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Abstract

There is a growing desire for warehouse automation to reduce operational costs and improve logis-

tics efficiency. In this work, we survey the state-of-the-art on the use of indoor drones for warehouse

inventory leveraging current Radio Frequency Identification (RFID) technology. We propose a system

architecture to automatically carry out warehouse inventorying by detecting RFID item tags while au-

tonomously navigating the facility. A routing algorithm was developed for a Reserve Area of configurable

dimensions. The navigation is complemented by leveraging OpenCV and the frontal camera to perform

mid-flight corrections based on visual markers serving as reference points. We outline the proposed

system architecture and develop it as a proof-of-concept design.
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Resumo

Existe uma procura cada vez maior para a automatização de armazéns com o objectivo de reduzir

custos e melhorar a eficiência da cadeia de logı́stica. Este trabalho explora o estado da arte em ter-

mos da utilização de drones em espaços interiores para inventariar armazéns através da utilização de

tecnologia RFID e propõe um sistema para inventariar armazéns automaticamente. Este sistema utiliza

tecnologia RFID para detectar etiquetas colocadas em iténs enquanto percorre o armazém autonoma-

mente. Foi desenvolvido um sistema de planeamento de rota para uma Área de Reserva de dimensões

configuráveis. Este sistema é complementado pela utilização de OpenCV em conjunto com a câmera

frontal para fazer ajustes a meio do voo do drone consoante marcas visuais que são utilizadas como

pontos de referência. É elaborada uma proposta de implementação para este sistema e é desenvolvida

uma versão para prova de conceito.
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Introduction

1.1 Purpose and motivation

Recent developments in sensor technology have fueled a revolution in what is commonly named

the IoT. Inexpensive and advanced sensors coupled with sophisticated communication and air-borne

platforms (e.g. drones) have enabled the development of extremely versatile distributed sensing and

computing solutions. These systems cover a wide range of application domains, such as rapid re-

forestation 1, crop planting and treatment 2, and last-mile aerial deliveries 3, just to name a few. When

considering warehouse inventorying of available stock, it is a very repetitive and time-consuming process

that requires laborious and error-prone manual counting. This makes it increasingly desirable to have

flexible and accurate automation. Similarly to the application of drones for last-mile deliveries (which can

increase the agility of a delivery system when reaching the end-consumer), another possible application

of particular interest is the use of these technologies for near real-time warehouse inventorying, key in

modern-day supply chains. Knowing which products can be located where amidst the shelves allows for

faster dispatch and delivery, reduced time spent in shelves for products which leads to an increase in op-

eration efficiency. This increase in efficiency is complemented by additional services, such as next-day

delivery, adding value (and hence increasing profit margins) to the supply chain between producers and

consumers.

Warehouse management [1] is a prime candidate for advanced solutions using IoT technologies and

drones. Items can be catalogued with RFID tags, enabling a great deal of information to be stored and

thus enabling easy tracking and counting [2]. In addition, certain drone types are small enough to be

operated indoors, allowing for the automation of tasks traditionally performed by humans [3]. In terms of

inventorying large warehouses, drones can more easily travel to hard-to-reach areas (far away, high up,

across obstacles), simplifying the time-consuming, error-prone and potentially hazardous task of man-

ually checking the stock in a given warehouse [4]. Besides the essential storage system and individual

units (such as pallets or boxes), the personnel and their equipment, the warehouse is outfitted with an

1DroneSeed Rapid Reforestation Drones: https://www.droneseed.com/
2Detailed use of drones in agriculture: https://uavcoach.com/agricultural-drones/
3Amazon Prime Air: https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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up-to-date product database and specialized order-picking equipment. It is important to maintain a high

degree of item identification accuracy and to validate an item’s storage location inside the warehouse.

In particular, it is of interest to further explore how to improve the storing and order-picking process and

how to streamline updates to the database.

Automating this set of tasks is far from trivial, however. In general, a warehouse’s operation is

subdivided into four basic functions: receiving (items are unloaded and put away), storing (either in the

more economical Reserve Area or in the quicker and easier to access Forward Area), order-picking

(fulfillment of orders by item retrieval) and shipping (items are loaded and shipped) [5]. Warehouse

management optimization presupposes that these processes are properly defined [6].

After an item arrives, it is stored according to specifications which vary between warehouses. The

storage process then allows for the item to be found and collected during order-picking which assumes a

properly inventoried stock (e.g. the available quantity of an item and its current position must be known).

The human labour typically used is naturally prone to mistakes, particularly in this scenario in regards

to the storing of items and their order-picking. If the item is misplaced or in insufficient quantity, the

order-picking process will fail to meet the expected results. To guarantee an accurate reading of stock,

arrival and shipping operations may have to stop for a few days4.

To summarize, current drone technology can be leveraged to provide accurate, near real-time up-

dates to item counts and positions across a warehouse quickly while ensuring warehouse operations

continue in a safe and controlled manner. Further study on warehouse-oriented drone applications is an

interesting prospect to increase the efficiency of current supply chain management solutions.

1.2 Goals and contributions

The objective of this thesis is to propose solutions for the automation of the process of inventory

management in a warehouse.

The contributions for this goal are as follows:

• System prototype for automatic warehouse management based on a drone as a replacement for

human labour (in the identification, counting and validation of items across a warehouse). The

developed code throughout this project is hosted on Github [7];

• Automated use of RFID technology for cataloguing shelved items or item storage units;

• Indoor warehouse navigation based on a flexible virtual coordinates map, computer vision and

RFID technology.

4L’Oréal & the inventory drone Eyesee: https://youtu.be/HgNWoSFEwv4, 02 Jan 2020
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1.3 System overview

The proposed solution entails a drone-based computational platform that queries surrounding pas-

sive RFID tags to count and identify misplaced items, and to update the warehouse’s database. The

drone also navigates the warehouse’s indoor storage area in an efficient and autonomous fashion,

correcting its course whenever needed. The developed software consists of three components: The

inventorying component, tasked with updating the local database; the navigation component, tasked

with routing, assigning movement commands to the drone and correcting its course; the communica-

tions component, which provides a user interface, updates the warehouse database and allows for the

initialization of the warehouse inventorying software.

1.4 Document organization

This report is structured into four major sections. In section 2 (State of the Art) we describe the fol-

lowing aspects of the work. The use of drones for intralogistics and inventory management; the sensors

used in warehouses; the current methods for remotely updating a warehouse’s database; the current

navigation and positioning methods; the constraints (both of the physical world and legal boundaries);

related work on drone-based warehouse management solutions. In section 3 (System Architecture) we

describe a proposed system architecture for the use of drones for inventory management. Here, we fo-

cus on the gathered information in the State of the Art section; the analysis of the system requirements

according to the assumptions; the system architecture, in overview and specific software components.

Section 4 (Warehouse Inventorying System Implementation) is discusses the development process of

the project. Each subsection details the choice of materials, their use and implementation and the set-

backs experienced when working with them. In section 5 (Testing and Results) we present the results of

testing each part of the project, discuss them and consolidate the most important points of the proposed

work. Finally, section 6 (Conclusions) addresses the conclusions, presents the future prospects of this

field and sets out goals to build toward with this work as a base.
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State of the Art

This chapter describes the state of the art regarding drones for intralogistics. In section 2.1, we

survey different types of drones and discuss their suitability for inventory management. In section 2.2,

we survey sensors suitable for being drone-mounted and placed on warehouse inventory. In section

2.3, we survey inter-drone and drone-to-base communication technology. In section 2.4, we survey

algorithms and protocols used for the positioning of the drone. In section 2.5, we outline physical and

legal limitations of drone use for inventory management and describe related use cases in section 2.6.

Lastly, section 2.7 presents a summary of the topics described during this section. Throughout this

section, a list of assumptions about the warehouses and their inner workings can be defined in order to

fully encompass the system architecture to be developed in section 3.

2.1 Drones for Intralogistics

Unmanned Aerial Vehicle (UAV)s, usually referred to as drones, serve a variety of purposes and are

beginning to play an important role in logistics. Before diving into the technical aspects of the use of

drones in intralogistics, it is important to get a brief overview of existing drone types.

2.1.1 Drone Types

Drone form-factors range between Fixed-wing, Unmanned Helicopters, Multicopters, and Tilt-wing.1

Fixed-wing drones are analogous to regular aeroplanes as they share the same mechanism to produce

lift - forcing airflow around a fixed (but possibly with variable geometry) wing. They are generally very

efficient as they only require energy to move forward. Fixed-wing drones, however, cannot hover in one

spot but can instead maintain motion for extended periods of time, thus enabling them to cover large

distances. They tend to need ample berth to be launched (catapult or runway) and retrieved (parachute,

net or runway). Their characteristics are leveraged in their use, such as for aerial mapping/surveying

or even in the inspection of widespread infrastructures such as long pipelines, power lines or roads.

1Drone types: https://www.auav.com.au/articles/drone-types/, 27 Dec 2019
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Multicopters (or multi-rotor drones) are the most common type of drones, due to their compact nature,

ease of use and comparatively accessible price point. They have limited load capacity and speed,

making them reliable only for quick tasks and/or short operational ranges. Multicopters have the ability

to hover, but the energy cost to generate lift is high. Nevertheless, their affordability and reduced sizes

allow for applications in confined spaces and indoors. Their typical uses vary from photography to

video-based aerial inspection and even to small parcel delivery (e.g., Last Mile Delivery system offered

by Amazon’s Prime Air [8] greatly cuts costs for fuel and allows for both a much larger and quicker

coverage of delivery goals [9]). Unmanned helicopters, electrically or gas powered, can hover very

efficiently given their large single blade coupled with the tail rotor for heading control. Their relative large

size, complexity and inherent danger near people makes their use-case limited to particular situations,

mostly outdoors. Still, they find use in applications such as precision agriculture2 at a scale unfeasible

for smaller multicopters. Tilt-wing or Fixed-wing hybrid drones provide a compromise between hovering

and propeller-based movement. The technology that supports them is still complex and expensive, yet

they offer an interesting middle ground between multicopter and fixed-wing drones in terms of uses.

2.1.2 Drones for intralogistics operations

Considering the work’s objective in warehouse intralogistics, the multicopter represents the best

choice due to its size, ease of use and price point. They tend to lack payload capacity and are sensitive

to wind speed changes3. Still, these weaknesses are mitigated by the gradual development of drone

technology and the fact that most warehouses are indoors. Since multicopter drones are already being

used for last-mile aerial deliveries, they can also be used as automated order-pickers in warehouses.

Intralogistics-oriented drones can be used to carry out inventorying tasks with minimal disruption in

regular warehouse working conditions.

2.1.3 Synthesis

In summary, multicopter drones are the most adequate UAVs for warehouse settings as their char-

acteristics make them the best choice for tasks such as inventorying stock and light order-picking. Even

in outdoor settings, they are already used for light-weight last-mile deliveries. As the technology behind

multicopters matures, thus making them more efficient (allowing for larger payload and longer flights),

we expect their use to become even more widespread for a wider variety of supply chain management

tasks.

2R22-UV unmanned helicopter joins UAVOS fleet for precision agriculture:
https://www.therobotreport.com/r22-uv-unmanned-helicopter-uavos-precision-agriculture/, 27 Dec 2019

3Unmanned Aerial Vehicle in Logistics:
https://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/DHL\_TrendReport_UAV.pdf, 07 Dec
2019
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2.2 Warehouse Sensors

The three main sensing methods currently employed by drones for identifying, counting and checking

the state of an item in a warehouse are, barcode scanners, optical sensors, and RFID readers.

2.2.1 Barcode Scanners

Barcode readers consist of a light source, a lens and a light sensor translating for optical impulses

into electrical signals. They are capable of reading a printed barcode, decoding its data and sending

the data to a computer. This scanning technology has been used both manually and automatically for

some time as a reliable means to properly manage the supply chain [2]. This identification technology

is considered to have matured, as barcodes are simple to generate and read, expected to remain mini-

mal in terms of costs and currently operate as an everyday item. The referred accuracy values for this

method’s are greater than 99.99% [2]. Drones can be easily equipped with barcode scanners to perform

routine warehouse inventories. Barcode scanning has a few drawbacks, namely the fact that the scan-

ner requires the object to be inventoried to be in its line-of-sight. The scanner has no object-penetration

capability, and can therefore only scan the frontal layer of items in a shelf, for example. Due to the prop-

erties of the scanner, the drone would most likely need to traverse each shelf in both the horizontal and

vertical axes. This problem is present in both one-dimensional (linear) barcodes and two-dimensional

barcodes (such as QR codes).

2.2.2 Optical Sensors

Camera and video technology is currently used for a variety of warehouse applications, including in

support of drone movement and visual identification of stock.

Computer vision can be used on a live feed from the drone’s camera to supplement its movement

as a feedback system. By using reference points such as a coloured line along the floor or markings on

walls, the computer vision module can use them as references to correct the drone’s movement or to

send a warning if the drone moves off-course.

In some contexts, image recognition software is coupled with live recording for real-time identification

of warehouse items through one-dimensional barcodes [10]. This however, presents drawbacks similar

to the ones in barcode scanning as line-of-sight is once again a requirement and adequate lighting

conditions are needed to ensure accurate image recognition performance.

The leveraging of the drone’s optical sensors is an interesting option as it provides a strong link to the

real world for a drone system to interpret. The sensors’ dependence on proper lighting can be solved by

attaching a dedicated light source to the drone.
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2.2.3 RFID Sensors

RFID relies on electromagnetic waves in the radio frequency band. Functionally, an RFID system

consists of two separate parts: the tag and the reader.

The RFID tag, typically consisting of a microchip, is capable of storing information such as a product

identifier (like a serial number) and is connected to an antenna [2]. In order to maximize read range

and signal quality, tags should be placed according to the Size, Orientation, Angle, Placement (SOAP)

factors4. These tags can also be classified as ”passive” or ”active” (see Figure 2.1 for clarification).

Passive RFID tags respond to a specific frequency with information they have been previously

recorded with upon being energized via the process of electromagnetic coupling by the RFID reader.

They thus require a specific distance and preferably unobstructed line-of-sight to a reader to oper-

ate [11]. These tags are subdivided into the frequency bands they operate in, from Low Frequency

(125 kHz to 135 kHz), to High Frequency (around 13.56 MHz), to Ultra-High Frequency (between 868

MHz and 926MHz) even up to Microwaves (at 2.45 GHz and 5.8 GHz).

Active RFID tags are battery powered and can keep broadcasting their signal without stimulation from

the RFID reader. While passive RFID have standard specification regarding their frequency responses,

active tags are developed and employed in specific applications and are not yet standardized [12].

The second component of the system is the ”RFID Reader”, which is needed to interact with the

RFID tags. The reader can read or write to these RFID tags through a query signal it emits [2]. An

important consideration for this system is that the reader does not require a line-of-sight to the tags,

as the electromagnetic waves can penetrate (up to a specific frequency dependent depth) solid objects.

The antenna on a reader may operate in two different sections of the electromagnetic field that surrounds

it: the near-field and the far-field. The diameter of the antenna compared to the half the wavelength of

the radiation it emits impacts the expression used for defining the boundaries of each section of the

field. The near-field consists of the area surrounding the antenna up to one wavelength and is mostly

magnetic in its operation. Through inductive coupling, the antenna energizes the tags with a magnetic

field and decodes the disturbances the tag responses cause in it. The far-field consists of the field

beyond the near-field and has both magnetic and electric components. By using capacitative coupling,

the reader emits Radio Frequency energy to energize a tag, which uses the received energy to respond.

This response is referred to as backscatter5.

RFID readers can query the tags by signalling (or querying) one particular tag at a time or engaging

in bulk-reading where multiple tags are simultaneously queried. Both cases are subject to collisions.

The bulk reading method is particularly interesting from a logistical point of view, as its use with the

Shortcut Bissected Countdown Scheme (SBCS) protocol (as opposed to the typically used Query Tree

4RFID Tags: How to Get the Best Read Range: https://youtu.be/D-AOOoSFj78, 09 Dec 2019
5Understanding Near-Field and Far-Field Antennas:

https://www.atlasrfidstore.com/rfid-insider/near-field-vs-far-field-rfid-antennas, 21 Set 2020
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[13]), coupled with more than one antenna [14], has an accuracy comparable with that of the individual

barcode scanning method.

2.2.4 Synthesis

In conclusion, a low-maintenance and mature sensor system is an ideal solution for warehouse

sensorization. Considering the technologies above, RFID may provide the most interactive and interop-

erable sensor system.

Figure 2.1: Comparison between available warehouse sensors.

2.3 Warehouse Database Updates

While drones use sensors to accurately and consistently read the requested information from their

surroundings, they must also communicate with the warehouse’s database for updating the state of

the warehouse in terms of location and quantity of the items. We examine this drone-infrastructure

interaction, in two aspects, namely, transmitting information to the database; the processing of received

information at the database.

2.3.1 Transmitting Information

A simple communication solution would consist in manually transferring the drone information (after

it performed its routine inventorying) into the warehouse’s database system. A human could manually

connect the drone to an interface computer from which the warehouse database would be updated

subsequently setting the drone up for its next routine inventory check. This approach, however, does not

leverage the advantage of the drone’s coverage and range as it would require it to return to the recovery
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point after each routine inventory check. Furthermore, it does not guarantee the real-time update of

information, as by the time the drone completes its run, additional items may have left and/or entered

the warehouse.

Consequently, solutions to be considered would preferably be wireless to leverage the drone’s reach,

its reliability and opportunity for real-time communication. A typical commercial-grade drone communi-

cates with the its controller through radio frequencies in the 2.4 GHz and 5.8 GHz spectrum bands.6

Although a Wi-Fi-based solution might seem desirable, it is important to consider the spatial context of

the warehouse setting, as they vary in terms of size reaching hundreds of meters in length. It has been

shown [15] that the Wi-Fi protocol is ill-suited for indoors featuring several layers of obstacles between

a stationary control unit and a flying drone. Its theoretical maximum range and throughput are hindered

by the metallic interference of obstacles such as shelves and inventory as well as the issue of multi-path

signal propagation. A solution to consider would include the use of several Wi-Fi access points for com-

plete warehouse coverage. A computational module such as a Raspberry Pi with Wi-Fi capabilities can

be mounted on a drone for near real-time data transmission.

An RFID solution can also be considered, as described in the work by the Massachusetts Institute

of Technology’s RFly Project [11]. In this approach drones act as relays for incoming queries by a

centralized RFID reader and can act as hubs for the returning responses. This approach has several

advantages. First, the drone is not hindered by the increased weight of an RFID reader, instead having

mounted on it a relay (signal booster/repeater). Second, such a relay system greatly increases the

coverage of the query made by the RFID reader. Third, the system can be further developed into

a scalable version, allowing for several RFID readers to be placed in strategic locations, or a daisy-

chain of relay drones communicating with a centralized RFID reader. While conceptually elegant, this

approach still needs to address some technical challenges such as the backscatter of an RFID query on

a multitude of passive RFID tags. A technical approach to deal with these issues is described in [11].

2.3.2 Processing Information

A modern warehouse is typically equipped with a database system for a variety of operational func-

tions, including the integration of data collected by drones in a near real-time fashion, possibly using

the system’s wireless infrastructure. This is the case of the work described in [16] in which the authors

developed a proprietary software to interface with the drone7.

6The 2.4GHz band is used for the Wireless Local Area Network (LAN) channels for the 802.11b/g/n/ax protocols. The 5.8GHz
band allows for higher transmission speeds at the cost of range, making it less useful in the context of inventory management:
small amounts of information per item (like the product code) need to be transmitted over a significant distance.

7It is, however, unclear from this description if in this solution data is transferred in a wired or wireless fashion.
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2.4 Drone Navigation

We now look into alternative drone positioning systems that can support a drone’s navigation system

in an indoors facility.

2.4.1 Global Positioning System

Global Positioning System (GPS) is the most widespread positioning system worldwide. It relies on

a Global Navigation Satellite System capable of geolocating a user as long as at least 4 satellites are

in line-of-sight of the user. The system has global coverage and, can have an error between 30 and

500 centimeters 8. It is clear that GPS would only be viable for an outdoor storage facility, as a roofed

warehouse would not allow GPS to operate correctly due to the lack of line-of-sight between the drone

and the satellites.

2.4.2 Received Signal Strength Indicator

The Received Signal Strength Indicator (RSSI) value allows for the measurement of a radio signal’s

power [17] thus enabling the inference of a drone’s position by computing the signal strength between

multiple known signal sources and the drone. While RSSI values can be obtained from several different

established standards such as Wi-Fi, Bluetooth and RFID, they are relative and vary between chip man-

ufacturers. RSSI measurements are also sensitive to multi-path, fading, non-line-of-sight measurements

and diffraction [18]. Still, and despite some inherent problems using RSSI as a basis for positioning, it is

possible to use it in the context of the following communication infrastructure technologies:

• Wi-Fi – Triangulation of a drone’s position can be accomplished by using several Wi-Fi access

points acting as beacons or markers. The work described in [18], reports a 2.3 meter error for

line-of-sight scenarios and a 2.9 meter margin of error otherwise.

• Bluetooth – A similar triangulation approach can be use relying on Bluetooth. The work de-

scribed in [19] reports a location error of 1.7 meters based on a non-moving device, while the work

described in [20] reveals that this type of positioning system can work for triangulating a user’s

position, but for small and decluttered areas (6x8 square meter). It is thus safe to assume that for

larger areas with obstacles and drones moving relatively fast both horizontally and vertically, this

RSSI-based method would perform worse.

• RFID – Direct measurement of signal strength using RFID responses is also possible as shown

by the work described in [21]. By applying sophisticated mathematical techniques (e.g. Kalman

8GPS Accuracy: https://www.gps.gov/systems/gps/performance/accuracy/, 09 Dec 2019
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filtering) to the raw RSSI information, a relatively high accuracy (around 10 centimeter for the

absolute positioning error) at a 2 meter reader-tag distance can be achieved. This approach can

be improved by leveraging the tag’s read rate and response times.9

2.4.3 Ultra Wide Band pulse-based positioning

Ultra-Wide Band (UWB) positioning relies on the interval between transmitted and received pulses in

the 3 to 5GHz range. Reflections are easily filtered thus mitigating multi-path issues while not interfering

with other used Radio Frequency signal bands. In addition to achieving very low position errors (in

the order of the centimeters) it also does not require line-of-sight operation.10 Work in the literature [4]

report, for ranges of 6 meters, positioning errors below 15 and 60 centimeters for line-of-sight and non

line-of-sight scenarios, respectively. The project described in [4], based on a battery-powered backbone

of anchors for indoors positioning, achieves positioning errors below 20 centimeters for up to 75 meter

distances with a relatively low power consumption per anchor required (3.4 mA on stand-by and 26.6

mA when used for ranging). The system is scalable, as the maximum communication range grows

with the number of anchors installed across an expanded area. These features make the UWB anchor

positioning method very suited as a warehouse drone positioning system.

Figure 2.2: Comparison between available positioning systems.

9RSSI’s Role in RFID: https://blog.atlasrfidstore.com/rssi-role-rfid, 29 Dec 2019
10It should be noted that some materials offer better penetration for this radio frequency than others [22].
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2.4.4 Future Developments

We also note that 5G networks may provide an efficient indoors positioning system in the future. It

is documented to be able to achieve error margins of 2 to 3 cm respectively for Line-of-Sight and Ob-

structed Line-of-Sight through the use of beamforming technologies up to several metres [23]. However,

it is important to note that as a growing technology, it has not yet matured. This leads to prices being

high and a lot of devices being needed to cover the full breadth of the desired area of a warehouse.

2.4.5 Synthesis

Figure 2.2 summarizes the various positioning systems described above, revealing that the most

interesting positioning systems would be the GPS for outdoor settings whereas either UWB or RFID

RSSI would be the system of choice for indoor settings.

2.5 Constraints

As drones become increasingly available commercially and with enhanced performance in terms of

payload capacity and range, we will undoubtedly expect an increase in the constraints regarding their

use. We now address these constraints, as recently, regulations have been put in place to control their

use in public and private spaces, along with indoors and outdoors-specific rules. Still, and regardless

of current regulations, drones should be minimally safe to operate around humans. Besides the weight

constraints seen above, propeller guards should also be accounted for to avoid serious injuries, specially

when dealing with larger drones with more powerful propellers.

2.5.1 Physical limitations

Most notably, battery-life (and hence range) and payload capacity are the key features that limit a

drone’s operation and use. [24]. A practical test run described in [25] measured the cost of vertical

movement such as the drone’s lift against horizontal traversal finding the earlier to be substantially most

costly. When contextualized for the specific purpose of warehouse inventorying, drones should limit their

vertical lift when strictly necessary and rely on horizontal movement to traverse each shelf.

When using specific technologies for warehouse inventorying, drones can also rely on or benefit

greatly from line-of-sight. The case for cluttered indoor spaces is usually a worst-case scenario. As

discussed previously, Wi-Fi solutions will have their range and reliability hampered by the sheer amount

of obstacles in a warehouse. Line-of-sight is also a major issue in some positioning and navigation

methods, thus becoming an important factor to consider when developing a system architecture.
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It is clear that current solutions always need to account for the physical scale of a project. Ware-

houses are typically larger than the average Access Point’s range. Similarly, RFID solutions have to deal

with the signal’s penetration of objects reducing their effective range. Some positioning technologies like

GPS can only be used in an outdoors setting, and since most warehouses are interior spaces, this has

prompted the development of alternative solutions. These alternatives act on a local scale, come with

their own infrastructure needs and do not exhibit the elegance of the easy to use and widespread GPS

solution for (outdoors) global positioning. Both shelves and the items stored therein are not standard-

ized, which adds a layer of complexity to navigation and sensor components of the drones.

2.5.2 Legal issues

Legal issues are a growing concern regarding the increasing ubiquity of drones. National aviation

authorities tend to regulate the operation of drones within their borders11 and the level of scrutiny can

vary significantly between countries. The main concerns being public safety and the use of controlled

commercial airspace. For example, in the United States users must obtain a Certificate of Authorization

to operate a drone in national airspace.12 According to the Federal Aviation Administration, drones must

also be controlled by a user with direct line-of-sight to spot possible dangers. Indoor airspaces, however,

are not public and therefore not regulated by the Federal Aviation Administration. It is unclear whether

any regulation is in place concerning indoor airspace. Similarly, the United Kingdom’s Civil Aviation

Authority13 determined that a drone or UAV operating within a closed-off airspace without possibility of

”escaping” is of no danger to other aircraft operating in national airspace and therefore is not subject to

any regulation.

Common sense dictates that small enclosed spaces are potentially more dangerous to humans. Yet,

there seems to not be any regulations in place. Federal Aviation Administration and Civil Aviation Author-

ity do not consider interiors to be navigable airspace, thus paving the way for a commercial application of

drones in warehouses. It raises however concerns over the responsibility for accidents related to the use

of drones indoors (in particular as typically these are workspaces) and to the possible future regulations

yet to be applied over drones and their dimensions. Until a general level of regulation is accepted world-

wide, drones for warehouse use will only be limited in their role in outdoors situations. In addition, if the

drone is to be equipped with a camera, common workplace surveillance practices should be enforced.

These also vary from country to country. Generally, employees should be aware of the drone’s filming

capabilities and it should be treated as a closed-circuit television system.

11Master List of Drone Laws: https://uavcoach.com/drone-laws/, 02 Jan 2020
12Federal Aviation Administration – Register Your Drone:
https://www.faa.gov/uas/getting_started/register_drone/, 09 Dec 2019
13Civil Aviation Authority – Recreational drone flights:
https://www.caa.co.uk/Consumers/Unmanned-aircraft/Recreational-drones/Recreational-drone-flights/, 09 Dec

2019

18

https://uavcoach.com/drone-laws/
https://www.faa.gov/uas/getting_started/register_drone/
https://www.caa.co.uk/Consumers/Unmanned-aircraft/Recreational-drones/Recreational-drone-flights/


2.6 Related Work

The works considered to be the most relevant found in the literature are detailed below, both on the

academic and commercially available level.

2.6.1 RFIDRead and drone-mounted inventorying

Bae, Sung Moon, et al, on ”Development of Inventory Checking System Based on UAV and RFID in

Open Storage Yard” [16] focus on inventorying and identifying misplaced items in an open-air storage

yard. RFID tags carrying information like item count and item location placed on the stock are scanned

by a remote-controlled drone carrying a portable Personal Digital Assistant with RFID reading function-

alities. The Personal Digital Assistant collects data and the developed software can read tags, save tag

information in a file, or clear tag data. Afterwards, the collected data is transferred and compared with

the storage yard’s database, with results matching four status outcomes: normal item, misplaced item,

missing item and unregistered item. The system is capable of reducing errors and inconsistencies in

the storage yard’s inventory checking server by providing accurate readings with reduced labour and

equipment costs. However, the drone still requires someone to control it. The storage yard is not roofed,

therefore the drone can be easily located with GPS. This added challenge would need to be tackled if

the system were to work indoors.

2.6.2 Indoor UWB localization for drones

Macoir, Nicola, et al, on ”UWB Localization with Battery-Powered Wireless Backbone for Drone-

Based Inventory Management” [4] showcase the feasibility of accurate indoors localization of autonomous

inventorying drones utilizing Ultra Wide Band (UWB) anchor nodes focused on lowering deployment

costs. The authors propose a new UWB Medium Access Control protocol that leads to large energy

savings. The protocol itself uses Time-Division Multiple Access as the channel access method. This

access method divides time into repeating superframes, each one containing slots which in turn relate

to an action to be taken. The devices in range of the drone must be synchronized. It initiates the

synchronization process with a sub-Ghz beacon message. All the anchor nodes receiving the beacon

(containing the anchor nodes to be ranged) know when to activate their UWB radio, or otherwise sleep.

After synchronizing, a polling message is broadcast to nearby anchor nodes. Then, each UWB radio

is sequentially ranged. After the triangulation is finished, the report is forwarded from the drone to a

Real-time Localization System with another sub-Ghz message, which calculates the drone’s position.

The localization system reports a 5cm accuracy error margin. This requires errors in time-of-arrival

in the sub-nanosecond range. For this, a three way message exchange (using Symmetric Double-Sided

Two-Way Ranging [26]) is done to each anchor node. A single polling message is used to reduce the
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number of messages per anchor node from 3n to 1+2n, wherein ”n” refers to the number of anchors.

The system has been tested in a warehouse environment mock-up and an indoor running track with

success. Yet, the UWB solution requires each anchor to be powered and an existing communication

infrastructure. A next step to be considered would be the autonomous movement of the drone, given the

level of accuracy of the localization method.

2.6.3 RFly and drone RFID relays

Ma, Yunfei, Nicholas Selby, and Fadel Adib, in their work entitled ”Drone relays for battery-free net-

works” [11], propose a system that seamlessly integrates with existing RFID infrastructures to bolster

the effective range of its full communication capabilities to over 50m and a localization algorithm with an

accuracy error averaging 19cm.

To do so, the drone carries a custom Printed Circuit Board to act as the relay between a centralized

RFID reader and the passive tags. The relay is bidirectionally full-duplex to support backscatter com-

munication and allows for the required four wireless transmissions at the same time: the RFID query

(received by the drone relay), the relayed RFID query (received by the RFID tags), the RFID tag re-

sponse (received by the drone relay) and the RFID tag relayed response (received by the RFID reader).

The relay also preserves the timing of the relayed transmissions to ensure the localization system func-

tions accordingly. The relay’s amplification of the received signal would otherwise lead to the same

signal being picked up by the antenna on the drone relay itself. This self-interference is solved by hav-

ing guard-bands generated to separate the reader and the tags’ frequency responses in the frequency

domain.

To localize the drone, the challenges of phase entanglement and multipath are then addressed. The

phase entanglement is solved by embedding an RFID tag into the relay itself, which serves a purpose of

normalization to eliminate the impact of the half-link between the RFID reader and the relay. The drone

is located by applying standard array equations since the drone’s movement emulates an antenna array.

”Antenna arrays exploit small phase changes due to distance in order to localize an object of interest”.

A heatmap of the drone’s possible positions can be obtained particularly through non-linear projections.

Accounting for multipath (represented by long streaks instead of a small but tall peak in the heatmap),

the highest peak corresponding to the drone’s position is chosen. This work details extensively the

requirements of operating an inventory system completely dependent of RFID and achieves its goal

of creating a method of inventorying stock reliably and locating the drone itself with a high degree of

accuracy.
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2.6.4 PINC AIR

PINC AIR’s warehouse drones for real-time inventory tracking by air [27] are an interesting com-

mercially available example of an implementation of drones for inventory management. The available

information on the technical specifications of the system is limited, but the drone is advertised to operate

autonomously, avoiding obstacles in its path and using ”optical, RFID and barcode sensor capabilities,

to significantly improve the operational effectiveness and efficiency of warehouse inventory cycle count”.

According to the given information, the drone is capable of automatically performing inventory checks.

It can determine the location of an item if needed and pinpoint its location. This system is versatile, but

little information can be gleamed from its behaviour.

2.6.5 Synthesis

The focus of these works lies on the attempt to streamline warehouse item counting and routine

inventorying, as well as developing methods for accurate localization of a drone in a challenging indoor

environment (Figure 2.3). RFID for warewhouse sensorization has been used to great effect in the

literature. Both UWB or RFID-based solutions seem viable for indoor drone positioning.

Figure 2.3: Comparison between related works in terms of relevancy to the report.

2.7 Summary

We conclude the section on State of the Art by presenting the most relevant points made on the

topics of drones for intralogistics, warehouse sensors, warehouse database updates, drone navigation,
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constraints and related work.

Multicopter drones are viable candidates for both order-picking and inventorying tasks, the latter case

more so, due to their small form-factor, their capacity to hover and their ease of operation.

Currently, barcodes and RFID tags (particularly passive tags) coexist in the warehouse environment,

but generally RFID tags are more versatile due to not requiring line-of-sight, albeit being slightly more

expensive. Active RFID tags boast much greater ranges but require a battery to be powered and are

comparatively much more expensive. Optical sensors in current times are accurate but require specific

lighting conditions and line-of-sight to the product identifier.

Drones can be expected to communicate with the warehouse’s database by either using existing Wi-

Fi infrastructure to send data in near real-time or by acting as a relay to a centralized RFID reader that

broadcasts a query, greatly extending its range. Naturally, a drone can also be picked up and manually

connected to a computer to transfer its data, it this is inadvisable due to human intervention and the

partial loss of near real-time updates.

The main positioning system evaluated for exclusive outdoors-use was GPS, typically used in multi-

copters. However, as most warehouses are indoors other solutions arise. RSSI can be used to measure

the drone’s position through the signal strength received from nearby anchors. These can be Wi-Fi Ac-

cess Points, Bluetooth devices, or RFID tags. The cheaper passive RFID tags allow for a much greater

quantity of anchors to be placed for the drone to get a reading from, which in turn (and after filtering)

allows for much lower error margins in measuring the drone’s position when compared to Wi-Fi and

Bluetooth devices. A UWB anchor system is also a strong contender for an indoors positioning system,

as it boasts small ranging errors at much greater distances and does not require line-of-sight, all of this

at a low energy cost. The system is also robust against multipath issues. When compared to the other

solutions, it is expensive. In the future, it is expected for 5G to be able to produce more robust, accurate

and efficient indoor positioning results.

There are several physical limitations to account for when considering the viability of drones for

intralogistics and inventory management. The equipment mounted on a drone can severely hinder its

already short flight time. It is also important to consider the cost of lift versus horizontal traversal, the

latter being less energy-consuming. Drones should be kept at a safe distance of the shelves and should

not pose any danger to the personnel working on-site, making propeller guards a necessity. Whichever

positioning system is chosen must account for the unstandardized nature of different warehouses. In

legal terms, drones are free to operate in enclosed spaces, yet the personnel should be warned if a

drone has filming capabilities due to privacy protection. The personnel should also have training to

handle the drone and to avoid potential accidents.

The proposition described in this report takes into account previous academic studies and current

commercial ventures that have tackled the challenge of warehouse inventory management with drones.
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Architecture

A solution for the drone-based inventory management challenge can begin to take shape. This sec-

tion will, given the assumptions below (section 3.1) and the analysis of the system’s requirements (3.2),

present an overview of the system and its functionalities (section 3.3). The system is subdivided into

subsystems in section 3.4. Afterwards each system component is further explored and the requirements

for each part of the drone inventory management system (section 3.5) is detailed. A brief summary of

the design will be presented in section 3.6.

3.1 Assumptions

Listed below are a series of assumptions made about the environment in which the inventory man-

agement system will operate:

• Drone Characteristics: The drone is a remote-controlled multicopter capable of sustaining verti-

cal and horizontal movement and carrying the required computational platform for the system. It

is charged before being used to maximize operational time. It is only turned on when about to

be launched, to stay at a low temperature and preserve battery. The drone is prepared according

to the safety and security measures mentioned in Section 2.5.1 and 2.5.2. After completing its

mission, the drone should safely return to its starting position.

• Warehouse Physical Infrastructure: The warehouse will be an indoor facility, with a configurable

but well defined orthogonal layout for the drone to navigate. The warehouse will be set up ac-

cording to plausible organization methods, which includes a dedicated Forward Area and Reserve

Area, the latter of which the drone will operate in. The items can be stored individually or in a

storage unit such as a pallet or box.

• Warehouse Telecommunications Infrastructure: The warehouse will have a database that the

inventory management system can access and update and a control center from where it is op-

erated. The warehouse is outfitted with a Wi-Fi network and is employing specialized workers
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to manage the control center. If there is no networking inside the warehouse, the information is

stored in a local database file on the computational platform.

• Item Identification: The items stored within this area of the warehouse must have a reusable

digital identification method in order to reduce inventorying costs. The item identification method

contains information regarding each item’s position in the warehouse. This positioning information

must be defined according to the warehouse positioning system that will be developed. The item’s

location is determined by the item position information written to the tag once the item is stored.

• Warehouse Navigation: The warehouse’s corridors should be kept unimpeded and its shelves

organized in such a way that allows for a consistent placement of item identification tags.

3.2 Requirement Analysis

3.2.1 Logistics

The inventorying system’s behaviour will be constrained by the environment it operates in. A ware-

house Reserve Area typically consists of rack shelves separated by aisles wide enough for a forklift to

drive in. Each shelf is stocked with items in each of its levels. A real world example is translated into a

simplified diagram (Figure 3.1) to illustrate the operational area of the inventorying system in a standard

work environment.

The warehouse can be interpreted as a series of corridors between shelves. The shelves themselves

are all oriented towards the same direction and each shelf can have several levels. Each level can

contain several items stocked along its face. Listed below are a series of requirements the inventorying

system should fulfill relating to its hardware and software functionalities, and to the way they interact with

the system’s surroundings.

3.2.2 Functionalities

The computational platform needs to be able to meet usability requirements and perform several

tasks in order to function as an inventorying system:

• The system must be able to scan item identification tags located throughout the warehouse Re-

serve Area. These can be placed on an item or item storage unit and may be in line-of-sight, or

obstructed by either another item, or farther inwards on the shelf it was stored in;

• The item identification tags should be affordable in bulk and ideally reusable, and their placement

on the item (or item storage unit) should be simple;
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Figure 3.1: Translation of a warehouse Reserve Area into a simplified diagram. The inventorying system operates
along the aisles formed by the rack shelf layout (S1 through S12).

• Through the previous requirements, the system should be able to keep the warehouse inventory

updated regularly;

• The system should identify misplaced items during the inventorying process;

• The system should function without interrupting the other logistics operations taking place inside

the warehouse’s Reserve Area;

• The system should require the least amount of human intervention possible to be handled.

• The system should be configurable for different Reserve Area layouts;

• The connection between the drone and the computational platform should have the minimum

amount of downtime possible;

• The drone should unambiguously execute the orders it receives from the computational platform;
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• The system should be able to correct the drone’s course in the event of an unexpected error in its

trajectory or behaviour, relying not only on the information it is receiving from the drone but also

from the world around it.

3.2.3 Generic

The software to be developed must be flexible and adaptable.

• The software should be developed with an emphasis on relatively short response times in its

communications with the drone and while processing items, in the seconds range;

• The software should access and update a local database file as well as updating the warehouse

database, in case of losing its connection to the warehouse network;

• The communication with the drone should rely on a communications protocol with a degree of

loss-tolerance;

• The route should be calculated prior to launch to avoid delays while the drone is airborne;

• The software should be flexible and route an orthogonal path given a warehouse layout of any size,

adjusting the movement of the drone as necessary.

• A user interface should be available to configure and launch the system.

3.3 Functional description

Once configured according to the warehouse’s Reserve Area dimensions, the smart drone can be set

on its starting position and launched through the application by an operator. The smart drone proceeds

to hover and begins to autonomously move according to a pre-calculated route through the shelves. This

route is optimized so that the smart drone can cover the Reserve Area shelves with the least amount

of movement possible. The drone moves from node to node (a node representing one of a series of

intermediate points along an aisle) in the horizontal axis, only moving up to the next shelf level once

the entire previous shelf level of the Reserve Area has been traversed. The smart drone continues

this process until all shelf levels have been traversed. During this period, the smart drone scans the

shelves immediately next to it along its path for items. The item information it senses is stored locally. If

a connection to the warehouse database endpoint is available, it will attempt to update the warehouse

database through Wi-Fi. If the drone happens to stray from its original course, it corrects itself either

dynamically or once it reaches either a checkpoint in its path. After it finishes moving to the last node

on the highest shelf level, it returns to its starting position by flying above the maximum shelf level and
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moving directly towards its starting position’s horizontal coordinates. After reaching it, the drone lands.

It can then be retrieved by the operator. The operator can use the application interface to access and

manage the information in the local database, configure a perimeter for the drone to operate within,

or change the drone’s movement configuration, such as the warehouse’s dimensions multiplier or the

drone’s air speed.

The system overview in Figure 3.2 identifies the interactions between the drone carrying the compu-

tational platform and the warehouse according to the stipulations made previously.

Figure 3.2: Three-dimensional system overview. The interactions between the computational platform and the
warehouse sensor system and network are shown. This overview considers a checkpoint system to
help the drone navigate the warehouse.

3.4 System Architecture

The proposed system can be schematized as a combination of subsystems: The smart drone con-

cept encompasses both the airborne multicopter and the computational platform that provides it with the

indoor navigation solution, the required inventorying functionalities and the transport and aggregation

of necessary information between each subsystem. Hence, the application built on the computational
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platform forms the backbone for the smart drone. It connects to the warehouse database and control

center through the computational platform’s hardware. The application itself manages its connection to

the drone and to the warehouse endpoint, along with parsing the information received from the Ware-

house Sensors and the Item Sensors. The basic system layout can be seen in Figure 3.3. Its sensing

and navigation will utilize RFID technology (a reader and a set of programmable tags).

Figure 3.3: System layout. The smart drone performs item sensing and navigates the warehouse.

The computational system can be divided into four main subsystems. The warehouse sensor system,

the drone communications system, the locally stored database and the navigation sensor system. The

application will consist respectively of the inventorying component, the communications component and

the navigation component. They are initialized by the application and access a centralized local database

for shared information.

The components are pictured in Figure 3.4. The communications component serves as a bridge

between the smart drone, its sensors and the warehouse database and control center. The inventorying

component receives item scans and updates the local database accordingly. The navigation component

calculates the route for the drone to take, and senses the environment around it to ensure the drone

acting accordingly. The local storage is initialized by the communications component and stores two

tables: a Node Table to be accessed by the navigation component, and an Item Table to be updated by

the inventorying component.

3.5 System Components

Considering the complexity of the requirements, it is important to further specify the architecture of

each subsystem and how it is connected as a whole. The inventory management system can be divided

(according to the previous subsystems mentioned in the requirement analysis) into four main software
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Figure 3.4: System component introduction: Both the navigation component and the inventorying component utilize
the Smart Drone’s sensors to gather information. The communications component relays this informa-
tion to the warehouse database and control center.

components: the inventorying component, the navigation component, the communications com-

ponent and the database component.

3.5.1 Inventorying Component

Firstly, the objective of the inventorying component (Figure 3.5) is to query the RFID tags placed

on the storage units. The Inventorying Algorithm is a subroutine of the main logic operation focused

on processing query responses from item tags. Once an RFID tag responds to the query, the item’s

Electronic Product Code (EPC), count and position are acquired. This information was previously stored

in the tag’s Rewritable User Memory. To identify misplaced items, the tag’s expected position in the

Item Coordinates Map is checked against its current coordinate set parsed from the tag’s response.

This will indicate if the item was misplaced or not. The local database is then updated with the retrieved

information, along with the Flag attribute set to 1 to identify a misplacement. The local database (further

described in Section 3.5.4) is a staging area the communications component accesses to update the

warehouse database.

Several antennas may be required for the querying process, along with a robust protocol such as
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Figure 3.5: Software architecture of the inventorying component.

SBCS. The purpose of these protocols is to minimize the collisions between responses in the medium

access. Collisions between the passive RFID tag backscatter signals require the reader to perform

more query cycles, which spends substantially more energy and time, to receive every backscatter

signal. Consequently, by applying this protocol the reader is less wasteful, quicker and more accurate

when querying the tags in its vicinity.

Warehouse Sensor requirements: The warehouse sensors to be used are the passive RFID tags

and a drone-mounted reader. The tags are inexpensive, reliable and widespread, making the solution

versatile and easily set up in warehouses. The fact that line-of-sight is not required for this sensor

technology makes it much more attractive than its alternatives, as warehouses are considered to be

cluttered environments. Queries may also be performed whilst not immediately adjacent to an item,

which further pushes RFID as the Warehouse Sensor subsystem of choice.

• RF-ID sensor system – Ideally, the RFID sensor system should be EPC Class 1 Gen 2 [28].

• RF-ID tags – The tags should be placed on surfaces that are not metallic, to reduce interference

with the RFID signals. The tags chosen should have user memory programmed to allow for the

desired configuration:

– EPC;

– Numeric indicator for the item’s quantity in the storage unit;

– Item Coordinates for the item’s planned storage position.

• RF-ID reader – The RFID reader should be capable of both Signalling and Bulk Reading RFID

query methods, in the 860 Mhz to 960 Mhz range (UHF). It is an established standard with a range

upwards of 2 metres. It supports several readers and the Cycle Redundancy Check (CRC-5-EPC)

error detection method is implemented1.
1Specification for RFID Air Interface:

https://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf, 02 Jan 2020
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3.5.2 Navigation Component

The simplification of the layout of a warehouse (seen in Figure 3.1) is used to create a Virtual

Coordinates Map to be used as a basic navigation method. By developing the Virtual Coordinates Map

as a graph where the nodes are the intersections between aisles and the links are the aisles between

shelves, we can progress towards developing a routing algorithm. The goal of such a routing algorithm

should be to cover all the aisles with the least amount of movement possible. To do so, the warehouse’s

Reserve Area can be divided into its three basic measurements: its width (number of aisles, along an

x-axis), its length (aisle depth, along a y-axis), and its height (number of shelf levels, along a z-axis).

The routing process itself is an application of Dijkstra’s algorithm for the shortest path [29] between

the drone’s current position and each of the map’s unvisited nodes, keeping with the predetermined

orientation of the shelves.The cost of each link between two nodes should be defined as the distance

between them. The navigation component uses the Virtual Coordinates Map has a basis for its route.

The Navigation Algorithm receives feedback from the physical world, which it uses to calculate its next

movement (by being compared with the current route) or correct its current trajectory. This information

is passed on to the Movement Control, which sends the commands to the drone.

The navigation component can be taken in two directions: the first one is dependent on bulk reading

capabilities to obtain accurate RSSI reading from the surrounding tags in order to triangulate the drone’s

position. The second approach simply uses the RFID node tags as a confirmation mechanism for

an otherwise blind navigation system reliant on the route determined by the navigation component. To

complement the second option, the drone’s built-in camera can be leveraged to perceive its surroundings

and make adjustments to its course accordingly.

Figure 3.6: Software architecture of the navigation component.

RSSI Value Triangulation Approach: The navigation component (Figure 3.8) should take into ac-

count two different perspectives: the Virtual Coordinates Map and the Path Marker and Path Bound-

ary system. As seen on Figure 3.8, the RFID reader should identify the path markers through signalling
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and use the RSSI value from the nearest ones to compute its definitive position. The navigation algo-

rithm triangulates the drone’s position by way of the nearest path markers’ RSSI values (polled according

the Virtual Coordinates Map and the drone’s current position), the drone’s previous position and the dis-

tance moved during the previous movement of the drone. An example of the triangulation method is

presented by Figure 3.7 with three path markers in use. Two main actions are performed:

• All three position indicators are combined to obtain a normalized drone position reading.

• The virtual coordinates map and the normalized drone position reading are used to compute a new

route. The current route should be compared with the newly computed route. If a large enough

deviation between them exists or if the drone is stationary for a long time (indicating an issue with

the current route), the update to the route will be prompted.

Figure 3.7: Top-down view of the RSSI Triangulation approach solution in an example configuration. Combination
of the Virtual Coordinates Map (set of virtual coordinates), the drone’s computed position by way of
RSSI triangulation and the drone’s previous movement.

Once the route is set, the drone should be instructed to move through the Movement Control accord-

ing to the virtual coordinates of the next path marker and its current position. The drone’s near constant

speed should provide motion feedback to the navigation algorithm to be accounted for the normalization

of the drone’s position. The RSSI boundary set by the path boundaries should be respected when the

drone moves. Its identification should be done by bulk reading the path boundary tags. The drone’s

movement control should stop it if several RSSI readings indicate that it is approaching a boundary.

RSSI Triangulation Requirements: For this approach, these tags should be divided into two sets to

serve as Path Markers and Path Boundaries. The path markers should be programmed according
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Figure 3.8: RSSI Triangulation approach to the software architecture of the navigation component.

with a node on the Virtual Coordinates Map. These will act as anchors for the drone to compute its

distance to, through RSSI. The path boundaries can be placed onto surfaces where the drone should

not go near, such as shelves. The drone should stop moving in the direction of the boundaries when a

certain RSSI threshold is reached.

• The RFID Reader requires bulk reading functionalities;

• Similarly to the RFID requirements above, the RFID tags should be placed on non-metallic mate-

rials to avoid interference with the querying process;

• The tags should be placed without obstructions to maximize the RSSI accuracy;

• The tags should be placed with a consistent interval between them proportional to the size of each

row of shelves, in order to increase redundancy and the accuracy of the drone positioning system.

Hybrid Checkpoint Approach: This option (Figure 3.10) involves a simpler process for the navigation

component. By following a route pre-calculated by the Virtual Coordinates Map, the drone inventorying

system does not require a constant and reliable connection to the node tags surrounding it. The drone

moves through the aisle exclusively referring to the Virtual Coordinates Map for its Movement Control

functions.

By using signaling instead of bulk reading, checkpoints have to be planned in advance to correct any

eventual errors in the drone’s trajectory. Once the drone reaches the end of an aisle, two subroutines

begin. The first uses the Camera Positioning System to interpret the position of the drone compared to

a Visual Marker placed on the wall at the end of the aisle as soon as it reaches the corresponding node.

This subroutine indicates what movements should be made so that the visual marker is aligned with the

center of the camera video output. The Movement Control corrects the drone’s position accordingly. this

can be seen in Figure 3.9. The corrections made to the drone’s position are followed by the second
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Figure 3.9: Top-down view of the Hybrid Checkpoint approach solution in an example configuration. Combina-
tion of the Virtual Coordinates Map (set of virtual coordinates) and the Camera Positioning System,
complemented by a simple RFID position validation.

subroutine: a periodic check to the Node Tag buffer. If the expected coordinates are identified, the

system considers itself to be ready to proceed with its movement to the next node.

Figure 3.10: Hybrid Checkpoint approach to the software architecture of the navigation component.

Hybrid Checkpoint Requirements: For this approach, a single set of RFID tags will serve as node

tags and complement a brightly coloured visual marker. The node tags should be placed on the wall

at the ends of an aisle. The node tags each contain a set of two values for the horizontal coordinates

where they are to be placed.
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• The drone camera feed must be parsed correctly in order to obtain an accurate reading of the

visual marker. This implies the use of existing computer vision libraries to process the incoming

video transmission;

• As on the first approach, the RFID tags should be placed on non-metallic objects;

• Each tag should be placed near or on the respective visual marker.

3.5.3 Communications Component

The communications component’s (Figure 3.11) task is to interact with the warehouse database and

control center once started. The computational platform can be started and stopped in this component.

While connected by Wi-Fi, it should update the warehouse database periodically with the local database

and the drone’s position through a reliable transport layer protocol such as Transmission Control Protocol

(TCP). The main logic is listening for function calls by the control center. If it is stopped, the drone will

cease its current routine and attempt to land.

Figure 3.11: Software architecture of the communications component.

Warehouse Database Update requirements: The drone-mounted computational platform based on

a single board computer, once connected to the RFID reader and the Wi-Fi network of the warehouse,

should be capable of performing the following tasks of algorithmic nature:

• Counting items by having the RFID reader query its surroundings (part of the inventorying com-

ponent);

• Identifying misplaced items by comparing the tag responses with drone’s position (part of the

inventorying component);
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• Updating the warehouse database whenever a Wi-Fi connection is available (part of the com-

munications component);

• Knowing the drone’s position by evaluating its surroundings;

• Traversing a warehouse with varying layouts and dimensions;

• Identifying path issues during its automated inventorying, aborting the process if necessary (part

of the navigation component);

3.5.4 Local Database

Finally, the database component, schematized in Figure 4.11, contains the information required for

the drone to navigate the warehouse (Node Table) and a local database (Item Table) to keep the infor-

mation retrieved from the scanned items. Item tag information is stored in the following format:

• EPC: The tag’s unique identifier.

• Item count: The amount of items in the item container.

• x-axis position, y-axis position, z-axis position: The node tag position (x,y) closest to the item;

the shelf level (z) it is on.

• Flag: The tag’s misplacement flag. The tag is marked as a misplaced item if its flag value is 1.

Node tag information is stored in the following format:

• EPC: The tag’s unique identifier.

• x-axis position, y-axis position: The node tag position (x,y).

The database-stored node tags are used to by the navigation component to automatically plot the

drone’s route, while the item tags will be stored throughout the drone’s traversal of the warehouse.

Local Database requirements: The local database serves as a staging area for up-to-date item infor-

mation to be sent to the warehouse database. The data should be persistent during the drone operation

and easily cleared/overwritten.

3.6 Summary

The stipulated assumptions and requirements lead to a system architecture design based on a com-

putational platform consisting of four software components. The inventorying component is tasked with
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Figure 3.12: Local Database

querying the item tags to obtain the item data and flagging misplacements. The navigation component

can be developed through two different approaches: in the RSSI Triangulation approach, the smart

drone queries the path markers and path boundaries to validate the its movements and controls the

traversal of the computed route; in the Hybrid Checkpoint approach, the drone camera is leveraged to,

through the use of computer vision, provide adjustments to the drone’s position at the end of each aisle

it traverses. The communications component collects the inventorying component’s Local Database to

update the warehouse database and the navigation component’s Drone Position to be reported to the

control center. The locally stored database component keeps a record of the nodes to be traversed and

an updated items table with near real-time information. The four components come together to form the

software part of the computational platform. They are designed to operate on a single board computer.

39



40



4
Warehouse Inventorying System

Implementation

Contents

4.1 General Design Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 System Design - Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 System Design - Application Development . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

41



42



4.1 General Design Options

The system architecture that was presented requires several hardware and software components

that will be listed below. The drafted system architecture combined with the equipment selected for the

task leads to a proposition for a proof-of-concept that is more constrained in scope than the original

architecture. The outline of the system includes:

• The Smart Drone: composed of the proprietary Drone, the proprietary RFID Reader, and the

Computational Platform (built upon an Single Board Computer (Single Board Computer (SBC)))

connected to its subsequent components;

• RFID tags: identification tags for the items stored in the warehouse and the nodes which the drone

uses to navigate it;

• Visual markers: a series of bright red 10cm cardboard squares to aid in navigation;

• Network: the parameters for the connections between the SBC and the drone, and between the

SBC and the warehouse database access point;

• Software architecture: the logic and algorithms described in Chapter 3.

Each design option will be detailed throughout this chapter and lead to the finalized system assembly

can be schematized as the following block diagram (Figure 4.1):

Figure 4.1: System Block Diagram

4.1.1 Smart Drone

4.1.1.A Drone

Ideally, the drone would be a multicopter, both programmable and capable of carrying a load of

around 300g (accounting for the Single Board Computer and the RFID Reader). However, a compromise

was needed since such a drone was not commercially available at the time.
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The selected drone is a DJI Ryze Tello EDU, seen in Figure 4.2. It is a multicopter, programmable

in Python, that weighs 80g. The choice was based on the fact that the programming of the drone

is far more important to demonstrate this work’s proof-of-concept than its weight carrying capacity. It

was selected with the prospect that drones will become more battery efficient and powerful in terms

of how much weight they can carry, while retaining the ability to be programmed with their proprietary

Software Development Kit (SDK). The information presented on this topic is found on Tello’s specification

documents, namely the User Manual1, and was also derived from experimentation with the drone (further

detailed in the Limitations section).

The drone is controlled by the SDK through a 2.4 GHz 802.11n Wi-Fi connection. Therefore, its

connection to the computational platform will utilize the SBC’s main network card. This implies the

need for one additional network card in the form of a Universal Serial Bus (USB) Wi-Fi adapter to

make the connection to the warehouse database. The drone does not have a GPS guiding system and

is otherwise controlled through its Bluetooth connection to the TELLO proprietary Android Operating

System application or Wi-Fi through the SDK. It is important to mention the drone is equipped with a

front-facing 720p camera, which can be used as an additional method of navigation. The functionality of

the Python 2 TELLO SDK will be detailed further in the System Design - Software section (Section 4.3).

Given a warehouse layout, the drone is expected to be able to move forward, backward, left and right,

along with being able to gain and lose altitude and rotating horizontally (yawing) in order to perform turns

once the end of the aisle is reached. The multicopter drone is expected to hover in place while waiting

for further instructions. The drone is equipped with a status LED beside its camera that blinks green

when executing commands, and yellow while it awaits instructions.

Figure 4.2: DJI Ryze Tello EDU

1User Manual: https://dl-cdn.ryzerobotics.com/downloads/Tello/20180404/Tello_User_Manual_V1.2_EN.pdf, 14
Dec 2020
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Sensors: The drone is equipped with two types of sensor located on its underside. The first is a 3D

infrared emitter/receiver pair. The second is a small camera which is part of the Vision Processing

Unit2. Together, these sensors constitute the drone’s Vision Positioning System (VPS). Whenever it is

possible, the drone relies on these sensors to stabilize itself when airborne. However, this system is

limited by several factors (further detailed in the Limitations section). In case of VPS failure, the drone

enters Attitude Mode, which relies exclusively on its internal sensors (gyroscope, altimeter, barometer)

to fly. In this mode, the drone cannot correct errors in its movement and the user manual advises an

immediate and safe landing.

The drone’s Inertial Measurement Unit (IMU) keeps track of its pitch, roll and yaw from the time it is

turned on up to when it is turned off. It is possible to poll this sensor for updated IMU values. The IMU

response is in integers which may not be sufficiently granular for precision movements.

A simplified schematic of the most relevant sensors of the drone is presented in Figure 4.3.

Figure 4.3: Drone Sensors. Below the drone, the VPS is composed of a 3d infrared emitter/receiver pair and the
Vision Processing Unit camera. Inside the drone, the IMU keeps track of the drone’s pitch, roll and yaw.

Limitations: When under use through the SDK (further detailed in Section 4.3, TELLO SDK), the

drone has an experimental flight time of approximately 10 minutes (Figure 5.1) and reaches a maximum

temperature of approximately 75oC (Figure 5.3) when in use. The temperature of the drone is relevant

since the drone does not have any cooling system besides the airflow provided by its spinning rotors

once airborne. The drone counteracts its rising temperature by varying the speed on its rotors. This can

cause the commands sent to the drone to be carried out with a larger error margin. If the drone’s camera

is in use, the drone must be airborne, otherwise it will overheat and stop responding to commands from

the SDK. The drone enters a shutdown state once it reaches a critical temperature above 75oC and

stops executing commands. If it is on the ground, it will remain grounded and the status LED near the

camera will blink red. If it is airborne, the drone will stop any movement it is executing, shut down its

camera and Wi-Fi connection to the SDK and wait for the global safeguard timeout of 15 seconds to

begin an emergency landing, in which it will descend vertically. During this process, the status LED
2Tello launch specifications: https://www.ryzerobotics.com/news/launch_news_page_en, 14 Dec 2020
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near the camera will blink red. If the drone loses its Wi-Fi connection to the SDK on the computational

platform, it will also enter the emergency shutdown state described above.

The drone takes approximately one hour to fully recharge its battery. Since its behaviour was no-

ticeably more erratic when it was launched without a complete charge, the drone needed to be charged

before every flight. This limited the amount of flights per day of work to less than ten. Its relatively short

flight time and long charge time substantially increased the amount of time it took to develop and test

each component, particularly the navigation component which was wholly reliant on the drone to be

actively developed. While testing its main camera and video streaming functionalities, the drone was

found to overheat and shut down after approximately one and a half minutes if it was not in flight. This

setback also increased the time required to develop and test the navigation component.

The VPS keeping the drone stable cannot function properly under minimally disagreeable conditions.

Of note (verified in an artificially lit room without any presence of wind and a homogeneous plywood floor,

at day and at night) are the following:

• Lighting conditions: the drone struggled to stabilize itself (drifting left, right, forwards and back-

wards) when directly over a slightly darker zone than the average room illumination. Similarly, once

hovering over a particularly reflective spot on the floor the same issue occurs.

• Floor conditions: the drone was set to hover over a neutrally-lit part of the floor. It kept a con-

sistent altitude throughout 80% of tests. The height variation on the remaining tests was between

20cm and 1m, which was significant. The problem regarding the drone drifting horizontally was

also considered to be a problem relating to the floor conditions. In order to remedy this issue, a set

of 70cm square plywood modules were placed on the ground. Their face was filled with black and

bordered by two greens stripes. The drone was the most stable (keeping itself nearly motionless)

when hovering near the border between the plywood modules and the floor. This indicates the

VPS’s preference for harsh contrast. It is not immediately clear whether the information from the

infrared sensors takes precedence over the down-facing camera sensor.

• Abrupt corrections: If the VPS detects a change on the surface conditions below it, it will attempt

to compensate by rising or falling. While attempting to retrieve the drone when it is wandering off

course (due to the two points listed above), it is very hazardous trying to secure it before it crashes,

as the drone suddenly changes altitude when it detects the operator’s hand attempting to grab it.

Once held, the motors rev harder as if to attempt to free itself. The propeller blades are sharp and

this lead to minor injuries when handling the drone.

The drone does not compensate for its speed when stopping after a ”move” command. Practically

speaking, the drone will overshoot its movement target since it does not account for the time is takes

to slow down from its current speed. This is noticeable even at the lowest possible speed (10cm/s).
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The larger the distance the drone is commanded to cover, the larger the error becomes. Also of note is

the drone’s inability to move less than a predetermined distance, in this case 20cm. The SDK does not

provide a way to access the speed at which the drone is moving, only returning the value in centimeters

per second it was previously set to move at. This value may not correspond with the current air speed

of the drone as it could be speeding up or slowing down depending on if it has just started executing a

movement command or if it is reaching its destination.

Furthermore, after some weeks of testing, the drone developed a problem with its rear-right motor.

When taking off, the respective propeller was the last to get to full throttle. It was also the first to stop

when landing. The remaining three propellers all started and stopped at the same time. When manually

spun, the motor made a different sound to the other three motors. The propellers were replaced and the

problem persisted. The motors were all clean and showed no signs of external wear. The most direct

impact of this problem was a horizontal spinning motion that caused the drone to slowly rotate clockwise

at a rate of approximately 0.21o/s (determined in Chapter 5). This greatly reduced the drone’s effective

flight time during testing since the drone’s unbalanced yawing caused very extreme inconsistencies

between the drone’s current heading and its intended course. Arguably because of this problem, the

drone also had difficulties moving in a straight line, often drifting heavily towards its right (up to 1m right

after moving 4.4m foward).

Related to this problem is the lack of IMU sensitivity. On startup, the drone resets its Inertial Measure-

ment Unit. As mentioned above, the IMU records changes to roll, pitch and yaw in integers. Since the

drone’s yaw changes approximately 0.21o/s, this change does not appear to be large enough to notify

the IMU of a change in the drone’s attitude. To further elaborate on this point, the drone’s spontaneous

yawing is minute enough to not be recorded by the IMU, but large enough to be problematic after a long

flight. This is an important observation, since IMU measurements of the drone’s attitude in the order of

a hundredth of a degree would allow for a near-perfect digital correction to the drone’s physical problem

if the IMU. The alternative is a much less elegant trial-and-error experiment to find a value near the

spontaneous yaw to counteract whenever the drone is stopped for a considerable period of time. This

large correction is enough to change the attitude values in the IMU, which implies all further calculations

made when yawing the drone will have to take into account the accumulated offset gathered in the IMU

until then.

To summarize, the drone functions best when at full charge, under consistent and neutral lighting,

below its critical temperature and when flying over clear and contrasting floor markings.

SDK - Capabilities: The TELLO SDK was used as the basis for the system’s navigation component.

Its Python 2 implementation uses Python’s native socket library to create two socket objects, both objects

containing a (host, port) pair and utilizing User Datagram Protocol (UDP). The host value is the drone’s
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IP: ”192.168.10.1”; the port used for issuing commands is port number 8889, while the port used for

receiving video feedback from the drone’s camera is port number 11111. The use of UDP is clear when

in terms of receiving a potentially lossy stream of video from the drone. However, the socket for issuing

commands is also using UDP. This presumes that the application on the drone’s side must have a

failsafe for duplicate commands and commands received in the wrong order in addition to the validated

existence of a drone-side acknowledgement response to issued commands. By default, the SDK aborts

the command if the drone does not respond within the timeout window. The drone can respond to

commands with an ”OK” message once it executes the command or with one of several error messages.

The most notable error messages to be aware of are the following:

• ”Not Joystick” error: The drone is still processing the previous command.

• ”Motor Stop” error: The drone is not flying or, more commonly, exceeded the timeout for receiving

commands, leading to an automated emergency landing.

• ”No valid IMU” error: The drone attitude values are such that it cannot perform the command.

The SDK allows for a flexible range of commands3 to be sent to the drone, the most useful of which

are:

• ”command”: Allows the drone to be controlled by SDK commands;

• ”takeoff” and ”land”: Respectively launches and lands the drone into and from a stationary

hover;

• ”streamon” and ”streamoff”: Engages and disengages transmission of video stream from the

drone camera;

• ”up x”, ”down x”, ”left x”, ”right x”, ”forward x”, ”back x”: Henceforth collectively referred to

as ”move” commands, they move the drone x centimeters in the specified direction. These func-

tions are unfortunately limited to a minimum movement of 20cm, making small precise movements

difficult to accomplish.

• ”cw x”, ”ccw x”: Respectively rotate the drone clockwise and counter-clockwise. Once again, the

value of x is limited to a minimum of 1 degree, which hampers finer adjustments.

• ”speed x”: Sets the drone’s speed to x centimeters per second. This command’s usefulness is

also limited by its minimum acceptable value of 10cm/s.

• ”battery?”: Polls the drone’s remaining battery percentage.

3Tello SDK 1.3.0.0 Documentation: https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%

BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf, 15 Dec 2020
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• ”time?”: Polls the drone’s time airborne for the current flight.

• ”temp?”: Polls the drone’s chipset temperature.

• ”attitude?”: Polls the drone’s pitch, roll and yaw.

• ”stop”: This command is not listed but when transmitted, the drone will attempt to stop and return

to a stationary hover.

Although there are ample commands to facilitate the drone’s movement through a orthogonal layout,

the lack of granularity is the commands make precise movements challenging to execute. Otherwise,

the drone executes the commands with relative accuracy, provided the VPS does not interfere with them

and taking into account the extra braking time required for the drone, depending on its set speed and

distance covered.

4.1.1.B RFID Reader

The RFID Reader is a WRD-130-U1 Ultra High Frequency RFID card reader (seen on the left side of

Figure 4.10). It operates in the 860Mhz to 960Mhz range and is compatible with the EPC Class 1 Gen 2

type RFID Tags. Its keyboard emulation feature will be used as a means for the software to interpret the

response once the RFID Reader queries a tag. The RFID Reader is also equipped with an proprietary

SDK. The RFID Reader is itself heavier than the drone, but lighter options in the UHF range were not

available. This implies having the drone carrying the RFID Reader will not be possible. Out of the box,

the reader can read a tag placed in front of it, launching a visible cue (the default state red LED switching

to a green LED for the duration of the tag’s permanence in front of the RFID Reader) and an audible cue

(a single beep when the tag is first read). Once it receives the response from its query, the RFID Reader

emulates keyboard operations for every byte it receives from the tag through its USB connection to the

computer that is powering it.

Limitations: It was expected of the reader to also be able to read multiple tags at once through bulk

reading. The SDK’s UHF RFID Reader Plus Protocol Application Example (Figure 4.4) implies the ability

to perform bulk reading through the method seen on Figure 4.5. During testing, completing the three

suggested steps before pressing the ”Auto read” button seemed to have no impact on the function. The

expected values from each tag positioned in front of the reader (oriented horizontally in respect to the

ground, facing the RFID Reader frontally, approximately 5cm apart) are not filed under the table’s ”NO”,

”EPC” and ”Count” columns. The SDK’s user manual is very vague in regards to the functionality of the

bundled configuration application: when provided, the functionality descriptions are limited to labels for

the buttons on the ”Setting” panel. It was not possible to extract any RSSI information from the RFID
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Reader’s queries on tags, neither through the provided configuration application nor through the use of

Wireshark and the dedicated USBPcap plugin.

Figure 4.4: Excerpt from the SDK’s UHF RFID Reader Plus Protocol Application Example. The first column indi-
cates the command, the second column indicates the return message, and the third column indicates
a brief description of the functionality. The last command pictured, ”U”, is of particular interest.

SDK - Configuration: The RFID Reader’s configuration application was set up as follows:

• ”Setting” Panel (Figure 4.6)

– Unchecked ”USB keyboard disable” option on ”USB mode” tab;

– Set ”Key delay” to 1ms on ”USB mode” tab;

– Checked ”Auto” option on ”Read card mode” tab;

– Set ”Scan Time” to 1 x 10ms on ”Read card mode” tab;

– Set ”Same Card” to 2 x 10ms on ”Read card mode” tab;

– Set ”Power” to 18 on ”Set UHF RFID Power” tab;

– Set ”Frequency” to ”TW 922-928” on ”Set Frequency Range” tab.

• ”Read” Panel (Figure 4.7)

– Checked ”Auto read” option on ”Auto read data” tab.
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Figure 4.5: Test tab Auto Read Window to execute bulk-reading.

– Set ”Read byte max” to 8 on ”Auto read data” tab.

– Checked ”USER” option on ”UHF/EPC” tab.

– Set ”End address” to 8 on ”UHF/EPC” tab.

• ”UHF/EPC” Panel (Figure 4.8)

– Checked ”USER” option on ”Read/Write EPC” tab.

– Set ”Length(Word)” to 4 on ”Read/Write EPC” tab.

The tag readings will return 32 hexadecimal digits from the EPC field and 16 hexadecimal digits from

the User Memory field. Every odd numbered packet parsed by Wireshark and the USBPcap plugin will

contain one digit, resulting in a total of 96 packets per scanned tag.

SDK - Tag management: Using the RFID Reader’s configuration application, it is possible to write

user information to tags through the following method:

1. On the UHF/EPC panel, on the text box to the right of the ”Write Tag” button, type in the information

using Hexadecimal notation. If needed, the Length(Word) value can be increased or decreased,

with each increment and decrement respectively adding or removing 4 digits from the text box.

2. After inputting the desired information, press the ”Write Tag” button.

3. Scan the desired tag with the USB-connected RFID Reader before the order’s timeout limit.

4. Once the ”Command ok.” status appears, the tag has been successfully written.

Similarly, one can read tags manually through the following method:

1. Press the ”Read Tag” button.
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2. Scan the desired tag with the USB-connected RFID Reader before the order’s timeout limit.

3. Once the ”Command ok.” status appears, the tag has been successfully read. The tag’s information

appears in the text box to the right of the button.

Figure 4.6: RFID Reader SDK configuration for the ”Setting” Panel

4.1.1.C Computational Platform (Single Board Computer)

The Computational Platform is to be mounted on the drone in such a way as to not obstruct any of

the drone’s sensors, and ideally minimizing the displacement of the multicopter’s original center of mass.

Raspberry Pi Zero The computational platform’s software housing suggestion is a Raspberry Pi Zero.

It has a small form-factor (65mm × 30mm × 5mm). It has a CPU clock speed of 1GHz and 512MB of

RAM. It has wireless connection capabilities compatible with the 2.4GHz 802.11n wireless LAN protocol

and can be powered by one of its mini-USB ports or by the following Raspberry Pi Battery Hat. The SD

card that is used by the Raspberry Pi has a memory size of 16GB and runs Raspbian. The amount of

memory available is important due to the fact that the computational platform will host a local database

of variable size to store its inventorying results before being able to send it to the warehouse database.
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Figure 4.7: RFID Reader SDK configuration for the ”Read” Panel

The Raspberry Pi can be equipped with a Hat that holds a Lithium Battery and provides power to the

computational platform by being connected to the Raspberry Pi Zero through its 40-pin GPIO header.

For the purpose of developing the project, the Raspberry Pi Zero was switched out for a more pow-

erful laptop. Ideally, the system would be built upon the Raspberry Pi Zero, which would be attached to

the drone. Since this last part was not possible (the drone was too weighed down and unstable), a more

versatile and easy to work with platform was chosen over the SBC.

USB Wi-Fi Adapter A Wi-Fi adapter is required to connect the computational platform to one of several

APs via Wi-Fi for the transmission of the computational platform’s local database to the main warehouse

database. The adapter used is a TP-Link TL-WN321G 54 Mb/s Wireless USB Adapter.

4.1.2 RFID Tags

The selected RFID tags are ALN-9662, Higgs-3, ”Short” Inlay type tags4 (seen on the right side of

Figure 4.10). They are operated by readers in UHF and comply with the EPC Class 1 Gen 2 protocol.

The tags reportedly have a 96 bit EPC memory and 800 bits of non-volatile memory. The tags rely on

proper orientation to be read (facing the reader in a horizontal fashion) and should be placed accord-

ing to SOAP. Although the tags were advertised as compatible with European Union frequency ranges

(865MHz to 868MHz), maximum read range testing in Chapter 5 indicate they operate almost exclu-

sively in the Chinese (920MHz to 925MHz) and Taiwanese (922MHz to 928MHz) frequency ranges,

with some success using the United States frequency (902MHz to 928MHz) as well.

4ALN-9662 Higgs-3 RFID Tag Specification:
http://www.alientechnology.com/wp-content/uploads/Alien-Technology-Higgs-3-ALN-9662-Short.pdf, 17 Dec 2020
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Figure 4.8: RFID Reader SDK configuration for the ”UHF/EPC” Panel

Tag management: The hexadecimal information to be stored on the tags’ user memory will depend

on the tag type. The symbol distribution on the tags can be seen on Figure 4.9. C indicates item count

(base 10); XS indicates the X-coordinates signal (positive or negative); X indicates the X-coordinate; YS

indicates the Y-coordinates signal (positive or negative); Y indicates the Y-coordinate; Z indicates the

Z-coordinate; F indicates the item misplacement flag and is either ”0” (for correctly placed items) or ”1”

(for misplaced items), T indicates the tag type and is either ”A” (for item tags) or ”B” (for node tags). A .

indicates unused information space.

Figure 4.9: RFID tag User Memory information storage.

4.1.3 Summary

Given the hardware analysis, we can conclude that bulk reading will not be available for this project.

This implies the use of the regular directional signalling method that is limited to one RFID tag at a time.
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Figure 4.10: RFID Reader (left) and ALN-9662 RFID tags (right).

This impacts both the inventorying component as well as the navigation component.

Inventorying component The lack of bulk reading capability on the RFID Reader will cause the in-

ventorying process to take longer and the placement of the item tags to be carefully planned. The item

tags on a given shelf level should all be placed at the same height to maximize the effectiveness of the

directional RFID query. The limited direction of the RFID Reader’s queries also requires the system

to be able to rotate the RFID Reader so that it can cover both the shelf to the left and the one to the

right of the drone as it moves between the two shelves. A mechanically assisted swivel is assumed to

be available for the proof-of-concept. The distance between each tag must be such that it ensures the

system does not miss any items.

Navigation component Similarly, the lack of bulk reading reduces the drone’s positioning system to

one that relies heavily on single queries to individual tags. Since RSSI information is not available, the

RSSI triangulation and boundary system approach detailed in section Chapter 3 cannot be developed.

Instead, the Hybrid Checkpoint approach was chosen. The drone’s built-in camera was leveraged as

a means to gain more information on the drone’s surroundings. The corrections that were to be made

using the RSSI triangulation of the drone’s position can still be made through the use of computer

vision. The drone can adjust its position and trajectory at fixed location along its route. Namely, once

the drone reaches the end of an aisle and is met with a wall, a coloured square Visual Marker on that

wall can serve as an indicator to correct the drone’s positioning. When the marker is captured by the

computer vision module, it can be processed by the computational platform to send the drone a series

of commands in order to move itself in such a way that is is positioned with its camera directly facing the

center of the marker. The marker can be simply painted on the wall or be placed on it with an adhesive.

To further ground the system in reality, an RFID tag can still be placed on the marker to supplement the
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visual confirmation aspect of the Hybrid Checkpoint approach.

Given the weight of the required equipment and the maximum carrying capacity of the drone, the

original setup will not be feasible. Instead, a laptop will serve as the base for the computational platform

(replacing the Raspberry Pi Zero). The computational platform will be detached from the drone but keep

the planned functionalities. The primary Wi-Fi connection will remain the one between the computational

platform and the drone. The secondary Wi-Fi connection will be the one between the computational

platform and the warehouse database.

4.2 System Design - Network

The drone requires a dedicated connection to its own Wi-Fi network to be controlled without manual

use of the Android Operating System application. The selected SBC must therefore be able to connect

to both the drone and a nearby access point for the warehouse database. The integrated network card

in the single board computer will need to be supplemented by a second one, such as a network adapter

connected via USB.

The commands are sent to the drone from the computational platform through UDP by design. This

implies the connection is lossy and cannot guarantee the execution of every command sent. Ensuring

no command packets are dropped is critical to operate the drone accurately. However, the drone sends

an acknowledgement whenever it executes a command. This important feature is leveraged to build a

re-transmission mechanism on the computational platform’s side that ensures the command is re-sent if

there is no received acknowledgement for it. If all planned retries for that command time out, a command

is sent for the drone to land. Regardless, the drone engages an emergency landing procedure if it does

not receive a command for 15 seconds. By having this re-transmission system last for 15 seconds, the

computational platform’s efforts to send the next command will last until the drone’s safety feature makes

it automatically land.

The local database is uploaded to the warehouse database via Wi-Fi as well. To guarantee the

complete transmission of the item information kept in the local database, the transport layer protocol to

be used is TCP. This connection was exemplified in the project with a mock-up File Transfer Protocol

(FTP) connection.
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4.3 System Design - Application Development

4.3.1 Python - Programming and interfacing

To limit the project’s complexity, Python was chosen. Python 2 is already used for the drone’s SDK.

Since we require an interface for the RFID Reader, Python can also be used to interface with TShark (a

network protocol analyzer). TShark (when coupled with USBPcap for use on the testing platform running

Windows 10) can access the USB frame transmissions between the RFID Reader and the computational

platform. Python’s many publicly available libraries also make it ideal for prototyping system architectures

connected at the software level such as this. However, while we can utilize Python 3 for most of the

project, the drone’s SDK relies on Python 2. Hence, any module that depends directly on the navigation

component was developed for Python 2. The main consequence of this is the limited means to transfer

information between Python 3 and Python 2 modules. While sqlite3 can be used by both Python version

to query the local database, the tag.txt file is used as a buffer to store information between the Python

3 implementation of the communications component and the Python 2 implementation of the navigation

component. The code base is available to be viewed and downloaded in a dedicated Github repository.5

4.3.1.A SQLite and Database Schema

Python’s sqlite3 library allows for the creation of locally stored databases. It is used to store item

tags and node tags, organized into their respective tables. The information stored in the tags is written

to them by using the RFID Reader in ”Write tag” mode and separates item tags from node tags in terms of

content. This information can be retrieved through its keyboard emulation function. The queries to it are

formulated in standard SQL. The output of a READ query can be stored in a list-type variable for further

manipulation. The use of this library did not cause any problems with the rest of the implementation.

Figure 4.11: Database schema for tags.db

5Github Autonomous Inventorying System: https://github.com/D-K-O-I/thesis-autonomous-inventorying-system
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4.3.1.B OpenCV

OpenCV is a popular open-source library that allows the system to use the drone’s camera to detect

the visual marker on a wall once it has reached the end of an aisle. Once connected to the camera,

each frame received can be parsed to extract the marker’s location in relation to the drone. By using

the library, a dedicated logic loop was created to find the centroid of the marker and use that point

of reference to issue commands to position the drone in relation to it. This is further detailed in the

Computer Vision Hybrid Checkpoint Algorithm Implementation section.

4.3.1.C PyShark and TShark

TShark was the chosen network traffic analyzer for capturing USB traffic between the RFID Reader

and the computational platform. Capturing frames and filtering them in real-time is not possible on

the given USB interface, therefore a TShark instance will first run and store the captured frames into

livebuffer.pcap. Afterwards, the Python 3 library pyshark is used to continuously read the USB frames

sent by the RFID Reader which were captured in the buffer file in order to extract complete sets of USB

packets. By having the keyboard emulation setting in the RFID Reader configuration application on, the

filtered frames sent to the computational platform will each contain one symbol. The first 32 symbols

represent the EPC, while the last 16 symbols are tag information to be processed. The last symbol

received (part of the tag information) indicates whether a tag is a node tag or an item tag.

The library is not built to perform a live capture on the USB interface itself, and so must rely on

running a new file reading every time there is an update in the capture file. This causes internal issues

in the library which may cause some instability in the system.

4.3.1.D FTP Mock-up

The connection to the warehouse database is simplified into the ftp.py module, which connects to the

localhost in order to upload the tags.db local database file. In a field test, this portion of the application

would have been done via the Wi-Fi connection to the warehouse database access point.

4.3.2 Architecture Implementation

The system architecture described in Chapter 3 was implemented in three distinct Python mod-

ules (inventorying, navigation, communications components) and a database file (database component),

which in turn may have other dependent modules. The communications component will be presented

first as it serves as a base from which to launch or instantiate the other components.
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4.3.2.A Communications Component

The communications component module (comp com.py) is the initialization point of the inventorying

system. Once started, the module initializes the tags.db database with two tables: ”nodes” and ”items”.

Then, it launches a subprocess for a TShark instance to monitor and capture frames flowing through

the USB connection between the RFID Reader and the computational platform. The output of this

subprocess is saved onto the livebuffer.pcap file, which serves as a buffer to process the ordered frames

from each tag.

Afterwards, the module’s main purpose is starting the inventorying system cycle. From the start

menu, one can also access the tag database to retrieve a list of all nodes, a list of all items, insert/remove

items, insert/remove nodes, retrieve a list of all flagged items, and empty the item database (locally

stored and temporary). When starting the inventorying system, the rfid interface.py module is instanced

and begins scanning the livebuffer.pcap file for tag responses. Until the drone lands, the communication

component will wait for node tag responses. The navigation component must be launched separately.

Once a node tag response arrives, its information is processed and sent to the (comp com.py) module.

There, it is written over the previous one on the buffer file tag.txt, which can be read by the separate

Python 2 instance of the navigation component.

RFID Interface Buffer Implementation As the livebuffer.pcap file is filled with USB frames arriving

from the RFID Reader USB port, the rfid interface.py module utilizes the pyshark library to continuously

read the buffer file. The frames are read one at a time in sequential order and passed through a filter.

The display filter guarantees the received frames comply with the following rules:

• The frames contain 8 bytes of data length;

• The frames are sent from the selected USB port to the host system (the computational platform);

• The frame relative time to be evaluated is greater than 0.0 (avoids parsing the 24 initial USB frames

relating to the device descriptor and configuration messages);

• The frames represent successful frame transfers (USBD status code equal to 0x00000000).

This filtering reduces the amount of frames to be processed per tag to 96 from the initial value of 192.

Every frame contains a set of hexadecimal values that can be decoded with the translation table dic-

tionary. This dictionary contains all the planned hexadecimal values as keys and the corresponding

information as values. By parsing each frame sequentially, each new digit of information extracted is

concatenated to a string for that tag. The last tag processed indicates whether a tag is an Item Tag or a

Node Tag, according to Figure 4.9.
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Information Flow to Navigation Component The comp com.py module utilizes a queue object to

share the tag variable with rfid interface.py. The concatenated string storing the tag information is as-

signed to this variable whenever the last frame of a tag response is equal to ”B” (indicating a node tag

response). Once it is retrieved, the main communications component module opens the tag.txt file in

”write-mode” and overwrites the stored information with the new tag information.

Information Flow to Inventorying Component Given its simplicity, the comp inv.py module is initial-

ized directly in the rfid interface.py module. Whenever the last frame of a tag response is equal to ”A”

(indicating an item tag response), the concatenated string variable storing the tag information is used as

the input when the inventorying component’s update local db function is called.

4.3.2.B Inventorying Component

The inventorying component is launched by the RFID interface module. It is not launched directly

from the communications component module since the flow of item tag information is unidirectional

toward the database. The inventorying component module comp inv.py parses and evaluates the infor-

mation of a given tag (checking the item’s placement according to the information in the database) and

inserts it into the database, updating the should the item already be present.

Database Item Table Automatic Insertion The inventorying component is automatically called by

the rfid interface.py module once it reads an item tag from the livebuffer.pcap file. The update local db

function is called, with the item tag information string as an input. It is parsed according to the item tag

information structure that can be seen in Figure 4.9. Afterwards, the extracted information is used as

input for the insert item function, which is similar to the one present in the comp com.py module. The

difference is the management of the flag variable: if the item already has a record within the database,

its item position values (”item posx”, ”item posy”, ”item posz”) are checked against the newly extracted

values for that item. Inequalities will cause the sqlite3 UPDATE instruction to change the item’s record

for the ”flag” value to 1.

4.3.2.C Navigation Component

The navigation component module is to be started after the communications component module.

On startup, a request is made to the tags.db database to retrieve all the registered nodes. This pool of

nodes is passed as an input into a call for the vcm.py module, which returns a node map, a level-by-level

horizontal route for the drone to follow. After the connection to the drone is initialized , the navigation

component module converts each ”hop” from node to node into a movement command to be sent to

the drone. Once the command is sent, the drone executes it and returns a response indicating the
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command’s status. When the drone reaches what would be the end of an aisle, two control flows are

executed in order:

1. The drone is polled for its IMU attitude values. Of particular importance is the yaw value. If the

yaw value does not correspond to the expected value for the drone’s heading (taking into account

previous corrections (the global OFFSET value) and its involuntary clockwise yawing previously

described in Section 4.1.1.A), a correction to the drone’s yaw is issued via a ”rotate counterclock-

wise” command. The global OFFSET value is updated with this correction.

2. The OpenCV library is leveraged, which begins receiving the drone’s camera and using its feed-

back to find the red visual marker on the wall ahead of it. This marker is used as a reference point

for the drone. The algorithm will send movement instructions to the navigation component in order

to have the marker as close to the center of the camera’s capture as possible

3. Finally, it awaits a physical RFID tag confirmation from the visual marker, timing out if none is

received.

This process is repeated throughout the course of the planned route. At the end of the route, the last

few commands orientate the drone towards its origin point and attempt a landing once it has reached its

destination.

The navigation component leverages threading for four tasks:

• Receiving responses from the drone at all times;

• Before adjusting the drone’s position, to fix the drone’s yaw;

• Before adjusting the drone’s position, to start a 30 seconds timer for the Hybrid Checkpoint algo-

rithm to operate;

• While adjusting the drone’s position, to prevent auto-landing due to longer processing times.

Virtual Coordinates Map Algorithm Implementation The Virtual Coordinates Map is built from the

existing nodes table in the database. The VCM class is instanced once during every execution of the

system by the navigation component. All node records are then added to the VCM and represent each

entry of the class’s nodemap variable. Afterwards, the route 3d function can be called. This function

creates a route that passes through all nodes in each shelf level (route function calls), starting from the

bottom level. The routing algorithm is a modification to the DJP algorithm [30] with weighted vertices

(nodes) and the idea of a ”lazy” minimum spanning tree. In each bi-dimensional plane corresponding

to each shelf level, the objective of the algorithm is to traverse all vertices with the least amount of

effort (distance to traverse) possible and completely avoiding branching paths. To do so, a single-branch
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minimum spanning tree is created for a given shelf level. The single-branch spanning tree can be built

by keeping track of reached and unreached nodes, but only considering the distances of the unreached

nodes to the last reached node (the node the drone would be on at that point in time). Since shelves

are orientated in rows along the system’s y-axis, this is used to attribute differing weights to nodes in

different rows to that of the drone’s current one.

When selecting the lowest effort hop, the algorithm considers the effort required to reach each of the

drone’s nearest orthogonal neighbours. When the lowest effort hop is executed, the now covered node is

removed from the list of unreached nodes (which itself starts off equal to the list of keys in the nodemap

with the starting point removed). As long as the nodes belonging to the aisle the drone is currently on

are not completely covered, the lowest effort node to hop to will always be present on said aisle. Only

once the edge of an aisle is reached does the algorithm consider hopping to the next aisle. The edge-

case where the drone starts away from the edge of the aisle must be considered. This would lead to a

situation where the drone would have to return to the aisle to cover the remaining nodes. The algorithm

opts to reach the other edge of the aisle if it is still not covered, instead of switching aisles once at an

edge. Hence, the weight given to y-axis movements should be unitary, while x-axis movement weights

should be equal to the amount of nodes per aisle. If the drone finds itself in the center node of an aisle

without prior traversal on that particular aisle, it will first traverse towards the highest y-value by default.

Similarly, if there is an equal number of available aisles to the left and to the right of the drone once the

current shelf is fully traversed, the drone chooses to head towards the lowest x-value by default.

Once a node is covered, it is removed from the list of unreached nodes and added to both the list

of reached nodes and to the spanning tree. The current position is updated to the coordinates of said

node. This process continues until the list of unreached nodes is empty. The route function returns

the lazy minimum spanning tree, which is the ordered list of nodes that the drone is to traverse for the

minimum effort coverage of that shelf level in the warehouse. The route 3d function adds the spanning

tree resulting from each pass of the algorithm to the traverse order variable. This variable is accessed

by the comp nav.py module to execute movement commands.

Computer Vision Hybrid Checkpoint Algorithm Implementation When the drone reaches the edge

of an aisle, the Hybrid Checkpoint algorithm engages. Firstly, the drone adjusts its yaw in order to directly

face the wall. The objective of the module is to identify a 10cm wide square red visual marker on the wall

in front of the drone’s camera and to provide the navigation component with movement controls using

the marker as a reference point. A UDP connection to the drone’s video streaming port is initialized.

Each frame of the video capture is converted to a HSV version from which a colour mask is made by

using a set of calibration sliders. The mask is then arithmetically multiplied by the original frame (bitwise

”AND” operation) to obtain the frame result variable.
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In order to obtain a contour of the shape in frame result, it is set to grayscale, then blurred and finally

filtered through a binary threshold. From here, the OpenCV findContours6 function automatically obtains

the contour of the shape of the marker. The contour retrieval algorithm chosen was RETR EXTERNAL

which selects the extreme outer lining of the contour, and the contour approximation algorithm chosen

was CHAIN APPROX SIMPLE, which compresses diagonal, vertical and horizontal contour segments

into endpoints. This choice of approximation is important due to the fact that many frames will be

processed in rapid succession and memory limitations should be taken into account.

Afterwards, a bounding rectangle is formed using the contour and a centroid for the shape is placed

at the center of the bounding rectangle. Then, the vertical and horizontal components of the vector

defined by the centroid of the shape to the center of the frame are calculated, along with the area of the

contour. These variables are then passed into the identify correction function call. The three types of

corrections expected are:

• Horizontal sideways movement corrections: The horizontal value norm between the center

of the captured screen and the centroid of the marker is greater than the established limit. This

causes a ”move left” or ”move right” command to be issued.

• Vertical movement corrections: The vertical value norm between the center of the captured

screen and the centroid of the marker is greater than the established limit. This causes a ”move

up” or ”move down” command to be issued.

• Horizontal forwards/backwards movement corrections: The area of the bounding rectangle for

the marker’s detected shape is too small or too large. If it is too large, then a ”move backwards”

command must be issued, since the drone is too close to the wall the marker is on. If it is too small,

then a ”move forwards” command must be issued, since the drone is too far away from said wall.

A fourth correction, based on the angle of approach of the drone to the marker was considered,

but ultimately replaced by polling the drone’s attitude value for its yaw and deriving a yaw correction

command from it. Regardless, a description of the original approach follows: Given the drone might

not perform two 90o turns perfectly when switching from one row of shelves to the next, it is important

to verify if the drone reaches the end-of-aisle marker at an unexpected angle. If the drone reaches the

marker within acceptable angle deviation values, the bounding rectangle surrounding the marker will be

very close to a perfect square. The more the angle the drone is at over the acceptable limit, the more

noticeable will the distortion of the shape of the marker will be, causing the bounding rectangle to be

wider than it is tall. The issued commands are limited to ”rotate counterclockwise” and ”rotate clockwise”

until the distortion is minimized. This has two problems however: the first is that it may require more

6OpenCV findContours function: https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html, 15 Dec
2020
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corrections of the remaining three types given the new position of the camera in relation to the marker;

the second is that given the distance of the drone to the wall, the angle deviation might not be noticeable.

The corrections are issued for every frame that is captured (the module is currently set to capture a

frame whenever it finishes issuing commands for the previous frame in order to minimize overload). The

connection to the camera is closed once the drone begins its hop to the next node to reduce processing

time. The processed video feedback (Figure 4.12) is available in the application, but is partially disabled

in field tests, possibly due to how the library image processing functions. Regardless, the video feed is

processed and the correct commands are issued to the drone.

Figure 4.12: Video feedback processed through OpenCV. Featured in the top-left are the movement cues (”BACK”,
”LEFT”) for the centroid to reach the center of the video feedback. The vector norm from the center of
the screen to the centroid is pictured in the middle of the screen. Below it is the computed area of the
shape defined by the green bounding rectangle.

Drone Positioning Verification The tag.txt buffer file, accessed as ”read-only” by the navigation com-

ponent’s main module, confirms the drone’s position after adjusting the drone’s position. This information

flow originates in the rfid interface.py module, where any node tag that responds to a query has its infor-

mation written to the tag.txt buffer file, overwriting the previous tag information stored. There is a failsafe

in place to ensure the drone continues its planned course after waiting for the 15 second timeout without

reading the correct node tag from the tag.txt buffer.

All existing records of node tags are retrieved from tags.db in order to be used by vcm.py’s routing

functionality, which returns a 3D-route for the navigation component to follow.
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4.3.2.D Database Component

The database component was implemented using the sqlite3 Python 3 library, utilizing the database

schema suggested in Chapter 3 and Figure 4.11. The database is stored in the tags.db file. The primary

keys for both tables are a tag’s EPC. These are unique to each tag and serve as a way to ensure no two

tags are representing the same coordinate space.

Information Flow to and from Communications Component The database component can have

the item and node tables edited or read by the communications component through SQL queries. The

queries can perform insertions, selections or removal of items and nodes on their respective tables.

Information Flow to Navigation The navigation component launches a query to obtain a list of all

nodes in the node table. The table is returned as a list of tuples (each representing a node, its EPC and

its coordinates) for the navigation component to input into the vcm.py module.

4.3.3 Code Architecture

The application’s communications component was developed according to its original design: it

serves as a centralized module that is a user interface and can interact directly with the local database.

However, both the inventorying component had to suffer some changes in order to accommodate the

hardware limitations discovered in the drone and the RFID Reader.

The inventorying component kept its original functionality: parsing tag information to update the local

database while identifying misplaced items. Its use is more limited due to the inability to perform bulk

reading. It relies on having tags arranged in such a way that they complement the drone’s movement

(placed in a horizontal line).

The navigation component, although maintaining its original virtual coordinates map design for the

routing portion of the warehouse traversal, saw changes to its positioning system. Instead of using bulk

reading and comparing RSSI values from node tags to triangulate the drone’s position, a simpler system

relying of the drone’s camera and RFID signalling was developed. Once the smart drone is facing the

wall at the end of an aisle, its uses its camera and the OpenCV library to determine what corrections to

the drone’s position should be made such that it remains safely in the center of its trajectory. Besides

horizontal and vertical movements, polling its attitude allows for correcting the drone’s yaw. To further

anchor this system to the physical world, the RFID Reader can be used to scan a node tag on the visual

marker to verify the drone’s position.

Information Flow Figure 4.13 details the flow of information inside the system, the type of information

being circulated, and which module is using it as input.
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Figure 4.13: Software design - Python Implementation

Information enters the system by three ways:

• Manual writing of data (item tag information, node tag information) in comp com.py which is in-

serted directly into the tags.db database;

• Automated retrieval of data (item tag information, node tag information) from livebuffer.pcap: if

the data represents an item tag, it is used as input for the comp inv.py module, and used to up-

date the database’s items table. If the data represents a node tag, it is sent via a queue object

to comp com.py which writes the tag’s information as a string to the tag.txt buffer file to ensure

compatibility with the Python 2 comp nav.py module.

• The comp nav.py module receives command responses from the drone via a Wi-Fi UDP static

connection between the computational platform and the drone.

The system outputs information through the following means:

• comp com.py, when data is read from the tags.db database by the user;

• the computational platform’s USB port, first to query the USB ports available and once the RFID

Reader begins scanning tags to respond to the transmission of each USB frame.

• comp nav.py, every time a command is sent to the drone via the above-mentioned Wi-Fi UDP

static connection.

The software developed supplements the shortcomings faced in the hardware section. Mitigating

accumulated movement errors throughout the drone’s traversal of the warehouse is possible with the

66



use of OpenCV, and therefore was the chosen approach. It is partially limited by the locations at which

the drone can correct its position. Therefore, in order to avoid stacking compound errors throughout its

autonomous movement the drone must stop at the end of each aisle and whenever a turn is required of

it. While there might be some margin of error after each aisle is traversed, the position where the drone

should be can be reached with relative ease.

4.4 Summary

The warehouse inventorying system will consist of five parts: the Smart Drone, the RFID tags, the

Visual Markers, the Network, and the Software Architecture.

The smart drone consists of a multicopter that is programmable in Python, an RFID Reader and a

Single Board Computer. The multicopter has a series of sensors which help it remain stable in flight

(VPS, IMU) and a frontal camera, used to capture images and video. The drone’s stability is heavily

influenced by the VPS, which relies on specific lighting and ground surface conditions to be precise. The

drone’s limitations were described in detail, through observations and experimental results. The drone’s

SDK is described.

The RFID Reader’s capabilities and limitations are described in detail. All changes to the RFID

Reader’s settings were made through its bundled SDK and documented. Preliminary tests determined

its inability to use bulk reading on RFID tags. The SDK is used to manually write information to each

RFID tag. Being limited to signalling each individual tag implies that the inventorying process will require

the tags to be placed all at the same height and with an interval between them to minimize any loss

of information. The lack of bulk reading forces the use of the Hybrid Checkpoint approach previously

described in Chapter 3.

The SBC is ideally a Raspberry Pi Zero, equipped with a Wi-Fi adapter to provide the second Wi-Fi

network connection the inventorying system requires. Since the SBC could not be attached to the drone

without disrupting its movement, a more powerful laptop was opted for instead.

The RFID tags were divided into a set of item tags and a set of node tags. Each type of tag has

relevant information written to it. Figure 4.9 illustrates the setup used.

The system network can be divided into two 2.4GHz 802.11n Wireless LAN networks: one is gener-

ated by the drone and ensures the connection between the drone and the SBC; the other establishes a

link between the SBC and the Access Point for the warehouse database.

Application-wise, the software relies on the use of some existing libraries and applications. The nav-

igation component is written in Python 2 to ensure compatibility with the drone endpoint. The remaining

components are written in Python 3 due to their own dependencies. Python’s sqlite3 library is used

to interact with the local database. Regarding the Hybrid Checkpoint navigation solution, OpenCV is
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required to parse and process the incoming video frames from the drone. Pyshark and TShark are used

to parse the USB packets arriving from the RFID Reader. A simple mock-up for a warehouse database

updater was written to transfer files via FTP.

The inventorying system requires two modules to be started: the comp com.py module allows for

interfacing with the database and starts the inventorying component; the comp nav.py module is tasked

with navigating the provided warehouse layout according to the Hybrid Checkpoint approach.
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Testing and Results

5.1 System Characterization

5.1.1 Unit Tests - Drone

The multicopter was tested with the goal of understanding the practical limitations of its performance.

Three main tests were conducted to plot the evolution of the drone’s remaining battery, its SNR to the

computational platform and the drone’s internal temperature. The drone was made to hover in place for

8 minutes while its battery percentage, signal-to-noise-ratio to the computational platform and internal

temperature were measured. The drone was polled every ten seconds. Wi-Fi latency is the source of

the cumulative delay observed in the response times. It is also important to note that the drone camera

was on (this increases the rate at which the battery is drained). The details regarding each test follow.

5.1.1.A Battery Expenditure

Figure 5.1 shows a sampling of responses to battery queries transmitted to the drone. The vertical

axis represents the remaining battery percentage (22 to 100). The horizontal axis represents time in

seconds (8 to 488). Over the course of 8 minutes, the drone consumed 78% of its battery life. The re-

maining battery percentage falls almost linearly, which indicates the drone would most likely expend its

remaining battery over the next two minutes (leading to an automated emergency landing). By compar-

ing the experimental flight time with the flight time provided in the official specifications page1, it is clear

that the drone does not meet the desired expectations for its autonomy. However, this may be due to

the camera being in use. It is important to have it turned on since a significant portion of the warehouse

navigation will rely on it.

Flight Time There is an almost direct proportionality between the flight time and battery expenditure.

The observed battery expenditure represents an approximate 26% increase over the expected battery

expenditure given the theoretical flight time of 13 minutes at the 8-minute mark. If the information of

1Tello EDU technical specifications: https://www.ryzerobotics.com/tello-edu/specs, 18 Dec 2020
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Figure 5.1: Drone battery expenditure on stationary hover mode.

the graph were to be extrapolated to a full battery discharge, the maximum flight time would be under

10 and a half minutes. Since the drone must return to its starting position, it is important to leave

approximately 20% of the battery for the return trip or to re-position itself for an emergency landing.

Therefore, the drone has an effective flight time of approximately 8 minutes. To verify the extrapolation

above mentioned, the drone’s maximum battery autonomy was tested. It was timed from the moment of

takeoff until it landed. The drone remained airborne for approximately 10 minutes and 14 seconds. The

significant difference between the theoretical flight time and the observed flight time may also be due to

the wear on the drone battery.

5.1.1.B Signal-to-Noise Ratio

In Figure 5.2, the vertical axis represents the SNR which remains constant throughout the test. The

horizontal axis represents time in seconds (8 to 488). This result is expected since neither the drone nor

the computational platform change positions relative to each other except for during the initial takeoff.

Considering the ideal situation where the drone carries the SBC, the SNR would remain constant.

Connection Quality The drone maintained the Wi-Fi connection to the computational platform while

registering a constant SNR. This result was expected since the distance between the computational

platform and the drone is constant.
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Figure 5.2: Drone to computational platform connection signal-to-noise-ratio on stationary hover mode.

5.1.1.C Internal Temperature

Figure 5.3 shows a fluctuating reading on the drone’s internal temperature. The vertical axis rep-

resents the drone’s chipset temperature in degrees Celsius (58 to 74), averaged from the 3oC interval

received in each response. The horizontal axis represents time in seconds (8 to 488).

Chipset Temperature The temperature measured on the chipset of the drone increases when it is

under use, as expected. Once the temperature reaches between 72oC and 74oC, it stabilizes. The

drone has no internal cooling mechanisms, so this is due to the quadcopter blades spinning faster in

order to fan cool air onto the chassis (the sound produced by the drone varies when in flight, even when

in a stationary hover, possibly caused by this cooling event). This is compounded by the fact that the

drone overheats after spending approximately two minutes turned on without taking off.

5.1.2 Functional Tests - Drone

The drone was tested in a well-lit indoor environment over a patterned floor. When the first stationary

hover test was performed, the drone suffered a deviation from its starting position of approximately 15cm

and a rotational error of approximately 100o clockwise. The latter is a matter of concern due to the fact

that over an autonomous inventorying task, the drone will have completely misaligned itself with the

environment around it. In an attempt to correct this problem, the drone’s firmware was updated to the
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Figure 5.3: Drone internal temperature on stationary hover mode.

latest version.

Afterwards, by using the Tello Android application, two further calibrations were made: Firstly, the

IMU Calibration to ensure the drone was calculating its position, attitude and heading correctly and

secondly the COG (Center of Gravity) Calibration to balance the load of each of the four motors. The

drone was tested a second time afterward the same way as the first. The results show neither the slight

drift away from the starting position nor the rotation problem were satisfactorily resolved. After the 8-

minute stationary hover test, the drone landed 14.76cm away from its original position and had rotated

nearly approximately 80.6o (a still severe heading error) clockwise from its original heading, as seen in

Figure 5.4. The quadcopter blades showed signs of wear and were replaced.

Another stationary hover test, this time using the Tello Android application indicated the drift was still

present. When each motor was inspected, it was found that the rear-right motor offered slightly more

resistance to spinning the propeller than the others. This was verified by spinning each opposite pair of

propellers respectively clockwise or counterclockwise (depending on their intended spinning direction).

The rear-right propeller produced a different sound when spinning and its spinning decelerated at a faster

rate. Finally, the drone was tested in a stationary hover flight. The starting orientation for each propeller

was noted. The rear-right propeller was the last to start spinning while the remaining three started at

the same time. When the drone landed, the same propeller was the first to stop (the remaining three

stopped simultaneously at a later time) and the only one not to finish not to stop very close to its starting

orientation. The conclusion to be derived from this situation is that the rear-right motor is either faulty or
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more worn-out than the others. Fixing this issue was important since by having the drone yaw in place at

a considerable rate, any commands made with an orthogonal layout in mind quickly became impossible

for the drone to follow. For example, once issued a ”move” command for the drone to move forward

1.47m, the drone would also drift right approximately 20cm. A 90o rotation would be heavily affected by

the accumulated rotation the drone had done with its involuntary clockwise yawing, making it impossible

to change to the second aisle consistently. Although not ideal, the solution for this problem involved

experimenting with the average involuntary yaw the drone would pull per second. After several tests with

the drone in a stationary hover, it was determined that the drone yawed clockwise on average 0.21o/s.

This rate of involuntary yawing is not high enough to cause an update to the IMU’s attitude values.

Since rotation commands were already used, the simplest fix was to code a small threaded cycle to take

into account the number of seconds passed since takeoff, and whenever the drone reached the end

of an aisle, perform a second yaw correction. This correction would rotate the drone counterclockwise

according to the following formula, where TURN FIX is the angle to rotate counterclockwise, and t is

the number of seconds that have passed since takeoff or since the last correction:

TURN FIX = 0.21t

After correcting the drone’s yaw, TURN FIX is added to the OFFSET variable according to the

following expression:

OFFSET NEW = OFFSET OLD + TURN FIX

This expression is required because even though the drone would be rotating to its ideal attitude, the

IMU did not account for its involuntary yawing. Yet, the positioning correction command is issued and

has an impact on the yaw value registered by the IMU since it accounts of a counterclockwise rotation

of several degrees. Consequently, the OFFSET variable is combined with the drone’s current heading

before determining the yaw correction required. This ensures the software stores the correct yaw values

for the drone’s skewed attitude values.

5.1.3 Unit Tests - RFID System

To begin simulating a warehouse environment, the physical limitations of the selected RFID hard-

ware must be determined. The tag antenna is linearly polarized, therefore it and the RFID Reader’s

orientations are relevant.

Two experiments were made, described as follows:

1. An RFID tag (as seen on Section 4.1.2) was placed on a vertical, flat, non-metal surface. The tag

is 7cm wide and 1, 7cm tall and its depth is minimal. It was placed on the flat vertical surface with
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Figure 5.4: Comparison between drone takeoff position and orientation and landing position and orientation (top-
down view)

its width as its base, parallel to the ground. The RFID Reader was placed vertically, with its frontal

surface parallel to the tag’s frontal surface, facing it. The RFID Reader can be tuned to several

frequencies in the UHF range. This experiment verified the ideal SOAP for a tag, the choice of

best frequency to use for the tags (by measuring the maximum read range for each frequency)

and determined what the gain on the RFID Reader should be set to (by comparing three different

power settings with their effective read range).

Tag SOAP The tag’s SOAP specifications can be summarised as such:

• Size: The tag is 7cm wide, 1.7cm tall;

• Orientation: The tag is placed on a vertical surface with its widest sides parallel to the ground.

• Angle: The tag is read by the RFID Reader when the front-facing surfaces of both are parallel

to each other.

• Placement: The tag is placed against a non-metal surface, in this case against the side of a

cardboard box.

RFID Reader Frequency Setting The RFID Reader was set to its maximum gain. Afterwards,

the RFID Reader was switched between each available frequency range (through the configuration

application) while facing the RFID tag setup. For each frequency range, there was a distinct max-

imum read distance. The following table (Figure 5.5) presents the findings on the RFID Reader’s

maximum read distance per range.

The RFID Reader registered responses from the tag at significantly different ranges. Given that

there was only a single tag being queried, collisions did not affect the tag’s responses. This
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Figure 5.5: Comparison between the available Query Frequencies and their Maximum Experimental Read Range

indicates the ideal settings to read the tag are the TW and CN frequency settings.

RFID Reader Maximum Read Range The power setting in the configuration application allows

the RFID Reader to output a query signal with a gain of between approximately −2dBm (Power

Setting 0) to 25dBm (Power Setting 14), according to the tab’s tooltip. Three power settings were

tested: 0, 7, 14. The RFID Reader was configured to emit queries at the 922MHz to 928Mhz

frequency range (TW frequency setting). The following table (Figure 5.6) presents the findings on

the RFID Reader’s maximum read distance with respect to gain.

Figure 5.6: Comparison between the minimum, intermediate and maximum power setting and the Maximum Read
Range

The results obtained indicate maximizing the RFID Reader’s gain when querying maximizes the

distance at which it can read the tag.

2. Similarly to the first experiment, three RFID tags of the same make (Section 4.1.2) were placed

on a vertical, flat, non-metal surface parallel to each other. First, they were placed at their tallest.

Afterwards, they were placed at their widest. The RFID Reader was kept at a 20cm distance

from the tags. It was configured to emit queries at the 922MHz to 928MHz frequency range (TW

frequency setting) and its gain was set to its maximum value (power setting 14 at approximately

25dBm). The RFID Reader’s position was adjusted to be consistent with its placement in the

first experiment and to always face the tags correctly as described by the Angle parameter of the

tags’ SOAP. The RFID Reader was then made to traverse the group of tags horizontally whilst

maintaining the distance to them consistent.

Minimum Distance Between Tags It was found that when the tags were set parallel to each

other at their tallest (with their narrowest 1.7cm side parallel to the ground), the RFID Reader
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could collect at least one response from each tag when they were placed at least 8.5cm apart

horizontally. When the tags were set with their widest side parallel to the ground, a minimum

distance of 15cm was required to achieve the same result. This difference is in part due to the

number of collisions in the tag responses to each of the RFID Reader’s queries and due to the

width of the tags themselves occupying much more of the RFID Reader’s traversal range in the

second iteration of this experiment.

To obtain experimental values while flying the drone at a constant speed of 20cm/s in a straight

line, the RFID Reader was held below the drone, facing 20cm away from two series of tags and

correctly oriented towards them: the first set standing at their tallest and the second at their widest.

The experimental values for the distances at which to set the RFID tags apart from each other to

ensure each tag was read were found to be larger:

• The tags at their tallest were only able to be all successfully read when set 15cm apart;

• The tags at their widest were only able to be all successfully read when set 20cm apart;

This can be summarized in Figure 5.7. We can conclude that ideally the tags should be placed at

their tallest to maximize reading efficiency.

Figure 5.7: Ideal distance between tags, read from 20cm away.

5.1.4 Calibration - Distance to a visual marker and Computer Vision Shape De-

tection

The next step in building the warehouse simulation around the drone is related to its optical sensors.

Once the drone’s position in relation to a wall can be reliably configured, the space in which it will fly can

be conceptualized.
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Camera Viewing Angle According to the drone’s specifications page webpage2, the embedded cam-

era has a Field-of-View of 82.6◦. Since this information does not specify the orientation of the Field-of-

View, the following test was conducted to define the boundaries of the drone camera lens: Several points

were drawn 10cm apart horizontally on a vertical wall to be used as guides for the camera boundaries.

The drone was turned on along with its camera and connected to an Android phone with the Tello appli-

cation. It was placed directly facing the set of points. The drone was then moved closer to the wall until

two points 20cm apart were on the left and right boundary of the video stream. The same process was

repeated for point pairs that were 40cm and 60cm apart. A right-angle triangle can be conceptualized

from three points in space described as follows: the point where the drone camera is located (C); a

point drawn on the wall (W); the halfway point between W and its pair (H). The following expression was

applied to calculate the angle θ at ∠HCW (named the horizontal viewing angle):

tan(θ) =
HW

CW

HW represents half the distance that separates the point pair. CW represents the camera’s distance

to the wall, obtained from experimentation, where the point pair is on the horizontal boundaries of the

video output. The following table (Figure 5.8) presents the results obtained from applying the expression.

Figure 5.8: Comparison between distance to the wall and horizontal viewing angle (2θ).

The test was repeated at the same distances from the wall, but with points separated vertically

instead of horizontally. The 2θ values obtained from tan(θ) = HW
CW indicate that the camera’s vertical

viewing angle is 75% that of the horizontal viewing angle at a given distance from the wall. The accuracy

of this ratio is verified by the described resolution of the camera (HD720p: specifically 960 by 720 pixels)

for video output.

By comparing the results from each point pair, it can be concluded that the camera lens impacts the

angle of the field of view at different distances from its target. As such, a value for the distance from the

drone to the wall must be set before continuing. To ensure a minimum space for maneuvering, the drone

will be set 60cm away from the wall.

Computer Vision Slider Calibration For the visual marker to be detected, a frame from the video

feedback is first converted into one based on HSV (Hue, Saturation, Value) colour code. This new

2Tello EDU specifications: https://www.ryzerobotics.com/tello-edu/specs, 15 Dec 2020
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image is then combined (through a bitwise ”AND” operation) with a mask representing the colour range

that is to be selected. The result is a frame composed of black and white pixels, where white pixels

represent the area where the selected colour range was detected. The colour range is flexible and can

be adjusted for other colour ranges.

The resulting image is passed through a blurring bilateral filter to smooth the detected shape (cov-

ering small holes and correcting low-resolution blocks derived from the original frame) before shape

detection takes place. To perform Canny edge detection3 for the shape, one more value range (Thresh-

old1 for the lower value and Threshold2 for the upper value) is used to serve as a cutoff for the color

level between what will be considered black and white pixels in the blurred image.

To fully detect the visual markers used (the bounding rectangle lining up as close as possible with

the actual shape of the visual marker), the ranges pictured in Figure 5.9 were used. It is important to

note that lighting is a relevant factor when calibrating the drone in another environment. For reference,

the room was being lit by tubular fluorescent ceiling lamps, with an approximate colour temperature of

5000K.

Figure 5.9: Slider settings for visual marker detection

Computer Vision Marker Identification Calibration Regarding identification, the slider calibration

will detect the visual marker without issues. However, further testing was made to the conclusion that if

the visual marker is in contact with the border of the video feedback, occasionally the shape detection

will, instead of a rectangle, obtain a shape that encompasses exclusively the border of the visual marker.

The centroid is still in an accurate position regarding the center of the visual marker, but the computed

area of the shape is significantly inferior. This may cause issues: the drone might move forwards when

this error occurs, causing it to move too close to the marker and crash against the wall.

3Canny Edge Detection: https://docs.opencv.org/master/da/d22/tutorial_py_canny.html, 15 Dec 2020
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It is important to note that the frames received from the drone’s camera cannot be buffered, as

that would cause the drone to not update its position in real-time, but instead according to outdated

information (that would be the next frame after the one it just adjusted for). Whenever the module tasked

with the computer vision logic fails to properly read only the last frame received (forced by keeping the

buffer size to 1), the drone will be stuck correcting its trajectory until the software unfreezes or until it

crashes. This problem was addressed by keeping only the latest frame in the video buffer and also by

reducing the frames per second to 2 to reduce system load. However, this issue persists on occasion.

5.1.5 Calibration - Warehouse Mock-up

To simulate a warehouse environment, an area 4m wide, 5.60m long and over 2m tall in an artificially

lit room was chosen. This area was divided as pictured in Figure 5.10. The shelf space was only

delimited by plywood square panels 70cm in width which were covered by one large black bar and two

bordering green bars to complement the behaviour of the VPS. This was to avoid crashing the test drone

into the shelves in the event of an error. The visual markers for one shelf level were placed on the walls

at a height of 1.40m from the floor. The warehouse layout consists of a grid of three nodes (x-axis) by

four nodes (y-axis). The drone’s starting position is the coordinate set (0,3). The drone will move along

the aisles (along the y-axis) so as to scan the item tags. In this configuration, the drone reaches three

Hybrid Checkpoint points (at (0,0), (1,3) and (2,0)) before ending its traversal.

To calibrate the drone’s movement, its speed was set to 20cm/s and the ”move” commands (in

centimeters) were first issued in a 1:1 ratio with the measurements in the mock-up:

• Any x-axis movement was a multiple of 1m (the distance between two neighbouring nodes along

the x-axis

• Any y-axis movement was a multiple of 1.47m (the distance between two neighbouring nodes along

the y-axis)

This led to the drone crashing against the wall at the end of the aisle (cumulatively overshooting the goal

of each movement) due to the drone not accounting for the time required to come to a halt. This issue

was previously mentioned in Section 4.1.1.A and was much more noticeable than in smaller areas with

more controlled movements. The proportionality for the drone’s movements had to be estimated through

trial-and-error and changes to its flight speed. The fine-tuning of the drone’s horizontal movements

remained proportional to the warehouse dimensions. The results indicated that the drone flying at

20cm/s would only require a ”move” command for a distance of 85cm for x-axis movements and 120cm

for y-axis movements pertaining to two neighbouring nodes. The irregularities in the drone’s movements

relate to its apparent disregard for the time it takes to accelerate and decelerate. Taking this into account,

multiples of the resulting values remain relatively accurate. The drone may still either overshoot or not
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reach its goal position if the distance is large enough. When calibrating this system for another layout,

the distances to move between nodes along the x and y axes also needs to be adjusted from its intended

values.

Figure 5.10: Warehouse Layout Mock-up. Each node is marked by a coordinate set. The floor panels are seen in
black and green. The visual markers are placed on opposite walls.

5.2 Component Tests

5.2.1 Communications Component

The most important part of the communications component to test is its information flow. The test

can be divided into two parts: the deployment of the RFID interface controller and the transmission of

information. The local database was flushed for these tests since insertion times are a limiting factor.

RFID interface controller When the inventorying system is launched, the Wireshark instance that has

created a new livebuffer.pcap file will start storing USB packets from the RFID Reader. Whenever a new

entry is detected, the buffer file is read again. Depending on the amount of information, the time taken to
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process new tag arrivals can vary. Of note is the fact that regardless of the time it takes to process each

tag, Wireshark’s configured filter will detect all tags that are successfully queried. This means all the

tags in the buffer file will eventually be processed, even if the time it takes to complete the route through

the warehouse is longer than the processing time.

To test the time to process tags, the system was started. Once it was ready, the following process

was executed: Scan a single blank tag; scan two item tags and one node tag in quick succession;

scan an item tag; scan a node tag. The results are as follows:

1. A single blank tag takes approximately 2 seconds to be processed;

2. The series of two item tags and one node tag takes approximately 4 seconds to be processed;

3. An item tag takes approximately 2 seconds to be processed;

4. A node tag also takes approximately 2 seconds to be processed.

The results indicate that the most costly part of the operation is not the amount of information inside

a tag, but instead it is the time it takes for the whole cycle to read the buffer file to process any number

of new tags.

Information flow To test the communications component’s information flow management, the tag in-

formation from the previous test was used to determine if the previously empty local database and

buffers were holding the correct information.

The results (respective to the previous test’s points) are as follows:

1. The single blank tag was not present anywhere except for the Wireshark buffer file.

2. The local database’s item table registered two item entries and the tag.txt buffer file contained the

tag information from the first node tag;

3. The local database’s item table registered one more item entry;

4. The tag.txt buffer file contained the tag information from the second node tag.

We can conclude the tags are being correctly parsed and being transmitted to the correct compo-

nents (inventorying component for the item tags, navigation component for the node tags).

5.2.2 Inventorying Component

The test for the inventorying component relates to the identification of misplaced items and updating

item counts. Two insertion queries were made to the local database, each for one item.

Two item tags were scanned: the first was correctly stored but had a smaller item count and the

second was not in the right location but maintained its recorded item count.
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1. The first item tag’s item count value was updated. The item position value stored in the tag was

checked against its entry in the local database and the flag value remained at 0 (indicating the item

was correctly stored).

2. The second item tag’s position values did not match the local database’s records for that item. The

second item’s flag value was changed to 1 (indicating the item was misplaced).

The items were correctly updated to the local database, therefore the inventorying component is

functioning as intended.

5.2.3 Navigation Component

5.2.3.A Virtual Coordinates Map Routing

The routing algorithm was tested to ensure the drone could be launched from any position and still

be able to cover all the aisles it needed to. The algorithm accounts for shelves being arranged along the

y-axis (vertically, according to Figure 5.11). The node map, seen in Figure 5.11 was purposefully made

to be irregular to showcase the functionalities of the routing algorithm.

Figure 5.11: Node map used to test the routing algorithm.

The number of shelf levels was set to 3 (level 0, level 1 and level 2). The complete calculated route

can be seen in Figure 5.12. The calculated route through the first shelf level explains a great deal about

the drone’s behaviour. The starting position was set on node A (0,0). The routing process follows:

• From the starting position, the shortest y-axis path to one of the edges of the warehouse is, in this

case, a hop to I (0,1).

• The next hop will be C (0,-1) and then E (0,-2), since the goal is to traverse the length of each

shelf.

• Afterwards, the next hop is towards another aisle: F (1,-2), D (1,-1), B (1,0), J (1,1).
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• The next aisle follows: T (2,1), M (2,0), N (2,-1), O (2,-2).

• To move between O (2,-2) and G (-1,0), a diagonal movement is required (the movement control

function issues a ”move up” command first so that the drone clears the maximum shelf height,

moves the drone to the next hop, and then returns the drone to the previous altitude).

• Finally, the next hop is H (-1,1) (a command is then issued to move the drone to the next shelf

level).

The remaining levels follow the same logic. Of note is the final hop of the final shelf level: the drone

should return to its starting position. This leads the last hop, from G (-1,0) to A (0,0).

Figure 5.12: Routing a path through three shelf levels of the node map.

By Shelf Level 2, the drone would be following the ideal path for this layout: from O (2,-2) to G (-1,0),

reserving it every other level. This path is the one with the least distance to be covered (excluding the

final hop towards the original starting position in the example shown).

The impact this route has on the quantity and location of the Hybrid Checkpoint nodes to be used to

correct the drone’s position and trajectory is shown by Figure 5.13. On Shelf Level 0, the drone makes

four stops to correct its course on a Hybrid Checkpoint (the correction on H (-1,1) is made after going up

a shelf level). Even on Shelf Level 1, no stops are made at G (-1,0) due to the fact that it is not at one or

the other extremes for the y-axis.

If the starting position was set to be on node O (2,-2), the number of hops would be minimized

already on the first shelf level, causing there to be only four Hybrid Checkpoints to stop at per shelf level,

the exception being Shelf Level 0 with only three stops, assuming the drone was started with its heading

towards North (positive y-axis, default state).
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Figure 5.13: Hybrid Checkpoint nodes for the computed route in Shelf Level 0.

A more optimized starting position for the drone leads to leads to less distance to be covered and

fewer stops to correct the drone’s course, effectively increasing the drone’s potential coverage.

5.2.3.B Mock-up System Test

To test the warehouse traversal capabilities of the drone, the warehouse layout mock-up, seen in

Figure 5.10, was used. The navigation component was tested on a single shelf level. The plywood

panels were removed to account for the impact of the VPS on navigation. The drone was set down on

node D (0,3) and this node was defined as its starting position. The drone’s starting heading was set

to its default value of 0 (indicating it is facing towards the positive side of the y-axis). The warehouse

mock-up can be translated into the node map seen in Figure 5.14.

System Test without Hybrid Checkpoints The drone was left to traverse the layout. Once the drone

landed, the distance from its starting position to its landing position was measured (seen on the left in

Figure 5.15). The drone traversed the warehouse layout in approximately 1 minute and 44 seconds. The

accumulated error is significant: the drone landed approximately 1.57m away from the desired location

(the x-component error and the y-component error being respectively approximate to 96cm and 127cm).

System Test with Hybrid Checkpoints The exact same scenario was used for this test, with the ex-

ception that the Hybrid Checkpoint algorithm was used with a 30 seconds timer. Due to this last point, the

drone traversed the warehouse in approximately 3 minutes and 54 seconds. This time, the drone landed

only 0.56m away from its intended landing zone (seen on the right in Figure 5.15) (the x-component

error and the y-component error being respectively approximate to 51cm and 25cm). Comparatively, the
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Figure 5.14: Physical to Virtual conversion of the warehouse space. The red nodes indicate the Hybrid Checkpoints
for the first shelf level. The arrows indicate the route to be taken by the drone.

outcome of this test indicates that the developed Hybrid Checkpoint mechanism using computer vision

improved the drone’s accumulated positioning error by a significant amount.

5.3 System Field Test

To fully test the inventorying system, it is important to know how fast the drone can navigate the

warehouse and the inventorying system’s success rate in scanning a set of item tags. The main objective

of the test is to measure how many tags were successfully read (translating into a success rate), how

long was needed to traverse the warehouse layout, how close the drone’s finishing position is to its

starting position.

The same warehouse layout as the Hybrid Checkpoint one was used (Figure 5.14). A set of 13 tags

were placed horizontally at between twenty centimeters and one and a half meters apart from each other

at their tallest to represent items stored along two shelves: between x-coordinates 0 and 1; and between

x-coordinates 1 and 2. Some tags were covered by a cardboard piece approximately 1cm thick. A single

shelf level was accounted for when placing the tags. Node Tag verification was foregone to showcase

the inventorying functionality more clearly. The drone is expected to stop for flight corrections four times,
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Figure 5.15: Drone flight test without (left) and with (right) Hybrid Checkpoints.

according to Figure 5.14. The drone is also expected to return as close to the starting position as

possible. The user should be able to use the interface to see the updates to the local database’s item

table. The RFID Reader will be carried by hand along with the SBC (in this case, a laptop was used).

To simulate the drone’s ideal scanning capabilities, the RFID Reader will be moved in front of the tags

at the same speed the drone is moving at. The Reader is expected to detect all tags separated by

at least 20cm apart. Visual markers were placed at the end of every aisle at the same height. The

computer vision algorithm is expected to use the drone’s video feedback of the visual markers to correct

the drone’s position. The drone’s yawing problem is also expected to be minimized over the course of

the warehouse traversal.

The local database was populated beforehand as if it had received the file from the warehouse

database. An excerpt of it can be seen in Figure 5.16. The example follows: In red, an item storage unit

had 1 item removed from it and has been marked as misplaced by an on-site employee. Once the tag is

scanned, the item count is updated on the local database and the item is marked as misplaced. In cyan,

an item storage unit was restocked by 1 unit. Another prepared test is seen in Figure 5.17. The item

storage unit, marked as correctly stored in the local database and on the item tag, is scanned. The po-

sition advertised by the item tag differs from the one stored in the records. The item’s record is updated.

This includes the item storage unit’s current position and a flag to indicate the item’s misplacement.

The local database contained records of 13 items (Figure 5.18). Of these items, two of the tags

(henceforth named Overlap Tags) were less than 20cm apart and one tag (henceforth named Missing

Tag) was present only in the warehouse records and not on the shelves. During the field test, 12 item

tags were found. Upon further inspection, the only tag not found was the Missing Tag. This indicates

an initial success rate of 100% in tag scanning according to the established limitations. To further test

this value, the simulation was repeated five more times, but only over the Overlap Tags. Both Overlap

Tags were successfully scanned only two times. Only one Overlap Tag was scanned another two times.

No Overlap Tags were scanned one time. Although the field test’s item tag scanning success rate was
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Figure 5.16: Output excerpt of the local database before and after field testing the inventorying system.

Figure 5.17: Output excerpt of flagging a previously unflagged tag due to conflicting item position attributes.

perfect, it is very likely that if Overlap Tags exist, the success rate will drop. In a worst case scenario, the

number of successfully read tags will drop by the number of current Overlap Tags.

Overall Result The field test yielded mixed yet optimistic results. Each component individually exe-

cuted its task correctly. When every part is combined however, the system suffers from setbacks related

to the performance of the drone and RFID Reader. The result of the field test was an abrupt stop to

the autonomous inventorying system. Unfortunately, the software-based fixes for the drone’s involun-

tary yawing problem, described in Section 5.1.2, were not enough to curb it. Errors from the VPS further

compounded upon its ongoing yaw error, which lead to even more extreme deviations from the path from

the halfway point of the warehouse traversal onward. The drone had to be stopped when it reached node

I (2,0) at the 5 minute and 48-second mark (which by the time the drone landed accounted for over 50%

of its total battery-life), due to being roughly 2m off-course and already having over 45o of uncorrected

yaw error. The extent of the duration of the test was most likely what lead to this situation. If either the

software-based corrections were more fine-tuned, or the drone did not suffer from its rear-right motor
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Figure 5.18: Querying the database before and after the field test. The Overlap Tags are shown in yellow. The Miss-
ing Tag is shown in green. The bottom list (taken from the output log) lists all the item tag information
tag that was received.

issue in the first place, the final result would have been much more positive.

The RFID Reader was used 20cm away from the tags. The drone itself spans almost 20cm. In a

real-world scenario, the Reader would have to be much more powerful and almost certainly require bulk

reading to obtain a moderate level of success in a cluttered environment with many more tags and metal

surfaces to account for. The lack of bulk reading makes using the Reader to scan tags and validating

the original proposal for an inventorying system much more cumbersome, although possible, as can be

seen in the breakdown of the performance of each software component below. Finally, the fact the drone

cannot carry all the required parts for the autonomous inventorying system is regrettable but this issue

will be temporary, as drone manufacturers develop drones that can carry loads and possess larger, more

efficient batteries.

Regarding the navigation component:

• The virtual coordinates map was obtained from a query to the local database and provided the

correct route to traverse the warehouse (Figure 5.19).

• The commands to follow the planned route were issued to the drone;

• The computer vision algorithm obtained adequate corrections from the video feedback.

Regarding the inventorying and communications components:

• The local database was correctly accessed by the communications and inventorying components

for selections, insertions and updates;
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Figure 5.19: Excerpt of the output for the Virtual Coordinates Map. The computed route is shown at the bottom.

• The RFID interface controller correctly parsed the Wireshark capture file and obtained the scanned

items’ tag information;

• The inventorying component correctly updated the item tag information on the local database.

Virtual Coordinates Map and Drone Commands The Virtual Coordinates Map queried from the local

database was used to correctly plot a course through the aisles. The outcome was exactly as expected,

replicating the route from Figure 5.14. Every hop between two nodes was conducted by issuing rotation

(when necessary) and movement commands to the drone.

Hybrid Checkpoints The drone’s position was corrected at the Hybrid Checkpoints, notably at node

A (0,0) where it lined up with the visual marker with a minimal margin of error. As the drone drifted

off-course and its yaw error increased further down its route, it became difficult to rely on the computer

vision algorithm to reliably correct the drone’s positioning error at each Hybrid Checkpoint. Given the

success of these initial corrections, if the drone was in full working order the Hybrid Checkpoints would

prove to be a reliable way to correct the drone’s trajectory.

Item Tag Processing By keeping up with the drone’s movement and ensuring the tags were read by

the RFID Reader at the correct speed, by the end of the field test, 12 tags had been scanned. The results

follow: By comparing the first and second item table query in Figure 5.16, it is clear that the item counts

of several tags were updated; those which were misplaced remained flagged; any tag that reported

the wrong position when compared to its position in the local database was flagged as misplaced; of

the Overlap Tags that were less than 20cm apart, the success rate was shown to fluctuate between
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scanning none, one or both. Since no tags except the Missing Tag were missing in the buffer, it can be

assumed that this setup does not require immediate line-of-sight to the tag, but previous testing shows

that too many obstructions or metallic surfaces will reduce the RFID query’s effective range. It can also

be determined that the success rate for this setup was between 83.3% when considering the worst case

scenario and 100% considering the best case scenario.

The field test results show the viability of the autonomous inventorying system for use in warehouse

Reserve Areas and this work as a valid proof-of-concept. The current configuration is not ideal but can be

improved upon to obtain greater results, namely by using an RFID Reader that is capable of bulk reading

several tags omnidirectionally and a programmable drone capable in good working conditions capable

of transporting the required equipment for this project. The field test, though not entirely successful, is a

showcase of what is there to be improved and the culmination of the work, from where new projects can

hopefully be developed.

5.3.1 Summary

Units tests were made to the drone and to the RFID Reader. The drone was tested in relation to its

battery life, Signal-to-Noise Ratio and its internal chipset temperature. Battery-wise, the battery drops

almost linearly when in flight, but lasts for 3 minutes less than expected. The Signal-to-Noise Ratio

remains constant since the distance between the drone and the SBC remains constant. The drone does

not possess internal cooling mechanisms temperature rises quickly and fluctuates between 70oC and

75oC as the drone overworks its motors to produce enough air current to cool itself. The drone’s rear-

right motor makes extended tests difficult due to the yaw skew it causes on the drone’s trajectory. It is a

large concern since the warehouse layout is strictly orthogonal. Corrections were attempted through the

Tello application drone calibration functions. Unfortunately, neither the re-calibrations to the IMU nor to

the Center of Gravity mitigated this issue. As a stopgap measure, a software-based solution was built:

experiments were conducted to determine the drone’s amount of yaw per second. Once an average

value was obtained, the drone would be commanded to rotate counterclockwise by a multiple of that

amount (determined by the time spent since the last correction) once it reached a Hybrid Checkpoint.

The drone’s IMU yaw value will become unduly skewed from this correction (but not from its involuntary

yaw due its lack of IMU measurement resolution), therefore a global offset value must be updated to

ensure the correct yaw value is queried from the drone’s IMU.

The RFID Reader was expected to have a larger read range and tolerance to interference when

signalling. While signalling the tags, the ideal frequency setting was found to be in the 922MHz to

928MHz band. The power setting was set to its maximum value (25dBm) to maximize its read range.

The distance between tags should be minimized. Testing determined that if they are to be laid out at

their tallest with respect to the ground, a minimum distance of 15cm should be ensured between RFID
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tags so that they are read as the drone moves at a speed of 20cm/s.

The autonomous inventorying system needs to be calibrated when it is used in a new environment.

When attending to its calibration, the computer vision algorithm’s detection was adjusted for the light-

ing conditions of the warehouse mock-up. Regarding the multipliers for the drone’s movement, it was

verified that the drone did not account for the time it needs to come to a halt. For larger distances and

faster traversal speeds, the movement multipliers should be reduced to avoid overshooting the nodes or

potentially crashing.

The software components function as expected. The communications component was tested by

scanning a series of tags and measuring any significant processing time increases and it was found

that the size of the buffer file was the most prominent factor. The tags were correctly parsed and trans-

mitted to the direct components. The inventorying component was tested by inserting and updating

item records into the local database. The items were correctly updated and the item tag made to sig-

nal a wrongly stored item was correctly flagged. The navigation component provided the shortest path

route through all the nodes and shelf levels of a given purposefully irregular warehouse. The Hybrid

Checkpoint approach was tested and the smart drone landed approximately 1m closer to its original

starting position when utilizing this approach, compared to a landing position with an error margin of

approximately 1.57m noted when testing the system without any course correction algorithms. It is also

important to mention that if the video feed is frozen or otherwise not being transmitted for a longer period

of time, the drone may perform incorrect adjustments based on outdated information.

The system field test was reliant on proper yaw corrections for the drone for an extended period

of time. Even though each software component operated adequately and accurately (notably when

adjusting the drone’s position at the first Hybrid Checkpoint), the overall yaw skew from the drone’s

malfunctioning motor made it impossible to traverse the entire planned warehouse layout. The naviga-

tion component issued the correct commands and the computer vision algorithm correctly adjusted the

drone’s position whenever it stopped at a Hybrid Checkpoint. The drone’s movement was manually sim-

ulated with the RFID Reader. The success rate for item tag scanning, according to the conditions of the

field test and the limitations at the time, fluctuated between 83.3% and 100%, depending on whether there

were overlapping tags (closer than 20cm apart) or not. The item tag information was always correctly

updated.
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Conclusions

6.1 Summary

6.1.1 State of the Art

Drones play an increasingly important role in improving efficiency across a multitude of tasks. This

work focused on combining the mobility of a multicopter drone with existing technologies for scanning

items to form an automated inventorying system capable of functioning within the Reserve Area of a

warehouse. Such a system requires a dedicated navigation system for an indoor environment. Sugges-

tions on what technologies to leverage were put forth: as for inventorying the items stocked in shelves,

Passive RFID Scanning was chosen as it provides a simple and low-cost identification process for items.

Comparatively to older barcode scanning technology, RFID scans can have longer ranges and do not

require line-of-sight between the RFID Reader and the tags, although they are slightly more expensive.

It depends on having each item or set of items labelled with a passive RFID tag which will have useful

information written to it: the item’s unique identifier, the item count of the storage unit, the position the

item was stored at and a binary flag to determine if the item is misplaced or not. The inventorying sys-

tem is ideally connected to one of the warehouse’s database access points. A 2.4GHz Wireless LAN

connection was the most direct choice, adding to the notion of near real-time updates to the warehouse’s

database. However, obstacles, interference and multi-path signal propagation reduce the connection’s

range and throughput. To remedy this, more access points can be deployed. Alternatively, RFly’s so-

lution, composed of using the drone as a relay platform for scanning tags from a centralized location

in a large area, is a very interesting application of Radio Frequency signal properties. The Wi-Fi so-

lution suffices since its application is direct and the infrastructure for its implementation is widespread.

Regarding the drone’s navigation of the warehouse, several paths may be taken: GPS seems like a

clear solution, but it only works for outdoor areas. Warehouses are indoor environments and require a

specialized solution. Between localization based on RSSI (be it through Wi-Fi, Bluetooth or RFID) and

a solution based on UWB anchors, the more affordable RFID RSSI solution was chosen, which also im-

plies the same RFID Reader will be used for both inventorying and navigation functionalities. There are
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limiting physical constraints regarding the equipment choices at first glance. The main limiting factors

relating to the drone are its maximum flight time (limited by its battery-life) and its payload capacity (its

ability to transport the required sensors). Cluttered or otherwise metallic surfaces interfere with the RFID

Reader’s scanning capabilities. Legal issues arise with the use of drones in spaces where employees

work. Precautions must be taken to ensure the work environment is safe and that no laws regarding UAV

flight or surveillance are broken. Other related works (apart from the above mentioned RFly solution),

such as RFIDRead’s use of drones in a storage yard scenario with RFID inventorying technology by

Bae, Sung Moon, et al, or the UWB localization solution for drones by Macoir, Nicola, et al, or even the

commercially available solution by PINC AIR served as inspiration and a source of knowledge for this

project.

6.1.2 Architecture

The inventorying system can be built according to a set of defining parameters, such as: the multi-

copter drone’s characteristics relating to its battery-life, its available movement options and behaviour

and safety precautions; the warehouse’s physical infrastructure, its indoor layout in the Reserve

Area and the item storage method; the Warehouse Telecommunications Infrastructure, such as the

warehouse’s Wireless LAN network and its centralized item database; item identification and loca-

tion methods relying on reusable tags; and the possibility to navigate the warehouse according to its

layout.

The inventorying system was expected to be able to scan item tags located throughout a ware-

house Reserve Area of varying sizes. These items could be obstructed or not in line-of-sight. These

reusable item tags should contain information that allows the inventorying system to keep the warehouse

database updated in near real-time and fag misplaced items in such a way that it allows the warehouse

to remain operational. The system should be autonomous. The drone transporting the equipment is

tasked with navigating the warehouse and correcting its trajectory in the case it veers off-course. The

system is planned to contain a local database in which the smart drone stores item tag information to

be sent to the warehouse database whenever a loss-tolerant connection to one of its access points is

available. The route should be available when the drone takes off. An inventorying system interface

should exist to ensure the warehouse layout is configurable and the local database can be accessed.

This set of parameters and requirements sets the scope of the project. The smart drone (the au-

tonomous inventorying system) routes and navigates a path through an orthogonal warehouse environ-

ment of varying dimensions (programmable by the user), moving along its aisles and scanning items.

The drone scans each shelf level horizontally until the entire Reserve Area has been traversed. When-

ever it can connect to a warehouse access point, it will update the warehouse database through a loss-

tolerant communications protocol. The smart drone is able to adjust its position to ensure it remains in
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the correct path. The drone, once finished, plots a diagonal path back above the maximum shelf height

to where it started and lands. The smart drone can be subdivided into its item sensing and warehouse

navigation systems. The respectively named inventorying component and navigation component

are brought together by the communications component, tasked with information parsing and delivery

as well as providing a user interface, and by the locally stored database component, which contains

the information required for both the inventorying and navigation components.

The inventorying component takes the information from the scanned item tags and parses it to

obtain the EPC, the item count, and the item position. When it updates the local database with this infor-

mation, it checks the item’s position against the locally stored item position. If they differ, the component

adds a binary flag value to the item tag information to mark it as a misplaced item if it had not yet been

flagged. Otherwise, if it was already flagged it remains so. An RFID sensor system (a reader and a set

of tags) compatible with EPC Class 1 Gen 2 should be able to store an item’s EPC, count, position and

optional flag). Ideally, the RFID Reader should be capable not only of signalling individual tags but also

of bulk reading several tags at once. Tag SOAP indications should be respected to maximize scanning

effectiveness.

The navigation component uses a Virtual Coordinates Map to plot its route through the ware-

house. This virtual coordinates map converts the physical environment into a digital one according to

graph theory. The graph nodes represent intersections between corridors and the lines indicate avail-

able paths. The routing algorithm seeks to find the shortest path between the node the smart drone is

currently on and the next one in the aisle it is in. The smart drone seeks to traverse the warehouse by

using the least amount of movement possible, which leads it to traverse an entire aisle before shifting

over to the next one. The end result is a single branch spanning tree that passes through all nodes once.

Both to complement this routing algorithm and to bridge the gap between the physical and virtual world,

two navigation approaches were detailed:

• The RSSI Triangulation approach relies on the RFID Reader’s bulk reading capabilities to query

several node tags and obtain an RSSI value from each, from which it calculates an approximation of

its real-world position. This would be complemented by information regarding the drone’s previous

movement and its reported previous position. Node tag placement favours redundancy to ensure

a minimum of three RFID node tags are detected. The drone’s computed position is then used to

perform any corrections to its trajectory it requires or to adjust its route.

• The Hybrid Checkpoint approach uses a combination of RFID node tags and a set of visual

markers on the walls opposite each other at the end of each aisle. By leveraging the drone’s front-

facing camera and computer vision technology, the smart drone can correct its position whenever

it reaches the extremity of an aisle. It can then verify its position by scanning the node tag placed

next to the visual marker. This approach requires the use of existing open-source libraries to parse
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the video feedback.

Much like the inventorying component, both approaches benefit from adequate tag SOAP indications.

The database component stores two tables:

• The Item Table holds the following attributes: EPC (Primary Key); Item count; x-axis Position;

y-axis Position; z-axis Position; Flag.

• The Node Table holds the following attributes: EPC; x-axis Position; y-axis Position.

The tables have no relation between them. Each can be accessed respectively by the inventorying

component and the navigation component. The communications component accesses both.

6.1.3 Implementation

The whole inventorying system can be separated into five parts: the Smart Drone, which contains

the multicopter, the SBC and the RFID Reader; the Item and Node RFID tags, the Visual Markers; the

Network connections from the SBC to the drone and from the SBC to the warehouse database; and the

Software architecture.

The drone is a DJI Tello EDU, a small 80g multicopter programmable in Python through a provided

SDK. It generates a 2.4Ghz Wireless LAN which will be used to receive commands sent by the compu-

tational platform. The drone is equipped with a series of sensors: an IMU, a VPS, and a frontal camera.

The IMU lacks floating point resolution. The VPS is very sensitive to changes in lighting and ground sur-

face conditions. When in flight, the drone can move along all three-dimensional axes, yaw and adjust its

speed. These functionalities are sufficient to navigate the warehouse. The drone suffers from an issue

on its read-right motor that causes it to involuntarily yaw clockwise. When attempting to fix this issue via

a software-driven yaw correction system, it was noted that it was difficult to obtain accurate adjustment

values since the drone yawed at differing rates accross different experiments (the adjustment value is

based on the average yaw skew per second). This problem is compounded by the fact the IMU does not

register the relatively small (0.208o/s) involuntary yaw but does in fact register the comparatively much

larger yaw correction made whenever possible. The corrections made work best for shorter flight times.

The RFID Reader is a WRD-130-U1 Ultra High Frequency RFID card reader operating in the 860Mhz

to 960Mhz frequency range. It scans tags through signalling and sends the information received through

keyboard emulation functions. It is not capable of bulk reading and is heavier than the drone. It is

therefore not possible to operate the drone with the required equipment. The navigation positioning

adjustments to be taken will necessarily follow the Hybrid Checkpoint approach. The RFID Reader

was difficult to operate at first not only due to unfamiliarity with the technology but also due to the lack of

useful and precise documentation available to detail its behaviour. The RFID Reader was configured to
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read and write 32 EPC hexadecimal digits and 16 characters of tag information on the RFID tags which

were acquired.

The aggregating element for the smart drone is the SBC. In particular, it is suggested to use a

Raspberry Pi Zero and in this case a TP-Link TL-WN321G 54 Mb/s Wireless USB Adapter to allow

for the connection from the SBC to the warehouse database. However, since the hardware architecture

would require it to also be transported by the drone, it was replaced by a laptop of increased performance

to facilitate development.

The RFID tags that were used were LN-9662, Higgs-3, ”Short” Inlay type tags. These comply with

the EPC Class 1 Gen 2 protocol and were divided into a set of Item tags and a set of Node tags, wherein

the respective tag information was written to.

Field testing will require the drone to fly the intended path and the computational platform to be oper-

ated manually to simulate the intended load carrying capacity of the drone. The inventorying component

will maintain its original functionalities, limited only by the RFID Reader’s lack of bulk reading function.

The tags will have to be placed on the items at the same height level to ensure the smart drone can scan

them while traversing the aisle in a single horizontal movement. The navigation component will forcibly

be the Hybrid Checkpoint approach. This is an opportunity to utilize current open-source computer

vision libraries to assist with the drone movement. Signalling will be limited to verifying the drone’s po-

sition once it finishes adjusting its position through the camera positioning algorithm. This algorithm will

use a set of bright red visual markers placed on the walls at each end of the aisles to provide cues for

the drone to adjust its position. The networks required for this project are two Wi-Fi connections. The

first connects the SBC to the drone. The second (through the external Wi-Fi adapter) connects the SBC

to the warehouse database access points.

The code architecture was developed in Python. In particular, Python 2 was used for the navigation

component due to the reliance of the drone SDK on this version. The rest of the system will operate

under Python 3. All three software components access the database through the slite3 library to read,

write and update information where required. To allow for communication between the two Python

versions, a tag.txt buffer file is used since both can access the file without issues regarding serialization

and de-serialization of objects. The item and node tag information is captured by a Wireshark filter

(which writes to a livebuffer.pcap buffer file and accessed actively through PyShark. It is then parsed

and sent respectively to the inventorying component or to the navigation component. The local database

stores an item table and a node table, both configurable through the communications component. The

communications component uses the application layer File Transfer Protocol to update the warehouse

database. The navigation component computes the route to be followed by the drone through the Virtual

Coordinates Map. After takeoff, it is tasked with issuing the commands to move the drone through the

route. The navigation component uses computer vision to, when the smart drone reaches an edge of
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an aisle, detect the aforementioned visual marker. It then computes the centroid of the shape and its

area. By measuring the distance and direction of the vector from the centroid of the shape to the center

of the video feedback, its vertical and horizontal components can be obtained. These result in ”move”

commands issued to the drone, respectively ”up” or ”down”, and ”left” or ”right”. Lastly, the area of the

shape is used to determine the the drone needs to approach or move away from the visual marker

(through ”move forward” or ”move back” commands).

6.2 Discussion

The outlook after development is an optimistic one. The goal to envision and create a proof-of-

concept for an autonomous inventorying system was met, albeit with caveats. Notably, the main issue

relates to the inadequate material used to develop this project. This was mainly to due inexperience

on the subjects of RFID and drone technologies. Selecting the equipment should have been made with

guidance on the subject. The research previously made on these technologies fell short of detailing

the amount of specialization they have, and so a significant part of the work consisted of developing

workarounds for problems and flaws discovered throughout development and adjusting the initial system

design to suit them.

The learning process involved first understanding how the drone operated. By understanding how

to pilot it and how to connect to it via the SDK, operating it became a matter of grasping the limitations

of the drone. It is important to note that the faulty drone was the main cause for the incomplete field

test. This issue was difficult to pinpoint and it is still unclear if the cause was a factory defect or post-

purchase damage. Android application re-calibrations did not correct the issue. In an attempt to fix

this problem without recalling the drone, a software solution was built upon experimental data to correct

the drone’s yaw according to information polled from its IMU. The IMU also assisted in developing the

Hybrid Checkpoint solution. Both of these efforts were limited by the IMU’s lack of precision. This point is

critical, since if the IMU was sensitive enough, it would also pick up its involuntary rotation and possibly

even correct itself automatically. If this was the case, the final outcome would see a much cleaner

flight through the warehouse. The drone’s movements remain imperfect, so the IMU is used to provide

corrections to the involuntary clockwise yaw problem and to slight imperfections in rotation commands,

such as rotating the drone with a margin of error of within a few degrees. The drone’s VPS was sensitive

to the point that it worked as a detriment to it. Although it functioned properly when responding to an

imbalance or shift in surface height below it, the VPS also caused the drone to stray off-course or even

crash due to misjudging its surroundings due to lighting or floor conditions. However, even with these

issues, it was possible to prove the basic theory of the work: that drones can be used indoors, provided

they operate not only through a virtual map but also through receiving and processing feedback from the
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physical world. Even though the drone is faulty and cannot carry the necessary equipment, the fact that

it is programmable is what made this project feasible.

The selected RFID parts should have supported bulk reading for this project. Given that it is a

mature technology, the limited showcase of their functionality is still a strong indicator it is a good match

for an automated system. It was shown to be accurate and consistent in its results regarding scanning.

Although the expected read range was much shorter than the advertised one, it does not invalidate the

use-case of the inventorying system. It is not without its flaws, namely the reduced range from tag SOAP

and metallic interference which is certainly common in warehouse shelving. The information stored in

the programmable tags exemplifies the usefulness of RFID tags over other widespread identification

methods. The relatively large distance to be kept between them can be minimized by a bulk reading

and with it increasing query rates. Collisions can be avoided through the use of the SBCS protocol,

for example. The recommendation is to mainly consider a lightweight RFID Reader clearly capable of

far-field bulk reading.

The implementation of computer vision as a means to perceive the world through everyday optical

sensors helps demonstrate the various avenues for developing a project such as this. With responsive

equipment, OpenCV provides accurate, useful and reliable information when its use-case is adequately

compartmentalized. Its performance was adequate and mostly flawless (save for issues regarding the

processing time for frames, backlogged frames and wireless connection problems) for the type of quick

real-time adjustments made to the drone during flight.

Besides acquiring or developing dedicated equipment for a task such as this, the main points to

improve on would be developing a robust and lightweight RFID scanning method taking into account the

options described throughout this work, particularly in the State of the Art section. The computer vision

algorithm would also benefit from improvements regarding more efficient video processing to minimize

issues with processing time and lost or otherwise unprocessed frames. This system could be expanded

beyond the Hybrid Checkpoint approach and take a more active role in helping the drone navigate the

warehouse.

6.3 Future Work

This work serves as an initial proof-of-concept to help demonstrate the viability of using drones to

automate to operate in indoor environments to perform tasks otherwise laborious attributed to human

employees. The drone industry is growing and developing ever more capable and cost-effective drones.

The current state of the project suggests that, with equipment better suited for the scenario, one could

develop an effective solution for minimizing warehouse inventorying downtime and allow for near real-

time updates on stock for e-commerce, shipping and storage platforms. The autonomous inventorying
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system is a foundation on which to build upon with further work and optimizations. An interesting propo-

sition is to develop this idea towards the vision of having a smart drone inventorying system product

with minimal setup and rapid deployment. To summarize, the project was shown the be a solid starting

step on which to develop further work on developing an efficient autonomous inventorying system for

warehouses with minimal human interaction, as we draw closer to automating the logistics chain from

production to consumption.
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