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Abstract 

Sleep is part of the circadian rhythm and is characterized by sequences of stages with 

autonomous nervous system functions that are related to it. It is a complex physiological 

process inherent to each individual and commonly covers nearly one-third of the lifespan. 

Sleep quality is one of the most relevant factors that affects physical and mental health 

and sleep-related complaints are the second most common cause to seek medical 

attention, superseded only by the feel of pain. Non-restorative sleep is commonly 

associated with the presence of a sleep-related disorder such as sleep apnea. Full night 

polysomnography is the standard for sleep studies, requiring monitoring multiple 

physiological signals that are commonly analyzed by visual examination to score the 

results. However, this process is slow and expensive, prone to errors due to fatigue of the 

scorer, and unavailable to a large portion of the world population. Another difficulty in 

sleep analysis is the lack of a definitional consensus about what is sleep quality while the 

term is widely used by clinicians, researchers, and the public. It is commonly based on 

self-rating indexes, the duration of sleep, environmental factors, physiologically derived 

indices, pharmacologic interventions, polysomnographic parameters, and occurrence of 

sleep disorders. Nevertheless, correspondence between objective sleep measurements and 

the person’s subjective assessment of the sleep quality is considerably low. To address 

these constraints, this research focuses on developing automatic algorithms to estimate 

sleep quality and implement the most suited approaches in cost-effective devices. 

Therefore, literature reviews were conducted and three approaches were identified as 

suitable paths to implement the sleep quality examination. The first considered the 

examination of sleep metrics and the electroencephalogram cyclic alternating pattern 

related metrics were selected as the most suitable. The second approach was to assess the 

presence of sleep related disorders, theorizing that the occurrence of such disorders can 

be a key contributor to poor sleep quality. Therefore, sleep apnea was considered in this 

work as the most relevant disorder to be addressed since it is one of the most prevalent 

disorders that is majorly undiagnosed. The last approach was hypothesized in this work 

and considered that the combination of sleep quality metrics and the detection of sleep 

related disorders could provide a better estimation of global sleep quality. Several 

algorithms, based on machine learning for pattern recognition, were developed to 

estimate the studied metrics, testing multiple sensors to measure the physiological signals. 

Specifically, models were developed for the examination of the electroencephalogram 

and electrocardiogram signals, proposing new approaches for sleep quality analysis. The 

best models were then implemented in the developed home monitoring devices. It was 

verified that the algorithms' performance is in the same range as the average specialist 

agreement, indicating that the developed algorithms could be useful for medical 

diagnosis.  

 

Keywords 

Sleep quality; cyclic alternating pattern; sleep apnea; machine learning; home monitoring 

devices. 
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Resumo 

O sono faz parte do ritmo circadiano e é caracterizado por sequências de estados 

associados a funções do sistema nervoso autónomo. É um processo fisiológico complexo 

inerente a cada indivíduo e usualmente cobre aproximadamente um terço da vida. A 

qualidade do sono é um dos fatores mais relevantes que afetam a saúde física e mental e 

as queixas relacionadas ao sono são das causas mais comuns que levam à procura de 

atendimento médico, sendo apenas superadas pela sensação de dor. O sono não 

restaurador é tipicamente associado à presença de um distúrbio relacionado ao sono, como 

a apneia do sono. A polissonografia é o exame padrão para estudos do sono, sendo 

necessária a monitorização de vários sinais fisiológicos que são tipicamente visualmente 

analisados para avaliar os resultados. No entanto, este processo é lento e dispendioso, 

propenso a erros, devido à fadiga, e indisponível a uma grande parte da população 

mundial. Outra dificuldade na análise do sono é a falta de consenso relativo à definição 

da qualidade do sono, enquanto o termo é amplamente utilizado por médicos, 

pesquisadores e pelo público. Esta é tipicamente baseada em questionários, quantidade 

de sono, fatores ambientais, índices derivados de fatores fisiológicos, intervenções 

farmacológicas, parâmetros polissonográficos e presença de distúrbios do sono. No 

entanto, a correspondência entre medidas objetivas do sono e a avaliação subjetiva da 

qualidade do sono é consideravelmente baixa. De forma a obter alternativas para lidar 

com essas restrições, esta pesquisa concentra-se no desenvolvimento de algoritmos de 

classificação automática para estimar a qualidade do sono e na implementação das 

abordagens mais adequadas, em dispositivos económicos. Para tal, revisões de literatura 

foram realizadas e três abordagens foram identificadas como caminhos adequados para a 

examinação da qualidade do sono. O primeiro considerou o exame de métricas do sono e 

as métricas relacionadas com o padrão alternante cíclico de eletroencefalograma foram 

selecionadas como as melhores para estimar a qualidade do sono. A segunda abordagem 

considerou a avaliação da presença de distúrbios relacionados com o sono, teorizando que 

a ocorrência de tais distúrbios pode ser um dos principais contribuintes para a má 

qualidade do sono. Desta forma, a apneia do sono foi considerada neste trabalho como o 

distúrbio mais relevante a ser abordado, por ser um dos distúrbios mais prevalentes e que 

na maior parte dos casos não é diagnosticado. A última abordagem foi proposta neste 

trabalho e considerada que a combinação de métricas de qualidade do sono e a deteção 

de distúrbios relacionados ao sono podem fornecer uma melhor estimativa da qualidade 

global do sono. Vários algoritmos, baseados em aprendizagem de máquina para 

reconhecimento de padrões, foram desenvolvidos para estimar as métricas estudadas, 

testando múltiplos sensores para medir os sinais fisiológicos. Especificamente, foram 

desenvolvidos modelos para o exame dos sinais do eletroencefalograma e 

eletrocardiograma, propondo novas abordagens para a análise da qualidade do sono. Os 

melhores modelos foram posteriormente implementados nos dispositivos de 

monitorização desenvolvidos. Verificou-se que o desempenho dos algoritmos está em 

linha com o valor médio do acordo entre especialistas, analisando os mesmos dados, 

indicando que os algoritmos desenvolvidos podem ser úteis para o diagnóstico médico. 

Palavras-chave 

Qualidade do sono; padrão alternante cíclico; apneia do sono; aprendizagem de máquina; 

dispositivos de monitoramento doméstico. 
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Sleep is a complex physiological process that is essential for each individual, covering 

approximately one third of the lifespan. The daily wear of the body systems, such as the 

respiratory, the circulatory, the central nervous system, and the musculoskeletal is 

repaired during sleep [1]. Thus, a continuous deficiency of this process increases the risk 

of cardiovascular pathologies, obesity, hypertension, diabetes, and metabolic 

deregulation, which can lead to a decline in the immune system efficiency [2]. Sleep 

processes are also involved in the physical development, consolidation of memories, 

learning, and emotion regulation [3]. It is also directly related to the quality of life concept 

since physical health was considered, by the World Health Organization, as one of the 

four domains that define this concept and sleep-related complaints are the second most 

frequent reason for pursuing medical attention, only superseded by the feel of pain [4]. 

It was estimated that a reduction in the workplace productivity, associated with poor 

sleep, will lead to annual economic losses, by the year 2020, in the range of billions of 

dollars in the United States of America ($299 to $433 billion), Japan ($94 to $146 billion), 

United Kingdom ($40 to $54 billion), Germany ($41 to $62 billion), and Canada ($14 to 

$22 billion), with an increase in the economic losses in the following years [5]. Therefore, 

improving the quality of sleep is not only relevant for the person’s quality of life but also 

for society. An increment in the prevalence of sleep disturbances is also expected with 

the growth of the elderly population. Therefore, it is predictable that sleep quality will 

become a major medical diagnosis element since nearly half of the older adults report 

poor quality of sleep with a lower prevalence in healthy adults [6]. Also, women are more 

likely to report poor sleep quality as the age progresses [7].  

However, there is a lack of definitional consensus regarding what is sleep quality 

while it is widely used by researchers, clinicians, and the public. This is most likely due 

to the uncertainty associated with the definition of what quality is [8]. Two approaches 

have been proposed to address this issue. The first is the most used and employs self-

rating indexes, which reflect the individual satisfaction with sleep, producing a subjective 

measurement. It is considered the most economical and less intrusive approach. However, 

during sleep the subject is in a state of loss of consciousness, making the individual a poor 

self-observer of the behaviors; thus, the accuracy of this approach is subject to the 

individual’s recall. Polysomnography (PSG) based metrics are used by the second 

approach, defining sleep quality with objective measures that are not biased by the 

personal sleep experience [9] and can be grouped into four domains [10]: duration; 

continuity; intensity; stability. It was verified that the most commonly employed metrics 

to classify the sleep quality (based on continuity, duration or intensity of sleep) have a 

low correlation with the subjective appraisal of sleep [11]. Thus, stability metrics could 

be the most relevant for medical diagnosis [12] and the electroencephalogram (EEG) 

Cyclic Alternating Pattern (CAP) metrics are particularly relevant as some are 

characterized by a low night-to-night intra-individual variability with defined age-related 

percentages, and has characteristic behaviors associated with specific sleep disorders 

[10]. 

The quality of sleep can also be significantly affected by the presence of sleep-related 

disorders. More than sixty have been acknowledged by the International Classification of 

Sleep Disorders, divided into seven categories [13]: insomnia; Sleep-related Breathing 

Disorders (SBD); central disorders of hypersomnolence; circadian rhythm sleep-wake 
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disorders; parasomnias; sleep-related movement disorders; other sleep disorders. The 

second category groups the most prevalent disorders that are usually undiagnosed and 

considers: Obstructive Sleep Apnea (OSA); central sleep apnea; sleep-related hypoxemia 

disorder; sleep-related hypoventilation disorders. OSA is the most common in this group, 

and it was estimated, in population-based studies, to have a prevalence of 10% and 3% 

for 30-49 year-olds males and females, respectively, increasing to 17% and 9% for 50-70 

year-olds, respectively [14]. However, most subjects are typically undiagnosed due to the 

person’s neglect and the lack of availability to perform a PSG, the standard exam for sleep 

analysis [15]. 

PSG measures multiple sensors to record, at least, the respiratory and body 

movements, the breath airflow, blood oxygen saturation (SpO2), EEG, electromyogram 

(EMG), electrooculogram (EOG) and electrocardiogram (ECG). Thus, a detailed 

diagnostic can be achieved by analyzing these signals [16]. Nonetheless, the process is 

expensive and slow since it frequently involves the supervision of a specialized technician 

to monitor the patient attendance at a sleep laboratory and the manual scoring of the 

recorded signals to generate the clinical reports. This process is unavailable to a large part 

of the world population, and the employment of all the necessary sensors results in an 

uncomfortable experience that can significantly affect the results, an issue known as the 

first night effect [17].  

Home Monitoring Devices (HMD) are increasing their relevance in the new health 

care perspective, which is changing the focus from primary and specialty care to wellness 

and prevention. They can assist in the monitoring and detection of pathologies with 

significantly lower cost, providing personalized health data with less disturbance, and 

increasing the effectiveness of behavior change interventions [18]. Therefore, the HMD 

can be seen as an alternative to PSG to determine the presence of sleep disorders. 

1.1. Motivation 

Several HMDs have been developed and can be found in the state of the art, to analyze 

sleep disorders, using fewer sensors than a PSG and usually employing automatic 

algorithms to evaluate the signals. However, the achieved performance is commonly not 

enough to produce a clinical diagnosis and a compromise between the complexity of the 

device (with a certain number of considered sensors) and the performance detecting sleep 

breathing events as been established. Taking into consideration that in most cases, poor 

quality of sleep is directly associated with the occurrence of a sleep related disorder [13], 

a possible way to improve the accuracy of the disorder diagnosis is to introduce a sleep 

quality appraisal into the analysis.  

The CAP rate is a prime candidate for the sleep quality metric since it takes into 

consideration the age [11] and presents characteristic behaviors related to the presence of 

sleep disorders. This proposal takes into consideration that sleep is a multifaceted 

construct that is difficult to characterize by considering a single measure [12]. However, 

there is a significant gap in the literature regarding the implementation of objective sleep 

quality metrics in HMDs. Moreover, it is not possible to address all sleep-related disorders 

that have been identified without using a significant number of sensors, jeopardizing the 



 

4 

 

utility of HMD in relation to PSG. Therefore, a compromise between the desired capacity 

of the HMD and the number of sensors should be taken into consideration. 

1.2. Objectives  

The development of methods for sleep quality estimation is the main objective of this 

thesis. OSA was selected as the sleep disorder to be investigated since it is considered to 

be the most prevalent and undiagnosed disorder that is strongly related to CAP. All the 

algorithms were tested on the same database (the CAP sleep Database from PhysioNet 

[19] for CAP analysis or a database from Hospital Universitario de Gran Canaria Dr. 

Negrín for OSA examination) to allow a fair comparison between the achieved results. In 

the end, several HMDs were implemented to address each of the three approaches 

identified in the state of the art as suitable to perform the sleep quality examination (the 

first considered the examination of sleep metrics, the second assess the presence of a sleep 

related disorder, and the considered a combination of sleep quality metrics and the 

detection of sleep related disorders). The main objectives can be summarized as: 

 Review the state of the art for both methods and devices that can assess the sleep 

quality and the presence of OSA. 

 Develop methods to examine the CAP from one EEG monopolar derivation 

signal. 

 Produce a new sleep model for the sleep microstructure analysis. 

 Develop methods to indirectly estimate CAP using the signal from a single-lead 

ECG. 

 Develop methods for OSA estimation, one based on the SpO2 signal and the other 

based on the ECG signal. 

 Propose a sleep quality estimation model based on the ECG signal. 

 Create multiple prototypes of HMD that can implement the developed algorithm. 

1.3. Research questions 

A group of research questions were developed to address the identified constraints: 

 Are the self-rating indexes of sleep quality the best way to estimate the quality 

of sleep or should objective measures, such as CAP rate, be used? 

 Can CAP be reliably assessed by analyzing the signal from one EEG 

monopolar derivation? 

 Can the sleep quality be assessed by considering an indirect estimation of the 

CAP rate? 

 Can a cost-effective home monitoring device be developed to perform both 

the estimation of the sleep quality and the presence of a sleep disorder? 

The chosen path to provide the answer to the questions is divided into six stages and 

an overview of the followed path with key findings is presented in Figure 1.1. 

 First stage: 

o Reviewed the sleep quality metrics presented in the state of the art. 
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o Reviewed the developed methods and devices to determine sleep quality 

metrics and OSA presented in the state of the art. 

 Second stage: 

o Reviewed the features and classifiers of the state of the art methods to 

perform the detection of the CAP cycles and activation phases. 

o Developed models (based on handcrafted features and methods without an 

explicit feature extraction process) for CAP estimation, from the signal of 

one EEG monopolar derivation, and sleep quality assessment. 

o Developed a model for sleep analysis, based on the sleep microstructure, 

using the signal of one EEG monopolar derivation. 

o Developed models (based on handcrafted features and methods without an 

explicit feature extraction process) for the A phase subtype estimation 

from the signal of one EEG monopolar derivation, and performed a 

characterization analysis for the A phase subtypes. 

 Third stage: 

o Developed algorithms to indirectly determine the CAP rate and the quality 

of sleep using the signal from a single-lead ECG. 

o Developed a tool for time series analysis, suitable for the indirect 

estimation of the CAP using the signal from a single-lead ECG. 

 Fourth stage: 

o Developed algorithms to estimate the OSA events and AHI, either from 

the SpO2 signal or from the ECG signal. 

 Fifth stage: 

o Proposed a sleep quality metric based on the examination of the single-

lead ECG signal. 

o Developed a sleep quality model that analyzes the single-lead ECG signal. 

 Sixth stage: 

o Created two HMD to perform the OSA assessment, one intended for 

personal use and one intended for clinical use. 

o Created two HMD that can perform the estimation of the quality of sleep, 

the first examined the EEG signal while the second evaluated the ECG 

signal. 

o Create one HMD that can estimate both the quality of sleep and the AHI. 

1.4. Main contributions  

The developed work was published in the following journals and international 

conferences: 

 Journals: 

o Mendonça, F., Mostafa, S., Ravelo-García, A., Morgado-Dias, F., and 

Penzel, T. (2018). Devices for Home Detection of Obstructive Sleep 

Apnea: A Review. Sleep Medicine Reviews 41: 149-160. (IF=10.517, Q1) 

https://doi.org/10.1016/j.smrv.2018.02.004. 

o Mendonça, F., Fred, A., Mostafa, S., Morgado-Dias, F., and Ravelo-

García, A. (2018). Automatic detection of cyclic alternating pattern. 
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Neural Computing and Applications. (IF=4.664, Q1) 

https://doi.org/10.1007/s00521-018-3474-5. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., Navarro-Mesa, J., Julia-

Serda, G., and Ravelo-Garcia, A. (2018). A portable wireless device based 

on oximetry for sleep apnea detection. Computing 100(11): 1203-1219. 

(IF=2.063, Q2) https://doi.org/10.1007/s00607-018-0624-7. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-Garcia, A. 

(2018). Sleep quality estimation by cardiopulmonary coupling analysis. 

IEEE Transactions on Neural Systems and Rehabilitation Engineering 

26(12): 2233-2239. (IF=3.478, Q1) 

https://doi.org/10.1109/TNSRE.2018.2881361. 

o Mendonça, F., Mostafa, S., Ravelo-García, A., Morgado-Dias, F., and 

Penzel, T. (2019). A Review of Obstructive Sleep Apnea Detection 

Approaches. IEEE Journal of Biomedical and Health Informatics 23(2): 

825-837. (IF=4.217, Q1) https://doi.org/ 10.1109/JBHI.2018.2823265; 

o Mendonça, F., Mostafa, S., Ravelo-García, A., Morgado-Dias, F., and 

Penzel, T. (2019). A Review of Approaches for Sleep Quality Analysis. 

IEEE Access 7: 24527-24546. (IF=4.098, Q1) 

https://doi.org/10.1109/ACCESS.2019.2900345. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., Ravelo-García, A., and 

Penzel, T. (2019). Sleep quality of subjects with and without sleep-

disordered breathing based on the cyclic alternating pattern rate estimation 

from single-lead ECG. Physiological Measurement 40(10): 1-14. 

(IF=2.246, Q3) https://doi.org/10.1088/1361-6579/ab4f08. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2019). A Portable Wireless Device for Cyclic Alternating Pattern 

Estimation from an EEG Monopolar Derivation. Entropy 21(12). 

(IF=2.419, Q2) https://doi.org/10.3390/e21121203. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2020). Matrix of Lags: a tool for Analysis of Multiple Dependent Time 

Series applied for CAP scoring. Computer Methods and Programs in 

Biomedicine 189(1). (IF=3.424, Q1) 

https://doi.org/10.1016/j.cmpb.2020.105314. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2020). An Oximetry Based Wireless Device for Sleep Apnea Detection. 

Sensors 20(3). (IF=3.031, Q1) https://doi.org/10.3390/s20030888. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., Juliá-Serdá, G., and 

Ravelo-García, A. (2020). A Method for Sleep Quality Analysis Based on 

CNN Ensemble With Implementation in a Portable Wireless Device. IEEE 

Access 8(1): 158523-158537. (IF=4.098, Q1) 

https://doi.org/10.1109/ACCESS.2020.3019734. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2020). Cyclic alternating pattern estimation based on a probabilistic 

model over an EEG signal. Biomedical Signal Processing and Control 

62(1). (IF=3.137, Q2) https://doi.org/10.1016/j.bspc.2020.102063. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2020). On the use of patterns obtained from LSTM and feature-based 
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methods for time series analysis: application in automatic classification of 

the CAP A phase subtypes. Journal of Neural Engineering. (IF=4.141, Q1) 

https://doi.org/10.1088/1741-2552/abd047. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-García, A. 

(2021). A Method based on Cardiopulmonary Coupling Analysis for Sleep 

Quality Assessment with FPGA Implementation. Artificial Intelligence in 

Medicine. (IF=4.383, Q1) https://doi.org/10.1016/j.artmed.2021.102019. 

 Conferences: 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., Navarro-Mesa, J., Julia-

Serda, G., and Ravelo-Garcia, A. (2017). A minimally invasive portable 

system for sleep apnea detection. Bioinspired Intelligence (IWOBI), 2017 

International Conference and Workshop on, IEEE. 

https://doi.org/10.1109/IWOBI.2017.7985540. 

o Mendonça, F., Fred, A., Mostafa, S., Morgado-Dias, F., and Ravelo-

García, A. (2018). Automatic Detection of a Phases for CAP 

Classification. Pattern Recognition Applications and Methods (ICPRAM), 

7th International Conference on, SCITEPRESS. 

https://doi.org/10.5220/0006595103940400. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-Garcia, A. 

(2018). Sleep Quality Analysis with Cardiopulmonary Coupling. 

Biomedical Engineering and Applications (ICBEA), 2018 International 

Conference on, IEEE. https://doi.org/10.1109/ICBEA.2018.8471727. 

o Mendonça, F., Mostafa, S., Morgado-Dias, F., and Ravelo-Garcia, A. 

(2019). Cyclic Alternating Pattern Estimation from One EEG Monopolar 

Derivation Using a Long Short-Term Memory. Engineering Applications 

(ICEA), 2019 International Conference on, IEEE. 

https://doi.org/10.1109/CEAP.2019.8883470. 

The following awards were received:  

 Best student paper award in the 2017 International Conference and Workshop 

on Bioinspired Intelligence (IWOBI). 

 2017 Cátedra Telefónica da Universidad de Las Palmas de Gran Canária. 

1.5. Collaborations 

This work involved the collaboration of one hospital, Hospital Universitario de Gran 

Canaria Dr. Negrín, and four universities: Charité Universitatsmedizin; Instituto Superior 

Técnico – Universidade de Lisboa; Universidad de Las Palmas de Gran Canaria; 

Universidade da Madeira. 

1.6. Outline 

The outline of this thesis is the following: 

 Chapter 2 presents the physiological contextualization of the sleep process. 

 Chapter 3 reviews the state of the art regarding the developed methods and HMD 

for sleep quality assessment and OSA estimation. 
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 Chapter 4 presents the materials employed in this research. 

 Chapter 5 examines the proposed algorithms for CAP estimation using the signal 

from one EEG monopolar derivation. 

 Chapter 6 analyzes the developed methods for indirect CAP rate detection from 

a single-lead ECG signal. 

 Chapter 7 studies the proposed methods for OSA and AHI estimation. 

 Chapter 8 presents the new sleep quality metric and model. 

 Chapter 9 presents the implemented HMDs. 

 Chapter 10 concludes this report, providing an overview of the developed work 

and targets for future work. 

 
Figure 1.1. Overview of the followed path. 
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A physiological contextualization was carried out to describe the sleep processing 

associated with CAP and the OSA from the physiological/clinical perspective, with the 

goal of further justifying the followed approaches in this work. 

2.1. Sleep quality contextualization 

2.1.1. Sleep analysis 

Multiple imaging techniques have been developed to analyze the human body, 

working as auxiliary diagnosis elements. The electroencephalography belongs to the 

electrobiological measurements group and is based on the measure of the electrical 

activity produced by the brain. EEG is one of the most employed techniques in this field, 

recording the alternating electrical activity at the scalp surface using electrodes and 

conductive media [20]. The electrodes distribution frequently follows the 10-20 electrode 

placement standardization presented in Figure 2.1. The electrodes cover the frontal (F), 

temporal (T), parietal (P), and occipital (O) regions, the central (C), and ears (A) 

lactations are also marked. The electrodes positions are referenced by odd numbers on 

the left side, even numbers on the right side, and a Z in the middle line [21]. 

a) b) 

 

 

Figure 2.1. View of the 10-20 electrode placement standardization form a) the top and 

b) from the side [22]. 

The American Academy of Sleep Medicine (AASM) provided the guidelines for sleep 

analysis [21]. The considered architecture is composed of a macrostructure and a 

microstructure defined by the EEG signals that are commonly segmented into four 

frequency bands [23]: delta (0.5–4 Hz); theta (4–8 Hz); alpha (8–13 Hz); beta (13–30 

Hz). The macrostructure is composed of alternating cycles of Rapid-Eye Movement 

(REM) and Non-REM (NREM) sleep (each sleep cycle usually lasts approximately 90 

minutes). The NREM is composed of three stages (N1, N2, and N3). Therefore, the sleep 

period was divided into five phases (Wake, N1, N2, N3, and REM), considering 30 s as 

the standard epoch duration for classification [21]. Each stage is characterized by a 

predominance of energy in specific frequency bands and characteristic shapes of the EEG 

waves such as [23]:  

 Wake: alpha and beta bands. 
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 N1: theta band. 

 N2: theta band with the presence of k-complexes and sleep spindles. 

 N3: delta band. 

 REM: theta, alpha, and beta bands with the presence of sawtooth waves. 

Typically, the sleep stages are scored by visual examination, requiring the analysis of 

an expert for multiple hours. It is a slow and expensive process that is prone to errors, due 

to fatigue of the scoring expert, with an average agreement among experts scoring the 

same signals for the total duration of the sleep macrostructure analysis, lower than 90%, 

[24]. Multiple approaches were proposed in the state of the art to address these issues by 

performing an automatic sleep staging [25]. Another relevant aspect is that the quality of 

sleep can be assessed by evaluating the macrostructure’s based metrics recommended by 

the AASM manual for scoring sleep and associated events [21]. Conversely, some 

subjects have sleep related complaints while having comparable values for the metrics as 

those seen in non-complaining individuals [12]. Therefore, the basis for such sleep 

complaints may not be related to the architecture, timing, or amount of sleep but rather to 

differences in the sleep experience itself. As a result, it was conceptualized that stability 

analysis could conceivably offer a more comprehensive and sensitive measure for the 

quality of sleep. It is also relevant to notice that arousals are also associated with the 

restorative properties of sleep [10]. 

2.1.2. CAP definition 

The regular organization of arousals is known as CAP and describes the 

microstructure of sleep while measuring the amount of unstable sleep. The microstructure 

is composed of transient and phasic events that have a shorter duration than the 

conventional scoring epoch. These events appear as abrupt frequency shifts and/or 

amplitude changes that can clearly be distinguishable from the background activity [19].  

The periodic activities can be grouped by considering three parameters: a repetitive 

activity that is distinguishable from the background and constitutes an activation phase 

(A phase); return to background activity (B phases); recurrence rate (total duration of the 

A phase and the subsequent B phase) [19]. In the NREM sleep, this information can be 

combined to define the CAP, a cyclic activity in which both phases (A and B) range 

between 2 and 60 s, and each cycle is composed of the A phase and the subsequent B 

phase. Figure 2.2 presents an example of a CAP sequence that is created when more than 

two consecutive cycles occurred. A period is considered to be non-CAP if there is a lack 

of a CAP cycle for more than 60 s. The phasic activities which initiate an A phase must 

have an amplitude of at least one third higher than the background voltage. The A phase 

waveforms includes [19]:  

 Vertex sharp transients: EEG potentials which last between 50 and 200 ms and 

present variable amplitude, with a maximum of 250 μV. 

 K-complex sequences with or without spindles: a sequence of at least two 

consecutive k-complexes, ranging from 0.5 to 2 s, which can be mixed with or 

followed by a sleep spindle, and each complex presents a bi/tri-phasic pattern 

comprising an initial rapid negative component which is followed by a slower 

positive wave. 
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 K-alpha: K-complex followed directly by an alpha burst. 

 Delta bursts: a sequence of at least two waves, in the delta band, whose amplitude 

is at least one third higher than the background activity. 

 Intermittent alpha: a sequence of activity in the alpha band. 

 Polyphasic bursts: clusters of high-voltage delta waves which are mixed with 

theta, alpha or beta rhythms. 

 EEG Arousals: abrupt frequency shifts toward faster rhythms (but not spindles), 

interrupting sleep continuity for at least 3 s. 

 

Figure 2.2. Example of a CAP sequence, composed of multiple CAP cycles, which are 

composed of CAP phases [26]. 

The CAP can be linked to sleep instability and/or sleep disturbance. This pattern can 

occur spontaneously in NREM sleep or in association with an identifiable sleep 

pathophysiology such as sleep-disordered breathing. Therefore, the CAP concept 

comprises both the process of sleep fragmentation and maintenance [19]. An alternative 

view to the arousal process was provided by the three A phase subtypes (A1, A2, and 

A3), characterized by specific spectral and amplitude contents of the EEG signal [27] 

[28]: 

 A1: Associated with minor or mild polygraphic variations and characterized by 

high-voltage slow waves (known as synchronized EEG patterns), such as 

intermittent alpha rhythm in the N1 sleep stage, and sequences of K-complexes or 

delta bursts in the N2 and N3 sleep stages. Low-amplitude fast rhythms (known 

as desynchronized EEG pattern) can occur in this subtype but must account for 

less than 20% of the whole activation time. 

 A2: Related to an increase of muscle tone and/or increase of cardiorespiratory rate 

phases, with desynchronized EEG patterns which are either mixed with or are 

preceded by slow high-voltage waves (such as K-complexes with alpha and beta 

activities, and arousals with slow wave synchronization). 20% to 50% of the total 

activation time must have rapid activities. 

 A3: Linked with the existence of desynchronized EEG patterns whose duration 

surpasses two thirds of the total activation duration. These patterns are coupled 
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with a significant increase in muscle tone and/or increase in cardiorespiratory rate 

phases. As a result, more than the 50% of the total activation period has rapid 

activities (especially in the beta band). 

High-amplitude EEG bursts (encompassed by subtypes A1) are associated with sleep 

instability, marking the brain’s attempt to maintain sleep. Conversely, if the preservation 

attempt fails or if sleep becomes too unstable then, an EEG arousal will either replace or 

accompany the high-amplitude slow activity. Therefore, subtypes A2 and A3 comprise 

central nervous system arousal. It was theorized that EEG synchrony is build-up and 

preserved by a fluctuating process of slow activities associated with the A1 subtype, 

which are combined with a powerful inhibition of rapid EEG shifts, linked to the A2 and 

A3 subtypes. It was also observed that the A1 subtype is the most prevalent through the 

sleep cycles in the descending branch (92% of the A phases are related to this subtype) 

while the A2 and A3 subtypes are more frequent in the ascending branch (45% and 19% 

of the A phases are related to the A2 and A3 subtypes, respectively) [29]. It is also relevant 

to notice that different A phase subtypes can occur within the same CAP sequence, and a 

CAP cycle can spawn between two adjacent sleep stages [19]. An example of the CAP 

phases is presented in Figure 2.3. 

a) b) 

  
c) d) 

  
Figure 2.3. Example of CAP a) A phase subtype A1, b) A phase subtype A2, c) A phase 

subtype A3 and d) B phase [30]. 

It was conceptualized that the regulatory mechanisms underlying the CAP recurrent 

fluctuations can possibly turn into the pathophysiological source for disordered sleep 

[31]. Hence, changes in the A phase subtypes can be an indicator of the manifestation of 

sleep related disorders such as: periodic limb movements [32]; sleep apnea [33]; 

narcolepsy [34]; insomnia [35]; nocturnal frontal lobe epilepsy [36].  

CAP was found to be a prime indicator of sleep’s stability, and was considered to be 

a sleep quality marker [37]. In healthy adults, a CAP sequence is expected to last, on 

average, 2 min and 33 s, comprising 5.6 CAP cycles. The mean duration of a CAP cycle 

is 26.9 ± 4.1 s [38]. A disturbance in sleep produces alterations in the CAP rate, defined 
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as the ratio of the total CAP time to the total NREM time. The CAP rate was found to be 

the most exploited microstructural parameter for clinical purposes, and it is possibly the 

most relevant metric to define sleep quality based on the sleep stability [37]. It is 

characterized by a low night-to-night intra-individual variability (in normal subjects) with 

defined age-related percentages [10], thus, it can take into consideration the person’s age 

to define what can be considered as the normal value for this matric [11]. The CAP rate 

increases when the sleep process is disturbed by external or internal factors, and its 

variations reflect the perception of sleep quality. A poorer sleep quality is related to higher 

values of this ratio and, when considering the normal age-related values for the CAP rate 

[10] [37], it is possible to assess the quality of sleep.  

It was identified that the A phase subtypes prevalence is correlated with age [27]. For 

healthy subjects, it was observed that the A1 subtype is the most prevalent, while A3 is 

the less predominant. Nevertheless, the incidence of A1 decreases as a person progresses 

to an older age, while A3 increases. The normal age-related values for the A1, A2, and 

A3 subtypes are [27]: 71%, 20%, and 9% for adolescence, respectively; 61%, 28%, and 

11% for young adults, respectively; 62%, 27%, and 11% for mature adults, respectively; 

47%, 35%, and 18% for senescence, respectively. As a result, through the person’s 

development, the CAP rate undergoes through complex variations and the normal age-

related values are [10]: 12.9% for infants; 25.9% for preschool-aged children; 33.4% for 

school-aged children; 62.1% for peripubertal children; 43.4% for teenagers; 31.9% for 

young adults; 37.5% for middle aged subjects; 55.3% for elderly persons. By considering 

the CAP rate characteristics and the regression analysis presented by Parrino et al. [39] 

(fitted a curve with the average value of CAP rate for the person’s age), it was 

conceptualized that the quality of sleep can be assessed by comparing the estimated CAP 

rate with the CAP rate in normal sleep (according to the value for the subjects age). 

Therefore, if the predicted CAP rate was higher than the expected value then the quality 

of sleep was considered poor, otherwise, it was considered good.  

2.2. Contextualization for the indirect CAP assessment 

It was verified that sleep instability has manifestations in multiple physiological 

signals, with repercussions for vegetative and motor activities, which fluctuate during 

CAP while remaining quiescent during the absence of CAP. The heart rate is controlled 

by efferent sympathetic and vagal activities which are directed to the sinus node, and 

these are modulated by central brainstem and peripheral oscillators [40]. Therefore, it was 

observed that sleep instabilities have an impact on cardiac autonomic regulation, which 

can be evaluated by spectral analysis of Heart Rate Variability (HRV). In this spectral 

evaluation, vagal activity was identified as the major contributor to the high-frequency 

(0.15–0.4 Hz) component, while sympathetic influences (possibly with vagal influences) 

where associated with the low-frequency (0.04–0.15 Hz) component [40]. These 

observations lead to the proposal of an extended concept for CAP where it can be viewed 

in a broader sense, designated as the stability of sleep [41], and the Cardiopulmonary 

Coupling (CPC) analysis was proposed. 

CPC measures the degree of coherent coupling between variations of the R-wave 

amplitude, produced by modulations of the respiratory tidal volume, which is known as 

ECG Derived Respiratory (EDR), and corrected HRV, denoted normal-to-normal sinus 
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intervals (N-N series) [40]. Two key properties are examined by CPC, specifically, if the 

evaluated signals (EDR and N-N series) are coupled and synchronized (property assessed 

by the coherence, requesting that the phases of both signals are aligned with the aim of 

keeping the phase relationship constant), and if both signals oscillate at a similar 

frequency (property evaluated by cross-spectral analysis) [41]. It was observed that High 

Frequency (HF) coupling (0.1–0.4 Hz) is linked to periods of stable sleep (absence of 

CAP) as the vagal modulations induced by respiration, denoted as respiratory sinus 

arrhythmia, prevail in the cardiac autonomic regulation. On the other hand, Low 

Frequency (LF) coupling (0.01–0.1 Hz) is related to periods of unstable sleep (presence 

of CAP). Very Low Frequency (VLF) coupling (0–0.01 Hz) was found to be associated 

with wake or REM sleep periods. As a result, it was possible to view sleep as an 

oscillation between stable, unstable, and wake or REM periods [40] [41]. An example of 

CPC analysis is presented in Figure 2.4. 

a) 

 

b) 

 

c) 

 

Figure 2.4. Example of CPC analysis during periods of wake or REM, instable 

(occurrence of CAP), and stable (absence of CAP) sleep, presenting the a) sleep 

information, b) top view from CPC spectrographic information, and c) side view from 

CPC spectrographic information [42]. 
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A simplification of this concept was proposed in this work, to view the sleep process 

as oscillations between unstable or stable sleep according to the occurrence or absence of 

the CAP. This proposed model can be evaluated for both conventional and extended 

concepts for CAP. Specifically, for the conventional denotation of CAP, a new sleep 

model can be proposed to describe sleep with an approximation to continuous traces by 

evaluating epochs with the standard scoring duration for the microstructure (one second). 

This model can be interpreted as a new view of the sleep process, which oscillates 

between stable and unstable periods instead of the conventional sleep macrostructure 

stages. A similar concept can be proposed for the extended concept for CAP, where the 

oscillation between the stable and unstable is assessed by evaluating the indirect effect of 

CAP in other physiological signals. 

It was indicated that the standard epoch duration for CAP scoring is 60 seconds [41]. 

However, a difficulty remains for the minute-by-minute analysis, which is how to decide 

what should be the minimum CAP time (duration of a CAP event) to designate a minute 

epoch as CAP. This issue is related to the fact that the sleep microstructure is scored 

considering epochs which last one second. Thus, a CAP cycle can be divided into two 

minute based epochs. An approach to address this issue was proposed in this work by 

considering the CAP epoch concept for the indirect CAP analysis, formally introduced as 

a period where more than a defined percentage of the 60 s of data was scored as a CAP 

cycle. Therefore, a threshold based methodology defined the one minute epoch as either 

unstable or stable sleep. However, this threshold should be properly tuned to remove the 

very short CAP related events which are too small to manifest in this indirect CAP 

analysis properly. 

It was conceptualized that an alternative analysis to CPC can be performed by 

evaluating the causality between the EDR and the N-N series as in phenomena such as 

respiratory sinus arrhythmia, the heart rate is modulated by the breathing pattern. This 

approach could lead to the development of alternative ways of exploring the indirect CAP 

assessment for sleep quality estimation. It is also likely for this causality analysis to be 

affected by the occurrence of OSA as this disorder is characterized by repetitive breathing 

pauses, caused by the upper airway collapse during sleep, which impairs the normal 

ventilation of the lungs [43]. However, the methods proposed in the state of the art for 

OSA examination, based on the ECG signal, usually only consider isolated features from 

the HRV or from the EDR, instead of evaluating the information that the causality 

between the two signals can provide [44]. As a result, this causality model may be relevant 

for sleep quality analysis in subjects suffering from OSA. 

2.3. OSA contextualization 

Sleep apnea can be obstructive, central, or complex [45]. The first, denoted as OSA, 

is characterized by recurrent collapse and obstruction of the upper airway, impairing the 

normal ventilation of the lungs during sleep. The second is characterized by a lack of 

drive to breathe during sleep, which leads to repetitive periods of insufficient ventilation. 

However, during the cessations of airflow, in OSA, it is observed an ongoing respiratory 

effort while in central apnea, there is a lack of respiratory effort [46]. Complex apnea 

exhibit breathing patterns similar to central apnea but has clinical features that resemble 

OSA [47]. OSA was found to be the most prevalent of the three types of apnea, and it is 
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also related to the occurrence of CAP in subjects suffering from SBD. Thus, it was the 

sleep related disorder evaluated in this work. The severity of this disorder is assessed by 

the Apnea-Hypopnea Index (AHI), that calculates the average number of apneas and 

hypopneas per hour of sleep, and four thresholds are considered [45]: mild if 5 ≤ AHI < 

15; moderate if 15 ≤ AHI < 30; severe if AHI ≥ 30. 

Hypoventilation can lead to a decrease in the oximetry levels, depending on the 

oxyhemoglobin desaturation dynamic, which can be assessed by the SpO2 sensor. As a 

result, oximetry is considered to be an indirect surrogate method for OSA screening [48]. 

Although the repetitive oxygen desaturation is usually associated with apnea, it is 

common for short respiratory pauses to not display a distinctive pattern in the oximetry 

signal. Such occurrence can possibly be related to the oxygen-hemoglobin dissociation 

curve, indicating that a distinct decrease in the partial oxygen pressure did not happen 

[49]. It is also relevant to notice that some desaturations may not be related to breathing 

pauses but may be produced by alveolar hypoventilation or chronic obstructive 

pulmonary disease. 

It was observed that OSA events presented progressive bradycardia which is followed 

by abrupt tachycardia during the recommencement of breathing [50]. These events can 

be observed in the example presented in Figure 2.5. The N-N series shows the occurrence 

of bradycardia before the OSA. Simultaneously, the amplitude variation of EDR 

decreases, indicating a breathing reduction which is manifested in the SpO2 signal’s 

desaturation. Multiple periods of intermittent breathing occur during the OSA event, 

leading abrupt tachycardia, visible in the N-N series, during the recommencement of 

breathing, depicted by the increase in EDR’s amplitude and in the SpO2 saturation. As a 

result, it was concluded that changes in the ECG observed during apnea are mediated by 

the autonomic nervous system [50], leading to the conclusion that the HRV is a suitable 

signal for OSA evaluation.  

 

Figure 2.5. Example presenting the variation in the oximetry, EDR and N-N series 

signals during an OSA event. 
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The CPC analysis presented a special characteristic in the LF coupling, denoted 

elevated LF coupling, which was found to be related to apnea and hypopnea periods [51]. 

A particularly strong correlation was found between the presence of CAP, and the 

occurrence of OSA as increased amounts of arousals are usually found in patients 

suffering from this disorder [10] [52]. It was also observed that sleep instability, related 

to the presence of CAP, showed a progressive augmentation from normal subjects to mild 

and moderate-severe OSA patients [10]. Therefore, OSA was found to be the most 

suitable disorder to be examined in this work (for the second and third evaluated 

approaches for sleep quality examination) since it is one of the most prevalent sleep 

related disorders which is mostly undiagnosed, it is well correlated with CAP, and can be 

estimate from the same signal as the indirect CAP assessment (the ECG sensor). 

2.4. Key remarks 

A contextualization analysis was performed in this chapter, explaining the 

physiological/clinical perspective of the work. It was noted that the sleep process has 

manifestations in multiple physiological signals, and that sleep quality is a problematic 

concept to be properly defined. Nonetheless, the stability analysis of sleep, based on CAP 

evaluation, is likely to be the most relevant to appraise the sleep quality. It was 

conceptualized that the CAP concept can be interpreted in a broader sense as an indicator 

of sleep instability periods, leading to the development of new ways of interpreting the 

sleep process.  

The manual CAP scoring is a complicated task for physicians to perform since it is a 

tedious and labor intensive process, making the classification prone to error. Particularly, 

the specialist agreement for CAP analysis, examining the same EEG results, ranges from 

69% to 78% [53] (getting closer to the lower bound as the number of physicians 

performing the scoring increases [54]). Taking into account the available dataset for CAP 

analysis, it is possible to develop models for automatic CAP examination by employing 

machine learning models. However, there is a need to test multiple combinations of 

features and types of classifiers to assess which model is more suitable. Deep leaning 

approaches can also be tested to proposed models which learn the relevant patterns 

directly from the data. 
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In this chapter, several reviews of the state of the art were performed to assess the 

proposed methodologies and devices for sleep quality and OSA examination. This 

research was performed to contextualize the developed work and orientate the research 

towards the identified gaps in the literature. 

Several sensors and devices were proposed in the literature to examine the quality of 

sleep metrics and/or OSA assessment. Therefore, three reviews were conducted, the first 

aims to determine the most suitable approach for sleep quality examination [55] while the 

second examined the best methods and sensors for OSA detection [56]. The last review 

evaluated the developed devices that allow the OSA detection at the patient’s home [57]. 

3.1. Approaches for sleep quality estimation 

Multiple subjective measurements were proposed through the years to define the sleep 

quality, and are either based on paper and pencil sleep diaries or on sleep questionnaires. 

The sleep diaries, such as the Karolinska sleep diary [58], are commonly filled in the 

subsequent morning and present sleep appraisal questions to the subject or ask the subject 

to describe the sleep experience. However, a questionnaire's employment is a faster and 

easier approach that commonly elaborates questions whose answers are translated to a 

self-rating index [59].  

The Pittsburgh Sleep Quality Index (PSQI) is a commonly used questionnaire to 

evaluate sleep quality with questions that can be categorized into seven domains (use of 

sleep medication, sleep efficiency, sleep duration, sleep latency, sleep disturbance, 

daytime dysfunction, and subjective sleep quality) [60]. A similar approach is used by the 

Self-rating Sleep and Awakening (SSA) quality scale, which produces three sub-scores: 

subjective sleep quality; somatic complaints; subjective awakening quality. The 

information is then used to compute a total score that reflects the sleep experience [61]. 

A new single-item sleep quality scale [62] was recently proposed, asking the subject to 

rate (from terrible to excellent) the quality of sleep over a 7-day recall period.  

However, it was verified that sleep complaints are usually more related to general 

dissatisfaction than to a specific disorder [63]. Furthermore, the correspondence between 

objective measurements and the person’s subjective assessment of the overall quality of 

sleep quality is significantly low, with a maximum correlation of 35% when considering 

the SSA score and standard sleep metrics [63]. Therefore, a systematic review was 

conducted with the goal of analyzing the methods and devices presented in the literature, 

which employ objective measures to define the quality of sleep. The research period 

ranges from 2000 to 2018, with the distribution of reviewed articles by year of publication 

presented in Figure 3.1. Two research questions were formulated [55]: What methods for 

sleep quality assessment were developed?; What kind of measures are employed by the 

devices that were developed to estimate sleep quality?. The review was conducted in the 

ScienceDirect, Web of Science, IEEE explorer, Google Scholar, and PubMed databases 

considering the search keywords “sleep quality AND device” and “sleep quality AND 

method”. In total, 10594 articles were found. Inclusion and exclusion criteria were 

employed to assess the relevance of the studies.  
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Figure 3.1. Distribution of the reviewed articles, in the sleep quality review, by year of 

publication [55]. 

Specifically, the inclusion criteria for the articles which presented a method were: 

presentation of a method to measure sleep quality; specifically mention the usability of 

the method; a study published in a scientific conference or scientific journal. For the 

devices, the inclusion criteria were: presentation of a device capable of assessing the sleep 

quality; validation of the research project or commercial device analyzing sleep quality 

metrics; specifically mention the usability of the device for sleep quality analysis. The 

exclusion criteria for both methods and devices were: article not written in English; lack 

of description of the measurement method or sleep quality metric; the developed device 

is not suitable for home detection; presentation of an application that only uses the 

smartphone sensors. The last exclusion criteria was used since the smartphone 

applications have already been examined in a review [64].  

Ninety articles were selected for the review after removing the duplicated articles and 

applying the selection criteria. A compilation of the assessed PSG based sleep quality 

metrics is presented in Table 3.1, and the metrics analysis is presented in Table 3.2. 

Table 3.1: PSG based sleep quality metrics [55]. 

Group Description Measure Simplified formula 

Duration Metric based on time 
duration 

-Lights out to N1 (LN1) - LN1 = Σ(minutes from lights 
out to first N1 sleep stage) 

  -Lights out to N2 (LN2) - LN2 = Σ(minutes from lights 

out to first N2 sleep stage) 

  -Lights out to SWS (LSWS) - LNSWS = Σ(minutes from 

lights out to first N3 sleep stage) 

  -Lights out to REM (LR)* - LR = Σ(minutes from lights out 
to first REM sleep) 

  -Maximal sustained N1 (MN1) - MN1 = max(sustained N1 

period) 

  -Maximal sustained N2 (MN2) - MN2 = max(sustained N2 

period) 

  -Maximal sustained N3 (MN3) - MN3 = max(sustained N3 
period) 

  -Maximal sustained REM (MR) - MR = max(sustained REM 

period) 

  -Maximal sustained Wake (MW) - MW = max(sustained wake 

period) 

  -Sleep Onset Latency (SOL)* - SOL = Σ(recording minutes)-
TST 
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  -REM latency (REML) - REML = TST-Σ(minutes after 

start first REM until final awake) 

  -Time Attempting to Sleep After the Final 
Awakening (TASAFA) episode 

- TASAFA = Σ(minutes after the 
final awakening) 

  -Time in Bed (TIB) - TIB = Σ(minutes from lights 

out to the end of recording) 

  -Total Sleep Time (TST)* - TST = Σ(sleep minutes) 

  -Total Wake Time (TWT) - TWT = Σ(wake minutes after 

start the sleep until final 

awakening) 

  -Total N1 sleep (TN1)* - TN1 = Σ(N1 minutes) 

  -Total N2 sleep (TN2)* - TN2 = Σ(N2 minutes) 

  -Total N3 sleep (TN3)* - TN3 = Σ(N3 minutes) 

  -Total NREM minutes (TNR) - TNR = Σ(NREM minutes) 

  -Total REM minutes (TR)* - TR = Σ(REM minutes) 

  -Total Wake minutes (TW) - TW = Σ(wake minutes) 

  -Wake After Final Awakening (WAFA) - WAFA = Σ(minutes from final 

awakening to the end of 

recording) 
Intensity Percentage of time 

spent on a specific 

sleep stage  

-N1 percentage (N1%)* - N1% = Σ(N1 minutes)/TST 

  -N2 percentage (N2%)* - N2% = Σ(N2 minutes)/TST 

  -REM percentage (REM%)* - REM% = Σ(REM 

minutes)/TST 

  -REM to NREM ratio (RNR%) - RNR% = Σ(REM minutes)/ 
Σ(NREM minutes) 

  -Stage Shift Index (SSI) - SSI = Σ(sleep stage shifts)/TST 

  -SWS percentage (SWS%)* - SWS% = Σ(N3 minutes)/TST 

  -SWS to Light sleep ratio (SL%) - SL%= Σ(N3 minutes)/[ Σ(N1 

minutes)+ Σ(N2 minutes)] 

  -SWS to NREM ratio (SNR%) - SNR%= Σ(N3 

minutes)/Σ(NREM minutes) 

  -SWS to REM ratio (SR%) - SR%= Σ(N3 minutes)/Σ(REM 
minutes) 

Continuity Degree of sleep 

fragmentation 

-Arousal Index (AI)* AI = Σ(number of arousals)/hour 

of sleep 
  -Awakening (A) - A = Σ(number of awakenings 

lasting more than a defined 

period) 

  -Awakening Index (AwI) AwI = Σ(number of 

awakenings)/hour of sleep 
  -Deep sleep Efficiency (DEI) - DEI = Σ(N3 

minutes)/Σ(minutes in bed) 

  -Frequency of Stage Shifts (FSS) - FSS = Σ(number of sleep stage 

shifts) 

  -Frequency of Sights from SWS to N1 or N2 

(FSN12) 

- FSN12 = Σ(number of sleep 

stage shifts from SWS to N1 or 

N2) 

  -Number of Stage Shifts (NSS) - NA = Σ(number of arousals) 

  -Number of Arousals (NA)* - NSS = Σ(number of sleep stage 

shifts) 

  -Sleep Efficiency (SE)* - SE = TST/Σ(minutes in bed) 

  -Wake After Sleep Onset (WASO)* - WASO = Σ(wake minutes after 

start sleep)/TST 
Stability Sleep disruptive events -A1 phase percentage (A1%) - A1% = Σ(number of A1 

phases)/ Σ(number of A phases) 

  -A2 phase percentage (A2%) - A2% = Σ(number of A2 
phases)/ Σ(number of A phases) 

  -A3 phase percentage (A3%) - A3% = Σ(number of A3 
phases)/ Σ(number of A phases) 

  -A phase Index (ApI) - ApI = Σ(number of A 

phases)/hour of NREM sleep 
  -A1 phase Index (A1pI) - A1pI = Σ(number of A1 

phases)/hour of NREM sleep 

  -A2 phase Index (A2pI) - A2pI = Σ(number of A2 
phases)/hour of NREM sleep 

  -A3 phase Index (A3pI) - A3pI = Σ(number of A3 

phases)/hour of NREM sleep 
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  -Arousals percentage (A%) - A% = Σ(arousal events)/TST 

  -B phase Index (BpI) - BpI = Σ(number of B 

phases)/hour of NREM sleep 

  -CAP cycle Index (CAPI) - CAPI = Σ(number of CAP 
cycles)/hour of sleep 

  -CAP Rate (CAPR) - CAPR = Σ(CAP 

minutes)/Σ(NREM minutes) 

  -EEG spectral indices (e.g. energy, in NREM and 

REM, of the frequency bands: alpha, beta, delta, 

high-frequency sigma, low frequency-sigma, 
sigma, theta) 

 

  -Mean A phase Duration (MAD) - MAD = Σ(A phases minutes)/ 

Σ(number of A phases) 

  -Mean A1 phase Duration (MA1D) - MA1D = Σ(A1 phases 

minutes)/ Σ(number of A phases) 

  -Mean A2 phase Duration (MA2D) - MA2D = Σ(A2 phases 
minutes)/ Σ(number of A phases) 

  -Mean A3 phase Duration (MA3D) - MA3D = Σ(A3 phases 

minutes)/ Σ(number of A phases) 

  -Mean B phase Duration (MBD) - MBD = Σ(B phases minutes)/ 

Σ(number of B phases) 

  -Number of CAP Cycles (CAPC) - CAPC = Σ(number of CAP 
cycles) 

  -Number of Periodic Limb Movements (NPLM)* - NPLM = Σ(number of periodic 

limb movements) 

  -Periodic Limb Movements Index (PLMI)* - PLMI = Σ(NPLM*60)/TST 

  -Quantity or presence of pathological events  

  -Total CAP Time (CAPT) - CAPT = Σ(CAP minutes) 

  -Total number of A phases (TA) - TA = Σ(number of A phases) 

  -Total number of A1 phases (TA1) - TA1 = Σ(number of A1 phases) 

  -Total number of A2 phases (TA2) - TA2 = Σ(number of A2 phases) 

  -Total number of A3 phases (TA3) - TA3 = Σ(number of A3 phases) 

  -Total number of B phases (TB) - TB = Σ(number of B phases) 

Frequency Number of occurrences 

of a sleep stage 

-Number of times in the N1 stage (NN1) - NN1 = Σ(number of times in 

the N1 stage) 

  -Number of times in the N2 stage (NN2) - NN2 = Σ(number of times in 

the N2 stage) 

  -Number of REM cycles (NR) - NR = Σ(REM cycles) 

  -Number of times in the N3 stage (NS) - NS = Σ(number of times in the 

SWS stage) 
Sleep 

episodes 

Description of the nap 

periods 

-Number of Naps (NN) - NN = Σ(number of naps in 24 

h) 

  -Nap Duration (ND) - ND = Σ(nap minutes)/NN 

  -Nap Frequency (NF) - NF = Σ(number of days in the 
past week that a nap occur) 

* Recommended by the AASM manual for the scoring of sleep and associated events to be a reported 

parameter [21]. 

Table 3.2: Analysis of the PSG based sleep quality metrics [55]. 

Sleep structure 
A higher value indicates 

better sleep quality 

A higher value 
indicates low sleep 

quality 

Specified optimal value 
for a healthy subject 

Unspecified optimal value 
for a healthy subject 

Macrostructure DEI LN1 NN1 FSS 

 MR LN2 NN2 FSN12 

 SE* LR* ND SR% 

 REM%* LSWS NR MN1 

 RNR% MW NS MN2 

 SL% N1%* NSS MN3 

 SNR% N2%* TIB  

 SWS%* NF TN1*  

 TR* NN TN2*  

  REML TN3*  

  SOL* TNR  
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  SSI TST*  

  TASAFA   

  WASO*   

  TW   

  TWT   

  WAFA   
Microstructure  A CAPC A1% 

  A% MAD A2% 

  AI*  A3% 

  AwI  ApI 

  CAPI  A1pI 

  CAPR  A2pI 

  CAPT  A3pI 

  NA*  BpI 

  TA  MA1D 

  TA1  MA2D 

  TA2  MA3D 

  TA3  MBD 

  TB   
* Recommended by the AASM manual for the scoring of sleep and associated events to be a reported 

parameter [21]. 

The proposal of new methods was analyzed in the first part of the review and the 

summary of the reviewed articles is presented in Table 3.3. The goal for this table’s 

analysis is to assess the developments in the field of sleep quality examination, indicating 

the key elements of the proposals and a description of the methods. On the other hand, 

Table 3.4 presents the analysis of the developed devices (reviewed in the second part). 

The objective for the development of this table is to assess what are the most frequently 

used sensors for sleep quality examination, and what type of metrics these devices 

employ. 

Table 3.3: Review of proposed methods for sleep quality analysis [55]. 

Approach Article Key element Method description 

Based on sleep 
macrostructure 

parameters 

[65] EEG Slow-wave (Delta 
band) microcontinuity 

Quantify the sleep depth by determining the fraction of the 
present delta band waves that continues to the near-future of the 

signal. 

 [66] Sleep restorative ability Metric evaluated every 30 s epoch that is incremented if the 

sleep stage is N3, remain the same in REM and reduced in the 
other stages. 

 [67] Chaos analysis of HRV Evaluated a two-dimensional map that was composed of the 

largest Lyapunov exponent and a correlation dimension to 
estimate the number and periodicity of the sleep cycles. 

 [68] Sleep or wake detection Repeating breathing patterns were determined by analyzing the 

period, intensity and consistency of each 12 s interval of the 

respiratory signal. Snore properties were assessed by estimating 

the maximum snore likelihood scores in a 30 s window, and the 

number of snores per hour (snore index). Sleep or wake 
detection was performed using an adaptive boosting classifier 

that was fed with features from the current and the two previous 

windows. 

 [69] Sleep or wake detection Analyzed the repeating breathing patterns and snore properties 
to feed a two-state Hidden Markov Model (HMM). A 

probability density function was determined, by integrating the 

transition probability, to estimate a sleep quality score every 5 s. 

 [70] Sound events Sounds related to sleep events were clustered using Kullback–

Leibler kernel self-organizing map and afterwards categorized 

by hierarchical clustering. The output was classified as either 
good or bad sleep using a multinomial HMM. 
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 [71] Sleep stage detection Time and frequency based features were extracted from HRV 
and surrogate ECG Derived Respiratory (EDR). The features 

were then fed to a multi-stage Support Vector Machine (SVM) 

with a Gaussian kernel. 

 [72] Normal to normal heart rate Analysis of the normal to normal heart rate standard deviation 

average over a 5 minutes window to estimate the sleep stage. 

 [73] HRV from 

photoplethysmography 
(PPG) 

Estimation of sleep or wake periods by analyzing the power in 

the low-frequency band of the HRV estimated from the PPG 
signal. 

 [74] Body movements and HRV Body movements estimated from actigraphy and PPG-derived 

HRV were fed to a linear discriminant analysis for classification 
of sleep or wake periods. 

 [75] Sleep or wake periods Actigraphy signals were employed to estimate the vigor of 

motion, movement frequency and time spent in motion to 
estimate the sleep or wake periods in one minute windows. 

 [76] Sleep or wake periods Determine the sleep time by analyzing actigraphy signals that 

were fed to a convolutional neural network. 

 [77] Arterial baroreflex Ballistocardiogram (BCG) and ECG and signals were used to 
estimate the R–J interval (the period between the R peak from 

ECG and the J peak from BCG). The presence of a negative 

correlation between the HRV and the detrended R–J interval 

fluctuations, for more than 120 s, indicated the beginning of 

sleep since the arterial baroreflex produces a characteristic 

influence on the HRV control at the beginning of sleep. 

 [78] BCG peak detection Nocturnal awakening periods were detected by performing BCG 
peak detection. 

Using parameters 

from sleep 
microstructure 

[30] CAP estimation Features produced from EEG monopolar derivations, 

specifically, the Power Spectral Density (PSD) in the beta and 
theta bands, Teager energy operator, autocovariance and 

Shannon entropy, were fed to a Feed-Forward Neural Network 

(FFNN) to estimate the presence of A phases and a finite state 
machine was employed to determine the CAP cycles. 

 [79] A phase detection Employed band descriptors, Hjorth activity and differential 

variance on EEG monopolar derivations to produce features that 

were feed to a FFNN to determine the presence of the A phases. 

 [41] CAP estimation Analyzed the Cardiopulmonary Coupling (CPC) of normal-to-

normal sinus intervals (N-N series) and EDR. A quantitative 

index was produced by multiplying the crossspectral power by 
the coherence and a predominance of low-frequency coupling 

(0.01 to 0.1 Hz) was associated with the presence of CAP. 

 [80] CAP rate estimation from a 
single-lead ECG 

A spectrographic representation of CPC, from EDR and N-N 
series, was fed to a Deep Stacked Autoencoders (DSAE) to 

detect the NREM and CAP periods. 

 [81] CAP rate estimation from a 

single-lead ECG 

The spectrographic representation of CPC was fed to the DSAE 

and tuned thresholds were employed in the CAP classification. 

Analyzing a 

combination of 

parameters from the 
sleep structure 

[82] PSD features extracted 

from the EEG 

62-dimension PSD features were produced from the EEG bands 

and minimal-redundancy-maximal-relevance was employed for 

feature selection. The selected features and the energy in the 
brain topographic map were fed to a discriminative graph 

regularized extreme learning machine. 

 [12] Combination of multiple 

measures 

A combination of NREM spectral EEG indices, CAP rate and 

traditional PSG indices was used to produce groups of features 
and thresholds were employed to define the relevance of each 

group. A final threshold was then employed to perform the 

classification of sleep quality. 

 [83] Crosscorrelation functions A crosscorrelation matrix was produced by analyzing the 

normalized crosscorrelation coefficients between two periods 

and employed to calculate an error function. The local minima 
of the function represents the transition in sleep. 

Using models based 

on sleep microstates 

[84] Probabilistic Sleep Model 

(PSM) 

Defined sleep through posterior probabilities of twenty sleep 

microstates, forming the PSM, and identified the ones that are 

related to the presence of poor sleep quality periods. 

 [63] PSM Describe sleep using the PSM and identified the ones that are 

related to standard sleep variables from PSG. 

 [85] PSM Employed the PSM to estimate the relative time spent in a 
microstate and the number of transitions between microstates. 

 [86] Model based on commonly 

not directly observed latent 

variables 

Grouped a wide set of metrics into a smaller parsimonious set of 

generally not directly observed latent variables to produce a 

sleep quality index. 

 [87] HMM Employ HMM to analyze the data from a single EEG signal with 

one second epochs.  

 [88] HMM  Analyzed the EEG signal with a HMM and defined metrics 

based on probabilistic traces to define the quality of sleep. 
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Non sleep structure 
features 

[89] Rules based on attributes Defined sets of rules that combine multiple attributes and 
selected the most significant set by examining the attributes that 

are most commonly related to poor sleep quality. 

 [90], 
[91], 

[92] 

Multimodality sensor Features from multiple sensors were fed to classifiers (one SVM 
for each sensor). The outputs of each classifier were fused to 

deduce the sleep quality. 

 [93] Motion artifacts Employed electromechanical film sensors to detect periodic 

movements during sleep-related to period of poor sleep quality. 

Proposed new 

metrics 

[94]  Proposed two sleep quality ratios. 

 [95]  Developed a sleep fragmentation index. 

 [96]  Suggested a weighted-transition sleep fragmentation index, 
where the weight was related to the possible sleep stage 

transitions. 

 [97]  Proposed a sleep fragmentation index. 

 [98]  Defined a mathematical diagnosis for the sleep fragmentation. 

 [99]  Presented two entropy-based metrics. 

 [100], 

[101] 

 Developed a sleep diversity index based on Shannon entropy. 

 [102]  Combined the NREM sleep duration, sleeping position and 

presence of sleeping disorders into a sleep quality index.  

 [103]  Apply a threshold to classify a metric based on the frequency of 

roll-overs. 

 [104]  Developed a metric based on the acceleration of the movements 
and the sleeping position. 

 [105]  Developed a metric to quantify the bed occupancy by estimating 

the number of times the subject left the bed. 

 [106]  Determined the bed occupancy by analyzing the radiated 
temperature. 

 [107]  Developed three metrics of sleep continuity. 

 

Table 3.4: Review of the developed devices for sleep quality analysis [55]. 

Type of device Name of the device Article Sensors 
Sleep quality 

measurements used in 

the article 

Proposed by 
researchers 

 [90] Camera; passive 

infrared sensor; heart-

rate sensor 

SOL; TST; SE 

  [91] Passive infrared 
sensor; heart-rate 

sensor; Microphone 

SOL; TST; SE 

  [108] EEG Developed metric 
  [109] EEG TN1; TN2; TN3; SE 

  [72] PPG SWS%; developed 

metric 
 Sleep MedAssist [71] ECG Developed metric 

  [110] ECG; actigraph; 

oximeter; microphone 

SE; SOL; A; WASO; 

PLMI; N1%; N2%; 
SWS%; REM%; 

REML; developed 

metric 
  [111] Actigraph TST; SE; WASO; SOL 

 RAHAR [76] Actigraph SE 

  [102] Actigraph; pressure 
sensor 

Developed metric 

  [78] Pressure sensor SE 

  [112] Pressure sensor Developed metric 
  [113] Pressure sensor Developed metric 

  [114] Pressure sensor TIB; developed metric 

  [115] Pressure sensor Developed metric 
  [77] Pressure sensor SOL 

  [116] Pressure sensor TST; TN3; SE; 

developed metric 
 DoppleSleep [117] Doppler radar SOL; A; TST; SE 

 Wi-Sleep [118] Transmitter and 

receiver antennas 

Developed metric 

  [119] Magnetometer Developed metric 

  [120] Thermometer; 

humidity sensor; 
microphone; 

luminosity sensor; 
micro-vibration sensor 

Developed metric 



 

27 

 

Commercial Actical [121] Actigraph TST; SE 

 Actillume [122] Actigraph TST; developed metric 

 Actigraph [123] Actigraph Developed metric 
 Actigraph GT9X [124] Actigraph TST; SE; TIB; WASO 

 Actiwatch [121] Actigraph TST; SE 

 Actiwatch 2 [125] Actigraph TST; SE; WASO; SOL 
 Actiwatch-16 [126] Actigraph TST; SE; TIB; SOL; 

TWT 

 Actiwatch 64 [127] Actigraph TST; SOL; WASO; SE 
 Actiwatch-L [128] Actigraph TST; SE; SOL; TWT 

 Actiwatch Spectrum [129] Actigraph TST; SE; developed 

metric 
 AW4 [130] Actigraph TST; SE; A 

 Basis Health Tracker [129] Actigraph TST; SE; developed 

metric 
 Basis Peak [124] Actigraph TST; SE; TIB; WASO 

 Fitbit [131] Actigraph TST; SE 

 Fitbit Charge 2 [132] Actigraph TST; TIB; SE 
 Fitbit Charge HR [133] Actigraph TST; TIB; developed 

metric 

 Fitbit Flex [129] Actigraph TST; SE; developed 

metric 

 Fitbit One [134] Actigraph TST; SE; SOL; 

developed metric 
 Fitbit Ultra [135] Actigraph TST; SE; WASO 

 GT3X+ [127] Actigraph TST; SOL; WASO; SE 

 IST Vivago [136] Actigraph TIB; developed metric 

 Jawbone UP [137] Actigraph TST; SE; TIB; TW; 

SOL; WASO 

 Jawbone UP3 [124] Actigraph TST; SE; TIB; WASO 

 MicroMini-

Motionlogger 

[138] Actigraph TST, SE, SOL; A 

 Mini Motionlogger [139] Actigraph TST; SE; SOL; A 

 Misfit Shine [129] Actigraph TST; SE; developed 
metric 

 SenseWear Armband [140] Actigraph TST; TIB; SE 

 SenseWear Armband 
Mini 

[124] Actigraph TST; SE; TIB; WASO 

 SenseWear Pro2 

Armband 

[103] Actigraph Developed metric 

 SenseWear Pro3 

Armband 

[125] Actigraph TST; SE; WASO; SOL 

 Sleepwatch [121] Actigraph TST; SE 

 Sleepwatch-O [75] Actigraph TST; SE; SOL; WASO 

 Vivago WristCare [141] Actigraph TST 

 Vivosmart [124] Actigraph TST; SE; TIB; WASO 

 Withings Pulse O2 [129] Actigraph TST; SE; developed 
metric 

 Z80-32K V1 [142] Actigraph TST; SE; SOL; TR 

 Ōura ring [143] Accelerometer; 

infrared sensor 

TST; SOL; WASO; 

TN1; TN2; TN3; TR 

 Zeo Sleep Manager 

Pro 

[144] EEG TST; SE; SOL; 

WASO; A; TNR; TR; 

TW; REML; 
developed metric 

 NeuroOn Open [145] EEG; EOG; oximeter; 

thermometer; 
accelerometer 

TST; SE; A; WASO; 

SOL; TN1; TN2; TN3; 
TR 

 SleepImage [146] ECG Developed metric 

 M1 [147] ECG; accelerometer; 

vibration sensor 

TST; WASO; 

developed metric 

 Beddit Pro [134] Thermometer; 

microphone; 

luminosity sensor; 
force sensor 

TST; SE; A 

 EarlySense [148] Pressure sensor TST 
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It was verified that a comparison between the analyzed articles was not feasible due 

to the employment of different metrics, databases, and application conditions in the 

experiments. Thus, the performed analysis was focused on studying what type of metrics 

were used by the developed methods and devices. The summary of this study is presented 

in Figure 3.2. 

a) b) 

  

Figure 3.2. Resume of the reviewed articles regarding the a) proposed metrics, and b) 

the developed devices [55]. 

It was verified that primarily the proposed metrics are based on characteristics of the 

sleep macrostructure while microstructure was only employed by 20% of the methods. 

Thus, it is plausible to institute a tendency in the research for metrics that are based or 

related to the sleep macrostructure. This is likely due to the fact that sleep macrostructure 

has well-established definitions that help to propose solid metrics, while the 

microstructure is usually employed to assess the presence of sleep disorders. However, 

as the person progresses into an older age, the sleep structure undergoes through 

significant changes, increasing the subjective complaints that are associated with poor 

sleep quality [7].  

These changes produce characteristic variations in the microstructure. Hence, the 

driven metrics from this structure can provide strong indications of sleep instability, and 

provide a sleep quality estimation which has a higher correlation with the self-ratings 

[37]. Taking into consideration the inherent difficulties related to the second by second 

examination required for the microstructure analysis, it was conceptualized that the 

proposal of a new sleep model, based on the microstructure, could be relevant for the 

future research in this field. Such model can be based on the instability analysis, which 

works as a foundation for CAP examination, and might provide a framework that can be 

significant for future clinical analysis. 

Most of the devices employed metrics based on duration or continuity of sleep. New 

metrics were proposed by 26% of the studied cases, while 4% used either stability or 

intensity metrics. These results are due to the fact that actigraphs dominate the home 

health care market, since they are widely available, simple to be used, and non-invasive 

(commonly they are mounted on a bracelet that is worn on the wrist). The taxonomy of 

sleep quality analysis that was attained from this review is presented in Figure 3.3.  

However, it was verified that duration and continuity metrics provide a small 

contribution to subjective ratings regarding prior-night sleep quality [11]. It was also 

assessed, by the AASM, that sleep logs and actigraphy provide significantly different 

results in the estimation of Sleep Efficiency (SE), Sleep Onset Latency (SOL) and Total 
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Sleep Time (TST) with a comparable estimation of Wake After Sleep Onset (WASO). 

Actigraphy and PSG measures have a poor agreement in the SE and WASO estimation 

with a reasonable agreement for the SOL and TST [149]. However, as it was previously 

observed, metrics based on the microstructure provide a sleep quality estimation which 

was found to be more correlated with self-ratings [37]. Particularly, it was conceptualized 

(in Chapter 2) that stability analysis (based on the CAP assessment) could conceivably 

offer a more comprehensive and sensitive measure for the quality of sleep. Taking into 

consideration that only 2% of the devices used stability metrics, it was theorized that there 

is a need for the development of new prototypes capable of performing CAP assessment 

at the patients’ home. Such devices could improve the availability of sleep quality 

analysis for the general population, having a significantly lower cost than a full night 

PSG, hence, becoming a valuable tool for the future of healthcare. 

From the overview of the analysis, it is possible to infer that the development of 

devices which employ metrics capable of measuring the stability of sleep, such as CAP 

rate, can become significant tools for medical examinations that require sleep quality 

analysis. 

 

Figure 3.3. Taxonomy of sleep quality analysis (number of articles for each category is 

indicated between brackets) [55]. 
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3.2. Overview of methods for OSA detection 

A literature review was conducted to determine the most suitable sensors, according 

to the performance of the metric that analyzed the signals from the sensor, for OSA 

detection [56]. Specifically, the purpose of this review was to assess what sensors are 

likely to be the most relevant for OSA examination, according to the reported 

performance. The methods based on the combination of two or more sensors were also 

examined to verify if such combination can lead to a significant improvement of the 

performance when comparing with the methods based on a single source sensor. The 

search covered the period from 2003 to 2017 and was conducted on IEEE explorer, Web 

of Science, PubMed, various journals, and cited literature in the included articles. The 

search keywords were: “algorithm AND sleep apnea”; “apnea AND deep”; “ECG AND 

apnea”; “oximetry AND apnea”; “Respiration analysis AND apnea”; “sound AND 

apnea”; “snoring AND apnea”. 

The inclusion criterion was the presentation of a method, validated using data 

collected on a hospital or available in a database, which had not been implemented on 

hardware. The exclusion criterion was the lack of diagnostic elements to evaluate the 

capability of the method. A group of 84 articles that present methods with the potential 

to be promising diagnostic tools were selected and divided into five categories according 

to the employed source sensor: oximetry; ECG; respiration; sound; the combination of 

two or more source sensors (oximetry, ECG, respiration, and sound).  

The distribution of the reviewed articles according to the year of publication is 

presented in Figure 3.4. The summary of the analyzed articles is presented in Table 3.5, 

indicating for each method the population, either subjects (sub) if the data was collected 

in a hospital or recordings (rec) if a database was used, employed to test the method, how 

the data was acquired, the Time Window (TW) of the algorithm, and the performance 

metrics that were considered, specifically: Epoch Based (EB) accuracy (Acc), Area Under 

the receiver operating characteristic Curve (AUC), sensitivity (Sen), and specificity 

(Spe); Acc of the global classification of the disorder; Subject Based (SB) AUC, Sen, and 

Spe. The SB approach measures globally every subject while the EB classifies 

individually every epoch for all subjects. 

 

Figure 3.4. Distribution of the reviewed articles for OSA detection by year of 

publication [56]. 
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Table 3.5: Review of the methods for OSA detection [56]. 

Source 
sensor 

Article Population 
Data 

acquisition 

EB 

Acc 
(%) 

EB 

AUC 
(%) 

EB 

Sen 
(%) 

EB 

Spe 
(%) 

Global 

Acc 
(%) 

SB 

AUC 
(%) 

SB 

Sen 
(%) 

SB 

Spe 
(%) 

TW 
(s) 

Oximetry [150] 187 sub Hospital - - - - 87 92 90 83 120 

 [151] 83 sub Hospital - - - - 86 91 91 79 - 

 [152] 113 sub Hospital - - - - 88 93 91 83 - 

 [153] 129 sub Hospital - - - - 93 95 97 79 120 

 [154] 148 sub Hospital - - - - 90 97 92 85 30 

 [155] 144 sub Hospital - - - - 87 - 92 77 - 

 [156] 8 rec Database* 93 - 88 100 - - - - - 

 [157] 21 sub Hospital 70 78 82 69 87 - 100 71 40 

 [158] 115 sub Hospital - - - - 94 96 92 96 60 

 [159] 36 sub Hospital - - - - 85 88 88 84 120 

 [160] 127 sub Hospital - - - - 90 - 94 70 - 

 [161] 25 rec Database+ 85 - 60 92 - - - - 60 

 [162] 79 sub Hospital - - - - 94 - 97 79 - 

 [163] 8 rec Database* 96 98 - - - - - - 60 

 [164] 92 sub Hospital 91 - 83 89 97 99 98 95 60 

 [165] 8 rec Database* 98 - 97 99 - - - - 60 

ECG [166] 147 sub - - - - - 91 - 92 90 - 

 [167] 35 rec Database* - - 92 95 - - - - 60 

 [168] 35 rec Database* 90 - 89 91 89 - - - 60 

 [169] 35 rec Database* 84 - 79 87 - - - - 60 

 [170] 5 rec Database# - - - - - - 70 44 30 

 [171] 25 rec Database* 86 - 84 89 - - - - 420 

 [172] 25 rec - - - - - 88 - 89 86 60 

 [173] 35 rec Database* 93 - - - - - - - 180 

 [174] 16 sub Hospital - - - - 95 - - - 60 

 [175] 42 sub - - - - - 93 - - - - 

 [176] 30 rec Database* 93 - 90 100 100 - - - 60 

 [177] 17 sub Hospital - - - - 87 - - - 30 

 [178] 35 rec Database* 76 - - - - - - - 60 

 [179] 60 rec Database* - - - - 100 - 100 100 60 

 [180] 35 rec Database* 81 - - - - - 100 83 - 

 [16] 32 rec Database* - - - - 97 - 93 100 15 

 [181] 35 rec Database* - 89 74 86 93 - - - 60 

 [182] 35 rec Database* 99 - - - - - - - - 

 [183] 97 sub Hospital - - - - - 94 89 83 30 

 [184] 69 rec Database* - - - - - 93 87 88 60 

 [185] 35 rec Database* 85 - 86 83 - - - - 60 

 [186] 35 rec Database* 94 - 95 93 94 - - - 60 

 [187] 188 sub Hospital - - - - 72 89 80 59 - 

 [188] 35 rec Database* 84 - - - - - - - 60 

 [189] 35 rec Database* 85 92 75 91 - - - - 60 

 [190] 70 rec Database* - - - - 93 - 97 99 60 

 [191] 35 rec Database* 85 91 83 82 - - - - 60 

 [192] 35 rec Database* 87 - 82 91 - - - - 60 

 [193] 35 rec Database* 86 94 83 88 97 100 96 100 60 

 [194] 35 rec Database* 89 - 88 91 - - - - 60 

 [195] 9 rec Database+ - - - - 95 - 100 80 - 

 [196] 35 rec Database* 85 92 82 87 97 - - - 60 

 [197] 69 rec Database* - - - - 98 - 98 100 - 

 [198] 10 rec Database* - - - - 98 - - - - 

 [199] 17 rec Database* 100 - - - - - - - 60 

Respiration [200] 41 sub Hospital - - - - - 88 81 95 300 

 [201] 12 sub - 89 - 87 90 - - - - 30 

 [202] 148 sub Hospital - - - - 82 90 88 71 - 

 [203] 14 rec Database# - - - - 93 - - - 60 

 [204] 100 rec Database^ - - - - - - 84 - 60 

 [205] 70 rec Database* 91 96 88 96 - - - - 60 

 [206] 4 sub Hospital 82 - 86 81 96 - - - - 

 [207] 8 rec Database* 99 - - - - - - - 60 

 [208] 6 sub - 88 - 91 77 - - - - 40 

 [209] 8 rec Database* 99 - - - - - - - - 
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 [210] 100 rec Database~ 75 - - - - - - - 30 

Sound [211] 40 sub Hospital - - 88 82 - - - - - 

 [212] 80 sub Hospital - - - - 81 - 78 85 - 

 [213] 87 sub - - - - - - - 81 83 60 

 [214] 41 sub Hospital - - - - 90 97 89 92 - 

 [215] 50 sub - 97 - - - - - - - - 

 [216] 40 sub Hospital - - - - - - 85 75 - 

 [217] 186 sub Hospital - - - - 86 - - - - 

 [218] 33 sub Hospital - - - - 76 - - - - 

 [219] 10 sub - - - - - - - 93 100 - 

Combined  [220] 120 sub Hospital - - - - 89 - 94 82 - 

approaches [221] 15 sub - - - 91 86 - - - - - 

 [222] 83 sub - - - - - 95 97 92 97 - 

 [223] 148 sub Hospital - - - - 89 - 91 83 - 

 [224] 66 sub Hospital - - - - - 95 83 91 - 

 [225] 106 sub Hospital - - - - - - 81 98 - 

 [226] 66 sub Hospital - - - - - 96 90 86 - 

 [227] 25 rec Database+ 82 - 84 81 - - - - 60 

 [228] 100 sub Database^ 82 - 70 91 95 - 92 98 60 

 [229] 285 sub Hospital - - - - 72 73 73 65 - 

 [49] 70 sub Hospital 87 92 73 92 100 - - - 300 

 [230] 8 rec Database* - - - - - - 97 - 15 

 [231] 35 rec Database* - - - - 97 - - - - 

* PhysioNet apnea-ECG database [43] 

# MIT-BIH polysomnography database [232] 

+ University college of Dublin sleep apnea database [233] 

^ Sleep heart health study database [234] 

~ Scaling up scientific discovery in sleep database [235] 

By analyzing the table, it is possible to assess that the highest EB accuracy (100%) 

was attained by evaluating the ECG signal [199]. A similar conclusion was reached for 

the global classification (100%), although one of the three works which reported the 

highest performance also used oximetry analysis [49] [176] [179]. The highest EB 

sensitivity (97%) was reported by a method using oximetry analysis [165], while the 

highest SB sensitivity (100%) was attained by either oximetry [157] or ECG [179] [180] 

[195]. The maximum EB specificity (100%) was also attained using either oximetry [156] 

or ECG [176]. Regarding the best SB specificity (100%), the best results were achieved 

using either ECG [179] [193] [197] or sound [219]. As a result of the table’s analysis it 

was observed that ECG achieved, on average, the best performance (for most of the 

metrics) while the methods based on oximetry, respiration and sound, attained the second, 

third, and fourth best results, respectively.  

However, it is relevant to notice that most ECG methods were tested in public 

databases, which are likely to have cleaner signals that might contribute to increase the 

algorithm’s diagnostic capability [56]. It was observed that higher noise is usually present 

in the respiration signals. Hence, this can possibly be the reason why the performance for 

this sensor was lower, although the measured signal is in the foundation of the OSA 

scoring protocol. It was also verified that a combination of source sensors did not 

contribute to a significant increment of the classification capability, possibly indicating 

that one of the sensors is dominating the analysis.  

The majority of the methods detect OSA by employing supervised learning 

algorithms such as k-Nearest Neighbor (kNN), Support Vector Machine (SVM), and 

Feed-Forward Neural Network (FFNN). However, the methods should have a good 

performance to complexity ratio to allow an efficient hardware implementation. 
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3.3. Review of developed HMD for OSA detection 

A systematic review, covering the period between 2002 to 2017, was performed to 

assess the performance of the developed commercial and research based HMD for OSA 

detection, with the goal of identifying the trends in the field regarding the composition of 

the devices [57]. The search was conducted in IEEE explorer, PubMed Web of Science, 

multiple journals, and cited literature in the selected articles.  

The considered keywords were: “automated AND sleep apnea”; “home AND 

monitoring AND apnea”; “validation AND device AND apnea”; “portable AND apnea”. 

The inclusion criterion was the presentation of a research project or the analysis of 

commercial devices that have been validated by independent researchers, while the 

exclusion criterion was the absence of diagnostic elements that allow to evaluate the 

capability of the device for OSA detection. A total of 117 articles were selected, 

comprising 25 research projects and 50 commercial devices. The distribution of the 

review articles by year of publication is presented in Figure 3.5. 

 

Figure 3.5. Distribution of reviewed articles, in the review of HMD for OSA detection, 

by year of publication [57].  

The articles were divided into the same five categories according to the source sensor, 

employed in the overview of methods for OSA detection, and the same performance 

metrics were considered. Evaluation of the articles was performed by considering ten 

indicators [236]:  

 Blind comparison: reference analysis, PSG, and HMD were scored separately and 

without awareness of the outcomes of each other. 

 Consecutive patients: investigators did not participate in the subject’s selection. 

 Reference standard performed on all subjects: all subjects were tested by both 

HMD and the reference test. 

 Prospective recruitment of subjects: data that was analyzed by the HMD and 

reference tests were obtained directly from the subjects. 

 Random order of testing: subjects were randomly assigned to perform the tests. 

 Small loss of data: less than 10% of data was removed. 
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 High percentage completed: more than 90% of the subjects concluded the study’s 

protocol. 

 Methodology/definitions fully described: the used equipment must be 

characterized, and the methodology employed to classify the events must be 

indicated. 

 HMD methodology/definitions fully described: the used equipment must be 

characterized, and the methodology employed to classify the events must be 

indicated. 

 HMD scoring fully described: indication if the scoring was automated or manual. 

The first three indicators were used do define the Evidence Level (EL), qualified from 

I to IV according to the number of criteria that were fulfilled: I- meets three; II- meets the 

first and third; III- meets the first and second; IV- PSG was not applied independently or 

blindly. The remaining seven indicators specify the Quality Rating (QR), defined as either 

a (the study meets all or misses only one of the seven criteria), b (the study does not meet 

two of the seven criteria), c (the study does not meet three of the seven criteria) or d (the 

study does not meet four or more of the seven criteria). 

Due to the large number of sensors combinations that a device can employ, a 

descriptive characterization based on six categories, named SCOPER, was employed 

[237]:  

 1-Sleep: (S1) EOG, three EEG channels and EMG; (S2) less than three EEG 

channels, including or not EOG or EMG; (S3) sleep surrogate, typically using 

actigraphy; (S4) other sleep measures. 

 2-Cardiovascular: (C1) more than one ECG lead; (C2) peripheral arterial 

tonometry; (C3) one ECG lead; (C4) derived pulse, usually from oximetry; (C5) 

other cardiac measures. 

 3-Oximetry: (O1) oximetry, either on finger or ear, with sampling indication; (O1x) 

oximetry, either on finger or ear, without sampling indication; (O2) oximetry on 

alternative site; (O3) other oximetry. 

 4-Position: (P1) video or visual position measurement; (P2) nonvisual position 

measurements. 

 5-Effort: (E1) two respiratory inductance plethysmography belts; (E2) one 

respiratory inductance plethysmography belt; (E3) derived effort; (E4) other effort 

measurements. 

 6-Respiratory: (R1) nasal pressure and thermal device; (R2) nasal pressure; (R3) 

thermal device; (R4) end-tidal CO2; (R5) other respiratory measurements.  

A new category, 7, was introduced in the review to cover sound recording devices 

[57]. 

 7-Audio: (A1) recorded with a microphone; (A2) other sound recording device. 

When the article does not specify the required information for the full categorization, 

an ‘x’ replaces the category number. The device automatization (Aut) was also introduced 

as a categorization metric, defining as [57]: Full-Automated diagnosis (FA); automated 

diagnosis with some level of manual intervention (SA); Manual Diagnosis (MA). The 
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summary of the analyzed articles is presented in Tables 3.6 (for research projects) and 3.7 

(for commercial HMD). 

Table 3.6: Review of the HMD research projects for OSA detection [57]. 

Article EL QR Cat Pop AHI 

EB 

Acc 
(%) 

EB 

AUC 
(%) 

EB 

Sen 
(%) 

EB 

Spe 
(%) 

Global 

class 
(%) 

SB 

AUC 
(%) 

SB 

Sen 
(%) 

SB 

Spe 
(%) 

TW 

(s) 
Aut 

[238] IV c A1 30 - - - - - 95 - - - - FA 

[239] 
IV b A1 383 

5 - - - - - 94 93 67 
- FA 

15 - - - - - 97 79 95 
[240] II b E4 13 - - - 89 95 - - - - 30 SA 

[241] 
II a C3O1 59 

5 
85 - 51 87 

- - 94 100 
30 FA 10 - - 82 91 

15 - - 74 96 

[242] IV c C3 60* - - - - - 95 - - - 60 FA 
[104] 

I a O1A1 40 

5 - - - - - 86 89 92 

- FA 10 - - - - - 88 82 91 

20 - - - - - 96 100 97 

[243] IV c O1 3* - 93 99 92 94 - - - - 60 FA 

[244] IV b E4 13 - - - 88 93 - - - - 30 FA 

[245] IV d C3 - - 78 - - - - - - - 100 FA 
[246] IV c C3 35* - 89 - 96 85 - - - - 60 FA 

[247] II b A1 42 5 - - - - - - 90 92 - FA 

[248] IV d C3O1xR3 3 - - - 81 81 - - - - - FA 
[249] II b O1 40 - - - 96 90 90 - - - 150 FA 

[250] II a O1 68 5 - - - - 88 - 80 95 90 FA 

[251] IV b S3O1xA1 15 - - - - - - - 100 86 60 SA 
[252] 

II b E4 26 

5 

86 - 73 91 

96 98 100 75 

60 FA 15 96 99 100 92 

20 92 98 92 92 
[253] II c R5 30 - - - 89 100 - - - - 10 FA 

[254] IV c C1 70* - - 91 - - - - - - 60 FA 

[255] II a O1x 160 - 79 87 79 78 - - - - 60 FA 
[256] II b R2 5 2 - - - - - - 100 86 100 FA 

[257] I d E4 - - - - 98 84 - - - - 30 SA 

[258] II b A1 37 - - - - - 86 - - - 30 FA 
[259] IV c S3C2A1 121 - 98 94 81 100 88 - - - 120 FA 

[102] IV d E4 10 - - - - - 98 - - - 60 FA 

[260] IV c C3 70* - 83 - - - - - - - 300 FA 
* PhysioNet apnea-ECG database [43] 

Table 3.7: Review of the commercial HMD for OSA detection [57]. 

Device Paper EL QR Categorization Pop AHI 
Global 

Acc (%) 

SB 
AUC 

(%) 

SB 
Sen 

(%) 

SB 
Spe 

(%) 

Aut 

Apnoescreen-I [261] II a S3C4O1xP2R3 44 10 75 86 - - FA 

SleepStrip [262] I a R3 288 10 - 81 86 57 FA 
20 - 84 80 70 

40 - 92 80 86 

NovaSom QSG [263] II a C4O1xExR5A1 44 15 - - 91 83 FA 
BREAS SC-20 [264] II b S3C4O1xPxE4R5Ax 60 5 - 89 98 70 SA 

15 - 98 97 92 
30 - 95 79 100 

Embletta [265] I a O1xP2E4R2 39 15 - - 60 - SA 

Apnoescreen-II [266] I b S3O1P2E4R3 68 5 79 90 83 89 MA 

10 84 91 79 98 

15 80 86 68 95 

SNAP [267] I a C4O1xExR5A1 60 5 88 95 98 40 SA 
10 83 90 88 74 

15 80 87 84 76 

NGP 140 [268] II a S3C4O1xP2E4R3A2 92 10 93 97 97 85 SA 
15 94 99 92 97 

30 95 99 98 93 

CPS Nx-301 [269] II b C1O1xR5 49 5 87 - 100 71 SA 
10 87 - 87 87 

15 83 - 64 95 

Watch PAT100 [270] I a S3C2O1x 32 5 - - 94 80 SA 
15 - - 96 79 

35 - - 83 72 

Remmers Sleep 
Recorder 

[271] I a O1xP2R5Ax 94 5 77 85 75 81 FA 
10 77 90 68 87 
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15 81 91 63 96 

Edentrace II [272] I a C4O1xP2E4R3A1 45 10 - 88 71 92 SA 

RUSleeping [273] II b R2 25 5 - 94 - - FA 
15 - 88 - - 

30 - 91 - - 

ARES Unicorder [274] II a S3C4O2P2E3R2A1 92 5 - - 98 84 SA 
10 - - 97 85 

15 - - 92 95 

Flow Wizard [275] II a R2 31 8 - - 100 43 SA 
12 - - 96 71 

18 - - 92 86 

SpiderView [276] II b C3R3 19 20 - 85 71 100 SA 
Apnomonitor 5 [277] II a O1xP2ExR3A1 22 15 - - 95 - MA 

ApneaLink [278] II a C4O1xR2Ax 50 5 - 100 100 100 SA 

10 - 100 98 100 
20 - 100 97 100 

Lifeshirt [279] II a S1C4O1xR5 48 5 - 76 85 67 SA 

10 - 90 92 88 
20 - 90 85 94 

Somnocheck [280] II b C4O1xP2R2Ax 121 5 - 96 96 65 SA 

10 - 92 91 83 

15 - 91 81 83 

WristOx 3100 [281] II a O1 154 5 - - 89 94 FA 

10 - - 88 94 
15 - - 88 90 

Stardust II [282] II a C4O1xP2E4R2 80 5 87 95 95 62 SA 

15 95 86 78 
30 96 74 96 

SleepMinder [283] II b A2 157 5 91 86 86 46 FA 

10 94 84 84 
15 97 89 92 

Morpheus [284] II b C4O1xExR3 83 20 - 87 86 81 SA 

Embletta PDS [277] II b C4O1xP2ExR2Ax 47 5 - 88 91 60 SA 
10 - - 75 87 

15 - - 63 93 

MediByte [285] II a C4O1xP2E4R2 73 5 - 94 97 67 MA 
10 - 94 84 91 

20 - 89 80 95 

ApneaLink Plus [286] II b C3O1xExR2 25 5 - 94 86 83 SA 
10 - 100 100 90 

ResCare AutoSet [287] II b O1xR2 452 15 - 89 96 73 FA 
SD-101 [288] II b P2E4 53 5 - - 95 60 FA 

15 - 96 88 86 

Watch PAT200 [289] II b S3C2O1x 75 5 - 91 96 43 SA 
10 - 95 90 69 

15 - 92 92 77 

Sleep&Go [290] II a O1xP2E4R3 55 5 - 96 92 67 SA 
15 - 85 95 56 

NOX T3 [291] II b S3O1xP2E1R2Ax 32 5 - - 100 70 FA 

15 - - 92 85 
Sonomat [292] II a E4A2 60 5 90 94 94 77 SA 

15 90 97 88 91 

30 97 100 100 96 
SleepView [293] I a C4O1xR2Ax 93 5 - 92 80 95 SA 

15 - 92 87 85 

30 - 98 95 93 
Micromovement 

Sensitive Mattress  

[294] II a O1xE4 131 5 - 98 95 100 SA 

15 - 98 90 97 

30 - 98 90 95 
Alice PDx [295] II a S3O1xE4R1 71 15 - 80 69 87 MA 

30 - 82 87 66 

Sleep Design [296] II a A1 30 26 91 - 71 93 FA 
APNiA [297] II b S3C4O1P2E4R2A2 28 5 82 96 88 73 FA 

15 86 97 70 94 

30 93 100 100 93 

By analyzing the tables, it was possible to conclude that commercial devices use on 

average, three or more sensors, while the research HMD typically employs only one 

sensor. These observations point to a new trend in the research, developing devices that 

are simple to self-assembly, less invasive, cheaper to build (due to the lower number of 

sensors), and thus achieve a higher performance-complexity ratio. It was also verified that 

the combination of oximetry and sound provided the best results in the research based 
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devices, followed by the respiration examination that was employed, either in 

combination or separately, by all the commercial devices that have reported the highest 

diagnostic performance. 

By the general analysis of this review, it was possible to infer that the performance 

of portable monitors (denoting HMD) for OSA classification is consistent and high 

enough so they can possibly be used as an initial tool for OSA diagnostic, which can 

substantially improve the accessibility of the general population to OSA examination. 

This observation is particularly relevant as OSA is one of the most prevalent sleep related 

disorders, which is commonly undiagnosed.  

However, the validation studies for the research based devices presented multiple 

methodological limitations. Figure 3.6 presents the percentage of articles that report the 

same EL and QR from both commercial and research based HMD. The articles that 

analyzed commercial devices mainly have an EL of II, while the studies that have 

proposed research projects vary between II and IV. Regarding the QR, the works that 

studied commercial devices are mostly in the a and b categories, while the research based 

HMD are distributed across the four categories. Consequently, the results of the 

publications that analyzed commercial HMD devices are more reliable, pointing out the 

need for the research projects to improve the validation procedure to improve the EL and 

QR [57]. 

 

Figure 3.6. Analysis of the EL and QR of the articles [57]. 

3.4. Key remarks 

Taking into consideration the lack of consensus regarding the sleep quality definition, 

three main approaches were identified as suitable paths to perform the sleep quality 

examination. The first is the most conventional and considers the examination of sleep 

quality metrics. From the analysis performed in this chapter it was decided to evaluate 

the CAP metrics for sleep quality assessment since it is a sleep stability metric, highly 

correlated to the occurrence of OSA in SBD patients. Therefore, approaches based on the 

EEG sensor must be evaluated since CAP is a characteristic pattern from this sensor. It 

was also observed a gap in the literature regarding the implementation of CAP based 

analysis in HMD. It was conceptualized that this gap can be addressed by developing a 

HMD for CAP assessment based on the EEG monopolar derivation signal analysis. Using 



 

38 

 

only one signal reduces the number of sensors that need to be assemble in the patient’s 

body, providing a more conformable experience during the test and also possibly allowing 

the subjects to easily self-assemble the HMD. 

The second approach was to evaluate the presence of sleep related disorders, 

theorizing that the presence of such disorders may be the main contributor for poor sleep 

quality. OSA is a prime candidate to be examined in this study as it was identified as one 

of the most prevalent and frequently undiagnosed sleep related disorders which can 

significantly affect the quality of sleep. From the reviewed literature it was possible to 

conclude that research based devices are focusing the analysis in the oximetry and sound 

signals while most of the commercial HMD use respiration signals. However, it was 

verified, on the methods review, that ECG and oximetry based algorithms achieved the 

best performance. Therefore, a compromise in the research is the proposal of methods to 

examine the ECG or oximetry signals, having the developed algorithms implemented in 

HMD whose validation process agrees with all the ten indicators that define the EL and 

QR. 

The last approach is to combine the estimation of sleep quality metrics and the 

detection of sleep related disorders to provide a better view of global sleep quality. It was 

theorized that a combination of both CAP and OSA assessment can possibly be attained 

using only one sensor that has relevant information for both calculations. Such analysis 

can possibly be performed by evaluating the ECG signal, considering CAP in a broader 

context (designating instability of sleep), through the proposal of a new sleep quality 

model. The development of an algorithm based on this new concept can be implemented 

in a HMD, providing a simple tool which can be significant for the future of healthcare 

since several sleep quality metrics and sleep related disorders can be combined and 

evaluated in a single examination. 

The main limitation of these reviews was the impossibility to examine all published 

literature, such as the articles which were not published in English or the articles outside 

the search period. The comparison between the results reported by the different articles 

is challenging to perform since these works have examined diverse populations and 

reported different performance metrics. 
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A summary of the employed materials is indicated in this chapter. Specifically, this 

chapter presents the evaluated databases, the classifiers which were used in the developed 

methods, the employed feature selection methods, and the methodologies and metrics 

used for the performance assessment.  

4.1. Evaluated databases 

A total of four databases were examined in this work. The public database for CAP 

assessment (and also used by the reviewed articles) was the CAP Sleep Database 

(CAPSD) from PhysioNet [19]. This database has annotations regarding the macro and 

microstructure of sleep (annotation indicating the occurrence of an A phase, the 

corresponding subtype, and the duration of the event) made by a team of neurologists 

from the Ospedale Maggiore of Parma, Italy. EEG was recorded using the 10-20 

international system and one of the monopolar derivations signals (C4-A1 or C3-A2) was 

used by all developed methods for CAP estimation from the EEG signal. The single-lead 

ECG signal is also available for several subjects and was employed by all developed 

methods for indirect CAP estimation from the ECG signal.  

Three other databases were evaluated by the method proposed in section 6.2 to allow 

a comparison between standard sleep quality metrics and the indirect CAP estimation. 

These databases are: St. Vincents university hospital / University College Dublin Sleep 

Apnea Database (UCDSAD) from physionet [19] [233]; MrOS Sleep Study (MrOSSS) 

from National Sleep Research Resource (the database has only recordings from males 

with 65 years or older thus, 50 recordings were randomly chosen from the 2911 available) 

[235] [298]; database of collected PSG signals, recorded at Dr. Negrín University 

Hospital (DrNUH). The last database (DrNUH) was also used for the development of the 

methods for OSA detection, presented in chapter 7. 

General characteristics of the examined databases’ subjects are presented in Table 4.1. 

Further details for each subject of the CAPSD are presented in Table 4.2 as this database 

is the most relevant for the developed methods. In this table, subjects 1 to 16 are indicated 

as normal (do not suffer from sleep related disorders) while subjects 17 to 20 suffer from 

sleep-disordered breathing. The CAP rate estimated from the provided CAP A phase 

labels was compared with the age-related CAP rate percentages in healthy subjects to 

assess the sleep quality.  

Table 4.1: General characteristics of the evaluated databases’ subjects (metrics based on 

the average of all subjects). 

Database Measure Mean ± standard deviation Range (minimum – maximum) 

CAPSD (9 females and 11 males) Age (years) 40.00 ± 16.59 23 – 78 
NREM sleep (min) 338.05 ± 52.96 219 – 444 
REM sleep (min) 96.28 ± 42.56 8 – 190 

UCDSAD (4 females and 21 males) Age (years) 71.30 ± 6.30 65 – 78 
NREM sleep (min) 261.20 ± 39.80 196 – 314 
REM sleep (min) 60.32 ± 31.06 10 – 97 

MrOSSS (50 males) Age (years) 75.30 ± 5.47 68 – 90 
NREM sleep (min) 278.58 ± 68.75 124 – 531 
REM sleep (min) 69.04 ± 31.77 0 – 143 

DrNUH (16 females and 54 males) Age (years) 52.29 ± 12.31 18 – 78 
NREM sleep (min) 247.54 ± 52.20 146 – 398 
REM sleep (min) 53.17 ± 30.23 0 – 114 
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The A phase annotations were used to perform the A phase binary classification, 

considering the events as either A (when the examined epoch corresponds to an A phase 

annotated in the database) or not-A (when the evaluated epoch corresponds to periods 

without any A phase annotation in the database). By examining Table 4.2 it is notorious 

that the number of seconds scored as an activation event is significantly lower than the 

TST (given by the total NREM and REM sleep). Such occurrence leads to an unbalanced 

dataset with substantially more not-A than A epochs. This unbalance is characteristic in 

CAP analysis, although the subjects suffering from SBD usually have a longer A phase 

duration than the subjects without a sleep related disorder. 

Table 4.2: Characteristics of the evaluated subjects from CAPSD. The average value for 

each metric is presented. 
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1 37 F 26040 7170 363 2217 94 747 80 1135 537 4099 12139 0.47 P 

2 34 M 21180 4530 186 1188 72 688 94 1239 352 3115 7642 0.36 G 

3 35 F 20310 5640 141 656 106 631 108 1043 355 2330 7167 0.35 G 
4 25 F 17370 6270 192 986 43 356 52 893 287 2235 6165 0.35 G 

5 35 F 22980 6960 462 2863 24 328 60 784 546 3975 11601 0.50 P 

6 31 M 21510 7950 303 1871 115 976 94 1414 512 4261 12196 0.57 P 
7 31 M 20160 7440 307 1616 99 565 42 480 448 2661 9043 0.45 P 

8 42 F 20310 5940 205 949 79 465 160 1868 444 3282 9310 0.46 P 

9 31 M 20520 6780 212 1036 56 377 48 678 316 2091 6226 0.30 G 

10 23 M 17280 6540 164 1489 34 336 61 922 259 2747 5000 0.29 G 

11 28 F 18480 11430 235 1724 80 583 50 796 365 3103 8554 0.46 P 

12 29 M 19830 8940 187 1064 28 153 46 573 261 1790 4453 0.22 G 
13 24 F 17790 5490 293 1628 118 1040 76 1041 487 3709 9618 0.54 P 

14 35 F 19380 4950 195 1035 128 1234 74 1209 397 3478 7615 0.39 P 

15 34 M 22200 5940 249 1449 128 1046 95 1244 472 3739 10059 0.45 P 
16 41 F 22080 7440 322 2252 137 1138 71 891 530 4281 12765 0.57 P 

17 65 M 13260 3270 208 1059 10 73 57 779 275 1911 5744 0.43 G 

18 77 M 24630 1140 102 684 81 846 352 6472 535 8002 18799 0.76 P 
19 78 M 16950 480 79 557 90 1297 222 5698 391 7552 13206 0.78 P 

20 65 M 27180 2040 316 1858 90 781 438 7915 844 10554 23306 0.86 P 
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The rules defined Terzano’s reference atlas [19] were employed to produce the CAP 

cycle annotations, from the A phase annotations provided by the database, using a Finite 

State Machine (FSM) developed in this work. However, for the indirect CAP assessment 

a minute-by-minute classification was performed. Thus, a threshold must be used to 

define the minimum CAP time (duration of a CAP event) to designate a minute epoch as 

CAP. The data flow diagram of the employed algorithm for label creation is presented in 

Figure 4.1. Database_Label denotes the labels provided by the database, CAP_cycle are 

the one second epochs scored as a CAP cycle (used for CAP analysis based on the 

examination of EEG signals), Threshold is the minimum CAP time duration, and CAPm 

has the labels for the minute-by-minute classification. 

 

Figure 4.1. Flow diagram of the algorithm developed to create the global sleep quality 

labels. Adapted from Mendonça et al. [299]. 

The flow diagram of the algorithm developed to create the global sleep quality labels 

is presented in Figure 4.2. These labels were produced by comparing the CAP rate of the 

subject with the age-related CAP rate percentages in healthy subjects. If the subject’s 

CAP rate was higher, then the sleep quality was considered as poor. Otherwise, it was 

considered as good. This analysis was validated by the fact that the CAP rate is 

characterized by a low night-to-night intra-individual variability, despite the complex 

changes this metric undertakes through the life period of a person [10]. 
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Figure 4.2. Flow diagram of the algorithm developed to create the global sleep quality 

labels [299]. 

A total of five versions of the CAPSD were evaluated by different developed methods: 

 The first database was composed of EEG signals from nine normal subjects 

(subjects 1, 2, 3, 5, 6, 7, 9, 10, 11), four subjects with sleep-disordered breathing 

(subjects 17 to 20), and from one extra subject with bruxism. The concept for this 

database was to have a more balanced representation between subjects with and 

without a sleep related disorder. It was used by the methods presented in sections 

5.2 and 5.3. 

 The second database was composed of EEG signals from 15 normal subjects 

(subject 12 was not used because the synchronization between the labels and the 

events in the EEG signal had errors). This database was used to assess the viability 

of the first deep learning model proposed in section 5.3, the performance of the 

sleep model developed in section 5.4 (subjects suffering from sleep-disordered 

breathing were not considered because their signals have a longer CAP cycle 

duration, leading to significant overestimation of the CAP cycles in the subjects 

without sleep related disorders), and the viability of the models proposed in 

sections 5.5 and 5.6. 

 The third database was composed of EEG signals from 15 normal subjects 

(excluding subject 12) and from the four subjects with sleep-disordered breathing 

(subjects 17 to 20). This database was employed to assess the performance of the 

methods without an explicit feature creation procedure proposed in section 5.3 
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(with exception of the first presented model), and the performance of the models 

proposed in sections 5.5 and 5.6. 

 The fourth database was composed of ECG signals from the same subjects of the 

first database (following the same concept as the first database regarding the most 

balanced representation) and was employed to assess the performance of the 

methods proposed in chapter 6. 

 The fifth database was composed of ECG signals from 15 normal subjects (subject 

16 does not have the ECG signal available) and from the four subjects with sleep-

disordered breathing (subjects 17 to 20). This database was employed to assess 

the performance of the sleep quality model proposed in chapter 8. 

The sampling frequency of the examined records varied between 100 Hz and 512 Hz. 

Hence, for the methods without an explicit feature creation procedure, employed for the 

EEG signal examination, the records were resampled (in the preprocessing procedure) at 

the resolution of the subject with the lowest sampling frequency (present in the examined 

database) to allow the development of a device-independent estimation of the EEG signal 

[300]. The resampling was performed by decimation to avoid aliasing [301], using a 

constant reduction factor for the sampling rate, k, and a standard low-pass filter, 

implemented by an order 8 Chebyshev type one filter, with passband ripple of 0.05 dB 

and a normalized cutoff frequency of 0.8/k.  

Afterwards, the resampling procedure selected each kth point from the filtered signal 

to produce the resampled signal. This way, a uniform input was attained. All the single-

lead ECG signals examined in this work were resampled at 200 Hz since this frequency 

was found to be suitable for the QRS examination using the algorithm proposed by Pan 

and Tompkins [302]. The resampling was performed by decimation or interpolation. 

4.2. Examined classifiers 

Several classifiers were evaluated with the proposed methods, comprising a mixture 

between the classifiers suggested in the state of the art (identified as suitable for the 

intended classification) and classifiers which were not previously examined by any work 

in the state of the art (regarding CAP analysis) but were tested in this work as they have 

attained good performance in other fields. The studied classifier were: 

 Linear Discriminant Analysis (LDA) in sections 5.2 and 6.1. 

 Quadratic Discriminant Analysis (QDA) in section 6.1. 

 Logistic Regression (LR) in sections 5.2, 6.1, and 7.1. 

 Ensemble of decision Trees (ET) in sections 5.2 and 6.1. 

 SVM in sections 5.2, 6.1, and 6.4. 

 FFNN in sections 5.2, 5.3, and 6.1. 

 Cascade-Forward Neural Network (CFNN) in section 5.2. 

 kNN in sections 5.2 and 6.1. 

 k-Means Clustering (kMC) in sections 5.2 and 6.1. 

 Self-Organizing Map (SOM) in sections 5.2 and 5.4. 

 Deep Stacked Autoencoder (DSAE) in sections 5.3 and 6.1. 

 Long Short-Term Memory (LSTM) in section 5.3, 5.5, and 5.6. 
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 Gated Recurrent Unit (GRU) in section 5.3. 

 Convolutional Neural Network (CNN) with one dimensional input (1D-

CNN) in sections 5.3, 5.6, 6.2, 7.2, and 8.1. 

4.2.1. Discriminant Analysis 

LDA, a supervised learning classifier, was used for the A phase classification by 

evaluating features crafted from the EEG signal. This classifier first computes the average 

of each class and then determines the covariance, Σ. Thus, each class has a different mean 

but the same covariance matrix [303]. For the binary case, the decision boundary between 

the two classes is given by [303] 

𝑃(𝑦 = 1|𝑿, 𝜃) = 𝑠𝑖𝑔𝑚(𝑾𝑇(𝑿 − 𝑥0)) 4.1 
 

where sigm is the sigmoid function, defined as [303] 

𝜎(𝛽) =
1

1 + 𝑒−𝛽
 4.2 

 

y is the output class, X are the inputs, θ are the model parameters, W is the projection 

vector, defined as [303] 

𝑾 = 𝜮−𝟏(𝝁1 − 𝝁0) 4.3 
 

and x0 is the amount of displacement for the classification [303] 

𝑥0 =
1

2
(𝝁1 + 𝝁0) − (𝝁1 − 𝝁0)

log (
𝑃(𝑦 = 1)
𝑃(𝑦 = 0)

)

(𝝁1 − 𝝁0)𝑇𝜮−𝟏(𝝁1 − 𝝁0)
 

4.4 

 

Therefore, the decision rule is to shift X by x0, project onto the line defined by W, and 

verify if the result is either positive or negative. QDA is similar to LDA but a covariance 

matrix is separately estimated for each class [303]. 

4.2.2. Based on the logistic function 

LR considers that the posterior probability of a class, C, is defined as the logistic 

sigmoid function, σ, action on a linear function of the feature vector φ such that [304] 

𝑃(𝐶 = 1|𝝋) = 𝜎(𝑾𝑇𝝋) 4.5 
 

where W is the model’s weight vector. 

4.2.3. Examination of trees 

The ET, also named Classification and Regression Trees (CART), although only the 

Classification Trees (CT) were used, are characterized by a recursive partition of the input 

space, producing a local model in each resulting region of the input space. Therefore, a 

CART can be seen as a tree, with one leaf per region, forming an adaptive basis-function 

model specified as [303] 
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𝑓(𝑥) = ∑ 𝑊𝑚𝜙(𝑥, 𝑣𝑚)

𝑀

𝑚=1

 4.6 

 

where the basis functions, ϕ, describe the region m, and the weights, Wm, identify the 

response value of the region with the parameters v. Each CART can be interpreted as a 

weak learner and grouped to form an ensemble of decision trees using an ensemble 

algorithm. Three ensemble methods were tested, specifically:  

 Bootstrap aggregation (bagging), where every tree was grown on an 

independently drawn bootstrap replica of the input, with the random forest 

algorithm (searches for the best features, amongst a random subset of features, for 

splitting a node). 

 Adaptive Boosting (AdaBoost), trains the weak learners sequentially for all 

observations, N, and the weighted classification error is determined for each 

learner, e, by [303] 

𝑊𝑒 =∑𝑤𝑛
(𝑖)

𝑁

𝑛=1

𝑅(𝑦𝑛 ≠ 𝑐𝑒) 4.7 

 

considering wn
(i) the weight of observation n at the iterative step i, and R is the 

binary indicator function that is 1 when the true class of the observation, yn, differs 

from the predicted class of the learner ce, and 0 otherwise. The algorithm increases 

the weights of the misclassified observations, by the learner e, and reduces for 

correctly classified. The next learner is then trained with the updated weights. The 

algorithm estimates the classes for new data using [303] 

𝑓(𝑥) =
1

2
∑log (

1 −𝑊𝑒
𝑊𝑒

) 𝑐𝑒

𝐸

𝑒=1

 4.8 

 

Linear programming boost iteratively maximizes the minimal margin 

(classification margin defined by the difference between the predicted the true 

class) through a sequence of linear programming problems [305]. 

 TotalBoost iteratively maximizes the minimal margin in the training set using 

quadratic programming [306]. 

4.2.4. Support vectors 

SVM represents the input in a multi-dimensional space to be classified by the 

discriminant hyperplane [303] 

𝑓(𝑿) = 𝑾𝑇𝑿 + 𝑏 4.9 
 

where b is the bias. A soft margin approach was used since the data does not allow to 

define a hyperplane that fully separates the two classes. Hence, slack variables, ζ, and a 

regularization constant, C, were used in the optimization objective, relaxing the hard-

margin constraints, and thus, allowing for some classification errors. The analyzed 

problem can be defined as [303] 
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min
𝑤,𝑏,𝜁

(
1

2
𝑾𝑇𝑾+ 𝐶∑𝜻𝑖

𝐼

𝑖=1

) 4.10 

 

and can be simplified using Lagrange multipliers, α. Finding a stationary point, and 

setting the gradient to zero, produced the dual form [307] 

max
𝛼
[∑𝛼𝑖 −

1

2

𝐼

𝑖=1

∑ 𝑦𝑖𝑦𝑗

𝐼

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝐾(𝑥𝑖{1…𝐿}
𝑇 , 𝑥𝑗{1…𝐿})] 4.11 

 

under the constraints [307] 

{
∑𝛼𝑖𝑦𝑖 = 0

𝐼

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝐼

 4.12 

 

where K is the kernel that maps the data into other space. Two kernels were tested, the 

Gaussian radial basis function, [307] 

𝐾 = 𝑒
(
−‖𝑥𝑖{1…𝐿}−𝑥𝑗{1…𝐿}‖

2

𝑐
)

 
4.13 

 

with c specifying a constant, and the linear [307] 

𝐾 = 𝑥𝑖{1…𝐿}
𝑇𝑥𝑗{1…𝐿} 4.14 

 

4.2.5. Nearest neighbors 

kNN is a non-parametric classifier that determines the K points in the training set that 

are closer to the test input x to classify the data into the class c with a probability given 

by [303] 

𝑃(𝑦 = 𝑐|𝑥, 𝐷, 𝐾) =
1

𝐾
∑ 𝑅(𝑦𝑖 = 𝑐)

 

𝑖∈𝑁𝐾(𝑥,𝐷)

 4.15 

 

defining NK as the indices of the K nearest points to x in the training dataset D and R is a 

binary indicator variable that is 1 if yi belongs to the class c and 0 otherwise. 

4.2.6. Cluster analysis 

kMC identifies groups (named clusters) of data points X in a multidimensional space 

by analyzing an objective function, given by [304] 

𝐽 = ∑∑𝑟𝑛𝑘‖𝑥𝑛 − 𝜇𝑘‖
2

𝐾

𝑘=1

𝑁

𝑛=1

 4.16 

 

where K is the number of clusters, N is the number of observations, μ represents the cluster 

center, and r is a set of binary indicator variables such that rnk is 1 if xn is assigned to the 
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cluster k. Otherwise, rnk is 0. J represents the sum of the squares of the distances of each 

xn to the assigned cluster. Therefore, the objective is to minimize J through an iterative 

procedure by finding the optimal values for rnk and μk. 

4.2.7. Neural networks with supervised learning 

FFNN is composed of an input layer, where inputs are fed into the model, an output 

layer, which provides the final manipulation of the data, and Hidden Layers (HL) between 

the input and output layers. Multiple HL can be sequentially stacked, and each layer 

receives the data from the previous layer, manipulates the data, and fed the output to the 

next layer. Each neuron applies a transfer function, φ, that takes into consideration the 

number of inputs, n, that are connected to the neuron, the weight of each connection, w, 

and the bias. Therefore, the neuron output is given by [308] 

𝑦 = 𝜑(∑𝑥𝑗 ×𝑤𝑗

𝑛

𝑗=1

) + 𝑏 4.17 

 

Both the hyperbolic tangent transfer function, defined as [308] 

𝜑(𝛽) =
2

(1 + 𝑒−2𝛽)
− 1 4.18 

 

and the sigmoid transfer function were tested. Two training algorithms were studied, 

specifically, the Levenberg-Marquardt algorithm [304] and the scaled conjugate gradient 

[309]. CFNN is similar to the FFNN, but employs a direct connection from the input layer 

to the output layer [310]. 

The LSTM and GRU are variations of the Recurrent Neural Networks (RNN). Each 

memory cell of the LSTM model, at time step t, is controlled by three gates specifically, 

the forget gate (F), the input gate, and the output gate (O). Each input signal, xt, was 

placed in the cell candidate, P, so that it could update the cell state, ct, through [311] 

𝑐𝑡 = 𝐹𝑡𝑐𝑡−1 + 𝐼𝑡𝑃𝑡 4.19 

and the hidden state of the model is defined by 

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) 4.20 

where tanh is the hyperbolic tangent function [304]. Each gate and cell candidate has a 

specific bias (B) and weights for the input, W, and for the recurrence, R. 

The input and output gates, respectively, perform the operations [311] 

𝐼𝑡 = σ(𝑊𝐼𝑥𝑡 + 𝑅𝐼ℎ𝑡−1 + 𝐵𝐼) 4.21 

𝑂𝑡 = σ(𝑊𝑂𝑥𝑡 + 𝑅𝑂ℎ𝑡−1 + 𝐵𝑂) 4.22 

where σ is the sigmoid function [304], to control the flow of activations into the cell, and 

from the cell to the rest of the network. The forget gate adaptively resets the memory and 

perform a scaling of the internal state of the cell through 

𝐹𝑡 = σ(𝑊𝐹𝑥𝑡 + 𝑅𝐹ℎ𝑡−1 + 𝐵𝐹) 4.23 

The cell candidate, used as input of the cell state update, also performs a scaling of the 

internal state by 
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𝑃𝑡 = σ(𝑊𝑃𝑥𝑡 + 𝑅𝑃ℎ𝑡−1 + 𝐵𝑃) 4.24 

The GRU is composed of reset and update gates. The first gate decides if the previous 

hidden state should either be used or ignored (dropping the information to provide a more 

compact representation) while the second gate regulates the quantity of information that 

will be considered in the current hidden state (from the previous hidden state). Both gates 

perform a scaling operation and the activation vectors are respectively defined by [312] 

𝑆𝑡 = σ(𝑊𝑆𝑥𝑡 + 𝑅𝑆ℎ𝑡−1 + 𝐵𝑆) 4.25 

𝑈𝑡 = σ(𝑊𝑈𝑥𝑡 + 𝑅𝑈ℎ𝑡−1 + 𝐵𝑈) 4.26 

A candidate activation, M, is composed of network’s inputs and the learned information 

through [312] 

𝑀𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑀𝑥𝑡 + 𝑅𝑀𝑆𝑡ℎ𝑡−1 + 𝐵𝑀) 4.27 

where [312] 

ℎ𝑡 = (1 − 𝑈𝑡)ℎ𝑡−1 + 𝑈𝑡𝑀𝑡 4.28 

The group of Group of Layers (GL) concept was proposed in this work as a way of 

reducing the amount of simulation required to optimize the CNN architecture, where each 

GL was either composed of a convolution, followed by a normalization, and a pooling 

operation or a convolution, followed by a subsampling (pooling) operation. This way, the 

developed searching algorithms for CNN optimizations evaluated the introduction of GL 

instead of introducing individual layers. 

The 1D-CNN convolution operations, executed in the convolution layers, can be 

represented by [308] 

𝑐𝑑 = φ(𝐾𝑑⊛X+ 𝐵𝑑) 4.29 

were d is the number of filters (k) employed in the layer, X are the inputs, and φ is the 

activation function that was either the Scaled Exponential Linear Unit (SELU) [313] or 

the Rectified Linear Unit (ReLU) [304]. For some of the developed classifier, the output 

of the previous layer was normalized at the batch normalization layer to continue a mean 

activation close to zero with a nearly unitary standard deviation [308]. 

A pooling operation was executed by the last layer of the GL to decrease the 

dimensionality of the data. Both the maximum (MaxP) and the average (AveP) operations 

were tested [308]. The final layer of the network was fully connected (dense) and 

performed the classification by [308] 

𝑌 = 𝜑(𝑊 ∗ X + 𝐵) 4.30 

where the soft-max function, defined as [303] 

𝜎(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑚𝑅
𝑚=1

 4.31 

which considers the probability distribution y for the input i over the R possible results, 

was used for classification. Some of the examined networks employed another dense layer 

before the output layer to increase the learning ability of the nonlinear parameters. 

4.2.8. Neural networks with unsupervised learning 

SOM is a type of neural network that evaluates topographic relationships of the input 

data, fed to an input node, which is mapped into the output units (or output node) that, 
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usually, have a pre-defined topology. Each input is fed to each output unit with an 

associated weight, W, and the squared Euclidean distance, between the nodes (n1, n2) and 

a specific point, i, from the input vector, j, was considered, given by [314] 

𝐸𝑑(𝑛1, 𝑛2, 𝑖) =∑(𝑤𝑖(𝑛1, 𝑛2) − 𝑥(𝑗, 𝑖))
2

 

𝑖

 4.32 

 

Each input point is assigned to the node with the minimum Ed, known as the winning 

node. The weights that are associated with this node, and the weights that are related to 

the neighborhood nodes are updated according to the Kohonen rule [314] 

𝑤𝑖(𝑛1, 𝑛2) = 𝑤𝑖 + 𝑙𝑟𝐹(𝑛1 − 𝑜1, 𝑛2 − 𝑜1)(𝑥(𝑗, 𝑖) − 𝑤𝑖) 4.33 
 

where o are the data point indices, lr is the learning rate, and F is the neighborhood 

function that is 1 at the wining node and gradually reduces proportionally to the distance 

that the neighborhood node is to the wining node until the maximum neighborhood 

distance. 

In this work, the DSAE was composed of stacked autoencoders and an output layer 

to perform the classification. The model input has D samples from X, and each 

autoencoder is composed of an encoder and a decoder. The decoder maps the encoded 

representation, Z, into an estimate of the encoder input vector, x, by [308] 

𝑦 = 𝜑 (∑𝑧𝑖 ×𝑤𝑖

𝐷

𝑖=1

+ 𝑏) 4.34 

where φ is transfer function of the decoder, W is the weight matrix of the decoder, and b 

is the bias vector of the decoder. The same equation can be used to produce the encoded 

representation, replacing z by x, and considering the transfer function, weighs, and bias 

of the encoder. Sparsity can be introduced in the model by adding a regularizer to the cost 

function [308] 

𝐶 =
1

𝐷
∑∑(𝑥𝑗𝑖 − 𝑥̂𝑗𝑖)

2
+ 𝛤 × Ω𝑤 + 𝛾 × Ω𝑠

𝐽

𝑗=1

𝐷

𝑖=1

 4.35 

considering each training example, j, the L2 and sparsity regularization terms, respectively 

Ωw and Ωs, and the coefficient for each regularization term, respectively 𝛤 and 𝛾.  

The sparsity regularization, defined by the Kullback-Leibler divergence (measures 

how different two distributions are, having a null value when they are equal and increases 

its value when they diverge from each other) [315] 

Ω𝑠 =∑[𝛽 log (
𝛽

𝛽̂𝑖
) + (1 − 𝛽) log (

1 − 𝛽

1 − 𝛽̂𝑖
)]

𝐷

𝑖=1

 4.36 

that considers the average activation value of a neuron, given by [315] 

𝛽̂𝑖 =
1

𝐽
∑𝜑(𝑤𝑖

𝑇 × 𝑥𝑗 + 𝑏𝑗)

𝐽

𝑗=1

 4.37 
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and the desired activation value β, can make each neuron specialized in recognizing 

specific patterns by responding to some characteristics that only occur in a small subset 

of the training data. However, a decrease of z associated with an increase of w can lead 

to a small Ωs that reduces the effectiveness of the sparsity regularization. Thus, the L2 

regularization, defined as [315] 

Ω𝑤 =
1

2
∑∑∑(𝑤𝑖𝑗

(𝑙))
2

𝐷

𝑖=1

𝐽

𝑗=1

𝐿

𝑙=1

 4.38 

was used in W to address this issue. The output layer employed the soft-max function for 

classification. 

4.3. Feature selection 

Two feature selection methods were considered in this work for the proposed feature 

based methods. The first was Sequential Feature Selection (SFSe) which is a classifier 

dependent method, and two variations of this algorithm were examined. The first was 

Sequential Forward Selection (SFS) algorithm that initiates with two sets of variables, 

one empty (the first set) and one with all the features in a random order (the second set). 

The goal is to order, in the first set, the features by their relevance to the obtain 

maximization of the considered performance metric. 

During the first iteration, the feature that achieved the highest value for the considered 

performance metric was moved for the first vector and placed in the first position. In the 

second iteration, the algorithm determined the second most relevant feature as the one 

that has the best compatibility with the feature on the first set, achieving the highest value 

for the considered performance metric, and moves the feature to the second position of 

the first set (placed after the first feature). This process was iteratively repeated until the 

second set is empty and the first set is full, producing a feature set (first set) ordered 

according to the feature relevance. The second variation was Sequential Backward 

Selection (SBS) which starts with a set of all features, selecting the least relevant feature 

at the end of each iteration (feature that produced the lowest average for the considered 

performance metric) which was moved from the feature set to the organized-features set 

that is organized from the least to the most relevant feature. For both variations, the 

optimal number of features to use was determined by analyzing in which iteration of the 

algorithm the average for the considered performance metric was the highest. 

The second feature selection method was the minimal-Redundancy-Maximal-

Relevance (mRMR) algorithm, which is a classifier independent method that evaluates 

the maximal statistical dependency criterion, based on mutual information M [316]. It 

starts with a feature set, F, with all features {xi, i=1,…,m} and it is intended to find the 

highest dependency, among the features, in the target class T. The maximal relevance was 

attained by ordering the features by the condition max Rl(F,T), where [316] 

𝑅𝑙 =
1

|𝐹|
∑ 𝑀(𝑥𝑖; 𝑇)

 

𝑥𝑖∈𝐹

 4.39 

Since the chosen features are likely to have a large dependency among them, then the 

minimal redundancy condition, min Rd(F), was also applied where [316] 
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𝑅𝑑 =
1

|𝐹|2
∑ 𝑀(𝑥𝑖 , 𝑥𝑗)

 

𝑥𝑖,𝑥𝑗∈𝐹

 4.40 

Finally, the mRMR criterion combines the two constraints by maximizing the operator R 

that is given by [316] 

𝑅 = 𝑅𝑙 − 𝑅𝑑 4.41 

Therefore, the algorithm simultaneously maximizes the relevance and minimizes the 

redundancy. 

These two feature selection methods were chosen to cover the two most frequently 

evaluated approaches in the state of the art (classifier dependent and classifier 

independent methods). Although it is expected for the SFSe to attain a better performance 

(since the selected features are the ones which maximized the evaluated performance 

metric for the examined classifier), the required time to identify the relevant features, 

from the total number of features Fn, is expected to be approximately (Fn+1)/2 higher 

than the mRMR [317].  

As a result, the SFSe can be significantly slower than the mRMR for models with a 

higher number of features or that employ classifiers whose training is computationally 

demanding. However, it was suggested that the performance difference between the 

features selected by the two methods might not be relevant [317]. Therefore, SFSe was 

used for the methods presented in sections 5.2 and 6.3, while mRMR was employed for 

the algorithms presented in sections 5.5 and 6.1. 

4.4. Performance assessment 

Four methods for performance assessment were considered in this work. The first was 

Cross-Validation (CV) with Two Folds (TFCV) where, in each iteration, half of the 

subjects were used to create the training dataset and the other half used as testing dataset. 

The subjects which composed the datasets were randomly selected at each iteration. 

Subject independent results were ensured by only using the data from a subject either in 

the training or in the testing dataset in each iteration. This methodology was used for the 

performance estimation of the methods developed in sections 5.2, 6.1, and 6.3.  

A CV model with five folds was the second performance assessment methodology, 

used in section 5.3 since it was a recommended procedure (in the literature) for deep 

learning at the time when the method was proposed. However, it was subsequently 

observed that Leave One Out CV (LOOCV) could provide less biased results for 

classifiers with few samples [318]. Such is particularly relevant for the deep learning 

models. As a result, the third performance assessment methodology was LOOCV. At each 

iteration, the signals from all subjects excluding one (left out) were used to create the 

training dataset, and the left out subject was employed to produce the testing dataset. The 

data from each subject were either used in the testing dataset or the training dataset 

(ensuring subject independence) and each subject was only once selected to create the 

testing dataset. This method is also suitable for global assessment since only one subject 

at a time compose the testing dataset. The methods developed in sections 5.4, 6.1, and 6.2 

employed this approach. 
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A combination of TFCV and LOOCV was employed for the development of the 

algorithms proposed in sections 5.3, 5.5, 5.6, and chapter 8, using TFCV as a faster 

method for the hyperparameters’ tuning and LOOCV as a more reliable method for the 

performance assessment of the model.  

The bootstrap (BS) method (using the .632 rule) was the last performance assessment 

methodology employed by the methods proposed in section 6.1 as BS was found to 

outperform LOOCV is small datasets [319]. This method produces a dataset with size m 

by creating bootstrap samples through sampling m instances uniformly from the data with 

replacement. 

Cost-sensitive learning (apply a lower cost to the misclassification of a majority class 

element when compared to a minority class element) was employed to minimize the effect 

of the data unbalance in all supervised learning classifiers (also used during the fine 

tuning of the weights, performed using supervised learning, at the end of the training of 

the DSAE). For the models based on unsupervised learning developed in sections 5.2 and 

6.1, the training dataset was balanced by oversampling the minority class to have an equal 

number of examples from each class. Undersampling was employed by one algorythm 

presented in section 5.3. No balancing operation was used for the development of the 

proposed sleep model (section 5.4) in order to maintain the original data distribution. 

Each iteration of any of the performance assessment methodologies was repeated 50 

times to achieve statistically significant results. The evaluated performance metrics 

consider the True Negatives (TN), True Positives (TP), False Negatives (FN), and False 

Positives (FP) to estimate the Acc, Sen, and Spe. These metrics are defined by [320] 

Acc =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 4.39 

Sen =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 4.40 

Spe =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 4.41 

The diagnostic capacity of the classifiers was assessed by the AUC as it designates 

how likely the classifier is to rank an arbitrarily chosen positive example higher than an 

arbitrarily chosen negative example [321]. 

An early stopping procedure was employed to lessen the simulation time and avoid 

overfitting the classifier. For all classifications, the training procedure was stopped 

(before the end of the maximum number of training cycles, defined as 50) if no 

improvement in the reference performance metric of the validation set was reached within 

5 consecutive epochs. Three reference performance metrics were examined. The 

Combined Objective (CO), defined as (Acc+Sen+Spe)/3, was the first to be evaluated 

(employed by the methods presented in sections 5.2 and 5.3) with the goal of attaining 

balanced results by simultaneously maximizing the Acc, Sen, and Spe.  

The AUC (second examined reference performance metric) was found to be a better 

solution as it produced more balanced results (similar Sen and Spe) than the CO in 

strongly unbalanced dataset (because for CAP analysis an increase in the Spe leads to 

larger increase in the Acc, when compared with the effect that an increase in the Sen has 

in the Acc, leading the model to favor a higher Spe).  



 

54 

 

As a result, AUC was used for classifiers of the remaining chapters performing the 

epoch-based assessment. The third examined reference performance metric was the Acc 

and was used for the global assessments performed in sections 6.2 and 8.1. This metric 

was employed with the goal of maximizing the accuracy of the global sleep quality 

classification. 

4.5. Key remarks 

The use of the CAPSD for the development of all methods based on CAP analysis 

allowed to perform a comparison between the attained results from the different methods. 

The same observation is valid for the methods for OSA detection as they were developed 

using the DrNUH. By examining multiple machine learning classifiers, it was possible to 

cover several potential solutions to identify the optimal methodology. It is relevant to 

notice that both supervised and unsupervised learning algorithms were tested. Also, 

conventional machine learning methods and deep learning were examined. 

The performance assessment was based on state of the art algorithms and the 50 times 

repetition of each iteration allowed to achieve statistically significant results. The reported 

performance metrics are also frequently used in the state of the art, allowing to properly 

compare the attained results with the results of other works in the field. 

Three limitations of the developed work were identified. The first was the multiple 

variants of the CAPSD, and the different performance assessment methods which were 

used by the developed works. These variations occurred as the works were published in 

different journals and conferences to comply with the requests by the reviewers. It was 

also due to the availability of better graphics processing units, which allowed the deep 

learning models to be developed in a reasonable time and using more data.  

The second limitation was related to the CAPSD where there is a low number of 

subjects suffering from sleep-disordered breathing in comparison to the number of 

subjects without a sleep related disorder. This limitation was mitigated by the fact that 

the recordings were performed during a full night of sleep, hence, the total number of A 

phase examples from the subjects suffering from sleep-disordered breathing was 2045 

with a total duration of 28019 s (each second has at least 100 samples).  

The last limitation is also related to the database as the recording was performed with 

different sampling frequencies, ranging from 100 to 512 Hz. Therefore, a resampling 

process had to be performed for the models without an explicit feature creation procedure, 

which can influence the results.  
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The goal for this chapter is to present algorithms for CAP assessment based on the 

examination of the EEG signal (as CAP is composed of EEG patterns), to assesses sleep 

quality metrics (based on CAP characteristics) which allow the sleep quality estimation 

according to the first approach for sleep quality examination, theorized in this work from 

the state of the art analysis. Two main approaches for CAP assessment are presented in 

this chapter. The first one is based on features (which were either identified by the 

performed survey of the methods for CAP analysis or were features proposed in this 

work), while the one second is based on methods without an explicit feature extraction 

process. 

 It was verified that although there is a strong correlation between the macrostructure 

and the microstructure, the standard time resolution for the macrostructure does not allow 

to perform a direct evaluation of the microstructure by studying the sleep stages. 

Therefore, a new sleep model was proposed as a framework for sleep microstructure 

analysis based on the CAP assessment. The subsequent examination was the A phase 

subtypes characterization and classification, as these have been considered to be highly 

relevant for sleep disorder diagnosis. The last examination was the proposal of methods 

for sleep quality examination based on the CAP assessment. All works evaluated the 

signal from one EEG monopolar derivation (C3–A2 or C4–A1). 

5.1. Methods for CAP assessment  

A systematic review was conducted to assess the developed methods to classify the 

CAP phases or the CAP cycles. The search was performed on IEEE explorer, PubMed 

databases, Web of Science, various journals, and cited literature in the included articles, 

using the search keywords: “classification AND cyclic alternating pattern”; “automatic 

AND CAP AND detection”; “detection AND A-phase AND cyclic alternating pattern”. 

All published articles to the time when the review was performed were considered. 

Therefore, the covered period was between 1998 and 2017.  

The inclusion criteria were the presentation of an algorithm capable of detecting and 

classifying the CAP cycles or the A-phase of the CAP, while the exclusion criterion was 

the absence of diagnostic elements that allow to evaluate the performance. A total of 17 

original research articles were selected. A summary of the analysis is presented in Table 

5.1 with a description of the employed method, Number of Features (NF), and what is the 

classification (CL), either the A phase, the subtypes of the A phase or the CAP cycles. 

Three main fields were identified for CAP analysis, specifically, the A phase subtype 

detection (using multiclass classification, either considering only the subtypes A1, A2, 

and A3, or the subtypes and the absence of activation, not-A), the A phase detection 

(considering each epoch as either A or not-A), and the CAP cycle estimation (seeing each 

epoch as either CAP or non-CAP). Two main approaches were identified from the review 

for CAP classification. The first is based on the detection of the A phases and, afterwards, 

employ a FSM to estimate the CAP cycles. The second directly classifies the CAP cycles, 

either by considering created EEG features or directly feeding the EEG signal to a 

classifier. The first method was found to be more suitable for CAP analysis, in the clinical 

perspective, as it can provide information about both CAP phases and CAP cycles. The 

second was found to be significant for the development of the proposed sleep model as it 
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directly predicts the cycles of instability in sleep. All works which have reported the 

evaluated EEG channel used a monopolar derivation, and the average studied population 

was 10 subjects. The reported TW ranged from 0.5 s to 70 s, although 1 s was the most 

frequently used. 

Table 5.1: Review of the methods for CAP estimation from EEG signals [30]. 

Article Population 
EEG 

channel 
CL NF 

EB 

Acc 

(%) 

EB 

Sen 

(%) 

EB 

Spe 

(%) 

TW 
(s) 

Method description 

[322] 10 C3-A2 

or C4-

A1 

A1; 

A2; 

A3 

4 95; 

85; 

60 

- - 3 or 

7 

Manual intervention to define a point inside 

each A-phase, and inferential statistics to 

define the phase duration. 
[323] 10 F4-C4 A 5 77 84 80 0.5 EEG signal was divided into 5 bands and a 

descriptor, given by the signal amplitude 

ratio (2 s – 64 s) / 64 s, was computed. 
Recognition of the phases used both 

amplitude and length thresholds. 

[324] 10 F4-C4 A 5 84 - - 0.5 Employed the same algorithm described by 
Navona et al. [323]. 

[28] 8 C3-A2 

or C4-
A1 

A 6 69 59 71 1 Produced features using the same algorithm 

described by Navona et al. [323] and 
employed tuned thresholds for 

classification. 

 2 72 70 72 3 Created features based on Hjorth parameters 
applied in the delta band, and employed 

tuned thresholds for classification. 

 1 72 52 76 1 Computed the differential variance (the 
difference between the current one second 

window and the previous one), and 

employed tuned thresholds for 
classification. 

[325] 30* F3, C3, 

and A1 

A1; 

A2; 
A3 

6 - 80; 

77; 
68 

83; 

73, 
74 

1 Teager Energy Operator (TEO) was applied 

to the five EEG bands, and a tune threshold 
was used for each band. 

[326] 6* C3-A2 

or C4-
A1 

A - 81 76 81 - A growing window was applied on the delta 

band signal (changing from 2 to 60 s), and 
the similarity of the windowed signal and 

reference windows were measured using 

statistical behavior of local extrema 
features. 

[327] 5 C3-A2 
or C4-

A1 

A1; 
A2; 

A3 

5 90; 
43; 

80 

- - 2 Temporal, energy, and complexity 
measures fed a kNN classifier where the 

number of neighbors and features were 

chosen by employing a forward feature 
selection procedure with leave-one-out 

cross validation. 

[328] 4 F4-C4 
and, C4-

A1 

A 7 84 74 86 1 A combination of all the features tested by 
Mariani et al. [28] were fed to a soft-margin 

SVM with a Gaussian kernel. 

[79] 4 C3-A2 
or C4-

A1 

A 7 82 76 83 1 A combination of all the features tested by 
Mariani et al. [28] were fed to a FFNN. 

[329] 16* C3-A2 
or C4-

A1 

A 7 86 67 90 - A combination of all the features tested by 
Mariani et al. [28], but with a variable 

window, was fed to three LDA 

(discriminated three classes: background; 

A1; A2 and A3), and classification vectors 

were combined to classify the data. 

[330] 8 C3-A2 
or C4-

A1 

A 7 85; 
82; 

79; 

82 

73; 
70; 

69; 

73 

87; 
84; 

79; 

82 

1 A combination of all the features tested by 
Mariani et al. [28] were fed to: LDA; SVM; 

AdaBoost; FFNN. 

[331] 30* C4-A1 A 30 68; 

70; 

71 

- - 1 Developed features from the macro-micro 

structure descriptor, TEO, zero-crossing, 

Lempel-Ziv complexity, empirical mode 
decomposition, variance, and Shannon 

entropy to feed the classifiers: LDA; kNN; 

SVM. 
[332] 4^ - CAP - 88 - - - Employed thresholds to the EEG signal for 

the A phase detection, and a FSM to 

estimate the CAP cycles. 
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[333] 6- - CAP 7 67 - - - The output of the fast discrete wavelet 

transform was employed as input to two 

moving averages that were compared to 
thresholds, tuned by a genetic algorithm, for 

classification. 

[334] 8^ - CAP 4 81 85 78 70 Employed the same method as Largo et al. 
[333]. 

[335] 4^ C4-A1 CAP 4 90 90 95 1 Employed the same method as Lima and 

Rosa [332]. 
[336] 8*+ C4-A1 CAP 3 79; 

79; 

77 

- - 1 Estimated the Kolmogorov entropy, sample 

entropy, and Shannon entropy to feed the 

classifiers: LDA; SVM; kNN. 
* The CAP Sleep Database – PhysioNet [19] 
+ Average of the reported results 

^ The indicated performance is based on a proposed metric which is related to the metrics examined in this work 
- Acc excluding the B phase events 

It was verified that the most relevant features for A phase detection were: Hjorth 

activity; differential variance; Lempel-Ziv complexity; Teager Energy Operator (TEO); 

five frequency band descriptors; Shannon entropy; empirical mode decomposition; EEG 

energy; power in the beta band. Regarding the classifiers, LDA, FFNN, SVM, and kNN 

were the most relevant. It is also important to notice that no deep learning model was 

proposed at the time the review was conducted. The majority of the analyzed methods 

manually removed the REM periods from the EEG signal, leading to an increase of the 

classification performance. However, this methodology was not used in this work to 

provide algorithms capable of performing fully automatic analysis with implementation 

in a HMD. 

5.2. Feature based methods 

5.2.1. Evaluation of features for CAP analysis 

In the first approach, the LDA classifier (implemented in MATLAB) was employed 

to detect the A and not-A phases (using TFCV with cost-sensitive learning for 

performance assessment, and performing 50 repetitions of each iteration to achieve 

statistically significant results), and afterwards a FSM determined the CAP cycles. The 

first CAPSD was used in this examination (nine normal subjects and four subjects with 

sleep-disordered breathing). The features that were assessed by the review as the most 

relevant for A phase detection were tested using a two second time window (selected 

since it is the minimum A phase duration) of the EEG signal.  

Two of these features are Shannon entropy and TEO that are, respectively, defined by 

[337] 

ℍ𝑺(𝑥) = −∑(𝑃𝑖(𝑥))
2
(log2(𝑃𝑖(𝑥)))

2
𝑁−1

𝑖=0

 5.1 

 

where x is the random variable, N is the number of points in the variable, and [325] 

𝛷(𝑥(𝑡)) = 𝑥̇(𝑡)2 − 𝑥(𝑡)𝑥̈(𝑡) 5.2 
 

Both features presented good discriminatory capabilities. Entropy is expected to be 

significant for CAP analysis as it is a measure of uncertainty which quantifies the degree 

of complexity in a signal. Phasic and transient events occur during the A phase, leading 

to significant variations in the EEG signal, when compared to the background activity, 
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which can be detected by entropy analysis. Taking into consideration that EEG is a 

complex, non-stationary, and non-linear signal, it is also expected for TEO to be relevant 

for this analysis as it is a non-linear energy-tracking operator. 

A finite impulse response filter of order 31, with a Kaiser window, was employed in 

the decomposition the EEG signal [329] in the frequency bands defined by Mariani et al. 

[328] (specifically: delta from 0.5 to 4 Hz; theta from 4 to 8 Hz; alpha from 8 to 12 Hz; 

sigma from 12 to 15 Hz; beta from 15 to 30 Hz). The relevance of the frequency based 

metrics for CAP analysis is associated with the fact that characteristic patterns of the sleep 

microstructure occur at specific frequencies. However, by testing both the five band 

descriptors and the Power Spectral Density (PSD) of the five frequency bands, it was 

observed that PSD attained a higher accuracy. The PSD features were proposed in this 

work to provide a similar information as produced by the band descriptors without 

requiring estimating the mean power in a window of 64 seconds (used by the band 

descriptors). Therefore, the PSD features were chosen and estimated by the standard 

Welch’s method where the PSD estimation at a given frequency, f, is given by [338] [339] 

𝛤(𝑓) =
1

𝐾
∑𝑆𝑖(𝑓)

𝐾

𝑖=1

 5.3 

where K is the number of segments, specified by [339] 

𝐾 = 𝑓𝑙𝑜𝑜𝑟 [
𝐿 − 𝜎𝑀

(1 − 𝜎)𝑀
] 5.4 

where floor is the floor function, L is the total number of points in the examined segment, 

σ it the amount of overlapping (50% overlap was employed), and M is the examined 

segment’s length. The Hanning window, W, was applied to the segments. S is the 

windowed periodogram calculation, applied for all i (1, 2, …, K) and computed as [338] 

[339] 

𝑆𝑖(𝑓) =
1

𝑄𝑀
|∑ 𝑥𝑖(𝑛)𝑊𝑀(𝑛)𝑒

−𝑗2𝜋𝑓𝑛

𝑀−1

𝑛=0

|

2

 5.5 

where Q is the normalization factor given by [338] [339] 

𝑄 =
1

𝑀
∑[𝑊𝑀(𝑛)]

2

𝑀−1

𝑛=0

 5.6 

A similar conclusion was attained when comparing the differential variance (feature 

proposed in the state of the art) with the autocovariance (feature proposed in this work, 

computing the covariance of a process with itself, at pairs of time points), given by the 

second moment product [340] 

𝛾𝑥(𝑠, 𝑡) = 𝐸[(𝑥𝑠 − 𝜇𝑠)(𝑥𝑡 − 𝜇𝑡)] 5.7 
 

for all time points s and t, and respective average, μ. The autocovariance was examined 

to help identify the regularity of the current epoch, considering the hypothesis that the 

transient and phasic events present in the A phases, will lead to lower autocovariance 

values than the background activity. Time series analysis based on the standard deviation 

and the average power were found to have a good correlation with the occurrence of the 



 

60 

 

A phases. The hypothesis is that the transient and phasic events will lead to significant 

amplitude variations in the EEG signal when compared to the background activity. 

The log-energy entropy, given by [337] 

ℍ𝐿𝐸(𝑥) = −∑(log2(𝑃𝑖(𝑥)))
2

𝑁−1

𝑖=0

 5.8 

 

was also employed since it was considered to be a relevant descriptor for EEG analysis 

in other research fields [337]. It was also observed that this feature achieved a better 

performance in the A phase detection than Hjorth activity, empirical mode 

decomposition, and Lempel-Ziv complexity. The selected features, with a respective 

identification number, are indicated in Table 5.2. 

Table 5.2: Chosen features and the respective identification number [30]. 

Feature Identification number 

Average power 1 

Standard deviation 2 

Shannon entropy 3 

Log-energy entropy 4 

Autocovariance 5 

TEO 6 

PSD in the delta band 7 

PSD in the beta band 8 

PSD in the alpha band 9 

PSD in the sigma band 10 

PSD in the theta band 11 
 

A post-processing algorithm was implemented to reduce the classification outliers by 

considering an A or B phase, lasting only two seconds, which occur between two opposite 

phases as misclassified data. Thus, it was converted into the opposite phase. 

The relevance of the features was assessed using SFS, ordering the features by their 

relevance to the maximization of the CO. Table 5.3 presents the features ordered by SFS 

for the A phase detection with LDA, and Figure 5.1 displays the performance metrics 

according to the features selected, where the value of the CO is indicated by Total. 

Table 5.3: Features ordered by SFS for the LDA [22]. 

Feature Selected order Identification number 

PSD in the beta band 1 8 

Average power 2 1 

PSD in the theta band 3 11 

TEO 4 6 

Standard deviation 5 2 

PSD in the alpha band 6 9 

PSD in the sigma band 7 10 

Shannon entropy 8 3 

Log-energy entropy 9 4 

Autocovariance 10 5 

PSD in the delta band 11 7 
 

SFS is a classifier dependent method. Consequently, both the order and the selected 

features for one classifier are likely not to be the best for other classifiers. Therefore, a 

classifier independent method for dimensionality reduction, Principal Component 

Analysis (PCA), was also tested. The flowchart of the tested models is presented in Figure 
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5.2. The features employed by Mariani et al. [330] were tested since the same classifier 

was used in this work. The best results were attained by using the six more relevant 

features selected by SFS and the first three components (variance of 78%) of PCA. The 

achieved results (average value ± standard deviation) of the implemented classifier with 

the different features are presented in Table 5.4. 

Table 5.4: Achieved results of the LDA with the different features [22]. 

Employed features Acc (%) Sen (%) Spe (%) AUC CAP Acc (%) 

Selected by SFS 75 ± 5 78 ± 2 74 ± 7 0.76 ± 0.02 75 ± 7 

Produced by PCA 74 ± 6 71 ± 5 75 ± 8 0.73 ± 0.02 76 ± 6 
Proposed by Mariani et al. [330] 67 ± 3 79 ± 15 64 ± 4 0.71 ± 0.07 68 ± 6 

 

 

Figure 5.1. Performance of the A phase classification with the features ordered by SFS 

for the LDA [22]. 

 

Figure 5.2. Flux diagram of the tested models considering LDA as the classifier. 
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By analyzing the table, it is possible to verify that the highest Acc and AUC were 

achieved using SFS while the best Spe and CAP Acc was provided by PCA. Due to the 

unbalance of the data (more not-A than A epochs) a better Spe leads to a higher CAP Acc. 

The features indicated by Mariani et al. [330] provided the greatest Sen with a large 

standard deviation. This variation in Sen is in line with the deviation presented by Mariani 

et al. [330]. Therefore, the model based on features selected by SFS achieved the most 

balanced results.  

5.2.2. Further examination of methods for feature based CAP 

analysis  

Nine more classifiers (LR, CT, ET, SVM, FFNN, CFNN, kNN, kMC, and SOM, 

implemented in MATLAB) were examined to assess if another combination of features 

and classification procedure could yield a better performance for CAP analysis. The 

evaluation was performed using the first CAPSD and TFCV for hyperparameter 

optimization and performance assessment (performing 50 repetitions of each iteration to 

achieve statistically significant results). The classifier selection concept was to cover 

multiple solutions, from supervised to unsupervised learning, including recommendations 

from the state of the art, and classifiers proposed in this work considering that they have 

attained a good performance in other fields. 

Cost-sensitive learning was employed to minimize the effect of the data unbalance in 

all supervised learning classifiers while oversampling (of the minority class) was applied 

to the training dataset for the unsupervised learning methods. The performance of the 

classifiers was analyzed in two tests, one using the features selected by SFS and another 

with features produced by PCA. Table 5.5 presents the number of features and order 

(taking into account the identification number of the feature, presented in Table 5.2) 

chosen by SFS for each classifier. The distribution of the selected features by the analyzed 

classifiers is presented in Figure 5.3.  

Table 5.5. Identification of the features selected by SFS for each classifier [30]. 

Classifier SFS order 

LR 8, 1, 9, 6 

CT 7, 8, 11, 10, 9, 5, 4, 3 
ET 9, 7, 11, 10, 4, 8, 6, 5, 3 

SVM 1, 8, 11, 4, 6, 2, 10, 5 

FFNN 8, 3, 6, 5, 11 
CFNN 8, 3, 6, 9, 11, 5, 10 

kNN 11, 8, 7, 9, 5, 3, 1, 4, 2 

kMC 10, 5, 6, 3, 9, 8, 2 
SOM 10, 1, 8, 6, 11, 5, 2 

 

It was possible to assess that PSD in the beta band was the feature most frequently 

chosen as the most relevant while the opposite occurred for the PSD in the delta band. It 

was also verified that the first component of PCA is strongly correlated with the PSD in 

the beta band, as it can be assessed by analyzing the example in Figure 5.4. 

Several observations were attained for each classifier:  

 The effect of regularization in the LR was tested and it was verified that it did not 

improve the performance. 
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 The number of trees which composed the ET was varied between 3 and 30. It was 

verified that 10 trees achieved the best results using TotalBoost. 

 A linear kernel, with a scale of 2, and 10% outlier fraction was assessed to be the 

best configuration for the SVM. 

 Hyperbolic tangent was verified to be the most suitable activation function for 

both FFNN and CFNN, using the Levenberg-Marquardt algorithm for training. A 

single HL was employed for both networks, and the number of neurons was 

incremented, from 20 to 400, in steps of 10. The best results were achieved using 

280 neurons for the FFNN and 270 for the CFNN. 

 The number of nearest neighbors for the kNN was continuously incremented from 

1 to 10, and 4 produced the best results considering Euclidean distance as the 

metric to determine the distance. 

 A linear topology was tested for the SOM, changing the dimension size from 2 to 

10. The best result was produced by employing a dimension size of 6.  

 

Figure 5.3. Number of times each feature was selected by the classifiers [30]. 

 

Figure 5.4. Example to show that the first component of PCA and the PSD in the beta 

band are strongly correlated with each other as the CAP phases (A phase is marked in 

grey) change [30]. 
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Table 5.6 presents the results of these analyses. By analyzing the table, it is possible 

to confirm that FFNN, with features selected by SFS, achieved the highest average Acc 

and AUC. The highest Sen was attained by SOM with features produced by PCA. 

However, it has the lowest Spe which was the best metric achieved by the CT, with the 

features produced by PCA. Taking into consideration that FFNN, with features selected 

by SFS, also achieved the highest average CO (78.3%), it was therefore considered to be 

the best method. 

Table 5.6. Average results of the analyzed classifiers using the features selected by SFS 

and the features produced by PCA [30]. 

Features Classifier Acc (%) Sen (%) Spe (%) AUC CAP Acc (%) 

Selected by SFS LR 76 80 75 0.77 78 

CT 70 58 73 0.66 64 

ET 70 64 71 0.67 70 
SVM 72 80 70 0.76 75 

FFNN 79 76 80 0.78 79 

CFNN 76 77 76 0.76 77 
kNN 72 70 72 0.71 78 

kMC 78 67 81 0.74 70 

SOM 67 79 66 0.73 68 

Produced by PCA LR 67 78 65 0.71 69 
CT 74 51 82 0.62 68 

ET 74 63 77 0.70 76 

SVM 68 84 66 0.74 71 
FFNN 75 76 75 0.75 76 

CFNN 74 76 74 0.75 76 
kNN 69 65 70 0.67 61 

kMC 61 62 61 0.61 66 

SOM 22 90 08 0.49 60 
 

Regarding the CAP Acc, the best results were attained using the FFNN for the 

classification of the CAP phases. Therefore, it was verified that FFNN, with features 

selected by SFS, was also the best classifier, and PCA generated the more unbalanced 

results. The variation of the performance metrics, considering the models with features 

selected by SFS, for the detection of the CAP phases and for the CAP cycle estimation is 

presented, respectively, in Figures 5.5 and 5.6. It was verified that the CFNN has the 

overall lowest variation, while ET has the highest. 

Additive White Gaussian Noise (AWGN) was introduced in the EEG signal to 

estimate the effect that the noise has in the model that achieved the best results (FFNN 

with features selected by SFS). The Signal-to-Noise Ratio (SNR) was varied and the CO 

was used as the reference measurement. Figure 5.7 presents the results and it was assessed 

that a SNR lower than 20 dB starts to deteriorate the performance of the method. The 

lowest acceptable SNR was 0.5 dB (CO of 70%). 

a) 
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b) 

 
c) 

 
d) 

 
 

Figure 5.5. Variation of the a) Acc, b) Sen, c) Spe and d) AUC of each classifier using 

the features chosen by SFS [30]. 

 

Figure 5.6. Variation of the CAPacc using the classifiers output to feed the FSM [30]. 
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Figure 5.7. Effect of introducing AWGN in the performance of the FFNN with features 

selected by SFS [30]. 

5.3. Methods without an explicit feature extraction process 

5.3.1. Deep and shallow networks combination for CAP estimation 

The development of methods based on crafted features has the difficulty of finding 

the best set of features that are the most relevant for the description of the event. This 

issue can be addressed by employing a method without an explicit feature extraction 

process that automatically learns the most relevant characteristics of the signal.  

The first model developed to examine this methodology (implemented in MATLAB) 

employed a DSAE fed with the EEG signal to automatically classify the A phases (A 

phase or not-A phase, named nAphase) considering epochs with two seconds. The output 

of the network was stored in a memory buffer, and its output was used as input of a FFNN 

(shallow neural network), a Multilayer Perceptron (MLP) to classify the CAP cycles, 

replacing the FSM. The implemented model is presented in Figure 5.8. A memory buffer 

was employed since the CAP classification required a longer data duration than the A 

phase (A phase duration ranges from 2 to 60 seconds while the CAP cycle ranges from 4 

to 120 seconds). 

 

Figure 5.8. Model for A phase and CAP cycle classification methods without an explicit 

feature extraction process [341]. 

The DSAE was composed of two stacked autoencoders followed by an output layer 

to perform the classification. Each autoencoder was individually trained using an 

unsupervised method that encodes the input, using the sigmoid function, in a new 
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representation, and then attempts to attain the original input by decoding the information, 

minimizing the mean square error [308]. Afterwards, a deep network was formed by 

linking the input signal to the encoder of the first autoencoder (layer 1), and then 

connecting the encoder’s output to the encoder of the second autoencoder (layer 2) which, 

in turn, the output (of the encoder) was linked to the output layer. A representation of the 

CAP phase classifier is presented in Figure 5.9. The DSAE outputs were stored in a 

memory buffer to feed a FFNN, which performed the CAP cycle estimation, and was 

fine-tuned using the Levenberg-Marquardt algorithm [304]. 

 

Figure 5.9. CAP phase classifier based on a DSAE [341]. 

The performance of the developed method was assessed using the first CAPSD and a 

fivefold CV scheme (repeated 50 times to achieve statistical significance), ensuring 

subject independence by using the data from each subject only in one of the folds. This 

procedure was used as it was recommended in the literature for deep learning at the time 

when the method was proposed. Underfitting was used in this model to have an equal 

number of A and not-A events in each fold used for training, without changing the fold 

used for testing. The balancing operation allowed the model to improve the performance 

by increasing the CO. A grid search strategy was employed to find the best number of 

neurons for both layers. It was verified, by performing multiple simulations, that good 

results were attained when layer 2 has half of the number of neurons from layer 1, which 

were varied from 64 to 768 in steps of 64. The variation of the performance metrics and 

the CO for the best approach is presented in Figure 5.10. 

a) b) 

  
 

Figure 5.10. Variation of a) the performance metrics, and b) the CO for the best models 

of the DSAE [341]. 
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It was verified that the best performance for the A phase detection was achieved using 

192 and 96 neurons, in layers 1 and 2 of the DSAE, respectively. The average Acc, Sen, 

and Spe was 67.02 %, 55.03%, and 68.93%, respectively. The output of the DSAE was 

stored in a memory buffer whose size was the same as the input layer of the FFNN that 

performs the CAP cycle classification. The FFNN (performing the CAP cycle detection) 

had a single HL, and the optimal number of neurons of both input and HLs was found 

using a grid search strategy. 

The best results were achieved by using 350 neurons in the HL. The buffer size was 

varied between 2 and 180. It was verified that the model attained the best results using 

180 cells in the buffer (the model evaluates the 179 previous classifications from the A 

phase detector and the current A phase classification to perform the current CAP 

classification). The buffer size was not further incremented since the performance peak 

was reached. The average Acc, Sen, and Spe for the CAP cycle detection was, 

respectively, 61.5%, 66.64% and 58.72%. 

5.3.2. Examination of methods without an explicit feature extraction 

process 

The results attained by the first method without an explicit feature extraction process 

were lower than the results produced by the feature based approaches. Nevertheless, this 

approach has the main advantages of not requiring domain-specific knowledge to produce 

the features, and a feature selection method is not needed to improve the results. 

Therefore, two new classifier types were considered to verify if the performance can be 

improved. The first type is based on RNN, specifically the LSTM and GRU, and was 

selected since these networks allow the recognition of both long and short-term 

correlations in time-series that commonly occur in physiological signals [311]. The 

second approach was based on the employment of a CNN with one-dimensional input 

(1D-CNN), chosen because it is one of the best models for automatic feature extraction 

from complex signals [342]. 

The LSTM was the first model to be tested, and the block diagram of the developed 

algorithm is presented in Figure 5.11. Recordings from the second CAPSD (15 control 

subjects) were analyzed in this test. Performance assessment was performed by LOOCV 

(performing 50 repetitions of each iteration to achieve statistically significant results), 

and using cost-sensitive learning, while the best hyperparameters were identified by 

TFCV. The pre-processed EEG signal (EEG signal resampled at 100 Hz, to uniform the 

database, subsequently standardized, by subtracting the mean and dividing by the 

standard deviation, and segmented into one second epochs, without overlapping) was fed 

to the LSTM to categorize each epoch, as either an A or a not-A. This information was 

then employed by the previously developed FSM to determine the CAP cycles. 

On the first test, it was intended to verify if the LSTM was a viable solution. Thus, 

the network architecture was fixed (with one HL) and the number of hidden units was 

chosen by a grid search algorithm (checking from 100 to 500, in steps of 100), performing 

multiple runs with cross-validation, considering the AUC as the reference metric, using 

the ADAM algorithm [343] for optimization (implementing the classifier in Python 3 
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using the Keras library). The performance of the developed algorithm is presented in 

Table 5.7. 

 

Figure 5.11. Block diagram of the first model based in the LSTM [344]. 

By examining Table 5.7 results’, it is possible to verify that the best performance was 

attained using 400 hidden units and that the sensitivity has the highest standard deviation. 

However, by comparing with the model based on the DSAE it is possible to verify that 

both Acc and Spe were higher when using the LSTM. It was observed that the majority 

of the correctly classified CAP phases occur when the phases have a duration greater than 

21 seconds. Conceivably, the longer phases have a characteristic pattern that was 

identified by the LSTM, thus justifying the need to further analyze the network 

architecture in the second test. 

Table 5.7: Performance of the developed algorithm (mean ± standard deviation) based on 

an LSTM with a fixed architecture when the number of hidden units was changed [344]. 

Classification Number of hidden units Acc (%) Sen (%) Spe (%) AUC 

CAP phases (LSTM) 

500 68.9±5.9 50.9±12.9 81.3±4.3 0.660±0.068 

400 69.7±5.9 51.2±12.8 81.1±4.3 0.663±0.068 
300 68.3±5.7 48.7±12.3 83.6±3.2 0.656±0.065 

200 66.5±5.8 49.9±10.2 82.7±3.2 0.656±0.062 

100 65.8±6.7 47.9±11.9 83.2±3.0 0.655±0.068 

CAP cycles (LSTM and FSM) 

500 68.1±5.0 48.9±8.9 89.9±3.9 0.696±0.048 
400 67.9±5.1 50.1±9.5 89.5±3.7 0.703±0.049 

300 67.8±5.3 48.6±9.1 90.9±2.7 0.694±0.051 

200 67.3±5.3 48.9±8.9 90.3±3.0 0.693±0.050 
100 67.2±5.0 47.4±8.5 90.7±2.7 0.690±0.048 

 

It was also verified that most of the misclassified epochs occur either in the beginning 

or in the end of the A phases, as can be verified in the exampled presented in Figure 5.12, 

advocating the need to properly classify the phase’s boundaries. This observation is in 

agreement with the results reported by Largo et al. [54]. 

The block diagram of the model that was employed in the second test is presented in 

Figure 5.13. The process is similar to the introduction of the post-processing procedure, 

which was previously presented in section 5.2, to reduce the misclassifications. 
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Figure 5.12. Example of the CAP phase detection where the dashed line is the CAP 

phase provided by the database label and the full line is the model prediction [344]. 

 

Figure 5.13. Block diagram of the second model that was used on the second test using 

deep neural networks [26]. 

Three machine learning based classifiers were analyzed in the second test, 

specifically, the LSTM, the GRU which is a simplification of the LSTM that also allows 

the detection of temporal correlation components [345], and the 1D-CNN that applies 

convolution kernels to implement a transformation of the inputs that augments the 

relevant patterns of the physiological signals [346]. 

Recordings from the third CAPSD (15 control subjects and 4 subjects with sleep-

disordered breathing) were analyzed in this test, using LOOCV for performance 

assessment (performing 50 repetitions of each iteration to achieve statistically significant 

results). The hyperparameters of the three classifiers were chosen by running multiple 

simulations of different network configurations with TFCV. The effect of data unbalance 

was minimized by using cost-sensitive learning.  

The developed Heuristic Oriented Search Algorithm (HOSA) determines the best 

architecture for the specified classifier, C (0 for LSTM, 1 for GRU, and 2 for 1D-CNN), 

by performing a simulation for each combination of the hyperparameters (each simulation 

was repeated 10 times). The number of neurons, NI, for the LST or GRU layers was varied 

from 50 (NIstart) to NImax (chosen to be 500), in steps, NIstep, of 50. The evaluated 

subsequent layers were other recurrent layers with the same NI as the first layer. The last 

recurrent layer could be followed by a fully connected layer (FC) whose number of 

neurons, NS, was varied from 10 (NSstart) to NSmax (chosen to be 100), in steps, NSstep, of 

10.  
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The number of kernels, K, used by the convolution layers was selected to be a power 

of two, ranging from 8 to 256 (step of 2N where 3 ≤ N ≤ Kmax, and Kmax was 8), and the 

filter length, F, was varied from 1 to Fmax, chosen to be 10, in steps (Fstep) of 1, with a 

stride of 1. The output of all networks was a fully connected layer that used the soft-max 

function for classification. The GL concept was used for the 1D-CNN architecture 

optimization, using groups composed of one convolution layer, followed by batch 

normalization, and a pooling layer. The evaluated pooling functions were the maximum 

(MaxP) or the average (AveP). However, the last pooling layer was chosen to be global. 

Hence, this GL was named GL2. The examined activation functions were ReLU and 

SELU. The pooling size was the same as F. 

The number of layers (or GL for the 1D-CNN), G, for the algorithm to examine was 

iteratively incremented until a maximum value, Gmax, selected to be three or until no 

relevant improvement was attained for the AUC (considering a threshold, th, of 1% to 

define the minimum relevant improvement) when introducing the subsequent layer. The 

HOSA pseudo code is: 

HOSA (Data, Gmax, Kmax,, Fstep, Fmax, NIstart, NIstep, NImax, NSstart, NSstep, NSmax, th, C) 

G = [1, 2, …, Gmax] 

if C == 0 or C == 1 

    NI = [NIstart, NIstart + NIstep, …, NImax] 

    NS = [NSstart, NSstart + NSstep, …, NSmax] 

    if C == 0 

        RecLayer = LSTM 

    else 

        RecLayer = GRU 

    for g = 1 to length (G) 

        for n = 1 to length (NI) 

            Net0,n,0,0  ← Ipt (Data) 

            if g == 1 

                Netg,n,0,0 ← Net0,n,0,0 + RecLayer (NI (n)) 

                for m = 1 to length (NS) 

                    Netg,n,m,0 ← Netg,n,0,0 + FC (NS (m)) + FC (2) 

                    AUCg,n,m,0 ← test (train (Netg,n,m,0)) 

                Netg,n,0,1 ← Netg,n,0,0 + FC (2) 

                AUCg,n,0,1 ← test (train (Netg,n,0,1)) 

            else 

                for z = 1 to g 

                    Netz,n,0,0 ← Netz-1,n,0,0 + RecLayer (NI (n)) 

                for m = 1 to length (NS) 

                    Netg,n,m,0 ← Netz,n,0,0 + FC (NS (m)) + FC (2) 

                    AUCg,n,m,0 ← test (train (Netg,n,m,0)) 

                Netg,n,0,1 ← Netz,n,0,0 + FC (2) 

                AUCg,n,0,1 ← test (train (Netg,n,0,1)) 

        AUCg,n,0,1,max = max(AUCg,n,0,1)|for all n 

        AUCg,n,0,0,max = max(NetDg,n,m,0)|for all n,m 

        if g > 1 

            if AUCg,n,0,0,max > AUCg,n,0,1,max 

                if AUCg,n,0,0,max – AUCg-1,n,0,1,max ≤ th 

                    if AUCg,n,0,0,max – AUCg-1,n,0,0,max ≤ th 
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                        if AUCg-1,n,0,1,max > AUCg-1,n,0,0,max 

                            BestNet = Netg-1,n,0,1|AUC g-1,n,0,1,max 

                        else 

                            BestNet = Netg-1,n,0,0|AUC g-1,n,0,0,max 

                        break 

                    else 

                        BestNet = Netg,n,0,0|AUC g,n,0,0,max 

                else 

                    BestNet = Netg,n,0,0|AUC g,n,0,0,max 

            else 

                if AUCg,n,0,1,max – AUCg-1,n,0,1,max ≤ th 

                    if AUCg,n,0,1,max – AUCg-1,n,0,0,max ≤ th 

                        if AUCg-1,n,0,1,max > AUCg-1,n,0,0,max 

                            BestNet = Netg-1,n,0,1|AUC g-1,n,0,1,max 

                        else 

                            BestNet = Netg-1,n,0,0|AUC g-1,n,0,0,max 

                        break 

                    else 

                        BestNet = Netg,n,0,1|AUC g,n,0,1,max 

                else 

                    BestNet = Netg,n,0,1|AUC g,n,0,1,max 

else 

    K = 2N where 3 ≤ N ≤ Kmax 

    F = [1, 1 + Fstep, …, Fmax] 

    P = [MaxP, AveP] 

    A = [ReLU, SELU] 

    for g = 1 to length (G) 

        for k = 1 to length (K) 

            for f = 1 to length (F) 

                for p = 1 to length (P) 

                    for a = 1 to length (A) 

                        Net0 ← Ipt (Data) 

                        if g > 1  

                            for z = 1 to g – 1 

                                Netz ← Netz-1 + GL (K (k), F (f), P (p), A (a)) 

                            Netg,k,f,p,a ← Netz + GL2 (K (k), F (f), P (p), A (a)) + FC (2) 

                        else 

                            Netg,k,f,p,a ← Net0 + GL2 (K (k), F (f), P (p), A (a)) + FC (2) 

                        AUCg,k,f,p,a ← test (train (Netg,k,f,p,a)) 

        AUCg,k,f,p,a,max = max(AUCg,k,f,p,a)|for all k,f,p,a 

        if g > 1 

            if AUCg,k,f,p,a,max – AUCg-1,k,f,p,a,max ≤ th 

                if AUCg,k,f,p,a,max > AUCg-1,k,f,p,a,max 

                    BestNet = Netg,k,f,p,a|AUCg,k,f,p,a,max 

                else 

                    BestNet = Netg-1,k,f,p,a|AUCg-1,k,f,p,a,max 

                break 

            else 

                BestNet = Netg,k,f,p,a|AUCg,k,f,p,a,max 

return BestNet 
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Five optimization algorithms, commonly employed for deep learning, were tested 

specifically: RMSprop [347]; ADADELTA [347]; stochastic gradient descent with and 

without momentum [308]; ADAM [343]; adaptive gradient [348]. In the performed test, 

it was verified that ADAM outperformed the other algorithms, although RMSprop 

attained a similar performance in the recurrent networks. All the models were developed 

in Python 3 using the Keras library.  

The optimal architecture of the analyzed networks is presented in Table 5.8. It was 

concluded that both LST and GRU attained the best AUC using 3 layers while 8 layers 

were used for the 1D-CNN. The total number of created networks for the LSTM, GRU, 

and 1D-CNN was 400, 400, and 720, respectively. Each network was simulated 10 times, 

hence, the total number of examined classifiers was 15200. 

Table 5.8: Architecture of the classifiers that provided the highest AUC [26]. 

Type of network Architecture 

LSTM -Input (100 neurons) 

-LSTM (400 cells) 

-fully connected (30 neurons) 

SELU  

-Output 

Soft-max 

GRU -Input (100 neurons) 

-GRU (200 cells) 

-fully connected (20 neurons) 

SELU  

-Output 

Soft-max 

1D-CNN -Input (100) 

-Convolution (64 filters with length 3) 

-Batch normalization (64 channels) 

ReLU 

-MaxP (pool size = 3) 

-Convolution (128 filters with length 3) 

-Batch normalization (128 channels) 

ReLU 

-Global AveP  

-Output 

Soft-max 
 

The results for the CAP phases and cycles detection are presented in Table 5.9. By 

analyzing the table, it is possible to determine that the LSTM achieved the highest Acc 

and AUC (indicating balanced results) thus, it was considered to be the best model. These 

results advocate that both the CAP cycles and phases have a temporal dependency, 

agreeing with the observation of Terzano et al. [19].  

Table 5.9: Performance of the developed algorithms (mean ± standard deviation) for CAP 

detection based on the EEG signal analysis [26]. 

Classification Classifier Acc (%) Sen (%) Spe (%) AUC 

CAP phases (classifier) 

LSTM 76.0±6.1 74.6±10.8 76.6±6.1 0.752±0.012 

GRU 80.7±8.1 65.5±12.2 83.0±15.7 0.742±0.100 

1D-CNN 74.4±3.7 71.2±4.0 74.8±4.8 0.729±0.004 

CAP cycles (classifier and FSM) 

LSTM 76.3±7.6 71.4±11.3 84.2±10.2 0.778±0.064 

GRU 71.9±9.2 59.9±14.1 87.8±13.5 0.738±0.070 

1D-CNN 72.5±4.3 65.8±3.9 83.3±4.6 0.745±0.013 
 

The 1D-CNN presented the lowest performance. Nevertheless, the results are still 

significant and moreover, it has the lowest standard deviation, suggesting that significant 
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patterns are present in the EEG signal as proposed by Mariani et al. [329]. The highest 

standard deviation and difference between Sen and Spe were presented by GRU, 

suggesting unbalanced results that are not suitable for clinical diagnosis. 

5.4. Proposal of a new sleep model 

5.4.1. Specification of the model 

The AASM manual [21] defines the standards for sleep scoring and assigns a sleep 

stage or awake period to each 30 s epoch. The scoring rules emphasis visually identifiable 

features that allow the physicians to produce a similar assignment when performing the 

visual scoring of the PSG. However, significant variations occur between different 

experts with an estimated agreement of 83% when scoring the sleep stages [300]. This 

variation could possibly be due to the difficulty in identifying the necessary features since 

the scoring rules are unclearly defined [85]. It is also relevant the fact that the 

segmentation of sleep, that is a continuous process, into a discreet number of stages was 

founded on the understanding about the sleep processes when the rules were created. 

Therefore, the new developments in the understanding of sleep are left aside [349], such 

as the verification that the 30 s epochs have significant limitations to find a practical 

relationship to the physiological reality of sleep, and are currently unnecessary since the 

signals are digitally available and can be analyzed by computer algorithms [350].  

Following this observations, one-second epochs were considered to allow a 

significant increase in the time resolution, applying clustering analysis on the EEG 

monopolar derivation signal to produce clusters that can be interpreted as new sleep 

stages. However, these new sleep stages do not have a correlation with the macrostructure 

but have a time resolution which allows the phasic and transient events detection. These 

events characterize the microstructure and, in turn, the CAP.  

Therefore, the goal is to test the hypothesis that CAP can be assessed with a stochastic 

model, in this case an Hidden Markov Model (HMM), by using symbols created from the 

EEG clusters (which can be viewed as new sleep stages) as a sequence of observations 

that are associated with two hidden states (non-CAP or CAP). Consequently, this 

hypothesis explores the previous conclusion that the CAP cycles have a temporal 

dependency which could possibly be identified by the HMM, allowing to describe sleep 

with an approximation to continuous traces.  

This model takes into consideration that CAP is a marker of sleep instability hence, 

the developed model provides a new view for the sleep process, where it oscillates 

between stable (non-CAP) and unstable (CAP) periods according to the transitions 

between the new sleep stages (lasting one second and without any particular relation with 

the conventional sleep stages scored in the sleep macrostructure).  Hence, the proposed 

sleep model is composed of new sleep stages created automatically by the clustering 

analysis without imposing any defined set of rules (approach employed by the 

conventional sleep scoring methods defined by the AASM manual [21]), and the 

transitions between these stages reflect the stability of sleep. The conventional sleep 

model, defined by the AASM manual [21], considers a limited number of sleep stages, 

scored every 30 s by a defined set of rules, and each stage reflect the sleep state as either 
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light, deep, or REM. Therefore, the proposed sleep model envisions the sleep process as 

oscillations between stable or unstable sleep, while the conventional sleep model denotes 

the sleep process as cycles of transitions between sleep stages.  

However, taking into consideration that the proposed model is based on CAP analysis 

and that CAP is only defined for the NREM sleep, it is likely that misclassification will 

occur during the periods where the conventional sleep model defines as either REM or 

wake after sleep onset. Nevertheless, the proposed method was examined as a proof of 

concept to assess if the model can properly identify the occurrence of sleep instability 

periods (related to CAP) by evaluating the transitions between the new sleep stages 

(assessing if the automatic clustering approach is suitable to create these new sleep stages 

for the proposed sleep model). 

The proposed model can be used to estimate the quality of sleep as poor sleep quality, 

estimated by the CAP rate, is associated with higher amounts of total sleep under 

instability (CAP) periods. Thus, the ratio of total duration of CAP to the total duration of 

non-CAP (estimated by the proposed model) can possibly reflect the quality of sleep, 

similarly as it is assessed by the CAP rate. 

The block diagram of the implemented model is presented in Figure 5.14, and can be 

divided into four phases. The first is the preprocessing of the EEG signal, and applies the 

same procedure as previously described for the methods without an explicit feature 

extraction process. The creation of the clusters was performed in the second phase where 

two clustering algorithms were tested, specifically, the SOM and the Gaussian Mixture 

Model (GMM).  

 

Figure 5.14. Block diagram of the proposed sleep model [351]. 
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The SOM is essentially a neural network of spatially related nodes that have been 

trained using competitive learning to cluster the input signal, x, into a discrete map which, 

in this case, had either one or two dimensions. The GMM is composed of multivariate 

Gaussian distributions, and each can be defined by the mean, μ, and covariance, R [304]. 

The mixing proportions of all the distributions were further defined by the vector π, and 

the GMM parameters initialization was performed using the k-means++ algorithm [352], 

where k is the number of clusters. Initially, π was considered to be the same for all clusters 

with each Gaussian having identical and diagonal covariance matrices. The Gaussians 

center, μ, was uniformly distributed along x. Subsequently, an iterative process 

determined each μk in two steps that are repeated until the selected μ no longer changes: 

calculate the distances (the Mahalanobis distances [304] was used) from each point in x 

to μ, and assign the closest μk to each point; choose the new μk with a probability that is 

proportional to the distance, D, from itself to the closest μk that was already chosen 

through [352] 

𝑃𝑑(𝑥(𝑗, 𝑖)) =
𝐷(𝑥(𝑗, 𝑖))

2

∑ 𝐷(𝑥(𝑗, 𝑖))
2 

𝑖

 5.9 

The Expectation-Maximization (EM) algorithm was then used to fit the GMM to x 

where the Probability Density Function (PDF) of each observation was defined as [353] 

 𝑃(𝒙; 𝛩) =∑𝜋𝑘𝑓𝑘

 

𝑘

(𝒙; 𝜃𝑘) 5.10 

where Θ = (π1, …, πk, θ1, …, θk), and fk is the PDF, of a multivariate Gaussian distribution, 

parameterized by θ. The complete log-likelihood function is given by [353] 

log 𝑃(𝛩) =∑∑𝑎𝑘
𝑖 [ln(𝜋𝑘) − 0.5 ln(|𝑅𝑘|)

 

𝑘

 

𝑖

− 0.5𝑡𝑟[𝑅𝑘
−1(𝑥(𝑗, 𝑖) − 𝜇𝑘)(𝑥(𝑗, 𝑖) − 𝜇𝑘)

𝑇]] + 𝐶 

5.11 

where ai
k is the indicator function (1 if i was created by the Gaussian k and 0 otherwise), 

C is a constant, and tr is the trace operator.  

The EM iterates over two steps (iteratively repeated until convergence is achieved) 

specifically, the expectation (first step) that evaluates the parameters by computing the 

conditional probabilities [353] 

〈𝑎𝑘
𝑖 〉 ≔ 𝑃(𝑎𝑘

𝑖 = 1|𝑥(𝑗, 𝑖); 𝛩𝑜𝑙𝑑) =
𝜋𝑘𝑓𝑘(𝑥(𝑗, 𝑖); 𝜃𝑘)

∑ 𝜋𝑘𝑓𝑘
 
𝑘 (𝑥(𝑗, 𝑖); 𝜃𝑘)

 5.12 

and the maximization (second step) that re-estimate the parameters of Θ by [353] 

{
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𝐼
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)

−1

∑〈𝑎𝑘
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𝑖
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∑〈𝑎𝑘
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𝑇

 

𝑖
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The number of the cluster that will further be employed as output for each epoch was 

defined by the index of the output unit that was more frequently chosen, for the SOM, 

and by the number of the Gaussian that achieved the highest π, for the GMM. This 

information was further applied in the third phase where the symbols were created by 

applying symbolic dynamics which creates a transformation of the sequence of cluster 

numbers into a sequence of symbols of the alphabet that was created so that the number 

of the cluster matched the symbol.  

The next step was the performance assessment of the proposed model for the CAP 

assessment, bearing in mind that a good performance denotes that the HMM was capable 

of assessing the periods of stable and unstable sleep by examining the proposed sleep 

stages’ transitions. 

Three SOM topologies were tested, specifically, one with a one dimensional map 

(line), and two with the two dimensional map (square and hexagon). The number of 

elements in the map varied from 1×1 to 4×4. Therefore, the SOM alphabet employed the 

symbols {1, 2, …, 36}. For the GMM the number of Gaussians was varied from 1 to 4 

thus, the symbols {1, 2, 3, 4} were used for the GMM alphabet. The words of the SOM 

model were composed of only one symbol since the possible number of combinations 

that could form a word is too large if two or more symbols were considered, and the used 

dataset does not allow to suitably determine the probabilities for all the transitions. As an 

example, for a word composed of two symbols, the model with 25 output units has 625 

possible words. For the GMM a total of six possible word structures were considered: 

formed by 1 symbol; formed by 2 symbols overlapping with the previous or the next 

symbol; formed by 3 symbols; formed by 4 symbols overlapping with the previous 2 and 

next symbols or with the previous and next 2 symbols. Figure 5.15 presents an example 

of how the words were created for the model based on the GMM with 3 Gaussians, and a 

different number of symbols to compose the word.  

The word sequence was later encoded by associating a unique number to each word, 

and the result was employed as the sequence of observations of the first order HMM in 

the final phase. During the training of the model, the maximum likelihood was used to 

estimate the transition, a, and emission, b, probabilities of the training dataset by 

considering the words generated with the symbolic dynamics as the sequence of 

observations and the CAP cycles (related to the training dataset) as the hidden states. The 

maximum likelihood estimators for the emission and transition matrix were assessed by 

counting the number of times an emission or transition occurred since both the states and 

observations are known in the training dataset [354]. The model was tested by calculating 

the most likely state path of the sequence of observations, y, using the Viterbi algorithm 

[303], which is similar to the calculation of the shortest path through a trellis diagram 

where the nodes are the possible states, for each input point, and the nodes and edges 

weights are log-probabilities. The weight of a path can be defined as [303] 

𝜎𝑡(𝑟) = 𝑏𝑟(𝑦𝑡)max
𝑠
𝜎𝑡−1(𝑠)𝑎𝑠𝑟 5.14 

where r is the state at the current observation, t, that involves the most likely path to the 

state s of the previous observation, t−1. During the initialization, the initial distribution d 

was set to [303] 

𝜎1(𝑠) = 𝑑𝑠𝑏𝑠(𝑦1) 5.15 
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Figure 5.15. Explanatory example indicating how the words were produced from the 

number of the selected Gaussian, and how they were encoded [351]. 

A representation of the used methodology to train and test the HMM is presented in 

Figure 5.16. An example of how the sequence of observations was produced is presented 

in Figure 5.17. In the first figure, 10 epochs were randomly selected, and further reshaped 

into a matrix in the second figure (each cell of the matrix indicates the EEG signal’s 

amplitude). The next figure presents the output of applying the GMM with 3 Gaussians 

to this matrix, that first determined the probability of each cell to belong to each Gaussian, 

and then selects the Gaussian with the highest probability to define the symbol of the 

epoch. Afterwards, words with three symbols were created and encoded to produce the 

sequence of observations for the HMM. 

 

Figure 5.16. Block diagram of used methodology for training and testing the HMM 

[351]. 
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Figure 5.17. Example of how the sequence of observations that were fed to the HMM 

were produced [351]. 
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5.4.2. Performance assessment  

The performance of the developed method, implemented in MATLAB, was assessed 

by LOOCV (performing 50 repetitions of each iteration to achieve statistically significant 

results) and using the second CAPSD. The results for the model based on the SOM and 

on the GMM are presented, respectively, in Tables 5.10 and 5.11. By analyzing Table 

5.10 it is possible to verify that the best performance was attained by the SOM with the 

hexagon topology and 25 units (5×5), while the lowest results were produced by the 

hexagon topology with 9 units (3×3).  

Table 5.10: Performance of the developed algorithms (mean and standard deviation) for 

CAP detection based on the SOM [351]. 

Topology Number of output units Acc (%) Sen (%) Spe (%) AUC 

Line 9 70.97±3.53 48.24±13.55 84.76±5.13 0.665±0.056 

16 70.55±4.35 52.22±13.09 81.79±6.51 0.67±0.057 

 25 71.99±4.64 45.5±13.86 88.29±4.35 0.669±0.066 
 36 70.95±4.47 40.33±12.72 89.89±3.90 0.651±0.063 

Square 9 61.69±2.91 19.96±4.83 87.75±1.97 0.539±0.02 

16 70.42±4.26 47.28±12.34 84.55±4.19 0.659±0.059 
 25 74.24±3.89 41.43±12.11 94.57±3.16 0.68±0.057 

 36 71.27±4.27 42.23±11.25 89.33±3.93 0.658±0.057 
Hexagon 9 61.53±2.89 19.87±3.53 87.64±1.89 0.538±0.017 

16 69.28±3.11 42.91±13.99 85.65±9.09 0.643±0.042 

 25 73.71±4.56 55.95±12.09 84.77±4.29 0.701±0.062 

 36 72.97±4.87 49.58±14.35 87.19±4.47 0.684±0.068 
 

Table 5.11: Performance of the developed algorithms (mean and standard deviation) for 

CAP detection based on the GMM [351]. 

Number of Gaussians Symbols in the word Acc (%) Sen (%) Spe (%) AUC 

2 1 71.01±8.73 59.72±22.24 77.12±8.12 0.684±0.111 
2* 72.47±6.98 63.23±20.16 77.29±8.53 0.703±0.091 

2+ 72.16±7.12 62.95±20.36 76.96±8.39 0.700±0.093 

 3 71.88±7.33 64.18±19.55 75.74±9.59 0.700±0.09 
 4^ 71.79±7.49 64.18±19.77 75.59±9.40 0.699±0.091 

 4# 71.66±7.53 64.04±19.86 75.47±9.38 0.698±0.092 

3 1 70.77±7.64 66.30±20.37 72.31±14.73 0.693±0.084 
2* 71.63±7.21 66.92±20.02 73.40±13.71 0.702±0.082 

2+ 70.81±7.33 65.74±20.39 72.82±13.00 0.693±0.086 

 3 72.23±6.24 65.74±20.33 75.23±10.47 0.710±0.082 

 4^ 71.27±6.71 65.84±20.30 73.63±9.26 0.697±0.089 

 4# 71.27±6.69 65.89±20.28 73.62±9.28 0.698±0.087 

4 1 68.95±8.72 65.60±21.58 69.79±14.28 0.677±0.010 
2* 70.55±7.52 67.02±20.05 71.55±13.72 0.693±0.085 

2+ 69.92±7.71 65.96±20.68 71.24±12.86 0.686±0.090 

 3 71.06±6.93 66.20±19.88 72.97±12.28 0.696±0.082 

 4^ 70.98±7.04 65.61±21.01 73.20±10.99 0.694±0.087 

 4# 70.76±7.16 66.04±21.09 72.61±10.20 0.693±0.090 

* Overlapping with the previous symbol 

+ Overlapping with the next symbol 

^ Overlapping with the previous two symbols and the next symbol 

# Overlapping with the previous symbol and the next two symbols 

Therefore, an increase in the number of units is beneficial for this topology, 

conceivably due to the possibility of better exploring the connections between the units. 

A similar result was produced by the square topology while the linear topology achieved 

a similar AUC for all structures, and was the best model when less than 25 units were 

used. The results of the three studied GMM, presented in Table 5.11, suggest that an 

improvement in the performance is achieved by using words composed of more than one 

symbol. 
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The best performance was attained by using 3 Gaussian with words composed of 3 

symbols, while the model with 4 Gaussians and words with 1 symbol presented the lowest 

performance. No significant difference was identified by analyzing where the overlapping 

occurred (the previous or the next symbol). By comparing the models which attained the 

best results (based on SOM and GMM) it is possible to verify that a comparable accuracy 

and AUC was achieved. However, the GMM results are the most balanced (similar Sen 

and Spe); thus, this model is more suitable for medical analysis.  

The average probability distribution regarding the presence or absence of CAP over 

the SOM with 25 hexagon units (the model that achieved the highest AUC) is presented 

in Figure 5.18. By analyzing the figure, it is possible to conclude that the presence of CAP 

generates a spread pattern where the highest probabilities occur in the extremities of the 

topology, while in the absence of CAP the highest probabilities are found in the center of 

the topology. A similar analysis was performed for the GMM with 3 Gaussians and words 

composed of 3 symbols (the model that achieved the highest AUC) and the obtained 

results are presented in Figure 5.19. By examining the figure, it is possible to verify that 

the Gaussian number 1 is the most frequently chosen in the presence of CAP while 

Gaussian number 2 is the less frequently selected. Therefore, these results further 

advocate the validity of the developed method since the presence of CAP is related to 

characteristic patterns in both SOM and GMM. 
 

a) b) 

  
Figure 5.18. Probability distribution, over the hexagon shape topology of the SOM with 

25 units, in the a) CAP and b) non-CAP periods. 

 

Figure 5.19. Probability distribution of the CAP cycles over the GMM with 3 Gaussians 

[351]. 
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It was verified that the model has the tendency to overestimate the CAP cycle 

duration. Consequently, most misclassifications occurred in the CAP cycles boundaries, 

leading to a lower sensitivity. Figure 5.20 presents an example of such an event. 

Therefore, an improvement of the boundary recognition can significantly improve the 

performance of the developed model. These difficulties regarding the CAP boundary 

assessment were also reported by Largo et al. [54], where it was concluded that this is the 

main struggle for the clinical application of CAP analysis. 

 

Figure 5.20. Example regarding the overestimation of the CAP cycles boundaries by the 

GMM with 3 Gaussians [351]. 

The HMM of the method which attained the highest AUC was further analyzed. The 

probability of transition from CAP to CAP was 97.42% while the transition probability 

from non-CAP to non-CAP was 88.31%. Figure 5.21 presents the emission probability of 

the observations while the normalized emission probability is presented in Figure 5.22. 

The model has 27 clusters that were created by encoding the GMM with 3 Gaussians. 

Dendrogram plots, presented in Figure 5.23, were produced to assess the relevance of the 

observations by creating an agglomerative hierarchical cluster over the utmost distance 

between the emission probabilities. 

 

Figure 5.21. Emission probability of the observations of the model that attained the 

highest AUC, during CAP, and non-CAP cycles [351]. 
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Figure 5.22. Normalized emission probability of the observations of the model that 

attained the highest AUC, during CAP (dashed line), and non-CAP (solid line) cycles 

[351]. 

a) 

  
b) 

 
Figure 5.23. Dendrogram plot of the model that attained the highest AUC, during a) 

CAP, and b) non-CAP cycles [351]. 

By combining the information from Figures 5.22 (an observation was considered 

relevant for non-CAP if the normalized probability was higher for non-CAP when 

compared to CAP and vice-versa) and 5.23 (to order the features by their significance) it 

was possible to determine the observations relevance. For the CAP cycles, the relevant 
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features (ordered from most to less significant) were: 1; 2; 24; 20; 6; 3; 19; 21; 5; 12; 15; 

4; 7; 11; 9; 10; 8; 18. For the non-CAP cycles the relevant features were: 13; 26; 22; 27; 

17; 25; 23; 16; 14. 

Therefore, it is likely to be possible to assess the quality of sleep by observing not 

only the oscillations between stable (indicated by non-CAP) and unstable (indicated by 

CAP) sleep, estimated by the HMM, but also the observations sequence that fed the 

HMM. Specifically, if the observations are the most common and relevant during the non-

CAP epochs, it is conceivable to infer that good sleep is occurring. The opposite happens 

when the observations are the most common and relevant during the CAP epochs. These 

observations can possibly lead to a further characterization of CAP. 

Although the models previously developed achieved better results, the proposed 

method allowed the creation of a statistical model for CAP, and can possibly provide a 

framework for sleep microstructure analysis. It can also be a relevant step towards the 

development of a continuous model that is closer to the physiological process of sleep. 

This assessment can conceivably allow further research in the physiological process that 

are associated with the production of CAP. Such analysis can be considered problematic 

to perform in more abstract models such as a deep learning classifier, where the features 

are usually automatically created and, consequently, difficult to interpret. These 

assertions are further corroborated by the results reported by Mendez et al. [327] where 

it was projected that exist 25% of subjectivity and ambiguity in the manual classification 

of the CAP phases, stressing the difficulties inherent to CAP analysis and suggesting the 

need for a mathematical model. 

It is also important to bear in mind that the A phases which compose the CAP are a 

simplified approach for sleep microstructure analysis. As a result, the proposed model 

can be seen a further simplification of the CAP concept, where it is viewed as the sleep 

instability marker which denotes the oscillations between stable and unstable sleep. Such 

simplification can possibly be relevant for future sleep analysis by allowing the 

development of a sleep model which is focused on depicting the quality of sleep instead 

of providing a rigid representation of sleep. The developed model worked as a proof of 

concept for the proposed sleep model. Nevertheless, it is relevant to study in a future work 

if a third hidden state (for the HMM) related to the patterns where the conventional sleep 

model scores as either REM or wake after sleep onset periods can lead to a better 

performance for the CAP estimation, since CAP is not defined in the REM sleep or in the 

wake periods.  

5.5. Subtype assessment and characterization analysis 

The A phase subtypes were found to be strongly related with the dynamic organization 

of sleep [28] [19]. Hence, alterations of these subtypes can be an indicator of the existence 

of sleep disorders [37]. Therefore, the subtype’s assessment allows the sleep quality 

estimation with two different approaches as theorized in this work from the state of the 

art. The first is by examining conventional sleep quality metrics (in this case, related to 

CAP) while the second is by identifying the presence of sleep related disorders. 

Taking into consideration that the subtypes compose the A phase which, in turn, 

composes the CAP, hence, a CAP characterization analysis can be performed by 
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evaluating the subtypes, and the B phases. Recurrence Quantification Analysis (RQA) 

was used to perform this evaluation since the EEG signal has nonlinear temporal 

properties. The RQA metrics are [355]: Recurrence Rate (RR); percentage of determinism 

(DET); maximal line length in the diagonal direction (Dmax); Shannon entropy of the 

frequency distribution of the diagonal line lengths (ENT); trend (TND). 

The objective of this investigation is to perform an event based analysis by examining 

changes of the dynamics within the EEG signal. Although multiple works have proposed 

suitable values for the RQA parameters [356], these mostly apply to windows with a fixed 

length. Taking into consideration that a CAP phase can last between two and 60 s, this 

methodology is not suitable. Hence, a new methodology was used in this work where the 

length of the evaluated windows changes according to the evaluated CAP phase length. 

As a consequence, the RQA analysis parameters are required to be appropriately selected 

for each examined window. The estimation of the recurrence analysis’ delay parameter 

was performed by examining the mutual average information function [357], selecting 

the first local minima from multiple possible solutions [358]. The suitable embedding 

dimension was found by finding the first local minimum of the false-nearest neighbor 

algorithm, proposed by Kennel et al. [359], evaluating the number of false neighbors 

(present in the phase-space) as a function of the number of embedding dimensions. 

The recurrence threshold is considered to be the most challenging parameter to tune. 

The employed value should not have either too few or too many recurrences, as it will 

lead the recurrences to mostly occur due to oscillations caused by noise or to include too 

many points of the neighborhood which are just consecutive points on the trajectory 

(hiding the recurrence structure), respectively [360]. For physiological time-series, such 

as the EEG signal, where noise can be a significant factor, it was recommended to use 

five times the signal’s standard deviation [361] [362]. Hence, this methodology was 

followed in this work. 

The significance of the results produced by the RQA analysis was examined by 

surrogate testing using the iterative amplitude adjusted Fourier transform surrogates 

method [363]. The surrogate data created by this algorithm conserves both amplitude 

distribution, and power spectrum of the original time series. The null hypothesis was that 

there is no significant difference between the average of the considered RQA metric 

estimated from the surrogate or from the original EEG signal. The alternative hypothesis 

was selected when the p-value was less than 0.05, and considered that the average of the 

considered RQA metric was higher than the metric estimate using the surrogate data (as 

indicated by Stam et al. [364], it is not expected that the original EEG signal will be less 

predictable than the surrogate data).  

The Spectral Entropy (SEnt) was also computed to estimate the spectral power 

distribution of the CAP phases. This metric measures how regular the power spectrum is 

during a particular period of time, where high entropy is probably found in a broader 

spectrum, with several relevant frequencies, while a low entropy specifies the occurrence 

of few spikes where the energy is concentrated [365]. The average (normalized by the 

maximum value) of the RQA metrics and SEnt for each subtype and B phase are presented 

in Table 5.12. 
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Table 5.12: Average (normalized by the maximum value) of the RQA metrics and SEnt 

for each subtype and B phase. For the RQA metrics it is presented, between brackets, the 

number of subjects which support the alternative hypothesis, a dash, and the average p-

value [366]. 

CAP phase RR DET Dmax ENT TND SEnt 

A1 0.51 (13 – 0.10) 1.00 (19 – 0.01) 0.56 (17 – 0.02) 1.00 (18 – 0.03) 0.90 (12 – 0.09) 0.75 

A2 0.57 (8 – 0.12) 0.80 (17 – 0.03) 0.65 (16 – 0.03) 0.86 (16 – 0.03) 0.84 (13 – 0.07) 0.86 

A3 1.00 (2 – 0.26) 0.62 (19 – 0.00) 1.00 (18 – 0.01) 0.89 (18 – 0.01) 1.00 (18 – 0.02) 1.00 
B 0.62 (10 – 0.06) 0.88 (19 – 0.00) 0.65 (19 – 0.00) 0.94 (19 – 0.00) 0.90 (19 – 0.01) 0.83 

 

From Table 5.12 results, it is possible to perform a characterization analysis of the 

CAP phases. It was observed that the RR increased from the A1 to the A3 subtype, 

suggesting that the probability of a specific state to occur increased from A1 to the A3 

subtype. Nonetheless, this metric attained the lowest support for the alternative 

hypothesis with the highest average p-value. Hence, these results may not be conclusive. 

On the other hand, the DET presented the highest support for the alternative hypothesis 

with the highest average p-value, denoting that the A1 subtype is more likely to be 

associated with periodic behaviors (attained the highest average value) while the A3 

subtype is more prone to chaotic processes (presented the lowest average value).  

Taking into consideration that Dmax is associated with the divergence of the 

trajectory segments, and that the A1 subtype presented the lowest average value for this 

metric, it may suggest that this subtype depicted the most divergent trajectories while the 

opposite occurred for the A3 subtype. However, it is important to notice that the used 

methodology for the RQA metrics calculation evaluated the full duration of each 

individual activation, to allow a comparative analysis between the A phase subtypes. As 

the average duration of each A phase subtype is considerably different, therefore, the 

assessed metrics will be affected by this factor, which is particularly relevant for Dmax 

as it designates how long was the longest diagonal line segment. 

A higher ENT suggests a higher complexity, with a wider distribution of diagonal line 

lengths. Therefore, the A1 subtype is likely to have the highest complexity of all subtypes. 

It was also observed that the A3 subtype presented the highest TND, signifying greater 

nonstationary dynamics. The support for the alternative hypothesis was excellent for all 

subtypes regarding the DET, Dmax, ENT, and TND, and it was fair for the RR. However, 

A1 was the subtype which attained the highest support for the alternative hypothesis while 

A2 presented the lowest. The results attained for the RQA metrics are possibly related to 

the A phase subtypes definition, where the A1 subtypes are characterized by synchronized 

EEG patterns, composed of mild or minor polygraphic variations with high-voltage slow 

waves, while the A3 subtypes are characterized by desynchronized EEG patterns, with a 

predominance of low-amplitude fast rhythms. The A2 subtype characteristics are in 

between the other two subtypes.  

By examining the SEnt results, it was observed that A1 subtypes have the lowest 

average value while the opposite is true for the A3 subtypes, signifying the occurrence of 

a broader spectrum. Once again, the A2 subtypes presented a behavior which was between 

the other two subtypes, having a lower value than the A3 subtypes but higher than the A1 

subtypes. These results are possibly explained by the A phase subtypes definition, which 

goes from synchronized to desynchronized EEG patterns when going from the A1 to the 

A3 subtypes. 
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Regarding the B phase examination, it was verified that both RQA metrics and SEnt 

are typically between the A1 and A2 subtypes, possibly suggesting that the B phase events 

have characteristics more similar to the A2 and A3 subtypes than the A1 subtypes. These 

results can also suggest that A1 subtype assessment will be easier to perform than the A2 

and A3 subtypes classification. 

It was observed that all works presented in the state of the art for the automatic A 

phase subtypes classification either employ tuned thresholds or a machine learning 

classifier using multiclass methods. Nonetheless, the threshold-based methodologies are 

likely to be problematic when trying to generalize for a broader population, and the 

multiclass machine learning methods, presented in the state of the art, have all reported a 

poor sensitivity for at least one class.  

Since each subtype has relevant information for either the estimation of a sleep quality 

metric or the assessment of a sleep related disorder, the multiclass classification output is 

usually transformed to three binary time series containing the information of a subtype in 

the one versus all representation. As a result, a new approach was employed in this work, 

using three individual binary classifications (one for each subtype) to examine if by 

allowing the model to only focus on optimizing the recognition of one class can lead to 

better performance, while still providing the same information as a multiclass output to 

be examined by the physicians. 

By examining the state of the art it was observed that most works employ feature 

based analysis using features created by the researchers. Conversely, classifiers such as 

LSTM are capable of automatically finding relevant patterns in the input signal, which 

were are likely to have not been emphasized by any feature indicated in the state of the 

art. Hence, two methodologies were evaluated in this work. The first employed the 

concept of the methods without an explicit feature creation procedure, feeding the pre-

processed signal to the classifier. The second follows the feature based methods concept 

where features selected by a ranking procedure fed the classifier. The followed 

experimental procedure for the A phase subtypes assessment (performed by three binary 

classifiers executing a one versus all analysis) is presented in Figure 5.24. 

The first examination was a viability assessment using the subjects from the second 

CAPSD and TFCV for performance assessment. The algorithms were implemented in 

Python 3. The network’s error optimization was performed by the Adam [343] algorithm 

and cost-sensitive learning was employed to lessen the influence of class unbalance. The 

post-processing procedure, previously presented in section 5.2, was applied after the 

classification to decrease the number of misclassifications. 

Three categories of features were considered for the feature based methods. The first 

was based on the evaluation of the amplitude variation. Specifically, symbolic dynamics 

analysis was performed through a segmentation method proposed in this work, which 

implemented a transformation of the input signal into a sequence of symbols by 

evaluating multiple thresholds for the signal’s amplitude (each threshold is a multiple of 

the standard deviation, σ, of the input signal). An example of the segmentation procedure 

is presented in Figure 5.25.  
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Figure 5.24. Experimental procedure for the A phase subtypes assessment [366]. 

 

Figure 5.25. Example of the symbolic dynamics procedure, implemented by five 

thresholds (M=5), to create the vector which contained the sequence of symbols [366]. 
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The most relevant parameter of the employed symbolic dynamics analysis is the 

multiplier, M, which will define the number of thresholds. The output’s vector contains 

the sequence of symbols, Vs, from which it is possible to evaluate multiple statistical 

features [326] [367]. Therefore, the analysis was performed by counting the number of 

incidences of each symbol since this information can be used by the LSTM to assess the 

time based variations over multiple time steps. The last feature evaluated in this category 

was the amplitude variation metric, Av, a metric proposed in this work given by  

𝐴𝑉 = 𝑚𝑎𝑥(𝐸) − [𝑚𝑎𝑥(𝐸 − 1) − 𝑚𝑎𝑥(𝐸 − 2)] 5.16 

where max is the highest value of the epoch E. The features proposed in this category can 

detect the amplitude oscillations, which are characteristic of the A phase, and work as 

markers for the A phase onset transitions since the protocol for CAP analysis dictates that 

the phasic activity, which initiates an A phase, must have an amplitude at least 33.3% 

higher than the background activity of the two previous one second epochs [10]. 

The second category of features examined the power in frequency bands (using the 

PSD calculated by the Welch’s method) following the procedure employed for the feature 

based methods presented in section 5.2. The third category of evaluated features 

combined concepts of the two previous categories by evaluating the ratio of the highest 

value of the epoch to the measured PSD for all characteristic EEG frequency bands. These 

features were also proposed in this work and follow a similar concept employed for the 

proposal of the macro-micro structure descriptors [368]. However, the proposed metrics 

combined information of both time (by evaluating the maximum value of the epoch) and 

frequency (considering the PSD of the frequency band) instead of appraising the mean 

power of the frequency bands as the macro–micro structure descriptors do. As a result, 

the proposed metric can differentiate the A phase subtypes since the A1 subtype is mostly 

composed of high-amplitude fast rhythms while the A3 subtype is mostly composed of 

low-amplitude fast rhythms (the A2 subtypes is in between the A1 and A3 subtypes). The 

relevance of the features for each subtype classification was assessed by the mRMR 

algorithm, since the computational time to select the features using SFSe is not reasonable 

when using the LSTM for classification.  

Since the classifiers are implementing a one-versus-all evaluation, an error matrix was 

estimated to evaluate if the misclassifications were occurring because the classifier was 

confusing an activation phase with the background activity or because a manifestation of 

another subtype is leading the classifier to misclassify the background activity as an 

activation phase. Five counting variables were created for each subtype classification, 

considering one for the NREM periods, one for REM periods, and one for wake periods. 

When a false positive was identified, the algorithm checked if an activation phase, which 

was related to another subtype, happened. If so, then the counting variable associated with 

that subtype was incremented. If not, then the classifier confused the background activity 

with an activation phase hence, the counting variable, associated with the macrostructure 

label of the examined epoch, was increased. A similar procedure was employed when a 

false negative was identified. Afterwards, the value of the counting variables was divided 

by the total number of misclassifications. 

A variation of the HOSA, named HOSA-L, was developed to select the LSTM 

structure by examining multiple possible architectures. After the input layer, Ipt, the 

following layer of the network was either a LSTM or a Bidirectional LSTM (BLSTM). 
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The subsequent layers were equal to the first recurrent layer. The last recurrent layer can 

be followed by a fully connected layer (FC). The number of layers, G, was increased until 

the chosen maximum, Gmax, number of five or stopped earlier if there was no significant 

improvement in the AUC (considering a threshold, th, of 1% to define the minimum 

relevant improvement) from the previous iteration (with G – 1 layers). The number of 

time steps, T, used by the recurrent layers, started with five (Tstart) and were increased in 

steps, Tstep, of 10 until Tmax, selected to be 35 (for this work, after 35 the increase in time 

steps was found to be counterproductive, decreasing the performance).  

The number of hidden units, N, employed by the first recurrent layer started at 100 

(Nstart), and was increased in steps, Nstep, of 100 until the maximum, Nmax, of 400 (in this 

work, the increase in performance saturated at 400). The number of hidden units used by 

the FC layer was chosen to be either half (using the floor function to round the result of 

the division), the same, or twice the number of hidden units used by the previous recurrent 

layer. For the models with a cascade of LSTM layers, the number of hidden units 

employed by the second LSTM layer was the same as the number of hidden units used 

by the first LSTM layer. The Output layer employed the soft-max function. The HOSA-

L follows the subsequent pseudo code: 

HOSA-L (Data, Gmax, Tstep, Tmax,, Nstart, Nstep, Nmax, th) 

G = [1, 2, …, Gmax] 

T = [Tstart, Tstart + Tstep, …, Tmax] 

N = [Nstart, Nstart + Nstep, …, Nmax] 

L = [LSTM, BLSTM] 

for t = 1 to length (T) 

    for n = 1 to length (N) 

        for g = 1 to length (G)         

            for l = 1 to length (L) 

                Layer = L (l) 

                for m = 1 to 4 

                    Net0,l,t,n,0,m  ← Ipt (Data, T (t)) 

                    for z = 1 to g 

                        Netz,l,t,n,0,m ← Netz-1,l,t,n,0,m + Layer (N (n)) 

                    if m == 1 

                        Nprev = floor (N (n) / 2 + 1 / 2) 

                        Netg,l,t,n,1,m ← Netg,l,t,n,0,m + FC (Nprev) + FC (2) 

                    else 

                        if m == 2 

                            Nprev = N (n) 

                            Netg,l,t,n,1,m ← Netg,l,t,n,0,m + FC (Nprev) + FC (2) 

                        else 

                            if m == 3 

                                Nprev = N (n) × 2 

                                Netg,l,t,n,1,m ← Netg,l,t,n,0,m + FC (Nprev) + FC (2) 

                            else 

                                Netg,l,t,n,1,m ← Netg,l,t,n,0,m + FC (2) 

                    AUCg,l,t,n,m ← test (train (Netg,l,t,n,1,m)) 

            AUCg,l,t,n,m,max = max(AUCg,l,t,n,m)|for all l,m 

            if g > 1 

                if AUCg,l,t,n,m,max – AUCg-1,l,t,n,m,max ≤ th 
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                    if AUCg,l,t,n,m,max > AUCg-1,l,t,n,m,max ≤ th                     

                        BestNett,n = Netg,l,t,n,1,m|AUCg,l,t,n,m,max 

                    else 

                        BestNett,n = Netg-1,l,t,n,1,m|AUCg-1,l,t,n,m,max  

                    break 

                else 

                    BestNett,n = Netg,l,t,n,1,m|AUCg,l,t,n,m,max 

                    else 

                        BestNett,n = Netg,l,t,n,1,m|AUCg,l,t,n,1,m,max 

return BestNett=1:length(T),n=1:length(N) 
 

For the methods without an explicit feature creation procedure, it was verified that the 

architecture with the best performance to complexity (number of parameters) ratio was 

composed of one LSTM layer followed by one dense layer (using half of the LSTM’s 

number of hidden units). A similar conclusion was reported by Yadav et al. [369] which 

have concluded that one LSTM layer outperformed models with multiple layers. The 

replacement of LSTM by the BLSTM had an increase of less than 1% in the AUC, and 

the cascade LSTM architecture decreased the average AUC. Therefore, a total of 256 

networks were created for each subtype and each network was simulated 10 times. As a 

result, the total number of examined classifiers was 7680. The classifiers found to be the 

most suitable for each combination of T and N were further examined, performing 50 

repetitions of each iteration to achieve statistically significant results, and the results 

(AUC and Acc) of these analyses are presented in Figure 5.26.  

 

Figure 5.26. Variation of both AUC and Acc, of the network with the best architecture 

for the models without an explicit feature creation procedure for different time steps. 

The activation subtype is specified in the legend, followed by the employed number of 

hidden units of the LSTM [366]. 

It was observed that the A1 subtype classification reached the best AUC using 300 

hidden units in the LSTM with 25 time steps (this subtype was the least sensitive to the 

number of time steps). The A2 subtype had significant variations by changing the number 
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of time steps, providing the best AUC when using 100 hidden units in the LSTM, and 35 

time steps. The A3 subtype classification was the most challenging to be performed since 

the LSTM was not capable of effectively evaluate the information provided by the time 

steps, reaching the best AUC using 100 hidden units in the LST and five time steps.  

The learning curves of the best classifiers (for each subtype) are presented in Figure 

5.27. By evaluating the linear tendency line, it is possible to conclude that the inclusion 

of more data could lead to an improvement of the performance, although it might not be 

significant as the learning curves for the A2 and A3 subtypes already started to reach a 

saturation point. 

 

Figure 5.27. Learning curves for the best classifiers (for each subtype) with the linear 

tendency line and its respective equation [366]. 

Table 5.13 presents the performance of the best architecture for the models without 

an explicit feature creation procedure, where it was concluded that all classifiers attained 

a similar accuracy. Nevertheless, the A1 subtype reached a significantly better AUC, 

denoting a balanced performance, while the A3 subtype evaluation presented the lowest 

AUC, demonstrating unbalanced results. The error matrix of these results is presented in 

Table 5.14. It was observed that the A1 subtypes were mostly misclassified with the 

background activity (usually during NREM). Nearly all misclassification happened at the 

end of the activation phase, where the classifier predicted a longer duration of the 

activation (frequently by one or two epochs). Consequently, the main difficulty for the 

classification of these subtypes was the correct recognition of the activation phase offset 

(end of the activation boundary). This difficulty was present in all subtypes 

classifications. 

Table 5.13: Performance (average ± standard deviation) of the viability assessment for 

the methods without an explicit feature creation procedure for each A phase subtype 

[366]. 

CAP phase Acc (%) Sen (%) Spe (%) AUC 

A1 82.92±3.65 83.11±7.22 82.90±4.15 0.910±0.015 
A2 81.66±5.90 63.97±11.23 82.03±6.19 0.822±0.029 

A3 76.97±7.09 56.03±8.63 77.69±7.58 0.727±0.025 
 

Table 5.14: Error matrix of viability assessment for the methods without an explicit 

feature creation procedure for each A phase subtype [366]. 

 Miss-classified during an activation phase (%) Miss-classified during background activity (%) 
CAP phase A1 A2 A3 NREM REM Wake 

A1 - 2.11 1.91 88.85 1.69 5.44 

A2 7.61 - 2.87 76.84 5.22 7.46 
A3 3.84 2.30 - 49.01 14.72 30.13 
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It was verified that some of the A2 subtypes misclassifications happened during the 

occurrence of an activation phase related to another subtype, suggesting that the classifier 

was occasionally confusing the A2 subtype with other activation from other subtypes. 

This is possibly related to the A2 subtype definition, where it has characteristic patterns 

of both A1 and A3 subtypes. Another relevant factor was the increase of 

misclassifications associated with the wake (after the sleep onset) or REM periods. This 

tendency was further manifested in the A3 subtypes, denoting that it is likely for several 

of the patterns associated with both A2 and A3 subtypes to be related to the background 

activity during these periods. Therefore, the recognized difficulties for the A2 subtype 

classification are the accurate discrimination between the other subtypes, and the offset 

boundary detection. 

The main difficulty for the A3 subtypes classification was the high number of 

misclassifications related to the background activity periods since more than a third of 

the REM periods and nearly all wake (after the sleep onset) periods were misclassified as 

an A3 subtype, supporting the need to use distinctive features to help discriminate the 

occurrence of the activations related to the A3 subtypes. It was also verified that some 

misclassifications happened when either the A1 or A2 subtypes presented desynchronized 

EEG patterns. As a result, the main difficulties for the A3 subtype classification were 

offset boundary detection, correctly differentiate the occurrence of an A3 activation and 

the presence of background activity, and properly differentiate the desynchronized EEG 

patterns associated with the A3 subtypes when comparing to the patterns of other 

subtypes. 

The mRMR algorithm was employed for ranking the relevance of the features, whose 

specification and associated identification number are presented in Table 5.15. The 

ranking order of the features is presented in Figure 5.28. The optimal number of 

thresholds to use for the symbolic dynamics was assessed by increasing the number until 

these features (related to the higher thresholds) were ranked by the mRMR algorithm as 

the less relevant. It was observed that such occurred using nine thresholds (M=9) as the 

features with the identification number 1 and 9 (V1 and V9, respectively) are the less 

relevant for the A1 subtypes.  

Table 5.15: Examined features for the A phase subtypes examination [366]. 

Feature identification number Description Denomination 

1 Number of occurrences of symbol 1 V1 

2 Number of occurrences of symbol 2 V2 
3 Number of occurrences of symbol 3 V3 

4 Number of occurrences of symbol 4 V4 
5 Number of occurrences of symbol 5 V5 

6 Number of occurrences of symbol 6 V6 

7 Number of occurrences of symbol 7 V7 
8 Number of occurrences of symbol 8 V8 

9 Number of occurrences of symbol 9 V9 

10 Amplitude variation metric Av 
11 PSD of the Delta band PSDD 

12 PSD of the Theta band PSDT 

13 PSD of the Alpha band PSDA 
14 PSD of the Sigma band PSDS 

15 PSD of the Beta band PSDB 

16 Ratio of the maximum value to the PSD of the Delta band RD 
17 Ratio of the maximum value to the PSD of the Theta band RT 

18 Ratio of the maximum value to the PSD of the Alpha band RA 

19 Ratio of the maximum value to the PSD of the Sigma band RS 
20 Ratio of the maximum value to the PSD of the Beta band RB 
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Figure 5.28. Features evaluated for each A phase subtype assessment ranked by the 

mRMR algorithm. A1 is designated by ‘+’, A2 is designated by ‘o’, A3 is designated by 

‘x’. The feature identification number identifies the feature [366]. 

The optimal number of features for each A phase subtype classifier was found by 

evaluating 20 feature sets, where the first set was only composed of the most relevant 

feature (the lowest mRMR ranking), the second set was composed of the two most 

relevant features (the two features with the lowest mRMR ranking), and so one until the 

last set which was composed of all features ordered by the mRMR ranking. 

Though the grid search procedure, employed for the methods without an explicit 

feature creation procedure, it was observed that a network composed of one LSTM layer 

(with 300 hidden units), followed by one dense layer (with half of the LSTM’s hidden 

units), attained the best performance to complexity ratio for the A1 subtype classification. 

Taking into consideration that the performance for the A2 and A3 subtypes with 300 

LSTM’s hidden units in the LSTM layer was similar to the models with 100 LSTM’s 

hidden units (best performance for the methods without an explicit feature creation 

procedure). Hence, all classifiers tested for the feature based methods employed the same 

architecture (one LSTM layer with 300 hidden units, followed by one dense layer with 

half of the LSTM’s hidden units) in order to reduce the number of tested simulations. 

The variation of both AUC and Acc, according to the number of features, for the 

feature based method is presented in Figure 5.29. By evaluating the results, it was 

concluded that the best AUC for all classifiers was attained using 25 time steps, 

suggesting that the classifiers were capable of recognizing the temporal information 

present in the time steps. The sequence of selected features for each subtype is presented 

in Table 5.16, while the performance of the best models is presented in Table 5.17. 

Table 5.16: Sequence of selected features for the features based methods for the A phase 

subtype assessment. 

CAP phase Feature sequence 

1 RB; Av; RD; PSDT; RA; RS; PSDD; V4; PSDA; RT; PSDS; V7; V6; V2; V3; V8; V5; PSDB 
2 PSDD; Av; PSDS; RB; PSDT; RA; RS; RD; PSDA; PSDB; RT; V3; V7 

3 PSDB; Av; V3; V4 
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Table 5.17: Performance (average ± standard deviation) of the viability assessment for 

the feature based methods for each A phase subtype [366]. 

CAP phase Acc (%) Sen (%) Spe (%) AUC 

A1 81.91±2.43 87.83±3.94 81.60±2.75 0.921±0.011 

A2 79.65±5.69 81.07±7.26 79.59±5.96 0.884±0.025 
A3 84.61±5.31 70.37±8.41 85.07±5.72 0.855±0.034 

 

 

 

Figure 5.29. Variation of both AUC and Acc, of the network with the best architecture 

for the feature based models for different number of features selected. The activation 

subtype is specified in the legend, followed by the employed number of time steps of 

the LSTM [366]. 

By evaluating the features based methods results, it was concluded that the A1 

subtype classification attained the best AUC, denoting balanced results, while the lowest 

AUC was reported by the A3 subtype classification, suggesting that the A3 assessment is 

once more the most challenging. When comparing with the results of the methods without 

an explicit feature creation procedure, presented in Table 5.13, it is possible to observe 

an increase of 18% for the AUC of the A3 subtype classification, caused by the 

improvement of about 25% and 10% for the Sen and Spe, respectively. These results 

support the viability of using feature based models for the A3 subtype classification, as 

the methods without an explicit feature creation procedure were not capable of extracting 

all relevant information when directly fed by the EEG signal. For the A2 subtype 
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classification it was observed an increase of 7% in the AUC by using the feature-based 

method. The A1 subtype classification attained a similar AUC for both methods. Another 

relevant indication for the feature-based models was the reduction of the standard 

deviation of the performance metrics. As a result, it was concluded that the features based 

methods are likely to be the most suitable for the A phase subtype assessment. 

The error matrix for the performance of the feature based methods is presented in 

Table 5.18. When comparing with the error matrix of the methods without an explicit 

feature creation procedure, presented in Table 5.14, it is possible to verify a reduction of 

the misclassification caused by wake (after the sleep onset) for the A1 subtypes. 

Nonetheless, the classifier still retains the offset boundary detection issue. On the other 

hand, the issues identified for the methods without an explicit feature creation, regarding 

the A2 subtype classification, were mitigated by the feature based methods. A reduction 

of the misclassifications associated with the occurrence an A1 subtype was observed for 

the A3 subtype classification when using the feature based methods. The boundary issues 

related to this subtype were also significantly reduced with the tradeoff of an increase in 

the misclassifications associated with the occurrence of REM periods. It was 

conceptualized that these misclassifications could be linked to the REM sleep onset 

modulation which is associated with the A2 and A3 subtypes [19]. Conversely, this 

difficulty can possibly be diminished by using a method to isolate and remove the REM 

periods from the classification.  

Table 5.18: Error matrix of viability assessment for the feature based for each A phase 

subtype [366]. 

 Miss-classified during an activation phase (%) Miss-classified during background activity (%) 

CAP phase A1 A2 A3 NREM REM Wake 

A1 - 4.69 1.66 91.12 1.59 0.94 

A2 7.75 - 3.03 79.92 6.26 3.04 
A3 2.56 2.46 - 48.49 22.52 23.97 

 

The best methods without an explicit feature creation procedure and feature based 

methods were further examined using the third CAPSD (15 control subjects and 4 subjects 

with sleep-disordered breathing), and LOOCV was employed for performance 

assessment (performing 50 repetitions of each iteration to achieve statistically significant 

results). The results for the method without an explicit feature creation procedure are 

presented in Table 5.19, while Table 5.20 presents the results for the feature based 

methods. These results are similar to the results attained by the viability assessment 

analysis and corroborate the prior conclusions. 

Table 5.19: Performance (average ± standard deviation) of the methods without an 

explicit feature creation procedure for each A phase subtype [366]. 

CAP phase Acc (%) Sen (%) Spe (%) AUC 

A1 88.30±2.29 61.90±14.20 89.56±2.68 0.881±0.032 

A2 85.79±4.25 52.77±13.99 86.60±4.21 0.802±0.059 
A3 80.15±12.26 57.65±14.20 80.51±13.90 0.765±0.063 

 

Table 5.20: Performance (average ± standard deviation) of the feature based methods for 

each A phase subtype [366]. 

CAP phase Acc (%) Sen (%) Spe (%) AUC 

A1 82.68±4.74 83.26±11.83 82.52±5.19 0.915±0.029 

A2 83.25±5.82 73.83±12.84 83.40±6.00 0.874±0.044 
A3 83.35±8.71 70.94±14.42 83.56±9.56 0.857±0.052 
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5.6. Sleep quality estimation 

Most works presented in the state of the art performing the A phase examination use 

features created with domain-specific knowledge of the researchers. However, it was also 

observed that it is becoming considerably more difficult to find new sets of features which 

can be used for attaining a better performance than reported methods in the state of the 

art. Another relevant factor is that the combination of two or more features does not 

guarantee a performance improvement, and generally the feature based methods require 

a sorting procedure to identify the most relevant for the intended classification [370]. As 

it was previously discussed in section 5.3, these difficulties can be eliminated by deep 

learning models, which automatically learn the significant patterns directly from the data. 

On the other hand, the relevant patterns can only be identified if there is sufficient data to 

train the classifier. Such can be problematic for the CAP analysis as the classification is 

performed every second (using, in this work, 100 samples per second). For this reason, a 

different approach was followed for the classifier proposed in this section, evaluating 

consecutive overlapping windows which fed a 1D-CNN. This classifier was selected 

since it can exploit spatially local correlations in the input signal. A post-processing 

procedure was employed to correct the misclassified A phases and the output was fed to 

a FSM, to perform the CAP cycle scoring. 

The block diagram of the developed model is presented in Figure 5.30. The first 

examination was a viability assessment using the subjects from the second CAPSD. The 

algorithms were implemented in Python 3 using Keras library. The NREM classifiers 

examine the same pre-processed signal employed for the A phase classification to provide 

a model which is more suitable for hardware implementation with few computational 

resources since it is less computational demanding. 

 

Figure 5.30. Block diagram of the developed algorithm for sleep quality estimation 

from the EEG signal analysis. 
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Three methodologies were evaluated to perform the overlapping, using either the first 

(first scenario overlaps on the right), the central (second scenario overlaps on the right 

and left), or the last (third scenario overlaps on the left) 100 samples of the overlapping 

window as the samples corresponding to the epoch’s label. An example of the evaluated 

windows for each scenario is presented in Figure 5.31. 

 

Figure 5.31. Example of the overlapping windows for each of the three examine 

scenarios. 

The HOSA-C, a variation of the HOSA optimized for the 1D-CNN analysis, was 

developed to find the best classifier’s structure for the optimal input configuration. For 

each evaluated combination of the most relevant hyper-parameters of the classifier 

(number of layers, kernel size, and number of kernels [371] [372]), the overlapping 

length, O, of the segmented windows was iteratively altered, testing all scenarios of 

overlapping, Ap, for the overlapping window W. 

The required time for the algorithm’s searching procedure to find the best solution 

was improved by using the group of GL concept, where (in the work presented in this 

section) each group was composed of fixed sequence of one convolution layer, followed 

by one subsampling layer (applying the max pooling operation with down sample by a 

factor of two), and 10% dropout was applied to the group’s output. The stride and filter 

size of the GL was selected to be two since these values are frequently employed in the 

state of the art for 1D-CNN, allowing to reduce the data’s dimensionality while preserving 

the highest excitations from the convolutional feature maps. ReLU was used as the 

activation function, and the network’s error optimization and performance assessment 

was performed by the Adam algorithm [343] using cost-sensitive learning. The early 

stopping procedure presented in chapter 4 was used to avoid overfitting the classifier, and 

reduce the simulation time. 
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The HOSA-C was initiated without overlapping, and the overlapping’s length was 

increased considering steps of two seconds, up to a maximum window length, Omax, of 17 

seconds (upper limit empirically found to be in the saturation point for the A phase 

estimation performance). The algorithms started with one input layer (Ipt), one GL, and 

two output layers (FC). The number of GL, G, was iteratively incremented until a 

maximum value, Gmax, selected to be four, or until no relevant improvement was attained 

for the AUC (considering a threshold, th, of 1% to define the minimum relevant 

improvement) when the subsequent GL was introduced.  

The number of kernels, K, used in the convolution layer of the first GL, was varied 

between eight and 128, using a step of 2M where Kstart ≤ M ≤ Kmax (Kstart and Kmax were 

four and seven, respectively). The subsequent GL were introduced using either the same 

or twice (representing an increment of two for the multiplier MULmax) the number of 

kernels of the previous GL (providing a linear growth for the number of simulations). The 

network could include a FC layer between the last GL and the output layer, and the 

number of neurons, N, which composed this dense layer was varied from 50 (Nstart) to the 

maximum value, Nmax, of 150, in steps (Nstep) of 50. The HOSA algorithm follows the 

subsequent pseudo code: 

HOSA-C (Data, Gmax, Kstart, Kmax, Omax, Nstart, Nstep, Nmax, MULmax, th) 

G = [1, 2, …, Gmax] 

O = [0, 1, 3, 5, …, Omax] 

K = 2M where Kstart ≤ M ≤ Kmax 

N = [Nstart, Nstart + Nstep, …, Nmax] 

for g = 1 to length (G) 

    for o = 1 to length (O) 

        for k = 1 to length (K) 

            for n = 1 to length (N) 

                if O (o) > 0 

                    W = [2 × O (1) + 1, 2 × O (2) + 1, …, 2 × O (length (O)) + 1] 

                    Ap = [W (1), W (floor (W / 2 + 1)), W (length (W))] 

                else 

                    Ap = 1 

                for a = 1 to length (Ap) 

                    Net ← Ipt (Data, O (o), Ap (a)) 

                    for z = 1 to g 

                        if z == 1 

                            mul = 1 

                            Netg,o,k,n,a,z,mul:MULmax ← Net + GL (K (k)) 

                            kz,mul:MULmax = K (k) 

                        else 

                           for  mul = 1 to MULmax 

                               kz,mul = mul× kz-1,mul  

                               Netg,o,k,n,a,z,mul ← Netg,o,k,n,a,z-1,mul + GL (kz,mul) 

                    Netg,o,k,n,a,z,mul ← Net g,o,k,n,a,z,mul + FC (N (n)) + FC (2) 

                    AUCg,o,k,n,a,z,mul ← test (train (Netg,o,k,n,a,z,mul)) 

    AUCg,o,k,n,a,z,mul,max = max(AUCg,o,k,n,a,z,mul)|for all o,k,n,a,z,mul 

    if g > 1 

        if AUCg,o,k,n,a,z,mul,max – AUCg-1,o,k,n,a,z,mul,max ≤ th 

            if AUCg,o,k,n,a,z,mul,max > AUCg-1,o,k,n,a,z,mul,max 
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                BestNet = Netg,o,k,n,a,z,mul|AUCg,o,k,n,a,z,mul,max 

            else  

                BestNet = Netg-1,o,k,n,a,z,mul|AUCg-1,o,k,n,a,z,mul,max 

            break 

        else 

            BestNet = Netg,o,k,n,a,z,mul|AUCg,o,k,n,a,z,mul,max 

return BestNet 
 

It was concluded that a window length of 31 s attained the best AUC for the second 

(overlapping on the right and left, and the epoch’s label refers to the central 100 sample 

points) and third (overlapping on the left, and the epoch’s label refers to the first 100 

sample points) scenarios, while a window length of 19 s was the best for the first scenario. 

The second scenario attained the best results, while the first produced the lowest AUC. 

The optimal structure for the A phase classifier (found by the HOSA-C) was composed 

of 64 and 128 kernels in the first and second convolution layers, respectively, and 

employed 100 neurons in the first dense layer. The total number of examined networks 

was 2136, and each network was simulated 10 times. Thus, the total number of evaluated 

classifiers (using TFCV) was 21360. For the NREM assessment the optimized classifier’s 

structure was composed of 32 and 64 kernels in the first and second convolution layers, 

respectively, followed by a dense layer with 150 neurons. 

The variation of the AUC attained for the different window’s length of the tested 

overlapping scenarios, regarding the A phase classification, is presented in Figure 5.32. 

It was verified that increasing the window length beyond 31 s was counterproductive, 

indicating that the added information led to misclassifications. Such occurrence can 

conceivably be connected to the findings reported by Terzano et al. [373], where it was 

concluded that the average A phase duration was about 13 s thus, extending the duration 

further than the 31 s can introduce too much information from the not-A epochs, leading 

to misclassifications.  

 

Figure 5.32. Variation of the AUC, according to the window’s length of the tested 

overlapping scenarios, for the A phase classification. 

The low performance produced by the first scenario was related to misclassifications 

of the A phase onset boundary, which occurred when the current epoch under 

classification (epoch related to the label) was not-A and the sampling points related to a 

subsequent A phase are present in the segmented window (due to the overlapping), 

leading the classifier to wrongly classify the current epoch as A. This effect was 
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diminished in the third scenario, although the reverse effect happened, associated with 

the A phase offset boundary detection, when the current epoch under classification was 

A, and the sampling points related to a subsequent not-A epochs are present in the 

segmented window, thus, leading the classifier to wrongly classify the current epoch as 

not-A. The second scenario was affected by both onset and offset misclassification 

although, these were lessened since the algorithm has contextual information, in the 

window, from both after and before epochs, and the current classification.  

Nonetheless, it was verified that the proper offset boundary detection was problematic 

for all scenarios, particularly for the longer A phases, where the classification oscillated 

between not-A and A. This effect is in line with the indication presented by Terzano et 

al. [19], where it was specified that the A phases could exhibit limits that are ambiguous 

due to inconsistent voltage changes (in the EEG signal). However, this difficulty was 

lessened by the use of the post-processing procedure (the first part of this procedure was 

presented in section 5.2). The NREM classifier’s output was also used to reduce the 

misclassifications by reclassifying (in the second part of the post-processing procedure) 

the epochs classified as A to not-A when the predicted epoch was not-NREM. 

The performance of the best methods for A phase and NREM classification was 

assessed using TFCV, performing 50 repetitions of each iteration to achieve statistically 

significant results, using the classifiers found by the hyperparameter optimization 

procedure (HOSA-C). The Acc, Sen, Spe, and AUC for the A phase assessment were 

81%, 69%, 84%, and 0.86, respectively. The A phase classification performance is highly 

relevant as it is similar to the results of the feature based methods, advocating the 

relevance of the posed method.  

The performance of the method for sleep quality examination was assessed by 

LOOCV (performing 50 repetitions of each iteration to achieve statistically significant 

results), and using the third CAPSD (15 normal subjects and from the four subjects with 

sleep-disordered breathing). The attained results for each subject are presented in Table 

5.21. The estimated average CAP rate error (given by abs (CAP1 – CAP2) / CAP2), where 

abs is the absolute value, CAP1 is the CAP rate predicted by the model, and CAP2 is the 

CAP rate estimated from the database labels) was 32%, and the accuracy of the predicted 

sleep quality was 74%.  

It was observed that the model had difficulties performing the assessment for the 

subjects suffering from sleep-disordered breathing. It was conceptualized that a classifier 

capable of exploring temporal information can possibly lead to a better performance than 

the use of the overlapping windows. Therefore, an approach based on LSTM was used in 

the subsequent examination for the A phase and NREM assessments, using the HOSA-L 

algorithm for optimization of the network. The block diagram of the developed model 

based on LSTM is the same as presented in Figure 5.30, without the overlapping 

windows. 

The results for the LSTM optimization were similar to the results attained for the A 

phase subtype assessment (section 5.5), were it was observed that the use of BLSTM had 

an increase of less than 1% in the AUC when compared to the LSTM, and the cascade 

LSTM architecture attained a lower average AUC. Hence, the total number of examined 

network’s architecture was 192. Each network was repeated 10 times, and the total 
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number of examined classifiers was 1920. The employed algorithm for sleep quality 

estimation follows the block diagram presented in Figure 5.30, but without the creation 

of overlapping windows. It was observed that the best network’s configuration for the A 

phase classification was composed of one LSTM layer with 100 hidden units, followed 

by one dense layer with half of the LSTM’s hidden units. The optimal number of time 

steps was 25.  

Table 5.21: Performance of the method employed for sleep quality estimation based on 

the EEG signal examination using LOOCV, and classification performed by the 1D-

CNN. S indicated if the predicted sleep quality was correct (C) or wrong (W). 

 A phase NREM CAP Sleep quality 
Subjec

t 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
AUC 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
AUC 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

R^ 

(%) 

N* 

(%) 
S 

1 82.3
7 

84.6
1 

82.0
7 

0.91
1 

86.1
1 

92.5
2 

66.1
3 

0.92
7 

73.4
0 

70.4
9 

74.9
8 

5.94 12.64 C 

2 77.1

7 

75.7

6 

77.3

2 

0.84

2 

79.0

4 

88.7

9 

55.5

4 

0.88

0 

70.8

2 

64.2

1 

73.0

8 

12.0

1 
25.55 W 

3 79.8

7 

73.9

4 

80.3

7 

0.85

1 

80.0

1 

83.2

4 

73.2

2 

0.88

6 

73.3

4 

40.1

4 

83.7

7 
-1.68 3.57 C 

4 79.4
1 

85.7
7 

78.9
1 

0.90
0 

85.4
6 

87.5
7 

82.6
3 

0.93
3 

77.4
6 

76.0
8 

77.8
2 

22.4
5 

47.77 W 

5 82.2

5 

84.9

3 

81.9

3 

0.91

2 

85.5

7 

82.3

6 

94.7

9 

0.92

6 

80.0

9 

77.1

1 

81.8

7 

14.8

2 
31.53 C 

6 83.5

3 

81.4

9 

83.8

6 

0.90

0 

80.1

2 

71.9

8 

98.2

2 

0.93

7 

75.2

9 

49.4

7 

91.3

4 
-7.12 15.15 C 

7 80.4
5 

93.3
7 

79.1
7 

0.93
8 

80.9
1 

75.4
2 

92.7
6 

0.92
2 

72.9
3 

47.8
7 

83.4
2 

3.50 7.45 C 

8 76.5

8 

83.6

2 

75.7

2 

0.87

2 

81.6

4 

86.8

3 

70.8

0 

0.89

6 

72.4

1 

64.3

3 

76.0

0 
7.54 16.04 C 

9 84.1

6 

83.6

0 

84.2

0 

0.91

0 

70.7

7 

62.8

7 

86.5

2 

0.88

4 

81.1

8 

37.2

6 

92.2

9 
2.16 4.60 C 

10 79.4
4 

57.9
2 

82.0
1 

0.81
8 

77.7
2 

74.7
0 

83.8
4 

0.86
4 

77.3
7 

24.4
4 

90.1
1 

-4.72 10.04 C 

11 
80.6

2 

72.0

1 

81.5

6 

0.85

8 

68.9

4 

68.9

4 

68.9

3 

0.76

9 

80.2

0 

48.9

6 

91.7

6 

-

11.8
6 

25.23 C 

13 84.0

8 

82.7

5 

84.2

7 

0.90

3 

85.3

3 

96.7

4 

67.3

6 

0.95

5 

86.4

1 

82.1

2 

88.5

3 
-5.47 11.64 C 

14 85.7

7 

76.3

1 

87.0

6 

0.88

9 

76.1

4 

96.2

3 

35.7

6 

0.90

3 

73.0

5 

66.5

5 

75.3

3 
2.35 5.00 C 

15 83.5
6 

87.8
2 

82.9
4 

0.92
4 

85.2
3 

86.4
8 

81.3
1 

0.92
0 

78.6
5 

74.2
8 

80.9
4 

8.60 18.30 C 

16 
84.4

4 

73.3

6 

86.2

4 

0.87

2 

74.7

1 

97.0

3 

17.2

0 

0.84

2 

81.1

0 

70.7

1 

88.2

2 

-

18.0
4 

38.38 C 

17 
77.5

7 

60.7

6 

79.0

8 

0.78

2 

74.6

3 

83.0

8 

63.2

5 

0.82

3 

76.1

4 

22.0

9 

94.0

2 

-

26.2
8 

55.91 C 

18 
78.0

7 

61.1

7 

84.0

9 

0.82

4 

73.7

1 

73.5

4 

74.4

7 

0.82

2 

44.4

2 

10.0

7 

99.5

9 

-

67.2
6 

143.1

1 
W 

19 
72.3

7 

58.7

5 

78.7

4 

0.75

8 

85.6

3 

90.9

6 

72.4

3 

0.91

5 

61.9

1 

49.2

1 

76.1

2 

-
22.9

8 

48.89 W 

20 
74.5

7 

55.7

1 

83.5

2 

0.78

9 

53.6

2 

48.4

7 

78.5

3 

0.70

7 

43.9

0 

25.5

9 

87.9

6 

-
38.9

7 

82.91 W 

Mean 80.3

3 

75.4

6 

81.7

4 

0.86

6 

78.1

7 

81.4

6 

71.7

7 

0.88

0 

72.6

3 

52.6

8 

84.5

9 
- 31.77 - 

SD# 
3.55 

11.2

2 
2.94 

0.05

1 
7.77 

12.3

2 

19.1

5 

0.06

2 

10.9

8 

20.9

2 
7.49 - 33.29 - 

^ Difference between the CAP rate predicted by the model and the CAP rate estimated from the database labels 

* Result from the division of the absolute value of R (given by the difference between the CAP rate predicted by the model and the 

CAP rate estimated from the database labels) by the CAP rate estimated from the database 
# Standard deviation 

For the NREM classification the best network’s architecture was composed of one 

LSTM layer with 300 hidden units, followed by one dense layer with 150 hidden units. 
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The performance of the classifiers was assessed using TFCV (performing 50 repetitions 

of each iteration to achieve statistically significant results). The Acc, Sen, Spe, and AUC 

for the A phase assessment were 84%, 73%, 85%, and 0.86, respectively. The reached 

performance was the best attained in this work for the methods without an explicit feature 

creation procedure, suggesting that the LSTM is more suitable for this analysis than the 

1D-CNN, although a significant improvement was attained using the overlapping 

windows.  

The learning curves of both 1D-CNN and LSTM based classifiers for the A phase 

classification were assessed to check if the inclusion of more data could improve the 

performance. The attained curves are presented in Figure 5.33, and it was possible to 

conclude that the LSTM could possibly benefit more, from additional data, than the 1D-

CNN.  

 

Figure 5.33. Learning curves for the best classifiers without an explicit feature creation 

procedure, presenting the linear tendency line and its respective equation. 

The third CAPSD was employed for the performance assessment of the LSTM based 

classifiers for sleep quality assessment. LOOCV was used, and each simulation was 

repeated 50 times to achieve statistically significant results. The attained results for each 

subject are presented in Table 5.22. The assessed average CAP rate error was 17%, and 

the accuracy of the sleep quality prediction was 79%. The performance of the A phase 

estimation was lower when using the LSTM but for the NREM estimation performance 

was superior, leading to a more precise estimation of the CAP rate which, in turn, 

improved the sleep quality prediction’s accuracy. 

The last test was performed considering the hypotheses that the use of features can 

improve the classifier’s capability to recognize the relevant patterns for the most 

challenging subjects (specially the patients suffering from sleep-disordered breathing). 

The optimization procedure was carried out using TFCV, evaluating the recordings from 

the third CAPSD, and the employed model is the same used for the LSTM without an 

explicit feature creation procedure but with a feature creation step before the 

classification. The examined features were the same as presented in section 5.5, and the 

classifiers’ architectures was the same as the models without an explicit feature procedure 

for A phase and NREM assessment. The performance was then assessed by TFCV, 

performing 50 repetitions of each iteration to achieve statistically significant results, and 

the relevance of the features for the A phase classification was determined by the mRMR 
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algorithm. The order of the features, identifiable by the identification number presented 

in Table 5.15, was: 11; 10; 14; 12; 20; 13; 16; 19; 18; 15; 17; 3; 7; 2; 9; 8; 4; 1; 6; 5. 

Figure 5.34 presents the variation of the A phase classification performance metrics 

according to the number of employed features. It was observed that the best AUC was 

attained using the 12 most relevant features, reaching an Acc, Sen, Spe, and AUC of 86%, 

81%, 86%, and 0.91, respectively. 

Table 5.22: Performance of the method employed for sleep quality estimation based on 

the EEG signal examination using LOOCV, and classification performed by the LSTM 

without an explicit feature creation procedure. S indicated if the predicted sleep quality 

was correct (C) or wrong (W). 

 A phase NREM CAP Sleep quality 
Subjec

t 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
AUC 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
AUC 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

R^ 

(%) 

N* 

(%) 
S 

1 79.9

6 

75.2

5 

80.6

0 

0.85

2 

85.7

9 

92.5

2 

64.7

9 

0.92

4 

73.6

1 

79.6

5 

70.3

1 

13.6

0 

28.9

4 
C 

2 83.0

0 

73.1

5 

84.4

4 

0.86

3 

88.2

2 

94.3

1 

78.6

1 

0.95

7 

83.5

3 

84.5

2 

83.0

4 
5.54 

11.7

9 
W 

3 83.1

7 

72.3

9 

84.7

4 

0.86

2 

88.5

2 

94.1

1 

79.7

1 

0.95

7 

83.1

6 

84.5

5 

82.4

8 
6.60 

14.0

4 
C 

4 82.4
1 

72.0
1 

83.9
3 

0.85
3 

88.2
4 

93.7
3 

79.5
8 

0.95
3 

82.5
7 

81.0
9 

83.3
1 

4.14 8.81 W 

5 85.4

0 

61.1

6 

89.0

8 

0.85

6 

87.1

6 

88.0

6 

84.3

0 

0.92

7 

81.7

3 

67.4

9 

90.6

0 
-5.60 

11.9

1 
C 

6 83.0

7 

66.3

7 

85.7

2 

0.83

0 

87.8

1 

91.2

7 

80.1

1 

0.94

1 

80.6

1 

77.6

7 

82.4

4 
3.25 6.91 C 

7 81.6
8 

84.9
4 

81.3
5 

0.89
7 

89.5
7 

92.7
6 

82.6
9 

0.95
0 

76.3
5 

75.9
8 

76.5
0 

13.3
9 

28.4
9 

C 

8 82.3

7 

72.0

0 

83.8

9 

0.85

4 

88.3

0 

93.1

3 

80.6

9 

0.95

3 

82.7

3 

82.9

1 

82.6

4 
6.48 

13.7

9 
C 

9 91.1

4 

61.4

4 

93.3

0 

0.87

7 

91.3

1 

91.0

1 

91.9

1 

0.94

9 

83.8

4 

48.3

6 

92.8

2 
-5.87 

12.4

9 
C 

10 82.4

1 

73.1

9 

83.7

6 

0.85

9 

88.5

6 

93.9

9 

79.9

9 

0.95

8 

82.4

3 

83.8

1 

81.7

5 
7.09 

15.0

9 
W 

11 84.0

3 

55.8

7 

87.1

0 

0.81

2 

80.0

2 

76.2

6 

85.3

3 

0.88

1 

81.9

0 

59.8

9 

90.0

5 
-0.06 0.13 C 

13 83.9

1 

78.8

4 

84.6

5 

0.88

8 

89.5

6 

94.0

0 

82.5

6 

0.96

0 

84.9

6 

87.5

7 

83.6

7 
8.08 

17.1

9 
C 

14 80.3
9 

73.1
4 

81.3
8 

0.84
3 

82.8
5 

93.4
2 

61.5
9 

0.89
9 

71.6
1 

80.6
8 

68.4
2 

20.1
3 

42.8
3 

C 

15 85.6

4 

74.8

6 

87.2

1 

0.88

5 

90.4

2 

96.1

2 

72.5

7 

0.95

8 

82.6

2 

81.8

9 

83.0

1 
4.10 8.72 C 

16 77.3

1 

61.9

9 

79.7

9 

0.78

5 

81.4

6 

95.8

0 

44.4

7 

0.90

5 

73.1

6 

72.5

9 

73.5

5 
-2.98 6.34 C 

17 78.8
1 

52.7
5 

81.1
6 

0.74
9 

72.4
6 

81.5
6 

60.2
0 

0.82
5 

73.0
7 

45.6
4 

82.1
4 

-4.49 9.55 C 

18 
77.7

6 

52.9

0 

86.6

3 

0.77

5 

73.5

4 

71.1

9 

83.5

5 

0.84

1 

60.8

6 

41.4

5 

92.0

3 

-

29.3
5 

62.4

5 
W 

19 62.0

2 

51.4

9 

66.9

4 

0.62

8 

78.4

1 

86.4

6 

58.4

3 

0.83

9 

67.9

4 

71.6

8 

63.7

4 
0.71 1.51 C 

20 
69.2

3 

57.0

1 

75.0

4 

0.70

3 

79.6

0 

86.3

8 

46.7

5 

0.76

3 

69.4

3 

70.1

6 

67.6

5 

-

12.0

7 

25.6

8 
C 

Mean 80.7

2 

66.8

8 

83.1

9 

0.82

5 

84.8

3 

89.7

9 

73.5

7 

0.91

3 

77.6

9 

72.5

1 

80.5

3 
- 

17.1

9 
- 

SD# 
6.11 9.57 5.40 

0.06
8 

5.54 6.62 
13.1

4 
0.05

6 
6.64 

13.6
3 

8.22 - 
14.7

1 
- 

^ Difference between the CAP rate predicted by the model and the CAP rate estimated from the database labels 

* Result from the division of the absolute value of R (given by the difference between the CAP rate predicted by the model and the 

CAP rate estimated from the database labels) by the CAP rate estimated from the database 
# Standard deviation 

The sleep quality performance assessment was carried out using LOOCV (performing 

50 repetitions of each iteration to achieve statistically significant results), and the attained 

results are presented in Table 5.23. By examining the table, it is possible to observe that 
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the average CAP rate error was 22%, and the accuracy of the predicted sleep quality was 

90%. By comparing with the results of the method without an explicit feature creation 

procedure it is possible to observe a significant improvement in the A phase classification 

performance, with a relevant increment in the NREM classification performance. These 

improvements allowed the model to attain a significantly greater accuracy for the sleep 

quality estimation. It is also relevant to notice that the A phase estimation’s performance 

is the best attained in this work, and is considerably better than all state of the art works, 

supporting the relevance of the proposed methodology. 

Table 5.23: Performance of the method employed for sleep quality estimation based on 

the EEG signal examination using LOOCV, and classification performed by the LSTM 

evaluating selected features. S indicated if the predicted sleep quality was correct (C) or 

wrong (W). 

 A phase NREM CAP Sleep quality 

Subjec
t 

Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

AUC 
Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

AUC 
Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

R^ 
(%) 

N* 
(%) 

S 

1 85.2

2 

79.6

6 

85.9

7 

0.90

7 

89.8

4 

88.6

4 

93.5

9 

0.95

6 

79.8

3 

69.6

0 

85.4

1 
2.93 6.23 C 

2 85.6

7 

81.8

2 

86.2

4 

0.90

6 

93.7

3 

94.7

5 

92.1

1 

0.97

9 

84.7

5 

81.8

7 

86.1

7 
5.30 

11.2

8 
W 

3 85.1
7 

61.8
7 

87.1
4 

0.82
3 

82.3
6 

77.9
3 

91.6
7 

0.92
5 

78.3
4 

40.2
6 

90.3
1 

-4.56 9.70 C 

4 84.9

0 

82.6

7 

85.2

2 

0.89

8 

91.7

1 

94.5

5 

87.2

2 

0.97

5 

84.4

7 

85.5

0 

83.9

6 
8.29 

17.6

4 
W 

5 88.0

7 

76.8

1 

89.7

7 

0.92

3 

89.2

4 

86.8

9 

96.7

0 

0.96

4 

85.8

8 

72.0

2 

94.5

2 
-4.14 8.81 C 

6 83.5
1 

79.7
6 

84.1
1 

0.88
6 

89.9
3 

88.5
3 

93.0
5 

0.95
6 

82.2
5 

76.5
7 

85.7
8 

4.87 
10.3

6 
C 

7 84.0

1 

91.7

7 

83.2

4 

0.94

6 

95.5

3 

96.1

7 

94.1

6 

0.98

4 

78.9

9 

81.9

6 

77.7

4 

15.8

2 

33.6

6 
C 

8 73.2

3 

90.4

0 

71.1

2 

0.89

8 

85.2

1 

87.6

5 

80.1

2 

0.92

4 

69.3

6 

80.7

8 

64.2

1 

29.8

4 

63.4

9 
C 

9 91.2
4 

78.0
8 

92.2
0 

0.93
9 

93.2
0 

93.3
4 

92.9
2 

0.96
7 

84.6
8 

54.6
8 

92.2
8 

-3.67 7.81 C 

10 83.8

0 

48.4

9 

88.0

1 

0.81

6 

95.4

8 

94.7

3 

97.0

3 

0.98

6 

75.9

1 

50.8

9 

81.9

3 
8.94 

19.0

2 
C 

11 83.5

8 

66.5

7 

85.4

3 

0.85

1 
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^ Difference between the CAP rate predicted by the model and the CAP rate estimated from the database labels 

* Result from the division of the absolute value of R (given by the difference between the CAP rate predicted by the model and the 

CAP rate estimated from the database labels) by the CAP rate estimated from the database 
# Standard deviation 
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Figure 5.34. Variation of the A phase classification performance metrics according to 

the number of employed features which were fed to the LSTM. 

The boxplots of the CAP rate error produced by the examined classifiers is presented 

in Figure 5.35. By examining the figure, it is possible to observe that the model based on 

the LSTM without an explicit feature creation procedure has the lowest variation, while 

the opposite occurred for the model based on the 1D-CNN. Nevertheless, it was observed 

that the feature based model (LSTM fed with features) attained a better performance for 

the sleep quality prediction. These results are likely to be related to the performance of 

the algorithms for the examination of the subjects suffering from sleep-disordered 

breathing, where the feature based method surpassed the methods without an explicit 

feature creation procedure, corroborating the hypothesis that the use of features can 

improve the performance of the classifier for the most challenging subjects. Figure 5.36 

presents the normalized CAP rate error for all studied subjects, where it is possible to 

conclude that subject 18 was the most challenging for the classifiers without an explicit 

feature creation procedure, while the examination of subject 8 produced the highest error 

for the feature based model. These results can possibly be due to the relatively small 

number of subjects with sleep-disordered breathing available in the database (four 

subjects), which may not provide enough data for the method without an explicit feature 

creation procedure to recognize all the relevant patterns. 

 

Figure 5.35. Boxplots of the estimated CAP rate error for each examined classifier. 
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a) b) 

  
c) 

 
 

Figure 5.36. Normalized CAP rate error produced by a) the model based on the 1D-

CNN, the model based on the LSTM without an explicit feature creation procedure, and 

c) the model based on the LSTM fed with features. 

5.7. Discussion of the results 

The comparative analysis between the results attained by the developed algorithms 

for the classification of the CAP A phases, and the results of the methods proposed in the 

state of the art is presented in Table 5.24. By analyzing the table, it is possible to verify 

that Barcaro et al. [324] achieved the highest Acc from the group of works that did not 

use a machine learning approach. Regarding the employment of LDA, Mariani et al. [329] 

reported the best Acc and Spe, but the lowest Sen. Thus, the results are unbalanced, and 

are possibly not suitable for clinical applications, while the results achieved in this work 

are balanced and have a higher Sen. Machado et al. [331] achieved a lower performance 

than the best results of this work.  

Examining the results reported by Mariani et al. [328] and [330] for the SVM, it is 

possible to attest that a lower Acc and Spe were attained in this work, but the Sen is 

higher. These results could be related to the usual unbalanced data in a normal subject, 

with significant more not-A than A epochs, indicating that an increase in the Spe has a 
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larger impact in the Acc than a growth in Sen. Likewise, most of the state of the art works 

examined a lower number of subjects than this work, and have only examined subjects 

free of sleep related disorders, which is likely to lead to a better performance of the 

classifier. The same conclusions can be reached for the FFNN and AdaBoost. 

Regarding the examination of the four classifiers evaluated for the methods without 

an explicit feature creation procedure, it was observed that LSTM attained the most 

balanced performance. A further examination was performed using overlapping windows 

to feed the 1D-CNN, leading to the best performance of all proposed methods without an 

explicit feature creation procedure. Nonetheless, a superior performance was reached 

when features were fed to the LSTM, suggesting that some of the relevant patterns were 

highlighted by these features. According to Rosa et al. [53], the specialist agreement 

ranges from 69% to 78%, examining the same EEG results. Therefore, the attained results 

with the best classifiers are considerably above the upper bound of the specialist 

agreement. These results advocate the feasibility of the developed algorithms for clinical 

diagnosis, and are indicative of the possibility for the developed algorithms to become 

useful tools for medical diagnosis. 

Table 5.24: Comparative analysis between the state of the art methods for the A phase 

classification and the results attained in this work. 

Work Classifier Population 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

CO 

(%) 

[331] LDA 30* 68 - - - 

[28] Tuned threshold 8 69 59 71 66 

[331] kNN 30* 70 - - - 

[331] SVM 30* 71 - - - 

[28] Tuned threshold 8 72 52 76 67 

[28] Tuned threshold 8 72 70 72 71 

[323] Tuned threshold 10 77 84 90 84 

[330] AdaBoost 8 79 69 79 76 

[326] Tuned threshold 6* 81 76 81 79 

[330] SVM 8 82 70 84 79 

[330] FFNN 8 82 73 82 79 

[79] FFNN 4 82 76 83 80 

[324] Tuned threshold 10 84 - - - 

[328] SVM 4 84 74 86 81 

[330] LDA 8 85 73 87 82 

[329] LDA 16* 86 67 90 81 

This work – feature based methods with 

features selected by SFS 

LDA  13* 75 78 74 76 

LR  13* 76 80 75 77 

CT  13* 70 58 73 67 

ET  13* 70 64 71 68 

SVM  13* 72 80 70 74 

FFNN  13* 79 76 80 78 

CFNN  13* 76 77 76 76 

kMC  13* 78 67 81 75 

kNN  13* 72 70 72 71 

SOM  13* 67 79 66 71 

This work – methods without an explicit 

feature creation procedure 

DSAE 13* 67 55 69 64 

LSTM 15* 76 75 77 76 

GRU 15* 81 66 83 77 

1D-CNN 15* 74 71 75 73 

This work – method for sleep quality 

examination 

1D-CNN 19* 80 76 82 79 

LSTM without an explicit 
feature creation procedure 

19* 81 67 83 77 

 LSTM fed with feature 19* 83 77 84 81 

* The CAP Sleep Database – PhysioNet [19] 
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Regarding the A phase subtype detection, the comparative analysis between the 

results of the state of the art methods and the attained results is presented in Table 5.25.  

By examining the table, it is possible to conclude that the state of the art works which 

employed tuned thresholds for classification presented a poor classification performance 

for one of the A phase subtypes, which is not suitable for medical examination. On the 

other hand, the work presented by Mendez et al. [327] reported a performance which is 

similar to the results attained in this work, although only five subjects were examined. By 

comparing the methods without an explicit feature creation procedure with the feature 

based methods, it is possible to conclude that the employment of features allowed the 

classifier to achieve results which are more balanced (similar Sen and Spe), and are, 

therefore, more relevant for clinical diagnosis.  

Table 5.25: Comparative analysis between the state of the art methods for the A phase 

subtype classification and the results attained in this work. 

Work Classifier Population CL+ 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

CO 

(%) 

[322] Tuned 

threshold 

10 A1; A2; 

A3 

95; 85; 

60 

- - - 

[325] Tuned 

threshold 

6 A1; A2; 

A3 

- 80; 77; 
68 

83; 73, 
74 

- 

[327] kNN 5 A1; A2; 

A3 

90; 43; 

80 

- - - 

This work – methods without an explicit 

feature creation procedure 

LSTM  19* A1; A2; 

A3 

88; 86; 

80 

62; 53; 

58 

90; 87; 

81 

80; 75; 

73 

This work – feature based methods with 

features selected by SFS 

LSTM 19* A1; 

A2; A3 

83; 

83; 83 

83; 

74; 71 

83; 

83; 84 

83; 

80; 79 

* The CAP Sleep Database – PhysioNet [19] 
+ Classified A phase subtype 

Only Karimzadeh et al. [336] have performed the CAP cycle detection, and reported 

the results using the same performance metrics employed in this work (the other works 

reported the performance suing proposed metrics or employing correlation analysis). The 

comparative analysis with the developed algorithms for the classification of the CAP 

cycle detection is presented in Table 5.26. The reported results of the best developed 

methods are similar to the results Karimzadeh et al. [336]. However, the full EEG signal 

was used in this work for the performance assessment (instead of evaluating a selected 

part of the signal, as it was done by Karimzadeh et al. [336]), and more subjects were 

examined. The comparative analysis between the attained performance and the state of 

the art results for the sleep quality estimation is presented in section 8.2.  

5.8. Key remarks 

Several methods for CAP analysis, based on the examination of the EEG signal, were 

proposed and evaluated in this chapter. The first approach was the evaluation of the state 

of art to identify the most successful proposals and ascertain the gaps in the literature. 

The most relevant features were tested, and sets of new features were proposed for 

multiple classifiers. The second analysis was the development of methods without an 

explicit feature extraction process that are capable of learning high dimensional and 

abstract patterns from the input signal without requiring a feature selection method.  

Both feature based and methods without an explicit feature extraction process attained 

an accuracy that is the same as the upper limit of the specialist agreement, advocating the 
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relevance of the developed models. A sleep model was subsequently proposed to test the 

hypothesis that the CAP cycles have a temporal dependency, which could possibly be 

identified by a stochastic model if the sleep process could be described with an 

approximation to continuous traces. It was identified that this model was feasible for CAP 

analysis and could provide a framework for future analysis in the sleep microstructure, 

taking into consideration that it is a new way of interpreting sleep. The subsequent 

examination was the A phase subtype assessment, which allowed to perform the 

characterization of CAP. The last examination was the proposal of methods for sleep 

quality assessment based on the CAP rate estimation. It was observed that the feature 

based methods can attain a better performance possibly because they can better highlight 

the relevant patterns for the classification. 

Table 5.26: Comparative analysis between the state of the art methods for the CAP cycles 

classification and the results attained in this work. 

Work Classifier Population 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

CO 

(%) 

[336] kNN 8*+ 77 - -  

[336] LDA 8*+ 79 - -  

[336] SVM  8*+ 79 - -  

This work – feature based methods with 

features selected by SFS 

LDA  13* 75 - -  

LR  13* 78 - -  

CT  13* 64 - -  

ET  13* 70 - -  

SVM  13* 75 - -  

FFNN  13* 79 - -  

CFNN  13* 77 - -  

kMC  13* 78 - -  

kNN  13* 70 - -  

SOM  13* 68 - -  

This work – methods without an explicit 

feature creation procedure 

DSAE 13* 62 67 59 63 

LSTM 15* 76 71 84 77 

GRU 15* 72 60 88 73 
1D-CNN 15* 73 66 83 74 

This work – proposed sleep model HMM 15* 72 66 75 71 

This work – method for sleep quality 

examination 

1D-CNN 19* 73 53 85 70 

 LSTM without an explicit 

feature creation procedure 

19* 78 73 81 77 

 LSTM fed with feature 19* 79 70 82 77 

* The CAP Sleep Database – PhysioNet [19] 
+ Average of the reported results 

The main limitation of the performed analysis was the relatively small number of 

subjects with sleep-disordered breathing, which may not have allowed the methods 

without a specific feature creation procedure to properly identify all the relevant patterns 

associated with the intended classification. Another limitation was the absence of an 

extensive validation (by comparing with an exhaustive grid search method) of the 

proposed heuristic oriented method for the classifiers optimization, and the absence of 

comparative analysis with other heuristic based approaches proposed in the state of the 

art. The last limitation was that the evaluation only considered one sleep related disorder. 

Hence, it is not possible to know if other disorders could significantly change the results. 
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This chapter presents the development of methods to perform the indirect 

measurement of CAP from the ECG signal. The predicted metrics (based on CAP 

characteristics) allow to estimate the quality of sleep according to the first approach for 

sleep quality examination theorized in this work from the state of the art analysis. By 

seeing CAP a marker of sleep instability, the proposed approaches consider an extended 

concept for CAP, where the oscillation between the stable and unstable sleep are assessed 

by evaluating the indirect effect of CAP in other physiological signals, in this case the 

ECG signal [41].  

For this purpose, a CPC technique was employed to perform a minute-by-minute 

estimation of the CAP epochs, a concept developed in this work that considers an optimal 

threshold to define each minute as either CAP or non-CAP. The NREM minutes were 

also estimated from the CPC, and this information was combined with the CAP epochs’ 

classification to predict the CAP rate. The age-related CAP rate percentages in healthy 

subjects was then consider as a threshold to assess the sleep quality. A second sleep 

quality prediction method was also proposed by evaluating the average of the 

spectrographic CPC measure. A tool for time series analysis was developed at the end of 

the chapter to study the connection between the EDR and the N-N series with the goal of 

estimating the CAP epochs. 

6.1. CAP estimation from ECG 

6.1.1. Viability assessment 

For healthy subjects, the HRV spectrum can be analyzed to assess the sleep stage by 

considering the ratio of the power on the 0.05 to 0.15 Hz band to the 0.15 to 0.4 Hz band. 

A large increase in the ratio is related to REM periods, while a characteristic pattern is 

associated with the presence of NREM sleep. A significant decrease in the ratio indicates 

the occurrence of more synchronized sleep (deep sleep) [374]. Unstable periods of sleep, 

associated with the existence of CAP, can be detected using CPC, between EDR and 

HRV, examining the power on the LF coupling. On the other hand, wake or REM sleep 

periods can be assessed by evaluating the CPC coupling in the VLF while periods of 

stable sleep (absence of CAP) can be identified by the power in the HF coupling [41] 

[52].  

Therefore, the relation between the HRV and EDR was analyzed to estimate both 

CAP and NREM periods, considering minute-by-minute analysis (epochs with a duration 

of 60 s were employed to follow Thomas et al. [41] indication that his duration is suitable 

for scoring CAP), and this information was then employed to infer the CAP rate, for sleep 

quality estimation. The age-related CAP rate percentages in healthy subjects [10] were 

considered as a reference to define the quality of sleep. This analysis was validated by the 

fact that CAP rate is characterized by a low night-to-night intra-individual variability, 

despite the complex changes that this metric undertakes through the life period of a person 

[10]. Thus, the concept of CAP was interpreted in a broader context, and the CAP cycles 

occurrence was indirectly estimated. 

Sleep stages, associated with the sleep macrostructure, are labeled every 30 s, thus the 

one minute epoch’s label was defined as NREM if one or both of the 30 s annotations 
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(which compose the minute long epoch) correspond to NREM sleep. REM and Wake 

periods were labeled as non-NREM to allow binary classification (either NREM or non-

NREM). The CAP cycle annotations were generated using the Terzano reference atlas 

[19] for one second epochs as presented in section 4.1. 

Although a minute-by-minute classification was performed in this work, in healthy 

adults, the average CAP sequence lasts 2 min and 33 s and the average CAP cycle duration 

is 26.9 ± 4.1 s [38]. Hence, a CAP sequence is likely to occur over several one minute 

epochs. This is particularly problematic for the first and last CAP cycle as an ambiguous 

situation can be created if the CAP cycle occurred over two consecutive one minute 

epochs. For example, a CAP cycle which lasts 50 s and has 5 s in a one minute epoch and 

45 s in the subsequent one minute epoch (it is important to bear in mind that contrarily to 

the macrostructure, where an epoch is score every 30 s, the CAP cycles can range from 4 

s to 120 s, performing the scoring at every second). Another difficulty is associated with 

the isolated CAP cycles with a short duration or the short CAP sequences with few and 

short CAP cycles. These may represent short periods of instable sleep without leading to 

noticeable alterations in the ECG signal.  

As an example, three isolated CAP cycle composed of phases lasting 2 s may be too 

short to produce a noticeable alteration in other physiological signals. In these situations, 

it is questionable if the minute should be considered CAP or non-CAP, denoting a minute 

of instable or stable sleep, respectively. An approach to address this issue was proposed 

in this work by formulating the CAP epoch concept, indicating that a period is related to 

instable sleep (CAP) only when more than a defined percentage of the 60 s of data (one 

minute epoch) was scored as a CAP cycle. Therefore, a threshold based methodology 

defined the one minute epoch as either unstable (CAP) or stable sleep (non-CAP). In the 

first test (viability assessment), an epoch was labeled as CAP if more than 30% of the 

minute corresponds to a CAP period (filtering the CAP related events that occur in the 

epoch but are shorted than 18 s). Otherwise, the minute was labeled as non-CAP.  

The data was then segmented into one minute epochs, and a seven minutes window 

was employed, where the central minute was the one corresponding to the epoch label, 

and the first and last three minutes overlapped with the other windows. ECG records the 

electrical activity produced by the heart on the body surface. The characteristics of the 

measured waves are dependent upon the relative speed and direction of the activation 

wave front, and the amount of tissue that is activated at one time [375]. Several wave 

forms can be measured by ECG. Conversely, the QRS complex (large ventricular 

waveform) is particularly relevant since it is the simplest portion of the ECG tracing 

which allows to reliably estimate the heart rate. The QRS detection was implemented 

using an adaptation of the method developed by Pan and Tompkins [302], since it is 

capable of correctly detecting the QRS complexes in signals significantly contaminated 

with noise. 

The ECG signal was band-pass filtered in the band with the maximum desired QRS 

energy (5 to 15 Hz band) with a filter composed of a combination of high-pass and low-

pass filters. This approach allows the reduction of: the baseline wander; the influence of 

muscle noise; the T-wave interference. Afterwards, the QRS complex slope was assessed 

using a derivative filter, implementing an approximation of the signal derivative, and the 
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signal was squared to perform a nonlinear amplification that emphasizes the higher 

frequencies. Information from the waveform was attained using a Moving-Window 

Integration (MWI). However, if the window is too narrow, the QRS complex can be 

poorly detected, and if the window is too wide, other wave forms can merge with the QRS 

complex. In both cases, additional noise can be introduced in the signal. It was empirically 

verified, for the employed sampling rate, that a window with a length of 30 samples 

provides the best compromise [302]. 

The rising edge of the MWI marks the beginning of a QRS complex thus, a fiducial 

mark was created to identify the temporal location of the QRS complex. The maximum 

slope of the MWI corresponds to the R-wave peak, and the duration of the rising edge 

indicates the QRS complex width. A refractory period (0.2 s after a QRS detection) was 

employed to avoid the detection of the same QRS complex multiple times. The next QRS 

complex should occur within a period of 0.36 s from the last detection. Otherwise, the 

wave was classified as a T-wave if the mean slope of the waveform was lower than half 

of the previous QRS complex [302].  

The band-pass filtered signal and the QRS complex detection algorithm output were 

compared to produce a time series with the amplitude and time occurrence of the R-

waves. This signal was then used as a reference to determine the interbeat intervals, and 

all abnormal R-peaks (peaks with an amplitude higher or lower than two times the 

standard deviation from a running average) were rectified, considering the average of the 

next and previous peaks as a reference, ensuring the validity of data, producing the N-N 

series. 

A modulation of the QRS morphology occurs during the respiration cycle due to 

changes in the transthoracic impedance, as the lungs fill and empty, and the movement of 

the ECG electrodes in relation to the heart, altering the heart-to-electrode distance. EDR 

is based on the analysis of this modulation [376], and an adaptation of the algorithm 

developed by Arunachalam and Brown [377] was employed to produce this signal. The 

respiratory amplitude modulation factor a was computed for all elements of the N-N 

series, considering the current nth value of the R-peak amplitude, R, and a running average 

of the current and all previous R-peak amplitudes, S, by [377] 

𝑎𝑛 =
𝑅𝑛
𝑆𝑛

 6.1 
 

The EDR series was produced by running an interpolation over a. An example of a 30 s 

analysis of the EDR and squared QRS signals is presented in Figure 6.1. 

The relation between the variability of respiratory volume and the heart rate can be 

assessed using a CPC technique. Cross-spectral coherence was selected to perform this 

analysis, since it can be implemented using only data from a single-lead ECG [41]. It 

consists of computation of the coherence and cross spectral power of the input (N-N series 

and EDR) for successive overlapping windows in the 0 to 0.5 Hz band. Therefore, this 

technique allows to describe the signals relationship, in the frequency domain, based on 

their second order statistics. The cross-spectrum between the discrete Fourier transform 

components, m, of N-N series, N, and EDR, E, is given by [378] 

𝛤𝑚(𝑁, 𝐸) = 𝐴𝑁,𝑚𝐴𝐸,𝑚𝑒
𝑗(𝛷𝐸,𝑚−𝛷𝑁,𝑚) 6.2 
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where 𝛷 and A are the phase and amplitude of the Fourier components, respectively. The 

regularity of the phase difference between the two signals was determined by the 

magnitude squared coherence [378] 

𝛥𝑚(𝑁, 𝐸) =
𝛤𝑚(𝑁, 𝐸)

2

(𝐴𝑁,𝑚𝑒
𝑗𝛷𝑁,𝑚)

2
(𝐴𝐸,𝑚𝑒

𝑗𝛷𝐸,𝑚)
2 6.3 

 

The Welch’s averaged periodogram method was applied, since the number of samples in 

each window was finite, to obtain the estimates of the cross-correlation matrices [379]. 

 

Figure 6.1. Example of the squared EDR and QRS signals [80]. 

The quantitative degree of CPC was assessed by [41] 

𝛽(𝑓𝑚) = 𝛤𝑚(𝑁, 𝐸)
2𝛥𝑚(𝑁, 𝐸) 6.4 

 

considering the power of the heart rate and the variability of respiratory volume 

(evaluated by the cross-spectral power), and the consistency with which these signals 

track each other (assessed by the coherence) at each frequency. However, the used method 

requires that the heart rate is at least two times higher than the respiration rate in order to 

meet the Nyquist frequency requirements for a consistent recognition of the respiration 

cycle, and avoid aliasing [80]. Therefore, a spectrographic measure of the CPC was 

produced, and it was fed to the classifiers to estimate the CAP and NREM periods. An 

example of a CPC spectrographic measure, with movement noise and periods of stable 

and unstable sleep is presented in Figure 6.2. 

 

Figure 6.2. Example of a CPC spectrographic measure, with movement noise and 

periods of stable and unstable sleep [299]. 
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Ten classifiers implementing binary classification were examined in the first test with 

the purpose of covering multiple solutions (including supervised and unsupervised 

learning methods), and identify the most suitable for the intended classification. Eight 

classifiers employ supervised learning: LR; LDA; QDA; CART; TreeBagger (bagging 

CART); kNN; SVM; FFNN. AdaBoost was used to produce an ensemble of weak learners 

generated by kMC, forming an unsupervised learning classifier. The last classifier was a 

DSAE (composed of two stacked autoencoders, followed by an output layer to perform 

the classification) that was trained using unsupervised learning to individually train the 

HLs, and then supervised learning was employed, at the end of the training, to fine tune 

the weights (process described in section 5.3).  

Cost-sensitive learning was used to minimize the effect of the data unbalance in all 

supervised learning classifiers, while oversampling (of the minority class) was applied to 

the training dataset for the unsupervised learning methods. Cost-sensitive learning was 

also used during the fine tune of the DSAE weights, performed using supervised learning 

at the end of the training of the DSAE, considering the distribution of the training 

dataset’s labels before oversampling. The block diagram of the developed model is 

presented in Figure 6.3. 

 

Figure 6.3. Block diagram of the implemented model for sleep quality estimation with 

cardiopulmonary coupling [81]. 

Hyperparameter optimization and performance examination was carried out using the 

recordings from the fourth CAPSD (nine normal subjects and four subjects with sleep-

disordered breathing) and LOOCV (performing 50 repetitions of each iteration to achieve 

statistically significant results). The flowchart of the training and testing procedure is 

presented in Figure 6.4. 

It was verified that regularization had no significant effect on the CAP or NREM 

classification for the LR while it considerably improved QDA performance. For LDA, 

only NREM detection was improved with regularization. For the CART, the maximum 

number of splits and size were varied between 1 and 100. The CAP classification achieved 

the best results using, respectively, 30 and 70, respectively. For NREM, classification 

was 60 and 90, respectively. The highest AUC for both NREM and CAP classification 

with the TreeBagger was attained using 29 trees (the number of trees was varied between 

1 and 50). 

The number of nearest neighbors considered for kNN was varied between 1 and 20, 

achieving the best results with 6 for NREM classification, and 3 for the CAP detection. 

A Gaussian kernel, and an outlier fraction of 5% attained the highest AUC for the 

classification with the SVM. Scaled conjugate gradient [308] was used as the training 
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algorithm for the FFNN, with the hyperbolic tangent sigmoid as transfer function. The 

number of neurons of the HL was varied between 1 and 30, in steps of 1. 17 neurons 

produced the best performance for NREM detection while 19 were used for CAP 

classification. The number of weak learners that were employed by the AdaBoost 

classifier was varied between 1 and 40. The highest AUC for both CAP and NREM 

classifications was achieved using 15 weak learners. The number of neurons in the 

autoencoders of the DSAE, was varied between 20 and 140, in steps of 20 neurons. The 

classifier was fine-tuned using the scaled conjugate gradient and, for both classifications, 

the best results were achieved using 120 and 60 neurons in the first and second 

autoencoders, respectively. 

 

Figure 6.4. Flowchart of the employed procedure for training and testing the classifiers 

[80]. 

The results of each classifier for NREM classification are presented in Table 6.1, 

while Table 6.2 presents the results for the CAP classification. DSAE achieved the 

uppermost Sen and Acc for NREM detection while LDA provided the best Spe. By 

analyzing Table 6.2, it was observed that the DSAE attained the highest Acc and Spe 

while kNN reached the best Sen. Taking into consideration these results, it was concluded 

that DSAE is the best classifier to be further examined.  
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Table 6.1: Results of each classifier, fed with CPC, for NREM detection [80]. 

Classifier Acc (%) Sen (%) Spe (%) 

LR 58.15 ± 0.27 57.56 ± 0.57 60.01 ± 0.78 
LDA 64.37 ± 0.13 62.40 ± 0.22 74.54 ± 0.18 

QDA 60.39 ± 0.06 60.48 ± 0.11 60.13 ± 0.10 

CART 61.85 ± 2.02 61.62 ± 3.05 62.59 ± 1.59 
TreeBagger 66.31 ± 0.50 68.32 ± 0.93 60.01 ± 1.37 

kNN 67.67 ± 0.96 70.35 ± 1.59 59.16 ± 2.13 

SVM 67.76 ± 0.80 70.03 ± 1.58 60.65 ± 1.67 
FFNN 62.82 ± 1.02 61.27 ± 1.77 68.68 ± 2.35 

AdaBoost 61.91 ± 0.12 61.47 ± 0.39 63.17 ± 0.24 

DSAE 69.51 ± 0.47 72.06 ± 1.11 60.20 ± 0.78 

 

Table 6.2: Results of each classifier, fed with CPC, for CAP detection [80]. 

Classifier Acc (%) Sen (%) Spe (%) 

LR 57.11 ± 1.05 52.70 ± 1.54 58.33 ± 1.35 

LDA 53.51 ± 2.37 51.87 ± 6.75 54.58 ± 4.34 
QDA 58.38 ± 10.22 50.39 ± 15.85 60.61 ± 17.38 

CART 56.55 ± 1.78 51.83 ± 2.47 58.15 ± 3.16 

TreeBagger 59.52 ± 0.85 56.45 ± 1.69 60.21 ± 1.41 
kNN 57.12 ± 1.42 61.07 ± 3.52 56.08 ± 2.39 

SVM 55.86 ± 2.15 50.78 ± 4.00 57.27 ± 3.57 

FFNN 61.75 ± 1.12 51.23 ± 1.43 64.64 ± 1.68 
AdaBoost 53.41 ± 0.28 53.41 ± 0.14 53.48 ± 0.18 

DSAE 61.89 ± 1.19 50.19 ± 1.33 65.85 1.66 
 

6.1.2. Improving the minute-by-minute classification 

A deeper study regarding the effectiveness of CPC for CAP estimation was performed 

testing the DSAE (classifier that achieved the best results in the viability assessment) and 

the FFNN (allowing to compare the performance of a deep and a shallow network) as 

classifiers.  

Three thresholds (20%, 35% and 50%) were examined to establish the CAP epoch, 

and determine the predictive capability of the algorithms. The 20% threshold recognizes 

a minute as CAP if more than 20% of the total duration (60 s) corresponds to unstable 

sleep (CAP), filtering the CAP related events that are shorter than 12 s. This threshold 

was employed to verify if the algorithm could detect the “short” CAP related events, 

which last between 12 and 21 s. The 35% threshold filters the “short” CAP related events, 

in the analyzed minute, only considering the minute as unstable sleep if the CAP related 

events are longer than 21 s. The 50% threshold only considers the “longer” CAP related 

events that last more than 30 s to consider the minute as unstable sleep. 

A threshold based approach, proposed by Thomas et al. [41] and Ibrahim et al. [52], 

was also analyzed as a possible alternative to the machine learning classifiers. This 

method considers three CPC frequency bands (VLF, LF, and HF) and examines two 

ratios. The first was defined by the sum of the two highest peaks in the LF band to the 

sum of the two highest peaks in the HF band. The second was given by the sum of the 

two highest peaks in the VLF band to the combined power of the two highest peaks in the 

LF and HF bands. Regarding the first ratio, a dominance of power in the HF band was 

associated with physiologic respiratory sinus arrhythmia, deep sleep, and non-CAP 

periods, while a preponderance of power in the LF was related to the presence of CAP 

periods, and can possibly indicate the occurrence of periodic respiration in SBD subjects. 

Concerning the second ratio, a dominance of power in the VLF was related to wake or 



 

119 

 

REM periods [41] [52]. Though this is a simple and easy to implement approach, it is 

likely to be dependent on the population that was employed to tune the thresholds. 

The DSAE and FFNN hyperparameter optimization was done using BS and TFCV 

(performing 10 repetitions of each iteration for both algorithms) [318] for both CAP and 

NREM classification, using the configuration that maximized the AUC for each analysis. 

Afterwards, BS and TFCV were used for performance assessment using the tuned 

classifiers. The experiments were repeated 50 times to ensure the statistically significance 

of the results. LOOCV was used for the CAP rate estimation (repeating the simulation 50 

times). The values specified by Thomas et al. [41] were employed for the thresholds based 

classification, testing the predictive capability of the classifier in each subject. 

Oversampling was used to balance the training dataset while cost-sensitive learning 

(considering the distribution of the training dataset’s labels before oversampling) was 

used during the fine tune of the weights, performed using supervised learning, at the end 

of the training of the DSAE. 

The number of neurons employed in the FFNN HL was varied between 1 and 150, in 

steps of 1 neuron. It was verified that 140 and 129 neurons achieved the best AUC for the 

NREM and CAP classification, respectively. The training algorithm and transfer function 

were the same as employed in the previous subsection (6.1.1).  

A variation of the proposed heuristic search method for finding the structure of 

classifiers without an explicit feature creation procedure, named HOSA-A, was employed 

for optimizing the DSAE architecture. The number of encoders, Enc, which composed 

the network, G, was varied from 1 to the maximum number, Gmax, chosen to be 4 or until 

no significant improvement was reached for the AUC (considering a threshold, th, of 1% 

to define the minimum significant improvement) when the following encoder was 

introduced. The number of neurons in the first encoder, N, was varied between 10 (Nstart) 

and 150, which was chosen to be the maximum number, Nmax, in steps, Nstep, of 10. The 

number of hidden units used by the subsequent encoders was chosen to be either half 

(using the floor function to round the result of the division), the same, or twice the number 

of hidden units employed by the previous encoder. The output of all networks was a fully 

connected layer that used the soft-max function for classification. The HOSA-A follows 

the subsequent pseudo code: 

HOSA-A (Data, Gmax, Nstart, Nstep, Nmax, th) 

G = [1, 2, …, Gmax] 

N = [Nstart, Nstart + Nstep, …, Nmax] 

for g = 1 to length (G) 

    for n = 1 to length (N) 

        for m = 1 to 3 

            Net0 ← Ipt (Data) 

            Nprev = N (n) 

            for z = 1 to g 

                Netz ← Netz-1 + Enc (Nprev) 

                if m == 1 

                    Nprev = floor (N (n) / 2 + 1 / 2) 

                else 

                    if m == 2 
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                        Nprev = N (n) 

                    else 

                        Nprev = N (n) × 2 

            Netg,n,m ← Netg + FC (2) 

            AUCg,n,m ← test (train (Netg,n,m) 

    AUCg,n,m,max = max(AUCg,n,m)|for all n,m 

    if g > 1 

        if AUCg,n,m,max – AUCg-1,n,m,max ≤ th 

            if AUCg,n,m,max > AUCg-1,n,m,max 

                BestNet = Netg,n,m|AUCg,n,m,max 

            else 

                BestNet = Netg-1,n,m|AUCg-1,n,m,max 

            break 

        else 

            BestNet = Netg,n,m|AUCg,n,m,max 

return BestNet 
 

The DSAE was fine-tuned using the scaled conjugate gradient and, for both NREM 

and CAP classifications, the best results were achieved using 120 and 60 neurons in the 

first and second autoencoders, respectively. The number of examined networks was 135, 

and each simulation was repeated 10 times. Thus, the total number of simulated networks 

was 1350 for each examined validation method. 

Three windows were tested (3 min, 5 min and 7 min) using the FFNN for the NREM 

and CAP classification. It was verified that the 7 min window, with six min overlapping 

(windows used in the viability test, presented in the previous subsection), achieved the 

highest AUC that was, on average, 7% and 3% higher when comparing with the 3 min 

and 5 min window, respectively. Therefore, increasing the window also improves the 

performance of the classifier, possibly due to the growth in the amount of data available. 

However, an increase to a 9 min window did not provide a notorious increase in the AUC. 

Consequently, the 7 min window was used in the tests, allowing to compare the new 

results with the ones previously attained. 

Tables 6.3 and 6.4 present the performance of the classifiers regarding the NREM and 

CAP classification, respectively. By analyzing the tables, it is possible to verify that 

DSAE achieved the best results, followed by the FFNN, and the thresholds based 

classifier produced the worst results (possibly indicating that the thresholds, tuned using 

a different population, did not generalized well for the studied subjects). It is also possible 

to verify that BS improved the AUC, when comparing with the TFCV, and reduced the 

standard deviation. This could possibly indicate that the higher amount of data available 

using BS allowed to train the classifiers with more patterns, leading to a performance 

improvement.  

Table 6.3: Results for NREM detection of the second test with CPC [81]. 

Classifier Method Acc (%) Sen (%) Spe (%) AUC 

FFNN TFCV 62.82 ±1.02 61.27 ±2.36 68.68 ±1.77 0.646 ±0.007 

 BS 73.92 ±0.75 76.67 ±1.13 66.36 ±1.72 0.701 ±0.007 
DSAE TFCV 70.69 ±4.56 74.06 ±5.95 61.06 ±5.83 0.661 ±0.035 

 BS 73.67 ±0.67 76.65 ±1.14 66.52 ±1.09 0.710 ±0.004 

Threshold - 60.19 ±5.74 31.09 ±12.39 67.23 ±6.03 0.492 ±0.072 
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The entropy of the variability, causality, and connection between N-N series and EDR 

were analyzed in the third test for both classifiers (FFNN and DSAE), implementing the 

model presented in Figure 6.5, considering the 7 minute window with the 35% threshold 

for the CAP epoch definition. CPC analysis was based on the previously employed 

method. However, since the Fourier expansion is based on frequency resolution, it is not 

possible to know when the frequencies occur in a signal. To address this concern the 

wavelet analysis, a time–frequency joint representation [380], was also performed. 

Specifically, the Morlet wavelet (chosen because it is frequently employed in the state of 

the art to distinguish the abnormal heartbeat behavior in the ECG, which is non-stationary 

[380]) was used in the estimation of both cross-spectrum and magnitude squared 

coherence, having time-widths that are adapted to their frequencies.  

Table 6.4: Results for CAP detection of the second test with CPC [81]. 

Classifier Method CAP (%) Acc (%) Sen (%) Spe (%) AUC 

FFNN TFCV 20 57.57 ±6.09 51.26 ±1.79 61.26 ±5.64 0.563 ±0.071 

 35 61.75 ±1.12 51.23 ±1.42 64.64 ± 1.68 0.584 ±0.008 

 50 61.03 ±7.01 48.44 ±7.70 64.89 ±1.68 0.567 ±0.101 
 BS 20 63.82 ±0.56 47.40 ±1.10 71.31 ±1.00 0.594 ± 0.005 

 35 72.73 ±0.62 52.92 ±1.25 73.36 ±0.96 0.616 ± 0.004 

 50 74.43 ±0.80 67.03 ±1.71 74.99 ±0.93 0.710 ± 0.007 
DSAE TFCV 20 61.88 ±7.35 41.69 ±2.00 73.56 ±5.73 0.576 ±0.097 

 35 72.23 ±4.18 58.37 ±3.17 75.94 ±6.24 0.688 ±0.074 
 50 83.25 ±3.76 51.30 ±2.43 87.15 ±5.87 0.692 ±0.090 

 BS 20 62.76 ±0.65 68.11 ±2.63 60.41 ±1.42 0.643 ±0.009 

 35 72.97 ±0.89 59.65 ±1.11 75.46 ±1.18 0.691 ±0.013 
 50 80.83 ±2.34 59.84 ±3.66 83.52 ±2.78 0.727 ±0.011 

Threshold - 20 54.02 ±9.51 36.86 ±10.05 66.38 ±8.81 0.516 ±0.019 

 35 58.02 ±7.43 38.35 ±11.9 66.10 ±8.71 0.522 ±0.034 
 50 62.79 ±6.50 46.07 ±20.17 65.92 ±8.43 0.559 ±0.061 

 

A causality analysis was performed through the matrix of lags (a method for causality 

examination that was proposed in this work; detailed information about this method is 

presented in section 6.3) that was composed of the past values of the EDR signal, which 

are causal with the N-N series. The maximum number of lags was selected to be 70, thus 

corresponding to roughly 30 s of data, and this value was chosen since it is the standard 

scoring period for scoring sleep macrostructure and also because it is higher than the 

average CAP cycle duration (26.9 s) [38]. The causality between the EDR and the N-N 

series is expected to be a good marker for instable sleep (CAP) as in phenomena such as 

respiratory sinus arrhythmia, the heart rate is modulated by the breathing pattern, and this 

phenomena is also associated with the CPC HF coupling which, in turn, is linked to 

periods of stable sleep (non-CAP).  

The residuals of the regression were used to estimate the Bayesian information in 

terms of a residual sum of squares, which was employed to select the relevant lags [381]. 

The output matrix, named Matrix of Lags (MoL), was created by moving the energy of 

the selected lags to the MoL. Information dynamics characterize the causal statistical 

structure of time series, concerning a driver and target systems that are causally connected 

[382]. Taking into consideration that both EDR and N-N series present significant 

variations during periods of sable (non-CAP) and unstable (CAP) sleep, and that entropy 

allows to qualify the degree of complexity in a signal. Hence, it was theorized that these 

oscillations could be identified by entropy variations. Therefore, the self-entropy (stored 

information) and transfer entropy (transferred information) were analyzed by considering 

the N-N as the target system and EDR as the driver system (this selection takes into 
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consideration that in phenomena such as respiratory sinus arrhythmia, the heart rate is 

modulated by the breathing pattern [383]). 

 

Figure 6.5. Flowchart of developed algorithm for the minute-by-minute detection of 

CAP considering characteristics of the N-N series and EDR [42]. 

A total of 672 features were examined (500 for CPC based on the Fourier analysis, 

100 for CPC based on the wavelets, 70 for the MoL, and 2 for entropy analysis, 

specifically, self-entropy and transfer entropy), and their relevance was assessed by the 

mRMR algorithm. The optimal number of features was determined for both classifiers by 

applying the same training procedure of the second test and starting with 50 features 

identified as the most relevant. Afterwards, the number of features was incremented in 

steps of 50 features until no improvement was attained. At this point, the second phase 
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started to fine-tune the optimal number of features, varying 5 features each time. The 

optimal classifiers architecture (with the chosen number of features) and the attained 

results are presented in Tables 6.5 and 6.6, respectively. By analyzing Table 6.5 it is 

possible to determine that BS applied to the DSAE achieved the best results as it happened 

in the previous test. The improvement of 4% attained for both NREM and CAP detection 

by using more features, justified the need for introducing a higher complexity in the 

method. 

Table 6.5: Architecture of the classifiers and selected number of features for the NREM 

or non-NREM, and CAP or non-CAP classification [42]. 

Classification Classifier Method Number of neurons Number of features 

NREM or non-NREM FFNN CV 125 46 

 BS 250 138 

DSAE CV 250 , 125 201 
 BS 250 , 125 200 

CAP or non-CAP FFNN CV 200 154 

 BS 225 146 
DSAE CV 200 , 100 155 

 BS 200 , 100 149 
 

Table 6.6: Performance of the developed algorithms (mean ± standard deviation) for the 

NREM or non-NREM, and CAP or non-CAP classification [42]. 

Classification Classifier Method Acc (%) Sen (%) Spe (%) AUC 

NREM or non-

NREM 

FFNN CV 72.64 ± 3.74 72.77 ± 6.24 72.22 ± 7.61 0.725 ± 0.031 

 BS 75.20 ± 0.97 76.48 ± 1.27 72.35 ± 1.26 0.749 ± 0.009 

DSAE CV 73.41 ± 1.63 72.12 ± 2.71 74.71 ± 2.01 0.732 ± 0.035 
 BS 76.65 ± 1.06 77.23 ± 0.96 75.86 ± 3.04 0.760 ± 0.016 

CAP or non-

CAP 

FFNN CV 75.84 ± 0.91 66.51 ± 0.98 79.18 ± 1.27 0.728 ± 0.007 

 BS 73.02 ± 1.04 69.97 ± 1.94 74.72 ± 1.83 0.730 ± 0.003 
DSAE CV 75.96 ± 4.67 69.33 ± 4.08 78.04 ± 7.80 0.739 ± 0.023 

 BS 76.04 ± 1.71 70.67 ± 3.32 78.96 ± 1.15 0.741 ± 0.022 

6.2. Global sleep quality assessment 

It was verified in the previous section (6.1) that the best results for the minute-by-

minute examination were attained using the 35% threshold for CAP detection. Therefore, 

this value was selected for the CAP rate analysis, used as the global sleep quality metric. 

The recordings of the fourth CAPSD were employed for this analysis. The performance 

of the classifiers analyzing only the CPC signal for the CAP rate estimation is presented 

in Table 6.7. The DSAE provided the best results for both mean absolute difference of 

the predicted and the true CAP rate, and the accuracy of the sleep quality prediction 

(considering the normal age-related CAP rate as threshold [10]). 

Table 6.7: Results for CAP rate detection of the second test with CPC [81]. 

Classifier Mean absolute difference (%) Acc sleep quality (%) 

FFNN 15.06 62 

DSAE 9.35 77 
Threshold 37.14 31 

 

To further study the sleep quality predictions based on the CAP rate assessment, the 

predictions of the best model developed in the third test (features based on CPC, causality 

and entropy fed to the DSAE) were analyzed in the databases: UCDSAD; MrOSSS; 

DrNUH.  

It is intended to calculate the agreement between the sleep quality prediction, based 

on the CAP rate, and other metrics used to indicate sleep quality. For the CAPSD, the 
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references metrics were: CAP rate; TST according to the normal values for the subject’s 

age [384]; SE considering 85% as the threshold [385]. For the UCDSAD the considered 

sleep quality metrics were: TST; SE; AHI greater than 10, indicating the incidence of a 

mild sleep-related disorder [386]; ESS greater than 10, advises excessive daytime 

sleepiness, thus, assuming poor sleep quality [387]. For MrOSSS the sleep quality metrics 

were: TST; SE; AI according to the subject’s age [388]; PSQI greater than 5, suggesting 

poor sleep quality [389]. For the DrNUH patients, the sleep quality metrics were: TST; 

SE; AHI; ESS. The summary of this analysis is presented in Table 6.8. 

Table 6.8: Agreement of the sleep quality prediction with the sleep quality metrics [42]. 

Data source Metric Agreement (%) 

CAPSD TST 54 

SE 69 

CAP rate 77 
UCDSAD TST 48 

SE 69 

AHI 76 
ESS 60 

MrOSSS TST 60 

SE 70 
AI 72 

PSQI 58 

DrNUH TST 84 
SE 79 

AHI 73 

ESS 57 
 

By analyzing Table 6.8, it is possible to determine that CAP rate, AHI, and AI are the 

metrics which attained the highest agreement with the developed model’s predictions. 

These results are expected since the model is based on CAP analysis that is strongly 

related to these metrics. A good agreement was attained with the SE with a standard 

deviation of 4.2% among the analyzed databases. TST presented the highest standard 

deviation (13.7%), suggesting that the population, and the way that the study was 

conducted, can strongly affect this metric. These results agree with the conclusions 

presented Åkerstedt et al. [9] and Kaplan et al. [11] which suggested that continuity based 

metrics have a good correlation with subjective ratings of prior-night sleep quality, while 

the opposite occurs with duration based metrics. The low agreement achieved with both 

ESS and PSDI, about 58%, supports the findings of Rošt’áková et al. [63], which have 

determined that there is a low correspondence between objective sleep metrics and the 

subject’s assessment of the sleep quality. 

Further examination regarding the agreement between the predicted sleep quality and 

the analyzed sleep quality metrics was performed by a regression study, using the 

Random Sample Consensus (RANSAC) algorithm [304] to diminish the effect of outliers. 

The results are presented in Figure 6.6, and the data was standardized to allow a better 

comparison (both TST and SE horizontal axis were inverted with the purpose of having 

all regression lines with a positive slope). The highest value for TST was chosen to be 10 

hours, and the theoretical maximum values for both AI and AHI were considered. PSQI 

and ESS limits were, respectively, 21 and 25. Two groups were studied, specifically, the 

middle aged and the elderly population (young adults were not included since the number 

of recordings available in the databases for this age group was less than 2% of the total 

number of subjects). Two CAP rates were considered, 37.5% for middle aged and the 

55.3% for the elderly, in agreement with the defined age-related percentages [10]. By 
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analyzing the regression lines, it is possible to conclude that the CAP rate predictions 

(considering, respectively, 37.5 and 55.3 as the threshold for the middle aged and elderly 

subjects) for sleep quality have a good agreement with the other studied sleep quality 

metrics (as they define the good or poor sleep quality according to the previously 

indicated definitions). Therefore, these results further validate the developed method.  

a) b) 

  
c) d) 

  
e) f) 

  
Figure 6.6. Data points (symbolized by ‘+’ or ‘o’) and regression lines (dashed or solid 

lines, with margins denoted by doted-dashed lines), from RANSAC, for the predicted 

CAP rate (estimated sleep quality metric), and the sleep quality metric: a) TST; b) SE; 

c) AHI; d) AI; e) ESS; f) PSQI [42]. 

The possibility of providing a global estimation for the quality of sleep, based on the 

age-related CAP rate percentages [10], was tested by developing a method that produces 

an average of the CPC analysis for the all night recorded signal instead of performing the 

estimation for each epoch. Consequently, the CPC algorithm is the same as previously 

analyzed but a new way of training the classifier was developed, using the subjects of the 

fourth CAPSB. A comparative example of the globally estimated CPC for a subject with 

good and a subject with poor sleep quality is presented in Figure 6.7. By analyzing the 

figure, it is possible to attest that the subject with good sleep quality has a substantial 

amount of power in the HF band (0.1-0.4 Hz), while the subject with poor sleep quality 

has most of the power in the VLF and LF bands (0-0.01 Hz and 0.01-0.1 Hz, respectively). 

These observations agree with the conclusions reported in the state of the art where the 
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power in the HF coupling is associated with stable sleep (absence of CAP) while the 

power in the LF coupling is related with unstable sleep (suggesting the occurrence of 

CAP) [41]. 

 

Figure 6.7. Example of a global spectrographic measure of a subject with good sleep 

quality and poor sleep quality. 

The sleep quality labels were produced using the methodology presented in section 

4.1. The spectrographic measure of CPC was feed to a 1D-CNN to perform the sleep 

quality classification. This neural network was chosen since it is capable of identifying 

complex patterns in image based inputs which are similar to the spectrographic measure 

created by CPC. The configuration of the CNN architecture was chosen by the heuristic 

oriented grid search method developed for the 1D-CNN which is presented in section 8.1. 

The ADAM algorithm [343] was used for the network’s optimization, performing 10 

runs, at each iteration, with LOOCV. The methods were developed using the recordings 

from the fourth CAPSD and were implemented in Python 3 using the Keras library. The 

optimized classifier was ten tested with LOOCV repeating each iteration 50 times to attain 

statistically significant results. 

An accuracy of 74% was achieved (regarding the sleep quality estimation) by using 

two GL in the HLs, each composed of a convolution, followed by the normalization, and 

a pooling operation. The first convolution layer employed 64 filters with length 4, while 

the second used 128 filters with the same length. The pool size (of the pooling layers) 

was 2. A stride of 1 was employed for the convolution layers, and a stride of 2 was used 

for the pooling layers. It was verified that the developed method is considerably simpler 

than the previously presented methods for sleep quality estimation, requiring less 

computational resources. Therefore, this method attained a better performance to 

complexity ratio, and could possibly be suitable for hardware implementation. 

6.3. Causality model for sleep quality analysis 

A tool for time series analysis was developed to further study the connection between 

the EDR and the N-N series. The tested hypothesis considers that a model, based on 

matrix constructed with the measured energy of a fixed number of lags (previously named 

MoL), can be used to analyze the causality of dependent and independent variables. 

Therefore, the two time series, produced from the examination of the single-lead ECG 

signal, were used to perform the indirect detection of CAP, which was previously 
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described, by feeding a machine learning classifier (in this work a SVM was used and the 

model was implemented in MATLAB) with the energy of the lags that compose the MoL.  

The proposed approach is based on the Granger causality concept, which considers 

that if a time series has a causal effect on another time series, then the information of the 

past of the first time series (independent series) can be employed to estimate the future 

values of the second time series (dependent series). In this work, it was hypothesized that 

the number (and energy) of lags considered by the information criterion as relevant (best 

compromise between complexity and information) would be different from stable to 

unstable sleep, as the EDR and the N-N series become less synchronized, and oscillate at 

a dissimilar frequency. The causality evaluation was performed by looking for 

dependencies within the measured time series (from the physiological system under 

investigation). Therefore, causality is defined in terms of predictability, and considers the 

directionality of time to assess a causal ordering of the dependent variables [390]. 

The same 7 minutes window with 6 minutes overlapping, which was evaluated in 

section 6.1, was used. Taking into consideration that the number of data points from both 

EDR and N-N series varies according to the HRV thus, both EDR and N-N series were 

resampled to 2.333 Hz, providing 980 points for the 7 minutes. Consequently, a uniform 

input size was created, and a fixed lag window of 30 s, with size L, was used. The dataflow 

of the developed method to generate each row of the MoL is presented in Figure 6.8. 

 

Figure 6.8. Dataflow of the algorithm that generates each row of the MoL [391]. 
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A dataset D = {T1i, T2i}, where T1 and T2 are, correspondingly, the response and 

predictor time series of each epoch, i, with m points, was analyzed, and Figure 6.9 

presents an example of an epoch for both time series. 

 

Figure 6.9. Example of an epoch for both time series of the MoL [391]. 

Each row of the MoL is composed of the energy of the lags that comprise a lag 

window, named lag, for each epoch. The lag runs over the two time series Q times without 

overlapping. Q is defined by the ratio m/L, and must be a positive integer, otherwise, zero 

padding was used in the last lag window. Therefore, Q time series are created with length 

l which changes in each iteration j as presented in Figure 6.10.  

 

Figure 6.10. Example of the time series creation for each iteration [391]. 

At each iteration L regression models were fitted, and a model selection criterion was 

used to decide what is the number of lags, S, that produces the best compromise between 

complexity and information for each iteration. The selected data points, in each iteration, 

that are related to T2 (from l until l – S) were copied to the jtm row of the Q×L auxiliary 

matrix A.  

However, if S was lower than L then the elements of the row that were between S+1 

and L (are outside the selected number of lags) were left with a zero value. At the end of 

the final iteration, the energy of each lag was assessed and stored in the corresponding 

row of the MoL. An example that presents the creation of a MoL row can be followed by 

analyzing Figure 6.11. When the lag begins in the first point of the window, as displayed 

in figure a), the predictors, x, and the fitted values, y, are given by 

Window… …

Window… …

Window… …

Iteration

1

2

Q

l

l

l

Window… …
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{
 
 
 
 

 
 
 
 𝑦1 = [

𝑇1𝑖𝑚
⋮

𝑇1𝑖1

]  

𝑦2 = [

𝑇1𝑖(𝑚−1)
⋮

𝑇1𝑖1

]

⋮

𝑦𝐿 = [

𝑇1𝑖(𝑚−𝐿)
⋮

𝑇1𝑖1

]

 6.5 

{
 
 
 
 

 
 
 
 𝑥1 = [

𝑇2𝑖𝑚
⋮

𝑇2𝑖1

]  

𝑥2 = [

𝑇2𝑖(𝑚−1)
⋮

𝑇2𝑖1

]

⋮

𝑥𝐿 = [

𝑇2𝑖(𝑚−𝐿)
⋮

𝑇2𝑖1

]

 6.6 

Consequently, the L regression models can be describe as [340] 

{
 

 
𝑦1 = 𝛽0 + 𝛽1𝑥1 + 𝜀1 

𝑦2 = 𝛽0 + 𝛽1𝑥1(2:𝑚) + 𝛽2𝑥2 + 𝜀2
⋮

𝑦𝐿 = 𝛽0 + 𝛽1𝑥1(𝐿:𝑚) + 𝛽2𝑥2(𝐿 − 1:𝑚)⋯+ 𝛽𝐿𝑥𝐿 + 𝜀𝐿

 6.7 

where ε is the residual of the regression, which designates the difference between the 

responses and the fitted values, and β are the fitting parameters. Second and third degree 

polynomial regression were also analyzed as an alternative for the regression models. 

An information criterion was then calculated for each model, and the attained score, 

φ, was stored in an L-dimensional vector 

𝛷 = (

𝜑1
𝜑2
⋮
𝜑𝐿

) 6.8 

Therefore, the value of S (the number of lags that produced the best compromise between 

complexity and information) was specified, and the corresponding lags were copied to A. 

Following the example regarding the creation of a MoL row (Figure 6.11) for the case 

when S=3 the first row of the auxiliary matrix is 

𝐴 =

[
 
 
 𝑇2𝑖𝑚 𝑇2𝑖(𝑚−1) 𝑇2𝑖(𝑚−2)
0
⋮

0
⋮

0
⋮

0 0 0

 ⋯ 0

 
⋯

 
0
⋮

 ⋯ 0]
 
 
 

 6.9 

At the second iteration, the lag starts in the 𝑚−𝐿−1 point of the window, as exhibited in 

Figure 6.11 b), hence, 
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{
 
 
 
 

 
 
 
 
𝑦1 = [

𝑇1𝑖(𝑚−𝐿−1)
⋮

𝑇1𝑖1

]  

𝑦2 = [

𝑇1𝑖(𝑚−𝐿−2)
⋮

𝑇1𝑖1

]

⋮

𝑦𝐿 = [

𝑇1𝑖(𝑚−2𝐿)
⋮

𝑇1𝑖1

]

 6.10 

{
 
 
 
 

 
 
 
 
𝑥1 = [

𝑇2𝑖(𝑚−𝐿−1)
⋮

𝑇2𝑖1

]  

𝑥2 = [

𝑇2𝑖(𝑚−𝐿−2)
⋮

𝑇2𝑖1

]

⋮

𝑥𝐿 = [

𝑇2𝑖(𝑚−2𝐿)
⋮

𝑇2𝑖1

]

 6.11 

and the regression models were defined by 6.12. S was calculated by applying the model 

selection criterion to the new scores and, for example, if S=L then 

𝐴 =

[
 
 
 𝑇2𝑖𝑚 𝑇2𝑖(𝑚−1) 𝑇2𝑖(𝑚−2)
𝑇2𝑖(𝑚−𝐿−1)

⋮

𝑇2𝑖(𝑚−𝐿−2)
⋮

𝑇2𝑖(𝑚−𝐿−3)
⋮

0 0 0

 ⋯ 0

 
⋯

 
𝑇2𝑖(𝑚−2𝐿)

⋮

 ⋯ 0 ]
 
 
 

 6.12 

a) 

 
b) 

 
c) 

 
Figure 6.11. Length of the time series that will compose the lag when the lag starts: a) in 

last point of the window; b) in the 𝑚−𝐿−1 point of the window; c) in the L-1 point of 

the window [391]. 

Lag

… …

)

Lag

… …

( )

( )

Lag

… …

)
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As presented in Figure 6.11 c), in the final iteration, the lag begins in the 𝐿−1 point of 

the window, and the same process was repeated to assess the value of S. As an example, 

if S=2 then 

𝐴 =

[
 
 
 

𝑇2𝑖𝑚 𝑇2𝑖(𝑚−1) 𝑇2𝑖(𝑚−2)
𝑇2𝑖(𝑚−𝐿−1)

⋮

𝑇2𝑖(𝑚−𝐿−2)
⋮

𝑇2𝑖(𝑚−𝐿−3)
⋮

𝑇2𝑖(𝐿−1) 𝑇2𝑖(𝐿−2) 0

 ⋯ 0

 
⋯

 
𝑇2𝑖(𝑚−2𝐿)

⋮

 ⋯ 0 ]
 
 
 

 6.13 

The energy of each column, k, of A was calculated by [392]  

𝐸𝑘 =∑|𝐴(𝑒, 𝑘)|2
𝑄

𝑒=1

 6.14 

and the value was copied to the ith row of the MoL that is an I×L matrix defined as 

𝑀𝑜𝐿 = [

⋮  ⋮
𝐸1 ⋯ 𝐸𝐿

⋮  ⋮

] 6.15 

where I is the total number of epochs. 

The values of φ were assessed by the computation of an information criterion in terms 

of a residual sum of squares. The optimum number of lags was given by the index of the 

smallest element from Φ, since a penalization for the complexity of the model, given by 

the number of parameters required, O, was used to avoid overfitting. Three information 

criterion were tested, specifically the Bayesian Information Criterion (BIC) [381], the 

Akaike Information Criterion (AIC) [307], and the Hannan–Quinn Information Criterion 

(HQC) [307], calculated by 

𝐵𝐼𝐶 = 𝑙 log (
𝜀𝑇𝜀

𝑙
) + 𝑂 log(𝑙) 6.16 

𝐴𝐼𝐶 = 𝑙 log (
𝜀𝑇𝜀

𝑙
) + 2𝑂 6.17 

𝐻𝑄𝐶 = 𝑙 log (
𝜀𝑇𝜀

𝑙
) + 2𝑂 log[log(𝑙)] 6.18 

These criteria were chosen because they diverge on how much the complexity is 

penalized, allowing to verify multiple possibilities for the model selection. 

The relevance of the lags for the CAP classification (identification of unstable sleep) 

was assessed by a classifier dependent algorithm, specifically SBS, and a classifier 

independent developed method (developed in this work) based on the characteristics of a 

return map. SBS evaluated the AUC to predict the relevance of each lag, and the optimal 

number of lags to use was determined by analyzing in which iteration of the SBS 

algorithm the AUC was the highest. 

The developed classifier independent feature selection method considers the analysis 

of two return maps, one created by epochs with unstable sleep (CAP) and the other by 

epochs without unstable sleep (non-CAP). These maps were produced by analyzing the 

variation of the selected number of lags from the current to the next row of the MoL 
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(indicating the variation in the number of chosen lags from the current epoch to the next 

epoch). An example of the two maps is presented in Figure 6.12. 

a) 

 
b) 

 
Figure 6.12. Return map presence of a) the CAP epochs; b) the non-CAP epochs [391]. 

Through the Figure 6.12 analysis, it is possible to verify that the variation in the lags 

transitions (changes from one lag to another) are significantly reduced in the CAP epochs. 

Therefore, a characteristic pattern is produced. It is also possible to attest the presence of 

a diagonal line pattern, designating that most of the time the selected number of lags in 

the next epoch is the same as the number of the lags of the current epoch. This behavior 

was anticipated since physiological signals are characterized by a continuous process. 

The selection of the relevant lags was performed by applying a column-wise analysis to 

the CAP epochs return map, and a lag was chosen when the number of transitions was 3 

or lower (this value was defined as the optimal threshold for the selection by performing 

a grid search where the value was changed from 1 to 10, and the best average AUC was 

assessed by running the simulation 10 times). 

The model’s hyperparameter optimization (select the hyperparameters which 

maximize the AUC) and performance assessment was performed by TFCV using 

recordings from the fourth CAPSD and cost-sensitive learning. Each simulation was 

repeated 10 times for the hyperparameter optimization and 50 for the performance 

assessment (to achieve statistical significance), and the averaged value of the performance 
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metrics was considered. The problem related to the data unbalance was minimized by 

employing cost-sensitive learning. The Gaussian radial basis function was found to be the 

best kernel for all tests, and the value of L was selected to be 70 sampling points 

(corresponding to roughly 30 s of data).  

A total of 6 thresholds (20%, 25%, 30%, 33%, 35%, and 40%) were analyzed in the 

first test to define the most suitable to define the CAP epoch, were the MoL (without the 

use of feature selection) was fed to the SVM. The same thresholds were used in the second 

tests were the performance of different regression methods were studied, using the model 

parameter, which achieved the highest AUC in the first test. The same model was then 

used in the final test, where the two feature selection methods were employed to select 

the lags that were fed to the SVM. 

In the first test, the three model selection criteria were analyzed, and the classification 

performance is presented in Table 6.9. By analyzing the results, it is possible to conclude 

that the highest AUC was attained by using BIC for the model selection with a threshold 

of 35%. The lowest performance was produced by the 20% threshold, conceivably due to 

the presence of short CAP periods that did not significantly manifest in the ECG signal. 

Table 6.9: Results of the first test regarding the models fed directly with the MoL [391]. 

Model selection criterion Method CAP threshold (%) Acc (%) Sen (%) Spe (%) AUC 

BIC N-N series as predictor 20 55.22 76.92 42.37 0.596 
25 60.29 62.43 57.93 0.602 

30 62.01 60.07 62.89 0.615 

33 62.47 60.10 63.74 0.619 

35 63.29 61.14 64.60 0.629 

40 67.63 58.66 69.84 0.643 

EDR as predictor 20 58.62 64.29 55.51 0.599 

25 59.03 62.60 56.70 0.601 

30 60.93 64.55 57.54 0.626 
33 62.59 67.72 61.50 0.636 

35 64.40 68.48 64.39 0.659 

40 76.20 50.47 82.35 0.659 
AIC N-N as predictor 20 51.93 77.43 38.21 0.578 

25 52.50 70.06 42.33 0.562 

30 58.03 62.74 60.09 0.579 
33 58.82 55.86 59.93 0.579 

35 73.88 38.59 85.42 0.620 

40 74.91 33.73 83.43 0.596 
EDR as predictor 20 65.29 80.20 48.73 0.645 

25 65.10 72.95 51.69 0.633 

30 65.44 71.56 54.30 0.629 

33 69.09 66.08 63.24 0.627 

35 71.53 60.92 67.25 0.622 

40 84.95 30.36 96.45 0.624 
HQC N-N as predictor 20 65.62 41.05 76.10 0.596 

25 65.86 48.53 75.79 0.622 

30 65.89 51.52 74.69 0.631 
33 65.12 59.98 68.21 0.646 

35 65.82 62.78 66.05 0.644 

40 66.76 68.89 53.10 0.610 
EDR as predictor 20 61.48 43.87 71.70 0.578 

25 62.76 49.34 69.45 0.594 

30 63.70 60.84 64.89 0.629 
33 63.89 61.84 62.92 0.634 

35 64.18 60.51 65.86 0.634 

40 74.90 44.80 82.11 0.635 
 

Both BIC and HCQ attained balanced results, suggesting that the linear penalization 

of AIC is inadequate for this classification. It was also verified that, on average the models 

where EDR was used as the predictor series had a better performance, possibly due to the 

fact that in phenomena such as respiratory sinus arrhythmia, the heart rate is modulated 
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by the breathing pattern [383]. A representation of the average normalized output of the 

3 selection criteria for each lag (for all CAP and non-CAP epochs) is presented in Figure 

6.13. It was verified that after 26 lags the output variation is considerably low (less than 

5%), possibly suggesting that the significant information is attained with less than 26 lags. 

 

Figure 6.13. Average normalized output of the 3 selection criteria for all possible 

number of chosen lags [391]. 

The results of the second test are presented in Table 6.10, where Second Degree 

Polynomial Regression (SDPR) and Third Degree Polynomial Regression (TDPR) were 

tested. By analyzing the results, is it possible to conclude that SDPR attained a higher 

AUC for all CAP threshold while TDPR is possibly overfitted since, on average, the AUC 

is lower than the models based on SDPR. However, the 35% threshold was previously 

identified as the most relevant for CAP detection when considering the ECG signal and, 

for this threshold, the SDPR model does not significantly improve the results of the first 

test. Also, both SDPR and TDPR are considerably more computational demanding. Thus, 

the multiple linear regression models are a more suitable choice for this work. 

Table 6.10: Results of the second test regarding the use of other regression models to 

create the MoL [391]. 

Degree of polynomial regression CAP threshold (%) Acc (%) Sen (%) Spe (%) AUC 

Second 20 56.02 84.19 39.83 0.620 
 25 57.84 79.83 48.14 0.639 

 30 60.59 79.19 51.21 0.652 

 33 62.78 76.90 57.97 0.672 

 35 66.25 61.75 68.30 0.663 

 40 73.55 50.04 78.19 0.641 

Third 20 57.40 79.78 44.66 0.622 
 25 57.65 77.05 48.63 0.628 

 30 58.82 70.85 54.68 0.629 

 33 59.78 71.99 55.35 0.638 
 35 65.76 63.14 66.77 0.650 

 40 76.37 46.22 83.48 0.649 
 

SBS was used in the third test, considering the model that attained the best results in 

the first test. The sequence of the chosen lags at each iteration of the algorithm is 

presented in Figure 6.14, while the variation of performance metrics according to the 

selected lags is presented Figure 6.15. The highest AUC was attained when the 35 less 

relevant lags were removed (iteration 1 to 35 of Figure 6.14). The average Acc, Sen, Spe, 

and AUC was, respectively, 76.45%, 71.37%, 81.55%, and 0.765. This analysis agrees 
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with the deduction attained from Figure 6.13 that less than half of the features are 

significant for the classification. 

 

Figure 6.14. Sequence of features selected by SBS [391]. 

 

Figure 6.15. Performance metrics according to the selected lags [391]. 

A total of 12 features were selected by the developed classifier independent model, 

which achieved an average Acc, Sen, Spe, and AUC of, respectively, 70.13%, 65.12%, 

74.33%, and 0.701. Although the AUC is 6.4% inferior, when comparing with the SBS 

model, the results produced with this method are still relevant with the advantage of 

taking considerably less time to select the relevant features (less than one minute while 

SFS took roughly one week).  

6.4. Discussion of the results 

Regarding the NREM classification, the best developed method achieved an average 

accuracy of 77% (DSAE fed with features selected by mRMR, and trained using BS), 
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which is in the range of the methods based on EEG (70% to 94% [393]) using only the 

signal from a single-lead ECG. Other works have also proposed methods for sleep 

classification using ECG signals. Xiao et al. [394] analyzed the HRV to detect REM, 

NREM, and wake periods using CARTs trained with the Random Forest (RF) algorithm. 

LDA and QDA were tested by Ebrahimi et al. [395] to perform the sleep analysis in two 

scenarios, using entropy measures, empirical mode decomposition, and discrete wavelet 

transform to generate features from the HRV. Four classes (wake, N2, SWS, and REM) 

were considered in the first scenario, while a binary classification was employed in the 

second scenario (REM or NREM, excluding the N1 stage). The best results were attained 

in the second scenario using the LDA to perform the classification of five minutes’ 

epochs.  

Mendez et al. [396] have also used binary classification for NREM and REM 

classification, using a time-varying Autoregressive Model (ARM) to produce features 

that were fed to a HMM. Aktaruzzaman et al. [397] employed a FFNN to perform the R-

R series (interval between consecutive R peaks) classification with frequency and time 

domain measures, regularity features, and detrended fluctuation analysis. A comparison 

between the achieved results and the results of the analyzed works is presented in Table 

6.11.  

Table 6.11: Comparative analysis between the proposed NREM assessment methods and 

the methods proposed in the state of the art, using the ECG signal. 

Work Method Acc (%) Sen (%) Spe (%) CO (%) 

[397] R-R series and FFNN 72 74 69 72 
[394] HRV features and RF 73 - - - 

[396] ARM and HMM 79 85 70 78 

[395] HRV features and LDA 81 - - - 

This work – first test CPC and LR 58 58 60 59 

CPC and LDA 64 62 75 67 

CPC and QDA 60 61 60 60 
CPC and CART 62 62 63 62 

CPC and TreeBagger 66 68 60 65 

CPC and kNN 68 70 59 66 
CPC and SVM 68 70 61 66 

CPC and FFNN 63 61 69 64 

CPC and AdaBoost 62 62 63 62 

CPC and DSAE 70 72 60 67 

This work – second test CPC and FFNN 74 77 66 72 

CPC and DSAE 74 77 66 72 

Thresholds proposed by Thomas et al. [41] 60 31 67 53 

This work – third test mRMR selected features and FFNN 75 77 72 75 

mRMR selected features and DSAE 77 77 76 77 
 

By analyzing Table 6.11, it was possible to assess that both Aktaruzzaman et al. [397] 

and Xiao et al. [394] reported a lower performance, while Ebrahimi et al. [395] achieved 

the highest Acc, but without reporting other performance metrics, such as AUC, it is not 

possible to verify if the results had a balanced Sen and Spe. The method developed by 

Mendez et al. [396] achieved better performance, but the approach is considerably more 

complex, requiring the estimation of both HMM and ARM parameters that could be 

significantly dependable upon the characteristics of the population employed for training. 

It is also possible to observe the significant improvement from the results attained in the 

first test to the results reached in the second test. The improved methods from the second 

test based on the FFNN and the DSE attained the same performance when fed with the 

CPC features. However, in the third test the DSAE attained better results than the FFNN.  
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The summary of the methods for indirect CAP is presented in Table 6.12. Only the 

method developed by Thomas et al. [41] was found, in the literature review, regarding 

the CAP estimation from ECG signal, presenting the results with the same performance 

metrics employed in this work. The reported Sen and Spe were, respectively, 40% and 

84%. Thus, the developed algorithms (in the third test, where mRMR was employed for 

feature selection, and in the MoL method with features selected by SBS) have a lower 

Spe but a considerably higher Sen, suggesting that the developed method is more 

appropriate for a clinical diagnosis since the results are more balanced.  

Table 6.12: Comparative analysis between the proposed CAP assessment methods and 

methods proposed in the state of the art, using the ECG signal. 

Work Method Acc (%) Sen (%) Spe (%) CO (%) 

[41] Tuned thresholds - 40 84 - 

This work – first test CPC and LR 57 53 58 56 

CPC and LDA 54 52 55 54 
CPC and QDA 58 50 61 56 

CPC and CART 57 52 58 56 
CPC and TreeBagger 60 57 60 59 

CPC and kNN 57 61 56 58 

CPC and SVM 56 51 57 55 
CPC and FFNN 62 51 65 59 

CPC and AdaBoost 53 53 54 53 

CPC and DSAE 62 50 66 59 

This work – second test CPC and FFNN 73 53 73 66 

CPC and DSAE 73 60 76 70 

Thresholds proposed by Thomas et al. [41] 58 38 66 54 
This work – third test mRMR selected features and FFNN 73 70 75 73 

mRMR selected features and DSAE 76 71 79 75 

This work – using the 
MoL 

MoL and SVM 64 69 64 66 

MoL features selected by SBS and SVM 77 71 82 77 

MoL features selected by proposed method and SVM 70 65 74 70 
 

It is also possible to notice the performance improvement from the first to the third 

test with CPC, although the method based on MoL attained the best performance. Another 

relevant factor it the Acc of the CAP detection from the best models, which is in the upper 

range of the specialist agreement range (69% to 78% [53]), and are also similar to the best 

methods for CAP assessment based on the EEG signal analysis, suggesting that the 

developed methods could be suitable for medical application. 

6.5. Key remarks 

Multiple approaches for indirect CAP analysis (seeing CAP as the marker of sleep 

instability, and using the CAP epoch concept which was created in this work) were 

evaluated in the first section of this chapter, with the goal of finding the feasibility of 

these methods. The research hypothesis that CAP can be interpreted in a broader context, 

denoting instability of sleep, and therefore, be indirectly estimated by other sensors 

(instead of the EEG) such as ECG, was confirmed. The CAP rate predicted by the 

proposed method was found to have a good correlation with the CAP rate estimated by 

PSG. A good correlation was also attained by the sleep quality predicted from the 

developed approach and the sleep quality predicted by other established sleep quality 

metrics.  

A second sleep quality prediction method, based on the evaluation of the average CPC 

signal was developed, and found to be more suitable for hardware implementation. A tool 

for time series analysis was also proposed at the end of the chapter. This tool evaluated 
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the causality of a dependent and an independent variable by measuring the energy of a 

fixed number of lags. It was verified that the model created by this tool allowed to reliably 

estimate the CAP epochs. However, it is important to bear in mind that this tool can be 

used in other contexts involving dependent time series. 

The limitation of the work developed in this chapter was the absence of subjects 

suffering from heart related disorders such as heart failure or cardiac arrhythmias 

(although the subjects suffering from OSA present cardiorespiratory dysautonomias). 

These disorders could significantly change the cardiac vagal activity [398], which could 

affect the performance of both CPC and MoL based algorithms. 
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7. Models for OSA examination 

7.1. Based on the SpO2 signal 

7.2. Based on the ECG signal 

7.3. Discussion of the results 

7.4. Key remarks 
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Models for both minute by minute and global OSA assessment are presented in this 

chapter as a way of predicting the quality of sleep by assessing the occurrence of sleep 

related disorders, according to the second approach for sleep quality examination 

theorized in this work (from the state of the art analysis). This disorder was selected for 

the examination as it is one of the most prevalent and frequently undiagnosed sleep related 

disorders, that it is also related to the occurrence of CAP in subjects suffering from SBD  

From the OSA detection methods review, it was determined that ECG and SpO2 

achieved the highest global classification. However, it was also verified that a 

combination of source sensors did not improve the performance. Therefore, two models 

were developed. The first was based on the SpO2 signal examination, and employed 

features which were identified in the state of the art as suitable for OSA detection based 

on SpO2 or other source signals (such as HRV). The second evaluated the ECG signal 

through CPC analysis by a deep learning classifier, comprising a new methodology 

proposed in this work. 

7.1. Based on the SpO2 signal 

The first version of the algorithm for sleep apnea detection was developed using data 

from 35 suspected OSA patients of the DrNUH dataset. The examination based on the 

SpO2 signal which was found to be suitable for OSA detection in the state of the art 

review. The employment of such analysis also has three relevant advantages: simplicity 

of self-assembly and utilization of a pulse oximeter by the subject; the direct correlation 

between apnea events and the reduction of the SpO2 level; the minimal invasiveness of 

the sensor. The signal was analyzed in both time and frequency domains, considering 

five-minute epochs with one-minute displacement between adjacent frames, producing 

22 features that had been reported by Ravelo-García et al. [49] as relevant for apnea 

detection. 

Two features were studied for the time domain analysis; specifically, the variance 

(Var) of one and five minutes, centered in the desired time segment, given by [399] 

𝑉𝑎𝑟 =
1

𝑁
∑(𝑥𝑖 − 𝜇)

2

𝑁

𝑖=1

 7.1 

 

where N is the number of samples of the signal x and μ is the average of x. A filter bank 

with 20 equally spaced filters was employed in the frequency domain analysis. The 

implementation was made on the transformed domain as [49] 

𝐹𝑏
𝑇 =

∑ 𝑆(𝑘)𝑈𝛥𝑚(𝑘)
𝑏𝑚+𝛥𝑚
𝑘=𝑏𝑚−𝛥𝑚

∑ 𝑆(𝑘)
𝑁
2
−1

𝑘=0

; 1 ≤ 𝑚 ≤ 𝑀 7.2 

 

considering U as the rectangular windowing process applied to each filter m, for the 

number of employed filters M, with a center frequency of the filter band b, and bandwidth 

Δ. U is the power spectrum of the signal, and was determined through the periodogram 

[49] 
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𝑈(𝑘) = |
1

𝑁
∑ 𝑥𝑛𝑒

−𝑗2𝜋𝑘
𝑁

𝑁−1

𝑛=0

|

2

 7.3 

 

These features were selected since relevant information for the OSA classification can 

be attained by analyzing the SpO2 signal in the spectral domain, by detecting the 

oscillations in the signals. It was also observed that longer time periods allow to easily 

detect the SpO2 oscillations through the analysis of the signal’s variance. 

Feature selection was performed using the SFS algorithm, repeating 50 times each 

iteration of the algorithm, and the selected features were the two variance features and 

the energy of the filters: 2; 3; 8; 11; 12; 20. The Neperian logarithm was applied to all 

features before they were fed to the classifier, producing a dynamic compression, which 

creates a system less sensitive to dynamic changes of the features. 

Discrimination of apnea and non-apnea periods was performed using LR. A threshold-

based diagnostic rule was afterwards implemented to classify the epoch according to the 

resulting probability. All methods were developed in Python 3, and TFCV was employed 

for performance assessment (performing 50 repetitions of each iteration to achieve 

statistically significant results). 

It was verified that the average Acc, Sen, Spe, and AUC of the algorithm were, 

respectively, 86.6%, 66.9%, 94.5%, and 0.90. A second version of the algorithm was 

created by introducing data from another 35 subjects (a total of 70). The SFS procedure 

was repeated, and five features were selected. Specifically, the variance of the central 

minute in the 5 min segment, and the energy of the filters: 2; 3; 8; 9. It was verified that 

the average Acc, Sen, Spe, and AUC of the improved algorithm were, respectively, 

87.5%, 79.5%, 90.8%, and 0.92. Figure 7.1 presents an example of the variation of the 

selected features during OSA events. 

The number of OSA events was examined to perform the global OSA diagnosis by 

comparing the ratio  

m− AHI − tib =
minutes classified as OSA

time in bed in minutes
 7.4 

named m-AHI-tib, with a threshold. This ratio is highly correlated to the AHI [49] [400] 

[228] measured by PSG, and it has the benefit of not requiring a sleep or wake 

classification. According to the AASM, the reference AHI for OSA diagnosis is having an 

average of more than 5 events in 60 minutes [21]. Therefore, the selected threshold was 

0.083 (≈ 5/60). 

The regression plot of the AHI acquired by PSG and the predicted m-AHI-tib is 

presented in Figure 7.2. The regression R2 was 0.87, further validating the technique for 

OSA diagnosis. The attained accuracy for the OSA diagnose was 95%. 

 

 

 

 



 

142 

 

a) 

 
b) 

 
c) 

 
d) 
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e) 

 
f) 

 
Figure 7.1. Variation of the selected futures during OSA events, identified in a). The 

features are the b) variance of the central minute, and the energy of the filters c) 2; d) 3; 

e) 8; f) 9. 

 

Figure 7.2. Regression plot of the AHI acquired by PSG and the estimated m-AHI-tib 

from the SpO2 based model [401]. 

7.2. Based on the ECG signal 

The CPC signal was examined for the OSA detection based on the ECG signals from 

the DrNUH dataset. This approach was selected since ECG signal analysis was identified 
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in the state of the art methods review as the most suitable for OSA detection. The CPC 

signal was evaluated as it is intended to use only this signal for the proposed sleep quality 

model, presented in chapter 8. Therefore, the previously examined 7 minute window for 

the indirect measurement of CAP (based on the ECG signal) was used to create the CPC 

signal which was fed to a 1D-CNN. All methods were developed in Python 3 using the 

Keras library.  

The hyperparameter optimization and performance assessment were performed by 

TFCV repeating each iteration 10 and 50 times (the optimized network was employed for 

performance assessment), respectively, using the ADAM algorithm [343] for the 

network’s optimization. However, the configuration of the CNN architecture was chosen 

by the heuristic oriented grid search method developed for the 1D-CNN, which is 

presented in section 8.1. The best AUC was attained by using two GL, each composed of 

a convolution, followed by the normalization, and a pooling operation. A total of 128 

filters, with length 5, were used in the first convolution layer, while 256 filters (with 

length 5) were employed in the second convolution layer. A stride of 2 was used for the 

pooling layers (with a pool size of 2), while a stride of 1 was used for the convolution 

layers. For the minute-by-minute examination, the attained Acc, Sen, Spe, and AUC were, 

respectively (average ± standard deviation), 76.4% ± 4.33%, 72.7% ± 6.49%, 75.3% ± 

3.61%, and 0.77 ± 0.04. This performance is in the range of the reported metrics of the 

works available in the state of the art for OSA classification based on ECG [56]. 

The global classification procedure applied for the SpO2 signal was also employed 

for this model, and the attained global Acc was 94.3%. The regression plot of the AHI 

acquired by PSG and the predicted m-AHI-tib is presented in Figure 7.3, attaining an R2 

of 0.79. 

 

Figure 7.3. Regression plot of the AHI acquired by PSG and the estimated m-AHI-tib 

from the ECG based model [299]. 

7.3. Discussion of the results 

A comparative analysis between the developed algorithms for the epoch based OSA 

classification, and the state of the art works reviewed in section 3.2 is presented in Table 

7.1. By analyzing the table, it is possible to verify that the employment of machine 

learning methods achieved better and balanced results. Comparing the first and second 

versions of the developed SpO2 based algorithms, it is notorious that an improvement in 
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the performance was attained, with a significant increment (13%) in the Sen. Reaching a 

similar Acc with the bigger dataset is a good indicator of the robustness of the method.  

Table 7.1: Comparison between the developed algorithms and the methods presented in 

the state of the art for epoch based OSA detection. 

Work Population Signal 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

CO 

(%) 

Ravelo-Garcia et al. [181] 35* ECG - 74 86  
Lázaro et al. [157] 21 SpO2 70 82 69 74 

MartÍnez-Vargas et al. [178] 35* ECG 76 - - - 

Kesper et al. [180] 35* ECG 81 - - - 
Hassan [188] 35* ECG 84 - - - 

Ravelo et al. [169] 35* ECG 84 79 87 83 

Mostafa et al. [161] 25 SpO2 85 60 92 79 

Ravelo-García et al. [189] 35* ECG 85 75 91 84 
Martín-González et al. [196] 35* ECG 85 82 87 85 

Cheng et al. [191] 35* ECG 85 83 82 83 

Nguyen et al. [185] 35* ECG 85 86 83 85 

Song et al. [193] 35* ECG 86 83 88 86 

Mendez et al. [171] 25* ECG 86 84 89 86 

Hassan [192] 35* ECG 87 82 91 87 
Hassan and Haque [194] 35* ECG 89 88 91 89 

Chazal et al. [168] 35* ECG 90 89 91 90 

Jung et al. [164] 92 SpO2 91 83 89 88 
Quiceno-Manrique, et al. [173] 35* ECG 93 - - - 

Almazaydeh et al. [156] 8 SpO2 93 88 100 94 
Khandoker et al. [176] 30* ECG 93 90 100 94 

Rachim et al. [186] 35* ECG 94 95 93 94 

Pathinarupothi et al. [163] 8 SpO2 96 - - - 
Mostafa et al. [165] 8 SpO2 98 97 99 98 

Travieso et al. [182] 35* ECG 99 - - - 

Pathinarupothi et al. [199] 35* ECG 100 - - - 

This work – first version of the SpO2 algorithm 35 SpO2 87 67 95 83 
This work – second version of the SpO2 algorithm 70 SpO2 88 80 91 86 

This work – ECG algorithm 70 ECG 76 73 75 75 

* recordings from PhysioNet apnea-ECG database [43] 
 

When comparing with the state of the art works evaluating SPO2 signal, it is notorious 

that the works which have reported the best performance have only used 8 subjects in the 

analysis, while the best proposed method examined 70 subjects. The work presented by 
Jung et al. [164] was the only based on SpO2, which has used a higher population than 

the proposed method, and reached a better Acc (3% more) although with a lower 

specificity. 

The state of the art methods based on ECG reported the best results. However, it is 

relevant to notice that all evaluated works which presented ECG methods were tested in 

the same public databases, which is likely to have cleaner signals that might contribute to 

increase the algorithm’s diagnostic capability [56]. This observation is possibly related to 

the results attained in this work where the method based on ECG attained a lower 

performance than the developed methods based on SpO2. 

The comparative analysis between the developed algorithms for the global OSA 

assessment, and the state of the art works (reviewed in section 3.2) is presented in Table 

7.2. It is possible to conclude that the proposed methods attained a performance which is 

in the upper range of the state of the art works while using a higher population than the 

works which presented a higher Acc. It was also observed that although the model based 

on the SpO2 signal analysis reached a better performance for the minute-by-minute 

examination, the global Acc (OSA diagnosis) attained by the models developed for the 

two source signals (SpO2 and ECG) is almost the same.  
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Table 7.2: Comparison between the developed algorithms and the methods presented in 

the state of the art for global OSA assessment. 

Work Population Signal Acc (%) 

Gutiérrez-Tobal et al. [187] 188 ECG 72 

Garde et al. [159] 36 SpO2 85 
Marcos et al. [151] 83 SpO2 86 

Yılmaz et al. [177] 17 ECG 87 

Lázaro et al. [157] 21 SpO2 87 
Álvarez et al. [155] 144 SpO2 87 

Álvarez et al. [150] 187 SpO2 87 

Mendez et al. [172] 25 ECG 88 
Marcos et al. [152] 113 SpO2 88 

Chazal et al. [168] 35* ECG 89 

Álvarez et al. [154] 148 SpO2 90 
Álvarez et al. [160] 127 SpO2 90 

Roche et al. [166] 147 ECG 91 

Ravelo-Garcia et al. [181] 35* ECG 93 
Khandoker et al. [175] 42 ECG 93 

Chen et al. [190] 70* ECG 93 

Marcos et al. [153] 129 SpO2 93 
Rachim et al. [186] 35* ECG 94 

Morales et al. [162] 79 SpO2 94 

Morillo and Gross [158] 115 SpO2 94 
Smruthy and Suchetha [195] 9+ ECG 95 

Khandoker et al. [174] 16 ECG 95 

Almazaydeh et al. [16] 32* ECG 97 
Song et al. [193] 35* ECG 97 

Martín-González et al. [196] 35* ECG 97 

Jung et al. [164] 92 SpO2 97 
Cheng et al. [198] 10* ECG 98 

Chen and Zhang [197] 69* ECG 98 

Khandoker et al. [176] 30* ECG 100 

Yildiz et al. [179] 60* ECG 100 

This work – second version of the SpO2 algorithm 70 SpO2 95 

This work – ECG algorithm 70 ECG 94 

* recordings from PhysioNet apnea-ECG database [43] 
+ University college of Dublin sleep apnea Database [233] 
 

7.4. Key remarks 

Two source sensors were evaluated in this chapter for OSA analysis. It was verified 

that the model based on SpO2 reached a better performance for the minute-by-minute 

examination, conceivably because the oscillations in the SpO2 signal are more related to 

the OSA events. However, the attained global accuracy (OSA diagnosis) by the models 

developed for the two source sensors is essentially the same. However, the ECG based 

model is more suitable for the proposed sleep quality model (presented in chapter 8) since 

the CAP epochs can also be assessed from the ECG signal. Hence, only one sensor is 

required. 

The main limitation of the methods based on the SpO2 signal is the inability of SpO2 

to display distinctive patterns during short respiratory pauses. Another factor is that 

breathing pauses may be produced by pulmonary diseases instead of an OSA event, and 

the distinction between these occurrences cannot be properly evaluated by examining the 

SpO2 signal. Regarding the ECG signal examination, based on CPC, the main limitation 

was the possibility of subjects suffering from heart related disorders to affect the 

evaluation, and the possibility of occurrence of different influences on the dynamic of the 

HRV that are not related with OSA. Another relevant aspect was that the number of GL 

employed by the classifier was optimized for the proposed sleep quality model, which 

may have led to lower performance. 
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A sleep quality model was developed in this chapter using the Keras library in Python 

3. ECG was chosen as the source sensor since it is easier to self-assemble, when 

comparing with the EEG, and the developed models for the sleep quality estimation based 

on this sensor, presented in chapter 6, attained promising results. The CAP epochs’ 

assessment was employed to define a new sleep quality metric, and the result of this 

estimation was combined with the OSA diagnosis (using the model presented in section 

7.2), and the estimation performed by model which evaluates the average CPC signal 

(presented in section 6.2) to acquire the final sleep quality estimation. The proposed 

model predicts the quality of sleep by combining the information of sleep quality metrics 

and the sleep disorder detection to provide a better view of the global sleep quality, 

according to the third approach for sleep quality examination, theorized in this work (from 

the state of the art analysis). 

8.1. Development of the model 

The previous methods developed for sleep quality assessment, based on the ECG 

signal, required the assessments of the NREM periods to estimate the CAP rate. However, 

a simpler and possibly more accurate approach would be the employment of the same 

methodology used to evaluate the m-AHI-tib. Thus, a new sleep quality metric can be 

created by comparing the ratio [299] 

m− CAP − tib =
minutes classified as CAP

time in bed in minutes
 8.1 

named m-CAP-tib, with a tuned threshold. To evaluate the performance of this metric, 

the CPC signal fed a 1D-CNN to estimate the CAP epochs.  

It was conceptualized in this work that an improved sleep quality estimation can be 

attained by combining the assessment of both sleep disorders and sleep quality metrics. 

Therefore, two more methods were chosen to combine their assessment with the sleep 

quality estimation from the m-CAP-tib. Specifically, the global estimation of the sleep 

quality by considering the average of the CPC signal (presented in section 6.2; this 

method attained the best complexity to performance ratio), and the model based on CPC 

for OSA diagnosis (disorder that is strongly correlated to the occurrence of poor sleep 

quality, whose developed method was presented in section 7.2), were selected. The 

developed model is presented in Figure 8.1. 

The algorithm has two main steps. The first creates the CPC signal from the N-N 

series and EDR signal by employing the method previously described, applied to the pre-

processed (resampling and normalizing) single-lead ECG signal. The second step 

performs the examination of the CPC signal by the three 1D-CNN whose outputs were 

combined to produce the global estimation of the sleep quality (named SQ-g). The CNN 

was chosen for this model since it was acknowledged as one of the best networks for 

automatic feature extraction [342]. 

Two classifiers performed the minute-by-minute estimation, and were fed with the 

CPC epochs. Each epoch has a duration of 7 minutes with 6 minutes overlapping 

(identified in section 6.1 as the best window for CAP examination). The combination of 

all epochs composes a Spectrographic Image (SI), which is a time-frequency matrix 
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representation, where each line (row of the time-frequency matrix) contain the frequency 

based information of the examined epoch.  

 

Figure 8.1. Block diagram of the sleep quality model based on the ECG signal 

examination [299]. 

One of the classifiers estimated the presence of OSA and another the occurrence of a 

CAP epoch. This information was then used to compute the m-AHI-tib, and m-CAP-tib, 

which were compared with thresholds for the OSA diagnosis (method presented in section 

7.2) and sleep quality prediction (named SQ-m, using equation 8.1), respectively. The 

average of the CPC estimation fed the third 1D-CNN to perform the second sleep quality 

estimation (named SQ-ave). A representation of the SI creation is presented in Figure 8.2. 

The sleep quality assessment was either “0” if the determined CAP rate was higher 

than the CAP rate percentage in healthy subject with the same age group as the patient, 

designating a poor sleep quality, or “1” otherwise. In the end, the SQ-g was calculated by 

a majority voting strategy, considering each input as a vote, and the system selects the 

output class with more votes (input class that was chosen by either two or three models, 

since three binary classification models were considered) to perform the classifiers 

ensemble. The developed process for feature creation, classification, and sleep quality 

assessment is presented in Figure 8.3. 
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Figure 8.2. Representation of the SI creation [299]. 

 

Figure 8.3. Flow diagram of the proposed method for sleep quality estimation from the 

ECG signal [299]. 
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A grid search method was used to select the 1D-CNN hyperparameters and structure 

employed for the three classifiers, which compose the proposed sleep quality model. All 

classifiers started with one GL (composed of one convolution layer, followed by batch 

normalization, and a pooling layer), and the subsequent GLs were introduced in all 

classifiers if the Acc-G increased by a minimum value, th, of 1% or until the maximum 

number of GL, Gmax, chosen to be 4. Consequently, all classifiers have an equal number 

of layers, leading to a considerable reduction of the simulation time, which would have 

been necessary to test all possible combinations. The number of filters (K) employed by 

the first convolution layer varied from 8 to 512. A step size with a power of two was used 

for optimization; hence, the starting (Kstart) and maximum (Kmax) value was 3 and 9, 

respectively. The filter length, F, varied from 1 (Fstart) to Fmax, selected to be 10, in steps 

(Fstep) of 1. The examined activation functions were ReLU and SELU. 

The number of filters, of the convolution layers, for the subsequent GL after the first 

was selected to be either half, the same, or twice the amount used in the previous GL, 

with the same F. For the batch normalization layer, the employed number of channels 

was chosen the same as the number of filters used by the convolution layer. Each pooling 

layer employed a pool size of 2 with equal stride. A stride of 1 was used by all convolution 

layers. ReLU was used as the activation function, and the network’s error optimization 

was performed by the Adam algorithm [343]. A dense layer could be used between the 

last GL and the output layer, having a number of neurons which was either half, the same, 

or twice the F from the previous GL (the pooling layer of the last GL was chosen to be 

global. Thus, this GL was named GL2). The Output layer employed the soft-max 

function. 

The optimization was performed using a variation of the HOSA algorithm (named 

HOSA-G) for the developed sleep quality model. The examined data was DataOSA, 

DataCAP, DataSQ, for minute by minute OSA, minute by minute CAP, and sleep quality 

(based on the average of CPC window) examination, respectively. The predictions of the 

optimized classifiers were then combined by majority voting, MajorityVoting, to estimate 

the Acc of the global sleep model. The HOSA-G follows the subsequent pseudo code: 

HOSA-G (DataSQ, DataCAP, DataOSA, Gmax, Kstart, Kmax, Fstart, Fstep, Fmax, th) 

G = [1, 2, …, Gmax] 

K = 2N where Kstart ≤ N ≤ Kmax 

F = [Fstart, Fstart + Fstep, …, Fmax] 

P = [MaxP, AveP] 

A = [ReLU, SELU] 

C = [SQ, CAP, OSA] 

for g = 1 to length (G) 

    for c = 1 to length (C) 

        for k = 1 to length (K) 

            for f = 1 to length (F) 

                for p = 1 to length (P) 

                    for a = 1 to length (A) 

                        for m = 1 to 3 

                            if c == 1 
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                                Net0,c,k,f,p,a,m,0 ← Ipt (DataSQ) 

                            else 

                                if c == 2 

                                    Net0,c,k,f,p,a,m,0 ← Ipt (DataCAP) 

                                else 

                                    Net0,c,k,f,p,a,m,0 ← Ipt (DataOSA) 

                            Kp = K (k) 

                            for z = 1 to g 

                                if z == g 

                                    Netz,c,k,f,p,a,m,0 ← Netz-1,c,k,f,p,a,m,0 + GL2 (Kp, F (f), P (p), A (a)) 

                                else 

                                    Netz,c,k,f,p,a,m,0 ← Netz-1,c,k,f,p,a,m,0 + GL (Kp, F (f), P (p), A (a)) 

                                if m == 1 

                                    Kp = floor (Kp / 2 + 1 / 2) 

                                else 

                                    if m == 2 

                                        Kp = Kp 

                                    else 

                                        Kp = Kp × 2 

                            Netg,c,k,f,p,a,m,1 ← Netg,c,k,f,p,a,m,0 + FC (floor (Kp / 2 + 1 / 2)) + FC (2) 

                            Netg,c,k,f,p,a,m,2 ← Netg,c,k,f,p,a,m,0 + FC (Kp) + FC (2) 

                            Netg,c,k,f,p,a,m,3 ← Netg,c,k,f,p,a,m,0 + FC (Kp × 2) + FC (2) 

                            Netg,c,k,f,p,a,m,4 ← Netg,c,k,f,p,a,m,0 + FC (2) 

                            for l = 1 to 4 

                                AUCg,c,k,f,p,a,m,l ← test (train (Netg,c,k,f,p,a,m,l)) 

        AUCg,c,k,f,p,a,m,l,max = max(AUCg,c,k,f,p,a,m,l)|for all k,f,p,a,m,l 

    BestNetSQ = Netg,1,k,f,p,a,m,l|AUCg,1,k,f,p,a,m,l,max 

    BestNetCAP = Netg,2,k,f,p,a,m,l|AUCg,2,k,f,p,a,m,l,max 

    BestNetOSA = Netg,3,k,f,p,a,m,l|AUCg,3,k,f,p,a,m,l,max 

    Accg ← test (MajorityVoting (BestNetSQ, BestNetCAP, BestNetOSA)) 

        if g > 1 

            if Accg – Accg-1 ≤ th 

                break 

return BestNetSQ, BestNetCAP, BestNetOSA 
 

The global sleep quality classifier structure selection and hyperparameter 

optimization was performed by either TFCV (for the CAP and OSA classifiers) or 

LOOCV (for the sleep quality prediction based on the average of the CPC signal), using 

cost-sensitive learning. The layer parameters of all classifiers is presented in Table 8.1. 

The total number of examined networks was 30240 and each was repeated 10 times. 

Therefore, the number of simulation was 302400.  

Recordings from the fifth CAPSD (15 normal subjects and from the four subjects with 

sleep-disordered breathing) were examined for the minute-by-minute CAP cycle 

assessment using the classifier optimized by the HOSA-G, and TFCV was employed for 

the performance assessment. Each iteration was repeated 50 times to achieve statistically 

significant results. For the minute-by-minute CAP cycle assessment, the Acc, Sen, Spe, 

and AUC (average ± standard deviation), were 70.5% ± 2.17%, 73.20% ± 5.41%, 69.8% 

± 1.80%, and 0.72 ± 0.04, respectively. An example of the line examination executed by 
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the classifier, which performed the minute-by-minute CAP assessment is presented in 

Figure 8.4.  

 

Figure 8.4. Example of the line examination executed by the classifier which performed 

the minute-by-minute CAP assessment [299]. 

Table 8.1: Layer parameters of all classifiers which composed the proposed sleep quality 

model [299]. 

Layer Average sleep quality examination Minute-by-minute – CAP Minute-by-minute – OSA 

Input1 1x128x1 1x128x1 1x128x1 

Convolution2 64@1x4x1_1x1 256@1x8x1_1x1 128@1x5x1_1x1 

Batch normalization3 64 256 128 
Pooling4 1x2_1x2 1x2_1x2 1x2_1x2 

Convolution2 128@1x4x1_1x1 512@1x8x1_1x1 256@1x5x1_1x1 

Batch normalization3 128 512 256 
Pooling4 1x2_1x2 1x2_1x2 1x2_1x2 

Global pooling 128 512 256 

Dense 128 512 256 
Dense 2 2 2 

2number of filters @ vertical width of the filters x horizontal width of the filters x number of channels _ vertical stride x horizontal stride 
3number of channels 
4vertical pool size x horizontal pool size _ vertical stride x horizontal stride 
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The minute-by-minute classifier’s predictions (employed to estimate the m-CAP-tib) 

were then used to assess the SQ-m, considering the age-related CAP rate percentages in 

healthy subjects [10] as the reference to define the subject’s quality of sleep, and using 

LOOCV for performance assessment (the value of m-CAP-tib of each subject was 

calculated by averaging the 50 repetitions of LOOCV). It was verified that the highest 

SQ-g was attained using a threshold of 0.22 to define the SQ-m. The regression plot of 

the CAP rate obtained by PSG and the predicted m-CAP-tib is presented in Figure 8.5. 

The regression R2 was 0.87, further advocating the relevance of the proposed metric. The 

average performance of the global classification algorithms is presented in Table 8.2, 

where it is also presented the predicted sleep quality for each subject for each of the three 

classifiers (the OSA diagnosis indicated the quality of sleep as poor when the subject was 

classified as suffering from OSA, and as good otherwise). 

 

Figure 8.5. Regression plot of the CAP rate acquired by PSG and the estimated m-CAP-

tib. 

Table 8.2: Sleep quality predictions (good, G, or poor, P) and performance (agreement 

with the true sleep quality defined by the database labels) of the sleep quality model. 

Subject SQ-ave SQ-m OSA diagnosis SQ-g m-CAP-tib True CAP rate True sleep quality 

1 G P P P 0.23 0.47 P 

2 G G G G 0.21 0.36 G 
3 G G G G 0.12 0.35 G 

4 G G G P 0.14 0.35 G 

5 G P P P 0.27 0.50 P 
6 P P P P 0.23 0.57 P 

7 P G P P 0.15 0.45 P 

8 P G P P 0.20 0.46 P 

9 G G G G 0.10 0.30 G 

10 G P G G 0.22 0.29 G 

11 P P G P 0.23 0.46 P 
12 P G G G 0.11 0.22 G 

13 G P P P 0.27 0.54 P 

14 P P G P 0.23 0.39 P 
15 P P G P 0.27 0.45 P 

17 P G G G 0.14 0.43 G 

18 P P P P 0.61 0.76 P 
19 P P P P 0.58 0.78 P 

20 P P P P 0.69 0.86 P 

Global Acc (%)  73.68 84.21 89.47 100.00 - - - 
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The average normalized measure of CPC for all subjects diagnosed as having a good 

or a poor sleep quality, by the classifier performing the SQ-ave estimation, is presented 

in Figure 8.6. It is possible to observe that the classifier indicated the sleep quality as poor 

when most of the power of the CPC estimation was in the LF band while the opposite 

occurred when most of the power was in the HF band. The classifier performing the OSA 

diagnosis detected a lower CAP rate as a negative diagnosis (indicative of good sleep 

quality) and the opposite as a positive diagnosis (indicative of poor sleep quality). 

 

Figure 8.6. Average normalized measure of CPC for all subjects diagnosed as having a 

good or a poor sleep quality by the classifier performing the SQ-ave estimation. 

8.2. Discussion of the results 

Several methods were proposed in the state of the art for sleep quality examination, 

identified in the performed review [55]. A summary of the works that reported the global 

accuracy is presented in Table 8.3. 

Table 8.3: Comparison of the result attained by the proposed sleep quality model with the 

works presented in the state of the art [299]. 

Work Description Global Acc (%) 
[70] Clustered sound events classified by an HMM 70 

[89] Set of rules that analyzed attributes 73 

[82] Features from EEG to fed a GELM 76 
[71] Features from EDR and HRV to fed a SVM 78 

[76] Actigraphy signal fed to a CNN 93 

This work – method for sleep 

quality examination based on EEG 

CAP rate estimation by a FSM, whose A phases of the CAP 

cycles were classified by a 1D-CNN 
74 

CAP rate estimation by a FSM, whose A phases of the CAP 

cycles were classified by a LSTM 
79 

CAP rate estimation by a FSM, whose A phases of the CAP 

cycles were classified by a LSTM, fed with features 
90 

This work – prediction from SQ-ave Classification of the average CPC signal by a 1D-CNN 74 

This work – prediction from SQ-m  Classification of the CAP epochs by a 1D-CNN to estimate the 

m-CAP-tib 
84 

This work – prediction from SQ-G  Combinatory scheme that examined the output of three 1D-

CNN 
100 

 

Conventional sleep metrics were evaluated by Bsoul et al. [71], Sathyanarayana et al. 

[76], and Wang et al. [82]. The first work examined features from both time and frequency 

domains, extracted from HRV and EDR. The features were fed a SVM (with a Gaussian 

kernel) to estimate the deep sleep efficiency. The second work estimated the sleep 
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efficiency by feeding actigraphy signals to a CNN, while the third work examined 

features from PSD to feed a Graph regularized Extreme Learning Machine (GELM) with 

the goal of assessing the TST. 

On the other hand, Wu et al. [70] and Choi et al. [89] proposed new methodologies 

for sleep quality estimation. The first work evaluated clustered sounds related to sleep 

events, using a SOM, and the output fed a multinomial HMM to predict the quality of 

sleep, while the second work proposed a set of rules which examined 19 attributes to 

quantify the quality of sleep. 

By examining Table 8.3, it is possible to verify that the developed work attained the 

best performance, correctly predicting the sleep quality of all subjects, significantly 

improving the results attained individually by the sleep quality models (SQ-ave and SQ-

m). Thus, validating the significance of the ensemble for this classification. Another 

relevant aspect was that the best proposed EEG based method’s performance was 10% 

lower than the proposed ECG model, further emphasizing the relevance of this model.  
 

8.3. Key remarks 

It was verified that the sleep quality model developed in this chapter attained the best 

possible performance by correctly classifying the sleep quality of all tested subjects. This 

result was accomplished by combining three classifications from the CPC signal that 

considered the proposed sleep quality metric, the average CPC signal and the OSA 

diagnosis. Therefore, these results support the hypothesis considered for this work that an 

improved sleep quality estimation can be attained by combining the assessment of both 

sleep disorders and sleep quality metrics. The developed model is scalable as the 

combination strategy allows for more classifiers to be considered. Therefore, the 

proposed method can include the detection of more sleep disorders and/or other sleep 

quality metrics (estimated by new classification procedures). As a result, it can be a 

relevant tool for the future of sleep quality analysis at the patient’s home. It is also relevant 

to notice that the proposed tools can be of support for physiological characterization if 

some specific and controlled databases are designed. 

The main limitation of the proposed method is the possibility of subjects suffering 

from heart related disorders to affect the evaluation. Another limitation was that the 

threshold used to classify the sleep quality based on the m-CAP-tib was selected in a way 

that maximized the SQ-G. This approach may lead to difficulties in generalizing the 

method to other populations that are significantly different from the suited subjects. The 

last limitation was the fact that the examined subjects either suffer from sleep-disordered 

breathing or were free of sleep related disorders. However, other sleep related disorders 

may also significantly affect the sleep quality, although they were not considered for this 

work. 
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9. Development of the HMDs for sleep analysis 

9.1. HMD for OSA detection 

9.1.1. First HMD for OSA detection 

9.1.2. Second HMD for OSA detection 

9.2. HMD for sleep quality estimation based on the EEG signal 

9.3. HMD for sleep quality estimation based on the ECG signal 

9.4. HMD for sleep quality and OSA assessment 
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The proposed methods for sleep quality metrics and/or OSA assessment were 

implemented in HMDs, considering the three exanimated source sensors (EEG, ECG and 

SpO2). The goal of these devices is to evaluate the viability of hardware implementation 

of the proposed methods considering one of each of the theorized approaches for sleep 

quality examination (theorized in this work from the state of the art analysis). Specifically, 

the assessment based on sleep quality metrics was performed for the devices based on 

EEG or ECG, the evaluation based on the presence of sleep related disorders (OSA was 

examined in this work since it is one of the most prevalent and frequently undiagnosed 

sleep related disorder) was performed for the two devices based on SpO2, and the 

assessment based on the combination of estimated sleep quality metrics and the detection 

of sleep related disorders (to provide a better view of the global sleep quality) was 

performed for the second device based on ECG. 

It is intended to develop HMDs as a proof of concept for the feasibility of hardware 

implementation of the developed methods. The first approach was the development of 

two devices that can perform the OSA analysis, using pulse oximetry (SCOPER 

characterization: O1). The first can be used in multiple configurations, and was directed 

for clinical usage, while the second was simpler to operate, and was orientated for the 

personal consumer market. The second step was the development of two devices for sleep 

quality estimation, the first evaluated the EEG signal (SCOPER characterization: S2) 

while the second examined the ECG signal (SCOPER characterization: C3). The final 

device was developed to assess both sleep quality and OSA (minute-by-minute and global 

examination) using the single-lead ECG signal (SCOPER characterization: C3). 

9.1. HMD for OSA detection 

9.1.1. First HMD for OSA detection 

The first HMD implemented the first version of the algorithm for OSA detection 

(presented in section 7.1), and had two main units (sensing unit and a processing unit) 

that wirelessly communicate, as presented in Figure 9.1. The first unit was composed of 

the sensor (Contec cms50d+ pulse oximeter), the protocol transcription and error 

detection module, implemented in a Field-Programmable Gate Array (FPGA), and a 

Bluetooth transmitter. The second unit received the data in a Bluetooth receiver (in this 

case, a Bluetooth dongle) and employed a processing module to analyze the data. The 

block diagram of the employed hardware, and the HMD are presented in Figures 9.2 and 

9.3, respectively.  

The pulse oximeter acquired the SpO2 and heart rate signals with a sampling rate of 

60 Hz, and a resolution of 8 bit. These signals were sent to the FPGA, Avnet Spartan-6 

LX9 MicroBoard (3.5 cm by 7.5 cm) for checking errors and reshaping them to the 

Universal Asynchronous Receiver/Transmitter (UART) protocol that was used by the 

Bluetooth transmitter, the Bluetooth Bee. This device sent the data, using the Bluetooth 

2.0 protocol in the 2.4 GHz frequency band with a baud rate of 19200 b/s, to the 

processing unit. The sensing unit was fed by a 5 V (nominal voltage) battery, with a 

nominal capacity of 2500 mAh. Taking into consideration that the average current 

consumption of the unit was 107 mA, the fully charged battery was enough to last at least 

13 h.  
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The FPGA was programed to implement two FSM, each controlled by a state variable, 

in Very high speed integrated circuits Hardware Description Language (VHDL). Figure 

9.4 presents the VHDL algorithm flowchart. The first FSM decoded the words received 

from the pulse oximeter (the protocol was composed of groups of five words that were 

sent 60 times per second) to extract the SpO2 and heart rate signals, checked the words 

for errors by analyzing the parity bit, and if no error was detected the words were stored 

in a buffer. The second FSM sent the information which was stored in the buffer, using 

the UART protocol, to the Bluetooth Bee. 

 

Figure 9.1. System architecture of the HMD for apnea detection (first version) [402]. 

 

Figure 9.2. Block diagram of the HMD hardware for apnea detection (first version) 

[402]. 
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Figure 9.3. HMD hardware for apnea detection (first version). 1-bluetooth dongle; 2-

bluetooth transmitter; 3-FPGA; 4-pulse oximeter [402]. 

It was verified that the average current consumption of the FPGA, 75 mA, was 25 mA 

higher than the Texas Instruments MSP430 (a commonly used microcontroller for low 

power consumption applications). However, the FPGA allows to easily implement the 

serial communication protocol of the pulse oximetry, a task that was considerably harder 

using a microcontroller. Therefore, the FPGA was chosen. 

A Bluetooth dongle receives the data on the processing unit and sends it to a computer, 

using the universal serial bus protocol, to be analyzed by the developed algorithm 

previously examined (second version of the OSA detection based on SpO2). The 

flowchart of the implementation is presented in Figure 9.5.  

The algorithm first stores each valid received word in a file to be analyzed. If the 

finger was removed from the sensor, all received words had the value 0; thus, considered 

not valid. If this happens for more than 30 s the test session is considered to be finished 

and the data analysis begins. Every five-minute epoch was analyzed to produce the feature 

vector that was combined with the weights vector to determine the OSA probability. At 

the end of each epoch analysis a threshold was applied to perform the binary 

classification, 0 for OSA negative and 1 for OSA positive. 

A Graphical User Interface (GUI) was developed in Python to allow the user to: test 

and configure and the connection; start the exam; visualize the results in a graph, which 

displays the hearth rate and SpO2 variations as presented in Figure 9.6, and a text box 

with indication of the total number of detected apneas. The results were stored in a text 

file. 
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Figure 9.4. VHDL algorithm flowchart (first version) [402]. 
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Figure 9.5. Flowchart of the Python algorithm [403]. 

 

Figure 9.6. GUI of the HMD for OSA detection [402]. 

The HMD architecture was improved to include two new units (routing and portable 

processing), as presented in Figure 9.7. Four possible configurations were defined, 
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according to the utilization purpose, with the description presented in Table 9.1. The 

second wireless transmitter (ESP8266, operating in the station mode) of the sensing unit 

sends the information by Wi-Fi to a router in the routing unit, and the information can 

either go to the portable processing unit (in this case a smartphone) or to a server, through 

the internet, to be analyzed. Therefore, a third FSM was introduced in the VHDL 

algorithm, and the updated version of the flowchart is presented in Figure 9.8. 

 

Figure 9.7. System architecture of the HMD for apnea detection (second version) [403]. 

Table 9.1: Configuration of the HMD for apnea detection (second version) [403]. 

Configuration 

number 
Description Purpose Architecture 

Example of 

application 

1 Clinical diagnosis Produce a report at the end 

of the test 

Sensing unit sends data to the 

processing unit 

Subject performing 

the test at home 
2 Clinical diagnosis 

with real time 
monitoring 

Display the signals and the 

number of apneas in real 
time, producing a report at 

the end of the test 

Sensing unit sends data to the 

processing unit and to the 
portable processing unit, 

passing by the routing unit 

Disabled subject 

performing the test, 
monitored by a 

person 

3 Real time 
monitoring 

Present, in real time basis, 
the measured signals and 

the number of apneas 

detected 

Sensing unit sends data to the 
routing unit which in turn sends 

it to the portable processing unit 

Self-analysis of the 
subject in a daily 

basis 

4 Data acquisition Send the measured signals 

to a server 

Sensing unit sends data to the 

routing unit which in turn sends 

it to a server 

Data sent to server to 

be stored and 

analyzed 
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Figure 9.8. VHDL algorithm flowchart (second version) [403]. 

A Java application was developed to perform the analysis of the data in near-real time 

(classifies each minute as either apnea or non-apnea) and was implemented in the portable 

processing unit (smartphone with Android operating system). The algorithm flowchart is 

presented in Figure 9.9.  

When the user opens the application, the smartphone’s Wi-Fi is activated, and the user 

can connect to a configured router network. The GUI of the application presented the 

heart rate and SpO2 variation on a plot in real time, and a 3 s average of the signals in 

text boxes. Figure 9.10 displays the GUI in the absence and presence of apnea. 
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Figure 9.9. Flowchart of the Java algorithm [403]. 

a) b) 

  
 

Figure 9.10. GUI of the Java application displaying the results of a test a) with an apnea 

event and b) with normal breathing [403]. 

It was verified that the average current consumption, of the sensing unit, is dependent 

upon the selected configuration, and is 0.22 A when both transmitters are used. When 
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only one of the wireless transmitter were used, the average current consumption was 

either 0.19 A (only Wi-Fi) or 0.11 A (only Bluetooth). The same 5 V, nominal voltage, 

battery was employed. Thus, the battery lasts at least 9 h (in the configuration where both 

transmitters were used) when fully charged. The average current consumption of the 

FPGA remained the same, and the implementation used roughly 10% of the accessible 

on-chip logic. 

The smartphone’s application allowed the development of a low cost solution 

(considering the cost of a basic smartphone), for personal analysis, while the computer 

analysis offers a more robust solution for medical diagnosis. The total cost of the device 

was 915 € (165 € for the pulse oximeter; 82 € for the FPGA; 7 € for the Wi-Fi transmitter; 

36 € for the Bluetooth transmitter; 400 € for the processing unit; 25€ for the router; 200 

€ for the smartphone). 

9.1.2. Second HMD for OSA detection 

The HMD developed in the previous section was versatile and adjustable to multiple 

scenarios. However, an improved user friendly solution can be attained by employing a 

touch screen for user interaction, and simplifying the device’s design to facilitate the 

manipulation and assembly. Such improvements can be significant for the older adults 

with physical disabilities.  

Therefore, a second OSA detection device, based on the SpO2 signal examination, 

was developed to be easier to handle by the user, and implemented the second version of 

the algorithm for OSA detection (presented in section 7.1). The device can provide both 

a minute-by-minute and a global diagnosis (by applying a threshold to the estimated m-

AHI-tib) of the disorder. The developed architecture is presented in Figure 9.11. The 

employed hardware is presented in Figure 9.12, and the device is composed of two units 

that wirelessly communicate via Bluetooth. 

The BITalino Core BT [404] was used in the sensing unit to collect the signals 

measured by the pulse oximeter (Contec cms50d+), and it is composed of an 

ATmega328P microcontroller, a power management block, and a Bluetooth 

communication block. This unit was feed by a 3.7 V lithium ion battery, and the average 

load current was 50 mAh. Hence, the unit lasts 17 hours in real-time acquisition over 

Bluetooth [404]. The sensing unit cost was 240 € (75 € for the BITalino Core, and 165 € 

for the pulse oximeter). A representation of the assembled pulse oximeter and sensing 

unit is presented in Figure 9.13. 

The processing unit is composed of a single-board computer (Raspberry Pi 3 B+ with 

a 64-bit, 1.4 GHz, ARM quad-core processor), fed by the Direct Current (DC) power 

supply, and a touch screen that displays the GUI. The two units automatically establish 

the Bluetooth connection when the GUI is opened with the default bit rate of 19200 bit/s. 

The processing unit cost was 60 €. When comparing with the first HMD (previous 

subsection, 9.1.1), a significant total cost reduction (from 915 € to 300 €) was attained. 

The sensing rate of the sensing unit can be chosen through the GUI, and the device 

supports either 1, 10, 100, or 1 kHz. Nevertheless, the default value of 100 Hz was used 

for the measurements since it had fewer noise related artifacts than the measurements at 
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1 kHz. The signal’s resolution can be either 6 or 10 bit, depending upon the Analog to 

Digital Conversion (ADC) port. Conversely, only the 10 bit ports were used. 

The procedure for a normal examination can be summarized in the following steps:  

1. Introduce the index finger in the pulse oximeter. 

2. Attach the armband around the lower arm. 

3. Attach the sensing unit to the armband. 

4. Connect the sensing and processing units, and wait until the GUI is open. 

5. Press “Start Test”, and a new window will pop-up with the option of “Stop Test” 

(the sensing unit will begin the transmission of the SpO2 signal to the processing 

unit, which in turn will store the data in a text file with a timestamp). 

6. Press “Stop Test” to finish the data recording. 

7. Press “Analyze Results” and the application will perform the analysis and store 

the results in a text file. 

 

Figure 9.11. Architecture of the second developed HMD for OSA diagnosis [401]. 
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Figure 9.12. Hardware that composes the second HMD developed for OSA 

examination. 1- Sensing unit, 2- Pulse oximeter, 3- Armband, 4- Processing unit [401]. 

 

Figure 9.13. Pulse oximeter and sensing unit assembly of the second HMD for OSA 

examination [401]. 
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9.2. HMD for sleep quality estimation based on the EEG signal 

A low cost, and minimally invasive HMD that is capable of performing a minute-by-

minute CAP recognition for sleep quality estimation, was developed using a model that 

examines the EEG signal (from one of the monopolar derivations, either C4-A1 or C3-

A2) directly as input (the tested model was based on the improved implementation with 

the LSTM classifier, presented in section 5.3). 

The device’s architecture, presented in Figure 9.14, is composed of two units. The 

processing unit performs the analysis of the signals that were measured by the sensing 

unit, and the two units wirelessly communicate by Bluetooth. This approach allows the 

sensing unit to be small, since minimum processing capability is needed, and easily self-

assembled, while the processing unit can be larger to accommodate a touchscreen that 

displays the GUI, presented in Figure 9.15. The user can configure the Bluetooth 

connection, the sensor sampling frequency, start or stop the exam, and examine the 

results. The implemented hardware is presented in Figure 9.16. 

 

Figure 9.14. Developed architecture of the HMD that performs the sleep quality 

estimations based on the EEG signal analysis [26]. 

The BITalino Core BT [404] was used in the sensing unit to collect the signals 

measured by the EEG sensor (the sensor’s cost was 145 €). The default sampling rate 

(100 Hz) was employed, and the sensor was connected to a 10 bit ADC port. The EEG 

sensor measures the electrical potentials over the electrode placed in the scalp with respect 

to a ground reference, measured by the ground cable. Through a comparison with an 

established gold standard device (BioPac MP35 Student Lab Pro), it was verified that the 
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average root mean squared error of the measurement was 0.013±0.005 [405]. The minor 

error substantiates the viability of the sensor for medical diagnosis. 

 

Figure 9.15. GUI of the HMD based on the EEG signal analysis [26]. 

 

Figure 9.16. Implemented hardware: 1. Processing unit; 2. Sensing unit; 3. EEG sensor; 

4. Ground cable; 5. Electrode; 6. Headband [26]. 
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A single-board computer (Raspberry Pi 3 B+) was used on the processing unit, and it 

was fed by the DC power supply. A touch screen displays the GUI that allows the user to 

interact with the developed Python application, and it automatically connects with the 

sensing unit once the application is opened. The user can specify a new bit rate (the default 

value is 19200 bits/s) or change the ADCs that will be used on the GUI. Nevertheless, the 

usual examination only requires the user to follow the following steps: 

1. Position the EEG sensor in the C4 or C3 positions according to the 10-20 

international system (the second EEG sensor, that is connected to another 

ADC, can be positioned in another location of interest, such as Fp1, and the 

measured signal will be stored). 

2. Tight the headband around the sensor to avoid the introduction of 

measurement noise. 

3. Position the ground electrode in the mastoid region, such as A1 if the sensor 

was positioned on C4 or A2 otherwise. 

4. Activate the sensing unit. 

5. Activate the processing unit, wait for the application to open, and press on 

“Start Test” (a new window will be displayed with the “Stop Test” button). 

6. Press on “Stop Test” when the test is finished, the measured signals were 

stored in a text file with a timestamp on the secure digital memory card of the 

processing unit. 

7. Press on “Analyze Results” (the application performs the CAP classification) 

and wait until a message indicating that the examination was finished is 

displayed; hence, the classified CAP phases and cycles were stored, with a 

timestamp, in a text file. 

8. The user can either examine the results file or deliver the device to an expert 

that can retrieve the file and perform the analysis of the results. 

On a trial test, it was substantiated that the HMD can be effortlessly self-assembled, 

it is easy to operate, can properly record the EEG signal, and perform the minute-by-

minute CAP classification.  

9.3. HMD for sleep quality estimation based on the ECG signal 

A sturdy, easy to operate, and fault resilient platform was employed to develop the 

HMD for sleep quality estimation based on the ECG signal evaluation (implementing the 

algorithm which performs the assessment from the average CPC signal, presented in 

section 6.2, since this method was found to have the best performance to complexity 

ratio). Therefore, an FPGA board with a processor was used to produce the HMD as it 

complies with the sturdy and fault resilient requisites [406], and has a good performance 

for a method with low memory requirements. The goal of this device is to be suitable to 

be used by the elderly population. Therefore, it is only composed of one unit, and operated 

by two switches (one to initiate the application, and the other start/stop the examination), 

providing an easy to operate platform. 

The device is composed of an FPGA board (Xilinx PYNQ-Z2 board) with a processor, 

an ECG sensor, and a display. This board is based on the Zynq XC7Z020 system on a 

chip, with programmable logic comparable to an Artix-7 FPGA, and a processing system 
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composed of a 650MHz dual-core Cortex-A9 processor. In addition to that, the board 

implements a novel approach to the use of FPGAs where the device is programmed in 

Python, whose functions can be accelerated through hardware libraries (named overlays), 

which are developed in the programmable logic (programed in VHDL). Therefore, the 

applications developed for the processing system can use the programmable logic 

resources. 

The single-lead ECG sensor’s instrument amplifier was the Analog Devices AD8232 

(band-width of 0.67 to 40 Hz, with impedance larger than 10 MΩ), chosen because it 

small, has a low power consumption, is inexpensive, and has a very small measurement 

error [407]. A liquid crystal display was used to present the message indicated by a low 

power microcontroller (Arduino Nano Every) that receives the command of what 

message should be displayed by reading the digital pins, which are connected to the FPGA 

board. A 3D case was designed (15×10.5×4.8 cm) and printed for enclosing all of the 

components. Figure 9. 17 presents the complete device. 

Three designed components were implemented in the board: data acquisition through 

the analog sensor; denoising and processing of the data; display the information. 

Although the EEG sensor has an analog filtering circuit, it was observed that a substantial 

amount of motion artifacts remained in the signal. Thus, a lowpass finite impulse response 

filter, with 20 Hz cutoff frequency and order 20, was used for lessening the noise. 

However, the filtering operations at 200 Hz (employed sampling frequency) can 

considerably delay the examination process. Therefore, the filter was designed in Vivado, 

and exported (in tcl format) to be imported by the developed Python program (stored in 

the micro secure digital card), which is executed on the boot when the FPGA board is 

turned on. 

Therefore, the used approach has fast data acquisition and manipulation (implemented 

in the programmable logic), with a reliable classification process (implemented in the 

processing system). The interaction with the device is performed by operating the two 

slide switches, and the procedure for a standard examination requires the user to follow 

the following steps: 

1. Move the first switch up to start the application, and wait until the message 

“Sleep Quality” is presented on the display. 

2. Attach the ECG sensor’s pads to the body, forming the single-lead position. 

3. Move the second switch up (this action leads the device to start recording the 

information), and the message “Recording” is presented on the display. 

4. Move the second switch down to stop the recording session, and the message 

“Analyzing” is presented on the display. 

5. Wait until the message “Finished Exam” is displayed, indicating that the 

examination was finished (the result are stored in a text file, and the 

application closes). 

6. The user can either retrieve the text file, to examine the results, or deliver the 

device to a specialist to perform the examination. 

The total cost of the device was 152 € (110 € for the FPGA board, 24 € for the display 

and microcontroller, and 18 € for the ECG sensor). The device was fed by an external 



 

173 

 

power source (a 15 V, 3000 mAH, battery was used for the examination). The average 

current consumption was 305 mA; hence, the test can last at least 9 hours. 

 a) 

 
b) 

 
Figure 9.17. HMD for sleep quality estimation based on the ECG signal, with a) open 

box, and b) closed box [408]. 



 

174 

 

9.4. HMD for sleep quality and OSA assessment 

The developed model for sleep quality estimation was implemented on a developed 

HMD that is capable of predicting both the quality of sleep and the AHI (using the method 

presented in chapter 8). The conceived architecture of the device is the same as the one 

presented in Figure 9.14. It is composed of a sensing unit that acquires and wirelessly 

transmits (by Bluetooth) the signals to the processing unit, which performs the 

examination of the signals. The goal of this device is to be user friendly, and easy to 

operate with minimal invasiveness. Hence the approach of having two units (a small unit 

for data acquisition, and a larger unit with a touch screen for the user to interact) is more 

suitable. 

The employed sensing unit is similar to the unit previously presented, using the 

BITalino Core BT [404] to collect the signals from a single-lead ECG sensor (the sensor’s 

cost was 40 €). The average measurement root mean squared error of the sensor was 

0.049±0.016, when comparing with an established gold standard device (BioPac MP35 

Student Lab Pro) [405], advocating the viability of the sensor for clinical diagnostics. The 

processing unit is the same as previously described with a similar GUI, and the used 

hardware is presented in Figure 9.18. 

 

Figure 9.18. Hardware used on the HMD that predicts both the sleep quality and the 

AHI. 1- Sensing unit, 2- ECG sensor, 3- Electrode, 4- Armband, 5- Processing unit 

[299]. 

For the normal examination, the user needs to follow the steps: 

1. Position the ECG electrodes to produce a single-lead ECG signal. 

2. Tight the armband around the upper arm. 

3. Attach the sensing unit to the armband using the s-shaped belt clip. 
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4. Activate the sensing unit. 

5. Activate the processing unit, wait for the application to open, and press on 

“Start Test” (a new window will be displayed with the “Stop Test” button). 

6. Press on “Stop Test” when the test is finished, the measured signals will be 

stored in a text file, with a timestamp, on the 32 GB secure digital memory 

card of the processing unit. 

7. Press on “Analyze Results”, and the algorithm developed in chapter 8 is 

employed to perform the minute-by-minute and global sleep quality and OSA 

examination (the results are stored in a text file). 

8. The user can either examine the results file or deliver the device to an expert 

that can retrieve the file and perform the analysis of the results. 

9.5. Key remarks 

Two approaches were considered in the HMDs development. The first was the 

implementation of the HMD for each of the examined source sensor. Hence, the OSA 

evaluation was performed using the SpO2 signal (using the methods presented in sections 

7.1 and 7.2), while the CAP estimation was based on either the EEG signal (employing 

the LSTM based method presented in section 5.3) or the ECG signal (using the method 

presented in sections 6.2) analysis. Therefore, these devices allow to estimate the quality 

of sleep according to the first two methodologies theorized in this work, by evaluating 

sleep quality metrics, and by assessing the occurrence of a sleep related disorder, 

respectively. 

The second approach, applied for the development of the last HMD, was based on the 

third approach theorized in this work for sleep quality assessment (the combination of the 

information from sleep quality metrics and the sleep disorder detection to provide a better 

view of the global sleep quality, using the method presented in chapter 8). 

The developed devices were intended to perform the examination at the patient’s 

home without requiring the attendance of a specialist (to assemble the sensor or the 

device). Since the HMDs employed algorithms that attained a performance which is in 

the upper range of the specialist agreement; thus, they can possibly be used for clinical 

analysis. 

The HMD were proposed as a proof of concept to demonstrate the implementation 

feasibility of the proposed methods. It was verified that the HMDs have enough 

computational resources, can record the physiological signals, and are energy efficient. 

However, the main limitation was that the devices were not validated in real world 

environment (performing recordings in parallel with a PSG, and comparing the results to 

verify if the performance of the proposed device is similar to the PSG estimations). 

Hence, it is not possible to know if they are sturdy enough to perform proper continuous 

monitoring of the subject in the difficulties of the sleep environment.  

The proposed validation protocol follows the lines presented by Santos-Silva et al. 

[282], carrying out three nights of sleep evaluation (the sequence of these evaluations is 

randomly determined):  



 

176 

 

 One night performing recordings with the developed HMD at the patient’s 

home. 

 One night performing a parallel recording, in a sleep laboratory, of PSG, and 

the developed HMD. 

 One night performing a recording, in a sleep laboratory, with only PSG.  

All evaluations should take place within a two week period, and an expert physician 

must score the OSA events, the AHI, the CAP phases, and the CAP cycles. The examined 

population must have an equal number of subjects suffering from sleep-disordered 

breathing, and subjects free of sleep related disorders.  

A proper validation could be attained using 80 participants, and all participants be free 

of cardiac pathologies. Ethical permission must be obtained from an ethics committee and 

all subjects must provide written informed consent for participating in the experiment. 

The examination must comply with the ten points required to achieve the highest EL and 

QR. 
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10.1. Overview of the work 

From the state of the art examination, it was observed that subjective methods for 

sleep quality assessment are fast and economic but have a high subjectivity. Thus, PSG 

based metrics are preferable to acquire objective information. Despite the simplicity 

associated with the estimation of metrics based on the sleep stage scoring, they can be 

seen as a rough indicator of the sleep quality since they are based on a synthetic 

segmentation of the continuous process that is sleep, drastically reducing the information 

provided by the PSG. As an example, a PSG that monitors 12 channels, sampled at 256 

Hz with 16 bit resolution, produces about 1.5 Mb of information for each 30 s epoch, 

which is reduced to 3 bit of information to indicate the sleep stage. 

However, there is a lack of definitional consensus regarding the proper method to 

define sleep quality. As a result, three main approaches were identified in this work as 

suitable paths to perform the sleep quality examination. The first considered the 

examination of sleep quality metrics, and CAP based examination was employed since 

these metrics examine the stability of sleep (found to possibly be the best metrics to 

describe the subjective experience of sleep), and are highly correlated to the occurrence 

of OSA in SBD patients. As a result, approaches based on the EEG sensor were evaluated 

as the CAP is composed of characteristic patterns captured by this sensor. The second 

approach was to assess the occurrence of sleep related disorders, theorizing that the 

presence of such disorders may be the main contributor to poor sleep quality. The fact 

that more than 60 sleep related disorders have been identified consubstantiate this 

hypothesis. Therefore, OSA was evaluated in this work as it was identified to be one of 

the most prevalent and frequently undiagnosed sleep related disorders, which can 

significantly affect the quality of sleep. From the reviewed literature, it was possible to 

conclude that either ECG or oximetry based approaches are likely to be the most relevant 

for the OSA research.  

The last approach theorized that the combination of sleep quality metrics with the 

detection of sleep related disorders could provide a better estimation of global sleep 

quality. Although the CAP based analysis is conventionally performed by examining the 

EEG sensor, it was proposed in the state of the art that it can be indirectly evaluated by 

examining the ECG sensor (considering CAP in a broader context, where the occurrence 

of a CAP cycle designates the instability of sleep). Taking into consideration that the 

development of a method for OSA analysis was performed for the EEG sensor, hence, it 

was considered the development of a new sleep quality model (for the single-lead ECG) 

where the same source signal can be used to estimate sleep quality metrics (based on 

CAP), and assess the occurrence of OSA. This approach allowed the development of a 

less complex HMD, which is easier to be self-assembled, and addressed a gap in the state 

of the art regarding the proposal of approaches for sleep quality analysis based on the 

ECG signals. 

Through the reviews of the state of the art, it was possible to provide an answer to the 

first research question (are the self-rating indexes of sleep quality the best way to estimate 

the quality of sleep or should objective measures, such as CAP rate, be used?). It was 

assessed that it exists a poor correlation between the self-rating indexes and the predicted 

quality of sleep; thus, advocating for the need to employ objective metrics. It was verified 
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in the state of the art that intensity, duration, and continuity metrics do not necessarily 

characterize the totality of the subject’s sleep experience since some subjects present 

sleep complaints while having similar intensity, duration, and continuity metrics as those 

seen in non-complaining individuals [12]. Hence, the reasons for such sleep complaints 

may not be related to the architecture, timing, or amount of sleep but rather to variations 

in the experience of sleep itself. CAP based metrics were identified as having the highest 

capability of predicting the occurrence of instability during sleep that is caused by sleep-

related disorders. It was also verified that OSA is the most prevalent sleep-related disorder 

that is commonly undiagnosed; hence, supporting the need to include this disorder in the 

analysis. 

By taking into consideration that CAP is a characteristic EEG pattern, the first 

approach was the development of methods that can classify CAP with a minimally 

invasive sensor. Therefore, the signal from one EEG monopolar derivation was analyzed. 

Two approaches have been followed. The first one was based on features that fed a 

classifier (testing multiple features and classifiers), and the second approach employed 

methods without an explicit feature creation procedure. Both methods reached the highest 

bound of the specialist agreement; thus, becoming suitable for clinical analysis. 

Subsequently, a positive answer was attained for the second research question (can CAP 

be reliably assessed by analyzing the signal from one EEG monopolar derivation?). From 

the review analysis, it was also verified that the sleep microstructure provides 

significantly more information than the sleep macrostructure. However, most of the 

research focuses on the examination of the macrostructure with the conventional 30 s 

epoch. A sleep model was proposed to address this issue, using the EEG signal to estimate 

the CAP sequences through a statistical model. It was verified that this model can be used 

for the sleep quality estimation, and can possibly further improve the research in the sleep 

microstructure, either based on the CAP or on other microstructure metrics. A 

characterization analysis for CAP was also conducted, and methods for the A phase 

subtype detection were proposed as suitable future approaches for sleep quality 

assessment based on the first two methods for sleep quality analysis theorized in this 

work. 

An indirect approach for CAP analysis was studied with the goal of having a validated 

metric, for sleep quality analysis, as the basis but measured by an easier to self-assemble 

sensor since the EEG sensor is potentially problematic for the elderly population. 

Therefore, the followed methodology considers the sleep instability concept associated 

with CAP, which can be extended to a broader context where the occurrence of sleep 

disturbances influence other physiological signals, especially the single-lead ECG [41]. 

Therefore, this sensor was chosen, and multiple models have been developed using a CPC 

technique as the foundation of the classification. This indirect approach achieved 

comparable performance to the models based on the EEG signal analysis. Thus, the third 

research question (can the sleep quality be assessed by considering an indirect estimation 

of the CAP rate?) also has a positive answer. Through the analysis of the ECG signals, it 

was verified the occurrence of a causal relationship between the heart rate and the 

respiration. Accordingly, a tool for the causality analysis, with the focus on physiological 

signals was proposed and tested for the indirect CAP estimation. The attained results are 

in the same range as the EEG based models; thus, further supporting the validity of the 

tool. 
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Two algorithms for OSA detection were proposed. The first examined features from 

the SpO2 signal, while the second analyzed the CPC signal produced from the single-lead 

ECG signal. It was verified that both approaches could provide a highly accurate AHI 

estimation by considering the threshold-based approach applied to the predicted m-AHI-

tib. This methodology was followed to propose a sleep quality metric, the m-CAP-tib, for 

CAP analysis. It was verified that this metric is highly correlated to the CAP estimated 

by PSG, supporting the relevance of the proposed method. This metric was then employed 

by the developed model for sleep quality estimation, based on the appraisal of both 

predicted sleep quality and AHI, performed by a classifier ensemble. 

The development of HMDs was the basis for the final stage of the work, and three 

source signals were evaluated. SpO2 was the first examined signal, and was evaluated by 

two HMD. The first performed the minute-by-minute OSA detection, while the second 

provided a global assessment of the disorder through the analysis of the SpO2 signal. The 

third HMD analyzed the signal from one EEG monopolar derivation to perform the sleep 

quality estimation (based on the CAP analysis) in a minute-by-minute approach that was 

used for the global sleep quality estimation. A similar approach was employed for the 

fourth HMD, which examined the single-lead ECG signal to perform the sleep quality 

assessment based on the indirect CAP assessment. The final device implemented the 

proposed sleep quality model by examining the single-lead ECG signal. The last device 

can also predict the AHI by examining the classified OSA minutes. All devices were cost-

effective, and simple to use; therefore, providing a positive answer to the final research 

question (can a cost-effective home monitoring device be developed to perform both the 

estimation of the sleep quality and the presence of a sleep disorder?). Accordingly, all the 

established objectives have been accomplished in this research.  

The novelties of this work can be summarized in the following points: 

 Evaluation of the state of the art regarding the methods and devices for sleep 

quality and OSA analysis, assessing the research tendencies of these fields. 

 Proposal, and examination of feature based and methods without an explicit 

feature extraction process for the classification of the CAP A phase and their 

subtypes, based on the EEG signal. 

 Proposal of a sleep model that is suitable for CAP assessment. 

 Characterization analysis of the CAP. 

 Proposal of approaches for indirect CAP evaluation based on the ECG signal 

analysis. 

 Proposal of an ECG based sleep quality metric (m-CAP-tib) that is correlated 

with the CAP rate predicted from the ECG signal. 

 Development of a tool for time series analysis, capable of evaluating the 

causality of a dependent and an independent variable. 

 Development of models for OSA analysis, based on SpO2 and ECG signals. 

 Proposal of a new sleep quality model that evaluates both sleep quality 

metrics and the occurrence of a sleep related disorder (OSA estimation) to 

predict the quality of sleep, from the ECG signal. 
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 Implementation of HMDs for CAP, OSA, and sleep quality estimation, 

providing a proof of concept for each one of the approaches identified in this 

work as suitable paths to perform the sleep quality examination. 

The proposed models for sleep quality analysis, based on the direct or indirect CAP 

estimation, achieved a performance that is equal to the highest agreement between two 

specialized physicians. The algorithms for OSA detection and diagnosis also attained a 

performance that in the range of the methods proposed in the state of the art. Therefore, 

the proposed method could possibly be used for medical analysis. 

10.2. Limitations of the work 

The main limitation of this work was the relatively low number of subjects involved 

in the CAP based analysis. A larger dataset is required to further validate the developed 

methods. Another limitation was that only one sleep related disorder was examined hence, 

it is not possible to know if the proposed methods will work properly for subjects 

suffering from other sleep related disorders.  

Although not considered in this work, the evaluation of subjects suffering from 

specific pathologies, such as cardiac diseases, may significantly affect the evaluation of 

the proposed methods based on the ECG signal. 

The last limitation is related to the proposed HMD, which were not validated in real 

world environment. Therefore, it is not possible to ensure that the devices are simple 

enough to be self-assembled and used by the elderly population, and if they are sturdy 

enough to perform an appropriate continuous monitoring of the subjects, in the difficulties 

of the sleep environment. 

10.3. Future work 

The possible next steps of this research are:  

 Development of a larger dataset (with microstructure annotations) to allow a 

further validation of the proposed methods. 

 Inclusion of other sleep related disorders in the examined population to assess the 

effect that his disorders can have in the performance of the algorithms. 

 Evaluate subjects with cardiac pathologies to assess if the methods based on the 

ECG signal examination can work properly in the presence of such pathologies. 

 Propose a mathematical approach for the definition of the CAP scoring rules. 

 Validation of the developed HMD according to the proposed protocol (presented 

in section 9.5). 

 Employ sensor fusion to assess if the combined information from different EEG 

deviations (such as F4-C4) can improve the performance for the CAP A phase 

classification. 

 Perform a comparative analysis between the performance of a classifier attained 

by the proposed heuristic search algorithm (HOSA), a classifier produced by an 

exhaustive grid search, and a classifier attained by other heuristic based 

algorithms (such as genetic algorithms) frequently employed in the state of the 
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art, to assess the differences in the optimization time and in the attained 

performance. 

 Examine other classifiers for the A phase assessment, such as the combination of 

1D-CNN (for the automatic feature extraction) with an LSTM (to perform a 

classification with recurrent information). 

 Study if a third hidden state, for the HMM employed by the proposed sleep model, 

related to the patterns where the conventional sleep model scores as either REM 

or wake after sleep onset periods, can improve the performance of the proposed 

sleep model for CAP estimation. 
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