, each player chooses

his actions before the others can choose theirs, i.e. players take turns playing. An important property

of sequential games is that the latter players have some information about the actions taken by the

former players. Simultaneous games are the counterpart of sequential games in the sense that there

is no sequentiality, and each player chooses his actions without any knowledge of the other players

actions.

• Deterministic vs stochastic. A game is deterministic if there is no randomness involved in the

game, e.g. the roll of a die. If a game includes a random element, then it is stochastic.

• Perfect information vs imperfect information. A game is said to have perfect information if

each player, when making any decision, is perfectly informed of all the events that have previously

occurred. Checkers is an example of such game as each player can see all the pieces on the board

at any time. A game has imperfect information if it allows players to have only partial or no

information about the actions taken previously when making decisions.

• Zero-sum vs non-zero-sum. Informally, in a zero-sum game, the gain or loss of a player, at any

moment in the game, is balanced by the losses and gains of the other players, at that same moment.

This means that if the gains and losses of all players are summed, the result will be equal to zero5.

In non-zero-sum games, the result of the sum will be different from zero.

Game theory and many of the previous concepts were first introduced and developed by von Neumann

and Morgenstern [61]. Since then, game theory has been a field under constant development.

Checkers is a two-player deterministic zero-sum non-cooperative sequential game with perfect in-

formation. Games with these properties are called abstract strategy games and are studied within

combinatorial game theory [16, 4], which is a branch of game theory.

2.2 Adversarial Search

Humans play games by considering different combinations of possible moves for themselves and possible

replies, or counter-moves, by their opponents. Each legal combination of moves and replies is a possible

line of play. The most probable line of play is called the principal variation (PV).

Computers try to mimic humans by systematically analysing the different lines of play and building

a game tree with that information. As an example, let us look at Tic-Tac-Toe. Figure 2.1(a) shows

the possible lines of play from a certain Tic-Tac-Toe game position. The root of the tree is the current

position, the nodes are legal positions, and the branches are legal moves. Leaf nodes are called terminal

nodes and represent positions where the game ends. Considering the possible lines of play to find the

best one is usually referred to as searching the tree and a move by one player is called a ply.

5Assuming that the gain of a player is represented by a positive number and the loss by a negative one.
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Figure 2.1: The possible lines of play from a certain Tic-Tac-Toe game position (a) and its minimax tree
(b).

2.2.1 Minimax

In two-player zero-sum non-cooperative sequential games with perfect information, the first player is

called Max and the second, Max’s opponent, is called Min. A minimax tree is a game tree where

each node is annotated with its minimax value. The minimax value of a position is the utility of that

position for Max. The utility, or payoff, of a position is a numeric value that represents the best possible

game outcome from that position for a certain player. For example, in Tic-Tac-Toe, as in Checkers, there

are three possible outcomes for a game: win, loss, or draw, with utilities +1, −1, and 0, respectively.

There are games with a wider variety of possible outcomes. Figure 2.1(b) shows the minimax tree for our
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Tic-Tac-Toe example. Nodes where it is Max’s turn to play are depicted with squares, nodes where it is

Min’s turn to play are depicted with circles.

The minimax value of a position can be computed with the following formula:

Minimax(position) =
Utility(position) if position is terminal,

Maximump∈Successors(position)Minimax(p) if position is a Max position,

Minimump∈Successors(position)Minimax(p) if position is a Min position.

Minimax uses backward induction to compute the value of a position. It starts by computing the

values of the terminal positions and then backs up these values using maximum and minimum operations.

When all positions have been analysed, we have the minimax value of the tree (n.b. the minimax values

of the tree and of the root are the exact same thing). Figure 2.1(b) shows an example of a minimax tree

with value 0. The principal variation is shown with a thicker line. Note that the minimax value of a tree

is a function of its leaves and not of the root. The principal variation is the path from the root to the

leaf that gives the root its value. There may be more than one principal variation as it is possible that

more than one leaf propagates its value back to the root.

Minimax assumes that both players play optimally, i.e. every player always tries to maximize its

utility. If one of the players does not play optimally, then the other should perform as good or even

better. Although there may be other strategies that perform better than minimax against suboptimal,

or fallible, opponents, we will consider that the opponent always plays optimally. Notice that Max’s goal

is to maximize its own utility, whilst Min’s goal is to minimize Max’s utility. To obtain the utility of a

position for Min we only have to negate its value for Max, due to the zero-sum property. In fact, the

names of the players come from this relation between their utilities. It is also this opposition between

the players utilities that makes the situation adversarial.

The name minimax comes from the fact that each player maximizes its own utility while minimizing

the opponent’s utility at the same time. Although minimax was first introduced by Zermelo [63], only

years later was the minimax theorem correctly described [61].

If we take advantage of the zero-sum property of games, we can reformulate minimax slightly differ-

ently. This new formulation is called negamax [28]:

Negamax(position) =Utility(position) if position is terminal,

Maximump∈Successors(position) −Negamax(p) otherwise.

We should make clear that when using the minimax formulation Utility returns the utility of a

position for Max, whilst when using the negamax formulation it returns the utility of the position relative

to the side playing; otherwise the formulations are not equivalent.
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Figure 2.2: Value propagation in game trees.

Before continuing we should point out that we have been using the term game as it meant abstract

strategy game. As in this document we are only concerned with abstract strategy games, more particularly

the game of Classical Checkers, the algorithms and techniques we are going to present are introduced

in this context. Nevertheless, some of the algorithms can be extended to other kinds of games. For

the subset of games that can be represented with game trees, adversarial search is often referred to as

game-tree search.

2.2.2 Alpha-Beta

To find the value of a game tree, minimax examines all of its nodes. In most cases, this is not only

infeasible due to the massive number of nodes that may exist in a game tree, but also non-optimal

because there are many nodes that do not affect the value of the root.

Alpha-beta (α-β) [28]6 is an improvement to the minimax algorithm that can possibly avoid the

examination of the entire game tree. The idea is not to analyse parts of the tree that do not affect the

value of the root. This technique is called pruning. Consider the example in figure 2.2. After finding the

utility x of the first move, m1, Max should only be concerned with moves that have a utility greater than

x, as he is trying to maximize his utility. Now consider the situation where Max makes a second move,

m2, and the first reply of Min returns an utility y, such that y ≤ x. Since Min is trying to minimize

Max’s utility, the eventual utility of m2 will be at most y. Hence, Max will never play m2 since it already

has a better option, m1. In other words, node a, a Max node, has imposed a lower bound on its child c,

a Min node. Conversely, a Min node can impose an upper bound on its Max children. Because of this,

the alpha-beta algorithm introduces two bounds:

• The lower bound, α, equals the highest minimax value found so far, i.e. the minimum value that

Max is guaranteed to have.

• The upper bound, β, equals the lowest minimax value found so far, i.e. the maximum value that

Min is guaranteed to have.

The alpha-beta algorithm is shown in figure 2.3. −∞ denotes a value that is lower than or equal to

any possible utility for a terminal node, and +∞ a value that is greater than or equal to any possible

6The early history of α-β is somewhat obscure. Knuth and Moore provide an overview of this history [28].
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Alpha-Beta(node, α, β)

if node is terminal then

return Utility(node)

if node is MAX then

utility = −∞
for each node n ∈ Children(node) do

utility = Max(utility , Alpha-Beta(n, α, β))

if utility ≥ β then // β cutoff

break

α = Max(α, utility)

else // node is MIN

utility = +∞
for each node n ∈ Children(node) do

utility = Min(utility , Alpha-Beta(n, α, β))

if utility ≤ α then // α cutoff

break

β = Min(β, utility)

return utility

Figure 2.3: The alpha-beta algorithm.

utility for a terminal node. The interval between α and β is called the search window. If the value of

a node falls outside the search window, the corresponding subtree is pruned.

After searching a node using the alpha-beta algorithm, one of three things can happen [20]:

1. utility ≤ α. The result is below the search window (failing low).

2. utility ≥ β. The result is above the search window (failing high).

3. α < utility < β. The result is within the search window (success).

If the value of a node falls outside the search window, it represents a bound on its minimax value,

otherwise the value of the node has been found. Success can be assured by calling alpha-beta with the full

window, i.e. [−∞,+∞]. The version of alpha-beta shown in figure 2.3 is called fail-soft alpha-beta

[20] because it allows the search to return values that lie outside the search window (bounds) when the

search fails, either low or high. Other versions of alpha-beta return α or β in the same situations. In

this document, we will only consider the fail-soft versions of the algorithms presented. The reason for

choosing these versions will be given later.

Figure 2.4 shows a game tree annotated with its final α and β values. The alpha-beta algorithm

updates the values of α and β as it traverses the tree (from left to right) and prunes away branches with

values known to be worse than the current values of α or β. The initial values of α and β are −∞ and

+∞, respectively. From this example, it is possible to see that the effectiveness of the algorithm is highly

dependent on the order in which nodes are examined, e.g. if node h was examined before node g, there

would have been no cutoff in the subtree rooted at h. Later we will see some techniques to improve the

order in which nodes are examined, and thus increase the chance of cutoffs. Such techniques are called

move ordering techniques.
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2.2.3 The Minimal Tree

The minimal tree, or critical tree, is the minimal part of a game tree necessary to determine the

minimax value of the root. Thus, a game tree may have several minimal trees. The minimax value of

the root depends only on the nodes of the minimal tree, the remaining nodes do not affect its value. For

a game tree with fixed depth d and uniform branching factor w, the number of leaf nodes is wd, and

the number of leaf nodes of its minimal tree is wbd/2c + wdd/2e − 1 [28]. Although the minimal tree is a

significant improvement over the minimax tree, its size is still exponential with respect to its depth.

In an alpha-beta minimax tree, we can identify three types of nodes [28, 32]:

• PV, or type-1. The root of the tree is a PV node. At a PV node all the children have to be

explored. Furthermore, at least one of the children gives the parent its value. Pick one of such

children. That child is a PV node, all the others are CUT nodes.

• CUT, or type-2. At a CUT node there is a cutoff. The child that causes the cutoff is an ALL

node. If there are several such children, pick one arbitrarily. In a perfectly ordered game tree only

one child of a CUT node needs to be explored. A perfectly ordered game tree is a game tree

in which the best move is searched first and a cutoff occurs immediately after, at CUT nodes.

• ALL, or type-3. At an ALL node all the children have to be explored. Every child of an ALL

node is a CUT node.

Before searching a node we do not know its type. We can only know the type of a node after it

has been explored. Thus, before searching a node we refer to it as expected-PV, expected-CUT,

or expected-ALL node. If there is no cutoff at an expected-CUT node, then the node becomes an

ALL node. If at least one child of an expected-ALL node turns out not to be a CUT node, then the

expected-ALL node becomes a CUT node. If all the expected-CUT nodes on a path from the root to a

leaf become ALL nodes, a new principal variation emerges (all the nodes on the path have become PV
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nodes). Figure 2.5 shows the structure of the minimal tree. Every child of a PV or ALL node is a part

of the minimal tree, but only one of the children of a CUT node is.

2.2.4 Imperfect Decisions

For the game of Tic-Tac-Toe, the game tree is small enough so that it can be entirely explored within

a reasonable amount of time. In most games, this is not possible due to the massive size of the game

tree. Thus, the search must stop at some point. When the game tree is too large to be generated

completely, a search tree is generated instead. Instead of stopping only at terminal positions, the

search can now stop at any position. Using this new approach, we may not be able to identify the utility

of a position, and so we resort to an evaluation function. An evaluation function returns a heuristic

assessment of a position, i.e. an estimate of the real utility of a position. For terminal positions the

evaluation function should return the true utility, for non-terminal positions the value returned should

be strongly correlated with the actual chances of winning. The range of values returned by an evaluation

function is usually significantly wider than just win, loss, or draw. This allows for a better discrimination

between moves. The value returned by an evaluation function is called score. Evaluation functions are

necessarily application dependent. In Checkers, they typically include features such as material balance,

piece mobility, and positional control, amongst others.

The new version of the (heuristic) alpha-beta algorithm is shown in figure 2.6. This version uses

the negamax formulation. As with utility functions, if an algorithm uses the negamax formulation, the

evaluation function must return the score relative to the side playing; otherwise the algorithm will be

incorrect. Notice also that for the algorithm to be correct the values of α and β have to be swapped and

negated at each recursion. This is a consequence of using the negamax formulation.

Heuristic Search Problems

One of the problems with heuristic search is how to decide when to stop the search and apply the

evaluation function. Usually the search depth is used as the primary criterion. Another commonly used
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Alpha-Beta(node, α, β, depth)

if node is terminal or depth == 0 then

return Evaluate(node) // or perform a quiescence search

score = −∞
for each node n ∈ Children(node) and score < β do

score = Max(score, −Alpha-Beta(n, −β, −α, depth − 1))

α = Max(α, score)

return score

Figure 2.6: The negamax version of the (heuristic) alpha-beta algorithm.

criterion is time control – stopping the search when the time run outs. A major depth-related problem is

the horizon effect [5]. The horizon effect arises when some negative event is inevitable but postponable.

Because only a part of the game tree has been analysed, it will appear that the event can be avoided

when in fact it cannot. As the event is now over the horizon (beyond the depth of search), it is no longer

a problem. Thus, the score reported for the move will not reflect its eventual outcome.

One way of mitigating the horizon effect is to increase the search depth. Another one is to perform a

quiescence search [54] when the maximum search depth is achieved, instead of immediately evaluating

the position. A quiescence search extends the search at a leaf position until a stable position is reached.

A stable, or quiet, position is one that has a score that is unlikely to exhibit wild swings in the near

future. For example, in Checkers, a position in which the opponent is threatening to capture several

pieces is unstable. It would not make sense to stop the search in such a position, as the score returned

by the evaluation function would not take the loss of the pieces into account, as the capture is over the

horizon.

In general, the quality of play improves with the depth of search, at least up to some point (see, e.g.,

[26]). However, there are some games where the opposite is true. This phenomenon is called search

pathology [33] and is not observed in most common games, such as Checkers, Chess, and Othello.

2.3 Search Enhancements

The performance of alpha-beta depends largely on the order in which positions are examined. In the worst

case alpha-beta examines the entire game tree, while in the best case only the minimal tree is explored.

We will discuss some techniques to enhance alpha-beta in order to bring it closer to the theoretical limit.

2.3.1 Transposition Tables

In games, different sequences of moves may lead to the same position. Such sequences are called trans-

positions. Thus, game trees are not really trees but instead graphs, as some positions appear in various

places throughout the tree (e.g. in figure 2.1 nodes k and m represent the same position, as well as nodes

l and n). If we detect these repeated positions, we can eliminate the redundant effort that is wasted by

re-searching them. A transposition table (TT) [22] serves as a cache of recently explored positions.
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Alpha-Beta(node, α, β, depth)

* old -α = α

* tt = Retrieve(node)

* if tt .depth ≥ depth then

* if tt .flag == lower-bound then α = Max(α, tt .score)

* else if tt .flag == upper-bound then β = Min(β, tt .score)

* else /* tt .flag == exact-value */ return tt .score

* if α ≥ β then return tt .score

if node is terminal or depth == 0 then

return Evaluate(node)

* if tt .move then // try the move from the transposition table first

* score = −Alpha-Beta(tt .move, −β, −α, depth − 1)

* move = tt .move

* α = Max(α, score)

else

score = −∞
move = null

for each node n ∈ Children(node) \ tt .move and score < β do

temp = −Alpha-Beta(n, −β, −α, depth − 1)

if temp > score

score = temp

move = n

α = Max(α, score)

* if score ≤ old -α then flag = upper-bound

* else if score ≥ β then flag = lower-bound

* else /* old -α < score < β */ flag = exact-value

* Store(node, flag , score, depth, move)

return score

Figure 2.7: The alpha-beta algorithm using a transposition table.

For each position, the table stores information such as the position score, the search depth at which it

was encountered, and the best move. Before searching a position, the table is consulted to see if it has

been already explored. If so, the information stored may be sufficient to stop further searching at this

position (cause a cutoff). If the information is insufficient to cause a cutoff, then the search window

may be narrowed and the best move from a previous search can be considered first. Since the move was

considered the best before, there is a good probability that it is still the best.

Figure 2.7 shows the alpha-beta algorithm for use with a transposition table. The transposition

table code is marked with an asterisk (*). Details concerning the retrieval, storage, and replacement of

information are omitted for clarity. Breuker has published an extensive study on transposition tables and

their use [8].

Zobrist Hashing

Transposition tables are usually implemented as hash tables. A commonly used hash function in game-

playing programs is the one proposed by Zobrist [64]. In Checkers there are 4 different pieces (2 kinds

× 2 colours) and 32 squares. For every combination of piece and square a pseudo-random number is
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generated. This gives us a total of 128 pseudo-random numbers. Additionally, there is an extra pseudo-

random number that indicates if it is the second player’s turn to play. To compute the hash value of a

position, we do an exclusive-or (XOR) operation with the pseudo-random numbers associated with that

position.

This method allows us to compute the hash value of a position incrementally. For example, in

Checkers, given the hash value of a position, we can obtain the hash value of one of its successors easily.

For that, we only need to do an XOR operation with the pseudo-random numbers associated with the

corresponding move, i.e. the square from which the piece is moving and the square to which the piece is

moving, plus the squares of the captured pieces, if there are any. To undo a move we proceed similarly.

If we implement a transposition table as a hash table, we have to tackle with two types of errors [64].

A type-1 error occurs when two different positions have the same hash value. Type-1 errors happen

because the number of hash values is usually much lower than the number of positions in the game. This

can introduce search errors, as the information stored in the transposition table can be used for the wrong

positions. We can completely avoid this type of errors by storing the whole position in the transposition

table. However, in many games this takes up too much memory, and thus is not used in practice. In

practice, type-1 errors are mitigated by using a hash key to distinguish between positions with the same

hash value. Because a transposition table’s size is limited, we cannot store all the positions encountered

during the search. A type-2 error, or collision, occurs when a position is about to be stored in the

transposition table and the corresponding entry is already occupied. Consequently, a choice has to be

made about which position to keep in the transposition table. Such choices are based on a replacement

scheme. Replacement schemes are discussed later in chapter 5.

Enhanced Transposition Cutoffs

Often, when the information stored in the transposition table does not cause an immediate cutoff, the

exploration of the best move does. However, the subtree under the move is still searched. If there was

another move whose stored information could cause an immediate cutoff, then we would save search

effort, as no subtree would be explored. Thus, before searching any move at a position, we check if the

information stored for any of the position’s successors can cause a cutoff. If so, unnecessary search effort

has been avoided. This technique is called enhanced transposition cutoffs (ETC) [36]. Due to the

increased computational effort, ETC is usually not performed at all nodes, but just at the nodes that are

for example more than 2 ply away from the horizon.

Figure 2.8 shows an example of the kind of cutoffs possible with ETC. Consider node c, whose

information stored in the transposition table does not cause an immediate cutoff. The transposition

table suggests that move m should be tried first at c. If the exploration of m causes a cutoff, the other

moves will not be explored. Now consider that one of the other children of c, node f, transposes into

another part of the game tree, node d, which has already been searched. If d ’s stored information is

enough to cause a cutoff at c, node e does not need to be explored. Before searching any move at a
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Figure 2.8: An enhanced transposition cutoff.

node, ETC accesses the information stored in the transposition table for each one of the node’s children

looking for transpositions.

2.3.2 Killer and History Heuristics

Often, during the search most moves tried in a position are quickly refuted, usually by the same move.

The killer heuristic [1] involves remembering, at each search depth, the moves that are causing more

cutoffs (the killers). When the same depth is reached again in the game tree, the killer moves are

retrieved and used, if valid. By trying the killer moves before the other moves, we increase the chance

of cutoffs. The move searched just before a cutoff is usually referred to as the refutation, because it

refutes its predecessor.

The history heuristic [41] is a generalisation of the killer heuristic. Instead of only remembering

the best killer moves at each depth, the history heuristic maintains a record for every move seen so far.

Each move has an associated history score that indicates how often it has been good (caused a cutoff or

had the best score). Moves are then ordered by their history score and examined by this order.

Both the killer and history heuristics are application-independent techniques to perform move order-

ing. Transposition tables store the exact context under which a move was considered the best. The

history heuristic records which moves are most often best, but has no knowledge about the context in

which they were considered the best.

2.3.3 Iterative Deepening

Iterative deepening (ID) [17, 55] is a technique used in many game-playing programs. The idea behind

iterative deepening is that the best move for a (d− 1)-depth search is likely to also be the best move for

a d-depth search. Hence, a series of searches is performed, each one with increasing depth. At the end of

each search, the moves are ordered based on their scores and this ordering is used in the next search. The

rationale behind iterative deepening is that a shallow search is a good approximation of a deeper search.

At each iteration, the previous iteration’s solution is refined. In contrast, without iterative deepening the

search can go off in the wrong direction and waste lots of effort before stumbling on the best line of play.

Move ordering can be further improved if iterative deepening is used along with transposition tables
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and heuristics such as the killer and history heuristics, as the previous searches fill the tables with useful

information. Move ordering is more important at the root of the game tree. Considering the best moves

first narrows the search window, increasing the chance of cutoffs.

Another advantage of using iterative deepening is for time control. If the search is being constrained

by time, when time runs out, the best move (up to the current search depth) is known. If there is time

left, a deeper search can be started.

2.3.4 Search Window Reductions

The most obvious way to improve the effectiveness of alpha-beta is to improve the order in which positions

are examined. If the most relevant positions are examined first, the number of cutoffs done by alpha-beta

may increase. Another way of improving alpha-beta’s effectiveness is to reduce its search window. If the

search window is smaller, the search will be more efficient as the likelihood of pruning parts of the game

tree increases. If the search window is reduced artificially, there is a risk that alpha-beta may not be able

to find the score. Hence, a re-search with the correct window may be necessary. In practice, the savings

of smaller search windows outweigh the overhead of additional re-searches (see, e.g., [13, 27]).

Aspiration Search

Aspiration search (AS) [10, 21] uses a search window centred around an expected value, [EV −δ, EV +

δ], where EV represents the expected value (the expected result of the search), and δ a reasonable range

of uncertainty, or expected error. Such windows are referred to as aspiration windows. An aspiration

search can result in one of three cases:

1. score ≤ EV − δ. The result is below the aspiration window. Another search, with window

[−∞, score], is required to find the actual score.

2. score ≥ EV + δ. The result is above the aspiration window. Another search, with window

[score,+∞], is required to find the actual score.

3. EV − δ < score < EV + δ. The result is within the aspiration window and it was determined with

less effort than with a search using a full window.

Aspiration search is usually combined with iterative deepening. The result of the (d−1)-depth search

can be used as the expected value for the d-depth search. Note that δ is application dependent. Aspiration

search is a gamble. If the result is within the aspiration window, then the enhancement wins, otherwise

an additional search is needed. Aspiration search is usually only used at the root of the game tree.

Null-Window Search

The null-window search [34, 20], also known as minimal-window search or zero-window search,

takes the aspiration search idea to an extreme: it uses a search window of width one7, i.e. β − α = 1,

7Assuming that the smallest possible difference between any two values returned by the evaluation function is 1.
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NegaScout(node, α, β, depth)

if node is terminal or depth == 0 then

return Evaluate(node)

first-move = FirstChild(node)

score = −NegaScout(first-move, −β, −α, depth − 1)

α = Max(α, score)

for each node n ∈ Children(node) \ first-move and score < β do

temp = −NegaScout(n, −α − 1, −α, depth − 1)

if temp > α and temp < β and depth > 2 then // re-search

temp = −NegaScout(n, −β, −temp, depth − 1)

score = Max(score, temp)

α = Max(α, score)

return score

Figure 2.9: The NegaScout algorithm.

called null window, minimal window, or zero window. A null-window search always returns a bound

on the score. The algorithm assumes that the first move considered at each position is the best, and

consequently, the remaining are inferior, until proven otherwise. The algorithm uses a full or aspiration

window to score the first move, then a null window is used for the remainder of the search. As with

aspiration search, a re-search may be necessary to find the actual score. In the best-case scenario, the

first move considered is really the best and all the others will fail, either low or high. The biggest

advantage of using a null-window search over a full-window search is the possibility of generating cutoffs

at ALL nodes.

NegaScout and Principal Variation Search

The NegaScout (NS) algorithm [37, 38] is an example of a null-window search algorithm. It is an

enhanced version of the fail-soft alpha-beta algorithm that uses null windows. NegaScout uses a wide

search window for the first move, hoping it will lead to a PV node (it assumes that the first move

considered at each node is the best), and a null window for the others, as it expects them not to be part

of the principal variation (it may be useful to remember the structure of the minimal tree, figure 2.5). If

one of the null-window searches fails high, then the corresponding node may become a new PV candidate

and may have to be re-searched with a wider search window. The NegaScout algorithm is shown in figure

2.9. The searching of the first move has been unrolled from the loop for readability purposes. Notice that

a fail-soft search of the last two levels of a game tree always returns an exact score, and thus no re-search

is needed (underlined code in the figure). This is only true for fixed-depth game trees. If we ignore this

extra enhancement, then Principal Variation Search (PVS) [31] and NegaScout are identical.

As with alpha-beta, there is also a version of NegaScout that is not fail-soft. The fail-soft enhancement

lets the search return values that lie outside the search window. These can be used to tighten the search

window for re-searches and to make the transposition table’s pruning more effective. Thus, a fail-soft

version is usually preferred over a non fail-soft.
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Memory-Enhanced Test Drivers

The Memory-Enhanced Test Driver Framework (MTD) [36] takes the null window idea to the ex-

treme. MTD algorithms search all positions with a null window. They are composed by two components:

the Memory-Enhanced Test (MT) and the driver. The MT is essentially a null-window alpha-beta

search that uses a transposition table. It is based on Pearl’s Test procedure [35]. The driver is a function

that guides the search, in this case, the MT.

MTD(f) is an MTD algorithm that was shown to perform better, on average, than NegaScout in

Checkers, Chess, and Othello [36]. MTD(f) performs a series of searches until the result converges. In

order to work, MTD(f) is given the expected value, as with aspiration search. For a thorough description

of the MTD framework, as well as comparisons and equivalences to other algorithms refer to Plaat’s work

[36].

2.3.5 Selective Search

The alpha-beta algorithm and variants traverse the game tree in a depth-first manner. This means that

they completely explore each branch of the tree before turning their attention to the next. This brings

two problems, besides the already mentioned horizon effect. First, the algorithm is not able to follow the

most promising lines of play completely. Often, it is only possible to determine the eventual outcome of

a line of play past the search depth’s limit. Quiescence search and selective deepening techniques try

to counterbalance this problem. The second problem is wasted search effort. If the evaluation function is

reasonably accurate and it scores a move as bad, then there is no point in continuing to search it deeper.

This justifies the use of forward pruning techniques. There is another class of algorithms that traverses

game trees in a best-first manner. Generally, they perform worse than alpha-beta and are not used in

practice [36, 25].

The pruning method used in alpha-beta is called backward pruning, since the cutoffs are caused

by the values returned by the algorithm. This pruning method is sound, as it does not affect the

search result. Forward pruning techniques prune away branches if it is believed that the nodes in

the branches are unlikely to affect the search result. Hence, these techniques can eliminate important

moves from consideration. The rationale behind such techniques is that the time saved by pruning non-

promising moves is used to search others deeper, and thus increase the overall quality of play. Singular

Extensions [3] is an example of a selective deepening technique. This technique tries to find a single

move at a position that seems to be better than the alternatives. It does such through a shallow search.

If there is such a move, it is searched deeper. Another technique is the null-move reduction [19]. A

null move is a move in which the side to play passes and so the opponent gets to play two times in

a row. By doing a null move we can get a lower bound on a position, because all the other moves are

presumably better (for some games, like Checkers, this is not true, as passing can be beneficial). If this

lower bound causes a cutoff, then it was found in a cheap way, otherwise little search effort was wasted.

Some forward pruning techniques such as ProbCut [11], Multi-ProbCut [12], and Multi-Cut
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[7, 62] use the result of a shallow search to predict if a deeper search would be relevant or not. Other

techniques such as Razoring [6, 23] and Futility Prunning [41, 23] use the static evaluation (the score

returned by the evaluation function) of nodes near the frontier to identify bad lines of play that should

not be considered further. The frontier is defined as the set of all leaf nodes at a given point in the

search.

2.3.6 Search Instability

Search instability is a phenomenon that appears when enhancements such as transposition tables and

forward pruning techniques are used. For example, consider that the transposition table has information

stored from a previous n-ply search. Now consider that you are performing a m-ply search and that

m < n. The results from the n-ply search might cause cutoffs on your current m-ply search. If the

positions that caused the cutoffs are replaced in the transposition table, the next time you encounter

them you may obtain a different score. This can lead to strange behaviours like obtaining a fail low on

the re-search of a fail high. In general, there is no solution to completely solve this problem.

2.4 Solving Games

Games for which the game-theoretic value, i.e. the outcome when all players play optimally, is known

are said to be solved. This value indicates whether a game is won, lost, or drawn from the perspective

of the player that makes the first move. For two-player zero-sum non-cooperative sequential games with

perfect information, there are at least three distinct definitions for solving a game [2]:

• Ultra-weakly solved. The game-theoretic value of the initial position(s) has been determined.

• Weakly solved. The game is ultra-weakly solved and a strategy has been determined to achieve

the game-theoretic value from the initial position(s). This means that if the opponent makes a

mistake, then the other player does not necessarily know a strategy to achieve the game-theoretic

value.

• Strongly solved. A strategy has been determined to achieve the game-theoretic value from any

legal position.

Note that for the weak and strong definitions reasonable resources have to be assumed, otherwise it

would be possible to determine the game-theoretic value of any game given a large enough amount of

time and space. Usually, when trying to solve a game the interest lies mostly in determining a winning

strategy and not so much on determining the game-theoretic value. Note that in this document we do

not take into consideration games that can be solved and played solely by mathematics. Such games are

described elsewhere (see, e.g., [4]). For a survey of solved games and methods for solving games refer to

the work by van den Herik et al. [59].
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2.4.1 Game Complexity

The complexity of a game is usually described using two different measures: the state-space complexity

and the game-tree complexity [2]. The state-space complexity of a game is defined as the number of

different legal game positions reachable from the initial position(s) of the game. It provides a bound on

the complexity of games that can be solved through complete enumeration. The game-tree complexity

of a game is defined as the number of leaf nodes in the solution search tree of the initial position(s) of

the game. The solution search tree of a position is the smallest full-width game tree that is sufficient

to determine the game-theoretic value of the position. The game-tree complexity is an estimate of the

size of the game tree that must be examined to solve the game. It can also be seen as a good indication

of a game’s decision complexity, i.e. the difficulty of making the correct decisions. Both state-space and

game-tree complexities are important factors in determining the solvability of a game [2, 59].

Often, it is difficult to calculate the game-tree complexity of a game. However, an approximation can

be calculated by counting the number of leaf nodes bp of the game tree with as depth the average game

length p in ply, and as branching factor the average branching factor b of the game.
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3Case Study: Chinook

The Chinook1 project was created in 1989, at the University of Alberta, Canada. Its goals were, first, to

build a world-championship-calibre English Checkers computer program, and second, one day try to solve

the game. The program entered competitive play in 1989, in both human tournaments and computer

olympiads. In 1994, Chinook was declared the World Man-Machine Champion in English Checkers, and

in 1997 retired from competitive play. Despite some work had been done throughout these years, only in

2001 major efforts were put into solving the game. In 2007, English Checkers was solved by the Chinook

team. The game-theoretic value is draw.

In this chapter we will study Chinook and the proof procedure used to weakly solve the game of

English Checkers. This chapter is based in literature about Chinook [50, 53, 43, 44, 47, 49, 45]. Although

there is a significant amount of literature about the program, some of its technicalities have never been

published [46].

3.1 English Checkers

English Checkers, also known as British or American Checkers, or simply Checkers, is probably the most

widely known Checkers variant in the world. This variant is also the most played in the British Com-

monwealth and in the United States of America. The first computer Checkers programs were developed

for this variant. The first program was written by Christopher Strachey in 1952 [56], but it was not until

Samuel developed his program [39, 40], in the 1950s and 1960s, that the game received special attention,

as it was incorrectly reported by the media that Samuel’s program had beaten a Checkers master and

solved the game, in 1962. As a result of this misunderstanding, efforts on developing world-class Checkers

programs stopped for some time. Efforts to develop stronger programs were retaken some years later,

most notably in the late 1970s by a team from Duke University with the PAASLOW program [58]. In

2007 the chapter was somehow closed with the Chinook team solving the game of English Checkers.

We can get a loose upper bound on the state-space complexity of English Checkers by counting the

number of possible combinations of men and kings on the board. This gives us about 5× 1020 different

positions [52] (consult section 4.1 for details). A tighter bound on the state-space complexity of the game

is 1018 [52]. Having an average branching factor of about 2.8 and an estimated average game length of

70 ply, the game-tree complexity of English Checkers can be approximated by 2.870 = 2× 1031 [2].

1http://webdocs.cs.ualberta.ca/~chinook/
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3.2 The World Man-Machine Checkers Champion

Game-playing programs are usually composed by two main components: search and knowledge. Chinook’s

search component consists of a parallel alpha-beta algorithm with some enhancements. The knowledge

component is composed by an evaluation function, an opening book, and endgame databases.

3.2.1 Search Algorithm

Chinook uses a parallel version of NegaScout [30] with iterative deepening (two ply at a time) and

aspiration search (with a base δ of 35) at the root. When a fail low happens at the root, instead of re-

searching with the window [−∞, bound], the iterative-deepening search is restarted. Furthermore, it uses

a two-level transposition table. In the first entry the position with the greatest search depth is stored,

in the second entry the most recent position is stored. Chinook also uses enhanced transposition cutoffs.

Moves are ordered using only the transposition table and the history heuristic, no application-depend

knowledge is used. The program does not have a quiescence search, the search continues until a stable

position is reached. This is accomplished by using search extensions.

3.2.2 Search Extensions

Chinook uses a myriad of application-dependent search extensions and reductions. In lines of play where

one player has less pieces than the other and has no positional compensation, the search depth may be

reduced by one third or one half. Positions with pending captures are always extended until a position

without captures is reached. In positions in which the opponent is threatening to capture pieces the

search may be extended, depending on how bad is the threat. These are some of the search extensions

and reductions used in the program. A more complete description is available in the literature about

Chinook.

To reduce the error of misevaluating a position due to hidden tactics, Chinook was extended with

tactical tables, which store tactical patterns. When a position is evaluated, the tactical tables are

consulted. If there is a match (i.e. the position contains a pattern), the program extends the search to

resolve the tactics.

3.2.3 Evaluation Function

Chinook uses lazy evaluation. When evaluating a position, only part of the evaluation function is

executed at first. If the intermediate score falls outside the search window by a certain margin, then

the rest of the evaluation function does not need to be executed, as the eventual score would not affect

the search result; otherwise the evaluation function is executed completely. This allows us to save

computational effort in positions that are not relevant.

Chinook’s evaluation function has more than 20 heuristics. The knowledge in the evaluation function

was devised from several sources: experience from building other game-playing programs, input from a
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Checkers expert, experience playing with the program, and post-game analysis of Chinook’s matches.

The evaluation function was manually tuned along a period of several years.

For a position p, the score returned by the evaluation function equals the sum of applying all the

heuristic functions to p:

evaluate(p) =

[
n∑

i=1

heuristici(p)× weighti

]
× fudge

where n represents the number of heuristic functions, heuristici(p) the result of applying the heuristic

function i to position p, weighti the weight of heuristic function i, and fudge the fudge heuristic. The

weight of each heuristic may differ for each phase of the game. Chinook divides the game into four phases

(opening, early middle game, late middle game, and endgame), based solely on the number of pieces on

the board. Depending on the game phase, the sum of the heuristics is multiplied by a constant whose

value is shown in table 3.1. This was named the fudge heuristic, and its goal is to make the program

favour positions with more pieces on the board over positions with fewer.

Game Phase Number of Pieces Constant Value

1 20–24 1.34
2 16–19 1.17
3 12–15 1.00
4 0–11 0.83

Table 3.1: The fudge heuristic.

Each heuristic deals with a particular piece of Checkers knowledge. A heuristic may recognize a

pattern in the dispersion of the pieces that may indicate trouble, recognize a specific situation that is

known to be good, etc. For example, the mobility heuristic analyses the degree to which the pieces are

free or restricted in their movements. Based on that, the heuristic estimates whether the position is

better for one of the players or if it is equal for both, and then returns a numerical value that reflects

that. Information about some of Chinook’s heuristics is available in the literature about the program

(for weights see [51]).

3.2.4 Book Knowledge

During the opening phase of the game, the search plus evaluation function may not be sufficient to

find the best moves. Chinook’s authors wanted the program to be innovative, deviating from standard

opening moves, and at the same time to play well. Although in the beginning its opening book was

small (contained a little over 6 000 positions), later on it was merged with the opening book of another

program. This resulted in an opening book with more than 60 000 positions, each of which was verified

by Chinook. The program was instructed to search for new moves in the openings (cooks) while verifying

the book. In its opening book there is also an anti-book, a library of moves that should not be made,

as they lead to positions that are known to be bad or lost. Chinook follows its opening book blindly for

the first moves of the game. To still permit Chinook to play innovatively, the program has an option to
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use mostly the anti-book, instead of the entire book.

In addition to the opening book just described, the program has also another book [42]. This second

book consists of pre-processed grandmaster games (of Marion Tinsley) and is only used to bias the search

when the program is out of the book. A bonus is added to a move in the search if it is in this book.

For moves leading to winning lines of play, the bias is stronger than for those leading to draws. A slight

negative bias is used to lead the search away from moves that lead to losses.

3.2.5 Endgame Databases

The endgame databases contain all positions with 8 or fewer pieces. For each position the game-theoretic

value (win, loss, or draw) is stored. The best move for each position is not stored, as it would lead to a

significant increase of the database size. Once a lost position is reached the program may not offer the

maximum resistance. This is due to not storing the best move. The endgame databases were constructed

using retrograde analysis [57].

To compute the n-piece database we need the 1, 2, . . . , (n−1)-piece databases to be completed. There

are also some dependencies between positions in the same database. For example, to compute the 4-piece

database where all pieces are men, we need to have already computed all the other 4-piece positions,

as in some positions it may be possible to promote some of the men. More information about these

dependencies can be found elsewhere [29].

The retrograde analysis algorithm works as follow. Initially, the game-theoretic value for all the n-

piece positions is set to unknown. Then, for each position consider that Black is to play (n.b. Black is

Max in English Checkers) and apply the following rules (in order of precedence):

1. Set the position’s value to win if there is a move that leads to a White loss.

2. The value of the position remains unknown if there is a move to a White position whose value is

also unknown.

3. Set the position’s value to draw if there is a move that leads to a White draw and Black is unable

to win.

4. Set the value of the position to loss if all the moves lead to White winning.

The algorithm iterates until no more n-piece positions can be solved. At that point, all the remaining

unknown positions must be draws. Starting at the end of the game, retrograde analysis tries to solve

positions closer to the beginning of the game. In principle, this technique could be used to solve the

entire game.

3.2.6 Draw Differentiation

Not all draws are equal. In some draws there is a chance of inducing the opponent into an error, as the

correct line of play is difficult to identify. Such draws are referred to as strong draws. Draws where
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the correct moves can be trivially found by the opponent are referred to as weak draws. Chinook

can differentiate between these two types of draws. When the program finds a drawing position in the

endgame databases, it performs a search with the databases disabled. By turning off the databases, the

program can use the result of the search to score the position. The resulting score is then scaled properly

so that errors do not affect the choice, e.g. prevent moves with high drawing scores to be preferred over

moves with serious winning chances. This means that drawing positions can now have a score different

from zero. If Chinook has a choice between playing a strong drawing move or a non-drawing move that

yields a small advantage, it prefers the strong draw.

3.3 Solving Checkers

The Chinook team created a proof procedure to solve the game of English Checkers. The goal of this

procedure was to determine the game-theoretic value of the game, i.e. whether the game is won, lost,

or drawn from the perspective of the player that makes the first move. The proof procedure had the

following components:

• Endgame databases. Chinook’s endgame databases were extended to included all positions with 10

or fewer pieces [48].

• Proof tree manager. This component manages the search. It maintains the tree of the proof in

progress and decides which positions need to be considered next to advance the proof.

• Proof solvers. Given a position by the proof tree manager, a proof solver uses Chinook and a variant

of Proof-Number Search to determine the game-theoretic value of the position.

Figure 3.1 illustrates the proof procedure. The number of pieces on the board are plotted (vertically)

versus the logarithm of the number of positions (the widest point is with 23 pieces, with a little over 1020

positions). Only the portion of the state-space that is inside the inner oval is relevant to the proof. A

position may be irrelevant because it is either unreachable or not required for the proof. The small open

circles indicate positions for which the game-theoretic value has been determined. The dotted line shows

the boundary between the top of the proof tree, as seen by the proof tree manager, and the parts that

are computed by the proof solvers. This image was taken from [49].

Several openings had to be considered to weakly solve English Checkers. Obviously, not all possible

openings were considered. We will not go into the details on how the minimal number of openings to

obtain the game-theoretic value was discovered. Next, we will explain how the proof procedure works

for one opening. Before proceeding, the reading of appendix B, which presents Proof-Number Search,

is recommended. For further details about the entire proof procedure consult the relevant literature

[47, 49, 45].
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Figure 3.1: The proof procedure.

3.3.1 Proof Tree Manager

The proof tree manager starts off with an empty proof tree. Then, it is given an initial line of play. The

proof manager starts by solving the last position of the given line of play, then it backs up one ply and

solves the new tree. This procedure is repeated until the initial position is reached and the game-theoretic

value is determined. Although not necessary, seeding the proof procedure with an initial line of play is

done to increase its performance.

The proof is done iteratively. At the beginning of each iteration a heuristic threshold is set. For

unsolved positions a heuristic value is computed. If the value is outside the current threshold, then the

position is not considered in the current iteration. Only the positions with values within the threshold are

explored. Positions that have been solved need no further work, as their game-theoretic value is already

known. The exploration of positions with heuristic values outside the threshold is postponed until they

are shown to be necessary for the proof. This ensures that only the possibly relevant positions will be

considered. Once the proof tree is complete for a given threshold, the threshold is increased and a new

iteration begins. The proof tree manager uses the heuristic values to choose which positions to consider

next.

In addition to the usual values given to a position (win, loss, draw, and unknown) two new values

are added: likely win and likely loss. If a position’s heuristic value exceeds the threshold, the position is

considered a likely win. If the heuristic value falls below the negative threshold, the position is considered

a likely loss. The iterative process continues until the threshold exceeds the largest possible heuristic value.

At this point all the likely wins and likely losses have been solved, as well as the proof tree.
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3.3.2 Proof Solver

The proof solver uses Chinook and PNS. Chinook is used to determine the heuristic value of a position.

If the heuristic value of a position is within the current threshold, the proof solver attempts to formally

solve the position with PNS. If Chinook indicates that the position is a possible win, the proof solver first

tries to prove or disprove the position as a loss. This is done because answering the opposite question is

usually easier. Given that the expected game-theoretic value of the whole proof was a draw (which in

fact is), the disproof of a win or of a loss may be sufficient for the proof tree manager. If this question is

answered within the maximum time allocated, another search is started to answer the original question.

Solving a position implies finding a path to the endgame databases or to an already solved position.
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4Complexity of Classical Checkers

In this chapter we will estimate and analyse the complexity of Classical Checkers. This should give us

some insight into the difficulty of the game, comparatively to others. The analysis is divided into two

parts: state-space complexity and game-tree complexity.

4.1 State-Space Complexity

Similarly to what has been done for other games, in particular English Checkers, we can get a loose

upper bound on the state-space complexity of Classical Checkers by counting the number of possible

combinations of men and kings on the board [52]. The number of positions having n or fewer pieces on

the board can be calculated with:

Min(n,12)∑
w=0

Min(n−w,12)∑
b=0

Min(n−b,12)−w∑
W=0

Min(n−w−W,12)−b∑
B=0

Min(w,4)∑
f=0

NP(w, b,W,B, f)− 1,

NP(w, b,W,B, f) =

(
4

f

)(
24

w − f

)(
28− (w − f)

b

)(
32− w − b

W

)(
32− w − b−W

B

)
where n is the number of pieces, w the number of white men, b the number of black men, W the number

of white kings, B the number of black kings, and f the number of white men on the first row. Note that

a man can only occupy 28 of the total 32 squares (if it is on the kings row it has been promoted to king),

and that each side can have at maximum 12 pieces on the board. The subtraction of the result by 1

handles the case of zero pieces on the board. The number of positions for n = 1 to 24 is shown in table

4.1. The total number of positions is approximately equal to 5× 1020.

The calculation above is misleading, as it considers positions that cannot occur in a game. Although

there are many legal positions with 24 pieces on the board, only a small fraction can be reached in a

game. For example, given a reasonable playing strategy, no position with 24 pieces in which some are

kings can be reached. As in general there are many unreachable positions within the set of legal positions,

some authors have imposed constraints on the positions considered in order to obtain tighter bounds on

the state-space complexities of the games considered.

We can obtain a tighter bound on the state-space complexity of Classical Checkers by taking the

following assumptions into account. First, we should only consider positions with less than 9 kings on

the board, as positions with more than 8 kings are very unlikely to occur naturally in a game. Second,

positions in which a side has a big advantage over the other (more than 4 pieces) should be discarded,
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# Pieces # Positions

1 120
2 6 972
3 261 224
4 7 092 774
5 148 688 232
6 2 503 611 964
7 34 779 531 480
8 406 309 208 481
9 4 048 627 642 976
10 34 778 882 769 216
11 259 669 578 902 016
12 1 695 618 078 654 976
13 9 726 900 031 328 256
14 49 134 911 067 979 776
15 218 511 510 918 189 056
16 852 888 183 557 922 816
17 2 905 162 728 973 680 640
18 8 568 043 414 939 516 928
19 21 661 954 506 100 113 408
20 46 352 957 062 510 379 008
21 82 459 728 874 435 248 128
22 118 435 747 136 817 856 512
23 129 406 908 049 181 900 800
24 90 072 726 844 888 186 880

Total 500 995 484 682 338 672 639

Table 4.1: The state-space complexity of Classical Checkers.

as they will almost surely lead to a win for the strong side. Satisfying these two constraints, the new

estimation for the state-space complexity of Classical Checkers is 4×1019, which is a significant reduction

from the previous estimation, 5×1020. Note, however, that this estimation is generous, as it still includes

some unlikely positions.

4.2 Game-Tree Complexity

To calculate the game-tree complexity of Classical Checkers we have to first estimate its average game

length and average branching factor. To do this, we collected a vast amount of official and non-official

games between Checkers experts (3331 games in total). The games were provided by a Checkers expert

[18].

Several estimations were done. The first estimations were obtained from the games that finished with

n or fewer pieces on the board. We only selected games that finished with n or fewer pieces because

many games were not completely annotated, and often the players would agree on terminating the game

in early stages, which could lead to bad estimations. For the second estimations our Classical Checkers

computer program, Turska, would play a pre-defined amount of moves past the annotated games end.

The results are shown in table 4.2. The average game length and average branching factor are shown for

the two estimation methods and the two values of n considered. The number of games considered for each
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Turska n # Games Length Branching Factor

No
6 995 56.45 6.24
8 2057 53.40 6.24

Yes
6 2882 66.63 6.58
8 3230 66.13 6.63

Table 4.2: The average game length and average branching factor estimations for Classical Checkers.

calculation is also shown. We can see that the average branching factor is relatively stable, around 6.4,

whilst the average game length is not. Conferencing with a Checkers expert we concluded that the best

estimate for the average game length would be of about 60 ply [18], which lies within our estimations.

Having an average branching factor of about 6.4 and an estimated average game length of 60 ply, the

game-tree complexity of Classical Checkers can be approximated by 6.460 = 2× 1048.

The average branching factor was calculated by summing the branching factor for every position

considered and then dividing the result by the total game length. Another method considered was to

calculate the average branching factor for each game individually, and then do the average between them

all. This last method resulted in higher branching factors.

4.3 Comparison with Other Games

In table 4.3 we compare Classical Checkers with other games. As expected, Classical Checkers is harder

than English Checkers: the game-tree complexity of Classical Checkers is higher than the one of English

Checkers. Although the average game length is smaller, the branching factor is higher. The branching

factor of both games is very similar at the beginning of the game, but as soon as there are kings the

branching factor of Classical Checkers increases significantly compared to the one of English Checkers,

due to having flying kings. It is also due to the flying kings that the average game length is shorter.

We feel that the state-space complexities of both games should be more similar. The small, but still

significant, difference between the games state-space complexities is mainly due to the assumptions taken

when calculating the respective complexities. For a description on how the state-space complexity of

English Checkers was calculated refer to the work by Schaeffer et al. [52]. The high similarities between

English Checkers and Classical Checkers may be an indicator that the latter could also be solved with

current technology.

Complexity
Game Length Branching Factor State-Space Game-Tree

English Checkers [30, 2, 52] 70 2.8 1018 1031

Classical Checkers 60 6.4 1019 1048

International Checkers [2] 90 4 1030 1054

Othello [2] 58 10 1028 1058

Chess [2, 15] 80 35 1046 10123

Amazons (10× 10) [24] 84 374, 299 1040 10212

Go (19× 19) [2] 150 250 10172 10359

Table 4.3: The complexity of Classical Checkers compared to that of other games.
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Looking at table 4.3 we note that the average branching factor of Classical Checkers is higher than

the one of International Checkers. Given that the rules of both games are very similar, and that the

board of the International variant is bigger (10×10 instead of 8×8), we believe that perhaps the existing

estimation for the average branching factor of International Checkers is too conservative.

For a comparison between more games, not including Classical Checkers, refer to the work by van den

Herik et al. [59].
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5Search in Turska

During the development of our Classical Checkers computer program, Turska, several search algorithms

and techniques were implemented and experimented with. The program was developed iteratively and

incrementally, starting from the most basic techniques. In this chapter we will analyse each one incre-

mentally. We will also analyse several replacement schemes for transposition tables, and how storing

additional information in the transposition table affects the search. Although several search algorithms

and techniques were tested, the evaluation function and quiescence search remained the same throughout

the experiments. The discussion of these two is deferred to chapter 6.

Similarly to other works in the area, each experiment was repeated several times, each time with a

different base search depth. This way we can get an idea on how the performance gain of each enhancement

grows. It also helps identifying the usefulness of the enhancements, e.g. if an enhancement is only useful

from 30-ply searches onwards, then it is not useful in practice, as the normal search depth is much lower.

The main comparison measure that is used is the total node count (TNC), which is the number

of nodes visited for all positions in the test set. The performance gain is always shown as a percentage.

All other measures are shown in thousands, unless stated otherwise. In the experiments, we do not show

the execution time because it is directly correlated with the total node count in our program. In any

case, the execution time is not a very reliable metric because it depends on external factors, such as the

machine clock rate and cache.

5.1 The Test Set

Our test set consists of 140 positions. There are common and difficult positions, positions from tourna-

ment games, and problem positions, some of which are unlikely to occur naturally in a game. The test

set tries not to be biased towards specific game features.

The test set is divided into three subsets, each one related to a specific game phase. The opening test

set contains 20 positions, the middle game test set 80, and the endgame test set 40. This way we can

better analyse how each enhancement affects our program, as some enhancements have been identified

to be more useful in certain phases of the game.

Another way to conduct the experiments would be to make Turska play against itself a number of

times. If we had used this approach, the program would have to have a random component so it would

choose a random move in positions with more than one best move; otherwise all the games would be the

same. The random component would bring a problem as the positions that would be tested could be very
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α-β α-β + TT
Game Phase Depth TNC TNC # Hits # Cutoffs # Best Gain

Opening

8 616 352 9 8 0.5 42.7
12 25 147 8 003 269 242 14 68.1
14 157 099 36 760 1 412 1 265 79 76.6
18 5 473 529 777 894 32 629 29 751 1 624 85.7

Middle Game

8 2 729 1 794 63 57 3 34.2
12 210 132 59 416 3 751 3 278 295 71.7
14 2 233 382 312 856 25 426 21 654 2 425 85.9
18 387 726 342 8 727 082 857 444 736 417 79 511 97.7

Endgame

8 7 165 2 068 226 201 16 71.1
12 1 075 723 55 182 11 008 9 305 1 216 94.8
14 14 970 164 215 582 49 479 40 995 6 091 98.5
18 3 799 543 707 3 462 567 786 873 663 526 88 901 99.9

Table 5.1: Alpha-beta vs alpha-beta using a transposition table.

different for each experiment, and thus it would be easier to have discrepancies in the results. Breuker

discusses several test methods and sets, for Chess [8].

5.2 Transposition Tables

In this experiment, a plain version of alpha-beta was compared with a version of alpha-beta using a

transposition table. We used a four-level transposition table, like some of the strongest computer Chess

programs of today do, e.g. Stockfish1. Our transposition table has 219 buckets, but given that each bucket

has four entries, it can store information for a maximum of 221 (2 million) positions. According to some

studies this number represents a good trade-off between memory and search [36, 8]. Further increasing

the transposition table’s size would account for minor benefits.

The transposition table used is what is called a traditional transposition table. For each position in

the table the following information is stored (this is what is stored in each entry):

• key : used to handle hash collisions, i.e. to distinguish amongst different positions with the same

hash value (that go into the same bucket).

• flag : indicates whether score is an exact value, a lower bound, or an upper bound.

• depth: equals the depth of the subtree rooted at the position.

• score: the score of the position obtained from the search. It may be used to narrow the search

window.

• move: the move that was considered the best (caused a cutoff or had the best score). If no immediate

cutoff can be obtained from the transposition table, this move is the one that is considered first.

When a collision occurs, i.e. a position is about to be stored in the transposition table and the

corresponding bucket is full, the entry with the lowest depth in the bucket is replaced. If the position

1http://www.stockfishchess.com/

36

http://www.stockfishchess.com/


α-β NS
Game Phase Depth TNC TNC # Re-searches Gain

Opening

8 352 336 1 4.6
12 8 003 6 871 5 14.1
14 36 760 29 153 10 20.6
18 777 894 496 996 50 36.1

Middle Game

8 1 794 1 605 5 10.5
12 59 416 43 167 30 27.3
14 312 856 202 173 66 35.3
18 8 727 082 4 184 390 309 52.0

Endgame

8 2 068 1 769 2 14.4
12 55 182 37 225 10 32.5
14 215 582 141 484 19 34.3
18 3 462 567 1 840 040 57 46.8

Table 5.2: Alpha-beta vs NegaScout.

is already stored in the transposition table, the information from the previous search is always replaced.

Since the information is being replaced, it means that it was not very useful as it did not cause a cutoff.

Thus, there is no point in not replacing it, as the new information might be more useful the next time.

This will be the same for the other replacement schemes we will experiment later.

The results of the experiment are shown in table 5.1. The total node count is shown for both

algorithms. For the enhancement is also shown the number of hits – how many times there was information

stored in the transposition table for the position about to be searched; the number of cutoffs – how often

the information caused a cutoff; and the number of times the move stored continued to be the best. The

performance gain is shown in percentage. The other measures are shown in thousands.

As we can see from table 5.1, the use of transpositions tables is essential in any game-playing program.

The total number of nodes visited reduced drastically, from a maximum of billions to thousands of millions.

As expected, the gain is superior in the endgame because there are more transpositions. The enhancement

is more noticeable with deeper searches, as the number of transpositions increases. We can observe that

the information stored in the transposition table was very effective. Even when the information did not

cause a cutoff, the move stored was often the best.

5.3 NegaScout

In this experiment, alpha-beta was compared with NegaScout. Both algorithms used a transposition

table, like the one described in the previous experiment. Table 5.2 shows the results obtained. Although

the gains are significant, they are more noticeable with deeper searches, as the parts of the game tree

that are pruned are expectedly bigger. The use of null-windows allows the search to prune away subtrees

that are inferior without knowing their exact values.

NegaScout performs well in Classical Checkers because at each position usually only 2 or 3 of the

possible moves are relevant. NegaScout assumes that the first move considered at each position is the

best. If these moves are searched first, the chance of cutoffs increases. Hence, NegaScout works better if
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NS NS + ID
Game Phase Depth TNC TNC Last Iteration Gain

Opening

8 336 116 73.7 65.3
12 6 871 2 164 72.7 68.5
14 29 153 6 246 65.3 78.5
18 496 996 70 015 69.8 85.9

Middle Game

8 1 605 666 74.1 58.4
12 43 167 10 045 72.6 76.7
14 202 173 37 707 73.3 81.3
18 4 184 390 364 807 66.9 91.2

Endgame

8 1 769 957 81.2 45.9
12 37 225 13 288 70.3 64.3
14 141 484 40 551 67.2 71.3
18 1 840 040 222 387 58.1 87.9

Table 5.3: NegaScout vs NegaScout with iterative deepening.

combined with iterative deepening and transposition tables.

5.4 Iterative Deepening

In this experiment, two versions of NegaScout, as described in the previous experiment, were compared.

One of the versions used iterative deepening (two ply at a time, starting with 4 ply) and move sorting

at the root. The results of the experiment are shown in table 5.3. Besides the total node count, for

the enhancement is also shown the percentage of nodes visited in the last iteration (relative to the total

number of nodes visited).

Move ordering is more important at the root of the game tree. If not combined with transpositions

tables, iterative deepening is only useful to order moves at the root of the tree. When used along with

a transposition table, it also fills the table with useful information for the next iteration. As good

move ordering is performed, less positions are stored in the table and consequently the chance that the

most relevant positions for the next iteration are still in the table is higher. Iterative deepening and

transposition tables were the enhancements that accounted for more savings.

Although the number of nodes of the search tree is expected to grow at each iteration, table 5.3 shows

that with increasing depth the number of nodes visited in the last iteration decreased. This means that

the best move was probably found in the previous iterations, and that on the last iteration the search

was well directed.

5.5 Aspiration Search

In this experiment, three versions of NegaScout were compared. All versions used iterative deepening

and transposition tables. Furthermore, two of the versions used aspiration search at the root. The search

window was centred around the score obtained from the previous iteration with a δ of 100 in one version,

and a δ of 50 in the other. Table 5.4 shows the results obtained. For the versions using aspiration search
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NS NS + AS 100 NS + AS 50
Game Phase Depth TNC TNC # Fails Gain TNC # Fails Gain

Opening

8 116 158 5 −35.9 160 10 −37.3
12 2 164 3 251 7 −50.2 3 231 16 −49.3
14 6 246 10 691 8 −71.1 10 648 18 −70.4
18 70 015 109 838 9 −56.8 109 213 25 −55.9

Middle Game

8 666 827 27 −24.0 829 51 −24.4
12 10 045 11 941 48 −18.8 11 863 93 −18.0
14 37 707 39 953 60 −5.9 39 099 115 −3.6
18 364 807 390 780 68 −7.1 396 742 140 −8.7

Endgame

8 957 1 028 16 −7.4 1018 28 −6.4
12 13 288 13 562 31 −2.0 13 564 49 −2.0
14 40 551 38 064 39 6.1 38 323 60 5.4
18 222 387 191 663 52 13.8 206 176 77 7.2

Table 5.4: NegaScout vs NegaScout with aspiration search.

the number of fails (low plus high) is shown (in actual units, not in thousands).

Some studies have shown that the use of aspiration search can lead to search reductions of about 20%

(see, e.g., [21]). However, in our experiments aspiration search turned out to be a bad bet, as in general

it led to more nodes being searched, due to lots of re-searches at the root (although it is not shown, most

were fail highs). This means that the previous iteration’s solution was refuted by the current iteration,

and thus the aspiration window was incorrect, as a re-search was necessary to find the correct value. This

may indicate that Turska’s evaluation function needs more work.

5.6 Enhanced Transposition Cutoffs

In this experiment, two versions of NegaScout were compared. Both versions used iterative deepening

and transposition tables. One of the versions also used enhanced transposition cutoffs. Due to the

increased computational effort, the technique is only performed at nodes that are more than 2 ply away

from the horizon. The results of the experiment are shown in table 5.5. As with transpositions tables,

the enhancement is more noticeable in the endgame.

NS NS + ETC
Game Phase Depth TNC TNC Gain

Opening

8 116 111 4.0
12 2 164 1 967 9.0
14 6 246 5 571 10.8
18 70 015 58 990 15.7

Middle Game

8 666 634 4.7
12 10 045 8 766 12.7
14 37 707 31 401 16.7
18 364 807 282 006 22.6

Endgame

8 957 829 13.3
12 13 288 9 704 26.9
14 40 551 29 100 28.2
18 222 387 126 544 43.0

Table 5.5: NegaScout vs NegaScout with enhanced transposition cutoffs.
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5.7 Replacement Schemes for Transposition Tables

In the previous experiments, whenever there was a collision in the transposition table, the entry with the

lowest depth in the bucket was replaced. Breuker analysed several replacement schemes for transposition

tables [8]. Here, we repeat some of his experiments, but adapting the replacement schemes for our four-

level transposition table. We also experimented a new replacement scheme, Number of Hits. These are

the replacement schemes that were experimented:

• Deep. This was the scheme used up until now. When there is a collision, the entry with the

shallowest subtree is replaced. The rationale behind this scheme is that a subtree that is searched

to a greater depth usually has more nodes than a subtree that is searched to a smaller depth. Thus,

more search effort was spent when searching the larger subtree. If the larger subtree is eventually

retrieved from the transposition table, it saves more work, as the search space is further reduced.

• Big All and Big 1. The depth of the search tree may be a bad indicator of the amount of search

effort spent and that may be potentially saved, due to pruning. Thus, it may be preferable to store

the positions with the biggest subtrees (the ones with more nodes) instead of the ones with the

deepest subtrees. Consequently, more memory is needed to store the same number of positions in

the transposition table, as the number of nodes of each subtree must be stored in each entry. When

there is a collision, the entry that is replaced is the one with the smallest subtree, excluding the

one with the deepest subtree. Big All counts a position from the transposition table as n nodes,

where n is the number of nodes in the subtree of that position, whereas Big 1 counts the position

as a single node.

• Number of Hits. In this scheme the depth or size of the subtrees is ignored, what matters is the

number of times a position was encountered. Thus, when there is a collision, the entry that is

replaced is the one that was used less times, excluding the one with the deepest subtree.

Preliminary results showed that using NegaScout with iterative deepening and a transposition table

would lead to insignificant differences in the total node count. For this reason, the tests were run using

only NegaScout with a transposition table, so that the differences would be more noticeable. Table 5.6

shows the results obtained. The gains shown are relative to the Deep scheme.

Our results indicate that there is hardly any difference between the Big All and Big 1 schemes.

Furthermore, the Number of Hits scheme revealed to be a bad bet, even though we were expecting it to

account for minor improvements in the endgame, due to the increased number of transpositions. This is

because the scheme does not take into account the amount of work done to investigate a position. For

deeper searches, the Big schemes are slightly better than the Deep scheme.

The results show that given a transposition table with a reasonable size and a bucket system, the

replacement scheme hardly affects the search results, thus the simplest replacement scheme, Deep, is

preferred. Our results appear to be in conformity with the ones obtained by Breuker [8].
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Deep Big All Big 1 Number of Hits
Game Phase Depth TNC TNC Gain TNC Gain TNC Gain

Opening

8 336 336 0.00 336 0.00 336 0.00
12 6 871 6 871 0.00 6 871 0.00 6 871 0.00
14 29 153 29 138 0.04 29 138 0.04 29 156 −0.01
18 496 996 492 047 0.99 492 047 0.99 506 445 −1.90

Middle Game

8 1 605 1 605 0.00 1 605 0.00 1 605 0.00
12 43 167 43 167 0.00 43 167 0.00 43 167 0.00
14 202 173 202 760 −0.29 202 760 −0.29 202 296 −0.06
18 4 184 390 4 084 870 2.37 4 084 870 2.37 4 329 131 −3.45

Endgame

8 1 769 1 769 0.00 1 769 0.00 1 769 0.00
12 37 225 37 211 0.03 37 211 0.03 37 214 0.03
14 141 484 153 746 −8.66 153 746 −8.66 145 194 −2.62
18 1 840 040 1 735 133 5.70 1 735 133 5.70 2 044 726 −11.12

Table 5.6: Comparison of several replacement schemes for transposition tables.

5.8 Information in Transposition Tables

In this experiment, we investigated how storing additional information in the transposition table affects

the search. We tried some of the suggestions mentioned by Breuker [8]:

• PV. We add a flag to each entry that indicates whether the node has ever been PV or expected-

PV. Such nodes are never removed from the transposition table, independently of the replacement

scheme in use.

• Two Bounds. Instead of storing only the score of the position and whether it is an exact value, a

lower bound, or an upper bound, we store the two bounds, α and β, with separate depths for each.

As in the previous experiment, the tests were also run using NegaScout with a transposition table.

The results of the experiment are shown in table 5.7. Here, the number of cutoffs and of re-searches is

shown in actual units, and not in thousands as before.

The information about whether a node is PV or not does not seem to be important, as the fluctuation

of gain is almost negligible. The results of the Two Bounds transposition table version experiment were

different from what we were expecting. We were expecting that the number of cutoffs would increase

along with the reduction of the total node count. Instead, what happened was that for shallower searches

the number of cutoffs decreased, as well as the total node count. For deeper searches, the number of

cutoffs increased significantly, but so did the total node count. This was due to re-searches. For deeper

searches, the number of re-searches increased much more than for shallower searches. The Two Bounds

version appears to perform especially worse in the endgame, where normally enhancements that take

advantage of transpositions perform better. As more information is stored in the transposition table, the

probability that deeper subtrees are transposed to shallower searches is higher. This led to more cutoffs

and re-searches in general.
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NS PV
Game Phase Depth TNC # Cutoffs # Re-searches TNC Gain

Opening

8 336 10 568 1 231 336 0.00
12 6 871 246 028 5 520 6 871 0.00
14 29 153 1 133 928 10 290 29 153 0.00
18 496 996 20 896 101 50 097 497 006 0.00

Middle Game

8 1 605 71 728 5 532 1 605 0.00
12 43 167 2 811 969 30 219 43 167 0.00
14 202 173 15 893 660 66 257 202 172 0.00
18 4 184 390 403 192 819 309 308 4 161 820 0.54

Endgame

8 1 769 207 607 2 768 1 769 0.00
12 37 225 6 747 845 10 123 37 225 0.00
14 141 484 29 865 764 19 136 141 114 0.26
18 1 840 040 402 949 891 57 908 1 917 693 −4.22

Two Bounds
Game Phase Depth TNC # Cutoffs # Re-searches Gain

Opening

8 334 10 436 1 232 0.58
12 6 844 244 147 5 524 0.39
14 29 103 1 134 306 10 320 0.16
18 547 252 25 109 333 51 074 −10.11

Middle Game

8 1 599 71 490 5 519 0.38
12 42 957 2 796 029 30 011 0.48
14 202 713 16 074 865 66 517 −0.26
18 4 314 335 443 468 564 309 503 −3.10

Endgame

8 1 747 203 840 2 747 1.25
12 38 494 7 220 719 10 429 −3.40
14 139 781 29 881 364 18 662 1.20
18 2 520 848 602 221 109 62 017 −36.99

Table 5.7: Storing additional information in the transposition table.

5.9 Other Implementation Details

In this section we will describe some of the details regarding the implementation of Turska. This includes

the generation of moves, which was omitted before for clarity purposes, and the detection of draw by

repetition, amongst others.

Terminal Position Evaluation

The evaluation function is called when a heuristic terminal position (as stated by the quiescence search)

is reached. In the case a real terminal position is reached, i.e. the player to move has no pieces left

or cannot move any of his pieces (stalemate), the position is not evaluated by the evaluation function.

Instead, the search returns a value lower than any value the evaluation function can return.

Draw by Repetition

Another way to end the game is by draw by repetition. When a position is reached at least three times,

any one of the players can claim a draw. To detect draws by repetition we have a dedicated, small hash

table that uses linear probing. The hash function used is the same as in the transposition table, but now

only the high-order bits of the hash values are used, as this hash table is smaller than the transposition
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table. This way we avoid computing two hash values. To mitigate type-1 errors we use hash keys (see

section 2.3.1), which, in this case, are also the ones used in the transposition table. Another way of

detecting repetitions would be to use the transposition table. However, the transposition table can easily

overload and lose entries that could be relevant.

Move Generation

In games with high branching factors it may be a waste of time to generate all the moves at each position,

as the exploration of the first moves can be enough to cause a cutoff. Thus, moves are often generated

incrementally. In Turska we do not do this. Implementing an incremental move generator would account

for some extra overhead and complexity, which in a game with a small branching factor like Checkers are

not justifiable enough.

In Checkers captures are mandatory. As in general there is no fast way to check whether there are

captures or not at a certain position, due to flying kings, we first try to generate the captures. Because

of the quantity-quality rule in Classical Checkers, we first generate the kings captures, as the probability

of capturing more pieces with a king is higher than that of with a man. If there are no captures, then

we can generate the non-capturing moves.

Move List

In the first versions of Turska a move was represented by an object that in turn represented a position. To

iterate over all the moves at a certain position, we only needed to pass each object to the corresponding

recursion of the search function. Although the move generation was simple, generating all the moves

at a position was computational expensive, because many objects were created. Later on we decided

to change the representation of moves, as a move can be represented solely by an integer, whose active

bits correspond to the squares associated with the move, i.e. the square from which the piece is moving

and the square to which the piece is moving, plus the squares of the captured pieces, if there are any.

Although iterating over all the moves is now more complex, because a move has to be “done” and then

“undone”, it has a smaller memory footprint. Preliminary results showed that using this scheme the

move generation was significantly faster.

5.10 Summary

We have implemented and experimented several search algorithms and techniques in Turska. In this

chapter we analysed the results obtained by enabling each one incrementally. Our results seem to be

in conformity with most results available in the literature, except for the case of aspiration search. We

also tried some previously suggested replacement schemes for transposition tables, as well as a new one,

trying to get some search performance gain. Our attempts failed miserably. Even when there was some

performance gain, it was minor and not significant enough to justify the increased memory needs. A

similar situation occurred in the experiments with additional information on the transposition table.
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Figure 5.1: Comparison of the total node counts for each search experiment in the opening.

Nevertheless, we showed that the search space can be reduced drastically. If we compare the most näıve

version with the most enhanced version, we obtain search tree size reductions within two to four orders

of magnitude.

Figures 5.1, 5.2, and 5.3 show the total node counts for the search experiments, in millions. A loga-

rithmic scale is used. In each figure are shown the results for a different test set: the opening test set,

the middle game test set, and the endgame test set. Seven algorithms are compared: plain alpha-beta

(named Alpha-Beta without TT in the figures); alpha-beta with a transposition table (Alpha-Beta); Ne-

gaScout with a transposition table (NegaScout); NegaScout with iterative deepening and a transposition

table (NegaScout + ID); two versions of NegaScout with aspiration search, iterative deepening, and a

transposition table, each one with a different δ (NegaScout + AS 100 and NegaScout + AS 50 ); and a

version of NegaScout with iterative deepening, a transposition table, and enhanced transposition cutoffs

(NegaScout + ETC ). In the figures the distinction between NegaScout + AS 100 and NegaScout + AS

50 is not clear, because their lines overlap. In figures 5.2 and 5.3 the distinction between NegaScout + ID

and the NegaScout + AS algorithms is also not very clear. The results of the experiments are consistent.

In every game phase, NegaScout + ETC outperforms the remaining algorithms. Notice also that the

gap between Alpha-Beta without TT and NegaScout + ETC increases by about one order of magnitude

between each game phase.
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Figure 5.2: Comparison of the total node counts for each search experiment in the middle game.
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Figure 5.3: Comparison of the total node counts for each search experiment in the endgame.
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6Knowledge in Turska

Usually, the search does not reach the terminal positions due to the extensive size of the game tree.

Consequently, a quiescence search is often used after the main search to extend some lines of play.

The quiescence search tries to make game-playing programs apply the evaluation function only to stable

positions, and thus minimize problems such as the horizon effect. Furthermore, if a game-playing program

is to be competitive, the evaluation function must provide good estimations of the real utilities for the

positions evaluated.

In this chapter we will describe Turska’s evaluation function and quiescence search. We will also

make some experiments with both of them and analyse the results obtained. Finally, we will evaluate our

program by playing some matches against another Classical Checkers computer program, Windamas.

6.1 Evaluation Function

Turska’s evaluation function has currently 8 heuristic functions. They will be described next, but without

going into implementation details. The knowledge in the evaluation function was devised from a few

sources: feedback from a Checkers expert and knowledge available in the literature of some Checkers

variants [39, 14, 50, 45]1. Some heuristics, such as material balance, piece mobility, and positional

control, are also common in other games, such as Arimaa and Chess.

The program divides the game into three phases (opening, middle game, and endgame), based solely

on the number of pieces on the board. The value of each heuristic may differ for each phase of the game.

Table 6.1 shows how Turska divides the game into the three phases, and table 6.2 shows the values of

each heuristic for each one of those game phases. In total, there are 45 parameters that can be tuned.

The evaluation function was tuned manually. Due to time restrictions, limited testing and tuning was

performed.

Game Phase Number of Pieces

Opening 19–24
Middle Game 9–18

Endgame 0–8

Table 6.1: Game phases in Turska.

It may be interesting to compare Turska’s heuristics with the ones used by Chinook [50, 45]. Some

ideas present in Chinook can be adapted to Classical Checkers, whilst other cannot. In fact, we took

1http://www.jimloy.com/checkers/checkers.htm, http://alemanni.pagesperso-orange.fr/page3_e.html
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Game Phase
Heuristic Opening Middle Game Endgame

Material Balance
Man Value 100 100 100
King Value 250 250 300

Piece Mobility

Mobile Man 1 2 3
Mobile King 2 3 4
Frozen Man −5 −5 −5
Frozen King −12 −12 −15
Dead Man −20 −20 −20
Dead King −50 −50 −60
Back Rank 5 5 3
Balance (Bonus) 4 6 3
Balance (Penalty) −4 −6 −3
Bridge Exploit 0 −10 −15
River Control 0 25 50
Runaway 50 50 60
Triangle 10 0 0

Table 6.2: Turska’s heuristics and their values.

some ideas from Chinook, the most important being the mobility classification.

Material Balance

The material balance is the most important knowledge component in the evaluation function, as it

dominates all others. Usually, in a game-playing program there is a main reference value to which the

values of the heuristics are relative to. In Chess it is the value of a pawn, in Checkers it is the value of

a man. For example, the value of a king is equal to 2.5 times the value of a man in the opening and

middle game, and equal to 3 times the value of a man in the endgame. The value of a king is greater in

the endgame than in the other game phases because kings can move more freely in the endgame.

Piece Mobility

The degree to which the pieces are free or restricted in their movements is very important. Usually,

a position where a player has more options is preferable over one where it has fewer options. But the

number of options is not the most important factor per se, the quality of the options is. We classify the

mobility of a piece on a certain direction as either mobile, frozen, or dead. If a piece can move freely

in one direction, i.e. there is at least one move in that direction for which the piece is not immediately

captured by the opponent, then it is regarded as mobile in that direction. If a piece can move in one

direction but the moves always lead to the piece being captured, then it is regarded as frozen in that

direction. A piece is regarded as dead if it cannot move at all.

In previous versions we considered that a piece was frozen in one direction only if the moves led to

piece exchanges that were not favourable to the player. If a move led to an exchange of pieces favourable

to the player, then the piece would be regarded as mobile in that direction. This meant that for every

move tried, the complete line of play would have to be analysed, at least until the captures ended.

Although this classification made Turska play a little better, it also made the program play much slower.
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Figure 6.1: Identifying bridge exploits (a). The river (b) and the triangle formations (c).

Thus, the simpler algorithm to classify the mobility of pieces is used.

Back Rank

Since kings are very important in the game, a player should protect its back rank in order to prevent his

opponent to promote men. Some defensive formations are stronger and thus are rated better. Weaker

formations are rated worse. The bonus equals the number of pieces in the back rank times the value of

the heuristic (see table 6.2). If a player has two pieces in the back rank and they form a strong bridge,

the bonus is incremented. If they do not form any bridge, the bonus is decremented. If a player has

three pieces in the back rank and none is in the double corner, the bonus is also decremented. If there

are opposing kings, the bonus is decremented by two.

Balance

If a player only occupies a side of the board and the opponent has pieces in both sides, the opponent

may be in advantage, as he probably has more options and unimpeded paths to promote men. Thus,

it is important that a player’s pieces are well distributed over the board. We say that the pieces of a

player are well distributed over the board if the difference between the number of pieces in each side of

the board is not greater than one. If a player’s pieces are well distributed over the board, and the other

player’s pieces are not, the latter receives a penalty.

Bridge Exploit

A bridge is a defensive formation on the back rank of a player in which two of its own men are separated

by an empty square. In figure 6.1(a) the white men on squares 2 and 4 form a (strong) bridge. If it were

not for the white king on square 17, the black man on square 11 would be controlling the two white men.

If any of the white men moved, it would be captured and Black would promote a man. Thus, the black

man would be controlling the two white men. In the example shown, the black man is not controlling

the white men because of the white king, as it can sit between one of the white men and the black man,

and render Black’s positional advantage useless. Identifying this kind of positions is important, as one of

the players is in great disadvantage.
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Figure 6.2: A game position.

River Control

The river (“rio” in Portuguese) is the diagonal that includes squares 1 and 32 (figure 6.1(b)). It is

the most important diagonal in Classical Checkers. Controlling the river is important, especially in the

endgame. In some positions in which one player is in disadvantage, controlling the river can sometimes

lead to a draw, instead of a loss.

Runaway

A man is regarded as runaway if it can be promoted to king in one move. Identifying runaway men is

important to evaluate positions more accurately.

Triangle

The triangle is a strong defensive formation in the opening phase of the game. The formation is shown

in figure 6.1(c) for both players.

6.1.1 Static Evaluation Example

We will now give an example of the assessment of a position by the evaluation function, in order to better

understand how it works. Figure 6.2 shows the game position that will be used as example. There are 15

pieces on the board, thus Turska identifies the game phase as the middle game. Hence, we will use the

values from the 3rd column of table 6.2. The scores shown next are all given for White.

1. Material Balance

White has 6 men and 1 king (6× 100 + 1× 250 = 850). Black has 7 men and 1 king (−950).

Initial score: 850 +−950 = −100 points.

2. Piece Mobility

The white man on square 7 is left mobile (2), whereas the ones on squares 1 and 14 are left frozen

(−10). The white men on squares 8 and 14 are right mobile (4). On the other hand, the white men

on squares 3, 7, and 16 are right frozen (−15). Both kings are mobile in every direction they can

move (12 +−6 = 6). The black men on squares 28 and 31 are dead (40). The black men on squares
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# Wins
Depth Simple Complex # Draws

8 10 89 1
12 14 74 12
14 25 64 11
18 40 47 13

Table 6.3: Comparison of evaluation functions.

13 and 24 are left mobile (−4) (n.b. Black’s left is White’s backwards right), whereas the ones on

squares 23 and 27 are left frozen (10). While the black man on square 13 is right mobile (−2), the

ones on squares 23 and 25 are right frozen (10).

Cumulative score: −100 + 2 +−10 + 4 +−15 + 6 + 40− 4 + 10 +−2 + 10 = −59 points.

3. Balance

White has 4 pieces on the left side of the board and 3 on the right side, thus it receives a bonus (6).

Black’s pieces are not well distributed over the board. Because White’s pieces are well distributed

over the board and Black’s pieces are not, Black receives a penalty (6).

Cumulative score: −59 + 6 + 6 = −47 points.

4. Back Rank, Bridge Exploit, River Control, Runaway, and Triangle

Although the white men on squares 1 and 3 form a (weak) bridge, the bonus is nullified because

Black has a king ((2−2)×5 = 0). The same goes for Black. There are no bridge exploits, no player

has full control of the river, no men can be promoted in one move, and no player has men forming

the triangle.

Final score: −47 points.

6.1.2 Experimental Evaluation

We run an experiment to identify if the heuristics we created are useful. We played 100 matches between

a version of our program with a simple evaluation function (named Simple), consisting only of material

balance, and a more complex version (named Complex ), with the heuristics just described. The values

of the heuristics were as shown in table 6.2. We played 50 matches, then swapped the order of play and

played the other 50 matches.

The search algorithm used was the best from the previous chapter, i.e. NegaScout with iterative

deepening, a transposition table, and enhanced transposition cutoffs. The transposition table was semi-

reset between moves, i.e. the moves from the previous searches were retained in the table, but the rest of

the information was discarded. The program also included a random component to allow it to choose a

random move in positions with more than one best move. The move is chosen from amongst those with

the best score. The component was initialised with pre-defined seeds.

The results of the experiment are shown in table 6.3. For shallower searches, Complex is clearly

superior to Simple, while for deeper searches, both versions score similarly. Complex has more knowledge
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Simple Complex
Depth # Wins Time Eval. Depth # Wins Time Eval. Depth # Draws

8 33 17 0.68 52 548 14.02 15
12 47 216 0.65 42 6 092 14.46 11
14 41 827 0.64 44 22 275 13.91 15
18 43 7 316 0.65 41 222 309 13.26 16

Table 6.4: Comparison of quiescence searches.

and thus is able to distinguish positions better. On the other hand, Simple’s ability to distinguish

positions increases with the depth of search. Theoretically, by increasing the search effort, less knowledge

is required to achieve the same level of performance. Thus, with a sufficiently deep search, Simple and

Complex should score about the same.

6.2 Quiescence Search

Turska’s quiescence search is simple: the search is always extended until the side to play has no captures

pending. We also tried a more complex quiescence search: instead of only extending the search until the

side to play has no captures pending, we also extended the search after a capture, by one ply. Often,

after a capture the other player may not perform a capture, but some of its moves may lead to other

captures by the first player. This way we can follow some lines of play more extensively.

We run an experiment to see which version rated better. We played 100 matches, like in the previous

experiment. Again, to the version with the simpler quiescence search we called Simple, and to the other

we called Complex. Complex ’s base search depth was always 2 ply less than Simple’s base search depth.

The search algorithm used was the best from the previous experiment.

The results of the experiment are shown in table 6.4. Besides the number of wins and draws, it is

shown the total execution time, in seconds, and the average evaluation depth, i.e. the average depth at

which nodes were evaluated inside the quiescence search. For example, an evaluation depth of 14 in a

16-ply base search means that the nodes were evaluated 30 ply away from the initial position.

Although Complex searched deeper on average, and took about 30 times more time to play, the two

versions scored similarly. Thus, the “enhanced” quiescence search is actually worse than the simpler one.

Our idea for a better quiescence search turned out to be bad. The search does follow the lines of play

more extensively, but too extensively.

6.3 Results Against Other Programs

We evaluated our program by playing some matches against another Classical Checkers computer pro-

gram, Windamas2 (version 7.00). Windamas was created by Jean-Bernard Alemanni in 2001 and is now

freeware (n.b. its source code is not available). Alemanni has also created other computer Checkers

programs.

2http://alemanni.pagesperso-orange.fr/index.html
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Turska Windamas
Match # Opening Colour Time Colour Time Result

1 free white 31 black 37 0 – 1
2 free black 50 white 45 0 – 1
3 11−14 22−19 white 24 black 43 0 – 1
4 11−14 22−19 black 15 white 46 0 – 1

Table 6.5: Turska vs Windamas.

Windamas has 9 levels, ranging from novice (level 0) to international grandmaster (level 8). There is

not much information about what changes for each level, besides the time it takes to play. The program

has also an opening book, which was disabled because Turska does not have an opening book. The feature

that allows Windamas to continue searching while the opponent plays has also been disabled.

The search algorithm used in Turska is similar to the one used in sections 6.1.2 and 6.2, i.e. NegaS-

cout with iterative deepening, a transposition table, enhanced transposition cutoffs, the more complex

evaluation function, and the simpler quiescence search. The program was changed to only perform ETC

at nodes that are more than 4 ply away from the horizon. Furthermore, the transposition table was

semi-reset between moves, i.e. the moves from the previous searches were retained in the table, but the

rest of the information was discarded. Turska’s transposition table occupies 24 megabytes. We do not

know how many positions can Windamas transposition table hold, thus we selected the option that was

more similar to Turska’s configuration. Hence, Windamas was configured to play with a transposition

table that occupies 25 megabytes. Windamas played with the default level, excellency (level 5). It takes

an average of 5 seconds per move (only considering the moves in which it makes some computation).

In Turska this corresponds to playing with a search depth of 18 ply. Contrary to the two previous

experiments, the program did not include a random component to select moves.

In official Classical Checkers tournaments, the first 2 moves are randomly chosen for each match. This

means that each player is forced to play the initial move it was assigned. After that the game proceeds

normally, meaning that each player can choose freely which moves to play. After the match finishes the

players swap colours and then play another match.

The programs played four matches, two with free opening, and another two with the 11−14 22−19

opening. The results of the matches are shown in table 6.5. For each match it is shown the colour of each

program, and the time, in seconds, that each program took to play. Windamas won all the matches.

In the first match Turska played bad, doing three bad moves almost in a row near the end of the

opening phase of the game. In the second match Turska did a bad move, which made it be in material

disadvantage for most part of the game. It realised quickly that the game would be a win for Windamas

and did not offer much resistance. In the third match Turska played better than in the previous two.

The game was balanced up until the middle game with both sides having 8 pieces. Then, the program

did not play the correct moves and later fell into a trap. In the fourth match Turska also made it well

into the middle game. In the late middle game, it was not able to distinguish the good move apart from

the bad ones and played one of the bad moves. The game could have been easily a draw.
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Although Turska can search relatively deep within a reasonable amount of time, it is still not able to

distinguish between positions very well. It happens that in some cases the program does not distinguish

between the real best move and the other (bad) moves. Thus, it often plays one move that is not the

best. These results indicate that the current heuristics need to be further tuned, and that the program

may also need more knowledge.
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7Concluding Remarks

We have developed a Classical Checkers computer program, which we named Turska. For that, we first

studied the algorithms and techniques that can be used to build game-playing programs for a certain

class of games: two-player zero-sum non-cooperative sequential games with perfect information. Then,

we studied a state-of-the-art English Checkers computer program, Chinook, to better understand how the

studied topics were used in practice. This allowed us to see which algorithms and techniques performed

better in the game of Checkers. Next, we described the components of our program: the search algorithm

and the evaluation function. With this we managed to answer the first problem stated back in chapter 1:

Problem Statement 1 How can we develop a computer program to play Classical Checkers?

In this chapter the problems stated in chapter 1 are re-addressed and evaluated. Then, we conclude

by mentioning some directions for future research.

7.1 Conclusions

In chapter 4, we estimated the game-tree complexity of Classical Checkers to be approximately 1048.

Comparing to the one of English Checkers, 1031, we concluded that Classical Checkers is harder, as the

game-tree complexity is higher. As both variants are very similar, and given that the state-space com-

plexities are very similar as well, Classical Checkers can probably also be solved with current technology.

Problem Statement 2 How do the studied search algorithms and techniques behave in the domain

under study, and how can they be improved?

We experimented and analysed several search enhancements in chapter 5, most related with transpo-

sitions and search windows. For sufficiently deep searches, all enhancements, except aspiration search,

accounted for significant reductions of the search tree. In total, the size of the search tree was reduced by

two to four orders of magnitude. The reductions increased with the depth of search and the game phase.

In general, the later the stage of game, the more noticeable were the enhancements. The enhancements

that take advantage of transpositions, such as transposition tables and enhanced transposition cutoffs,

were the ones that accounted for more savings, especially when combined with iterative deepening. Our

results seem to be in conformity with most results available in the literature, except for the case of aspi-

ration search. The bad results obtained with aspiration search indicate that Turska’s evaluation function

needs more work. This was later confirmed in chapter 6.

To answer the second part of the question above we focused on transposition tables. Given that the

enhancements that take advantage of transpositions were the ones that accounted for more savings, we
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tried to improve the information stored in the transposition table and how it was managed. We did so

by trying to ensure that the most relevant information stayed in the table (using different replacement

schemes), and by storing additional and possibly relevant information in the table. Although there were

minor improvements with some of the replacement schemes, they were not significant enough to justify

the increased memory needs. The results of the experiments with additional information were similar:

in general, the additional information did not improve the search. Thus, the additional information does

not appear to be very relevant.

Problem Statement 3 What game-specific knowledge is required to improve our program?

In chapter 6 we made some experiments with Turska’s evaluation function and quiescence search. The

results indicate that the evaluation function needs further work. The matches against Windamas showed

that in some cases Turska is not able to distinguish between positions very well. Thus, it often plays one

move that is not the best. In Checkers it is especially important to not make mistakes, particularly in

the opening phase of the game. Although sometimes it may not be immediately clear, a bad move done

in the beginning of the game directly leads to a no-win, and often to a loss.

7.2 Future Work

Some enhancements can be made to the current research work. We suggest the following:

• Evaluation Function

The evaluation function needs to be further tuned. It may be interesting to investigate machine-

learning methods to do so. Limited success was already achieved in English Checkers with such

methods [51]. Moreover, the evaluation function may also need more knowledge. Hence, working

with a Checkers expert may continue to be relevant.

• Parallelism

The brute force power of Turska’s search component can be further improved with parallelisation.

For that, parallel search algorithms have to be studied (see, e.g., [9] for a survey). This includes

algorithms that use tree-splitting, work-stealing, and other parallelisation techniques.

• Selective Search

Our program did not use many selective search techniques besides quiescence search. Thus, it may

be interesting to investigate how other techniques, such as forward pruning and search extensions,

would perform (see, e.g., section 2.3.5 for a survey).

• Databases

Although not very interesting from a scientific viewpoint, an opening book and endgame databases

would improve Turska’s playing strength considerably. The latter are crucial to solve the game.
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AThe Rules of Checkers in Brief

Checkers is played by two players, sitting on opposite sides of a checkerboard – a rectangular square-tiled

board in which the squares are of alternating dark and light colour. One of the players has white, or

light, pieces and the other black, or dark, ones. The former player is referred to as White and the latter

as Black. In Classical Checkers White moves first, whereas in English Checkers Black does. Players play

alternately and may only move their pieces. The playable surface consists only of the dark squares. The

goal of the game is to capture all the opponent’s pieces or leave the opponent without any legal move.

Figures A.1(a) and A.1(d) show the starting positions for a game of Classical and English Checkers,

respectively. In Classical Checkers the double corner is to the left of each player, whereas in English

Checkers it is to the right of each player. In figures A.1(b) and A.1(e) are shown the standard board

notation for each one of these two variants.

Pieces may only move diagonally and to empty (vacant) squares and captures are mandatory. To

capture an opposing piece, the piece that is performing the capture has to jump over the other and land

on an empty square on that diagonal. A capture may only be done if the diagonally adjacent square

behind the piece that is being captured is empty. Multiple pieces may be captured in one move. This

is done by performing several successive jumps, each jump corresponding to a capture. It is illegal to

jump over the same piece more than once. Only after a capture is finished, may the captured pieces be

removed from the board. In Classical Checkers, if there are several captures possible, the player must

choose the one that captures the maximum number of pieces (quantity rule). If several of these captures

capture the same number of pieces, the player must choose the one that captures more kings (quality

rule). If after applying these two rules there are still a few possible captures, then the player may choose

whichever he wants. In English Checkers the rules are simpler: when there are several captures possible,

the choice is always up to the player. A player loses the game when he has no pieces or cannot move any

of his pieces.

There are two kinds of pieces in Checkers: men and kings. A man can be promoted to, or crowned,

king. To differentiate between men and kings, an additional piece is placed on the top of each piece that

is promoted (the placed piece must be of the same colour). At the beginning of the game all pieces are

men, and for a man to be promoted to king it has to reach the kings row, which is the farthest row

opposite to the player controlling the piece.

Men may only move one square forwards and they capture by advancing two squares in the same

direction, jumping over the opposing piece in the intermediate square. Although in most variants, such

as the Classical and English, men may only capture forwards, in some variants they may also capture
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Figure A.1: Several situations in Classical and English Checkers.

backwards.

There are two types of kings: kings and flying kings. Both types of kings may move and capture

in any direction, i.e. both forwards and backwards. While kings may move only one square, flying kings

may move any number of squares along unblocked diagonals. Unlike men and kings, flying kings do not

need to be adjacent to an opposing piece to capture it, they need only to be on the same diagonal and

the path to the piece must be free. When performing a capture, flying kings may land in any empty

square following the captured piece, whereas men and kings have to land on the adjacent square. While

in Classical Checkers kings are flying kings, in English Checkers they are not.

In figure A.1(c) several situations using white men in Classical Checkers are shown:

• The white man on square 4 has two possible moves: from square 4 to square 7 (4−7) and from

square 4 to square 8 (4−8).

• The white man on square 10 has a mandatory capture: from square 10 to square 17 (10×17),

capturing the black man on square 13 in between.

• The white man on square 27 moved to square 30 (27−30) and was promoted to king.

In figure A.1(f) several situations using black (flying) kings in Classical Checkers are shown:

• 20−15, 20−16, 20−23, 20−24, and 20−27 – a king with five possible moves.

• 30×17×3 and 30×17×6 – a capture with two possible landings.
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BProof-Number Search

The Proof-Number Search (PNS or pn-search) algorithm was introduced by Allis in 1994 [2]. Since then,

PNS has been used to solve several games, such as English Checkers and others [49, 59]. Several variants

of the algorithm exist [60]. We will describe the basic PNS algorithm, but first we will introduce AND/OR

trees, as they will be necessary to better understand PNS.

B.1 AND/OR Trees

An AND/OR tree is a (rooted) tree with some extra properties. In an AND/OR tree there are two

types of nodes: AND nodes and OR nodes. Each node can have one of three values: true, false, or

unknown. A node whose value is either true or false is a terminal node.

The value of an AND node A is determined by applying the following rules (in order of precedence):

1. If A has at least one child with value false, then the value of A is false.

2. If A has at least one child with value unknown, then the value of A is unknown.

3. Otherwise, the value of A is true.

The value of an OR node O is determined by applying the following rules (in order of precedence):

1. If O has at least one child with value true, then the value of O is true.

2. If O has at least one child with value unknown, then the value of O is unknown.

3. Otherwise, the value of O is false.

An AND/OR tree is solved if the value of its root has been established as either true or false. A

solved tree with value true is said to be proved, whereas a solved tree with value false is said to be

disproved.

B.2 Proof-Number Search

Proof-Number Search (PNS or pn-search) is a best-first search algorithm especially suited for finding

the game-theoretical value of games. A game tree can be seen as an AND/OR tree in which Max nodes

are OR nodes and Min nodes are AND nodes. If the game-theoretical value is a win, the game tree is
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Figure B.1: An AND/OR tree annotated with its proof and disproof numbers.

proved, otherwise (loss or draw) it is disproved. Unlike other best-first search algorithms, PNS does not

need application-dependent knowledge to determine the most-promising node, i.e. which node to explore

next. In PNS, the most-promising node is referred to as the most-proving node. The most-proving

node of an AND/OR tree T is a leaf node, which by obtaining the value true reduces T ’s proof number

by 1, and by obtaining the value false reduces T ’s disproof number by 1.

The proof number of an AND/OR tree T is the minimum number of leaf nodes that have to be

proved to prove the tree. Conversely, the disproof number of T is the minimum number of leaf nodes

that have to be disproved to disprove the tree. Figure B.1 shows and AND/OR tree where each node

has an associated proof and disproof number, which are shown by this order on the right or below each

node. In terminal nodes, the value is shown (true or false). AND nodes are depicted with circles and OR

nodes with squares. Non-terminal leaf nodes (j, l, and m) have proof and disproof number 1, because

only the node itself needs to obtain the value true (false) to prove (disprove) the subtree rooted at itself.

Terminal nodes with value true (false) have proof (disproof) number 0, since their values have already

been proved (disproved). Terminal nodes with value false (true) have proof (disproof) number ∞, since

nothing can undo the fact that the nodes have been disproved (proved).

The PNS algorithm is shown in figure B.2. The function Evaluate takes a node as argument and

assigns to it the value true, false, or unknown. The attribute pn of a node represents its proof number and

the attribute dn its disproof number. Proof-Number-Search encodes the main loop of the search.

First, the root of the AND/OR tree is evaluated and developed, i.e. its children are generated and

evaluated. Then, at each iteration a node is selected, developed, and its proof and disproof numbers are

propagated through its ancestors. The algorithm terminates when the tree is solved, i.e. when either the

proof or disproof number of the root becomes 0. To prove an AND node, all of its children have to be

proved. Thus, its proof number equals the sum of its children proof numbers. Conversely, the disproof

number of an OR node equals the sum of the disproof numbers of its children. To disproof an AND node,

only one of its children has to be disproved, thus its disproof number equals the disproof number of the

child with the smallest disproof number. To prove an OR node, only one of its children has to be proved.

Function Set-Numbers computes the proof and disproof numbers of a node as described above.

60



Proof-Number-Search(root)

Evaluate(root)

Set-Numbers(root)

while root .pn 6= 0 and root .dn 6= 0 do

node = Select-Most-Proving-Node(root)

Develop-Node(node)

Propagate-Numbers(node)

if root .pn == 0 then

root .value = true

else if root .dn == 0 then

root .value = false

Select-Most-Proving-Node(node)

while node is developed do

i = 1

if node is AND then

while node.child [i ].dn 6= node.dn do

i = i + 1

else // node is OR

while node.child [i ].pn 6= node.pn do

i = i + 1

node = node.child [i ]

return node

Set-Numbers(node)

if node is developed then

if node is AND then

node.pn =
∑

n ∈ Children(node) n.pn

node.dn = Minn ∈ Children(node) n.dn

else // node is OR

node.pn = Minn ∈ Children(node) n.pn

node.dn =
∑

n ∈ Children(node) n.dn

else

if node.value == true then

node.pn = 0

node.dn = ∞
else if node.value == false then

node.pn = ∞
node.dn = 0

else // node.value == unknown

node.pn = 1

node.dn = 1

Develop-Node(node)

for each node n ∈ Children(node) do

Evaluate(n)

Set-Numbers(n)

Propagate-Numbers(node)

while node 6= null do

Set-Numbers(node)

node = node.parent

Figure B.2: The Proof-Number Search algorithm.

To obtain the most-proving node we start at the root and use the following procedure. If the current

node is an AND node, we traverse the child with the lowest disproof number, otherwise we traverse the

child with the lowest proof number. When a leaf node is reached we have found a most-proving node.

Function Select-Most-Proving-Node selects the most-proving node as just described.

61



62



Bibliography

[1] Selim G. Akl and Monroe M. Newborn. The principal continuation and the killer heuristic. In ACM

Annual Conference, pages 466–473, 1977.

[2] Louis V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis, Maastricht

University, 1994.

[3] Thomas S. Anantharaman. A Statistical Study of Selective Min-Max Search in Computer Chess.

PhD thesis, Carnegie Mellon University, 1990.

[4] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your Mathematical

Plays. Academic Press, 1982.

[5] Hans J. Berliner. Chess as Problem Solving: The Development of a Tactics Analyser. PhD thesis,

Carnegie Mellon University, 1974.

[6] Jonh A. Birmingham and Peter Kent. Tree-searching and tree-pruning techniques. In Advances in

Computer Chess, volume 1, pages 89–107. Edinburgh University Press, 1977.

[7] Yngvi Björnsson. Selective Depth-First Game-Tree Search. PhD thesis, University of Alberta, 2002.

[8] Dennis M. Breuker. Memory versus Search in Games. PhD thesis, Maastricht University, 1998.

[9] Mark G. Brockington. A taxonomy of parallel game-tree search algorithms. International Computer

Chess Association Journal, 19(3):162–174, 1996.

[10] Alexander L. Brudno. Bounds and valuations for abridging the search of estimates. Problems of

Cybernetics, 10:225–241, 1963.

[11] Michael Buro. Techniken für die Bewertung von Spielsituationen anhand von Beispielen. PhD thesis,

University of Paderborn, 1994.

[12] Michael Buro. Experiments with multi-probcut and a new high-quality evaluation function for

othello. In Games in AI Research, pages 77–96. Maastricht University, 2000.

[13] Murray S. Campbell and Thomas. A. Marsland. A comparison of minimax tree search algorithms.

Artificial Intelligence, 20(4):347–367, 1983.

[14] Sena Carneiro. Iniciação ao Jogo das Damas. Editorial Presença, 1978.

63



[15] Shirish Chinchalkar. An upper bound for the number of reachable positions. International Computer

Chess Association Journal, 19(3):181–183, 1996.

[16] John H. Conway. On Numbers and Games. Academic Press, 1976.

[17] Adrianus D. de Groot. Thought and Choice in Chess. Mouton Publishers, 1965.
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