
Integrating asynchronous BFT with Ethereum validator
networks

Matheus Guilherme Leça da Silva Franco

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Rodrigo Seromenho Miragaia Rodrigues
Prof. Henrique Moniz

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. Rodrigo Seromenho Miragaia Rodrigues

Member of the Committee: Prof. João Pedro Faria Mendonça Barreto

November 2023



Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.



Acknowledgments

I want to express my deepest gratitude to my supervisors, Rodrigo and Henrique, for giving me this

opportunity and providing unwavering support throughout this research. Their expertise and willingness

to guide me have been invaluable. Their mentorship not only shaped the academic aspects of this

thesis but also fostered my personal and professional growth. This thesis stands as a testament to their

exceptional mentorship, and I am honored to have had the opportunity to learn under their guidance.

Moreover, I want to thank my family for their encouragement and commitment to my education. Their

emotional support, along with their dedication and hard work, made all of this possible for me. To my

parents, sister, girlfriend, and extended family, thanks for your endless love and support.

Lastly, I want to express my gratefulness to my colleague and friend, Daniel Porto, who dedicated

countless hours to helping me by discussing complex concepts, reviewing lines of code, and solving

errors. However, his contribution extended far beyond the academic realm, supporting me and offering a

friendly shoulder during difficult moments. His dedication was crucial for the completion of this journey.

Daniel, you will always be a source of inspiration and a warm memory of friendship.

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia,

under project UIDB/50021/2020 and PTDC/CCI-INF/6762/2020.

i





Abstract

The transition from Proof-of-Work to Proof-of-Stake by some blockchains, such as Ethereum, raised the

bar for users to become validators and get the corresponding rewards. Recently, the concept of secret

shared validators was introduced to overcome these hurdles by creating a network to run a validator in a

decentralized and secure way. The consensus layer of such a network must run an efficient and robust

Byzantine fault tolerance protocol in order to coordinate the network operators. This work aims to design

and implement Alea-BFT, a robust, leaderless (making it inherently more resilient to node faults), and

efficient asynchronous BFT protocol, with quadratic communication complexity, in the context of the SSV

network. In addition to the design and implementation of this integration of the new protocol into SSV,

an in-depth analysis and experimental evaluation shall be conducted in order to compare Alea-BFT’s

performance against other protocols, such as the ones that are currently adopted by the Ethereum

foundation. Finally, we expect that such experimental evaluation will result in upgrades to Alea-BFT,

making it more resilient to network or node faults.

Keywords

Alea-BFT; Asynchronous BFT protocols; Secret Shared Validators; Ethereum; Proof-of-Stake.

iii





Resumo

A transição entre Proof-of-Work e Proof-of-Stake por algumas blockchains, como a Ethereum, elevou

os requerimentos para usuários tornarem-se validadores e receberem recompensas. Recentemente,

o conceito de Secret Shared Validators foi introduzido para solucionar estes problemas por meio da

criação de uma rede com o objetivo de executar um validador de uma forma decentralizada e segura.

A camada de consenso desta rede deve correr um protocol tolerante a falhas bizantinas eficiente e

seguro com o propósito de coordenar os operadores da rede. Esse trabalho tem por objetivo desen-

har e implementar Alea-BFT, um protocol robusto, indepedente de um lı́der (tornando-o inerentemente

mais resistente a falhas de nós), e eficiente com complexidade de comunicação quadrática, no contexto

da SSV network. Além do desenho e implementação da integração desse novo protocolo no contexto

da SSV, uma análise profunda e avaliações experimentais serão conduzidas com o objetivo de com-

parar a performance do Alea-BFT contra outros protocolos, como o protocolo atualmente recomendado

pela Fundação Ethereum. Finalmente, esperamos que a avaliação experimental tenha como resultado

melhorias ao Alea-BFT, tornando-o mais resiliente a falhas de rede e de nós.

Palavras Chave

Alea-BFT; Protocolos BFT assı́ncronos; Secret Shared Validators; Ethereum; Proof-of-Stake.

v





Contents

1 Introduction 1

1.1 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background & Related Work 5

2.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Proof-of-Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Proof-of-Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Running a Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Distributed Validator Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Shamir Key Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 BLS Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Validator duties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 BFT Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Communication models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 FLP Impossibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Istanbul BFT (IBFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Asynchronous protocols techniques & overcoming FLP . . . . . . . . . . . . . . . 20

2.3.5 Initial asynchronous BFT protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.6 HoneyBadgerBFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Alea-BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Verifiable Consistent Broadcast Protocol (VCBC) . . . . . . . . . . . . . . . . . . . 25

2.4.2 Asynchronous Binary Agreement (ABA) . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Design 29

3.1 SSV Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The role and interface of consensus in SSV . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Adapting Alea-BFT to one-shot consensus . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3.4 Protocol optimizations for Alea-BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Fast ABA (FA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 First ABA Delay (AD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Complete VCBC View (CV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Cryptographic optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 BLS Aggreation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.3 Other asymmetric schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Implementation 39

4.1 SSV modules implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Alea-BFT module in the SSV code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Private Ethereum Testnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Evaluation 45

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Alea-BFT and QBFT performance comparison . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Execution breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Improving the cryptography bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Results on wide area networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Performance as a function of the network size . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Performance under faulty scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 61

6.1 System Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

viii



List of Figures

2.1 Block relation to the previous block in a Blockchain. . . . . . . . . . . . . . . . . . . . . . . 7

2.2 RANDAO calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Checkpoints and Finality illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Shamir Secret Sharing illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Graphs of elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Elliptic curve y2 = x3 + x restricted to F23. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Attestation committees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 2nd lemma to prove the FLP impossibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 VCBC protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Operator modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 SSV structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Instance use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Base latency for QBFT and Alea-BFT with protocol optimizations. . . . . . . . . . . . . . . 47

5.2 Performance per system load for QBFT and Alea-BFT optimized. . . . . . . . . . . . . . . 49

5.3 Required validators for duty per slot expectation. . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Step profiling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Execution breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Cryptograhpy functions benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Base latency with different cryptography optimizations. . . . . . . . . . . . . . . . . . . . . 53

5.8 Performance by system load for different cryptography optimizations. . . . . . . . . . . . . 54

5.9 Peak throughput for different cryptography optimizations. . . . . . . . . . . . . . . . . . . . 55

5.10 Performance by system load for wide area with 500 ms transmission delay. . . . . . . . . 56

5.11 Latency per transmission delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.12 Base latency per system size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.13 Base latency for different fault scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



5.14 Throughput trace with crash fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



List of Tables

2.1 Alea-BFT components complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Protocol optimizations speed-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Benchmark latency of relevant Alea-BFT steps, considering the Complete VCBC View

optimization, in milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



xii



Listings

4.1 Alea-BFT messages definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



xiv



1
Introduction

Contents

1.1 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Ethereum is a decentralized, open-source blockchain that enables the creation of smart contracts

and decentralized applications (dApps)1. It was initially released in 2015 and conceived by the program-

mer Vitalik Buterin. Nowadays, Ethereum is one of the most important blockchains in terms of market

capitalization. At the beginning of 2022, it was approximately 450 billion dollars2, losing only to Bitcoin.

Ethereum began by using Proof-of-Work (PoW) as its consensus mechanism, in which miners would

compete to solve mathematical tasks in order to validate transactions and add them to the blockchain.

PoW, however, has led to concerns such as its environmental impact due to its high energy consumption

and the tendency to concentrate computing resources in locations where electricity is cheap.

This context gave rise to new consensus mechanisms such as Proof-of-Stake (PoS), which would

later be adopted by Ethereum, promising to save up to 99,95% of Ethereum’s energy use. In a PoS

system, validators (also known as ”stakers”) are selected to validate transactions based on their stake

in the network [1–3]. To this end, in the context of Ethereum, a user must, first, deposit 32 ETH into a
1V. Buterin, “Ethereum white paper: A next generation smart contract & decentralized application platform,” 2013. [Online].

Available: https://github.com/ethereum/wiki/wiki/White-Paper
2(2023, October) Ethereum’s Market Capitalization History (2015 – 2023, $ Billion. Accessed 20-October-2023. [Online]. Avail-

able: https://www.globaldata.com/data-insights/financial-services/ethereums-market-capitalization-history/

1

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.globaldata.com/data-insights/financial-services/ ethereums-market-capitalization-history/


deposit smart contract in order to become a validator. After that, it will be selected to validate blocks

but its behavior will affect whether it will receive rewards for its work or be penalized for being offline or

behaving maliciously.

Thus, the financial barrier and the computational resources necessary to run a validator can be

challenging. Some validators use Staking-as-a-Service providers in order to run their duties on their

behalf. This, however, represents a single point of failure in addition to requiring the provider to access

the user’s private key and, still, is susceptible to downtime.

To address these problems, the Ethereum Foundation proposed the idea of a Distributed Validator

Technology (DVT). Then, a company named Secret Shared Validators (SSV)3 came up with a secure

and robust way to split an Ethereum validator key between non-trusting operators, decentralizing the

validator’s execution. SSV allows multiple parties to share the responsibilities and rewards of validating

transactions while maintaining the secrecy of their identities. The operators representing the validator,

however, should agree on what to send to the blockchain network, a problem solvable with Byzantine

Fault Tolerant consensus protocols.

The BFT consensus (or agreement) problem was first introduced by Lamport, Shostak, and Pease in

1982 with the famous Byzantine Generals problem [4]. Byzantine fault tolerance is a property of a system

described as its ability to function correctly even when some of its components may be faulty [4]. Since

Lamport’s original proposal, many BFT protocols have been developed, most of them only providing both

safety and liveness in synchronous or partially synchronous settings [5]. Synchronous systems denote

systems in which there is a known upper bound to communication time. Partially synchronous systems

are those in which the upper time bound is not known or is only valid after an unknown interval, e.g.

the IBFT [6] which is currently adopted by SSV. And, finally, in asynchronous systems, no assumption

is made regarding communication time. The prioritization of synchronous and partially synchronous

models was due to the FLP impossibility [7], which states that there is no deterministic solution for the

consensus problem in an asynchronous system in which a single process can fail.

Recently, there has been a surge in research about asynchronous BFT consensus, notably since the

proposal for a practical asynchronous BFT protocol called HoneyBadgerBFT [8], which was developed

in 2017, with a O(n3) communication complexity. To overcome the FLP impossibility, randomization

techniques were employed by which the protocol achieves consensus with a high probability as multi-

ple rounds are performed. The advantage of asynchronous protocols relies on their resilience to the

underlying network conditions, being robust to attacks or accidental faults in the network and nodes.

Following the interest in an efficient asynchronous BFT consensus protocol, Alea-BFT [5] emerged

as the first practical protocol for real-world scenarios due to its quadratic communication complexity. It’s

3A. Muroch. (2021, February) An Introduction to Secret Shared Validators (SSV) for
Ethereum 2.0. Accessed 20-October-2023. [Online]. Available: https://blog.ssv.network/

an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee

2

https://blog.ssv.network/ an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://blog.ssv.network/ an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee


designed in a two-stage pipeline that combines a broadcasting and an agreement component that runs

in parallel. It’s built on top of common building blocks which allows for flexibility and improvement.

In summary, a key component of the SSV’s validator network relies on a BFT protocol, which must be

robust and efficient in relation to throughput and latency in order for the operators to be able to perform

all validators’ tasks in time. For that, we propose the integration of the Alea-BFT consensus protocol with

SSV, along with a thorough experimental evaluation, comparing Alea-BFT to IBFT, the market standard

protocol.

The biggest integration challenge faced was adapting Alea-BFT’s state machine replication design

to a problem requiring a single consensus execution. For instance, consensus instances are created

whenever a validator duty needs to be solved. Nonetheless, it would be easier to fit Alea-BFT and

performance would improve if the network was built as a state machine replication. To address this

issue, we proposed several optimizations and analyzed their performance improvement both in normal

scenarios and under unexpected behavior from both the nodes and the network.

First of all, we implemented an optimization to the agreement protocol (that can be extended to any

context) which allows it to terminate faster in case all first binary votes are equal. Secondly, we created

a delay before starting the agreement component in order for it to have a higher probability of success in

the first run. Furthermore, we used the fact that most of the time the values proposed by operators are

the same, allowing us to terminate the consensus in case we have equal operators’ proposals. Lastly,

we replaced the asymmetric signature scheme with message authentication codes, targeting the main

performance bottleneck and improving the protocol performance.

Finally, we evaluated the prototype of the Alea-based SSV network and compared it to the current

version of SSV. Throughout this process, we kept in touch with the engineering team at SSV and are

now taking steps towards the integration of Alea into their code base. Our results show that Alea-BFT

provides similar latency and throughput compared to QBFT (the IBFT implementation), for different sys-

tem loads and network sizes. Also, Alea-BFT takes a step further showing great resilience to network

instability and faulty nodes, being able to better maintain its latency and throughput under such sce-

narios. Therefore, Alea shows great potential as a practical asynchronous protocol, showing similar

performance to QBFT and more resilience on faulty scenarios in a real-world application.

1.1 Organization of the Document

This thesis is organized into 6 chapters. In chapter 1, we present a brief overview of the root motivations

for this thesis, namely the emergence of the validator networks, its necessity for a robust and efficient

BFT protocol, and the evolving class of asynchronous BFT protocols. Chapter 2 provides background

in several relevant topics for the understanding of the problem. It starts with a deep explanation of

3



Ethereum’s consensus intricacies and elaborates on the functioning of an Ethereum validator. Then it

explores the BFT consensus problem, explaining the important FLP impossibility theorem, and reviewing

the asynchronous class of consensus protocols. Finally, it reviews in detail the Alea-BFT asynchronous

protocol, explaining its components and asymptotical complexity.

In chapter 3, a global overview of the SSV architecture is presented. We highlight how the consensus

module was designed and how Alea-BFT should be adapted to it. Then, we propose a list of protocol

and cryptography optimizations that we incorporated into our design. Then, in chapter 4, we elaborate

on the actual implementation of the SSV module, on Alea-BFT’s implementation components, and on

the private Ethereum test network required for the experimental setup.

Chapter 5 illustrates all the experiments performed and interprets each result obtained. It evaluates

Alea-BFT against QBFT for different protocol optimizations, providing a breakdown of their performance,

for cryptography optimizations, wide area setups, different network sizes, and fault scenarios. Finally,

chapter 6 summarizes the document content and concludes.

4



2
Background & Related Work

Contents

2.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Running a Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 BFT Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Alea-BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

This chapter has the goal of presenting the necessary knowledge required to understand the compo-

sition and functioning of Ethereum validator networks, as well as the evolution of asynchronous Byzan-

tine Fault Tolerance protocols. The first section, 2.1, presents a brief introduction to the Ethereum

blockchain which is followed by a thorough analysis of its first consensus mechanism, Proof-of-Work

(PoW), and the rationale for the later adoption of Proof-of-Stake (PoS).

In section 2.2, we detail the functioning of a validator in the PoS mechanism, shedding light on its

challenges and on the Secret Shared Validators’ innovative solution. This solution is built upon three

main components: a secret sharing protocol, an additive signature cryptographic scheme, and a BFT

consensus protocol. We explain how secret sharing and aggregating signatures make it possible for

decentralized validators to exist. Lastly, we go through each validator duty and how it can be executed

in the SSV context.

5



Section 2.3 goes through the evolution of the BFT consensus protocols, detailing the possible com-

munication models and the famed FLP impossibility result. We provide an overview of the Istanbul BFT

protocol, currently recommended by Ethereum for the validator network. Then, we go through the realm

of the asynchronous BFT protocols, delving into techniques used to overcome limitations posed by the

FLP theorem and exploring its main protocols. Finally, in section 2.4, Alea-BFT is carefully explained,

along with its broadcast and agreement components.

2.1 Ethereum

Ethereum is one of the most famous and important blockchains today. Though Bitcoin has the highest

market capitalization among all cryptocurrencies, the design of Ethereum represented a major step in

blockchain technology. While Bitcoin was responsible for uncovering a way to decentralize a currency

without any central counterparty, Vitalik Buterin, in the 2014 Ethereum’s white paper1, took a step beyond

the vision of Bitcoin by delivering apps and transaction protocols into the blockchain world. More than

its token, ether, Ethereum, which became known as the ”computer of the world”, is a way to deploy

decentralized applications (dApps) and smart contracts on the web. It is fast, secure, and does not rely

on any authority.

2.1.1 Proof-of-Work

Diving into its mechanisms, Ethereum and most blockchains from the same time period used Proof-

of-Work (PoW) [9] as its consensus model. PoW relies on finding a value for a field of the block, the

nonce, such that the block’s hash begins with a certain number of zero bits. The number of bits required

to be zero represents the difficulty level and it can be adjusted in order to ensure an average time for the

nonce to be found.

So, in order to add a block to the blockchain, one must keep trying different values for the nonce until

the block’s hash meets this requirement. This is difficult due to the randomness of the hash function. A

node that spends computational power to solve this PoW puzzle is called a miner. As soon as miners

receive a block, they compete with each other to solve the task first and get a reward by adding the

block to the blockchain. It’s important to note that the safety of the PoW mechanism is sustained on the

assumption that the majority of miners act honestly and do not collaborate to manipulate the network. If

this assumption does not hold, i.e. if a single entity or a coalition of miners controls more than 50% of

the network’s computational power (51% attack), attackers would be able to control the blockchain and

prevent new transactions from being confirmed [10].

1V. Buterin, “Ethereum white paper: A next generation smart contract decentralized application platform,” 2013. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper

6

https://github.com/ethereum/wiki/wiki/White-Paper


This hash validity property allows for the blockchain to be highly sensitive to any modification in

a block. Altering any piece of data in a block implies altering its hash, and, thus, turning it invalid.

Moreover, each block in the blockchain contains the hash of the previous block, so any changes to a

block BX would require recomputing all the nonces for the blocks BX+1, BX+2, ... that come after it. This

is the machinery that makes it so difficult for a malicious user to try to modify the blockchain. If one wants

to modify a single block, it needs to compete against all other miners in the network. In other words, it

would need at least 51% of the total computational power of the network.

Figure 2.1: Block relation to the previous block in a Blockchain.

In this architecture, the expected time for a block to be added to the blockchain is dictated by the min-

ing time. The blockchain increases as soon as a miner creates a block, finds the nonce, and broadcasts

this valid block. Note that any miner can be a block proposer at any given time. Whether it will succeed

or not depends on whether it creates a valid block faster than other miners.

However, this architecture may give rise to ambiguous situations. For example, when two different

miners propose different valid blocks to be included at the same time. This constitutes a temporary fork.

In such cases, other nodes need to decide which fork path they will choose in order to continue adding

new blocks. This is accomplished with the fork-choice rule, which selects the set of blocks that have had

the most work done to mine them.

Since this temporary fork situation may happen, a transaction cannot be considered completed only

because it was added to a block that was proposed by a miner. If the network decides on a forked path in

which the transaction wasn’t included, then the transaction may be reversed. This leads to the definition

of a property named ”finality”. A transaction has ”finality” if it’s part of a block of the blockchain that can

no longer be altered. In PoW, finality is probabilistic. As more blocks are added to a block that contains

the transaction, the probability of this transaction not being reversed becomes higher.

Proof-of-Work, though secure, has several concerns. First of all, a lot of energy is consumed as

miners try to outdo each other. The energy consumption is so large that, in 2021, if Bitcoin was a

country, it would be the top 30 energy consumer worldwide2, ahead of Argentina and the Netherlands,

2C. Criddle. (2021, February) Bitcoin consumes ’more electricity than Argentina’. Accessed 20-October-2023. [Online]. Avail-
able: https://www.bbc.com/news/technology-56012952

7

https://www.bbc.com/news/technology-56012952


for example. Additionally, PoW presents the potential for centralization due to the resource-intensive

nature of mining. This can lead to a concentration of mining power in the hands of a small number of

individuals or groups with access to abundant resources. Moreover, miners often seek out locations

with low energy costs to maximize profitability, which can result in further centralization and negative

environmental and economic consequences [11–13].

2.1.2 Proof-of-Stake

To address these issues, alternatives to Proof-of-Work began to appear in the blockchain community,

namely the Proof-of-Stake class of protocols [1–3]. A major problem of PoW is the competition between

miners, which causes redundant computations with tremendous energy consumption. Therefore, a

better approach would be to elect a node as the block proposer. This isn’t so easy, however.

Suppose that nodes register themselves in a shared list by broadcasting a certain type of message

and that there is some mechanism for electing a node to be a proposer. In this design, several problems

arise, for instance, a selected node may be temporarily unavailable, may maliciously propose an invalid

block, not propose a block at all on purpose, or even propose multiple blocks. There’s the risk of Sybil

attacks since one can easily create many identities and attempt to control the network. Additionally, it

would require the network to perform an extra consensus specifically for integrating a new node into our

shared list and for electing a block proposer. The protocol should, moreover, be fair when electing the

block proposer, i.e. it should not give preference for a node when there’s no reason to do it.

Thus, when given the opportunity to propose a block, a malicious node has significant power to act

against the network. To avoid this undesired behavior from happening, the node should be penalized.

Therefore, in PoS, instead of only rewards, a node may also be penalized if its behavior is considered

invalid. This represents a major change from the PoW protocol. Also, note that in order for a node to

lose capital, it should have, at first, made a certain amount of it available for the network, or ”staked” in

the PoS vocabulary. The node that does this is called ”staker”. Only after staking a required amount

of capital, a node is able to become a ”validator” and perform validator tasks, such as block proposal.

The burn of staked capital as penalization should force the staker to behave correctly. After a series

of penalizations, the validator may even be slashed from the network, i.e. it’s forcibly ejected from

the network while continuously losing its stake. Note that this monetary commitment also serves as a

defense against Sybil attacks by making the attack too costly.

An issue to be considered with this architecture is that, even though some nodes may take longer

than others to produce a block, the network can’t keep waiting forever for a proposer to propose a block.

To deal with this, a time limit is assigned, namely a ”slot” which takes 12 seconds to be completed. This

represents another major change from the PoW architecture. In PoS, the blockchain increases as these

time periods, or slots, are completed, instead of increasing as a function of the mining time duration.

8



After a slot is finished, the next proposer takes the last valid proposed block as the current head of the

chain to create and propose its own block.

To simplify the overhead of the block proposer selection, these slots are organized in epochs. One

epoch comprises 32 slots (6.4 minutes). At the beginning of each epoch, the block proposer for each slot

in the epoch can be computed. This makes the process of selecting a proposer much simpler than having

to select it for every slot. It’s important that the selection process includes some randomness in order

to prevent attacks that target the upcoming proposers. This randomness in selecting a proposer comes

from the RANDAO protocol. In simple terms, entropy is created by mixing, with the XOR operation, the

hash of the proposers’ signatures over the current epoch number. This number is also combined with

the previous epoch’s RANDAO value and is used to calculate the block proposers for the next epoch.

Figure 2.2: RANDAO calculation.

Since each proposed block needs to be verified, other validators should be in charge of validating

it, or ”attesting” it in the PoS vocabulary. It would be unreasonable to require all validators to perform

attestation for every single block that is added to the blockchain and, therefore, a committee is elected to

perform this task for a certain slot. However, to divide the load evenly among participants, every validator

must perform one unique attestation every epoch.

Another important attribute that comes with this epoch feature regards the finality of a transaction.

In PoW, the guarantee that a transaction wouldn’t be reverted was probabilistic. In PoS, the finality of

a transaction may be guaranteed using this epoch concept. The main idea is that the first block of an

epoch may serve as a checkpoint. During the epoch, validators vote for the last pair of checkpoints that

it considers to be valid. After a pair has received enough votes, which is represented by two-thirds of

the amount of staked capital, the more recent checkpoint is tagged as ”justified”. The former one, which

was also once ”justified” in the previous epoch, becomes ”finalized”. Thus, we can guarantee that a

transaction has finality when it’s in a block of an epoch with a finalized checkpoint. This mechanism is

known as Casper FFG and the Casper Vote is included in the attestation vote that the validator casts

every epoch.

9



Figure 2.3: Checkpoints and Finality illustration.

A benefit of such architecture is that, in a normal scenario, the possibility of a temporary fork is

mitigated. However, even if the proposer manages to create a fork, e.g., by broadcasting more than

one block, a fork choice rule allows the nodes to identify the correct fork path. Differently from PoW,

the chosen fork path is the one with the highest number of weighted attestations. The weight of an

attestation is the amount of coins that the attestator has staked in the network. This is known as the

LMD GHOST fork choice rule.

With this robust consensus mechanism in hand, which can replace and solve some of the problems

with PoW, Ethereum planned to replace PoW with PoS and promised to save up to 99,95% of its energy

consumption. This upgrade, called the ”Merge”, was performed on the Ethereum Mainnet on September

20223.

Since replacing the consensus mechanism was a substantial change to the network, susceptible to

unexpected errors and problems, the Ethereum Foundation organized a plan to allow for a smoother

transition. The strategy relied on the launch of a new Proof-of-Stake blockchain called Beacon Chain,

totally separated from the Ethereum Mainnet at the time, but which would subsequently be merged with

it. In December 2020, the Beacon Chain started by running in parallel to the Mainnet in an independent

way. Then, upon the Merge event, the Beacon Chain started to accept transactions from the classic

Ethereum network and the Proof-of-Work mechanism stopped working.

2.2 Running a Validator

2.2.1 Challenges

In Ethereum, to become a validator, a user must stake 32 ETH. Then, it becomes able to validate

blocks and receive rewards for its job. Note that 32 ETH, at the beginning of 2022, was equivalent

to 106k USD4, which is a large sum of money and can represent an entrance barrier. Therefore, this

contributes to the security of the blockchain but imposes limits on who can participate in it.
3P. Wackerow. (2022, August) Ethereum Development Documentation. Accessed 20-October-2023. [Online]. Available:

https://ethereum.org/en/developers/docs/
4(2023, October) Ethereum USD Historical Data. Accessed 20-October-2023. [Online]. Available: https://finance.yahoo.

com/quote/ETH-USD/history/

10

https://ethereum.org/en/developers/docs/
https://finance.yahoo.com/quote/ETH-USD/history/
https://finance.yahoo.com/quote/ETH-USD/history/


Moreover, being a validator can be demanding since the blockchain expects validators to maintain

a high uptime level and to have the necessary hardware and infrastructure to support its tasks. And,

as mentioned before, if the validator fails to act as expected, maybe due to inactivity, poor network, or

malicious actions, it will be penalized by losing some amount of its staked capital.

Therefore, the old miner, who had no barrier to participate and earn money in the blockchain, now

faces some technical requirements plus a substantial financial barrier. This made part of the community

skeptical about the benefits of staking, which motivated solutions to mitigate this barrier.

2.2.2 Distributed Validator Technology

To solve these technical difficulties, some users looked for alternatives such as Validator-as-a-

Service (VaaS)5. This consists of a service that a company offers to its users in which it provides the

necessary hardware and infrastructure to support the duties of a validator. It abstracts, thus, the user

from all the necessary resources and technical details of the validator process.

There are some problems with this solution, nonetheless. Every user on the blockchain has a private

and a public key. The validator must sign blocks while voting for them to be integrated into the blockchain

and this is only possible with the validator’s private key. Thus, VaaS providers must also possess their

users’ private keys, which represents a security risk. Furthermore, since a VaaS is centralized, it is still

susceptible to downtimes, pushing consumers to look for the top companies, and creating a centraliza-

tion power in the hands of few entities.

It was in this scenario that the concept of Distributed Validator Technology (DVT) emerged as a new

way to run a validator as a decentralized process, solving the centralization and security issues of VaaS.

As a high-level summary, the DVT technology is composed of a Key splitting mechanism, an additive

signature scheme, a BFT consensus protocol, and a contract network that associates the validator to a

set of distributed operators.

In DVT, multiple parties jointly operate a validator node without revealing their identities to each other.

This can be accomplished by splitting the validator’s key between the mutually distributed operators,

employing techniques such as the Shamir Secret Sharing algorithm [14] for example.

The decentralization is only possible because Ethereum’s validator keys utilize the BLS12-3816 addi-

tive signature scheme defined over elliptic curves. This means that if a predetermined number of parties

sign the same data with their respective shares of a private key, a full signature can be obtained by com-

bining the parties’ signatures without ever using the validator’s private key. As a result, multiple parties

5M. Schmiedt. (2020, June) Secret Shared Validators on Ethereum 2.0. Accessed 20-October-2023. [Online]. Available:
https://medium.com/coinmonks/secret-shared-validators-on-ethereum-2-0-ea29ab380016

6A. Muroch. (2021, February) An Introduction to Secret Shared Validators (SSV) for
Ethereum 2.0. Accessed 20-October-2023. [Online]. Available: https://blog.ssv.network/

an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee

11

https://medium.com/coinmonks/ secret-shared-validators-on-ethereum-2-0-ea29ab380016
https://blog.ssv.network/ an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://blog.ssv.network/ an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee


can run a single validator, and, even if some of them are faulty, the system can continue to operate,

helping to maintain its liveness in validating blocks and avoiding the single point of failure problem.

The operators that run a validator must reach a consensus on the data to be sent to the blockchain

network (e.g., a signed proposal block). This corresponds to the consensus layer of DVT. In the orig-

inal proposal, the Ethereum foundation recommends the Istanbul BFT algorithm [6] for this purpose,

which is a consensus protocol for partially synchronous settings (as will be detailed next) with O(n2)

communication complexity defined as an upper bound on the total number of bits exchanged by the

algorithm.

2.2.3 Shamir Key Sharing

One of the most important attributes of a validator is its private key, which is used to sign every

network message. The validator’s private key can not be given to any of the nodes that will run it in a

decentralized way since the operators cannot be individually trusted, as it would expose the validator to

security risks. The immediate problem that arises, thus, is: how is it possible to create a signature with

the validator’s private key in a decentralized setting and not expose the key to any node?

A similar problem was developed in a 1979 paper named ”How to Share a Secret” by Adi Shamir [14].

The paper begins with the following combinatorial mathematics problem: ”Eleven scientists are working

on a secret project. They wish to lock up the documents in a cabinet so that the cabinet can be opened

if and only if six or more of the scientists are present. What is the smallest number of locks needed?

What is the smallest number of keys to the locks each scientist must carry?”.

The answer to the problem is C(11, 5) = 462 locks and C(10, 5) = 252 keys. Note that the solution

grows with the factorial of the number of scientists. On the other hand, Adi Shamir proposed a beautiful

and simple solution that uses polynomial mathematics.

The key insight that he had is the following: Similar to the scientists’ problem, a polynomial can only

be reconstructed when a sufficient number of points is provided, depending on its degree. Thus he

proposed the following construction:

1. using a bijective function, transform the data (i.e., the secret) into a number D

2. let q be a k − 1 degree polynomial, where k is the number of parties needed to uncover D

3. set q(0) = D and let the other coefficients to be random

4. give for party i the share Di = q(i)

12



Figure 2.4: Shamir Secret Sharing illustration.

With such a scheme, the polynomial can be computed given any k points, or more, by polynomial

interpolation, and, then, D = q(0) can be uncovered. With less than k points, every value for D has

equal probability. Note that we may even add new nodes without having to recalculate the polynomial

(if we want the threshold number of parties to be the same). Also, this scheme is practical and efficient

since there are O(n log2 n) algorithms for polynomial evaluation and interpolation.

2.2.4 BLS Signatures

We already know how to split a key, but this would be pointless if the operators were supposed to

calculate the validator’s private key in order to produce a signature. It wouldn’t solve the security problem

since the key would be exposed and an operator could later pretend to be the validator.

That’s where the BLS signature scheme is useful. It allows the operators to produce a signature as

if it was created by the validator’s private key without ever needing to explicitly compute it. Next, we

briefly go through the BLS scheme in order to explain how it is possible to produce the signature in a

decentralized way.

The BLS scheme uses elliptic curve cryptography. Equation (1) is the general equation for an elliptic

curve, where a, b ∈ R and 4a3 + 27b2 ̸= 0 to avoid singular curves. Geometrically, there is a symmetry

axis on y = 0. This symmetry serves as the foundation for the group structure that elliptic curves

possess. The points on the curve, including a special point at infinity, form an additive Abelian group

under the point addition operation. This operation takes two points P and Q, draws a line through them,

and finds a third point R that lies in the curve. Reflecting R across the symmetry axis yields P + Q.

Examples of such functions are shown in figure 2.5.

y2 = x3 + ax+ b (2.1)

13



(a) y2 = x3 − x (b) y2 = x3 − x+ 1

Figure 2.5: Graphs of elliptic curves

In cryptography, it’s common to restrict the domain of such functions to finite cyclic groups of prime

order. In simple words, the domain is restricted to integers and modular arithmetic is used with a prime

order ((mod p) with p prime) such that there is an element, called the generator, which can derive every

other element of the field by scalar multiplication of itself. An example of the curve y2 = x3 +x restricted

to the field F23 (integers modulus 23) is shown in figure 2.6.

Figure 2.6: Elliptic curve y2 = x3 + x restricted to F23.

The generator, or base point, is usually denoted as G. The number of points that G generates is

defined as the order of the curve. In the Elliptic curve scheme, a private key, sk, can be any number

between 1 and order − 1 while the relative public key, pk, is the private key multiplied by the base point,

sk · G. This is precisely the Elliptic Curve Discrete Logarithm Problem (ECDLP). It’s computationally

easy, given G and sk, to compute the public key, pk = sk ·G, but hard, given pk and G, to compute sk.

The BLS signature scheme also utilizes bilinear maps. A bilinear map is a function e : G1 × G2 −→

GT , where G1, G2, and GT are multiplicative groups with the same prime order p. It satisfies two

14



properties (where g1 and g2 are the generators of G1 and G2 respectively) [15]:

• Bilinearity: ∀v ∈ G1, w ∈ G2, a, b ∈ Zp : e(a · v, b · w) = a · b · e(v, w)

• Non-degeneracy: e(g1, g2) ̸= 1

In the BLS signature scheme, the cryptographic primitives are defined as:

• Signature Generation: the scalar s = sk · H(m), where H(m) is the hash of the message being

signed.

• Signature Verification: a signature s over a message m for a public key pk is valid if e(g1, s) =

e(pk,H(m)). Notice that indeed e(pk,H(m)) = E(sk · g1, H(m)) = E(g1, sk ·H(m)) = e(g1, s).

Going back to the secret key, if we define the polynomial in the finite field (equation 2.2) and give the

shares to each party, each party will be able to produce a signature with its share (equation 2.3).

q(x) = a0 + a1x
1 + ...+ ak−1x

k−1mod p (2.2)

si = q(i) ·H(m) (2.3)

But, to transform q(i) to q(i) ·H(m) is precisely the same thing as to transform q by q ·H(m). Thus,

the secret, q(0) becomes q(0) · H(m) which is exactly the signature over m created by the validator’s

private key.

H(m) · q(x) = H(m) · (a0 + a1x
1 + ...+ ak−1x

k−1)

= H(m) · a0 +H(m) · a1x1 + ...+H(m) · ak−1x
k−1mod p

Therefore, using Shamir’s secret sharing technique and the BLS signature scheme, it’s possible to

decentralize the validator’s duties by producing its signature with an interpolation of the signature shares.

2.2.5 Validator duties

We have explored two fundamental components for validator decentralization: the key splitting mech-

anism and the additive signature scheme. When integrated with a Byzantine Fault Tolerance (BFT)

consensus protocol, these elements form the essential building blocks for a fully decentralized validator.

Now, we delve into the practical application of these components, detailing the operator steps for the

five duties assigned to a validator: Block Proposal, Attestation, Attestation Aggregator, Sync Committee,

and Sync Committee Aggregator.

15



Block proposal

For every slot, a validator is randomly selected (using the RANDAO value) to propose a block in a

way that the probability of having a proposal duty for a certain slot is 1/N , where N is the number of

validators in Ethereum.

Once a validator is a proposer, it has to fetch the head of the chain using the fork choice rule,

construct a block, sign it, and broadcast it to the network. The part of fetching the head of the chain

and constructing a block can be abstracted by a Beacon client service, such as Prysm, Lighthouse,

Lodestar, Nimbus, or Teku7. To sign the block, the signature shares need to be combined with the

additive signature scheme, while consensus is used to decide on the block to be submitted.

To construct and return a block, the Beacon client requires the validator signature over the epoch

number. Therefore, before doing consensus (pre-consensus phase), operators exchange partial signa-

tures over the epoch number, reconstruct the validator signature, and, then, get the block from the client.

After that, each operator, with a block from its client in hand, starts the consensus phase. After a block

is decided, a post-consensus phase starts to collect partial signatures for the decided block, reconstruct

the validator signature, and broadcast the signed block to the network.

Attestation

Every validator must produce one attestation every epoch. The slot in which it participates can be

computed by the RANDAO of the previous epoch, giving extra time for the validator to know in advance

its slot. The probability of having the attestation duty for a certain slot is simply 1/32 since there are 32

slots in an epoch and the RANDAO value is a pseudo-random number. Particularly for the attestation

duty, the validator may complete it in 32 slots, counted from the slot it was assigned, but with reduced

rewards depending on the delay.

To create an attestation, the validator needs to get the block of the previous slot, create an Attestation

object composed of the slot, its committee index, the beacon block root (the LMD GHOST vote), a source

and target checkpoints (FFG Casper vote), and send it to its committee. To give time for the last block

to be completely broadcasted, the operator awaits 4 seconds (one-third of the slot) before creating the

Attestation object. Note that in this case, no pre-consensus phase is required, the object of consensus

is the Attestation object and the post-consensus phase is necessary to construct the signature over the

object.

Attestation Aggregator

For every slot, committees of validators are assigned to perform the attestation duty. At maximum,

there are 64 committees per slot, each with a minimum of 128 and at most 2048 validators. In order

not to flood the network with attestations, 16 members of the committee are selected to aggregate all

7C. Smith, ”Nodes And Clients”, 2023. [Online]. Available: https://ethereum.org/en/developers/docs/

nodes-and-clients/

16

https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/


attestations and broadcast the aggregation to the network, which is possible due to the aggregation

property of BLS signatures. The probability of being an attestation aggregator for a certain slot is in the

interval [ 1
32 ×

C(15,2047)
C(16,2048) ,

1
32 ×

C(15,127)
C(16,128) ] [2.44× 10−4, 3.9× 10−3].

For the attestation aggregation duty, the validator needs to collect Attestation votes similar to its own

vote and create an AggregateAndProof object, sign it, and broadcast it to the network. The Aggregate-

AndProof object can be obtained by the Beacon client but one of its fields is the validator’s signature

over the slot value (to prove that it’s an aggregator). Thus, this duty also requires a pre-consensus

phase, followed by a consensus over the AggregateAndProof object and a post-consensus to construct

the signature over the decided value. The operator waits 8 seconds (two-thirds of the slot) to give time

for the attestations to be produced.

Figure 2.7: Attestation committees.

Sync Committee

Since running a full Ethereum node may be not feasible for everyone, Ethereum allows for the ex-

istence of ”light nodes”, which only keep track of headers of blocks in the chain. To help light clients

keep track of the chain, the Sync Committee duty was created. It’s similar to an attestation but a

committee of 512 validators is selected to sign the block header that is the new head of the chain

every slot during 256 epochs (≈ 27 hours). The probability of participating in a sync committee is thus
C(511,N−1)
C(512,N) ≈ 7.31× 10−4, for N = 700, 000.

For this duty, the validator constructs a SyncCommitteeMessage object related to the previous slot

and broadcasts it in the committee subnet. No pre-consensus is needed and the operator waits 4

seconds as in the attestation duty.

Sync Committee Aggregator

Similarly to attestation aggregation, members of the Sync Committee are selected to aggregate

the messages. In particular, there are 16 aggregators, which makes the probability of being a sync

17



committee aggregator, for a certain slot, be C(511,N−1)
C(512,N) ×

C(15,511)
C(16,512) ≈ 2.29× 10−5.

As in attestation aggregation, a pre-consensus phase is required to compute the validator’s signature

over a selection-proof object and verify if it’s an aggregator or not. Also, the operator waits 8 seconds to

give time for the sync committee messages to be broadcast.

2.3 BFT Consensus

The concept of Byzantine fault tolerance was first conceived by Lamport, Shostak, and Pease, in 1982,

in a paper entitled ”The Byzantine Generals Problem” [4]. The problem was to achieve consensus

between generals who send messages to one another but don’t necessarily trust each other. Byzantine

fault tolerance was defined as the property of a system that allows it to continue to function correctly

even when some of its components may crash or even work in a malicious way.

To compare the complexities of different BFT protocols, we rely on the message, communication,

and time complexities. Here, message complexity is defined as the expected number of messages

generated by correct replicas while communication complexity is the expected number of bits in mes-

sages generated by correct replicas. Time complexity can be defined in different ways depending on the

protocol format, but we define it as the expected number of rounds of a protocol until it terminates.

2.3.1 Communication models

When the system is composed of processes trying to reach consensus, a key aspect is the type

of communication they are submitted to. There are three ways to classify it: synchronous, partially

synchronous, and asynchronous models. In synchronous systems, there is a known upper bound to

communication time. Thus, timeout techniques can be applied to verify if a node is faulty or functional.

Partially synchronous systems are those in which the upper time bound is not known or is only valid after

an unknown interval. In asynchronous systems, no assumption is made regarding the communication

time.

2.3.2 FLP Impossibility

One of the most important results regarding faults in the Byzantine fault tolerance problem is the

Fischer-Lynch-Patterson impossibility [7]. Basically, it mathematically defines the problem as an au-

tomaton with a state space, transition functions, and deciding states, and demonstrates that if at least

one process is faulty, defined in the paper as a process that can take a finite number of steps, in an

asynchronous communication scenario, then there is always a possible sequence of steps that prevents

18



the system from terminating. This is accomplished by two lemmas. Firstly, it demonstrates that a pro-

tocol always has an initial configuration that can later decide on different outputs, defined in the paper

as a bivalent configuration. Then, it shows that applying a step to the set of reachable states from a

bivalent configuration produces a set that also contains a bivalent configuration. And, therefore, every

configuration after any infinite schedule of transitions is bivalent.

Figure 2.8: 2nd lemma to prove the FLP impossibility.

The paper, later, shows that it’s possible, though, to reach a consensus with a partially synchronous

setting if we restrict a majority of processes to be non-faulty. This result drove most solutions to BFT to

use the assumption that the system is synchronous or partially synchronous.

One of the most famous partially synchronous protocols is the Practical Byzantine Fault Tolerance

(PBFT) [16], introduced in 1999 by Castro and Liskov. PBFT has a message complexity of O(n2) where

n is the number of nodes. It took a major step towards the practical adoption of these protocols, in

showing that MACs (Message Authentication Codes) could be used instead of costly digital signatures

to authenticate messages, providing much better performance.

The PBFT protocol is divided into consensus rounds which are divided into 4 phases. In the first one,

the client sends a request to a leader node. In the second phase, the leader broadcasts the request to

all other nodes. Subsequently, all nodes perform the task and reply to the client who, finally, accepts the

response after f + 1 messages are received, where f is the maximum number of faulty nodes.

2.3.3 Istanbul BFT (IBFT)

Another partially synchronous protocol that is relevant for this thesis, since it’s the current one

adopted by SSV, is the Istanbul BFT (IBFT) [6], also referred to as QBFT, which was inspired by PBFT. It

19



was introduced to Ethereum on the Istanbul hard fork, released in 2019, and it’s the main recommenda-

tion by the Ethereum foundation for the DVT technology. It has a quadratic message and communication

complexity and proceeds in rounds (or views) in which there are four main phases: PRE-PREPARE,

PREPARE, COMMIT, and ROUND-CHANGE.

Each round has a leader who proposes a value. The leader can be discovered by all parties, using

a common function LEADER. The LEADER function receives as input two variables: the round

number and a variable called height. The LEADER function can be any deterministic function that

allows at least f + 1 nodes to eventually be the leader. The height variable identifies an instance of

the algorithm (in other words, it corresponds to the number of state machine commands that have been

executed previously), never changing through the execution of a given consensus instance. Moreover,

each replica maintains two other variables, preparedRound and preparedV alue, with the highest round

and the corresponding value that was prepared.

On start-up, the nodes receive as input a value and the height variable. If it’s the leader for the

current round, it broadcasts a PRE −PREPARE message with the round number and the input value.

Upon receiving this message, other nodes broadcast a PREPARE message with the value and round

number received. After receiving a quorum (⌊n+f
2 ⌋+1) of PREPARE messages from different parties,

a node updates its preparedRound and preparedV alue variables and broadcasts a message COMMIT

with the value. Finally, after receiving a quorum of COMMIT messages, each node outputs the value

and terminates the execution.

Since nodes wait until a quorum is reached, the liveness property must be assured with a timeout

mechanism. If a timeout is reached, nodes send a ROUND − CHANGE message to the new leader

who, after receiving a quorum, starts the new round. The ROUND−CHANGE message includes the

values of preparedRound and preparedV alue, which will be used by the new leader who will broadcast

the preparedV alue received, if there’s one, or broadcast its own value, otherwise.

2.3.4 Asynchronous protocols techniques & overcoming FLP

Though partially synchronous protocols can be efficient, they need synchrony between replicas in

order to ensure the liveness property. When the system suffers from interference from a malicious agent,

the protocol can be prevented from making progress, or at least can have its performance degraded.

The truth is that real-world communication has no upper time limit and, when network conditions are

unstable, those protocols, including PBFT, are severely affected. In particular, in prior research [8],

partially synchronous BFT protocols were tested against a malicious network scheduler and, by delaying

messages at certain time points, it was possible to stop the protocol from making any progress.

Synchronous and partially synchronous protocols, nonetheless, might seem, at first glance, to be the

20



only possible solution due to the FLP impossibility. However, there are techniques, such as randomiza-

tion, by which asynchronous protocols may circumvent this theoretical barrier. Without demanding any

timing assumptions, they can guarantee the liveness property with a certain probability, which increases

over time. The key idea is to run rounds, that try to reach a consensus, multiple times. As the number of

rounds increases, the probability of reaching a consensus increases, and the probability of not having

liveness becomes negligible.

In contrast to partially synchronous protocols, which may be severely affected by network conditions,

asynchronous protocols are much more resilient to them. In particular, their performance is directly

related to the actual network latency and these protocols can make progress as soon as messages are

delivered [17]. Moreover, by not having to use timeout mechanisms, they may be simpler to implement,

which translates into a lower engineering effort. Nonetheless, a common drawback of such protocols is

associated with their complexity and execution time, which are usually higher than the ones of partially

synchronous systems.

2.3.5 Initial asynchronous BFT protocols

The first asynchronous BFT protocols were proposed by Rabin [18] and by Ben-Or [19], in 1983.

Both protocols applied randomization techniques, using a coin-tossing mechanism, to solve the binary

agreement problem, where nodes can vote with 0 or 1. Rabin’s protocol requires n ≥ 3f + 1 nodes,

where f is the number of faulty nodes. It uses a voting system in which nodes send their votes to all

other nodes. If at least 2f + 1 votes received are equal, a process would decide on this quorum’s vote.

Otherwise, a shared coin tossing would determine the decided value.

Ben-Or protocol, on the other hand, required n ≥ 5f + 1 processes and relied on local coin tossing,

which means that the n-th coin tossed may have different values for different processes. It also starts

with a broadcast by each node, sending their proposals to all other processes. After n − f messages

were received, if at least (n + f)/2 messages proposed the same value v, then v would be the new

proposal and would be, again, broadcasted. Otherwise, the node would broadcast a message with an

empty proposal. After the second broadcast, after n − f messages are received if at least (n + f)/2

messages contained the same value, this value would be decided on. Otherwise, a coin would be tossed

locally in order to determine the value to be decided as 0 or 1. Though this initial generation of protocols

isn’t particularly efficient, their models would, later, serve as inspiration for more practical asynchronous

protocols.

2.3.6 HoneyBadgerBFT

Following this model, HoneyBadgerBFT (HBBFT) arose in 2017 [8] claiming to be the first practical

21



asynchronous BFT protocol, with cubic communication complexity. The protocol consists of 3 phases. In

the first one, each node randomly selects B transactions (where B is the batch size, used for scalability

efficiency) from its buffer (with client transaction requests) and encrypts them with a common public

key. Next, each node passes its encrypted batch as input to an Asynchronous Common Subset (ACS)

round which will return a set with the approved encrypted transactions. Lastly, each node, for each

transaction that is outputted by ACS, decrypts a share of it, multicasts it, waits until f + 1 shares are

received, allowing it to decrypt the whole transaction, and removes the approved ones from its buffer.

The protocol proceeds with these 3 phases (or a round) repeatedly, delivering transactions at the end of

each round.

The batch picked by each replica is composed of randomly selected transactions in order to min-

imize a common subset of transactions proposed by different nodes. The protocol makes use of two

subprotocols: ACS and Threshold encryption. Threshold encryption is a technique that allows any party

to encrypt a message to a master public key, and reconstruct the message with f +1 decrypted shares,

each with a different key share, similar to threshold signatures explained in section 2.2. Threshold en-

cryption is fundamental in order not to reveal a transaction that is being proposed in the ACS until it’s

finally accepted, otherwise, an adversarial network scheduler could prevent a targetted transaction from

ever being performed.

ACS is composed of two stages. The first is a reliable broadcast, in which the nodes exchange their

proposals. After a node receives N − f proposals, it inputs 1 for the asynchronous binary agreement

(ABA) protocol instances related to the nodes for which it received proposals and 0 for the others. ABA

is a subprotocol by which the nodes agree on the value of a single bit. Once every ABA has been

completed, a node gets the indexes of the ABAs which delivered 1 as the answer and outputs them.

ABA uses the threshold signature scheme with a common coin. The common coin protocol is similar

to the signature reconstruction of the distributed Ethereum validator. Every node signs a common coin

sid, or name, with its key share and multicasts it. When a node receives at least f + 1 shares, it tries to

combine them and form a valid signature, validating it with the common public key. After that, all nodes

have common data that can be used to generate the common coin values.

2.4 Alea-BFT

To address the problem of cubic message and communication complexity, Alea-BFT [5] came out as

the first protocol asynchronous protocol to achieve quadratic message and communication complexity

showing great scalability potential for larger networks.

Alea-BFT has a two-stage pipeline design with an appropriate interface for state machine replication.

The first is a broadcast phase in which nodes exchange received messages from clients, and the second,

22



occurring in parallel, is an agreement phase, composed of rounds during which leaders may add their

values to the state. With this simple design, Alea-BFT overcomes several scalability hurdles of prior

protocols, namely:

• Cubic message and communication complexity of ACS based protocols.

• The overhead of running multiple ABA instances until delivering a message.

• The unnecessary bandwidth usage when a value is broadcasted several times until it is delivered.

• Extra communication step for decrypting shares due to threshold encryption.

Alea-BFT provides optimal resilience for the byzantine model, tolerating up to f = ⌊n−1
3 ⌋ byzantine

or crash faults where n is the number of nodes. Safety is ensured as in the traditional Byzantine model,

and the only requirements for liveness are that the messages exchanged will not be modified, which can

be accomplished by message authentication, and are eventually delivered. Formally, Alea-BFT satisfies

the following properties:

• Validity: If a correct process broadcasts m, then some process eventually delivers m.

• Agreement: If a correct process delivers m, then every correct process delivers m.

• Integrity: A message m appears at most once in the delivery sequence of any correct process.

• Total Order: If two correct processes deliver two messages m1 and m2, then both processes

deliver m1 and m2 in the same order.

As said before, Alea-BFT consists of two stages that occur in parallel, as shown in algorithm ??.

The first stage is based on the Verifiable Consistent Broadcast Protocol (VCBC), a protocol that allows

a sender to broadcast a message to all nodes with a proof that a quorum of processes received the

value. The second stage is based on the Asynchronous Binary Agreement (ABA) protocol, also part of

HoneyBadger’s ACS, which allows correct processes to agree on the value of a single bit.

Algorithm 2.1: Alea-BFT Initialization (Pi) extracted from [5]
constants:

N
f

state variables:
Si ← 0
queuesi ← 0

procedure START
queuesi[x]← new pQueue(), ∀x ∈ {0, . . . , N − 1}
async BC-START()
async AC-START()

23



For the broadcast component (algorithm 2.2), each process starts with a queue, containing the

VCBCs that were received from each node, and receives messages from clients. Those messages

are stored in a buffer. When the buffer reaches a specific size – the batch size – the node broadcasts

this batch with an incremental priority value through the VCBC protocol. Every other node, thus, will

store this batch with its priority value in the queue allocated for the ID of the sender.

Algorithm 2.2: Alea-BFT Broadcast Component (Pi) extracted from [5]
constants:

B
state variables:

bufi
priorityi

procedure BC-START
bufi ← ∅
priorityi ← 0

upon receiving a message m, from a client do
if m /∈ Si then
bufi ← bufi ∪ {m}
if |bufi| = B then

input bufi to VCBC(i,priorityi)
bufi ← ∅
priorityi ← priorityi + 1

upon outputting m for VCBC(j,priorityj) do
Qj ← queuesi[j]
Qj .Enqueue(priorityj ,m)
If m ∈ Si then
Qj .Dequeue(m)

In the startup of each node, another thread is launched to run in parallel and to perform the agree-

ment phase (algorithm 2.3). A variable will keep track of the round number, which indicates the leader,

and, in each round, each node will select the batch with the lowest priority from the queue of the leader

and accept it or not (if there exists the batch locally or not), inputting its proposal to the ABA. The node,

then, waits until the ABA delivers a result b. If b is 1, the batch was accepted and it is removed from

the queue. If b is 0, nothing is done and the next round is started. This batch will then later be revisited

when its sender becomes the leader again.

24



Algorithm 2.3: Alea-BFT Main Agreement Component (Pi) extracted from [5]
state variables:

ri
procedure AC-START

ri ← 0
while true do
Q← queuesi[F (ri)]
value← Q.Peek()
proposal← value ̸= ⊥ ? 1 : 0
input proposal to ABA(ri)
wait until ABA(ri) delivers b then

if b = 1 then
if Q.Peek() = ⊥ then

broadcast ⟨FILL-GAP, Q.id, Q.head⟩
wait until (value← Q.Peek()) ̸= ⊥ then

AC-DELIVER(value)
ri ← ri + 1

It can occur that the ABA instance decides for 1 but a correct replica voted 0. In this scenario, the

replica does not have the batch delivered. To solve this problem, there is a recovery mechanism that

can be used to obtain the batch from another correct replica.

Next, we explain the subprotocols used by Alea-BFT.

2.4.1 Verifiable Consistent Broadcast Protocol (VCBC)

VCBC, depicted in figure 2.9, allows a node to send a message to all other nodes and, later, broad-

cast a proof that at least a quorum of nodes received the message by collecting signatures from these

nodes. The protocol consists of three message types:

• A VCBC Send message from the sender to all other nodes with the message.

• A VCBC Ready message from all nodes to the author of the VCBC Send with a signature over the

message’s hash.

• A VCBC Final message from the sender to all nodes with a proof created after it received a quorum

of signatures. These signatures can be aggregated into a single one if a cryptographic scheme

such as BLS is used.

VCBC ensures the following properties:

• Validity: If a correct process broadcasts m, then all correct processes eventually deliver m.

• Consistency: If a correct process delivers m1 and another process delivers m2, then m1 = m2.

• Integrity: Every correct party delivers at most one message. Additionally, if the sender is correct,

then the message was previously broadcasted by it.

25



• Verifiability: If a correct party delivers a message m, then it can produce a single message M

that it may send to other parties such that any correct party that receives M can safely deliver m.

• Succinctness: The size of the proof is independent of the length of the message.

Figure 2.9: VCBC protocol.

2.4.2 Asynchronous Binary Agreement (ABA)

The ABA protocol allows for a set of correct processes to agree on a common bit value. The protocol

runs in rounds until termination. In each round, every process proposes a bit. The protocol consists of

four message types:

• An ABA Init message by which a process proposes a bit. If a node receives a weak support, f +1

where f is the maximum number of faults, of ABA Init for the bit value b, it also sends a ABA Init

with b if never sent.

• An ABA Aux message with a single bit value sent after a strong support, ⌊N+f
2 ⌋ + 1 where N is

the number of replicas and f the maximum number of faults, of ABA Init is received. The weak

support rule for ABA Aux is similar to the ABA Init rule.

• An ABA Conf message with 0, 1, or both after a strong support of ABA Aux is received with values

for which a strong quorum of ABA Init was received.

• An ABA Finish message with 0 or 1. The weak support rule for ABA Finish is similar to the ABA Init

rule. A node may send an ABA Finish if it receives a quorum of ABA Conf with values for which

a strong quorum of ABA Init was received. If this list contains just a single bit and it’s equal to the

round’s coin value, then it can send the ABA Finish. Otherwise, it jumps to the next round.

ABA ensures the following properties:

26



Table 2.1: Alea-BFT components complexity.

Component Message Communication Time
Broadcast O(N) O(N(|m|+ λ)) O(1)
Agreement O(σN2) O(σλN2) O(σ)

• Agreement: If a correct process decides b1 and another correct process decides b2, then b1 = b2.

• Termination: The probability of deciding after r rounds approaches zero as r →∞.

• Validity: If all correct processes propose b, then any correct process that decides must decide b.

2.4.3 Complexity

The message, communication, and time complexities for the Broadcast and Agreement components

are shown in the table 2.1, where N is the number of processes, m is the application message size, λ

is the signature size and σ is the expected number of ABA rounds. In the Alea-BFT paper [5], it’s shown

that σ −→ 1. The recovery mechanism also has a quadratic message and communication complexity in

N and constant time complexity.

27



28



3
Design

Contents

3.1 SSV Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The role and interface of consensus in SSV . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Adapting Alea-BFT to one-shot consensus . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Protocol optimizations for Alea-BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Cryptographic optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

This chapter is dedicated to the specification of the validator network in which Alea-BFT will be imple-

mented. In section 3.1, we will detail the layers that compose a specific implementation of the validator

network, namely the Secret Shared Validators (SSV) implementation. In section 3.2, the consensus

interface module will be highlighted and, in 3.3, we’ll delve into the adaptations necessary to include

Alea-BFT. Finally, section 3.4 will explore possible optimizations for the Alea-BFT protocol, taking the

SSV context into consideration, and section 3.5 will discuss optimizations related to cryptography effi-

cient usage.

29



3.1 SSV Architecture

The SSV architecture is built upon several modules necessary for the operator’s functioning. First of all, it

must discover peers that belong to the SSV network, which is done through a network discovery module.

For communication, another P2P interface is defined with methods that allow the operator to subscribe

and unsubscribe to subnets and broadcast messages in these subnets. The P2P communication layer

is used to exchange messages for the SSV protocol. The messages can be related to the consensus

protocol or to partial signature sharing, used in the pre-consensus and post-consensus phases. One

important consideration very relevant to us is the fact that this communication layer doesn’t allow a peer

to send a message exclusively to another peer, it only allows broadcasting. This suits well the adopted

QBFT protocol since all messages are broadcasted, but it’s actually a negative factor for Alea-BFT since

the VCBC Ready message could only be sent to the VCBC author. Thus, for the Alea-BFT case, this

design represents unnecessary bandwidth usage and more congestion in the network.

Moreover, the operator needs a gateway to the Ethereum network. This is accomplished by the

connection with a Beacon client service. From this client, the operator can keep track of the current

slot and can get status information regarding the Ethereum blockchain, it can request data objects for

validator duties, and submit signed objects to be broadcast to the entire blockchain network.

There’s also a contract layer used to manage the relationship between the SSV network participants.

The contract layer is implemented in Solidity which is used for implementing smart contracts in Ethereum.

It allows operators to join the SSV network and Ethereum validators to hire operators.

Figure 3.1: Operator modules.

3.2 The role and interface of consensus in SSV

A committee of operators, that runs a decentralized validator, does consensus when one of its validators

has a duty. The path until the start of the consensus begins with the Beacon client which sends a

signal to the operator whenever one of its validators has a duty for the current slot. Once this duty

30



starts, the committee of operators that represents the validator starts a pre-consensus phase, if required,

and then launches a consensus instance. Notice how consensus is used as a standalone instance,

instead of a replicated state machine which would be more aligned with the abstraction offered by Alea-

BFT. This design was conceived in that way due to the fact that an operator may participate in several

different duties in the same slot and each duty is executed by different committees. If a single consensus

execution was performed for the entire network, the necessary number of participating nodes could slow

down the protocol execution. Moreover, the probability of termination for each duty would be correlated,

so a faulty leader or network instability in a fraction of the network could affect every duty termination.

Since an operator may need to handle several different consensus for its validators, each validator

is associated with a ValidatorController structure that manages the validator state and duties. For each

duty type, the validator controller has a unique DutyRunner object that executes the duty properly,

following the steps mentioned in section 2.2.5. Each DutyRunner holds a QBFTController which has an

Instance object that represents the consensus instance and implements the protocol.

Figure 3.2: SSV structures.

The Instance module provides an interface that accounts for a start-up method and a method to

process incoming messages. All other modules functionalities are abstracted from the Instance module

which receives function objects to perform necessary steps such as broadcasting a message and cre-

ating and verifying signatures, for instance. The function for processing messages returns information

regarding the consensus state such as if it has been decided or not.

31



Figure 3.3: Instance use cases.

3.3 Adapting Alea-BFT to one-shot consensus

Due to the standalone consensus instance design, we have to launch Alea-BFT to decide only on a

single value and then terminate. Further than that, the value to be decided is just a single object, e.g. a

block to be proposed, and not a list of objects, and, thus, batching is no longer applicable. An advantage,

however, is that each participant will only propose one value and thus we can drop the priority tag in

VCBC messages, which will allow some optimization as we will see in section 3.4.

In the Alea-BFT specification, a replica could actively receive messages from a client. In the SSV

context, the single unique value to be ever received is provided in the start-up procedure (algorithm

3.1). Therefore, once the protocol starts, we can initiate a VCBC for our input value and we don’t need

to launch any independent thread to handle client messages. Moreover, in Alea-BFT’s specification,

the agreement component runs in a separate thread. Since an operator may run numerous consensus

instances at the same time, launching threads for each could cause a processing overhead. A better

solution is to refactor the agreement loop as a procedure to be called in the instance’s start-up and in

the termination of an ABA. Thus, the instance’s start-up method can call the procedure to launch the

first agreement round and, once ABA for round r finishes, it calls a procedure to launch the agreement

for round r + 1.

Even though the one-shot consensus design presents some obstacles and requires some adaptions

in the Alea-BFT protocol, in the following section we propose some optimizations that can improve the

protocol performance and balance with such obstacles.

32



Algorithm 3.1: Alea-BFT Initialization (Pi) adapted for one-shot consensus
procedure START

Input: value

queuesi[x]← new pQueue(), ∀x ∈ {0, . . . , N − 1}
input value to VCBC(i,0)
AC-START()

3.4 Protocol optimizations for Alea-BFT

As stated in section 3.3, one of the major drawbacks of the SSV design is the fact that consensus is

used as a standalone instance and not as a state machine replication. Even though this is not the ideal

scenario for Alea-BFT, we can take some properties of this specific context to seek out new optimization

and adjustment for the protocol. Next, we provide some context-free optimizations and some specially

designed to better fit the protocol to the SSV case.

3.4.1 Fast ABA (FA)

Our first optimization is context-free, in other words, it can be applied to any project that uses Alea-

BFT. Experimental results [5] showed that the number of ABA rounds tends to the optimal value of

1. This tells us that, most of the time, at least a quorum of participants agree on the first vote of the

protocol. This is reasonable because ABA takes longer than VCBC and, thus, as the protocol runs, the

VCBC queues will be filled and most participants will vote with 1 in the ABA, if the round leader has

been proposing values, or 0, otherwise. This likely agreement on the first vote supplies us with a spot to

investigate and look for optimizations.

One of the properties of the ABA is validity, in other words, if all correct processes propose b, then

any correct process that decides must decide b. Therefore, if we receive the first vote of every process

and if they are all the same, we can know in advance the value that will be decided because at least a

quorum of correct processes voted equally. Indeed, note that even if f malicious participants broadcast

1 to some nodes and 0 to others, if all the correct nodes voted equally, then the malicious processes

won’t be able to reach f +1 ABA Init votes for the opposite bit and, thus, it will never be in the ABA Conf

values to be decided.

Nonetheless, even if a process knows the output in advance, it needs to continue running the protocol

until the protocol terminates because other honest peers may not have the same view of the system’s

state. But, to accelerate termination, the process that knows the output can already send an ABA Finish

message with the decided bit in advance.

Sending the ABA Finish message at the beginning of the ABA protocol, allows us to explore another

improvement. Usually, the coin-sharing protocol would be initialized jointly with an ABA instance, even

33



though the coin is only used during the ABA Conf phase. By sending early ABA Finish messages,

there’s the possibility that none of the nodes would need to process any ABA Conf message in case

everyone receives a quorum of ABA Finish messages before reaching the ABA Conf phase. Therefore,

we can postpone the coin-sharing protocol to only when it’s indeed necessary. We can launch it at

any ABA step that occurs before receiving a quorum of ABA Conf. If we reach a quorum of ABA Conf

messages and the coin-sharing protocol hasn’t concluded yet, we just wait until it does, as it was done

previously.

3.4.2 First ABA Delay (AD)

As experimentally shown in [5], the number of ABA rounds tends to 1 as the number of agreement

rounds increases. This tells us that the early ABAs have less probability of deciding in one round. This

is expected because, on start-up, the VCBC queues are empty and, even though the VCBC protocol is

faster than ABA, as the first ABAs start, some processes may have already received the first VCBC from

the leader and some may not.

To address this issue, we delay the start of the first ABA to increase its probability of terminating in

one round (algorithms 3.2 and 3.3 ). This is particularly important for our case because the total protocol

time will be defined by the first ABA that terminates and decides 1, so we require that the chance of

the deciding 1 in the first ABA is as high as possible. Instead of a time delay, which would be more

natural and common, we can wait until a threshold number of VCBCs are completed (valid VCBC Finals

received). Here we have a trade-off, the more VCBCs we wait, the higher the chance of terminating in

one ABA but the longer the wait time. The value used was a quorum, (⌊n+f
2 ⌋ + 1), of VCBCs, which

represents the highest possible threshold value. This is due to the fact that ABA is an expensive protocol

and it’s worth waiting if we are increasing the probability of delivering on the first instance.

Algorithm 3.2: Alea-BFT Initialization (Pi) adapted for ABA delay
procedure START

Input: value

queuesi[x]← new pQueue(), ∀x ∈ {0, . . . , N − 1}
input value to VCBC(i,0)
AC-START() ▷ delayed

34



Algorithm 3.3: Alea-BFT Broadcast Component (Pi) adapted for ABA delay
state variables:

ac started← False
upon outputting m for VCBC(j,priorityj) do

Qj ← queuesi[j]
Qj .Enqueue(priorityj ,m)
▷ Delay condition
If ac started ̸= True then

number of vcbcs← 0
For x ∈{0, ..., N-1}

If queuesi[x] ̸= ∅ then
number of vcbcs← number of vcbcs+ 1

EndFor
If number of vcbcs ≥ quorum then

async AC-START()
ac started← True

If m ∈ Si then
Qj .Dequeue(m)

3.4.3 Complete VCBC View (CV)

As stated previously, the standalone consensus instance is a drawback for Alea-BFT. However, this

provides us with the following: each participant will start a VCBC only once (with its consensus proposal

value). To handle the case in which a malicious participant launches multiple VCBCs, we can add a

restriction rule by which a node will not answer to a VCBC Send from the process pi if it has already

received another VCBC Send from pi with different data.

But that’s not all. In the distributed validator context, it’s very likely that the operators share the same

view of the blockchain and will propose the same value for the consensus. It wouldn’t be the case, for

instance, if a fork or a re-org happens in the blockchain, but this is extremely rare. Thus we have in hand

a situation similar to the ABA first vote agreement. Indeed, if we receive VCBCs from all processes

and if each VCBC has the same data, we can know in advance the value for which the consensus will

decide (algorithm 3.4). It’s impossible for a malicious operator to perform an attack in which it sends

different VCBC results to different nodes. For that, the malicious operator would need to collect at least

a quorums of VCBC Readys for two different VCBC Sends created by it, which is impossible due to our

restriction rule.

With this optimization, we may know the decided value in advance. However, a node can not stop

processing messages because other nodes may have different views of the network. But, similarly to

the Fast ABA optimization, the node can accelerate termination by sending ABA Finish messages in

advance.

35



Algorithm 3.4: Alea-BFT Broadcast Component (Pi) adapted for Complete VCBC View
state variables:
upon outputting m for VCBC(j,priorityj) do

Qj ← queuesi[j]
Qj .Enqueue(priorityj ,m)

number of vcbcs← 0
For x ∈{0, ..., N-1}

If queuesi[x] ̸= ∅ then
number of vcbcs← number of vcbcs+ 1

EndFor
If ac started ̸= True ∧ number of vcbcs ≥ quorum then

async AC-START()
ac started← True

▷ Complete VCBC View Check condition
If number of vcbcs = N then

If AllEqual(queuesi) then
AC-DELIVER(queuesi[i].head)

If m ∈ Si then
Qj .Dequeue(m)

3.5 Cryptographic optimizations

One of the major bottlenecks of consensus protocols lies on costly cryptography functions [16, 20, 21].

Taking this into consideration, this section explores optimization proposals that focus on more efficient

usage of cryptography primitives.

3.5.1 BLS Aggreation

The BLS scheme is known for its signature aggregation features. That is precisely, for instance,

why Ethereum decided to use it as its main cryptographic scheme. It can aggregate any amount of

signatures or public keys in a single value. More than its common application of reducing message

sizes, this can be used to rapidly verify a batch of signatures. BLS allows one to verify an aggregated

signature over different messages (regular aggregation), but the real power comes from verifying an

aggregated signature over equal messages (fast aggregation). Fast aggregation allows one to verify

any amount of signatures in a constant time (basically the time to verify a single signature), while regular

aggregation can provide, approximately, 50% speed up [15].

With this feature, we can, for instance, fast aggregate and verify all the VCBC Ready valid messages

since they are signed over the same data. Similarly, we can apply it to the ABA Init, ABA Aux, ABA Conf

and ABA Finish messages to fast aggregate and verify weak and strong support batches of messages.

36



3.5.2 Message Authentication Codes

This optimization can be applied to Alea-BFT and any other protocol that doesn’t require non-

repudiation, which is not the case for some of the messages in QBFT. The PBFT paper [16] showed

that great performance improvement can be achieved by replacing costly asymmetric key digital signa-

tures with message authentication codes (MACs). To use MACs, we need to define symmetric keys

between peers. This can be easily accomplished with the Elliptic-curve Diffie-Hellman (ECDH) key

agreement protocol since each operator already has a BLS key pair and stores the public keys of all

other operators.

Note, however, that we will still need to use BLS due to the VCBC’s threshold signature usage. So,

when a node receives a quorum of VCBC Ready, it still needs to aggregate the signatures and verify the

aggregated signature before sending the VCBC Final message. In the same way, when a node receives

a VCBC Final message, it needs to verify the aggregated signature. For all other message types, we

can use MACs for message authentication.

3.5.3 Other asymmetric schemes

Since BLS verification and signing primitives are way more expensive than other asymmetric crypto-

graphic schemes’ primitives, as it will be shown in section 5.4, we could replace the entire BLS usage

with another scheme. For instance, we could implement RSA or, more modern, ECDSA and EdDSA.

The only careful adaptation we would need to make would be to include, in the VCBC Final message, a

buffer of signatures with their respective signers instead of the single aggregated BLS signature.

37



38



4
Implementation

Contents

4.1 SSV modules implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Alea-BFT module in the SSV code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Private Ethereum Testnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

In this chapter, we go over the implementation details of the integration of Alea-BFT into the SSV

infrastructure. Section 4.1 explains how each SSV module works and section 4.2 goes into specific

details of the Alea-BFT module implementation. Lastly, section 4.3 explains why a private Ethereum

network was used and how it was created.

4.1 SSV modules implementation

The SSV code is written in the Go programming language and the implementation consists of 73,000

lines of code. The main structure is the OperatorNode. As seen in section 3.1, it has a discovery

layer, a communication layer, and a connection with an Ethereum consensus client, the Beacon client.

The Beacon client can use Prysm, Lighthouse, Lodestar, Nimbus, or Teku, or even an independent

39



implementation. Overall, it has to follow the API interface defined by Ethereum in the go-eth2-client

repository1.

For the peer discovery layer, the operators use the Discv5 protocol created by Ethereum, which uses

the Kademlia distributed hash table (DHT). The DHT requires a bootstrap node which is responsible for

handling connections with new peers and sharing with them information about all connected peers. SSV

provides some public bootstrap nodes for different Ethereum chains, such as the Mainnet and the Goerli

testing network.

As the communication layer, the operators use the PubSub protocol of Libp2p, which is also used

by Ethereum for its p2p network. Basically, PubSub provides an interface for a node to subscribe and

unsubscribe to different topics and to publish messages on a specific topic. By subscribing to a topic,

the operator can listen to all messages being published in it. In PubSub’s initial version, FloodSub, a

peer would need to hold stable connections with all other peers for each subscribed topic and, when it

wanted to publish a message, it would send it directly to each peer. This however required the peer to

handle a significant amount of connections which would be impossible to do in a big network, such as

the Ethereum Mainnet.

Then, in PubSub’s later version, GossipSub, a peer would be connected to only a small fraction of

the network, its mesh list. Now, to publish a message, it needs to send it only to the peers in its mesh.

When receiving a message never seen before, a peer propagates it to other peers in its mesh, allowing

the message to propagate through the whole network. There’s also a gossiping mechanism by which

peers periodically send metadata about messages they have received to random peers. If a received

metadata was never seen before, it can request the message from the peer that gossiped the metadata.

This mechanism allows a peer to recover a message in case it has missed it.

The GossipSub protocol also provides defenses against Sybil and Eclipse attacks by using mech-

anisms such as a peer scoring system and the maintenance of a mesh with good-scoring peers. As

stated in section 3.1, note that the interface provided by PubSub allows only the broadcasting of a mes-

sage. In other words, it doesn’t allow a peer to send a message exclusively to another peer, which would

be beneficial for the VCBC protocol.

4.2 Alea-BFT module in the SSV code

As stated in section 3.2, the operator holds a ValidatorController structure for each of its validators.

Each ValidatorController holds a DutyRunner for each duty type, which handles a QBFTController that

manages an Instance object that represents the consensus instance.

Given this design, we need only to adapt the QBFTController and the Instance structures. We

1(2023, October) Attestantio: go-eth2-client. GitHub repository. Accessed 20-October-2023. [Online]. Available: https:

//github.com/attestantio/go-eth2-client

40

https://github.com/attestantio/go-eth2-client
https://github.com/attestantio/go-eth2-client


decided to keep the QBFT structures untouched and we defined totally new controller and consensus

instance structures for Alea-BFT, which comprised 5,000 lines of Go code. To allow Alea-BFT to run,

we needed to change just a single line of the SSV code, namely an import line in the DutyRunner

implementation. With this import redirection, we can switch between consensus protocols with minimal

change. If we wanted to swap between protocols during live execution, we could simply add a new

import line, set a flag option to indicate which protocol to use, and create an API to modify the flag in

real-time. This, however, could be more complex on the protocol level due to the necessity of a recovery

mechanism.

For the Alea-BFT’s Instance structure, we defined a VCBCState structure to manage VCBCs re-

ceived from other peers and VCBC Ready messages received for its own VCBC. An agreement com-

ponent state structure, ACState, was created to manage the execution of the ABA instances. To select

the leader of each ABA, a round-robin function was implemented taking as input the agreement round

number and the duty’s slot value. Also, a CommonCoin structure was defined for the ABA’s shared coin

feature. This structure handles the creation of the partial signature for the coin’s seed and generates the

coin value for agreement and ABA round pair.

At last, we had to define new message types to support the VCBC and ABA protocols, as shown in

code 4.1. The messages defined are nested into a SignedMessage structure which contains fields such

as the signature, the operator identification, the validator identification, and the duty type.

Listing 4.1: Alea-BFT messages definition

1 type VCBCSendData struct {

2 // There's no priority because an operator can perform only one VCBC

3 Data []byte

4 }

5

6 type VCBCReadyData struct {

7 Hash []byte

8 Author types.OperatorID

9 }

10

11 type VCBCFinalData struct {

12 Hash []byte

13 AggregatedMessage *SignedMessage

14 }

15

16 type ABAInitData struct {

41



17 ACRound alea.ACRound // Agreement component round

18 Round alea.Round // ABA round

19 Vote byte

20 }

21

22 type ABAAuxData struct {

23 ACRound alea.ACRound

24 Round alea.Round

25 Vote byte

26 }

27

28 type ABAConfData struct {

29 ACRound alea.ACRound

30 Round alea.Round

31 Votes []byte

32 }

33

34 type ABAFinishData struct {

35 ACRound alea.ACRound

36 Vote byte

37 }

4.3 Private Ethereum Testnet

To perform experiments, one could use an existing Ethereum testing network, such as the Goerli net-

work. However, to participate in the network, one must first fully synchronize to the network’s current

state, which can be very costly due to the data sizes of these networks. For instance, for the Ethereum

Mainnet, it would be necessary to synchronize over 1286 GB2. Moreover, we wouldn’t have any type of

control regarding the type and amount of duties to be executed, which makes the setup of the experiment

very difficult.

A better solution is to create a private Ethereum testing network and its associated Beacon client.

First of all, this removes the obstacle regarding data synchronization since the blockchain can be boot-

strapped as many times as necessary. Moreover, the network parameters can be customized in order

to create the required environment setup for each experimental test. For instance, by controlling the

number of validators in the network, we can force all validators to perform sync-committee duties for
2(2023, October) Ethereum Chain Full Sync Data Size. Accessed 20-October-2023. [Online]. Available: https://ycharts.

com/indicators/ethereumchainfullsyncdatasize

42

https://ycharts.com/indicators/ethereum chain full sync data size
https://ycharts.com/indicators/ethereum chain full sync data size


every slot. By fixing a single committee of SSV operators and controlling the number of SSV validators,

we can set the desired system load for the experimental test.

Therefore, we followed the second approach, creating a private customizable Ethereum network.

As an initial setup, 241 validators were defined, out of which 1 belonged to the SSV network. Since

Ethereum’s PoS attempts to request 512 validators to perform a sync committee duty for every slot, by

this setup we could force all validators to have at least one duty in every slot. To accomplish more duties

per slot, we can either increase the number of SSV validators or hard code the committee of operators

to do mock sync committee duties, if necessary.

43



44



5
Evaluation

Contents

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Alea-BFT and QBFT performance comparison . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Execution breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Improving the cryptography bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Results on wide area networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Performance as a function of the network size . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Performance under faulty scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

This chapter provides an analysis of the performance of the Alea-BFT protocol in the SSV network

context. Our focus was to answer the following questions:

• How does Alea-BFT compare to QBFT, in local networks, both in latency and throughput, for

different system loads?

• How do optimizations improve Alea-BFT’s performance?

• What are the most important execution bottlenecks?

• How does Alea-BFT compare to QBFT in wide-area experiments?

45



• When the number of replicas increases, do the implementation of both protocols follow the ex-

pected quadratic behavior?

• How each protocol is affected in the presence of node faults or network problems?

The chapter begins with section 5.1 describing the experimental setup used in the experiments.

In section 5.2, Alea-BFT is compared against QBFT in a local area network considering the different

protocol optimizations discussed in section 3.4. Then, in section 5.3, we analyze and dissect in detail

the results for the performance of Alea-BFT. Section 5.4 highlights the biggest processing bottleneck of

the implementation of the Alea-BFT protocol and explores improvements to overcome this performance

hurdle. Then, we compare Alea-BFT with QBFT for wide area simulations in section 5.5. Section 5.6

analyzes how the protocol latency changes for different network sizes and, lastly, section 5.7 compares

the resilience of the Alea-BFT protocol against QBFT under faulty scenarios.

5.1 Experimental setup

Except for the experiment with different network sizes, overall, all tests deployed 4 SSV operators, the

current standard value used by the company. Each operator was launched in a virtual machine running

Ubuntu 20.04 with 2 Intel(R) Xeon(R) Gold 5320 CPU @ 2.2GHz processors with 26 cores and 64GB of

RAM, though each virtual machine was limited to 4 vCPUs. The different machines could communicate

through a local network. For the wide area experiment, to simulate a higher transmission delay, we used

the tc qdisc command available in Linux. The private Ethereum beacon clients were also deployed in

similar machines, as well as an independent bootstrap node used for the discovery layer.

The metrics used to compare the protocols were latency and throughput. Base latency is the time

required by the consensus protocol to terminate one instance, in our case to agree on one duty. For

experiments in which a higher system load was used, where we used 2 or more duties per slot, the

latency metric was calculated as the average of the latencies for each duty.

The throughput was calculated as the number of duties that could be decided on a single slot, in-

stead of a rate of executions per second. This decision was made because validators are expected to

broadcast their duty outputs during the slot duration interval. For example, for the attestation duty, if the

validator broadcasts its attestation only after the first slot, its reward is significantly reduced. For other

duties, the validator’s output won’t even be processed and it would be penalized.

Since our private Ethereum network allows us to impose a Sync Committee duty for every validator

in every slot, this duty was the one used for all experiments. Moreover, a benefit of this duty is that its

steps resemble those of the attestation duty, which is the most common duty type on real Ethereum

networks. In the SSV implementation, the object to be decided on consensus, ConsensusData, for

the Sync Committee duty, has a maximum size of 256KB. Also, for this duty, operators need to wait 4

46



seconds after the start of the slot, in order to receive the block of the previous slot. Thus, a committee

has only 8 seconds to perform the duty.

For each experimental configuration, we conducted 20 observation samples and considered their

mean value as the result. This approach was adopted to enhance the reliability and accuracy of the

experiments’ outputs. In some charts, data points may appear with an error bar which represents the

standard deviation of the data samples.

5.2 Alea-BFT and QBFT performance comparison

The first basic question we attempted to answer was how the base latency performance of Alea-BFT

compares to QBFT on a local network with 4 operators, and also the contribution of individual optimiza-

tions to the performance of Alea-BFT. For that, we launched an unchanged version of Alea-BFT. Then we

added the Fast ABA (FA) optimization. To this already optimized version of Alea-BFT, we added the First

ABA Delay (AD) and Complete VCBC View (CV) optimizations, respectively. Then we compared their

base latency performance against the unchanged QBFT implementation from SSV. The base latency

comparison can be seen in figure 5.1.

Figure 5.1: Base latency for QBFT and Alea-BFT with protocol optimizations.

The Fast ABA optimization (FA) provided, approximately, 43% speed-up against the original version.

Then, the First ABA Delay (AD) optimization with the FA optimization provided a 31% speed-up against

47



using solely FA. Finally, adding the Complete VCBC View (CV) optimization added a speed-up of 29%.

These results are summarized in table 5.1.

Table 5.1: Protocol optimizations speed-up.

FA FA, AD FA, AD, CV
Speed-up against previous version 43% 31% 29%
Speed-up against original version 43% 61% 72%

The QBFT performance was superior to Alea-BFT with the FA, AD, and CV optimizations by 23%.

Even though both algorithms have quadratic communication and message complexities, Alea-BFT ex-

changes more messages until termination, which can justify the longer latency. Notice that, since the

experiment was launched in a local network, the message processing time dominates the message

transmission time and, thus, the number of messages to be processed has a bigger weight in the final

total base latency. This can be better observed in the breakdown section 5.3.

Figure 5.1 also shows a large standard deviation for the Alea-BFT unchanged version and FA version.

This variation is directly related to the number of ABAs performed until termination. If the first leader’s

queue is empty upon the start of the first ABA, the operators will have to complete the whole ABA

protocol in order to try to decide on a value in the next agreement round. In a lucky scenario, the

first leader’s VCBC propagates through the network before the first ABA starts allowing the operators

to terminate the consensus in the first agreement round. The big time difference between these two

scenarios and the unpredictability of a lucky or an unlucky scenario creates this big standard deviation.

Note that accelerating the ABA execution with the Fast ABA optimization reduces the base latency but

still carries a great standard deviation.

We, then, proceeded to compare the average latency between QBFT and Alea-BFT with all opti-

mizations for increasing system load. Figure 5.2(a) shows the results for experiments with 1, 40, 80,

120, 160, and 200 duties per slot. The latency grows almost linearly as the system load increases due

to the fact that the processing time dominates the message transmission delay and is proportional to

the system load since there’s no batching optimization. As expected by the base latency results, QBFT

could keep its latency smaller than Alea-BFT due to the difference in the number of messages.

48



(a) Latency (b) Throughput

Figure 5.2: Performance per system load for QBFT and Alea-BFT optimized.

Looking at the same set of experiments through the throughput metric perspective, presented in

figure 5.2(b), we see that QBFT was able to decide more duties per slot for higher system loads. This

was expected due to its smaller base latency and due to the higher number of messages that Alea-BFT

has to process. The throughput of Alea-BFT decreases after the number of duties per slot reaches 120.

This drop occurs because all duties run simultaneously, and the introduction of new duties overloads the

CPU. Consequently, all duties take longer to complete, leading to the decline in throughput, instead of

remaining stable at a certain value.

Even though this Alea-BFT version with protocol optimizations could not terminate 200 duties for the

current slot duration in Ethereum, a load of 200 duties per slot is already very big in terms of necessary

validators. Namely, from section 2.2.5, we can compute the expected number of duties per slot for a

single validator, E(d|V = 1), by

E(d|V = 1) =

5∑
i=1

E(di|V = 1) =

5∑
i=1

P (di)

where di with i = 1, ..., 5 are the duty types. Considering a total of 700000 Ethereum validators,

and committees of size 128, a validator has 3.598 × 10−2 expected duties per slot. If the events (duty

assignments) were independent, the expected number of duties per slot for V validators would simply

be E(V )i.i.d = V × 3.598 × 10−2. However, some events are independent and some are negatively

correlated, and, thus, although E(V )i.i.d is not an actual estimation, it serves as an upper bound for the

actual estimation.

So, for instance, to have an expectation of 200 duties per slot, the committee of operators would need

to be responsible for at least V ≥ 200
3.598×10−2 ≈ 5558 validators, as can be seen in figure 5.3. Indeed, we

conducted a Monte Carlo simulation of duty assignments through 1024 epochs and a control group of

49



5558 validators had, on average, 195 duties per slot.

Furthermore, regarding the current throughput peak of 120 duties per slot, in section 5.4, we will

discuss more optimizations that will allow Alea-BFT to overcome this barrier.

Figure 5.3: Required validators for duty per slot expectation.

5.3 Execution breakdown

Now, we attempt to provide a deep explanation of the latency breakdown of the optimized Alea-BFT.

First of all, the Complete VCBC View optimization may cut out the ABA steps of the protocol, the start-

up procedure and the processing of VCBC Send, VCBC Ready, and VCBC Final messages are left

untouched and do always occur. Let’s analyze each step one by one to understand where is the current

bottleneck of the current implementation.

For each protocol step, we performed tests with the go benchmark framework. This framework

attempts to provide a reliable benchmark for the processing time of a function by running it hundreds of

times and tracking down the processing time profile. Note that the test function is executed in isolation

and, thus, it doesn’t dispute CPU with other operator modules. The results are presented in table 5.2.

How these steps are stacked together such that the total time can be visualised is presented in figure

5.5(a) and will be discussed next.

Table 5.2: Benchmark latency of relevant Alea-BFT steps, considering the Complete VCBC View optimization, in
milliseconds.

Start-up VCBC Send VCBC Ready VCBC Ready Quorum VCBC Final
0.93 3.18 2.32 3.5 2.7

The start-up procedure takes approximately 0.93 milliseconds. This step consists only of some allo-

cation of variables and the creation of a VCBC Send message. We produced a CPU profiling map of

50



this step using the pprof tool of Go (figure 5.4(a)). It can be seen that the signing process with the BLS

key takes 97.96% of the total processing time.

Similarly to the start-up case, the VCBC Send processing step uses 96.90% of its time for BLS

cryptography (figure 5.4(b)). This step, on the other hand, performs two cryptographic tasks by verifying

the signature of the incoming message and signing a VCBC Ready message as a response. This

explains why it takes, on average, 3.18 milliseconds.

The VCBC Ready step performs a signature verification and, if it’s the ( (N+f)
2 + 1)th (the quorum

value for N replicas and f faults) ready to be received, it also performs a signature aggregation of all

received VCBC Ready messages. That’s why the VCBC Ready that completes the quorum takes 3.5

milliseconds while an earlier VCBC Ready takes, on average, 2.32 milliseconds. It can be seen in figure

5.4(c) that, for a non-completing quorum VCBC Ready, BLS verification takes 97.52% of the processing

time.

The VCBC Final step performs a signature verification over the aggregated signature and, if it’s the

quorum completing the message, it will also call the ABA start-up, which will sign an ABA Init mes-

sage. A non-completing quorum VCBC Ready takes 2.7 milliseconds from which 97.79% is due to BLS

verification, according to figure 5.4(d).

File: testing.test
Build ID: 6b030c6596bfe6131f891be457aadcb443619dc4
Type: cpu
Time: Oct 19, 2023 at 11:25pm (UTC)
Duration: 1.11s, Total samples = 980ms (88.45%)
Showing nodes accounting for 980ms, 100% of 980ms total

See https://git.io/JfYMW for how to read the graph

runtime
cgocall

950ms (96.94%)

testing
(*B)

launch
0 of 980ms (100%)

testing
(*B)

runN
0 of 980ms (100%)

 980ms

testingutils
(*testingKeyManager)

SignRoot
0 of 960ms (97.96%)

hex
EncodeToString

0 of 10ms (1.02%)

 10ms
 (inline)

bls
(*SecretKey)

SignByte
0 of 930ms (94.90%)

 930ms

bls
(*Sign)

Serialize
0 of 20ms (2.04%)

 20ms

instance
(*Instance)
StartVCBC

0 of 980ms (100%)

instance
(*Instance)

CreateVCBCSend
0 of 970ms (98.98%)

 970ms

instance
(*Instance)
StartVCBC

func1
0 of 10ms (1.02%)

 10ms

instance
(*Instance)

Sign
0 of 960ms (97.96%)

 960ms

messages
(*VCBCSendData)

Encode
0 of 10ms (1.02%)

 10ms
 (inline)

hex
Encode

10ms (1.02%)

runtime
growslice

10ms (1.02%)

runtime
memmove

10ms (1.02%)

 10ms
 (inline)

json
Marshal

0 of 10ms (1.02%)

 10ms

 960ms

instance
(*Instance)

Start
0 of 980ms (100%)

 980ms

runtime
concatstring3

0 of 10ms (1.02%)

 10ms

 10ms

testing
BenchmarkAleaStart
0 of 980ms (100%)

 980ms

bls
(*SecretKey)

SignByte
func1

0 of 930ms (94.90%)

 930ms

bls
_Cfunc_blsSign

0 of 930ms (94.90%)

 930ms

bls
(*Sign)

Serialize
func1

0 of 20ms (2.04%)

 20ms

bls
_Cfunc_blsSignatureSerialize

0 of 20ms (2.04%)

 20ms

 930ms  20ms

runtime
concatstrings

0 of 10ms (1.02%)

 10ms

 10ms

 980ms

(a) Start-up

File: testing.test
Build ID: a64d1ab4da71d4b394321e8f5674a8a9b061359f
Type: cpu
Time: Oct 19, 2023 at 11:11pm (UTC)
Duration: 25.95s, Total samples = 25.79s (99.39%)
Showing nodes accounting for 25.28s, 98.02% of 25.79s total
Dropped 110 nodes (cum <= 0.13s)

See https://git.io/JfYMW for how to read the graph

runtime
cgocall

24.99s (96.90%)
of 25.07s (97.21%)

runtime
notewakeup

0 of 0.24s (0.93%)

 0.08s

testing
(*B)

launch
0 of 25.25s (97.91%)

testing
(*B)

runN
0 of 25.25s (97.91%)

 25.25s

instance
(*Instance)

BLSBehaviorProcessing
0.01s (0.039%)

of 25.23s (97.83%)

instance
(*Instance)

ProcessMsgLogic
0 of 7.30s (28.31%)

 7.30s

instance
(*Instance)

Verify
0 of 17.92s (69.48%)

 17.92s

types
Signature

VerifyByOperators
0 of 17.91s (69.45%)

bls
(*PublicKey)
Deserialize

0 of 1.13s (4.38%)

 1.13s

bls
(*Sign)

Deserialize
0 of 2.08s (8.07%)

 2.08s

bls
(*Sign)

FastAggregateVerify
0 of 14.64s (56.77%)

 14.64s

testingutils
(*testingKeyManager)

SignRoot
0 of 7.25s (28.11%)

bls
(*SecretKey)

SignByte
0 of 6.93s (26.87%)

 6.93s

bls
(*Sign)

Serialize
0 of 0.29s (1.12%)

 0.29s

runtime
futex

0.25s (0.97%)

runtime
mcall

0 of 0.44s (1.71%)

runtime
park_m

0.01s (0.039%)
of 0.44s (1.71%)

 0.44s

runtime
schedule

0 of 0.42s (1.63%)

runtime
findRunnable

0.02s (0.078%)
of 0.25s (0.97%)

 0.25s

runtime
resetspinning

0 of 0.17s (0.66%)

 0.17s

runtime
futexwakeup

0 of 0.24s (0.93%)

 0.24s

 0.42s

types
(*ThreadSafeF)

Run
0 of 7.30s (28.31%)

instance
(*Instance)

ProcessMsgLogic
func1

0 of 7.30s (28.31%)

 7.30s

instance
(*Instance)

CreateVCBCReady
0 of 7.25s (28.11%)

instance
(*Instance)

Sign
0 of 7.25s (28.11%)

 7.25s

instance
(*Instance)
ProcessMsg

0 of 25.23s (97.83%)

instance
(*Instance)

ValidateAndProcess
0 of 25.23s (97.83%)

 25.23s

 7.30s

instance
(*Instance)

uponVCBCSend
0 of 7.30s (28.31%)

 7.30s

 7.25s

 25.23s

 17.91s

 7.25s

testing
BenchmarkAleaVCBCSend

0 of 25.25s (97.91%)

 25.23s

bls
(*PublicKey)
Deserialize

func1
0 of 1.13s (4.38%)

 1.13s

bls
_Cfunc_blsPublicKeyDeserialize

0 of 1.13s (4.38%)

 1.13s

bls
(*SecretKey)

SignByte
func1

0 of 6.93s (26.87%)

 6.93s

bls
_Cfunc_blsSign

0 of 6.93s (26.87%)

 6.93s

bls
(*Sign)

Deserialize
func1

0 of 2.08s (8.07%)

 2.08s

bls
_Cfunc_blsSignatureDeserialize

0 of 2.08s (8.07%)

 2.08s

bls
(*Sign)

FastAggregateVerify
func1

0 of 14.64s (56.77%)

 14.64s

bls
_Cfunc_blsFastAggregateVerify

0 of 14.64s (56.77%)

 14.64s

bls
(*Sign)

Serialize
func1

0 of 0.29s (1.12%)

 0.29s

bls
_Cfunc_blsSignatureSerialize

0 of 0.29s (1.12%)

 0.29s

 14.64s 1.13s 6.93s  2.08s 0.29s

 0.24s

runtime
wakep

0 of 0.17s (0.66%)

 0.17s

runtime
startm

0 of 0.17s (0.66%)

 0.16s

 0.17s

 25.25s

(b) VCBC Send

File: testing.test
Build ID: a64d1ab4da71d4b394321e8f5674a8a9b061359f
Type: cpu
Time: Oct 19, 2023 at 11:11pm (UTC)
Duration: 23.24s, Total samples = 23.37s (100.57%)
Showing nodes accounting for 22.98s, 98.33% of 23.37s total
Dropped 74 nodes (cum <= 0.12s)

See https://git.io/JfYMW for how to read the graph

runtime
cgocall

22.69s (97.09%)
of 22.78s (97.48%)

runtime
notewakeup

0 of 0.25s (1.07%)

 0.08s

testing
(*B)

launch
0 of 22.82s (97.65%)

testing
(*B)

runN
0 of 22.82s (97.65%)

 22.82s

types
Signature

VerifyByOperators
0 of 22.79s (97.52%)

bls
(*PublicKey)
Deserialize

0 of 1.19s (5.09%)

 1.19s

bls
(*Sign)

Deserialize
0 of 3.24s (13.86%)

 3.24s

bls
(*Sign)

FastAggregateVerify
0 of 18.35s (78.52%)

 18.35s

runtime
futex

0.28s (1.20%)

runtime
mcall

0 of 0.46s (1.97%)

runtime
park_m

0 of 0.46s (1.97%)

 0.46s

runtime
schedule

0 of 0.46s (1.97%)

runtime
findRunnable

0 of 0.29s (1.24%)

 0.29s

runtime
resetspinning

0.01s (0.043%)
of 0.17s (0.73%)

 0.17s

 0.03s

runtime
futexwakeup

0 of 0.25s (1.07%)

 0.25s

runtime
wakep

0 of 0.17s (0.73%)

 0.16s

runtime
startm

0 of 0.17s (0.73%)

 0.17s

instance
(*Instance)

BLSBehaviorProcessing
0 of 22.80s (97.56%)

instance
(*Instance)

Verify
0 of 22.79s (97.52%)

 22.79s

instance
(*Instance)
ProcessMsg

0 of 22.81s (97.60%)

instance
(*Instance)

ValidateAndProcess
0 of 22.80s (97.56%)

 22.80s

 22.80s

 22.79s

testing
BenchmarkAleaVCBCReady

0 of 22.82s (97.65%)

 22.81s

bls
(*PublicKey)
Deserialize

func1
0 of 1.19s (5.09%)

 1.19s

bls
_Cfunc_blsPublicKeyDeserialize

0 of 1.19s (5.09%)

 1.19s

bls
(*Sign)

Deserialize
func1

0 of 3.24s (13.86%)

 3.24s

bls
_Cfunc_blsSignatureDeserialize

0 of 3.24s (13.86%)

 3.24s

bls
(*Sign)

FastAggregateVerify
func1

0 of 18.35s (78.52%)

 18.35s

bls
_Cfunc_blsFastAggregateVerify

0 of 18.35s (78.52%)

 18.35s

 18.35s 1.19s  3.24s

 0.25s

 0.46s

 0.17s

 22.82s

(c) VCBC Ready

File: testing.test
Build ID: a64d1ab4da71d4b394321e8f5674a8a9b061359f
Type: cpu
Time: Oct 19, 2023 at 11:12pm (UTC)
Duration: 24.39s, Total samples = 24.40s (100.06%)
Showing nodes accounting for 23.98s, 98.28% of 24.40s total
Dropped 100 nodes (cum <= 0.12s)

See https://git.io/JfYMW for how to read the graph

runtime
cgocall

23.71s (97.17%)
of 23.79s (97.50%)

runtime
notewakeup

0 of 0.22s (0.9%)

 0.07s

types
Signature

VerifyByOperators
0 of 23.86s (97.79%)

bls
(*PublicKey)
Deserialize

0 of 3.47s (14.22%)

 3.47s

bls
(*Sign)

Deserialize
0 of 2.88s (11.80%)

 2.88s

bls
(*Sign)

FastAggregateVerify
0 of 17.45s (71.52%)

 17.45s

testing
(*B)

launch
0 of 24s (98.36%)

testing
(*B)

runN
0 of 24s (98.36%)

 24s

runtime
futex

0.26s (1.07%)

runtime
mcall

0 of 0.32s (1.31%)

runtime
park_m

0 of 0.32s (1.31%)

 0.32s

runtime
schedule

0 of 0.32s (1.31%)

runtime
findRunnable

0 of 0.18s (0.74%)

 0.18s

runtime
resetspinning

0 of 0.14s (0.57%)

 0.14s

runtime
futexwakeup

0 of 0.22s (0.9%)

 0.22s

 0.04s

bls
(*PublicKey)
Deserialize

func1
0.01s (0.041%)

of 3.47s (14.22%)

bls
_Cfunc_blsPublicKeyDeserialize

0 of 3.46s (14.18%)

 3.46s

runtime
wakep

0 of 0.15s (0.61%)

runtime
startm

0 of 0.15s (0.61%)

 0.15s

instance
(*Instance)

BLSBehaviorProcessing
0 of 24s (98.36%)

instance
(*Instance)

Verify
0 of 23.86s (97.79%)

 23.86s

instance
(*Instance)
ProcessMsg

0 of 24s (98.36%)

instance
(*Instance)

ValidateAndProcess
0 of 24s (98.36%)

 24s

 24s

 23.86s

testing
BenchmarkAleaVCBCFinal

0 of 24s (98.36%)

 24s

 3.47s

bls
(*Sign)

Deserialize
func1

0 of 2.88s (11.80%)

 2.88s

bls
_Cfunc_blsSignatureDeserialize

0 of 2.88s (11.80%)

 2.88s

bls
(*Sign)

FastAggregateVerify
func1

0 of 17.45s (71.52%)

 17.45s

bls
_Cfunc_blsFastAggregateVerify

0 of 17.45s (71.52%)

 17.45s

 17.45s 3.46s  2.88s

 0.22s

 0.32s

 0.14s

 0.15s

 24s

(d) VCBC Final

Figure 5.4: Step profiling.

With the Complete VCBC View optimization, in a scenario of N honest nodes with good network

connection, in order to terminate the consensus an operator needs to process at least 1 start-up proce-

dure, N VCBC Send, a quorum of VCBC Ready and N VCBC Final messages. For N = 4 operators,

51



this represents a total of

0.93 + (0.93) + (4 ∗ 3.18) + (2 ∗ 2.32 + 3.5) + (4 ∗ 2.7) = 32.59

milliseconds at minimum. Therefore, for this current implementation, independently of the effectiveness

of the communication layer, 32.59 ms is a lower bound for the base latency for 4 operators. Of course,

these are just boundary values and they are not reached due to the parallel execution of other SSV

layers and to other modules of the operator. In section 5.4, improvement to these boundary values is

reached by using efficient cryptographic optimizations.

Another useful visualization of the base latency is presented as a Gantt chart in figure 5.5. The

processing times of Alea-BFT’s steps are different from the benchmark results which is expected since

the benchmark test isolates the function processing while, during real execution, other operator modules

work in parallel to the Alea-BFT protocol, inevitably slowing it down. Comparing it to the QBFT break-

down, shown in figure 5.5, we can see that, in fact, Alea-BFT needs to process more messages until

termination, even having to process messages after knowing the consensus decision value in advance.

(a) Optimized Alea-BFT (b) QBFT

Figure 5.5: Execution breakdown.

5.4 Improving the cryptography bottleneck

As discussed in section 3.5 and noticed by the experimental results shown in section 5.3, cryptography

is a significant bottleneck in terms of message processing, taking more than 90% of the processing

time. BLS, particularly, has very expensive primitives when compared to other schemes, which can be

visualized in figure 5.6. For instance, according to figure 5.6, other asymmetric schemes such as RSA

and EDDSA can verify signatures 4519% and 3172% faster than BLS, respectively. The ideal scenario

would be to change all asymmetric message authentication to symmetric message authentication, using

52



Message Authentication Codes (MAC) which can be as fast as 1.1µs, for the HMAC implementation, as

can be seen in figure 5.6. However, as discussed in section 3.5, VCBC requires asymmetric schemes,

and thus our best option is to combine MACs with BLS as described in section 3.5.

Figure 5.6: Cryptograhpy functions benchmark.

We implemented each cryptography option discussed above and compared their base latency which

be seen in figure 5.7. Note that performing BLS aggregation already makes Alea-BFT have a better

base latency result than QBFT. Adopting HMAC, RSA, and EdDSA makes it even faster by 152%, 251%,

and 381%, respectively. Here, it’s worth noting that QBFT could also make use of the MAC optimization

for the proposal and commit messages, but the prepare and round-change messages would still require

BLS signatures.

Figure 5.7: Base latency with different cryptography optimizations.

To retain the usage of BLS, we continue for the next experiments with the Alea-BFT version with

normal BLS (without performing signature aggregation), with BLS with aggregation, and with BLS and

53



HMAC.

To verify how different loads affect the protocols, we proceeded to compare the average latency

between QBFT and Alea-BFT, for these different versions, for increasing system load. Figure 5.8(a)

shows the results for experiments with 1, 40, 80, 120, 160, and 200 duties per slot. It can be seen that

Alea-BFT with aggregation was able to keep up with the average latency of QBFT, while Alea-BFT with

HMAC and BLS was able to maintain lower latencies for higher system loads.

(a) Latency (b) Throughput

Figure 5.8: Performance by system load for different cryptography optimizations.

Regarding the throughput metrics, we also performed experiments with 240, 280, 320, 360, and 400

duties per slot in order to completely capture the throughput potential of the HMAC and BLS combination.

By looking at figures 5.8(b) and 5.9, we can see that Alea-BFT with HMAC can outperform the QBFT

results. BLS with aggregation, on the other hand, continued to present a smaller throughput peak. A

reason for this is that, even though Alea-BFT with BLS aggregation has comparable latencies to QBFT,

QBFT doesn’t have to process any more messages after it knows the consensus result, which is not

true for Alea-BFT which has to keep processing more messages due to possible divergent views of the

network.

54



Figure 5.9: Peak throughput for different cryptography optimizations.

This section showed that the use of efficient cryptography schemes can have a great impact on the

performance of the Alea-BFT protocol in local area networks since processing time dominates message

transmission delay. However, when the network nodes are far apart, with big transmission delays, the

most important factor is the number of steps that the protocol has to make until termination, which will

be explored in section 5.5.

5.5 Results on wide area networks

The total execution time of a decentralized protocol can be seen as a function of the processing time and

the message transmission delay. Until now, we have been considering local area setups, in which the

transmission delay is minimal and, thus, processing time takes the most important role. Nonetheless,

the SSV network is permissionless and open for anyone to join. Therefore, committee nodes may be

spread throughout the whole world and, thus, it’s important to understand how Alea-BFT behaves in a

wide area setup.

For that, we used the tc qdisc command, available in Linux, to simulate transmission delay between

machines. The delay is calculated as a normally distributed variable for a given mean and standard

deviation values. We initially used 500 milliseconds as the mean value and 100 milliseconds as the

standard deviation, as suggested by data scrapped from the company’s scenario. The results are shown

in figure 5.10.

55



(a) Latency (b) Throughput

Figure 5.10: Performance by system load for wide area with 500 ms transmission delay.

Figure 5.10(a) indicates that, for lower system loads, both QBFT and Alea-BFT, with different cryp-

tography models, produced similar latencies. This is reasonable since the transmission delay dominates

the total time and both QBFT and the optimized version of Alea-BFT take 3 transmission steps to termi-

nate. For instance, in a normal scenario, the optimized Alea-BFT starts with each node broadcasting a

VCBC Send message. After the first transmission delay, nodes receive the VCBC Send messages and

broadcast a VCBC Ready message. After a second transmission delay, nodes receive the VCBC Ready

messages and broadcast a VCBC Final message. After the third transmission delay, nodes receive the

VCBC Final messages and terminate in case all VCBCs contain the same proposed value. For QBFT,

this is similar but with the proposal, preapre, and commit messages.

After a certain system load, latency starts to increase. This can be explained by the fact that a

higher system load makes the protocols exchange more messages and the processing time starts to

be comparable to the transmission delay. As the system load increases, the processing time dominates

even more the transmission delay making the results look similar to the ones obtained in the local area

experiment. These turning point values were: 30 for Alea-BFT with normal BLS; 40 for Alea-BFT with

BLS aggregation and for QBFT; and 100 for Alea-BFT with HMAC and BLS.

Regarding the throughput metric, shown in figure 5.10(b), the results had little difference from the

local area case. This is expected because, after 120 duties per slot (the first throughput degrading

point), the behaviors of the protocols were similar to the behaviors seen in the local area experiment.

To show how high transmission delays dictate the total latency time for low system loads, we per-

formed experiments with increasing system delays in which the operators had to decide only one duty.

The standard deviation was kept at 100 ms. The results, shown in figure 5.11, confirm that all protocols

followed precisely the transmission delay increment, as expected

56



Figure 5.11: Latency per transmission delay.

5.6 Performance as a function of the network size

Next, in figure 5.12, we examine how the base latency changes for different system sizes, i.e. the

number of operators. Currently, in SSV, a validator can only hire 4, 7, 10, or 13 operators, as defined in

its smart contract. Even though this small set of possible group sizes restricts our view of the complexity

pattern of the base latency, figure 5.12 suggests that the protocols follow a quadratic pattern. This is

expected since the message and communication complexities of both algorithms are quadratic. Note

that, even with Alea-BFT’s Complete VCBC View optimization, which may prevent an execution from

having to perform a whole agreement round, the complexity remains quadratic since O(N) VCBCs are

executed and each has a linear complexity.

Figure 5.12: Base latency per system size.

Even though Alea-BFT with the BLS aggregation optimization is faster than QBFT for a smaller num-

57



ber of nodes (4 and 7), for a higher number of nodes its latency seems to cross the QBFT curve. This

can be explained by the fact that the communication layer of SSV doesn’t allow direct messages be-

tween peers and, thus, a peer actually receives several VCBC Ready messages that are not relevant to

it. Indeed, at maximum (if all nodes work correctly), a node would receive N VCBC Ready messages

for each of N − 1 VCBCs of which it’s not the author, and, thus, a total of N × (N − 1) extra VCBC

Ready messages. Even though it doesn’t process these messages, they represent unnecessary band-

width usage and overload the network. Also, this negative effect is quadratic, O(N2), making it more

severe for higher system sizes. Notice that this affects every Alea-BFT version implemented using this

communication layer interface, including the version with the simple BLS usage and the one with the

HMAC+BLS optimization.

5.7 Performance under faulty scenarios

One of the most important features of asynchronous BFT protocols is their resilience to network insta-

bility problems and node faults. Thus, our next step aims to analyze what happens with the performance

of each protocol under a faulty scenario.

Figure 5.13 shows the base latency comparison for the normal case, for a crashed node, and for

a byzantine node scenario. The crash or byzantine fault occurs right at the beginning of the slot. In

the QBFT experiment, the leader process was chosen to be faulty one, which has a 1/4 probability of

happening, while in the Alea-BFT experiment the faulty node was chosen at random. In this QBFT im-

plementation, it was used a round-change timeout of 2 seconds, as defined by the SSV implementation.

For the Alea-BFT protocol, the byzantine node behavior was implemented in order to slow down

the protocol execution by not answering properly to the protocol messages. So, for instance, it does

not respond properly to a VCBC Send message, and it tracks the ongoing ABA state in order to send

messages containing opposite votes to the majority. Also, it sends extra invalid messages that will be

dropped by honest peers but will force them to waste resources with signature verification. For the QBFT

protocol, the byzantine node was implemented in a similar way plus the addition that it won’t broadcast

valid Proposal messages for a round in which the faulty node is the leader.

58



Figure 5.13: Base latency for different fault scenarios.

It can be seen that the fault effects on Alea-BFT are minimal compared to QBFT. This is due to the fact

that, if the QBFT leader is faulty, the protocol will remain idle until a timeout occurs. On the other hand,

Alea-BFT is able to make progress despite a faulty node. This occurs because the correct functioning

of the protocol is not dependent on a single node but on a quorum of them. Notice that the Fast ABA

and the Complete VCBC View protocol optimizations do not accelerate the protocol termination in these

faulty scenarios because each of these needs all the nodes working correctly, which can explain why

the Alea-BFT base latency under these faults is higher than under a normal case scenario. Actually, the

results became similar to the base latency of the unoptimized version.

Another experiment was performed in order to analyze the effects of faulty scenarios in the protocol’s

throughput, which can be seen in figure 5.14. The figure shows the trace of the protocols’ throughput

for a sequence of slots for a system load of 100 duties per slot. During slots 1 to 10, all the nodes are

honest and all protocols are able to reach the desired throughput. At the beginning of slot 11, a random

node crashes and it persists in failure until slot 20. For slots 21 to 30, all nodes work correctly again.

59



Figure 5.14: Throughput trace with crash fault.

The result shows that Alea-BFT is more resilient to these types of faults, being able to maintain a

higher latency throughout the crash period. Again, this is explained by the design principles of Alea-BFT,

which allow the protocol to make progress even with faulty nodes, while QBFT is severely dependent on

the leader functioning well.

60



6
Conclusion

Contents

6.1 System Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Among the components of a validator network, there’s a consensus layer that allows operators to

agree on some value. The objective of this work was to integrate Alea-BFT, an asynchronous BFT

protocol, into the real-world application of validator networks. Currently, Ethereum recommends the

QBFT protocol for the consensus layer of such networks. Our work, therefore, aimed to show that

Alea-BFT can provide similar performances to partially synchronous protocols, such as QBFT, with the

advantage of being more resilient to network instability and fault scenarios, and, thus, being able to be

adopted in practice.

During the design of the integration of Alea-BFT into the SSV network code, the biggest obstacle was

to adapt Alea to a one-shot consensus, as abstracted by the SSV network, instead of implementing it to

be used as a state machine replication which would be more suitable to its design. However, throughout

the process, we proposed many protocol optimizations that took advantage of the adaptations that we

needed to make.

Regarding the experimental component, we verified how these protocol optimizations were able

to make Alea-BFT have comparable results to QBFT. Then, we analyzed in detail the breakdown of

61



Alea-BFT’s performance, providing profiling data and showing exactly the bottleneck component of our

implementation which is cryptography. To diminish the hurdles of this bottleneck, we proposed some suit-

able alternative solutions and optimizations that don’t require SSV to change its cryptographic scheme.

These alternatives allowed Alea-BFT to even outperform QBFT.

We also analyzed the protocol behavior for wide area scenarios, to take into consideration the possi-

bility of geographically spread operators. We showed that QBFT and the optimized version of Alea-BFT

had similar results due to the similar number of steps they require until termination. Moreover, we

investigated the impact of increasing the network size, by adding more operators, and confirmed our

expectations of a quadratic behavior for both protocols. Lastly, we evaluated these protocols under dif-

ferent fault scenarios. This was an important experiment because SSV is permissionless and, as more

people participate in the network, it can not guarantee that operators will behave honestly. Alea-BFT, as

expected, showed much better performance due to its resilience to network instability and node faults.

Therefore, even though QBFT may show good results under stable scenarios, its leader-driven design

comes with the price of considerable performance impact under these fault conditions.

In conclusion, our implementation of Alea-BFT in validator networks provided similar results to the

partially synchronous QBFT protocol. One of Alea-BFT’s drawbacks was the higher number of ex-

changed messages. But this is a price associated with its leaderless design. On the other hand, one of

the advantages of this design is the ability to keep making progress even under fault situations, which

can become more frequent as the SSV network increases its size.

6.1 System Limitations and Future Work

The biggest implementation challenge regards the one-shot consensus design, specified by the SSV

interface. Though it would require considerable changes, this interface could be modified in order to add

a state machine replication interface to the network. Instead of executing different consensus instances

with several different committees, the network as a whole would participate in the state maintenance.

This would allow Alea-BFT to use batching, one of its powerful features used to increase throughput.

More than that, since attestation is by far the most frequent duty, many different consensus instances

that occur in parallel decide on the same data. This repeated work would be done in a single step of the

state machine replication.

The communication layer design also posed some limitations to Alea-BFT’s performance, since un-

necessary VCBC Ready messages increased the network congestion. To minimize this preformance

penalty, one could keep the GossipSub protocol, since it’s widely adopted and tested against common

network attacks, but add an extra communication layer dedicated exclusively to direct messages.

We suggested several cryptography optimizations, including even changing the used cryptographic

62



scheme. Indeed, although Ethereum uses the BLS scheme and partial signature messages are forced to

use it, consensus messages could apply more efficient schemes, such as RSA and EdDSA. Regarding

the VCBC threshold signature, since these schemes don’t allow signature aggregation, one could send

a buffer of signatures since these asymmetric schemes provide non-repudiation.

63



64



Bibliography

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2019. [Online].

Available: https://api.semanticscholar.org/CorpusID:261284440

[2] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” arXiv e-prints, p. arXiv:1710.09437,

Oct. 2017.

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling byzantine

agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on Operating Systems

Principles, ser. SOSP ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.

51–68. [Online]. Available: https://doi.org/10.1145/3132747.3132757

[4] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals problem.” ACM

Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982. [Online]. Available:

http://dblp.uni-trier.de/db/journals/toplas/toplas4.html#LamportSP82

[5] A. Oliveira, H. Moniz, and R. Rodrigues, “Alea-bft: Practical asynchronous byzantine fault

tolerance,” 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2202.02071

[6] H. Moniz, “The istanbul bft consensus algorithm,” 2020.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus

with one faulty process,” J. ACM, vol. 32, no. 2, p. 374–382, apr 1985. [Online]. Available:

https://doi.org/10.1145/3149.214121

[8] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft protocols,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

ser. CCS ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 31–42.

[Online]. Available: https://doi.org/10.1145/2976749.2978399

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May 2009. [Online]. Available:

http://www.bitcoin.org/bitcoin.pdf

65

https://api.semanticscholar.org/CorpusID:261284440
https://doi.org/10.1145/3132747.3132757
http://dblp.uni-trier.de/db/journals/toplas/toplas4.html#LamportSP82
https://doi.org/10.48550/arXiv.2202.02071
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/2976749.2978399
http://www.bitcoin.org/bitcoin.pdf


[10] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,” 2012. [Online].

Available: https://api.semanticscholar.org/CorpusID:42319203

[11] P. Howson and A. de Vries, “Preying on the poor? opportunities and challenges for

tackling the social and environmental threats of cryptocurrencies for vulnerable and low-income

communities,” Energy Research Social Science, vol. 84, p. 102394, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2214629621004813

[12] A. Beikverdi and J. Song, “Trend of centralization in bitcoin’s distributed network,” in 2015

IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Network-

ing and Parallel/Distributed Computing (SNPD), 2015, pp. 1–6.

[13] K. Mohsin, “Cryptocurrency its impact on environment,” in International Journal of Cryptocurrency

Research, 2021.

[14] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p. 612–613, nov 1979.

[Online]. Available: https://doi.org/10.1145/359168.359176

[15] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for smaller blockchains,” in

Advances in Cryptology – ASIACRYPT 2018: 24th International Conference on the Theory and

Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,

2018, Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag, 2018, p. 435–464. [Online].

Available: https://doi.org/10.1007/978-3-030-03329-3 15

[16] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the Third Sympo-

sium on Operating Systems Design and Implementation, ser. OSDI ’99. USA: USENIX Associa-

tion, 1999, p. 173–186.

[17] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster asynchronous bft protocols,” in

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,

ser. CCS ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 803–818.

[Online]. Available: https://doi.org/10.1145/3372297.3417262

[18] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Symposium on Foundations of

Computer Science (sfcs 1983), 1983, pp. 403–409.

[19] M. Ben-Or, “Another advantage of free choice (extended abstract): Completely asynchronous

agreement protocols,” in Proceedings of the Second Annual ACM Symposium on Principles

of Distributed Computing, ser. PODC ’83. New York, NY, USA: Association for Computing

Machinery, 1983, p. 27–30. [Online]. Available: https://doi.org/10.1145/800221.806707

66

https://api.semanticscholar.org/CorpusID:42319203
https://www.sciencedirect.com/science/article/pii/S2214629621004813
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1145/3372297.3417262
https://doi.org/10.1145/800221.806707


[20] M. K. Reiter, “Secure agreement protocols: Reliable and atomic group multicast in rampart,”

in Proceedings of the 2nd ACM Conference on Computer and Communications Security, ser.

CCS ’94. New York, NY, USA: Association for Computing Machinery, 1994, p. 68–80. [Online].

Available: https://doi.org/10.1145/191177.191194

[21] D. Malki and M. Reiter, “A high-throughput secure reliable multicast protocol,” in Proceedings of the

9th IEEE Workshop on Computer Security Foundations, ser. CSFW ’96. USA: IEEE Computer

Society, 1996, p. 9.

67

https://doi.org/10.1145/191177.191194

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Glossary

	1 Introduction
	1.1 Organization of the Document

	2 Background & Related Work
	2.1 Ethereum
	2.1.1 Proof-of-Work
	2.1.2 Proof-of-Stake

	2.2 Running a Validator
	2.2.1 Challenges
	2.2.2 Distributed Validator Technology
	2.2.3 Shamir Key Sharing
	2.2.4 BLS Signatures
	2.2.5 Validator duties

	2.3 BFT Consensus
	2.3.1 Communication models
	2.3.2 FLP Impossibility
	2.3.3 Istanbul BFT (IBFT)
	2.3.4 Asynchronous protocols techniques & overcoming FLP
	2.3.5 Initial asynchronous BFT protocols
	2.3.6 HoneyBadgerBFT

	2.4 Alea-BFT
	2.4.1 Verifiable Consistent Broadcast Protocol (VCBC)
	2.4.2 Asynchronous Binary Agreement (ABA)
	2.4.3 Complexity


	3 Design
	3.1 SSV Architecture
	3.2 The role and interface of consensus in SSV
	3.3 Adapting Alea-BFT to one-shot consensus
	3.4 Protocol optimizations for Alea-BFT
	3.4.1 Fast ABA (FA)
	3.4.2 First ABA Delay (AD)
	3.4.3 Complete VCBC View (CV)

	3.5 Cryptographic optimizations
	3.5.1 BLS Aggreation
	3.5.2 Message Authentication Codes
	3.5.3 Other asymmetric schemes


	4 Implementation
	4.1 SSV modules implementation
	4.2 Alea-BFT module in the SSV code
	4.3 Private Ethereum Testnet

	5 Evaluation
	5.1 Experimental setup
	5.2 Alea-BFT and QBFT performance comparison
	5.3 Execution breakdown
	5.4 Improving the cryptography bottleneck
	5.5 Results on wide area networks
	5.6 Performance as a function of the network size
	5.7 Performance under faulty scenarios

	6 Conclusion
	6.1 System Limitations and Future Work

	Bibliography

