
Open-domain Conversational Agent based on Pre-Trained
Transformers for Human-Robot Interaction

Mariana Fidalgo Fernandes

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Plı́nio Moreno Lopez
Prof. Jose Alberto Rosado dos Santos Vitor

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. Plı́nio Moreno Lopez

Members of the Committee: Ricardo Daniel Santos Faro Marques Ribeiro
Fabio Nataneal Kepler

November 2021

Declaração/Declaration
Declaro que o presente documento é um trabalho original da minha autoria
e que cumpre todos os requisitos do Código de Conduta e Boas Práticas da
Universidade de Lisboa.
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

Throughout the development of this project I received a great deal of support and assistance.

I would like to thank Professor Plı́nio Lopez, my primary supervisor, for his guidance during this

project. His insightful remarks encouraged me to improve my thoughts and elevate my work.

I would like to thank my parents, Francisco and Benilde for their sage and attentive advice. Everything

I have and am, I owe it to you. I want to thank my brother, Miguel, for constantly pushing me to explore

new things and strive to be the greatest version of myself. In addition, I would like to thank my uncles,

aunts, cousins and grandparents for always believing in me, encouraging me, and acting as role models

for me in numerous ways.

Furthermore, I could not have completed this dissertation without the support of my friends, who

provided both interesting conversations and enjoyable distractions to take my mind away from my work.

I want to thank you Helena, Barata, Adelaide, Calamar, Matilde, Bia, Jonas, Miguel, Proença and Xico.

A special kudos to Carlos and Ricardo for helping me develop a tool to aid the evaluation. And lastly,

thank you Ricardo, for your never ending support and for always being there for me.

i

Abstract

Over the past years, many breakthroughs occurred in the field of Machine Learning (ML) and Natural

Language Processing (NLP), such as generative pre-trained transformers (GPTs), and attention mech-

anisms that learn contextual relationships between words in a text. These breakthroughs came with

several new possibilities regarding Human-Robot Interactions (e.g. the creation of an open-domain

chatbot). However, a substantial amount of research and available data are in English, causing low-

resourced languages to be overlooked. This thesis explored this problem with two options: (i) Trans-

lation of the sentences before and after using the model fine-tuned on an English-based dataset, (ii)

Translation of the English-based dataset to Portuguese and then fine-tune this model on it. When in

presence of adequate training data and a good choice of generation method, it was demonstrated that

DialoGPT (dialogue generative pre-trained transformer), a tunable neural conversational answer gen-

eration model, could learn the basic skills to conduct a dialogue. For the language models as well as

the baseline methods, two sources of evaluation were used: (i) Metrics for text generation based on

uncertainty (i.e. perplexity), and similarity between sentences (i.e. BLEU, METEOR and ROUGE) and

(ii) Human-based evaluation of the sentences. Finally, it was shown that it is possible to resort to MT

to have a fluent speaking chatbot, in portuguese. The translation of sentences before and after of the

modified DialoGPT model, using the Daily Dialogue dataset led to the best results.

Keywords

Elderly companion, Natural Language Processing, Deep Learning, Machine Translation, Transformer,

Attention Mechanisms

iii

Resumo

Nos últimos anos muitos avanços ocorreram no campo de Aprendizagem Automática e do Proces-

samento de Lı́ngua Natural, como Transformers generativos pré-treinados (GPT), e mecanismos de

atenção que aprendem relações entre palavras num texto. Estas descobertas tornaram possı́veis di-

versas abordagens para a Interação Homem-Robô (e.g. a criação de um chatbot de domı́nio aberto).

No entanto, como a maioria desta pesquisa e conjuntos de dados estão em Inglês, as lı́nguas com

menos recursos são negligenciadas. Esta tese explora este problema com duas opções: (i) Tradução

das frases antes e depois da sua utilização no modelo treinado num conjunto de dados em inglês, (ii)

Tradução do conjunto de dados de inglês para português e depois fazer o treino do modelo no mesmo.

Tendo dados de treino adequado e após uma inspeção sobre os métodos de geração, demonstra-se

que o DialoGPT, um modelo neural de geração diálogo, consegue adquirir as capacidades básicas para

conduzir um diálogo com nexo. Para os modelos linguı́sticos, bem como para os métodos de base,

foram utilizadas dois métodos de avaliação: (i) Métricas para avaliar a geração de texto baseadas na in-

certeza (i.e. perplexidade), e semelhança entre frases (i.e. BLEU, METEOR e ROUGE) e (ii) Avaliação

das frases com base humana. Finalmente, mostra-se que é possı́vel recorrer à Tradução por Máquina

para ter um chatbot fluente, em português. A tradução das frases antes e depois da sua utilização no

modelo DialoGPT treinado, utilizando o conjunto de dados do Daily Dialogue, conduziu aos melhores

resultados.

Palavras Chave

Companhia para Idosos, Processamento de Lı́ngua Natural, Aprendizagem Profunda, Tradução por

Máquina, Transformer, Mecanismos de Atenção

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 The challenge . 3

1.3 Problem Formulation & Objectives . 3

1.4 Thesis Document Outline . 4

2 State of the Art 5

2.1 Natural Language Processing . 6

2.2 NLP subfields and applications . 7

2.3 An High-Level NLP application: Conversational Robots . 8

2.4 Past work . 8

2.5 Word Embeddings . 9

2.6 The evolution of Natural Language Generation . 11

2.6.1 Markov Chains . 11

2.6.2 Introduction to Deep Learning . 12

2.6.3 Artificial Neural Networks . 12

2.6.4 Recurrent Neural Network . 14

2.6.5 Sequence to sequence . 17

2.6.6 The Transformer . 18

2.7 Machine Translation . 23

3 The Approach 25

3.1 Transfer Learning . 26

3.2 The Model . 26

3.3 HuggingFace Transformers . 27

3.3.1 Generation and decoding methods . 28

3.4 The Dataset . 31

vii

4 The Implementation 33

4.1 System architecture . 34

4.1.1 System 1: Fine-tune a pre-trained model . 34

4.1.2 System 2: Fine-tune a pre-trained model on a new language 35

4.2 Resources & Data . 35

4.3 Training . 37

4.4 Metrics for NLG evaluation . 40

4.4.1 Language modeling loss (for next-token prediction): 40

4.4.2 Perplexity . 40

4.4.3 Dialog Ranking Pretrained Transformers (DialogRPT) 40

4.4.4 BLEU, METEOR and ROUGE scores . 41

4.5 Machine Translation Evaluation . 44

4.6 Chatbot Evaluation . 45

4.7 Physical System . 46

5 System Evaluation 49

5.1 System 1 - Fine-tuning an English pre-trained model . 50

5.1.1 Daily Dialogue . 50

5.1.2 Topical Chat . 54

5.1.3 Daily Dialogue + Topical Chat . 56

5.2 System 2 - Fine-tuning model on a Portuguese Dataset 59

5.2.1 Translated Daily Dialogue . 59

5.3 Machine Translation Evalutation . 61

5.4 Pipeline evaluation . 61

5.4.1 Summary . 63

6 Conclusion & Future Work 65

6.1 Conclusion . 66

6.2 Future Work . 67

A DialoGPT-small Usage 75

B Testing Utterances 77

viii

List of Figures

2.1 Natural Language Processing Evolution. 6

2.2 Natural Language Processing (NLP), Natural Language Generation (NLG) and Natural

Language Understanding (NLU). 7

2.3 One hot encoding representation. 9

2.4 Source: Introduction to Word Embeddings and its Applications 10

2.5 Source: NLP: Everything about Embeddings. 10

2.6 Source: From “What is a Markov Model” to “Here is how Markov Models Work”. 12

2.7 Perceptron. 13

2.8 Perceptron vs Multi-Layer Perceptron (MLP). 14

2.9 Recurrent Neural Network (RNN) and its unfolded structure. 15

2.10 Long Short Term Memory (LSTM) cell architecture. 16

2.11 Sequence to sequence basic structure. 18

2.12 The Transformer architecture [1]. 19

2.13 Multi-Head Attention Layer architecture [1]. 20

2.14 Transformer-Decoder architecture. 22

3.1 Greedy Search. Source: How to generate text . 29

3.2 Beam Search. Source: How to generate text . 30

3.3 Top-K Sampling. Source: How to generate text . 30

3.4 Top-P Sampling. Source: How to generate text . 31

4.1 System 1 architecture with Large-scale Pretrained Response Generation Model (DialoGPT). 34

4.2 System 2 Architecture with DialoGPT. 35

4.3 Source: Precision vs Recall . 41

4.4 Translation Quality Evaluation interface. 45

4.5 Translation Quality Evaluation interface. 46

4.6 System architecture. 47

ix

https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232
https://medium.com/@b.terryjack/nlp-everything-about-word-embeddings-9ea21f51ccfe
https://hackernoon.com/from-what-is-a-markov-model-to-here-is-how-markov-models-work-1ac5f4629b71
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://medium.com/@shrutisaxena0617/precision-vs-recall-386cf9f89488

5.1 Fine-tuned pre-trained model with Daily Dialogue . 54

5.2 Fine-tuned pre-trained model with Topical Chat. 56

5.3 Fine-tuned pre-trained model with Daily Dialogue + Topical Chat. 58

5.4 Fine-tuned pre-trained model with translated Daily Dialogue 60

5.5 Human Evaluation to the Machine Translation model. 61

5.6 Human Evaluation to the System. 63

x

List of Tables

2.1 Dialogue Generation model comparison: DialoGPT-small pre-trained [2] and Seq2seq [3]

trained on Daily Dialogue dataset [4]. 23

4.1 BLEU scores for the example above. 43

5.1 DialoGPT-small training results with Daily Dialogue dataset 50

5.2 DialoGPT-medium training results with Daily Dialogue dataset 53

5.3 DialoGPT-small training results with Topical Chat dataset 54

5.4 DialoGPT-small training results with Daily Dialogue + Topical Chat dataset 57

5.5 DialoGPT-small training results with the translated Daily Dialogue dataset 59

B.1 Utterances used in the testing phase . 78

B.2 Translated utterances used in the testing phase . 79

xi

xii

Acronyms

NLP Natural Language Processing

NLG Natural Language Generation

NLU Natural Language Understanding

HRI Human-Robot Interaction

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

NMT Neural Machine Translation

NN Neural Networks

LSA Latent Semantic Analysis

NBC Naı̈ve Bayes Classifier

MLP Multi-Layer Perceptron

RNN Recurrent Neural Network

LSTM Long Short Term Memory

Seq2Seq Sequence to Sequence

LM Language Model

GPT-2 Generative Pre-trained Transformer 2

MT Machine Translation

NMT Neural Machine Translation

xiii

DialoGPT Large-scale Pretrained Response Generation Model

DialogRPT Dialog Ranking Pretrained Transformers

xiv

1
Introduction

Contents

1.1 Motivation . 2

1.2 The challenge . 3

1.3 Problem Formulation & Objectives . 3

1.4 Thesis Document Outline . 4

1

”We human beings are social beings. We come into the world as the result of others’ actions. We

survive here in dependence on others. Whether we like it or not, there is hardly a moment of our lives

when we do not benefit from others’ activities. For this reason, it is hardly surprising that most of our

happiness arises in the context of our relationships with others.” - Dalai Lama XIV.

1.1 Motivation

The quote shows the importance of interpersonal relationships and connecting to others to add value to

people’s lives. These social interactions are fundamental for a functioning community and are necessary

in order to allow humans to live fulfilling lives.

Loneliness leads to unhealthy lifestyles, with poorer physical and mental health, with age as a rele-

vant factor [5]. As a consequence of the aging problem, specially in the most developed countries [6],

some elderly people face this problem almost on a daily basis, with the prevalence of loneliness in el-

ders being estimated to be 40% [7]. Some care homes already consider loneliness as an independent

risk factor but, unlike other factors such as age, disability or memory problems, this one may be pre-

ventable [8]. The motivation for this thesis had this problem in consideration. The goal was to prove that

it was possible to create an application that would behave as a listener, giving an appropriate response,

causing an increase in affective interactions and a reduction of the sense of loneliness, similar to the

one seen in [6] and [9].

Human-Robot Interaction (HRI) is a ”field of study dedicated to understanding, designing and eval-

uating robotic systems for use by or with humans” [10]. It is currently a very extensive and diverse

research field, with hundreds of publications each year and with activity by many different professionals.

One area of HRI is social interaction, which includes robot devices to provide entertainment, teaching,

comfort, and assistance for children and elderly, autistic, and handicapped persons [11].

Natural Language Processing (NLP) is a subfield of linguistics, computer science, and artificial in-

telligence that employs computational techniques for the purpose of learning, understanding, and pro-

ducing human language content. Natural Language Generation (NLG) is the subfield concerned with

the construction of computer systems than can produce understandable texts in English or other human

languages from some underlying non-linguistic representation of information [12]. Today’s researchers

refine and make use of these computational tools, creating spoken dialogue systems [13]. With the

advances in Artificial Intelligence (AI), Machine Learning (ML) methods, the availability of very large

amounts of linguistic data and with a much richer understanding of the structure of human language,

more efficient algorithms were developed. Even though the results are not perfect yet, they are getting

more and more accurate [13]. For example, ConveRT, a deep learning chatbot model, is able to dialog

about a big variety of topics. It was trained using 727M Reddit utterances (input and response), and

2

shows an accuracy score of 71.8% [14].

1.2 The challenge

The main obstacle of creating a good textual generation system, is having a suitable quantity of labelled

data. Nonetheless, with a large dataset, a dialogue system somewhat trained for every situation, could

be built. Since the majority of the research in these areas is in English Language [15], it is already

possible to obtain a good performance robot, to talk about various topics, like the example discussed

above [14]. But what about the low resourced languages? If it was possible to obtain a big labelled

dataset, like the ones existing in English, and convert it to the language in study (in a viable way), a

robot with a good performance could be created.

During the research for this report, we concluded that machine translation always had some issues

that resulted in poor translations. However, with the evolution of deep learning techniques that replace

the ML statistical translations, the results significantly improved [16]. Neural Machine Translation (NMT),

is a ”deep learning method that essentially involves the use of a broad scope of linguistic sources while

looking at whole sentences instead of just words when translating.” [17]. This is the method used by

OPUS MT [18]. They provide pre-trained neural translation models trained on OPUS data translation

service. Despite being fallible, it gave accurate results for the great majority of translated sentences.

1.3 Problem Formulation & Objectives

The main goal of this project is to develop a chatbot, capable of pursuing conversations regarding the

daily life. The topics would vary from: chit-chats about life and family, holidays and tourism, work and

health, among others. This speech-based dialogue was supposed to be conducted in European Por-

tuguese and should work in a reactive manner.

Considering the scarcity of Portuguese dialogues, to attend to the main goal, the approach was built

on the grounds of text translation. Where, in a first approach a large, English, database was translated to

the language in focus. And in the other approach only the input and output utterances were translated.

The objectives of this thesis are:

• Build a dialogue system that engages in a conversation about several matters, focusing on daily

life topics;

• Prove the advantages of resorting to deep learning and transfer learning instead of using traditional

statistical learning;

• Take advantage of Machine Translation (MT) in order to reach the first goal;

3

https://github.com/Helsinki-NLP/Opus-MT

• Have human evalution to test the robot and the MT performance.

Due to the Covid pandemic that took place in 2020 and 2021, the performance of the robot in a

nursery home could not be tested. The datasets used to train the models also could be more focused

on the elderly, however this type of data is lacking, therefore more general datasets were used.

1.4 Thesis Document Outline

This thesis report is divided in 6 chapters. Chapter 1 gives an introduction to the problem and its impor-

tance, the main goal is presented and the organization of the document is shown. Chapter 2 gives an

overview of the state-of-the-art, where past work is analysed along with some theoretical background,

crucial to a better understanding. Chapter 3 comprises an explanation to most of the tools and technolo-

gies to build the solution. Chapter 4 provides an insight of what was developed for the thesis. Chapter 5

shows the obtained results together with the corresponding analysis and discussion. Lastly, Chapter 6

has some conclusions regarding all the developed work for this thesis as well as the possible future

work.

4

2
State of the Art

Contents

2.1 Natural Language Processing . 6

2.2 NLP subfields and applications . 7

2.3 An High-Level NLP application: Conversational Robots 8

2.4 Past work . 8

2.5 Word Embeddings . 9

2.6 The evolution of Natural Language Generation . 11

2.7 Machine Translation . 23

5

In this chapter an overview of the evolution of Natural Language Processing will be conducted. A

survey to the several models used to address the Dialogue Generation task will also be done. Finally,

their advantages and disadvantages will be discussed.

2.1 Natural Language Processing

NLP is one of AI’s sub-areas and it dates back to 1950, when Alan Turing publishes an article [19],

proposing a method comprising the automated interpretation and generation of natural language. Alan

tested the machine’s ability to exhibit intelligent behaviour. This was later called the Turing test.

Prior to the introduction of ML techniques, the majority of language processing systems were built

on hand-written rules (logical rules) based on expert knowledge [20]. Later on, research started to

focus on statistical models that would make probabilistic decisions, using ML methods. This approach

showed many advantages over the hand-produced rules system [21]. ML statistical methods have a

major setback since they require feature engineering, therefore in the early 2010s the research shifted

to the now popular Deep Learning (DL) methods [22]. This evolution can be better observed in Figure

2.1.

Input

Input

Input

Hand-
designed
features

Hand-
designed
features

Simple
Features

Output

Mapping from
features

Additional Layer
of more abstract

features

Output

Mapping from
features Output

Rule-Based
Systems

Classic Machine
Learning

Deep Learning

Input
Hand-

designed
features

Output

Mapping from
features Output

Hand-
designed
features

Input

Figure 2.1: Natural Language Processing Evolution.

ML uses statistical learning methods, that work with a labelled dataset, which is described by a

set of features or attributes. DL uses, likewise, a statistical learning method that instead, extracts the

features or attributes from raw data. DL resorts to Neural Networks (NN), a considerable amount of

hidden layers, a large amount of data and powerful computational resources. DL is a branch of ML that

integrates algorithms to form a ”artificial NN” capable of learning and making intelligent decisions on its

own. Both ML and DL are able to handle huge dataset sizes. However, ML methods make more sense

with small datasets. For example, if there are only 100 data points, decision trees, k-nearest neighbors,

and other ML models will be much more valuable than trying to fit a deep NN on the data.

6

2.2 NLP subfields and applications

NLP encompasses the entire system, from data interpretation to decision-making. These decisions

comprise of reading the information, breaking it down, understanding it and making judgments on how

to respond. NLP, can be divided into two parts: the Natural Language Understanding (NLU) and the

Natural Language Generation (NLG).

NLP

NLU NLG

Figure 2.2: NLP, NLG and NLU.

NLU helps the machine to understand the data and its meaning so it can be processed accordingly.

To find the objective behind the text it resorts to three linguistic levels [23]:

• Syntax: Refers to the grammatical structure of a sentence.

• Semantic: Understands the meaning of the text.

• Pragmatic: Understands the context to achieve the goal intent.

NLU will understand the flawed text and convert it into a machine-readable format. This subfield is

used for semantics phrasing, semantic analysis, dialogues agents, among others.

NLG is known as the technique of creating natural language outputs from non-linguistic data in-

puts [24]. NLU focuses on computer reading comprehension, whereas NLG allows computers to write.

Initially, for NLG, the systems worked on a ”fill the black space” methodology. However, with the ap-

plication of Markov Chains, Recurrent Neural Networks, Long short-term memory and Transformers,

computers evolved. This enabled a more dynamic text generation in real time. NLG is composed by

three main stages [12]:

• Text planning: Where the text intent and content are formulated in a logical manner.

• Sentence planning: This stage takes care of punctuation and text flow. It divides the content

among sentences and adds the appropriate pronouns and conjunctions.

• Realization: This stage considers grammatical accuracy.

Some of the most common NLP applications are: Dialogue Systems, Machine Translation, Summa-

rization, Question Answering, Information-Extraction and Information Retrieval [25].

7

2.3 An High-Level NLP application: Conversational Robots

A chatbot is a software also referred to as virtual assistant. It is a form of artificial intelligence that is

able to mimic human conversation [26]. The use of chatbots has become greatly popular in a large

scale of applications. Tailored (i.e. customized) chatbots have been developed for multiple applications.

However, these customized chatbots are limited to a specific type of conversations [27]. There are many

ongoing studies, regarding the personification of these robotic systems, that show that humans tend to

appreciate agents whom are enriched with conversational and social intelligence [28], [29]. Chatbots

can be used in various fields such as Education (QuizBot [30]: a bot that helps students learn factual

knowledge in science, safety, and English vocabulary), Virtual assistants (the well known Siri or Alexa),

Health (Sensely, to whom patients can report their symptoms and receive service or self-care advice),

among others.

The two major categories of conversational AI are task-oriented and open-domain. The goal of task-

oriented bots is to help humans accomplish a specific task, through multi-turn dialogue. Knowledge

regarding only one specific task facilitates the development of efficient and accurate chatbots. In this

case, simple models can achieve good performance. Whereas open-domain bots aim to serve as a so-

cial companion to humans, with whom humans can have engaging and natural conversations. The latter

is harder to create, because it needs to naturally engage in a conversation, and also to master several

skills that are natural to humans, such as: comprehension, world knowledge, conversation history and

constructing valid responses. Socialbots also need to be able to have adequate topical knowledge and

perform smooth topic transitions [31].

The problem with assembling a chatbot with all these characteristics relies on the database used to

train it, since the models already had a big evolution. Therefore, by knowing where the chatbot would

be inserted, the database can be built to fit this environment, and as mentioned in Chapter 1, a suitable

quantity of data is required to have a free-flowing dialogue.

2.4 Past work

The past iteration of this thesis project [32], that also had the Dialogue Systems application in focus, did

not approach the problem in a DL manner. It made use of smaller databases and it was based on a NLP

technique with newly collected data, intertwined with a ML classifier. To perform feature selection and

extraction it resorted to Latent Semantic Analysis (LSA), since it is quite efficient in text categorization.

The ML algorithm used was Naı̈ve Bayes Classifier (NBC), since it has a simple implementation and

works very well with the LSA method.

The results obtained were not faultless and the robot was only able to answer to the last human

phrase uttered, completely missing the conversation context. Another setback was that the robot could

8

not generalize beyond the small training dataset.

Notwithstanding, with the advancement of the already existing methods, NBC has been surpassed

[33]. Keeping in mind that LSA made the classifier a more feasible algorithm, it is still a technique that

works better under small datasets. However, as mentioned in Chapter 1, in order to create a good

performance chatbot a large dataset is needed. Therefore, NBC will not be the chosen approach to

solve this project’s problem.

2.5 Word Embeddings

It is important to understand how words can be represented as real-valued vectors in a predefined vector

space, even before seeing how ML and DL are being used in NLP applications.

The simplest method for representing words with vectors is to count the occurrence of each word in

the document. This method was called countvectorizer or one-hot encoding [34]. The encoded words

become binary vectors where the position corresponding to the word is set to 1, and the others are set to

0. This creates high dimensional sparse vectors and does not take into account semantic and syntactic

relationships.

Figure 2.3: One hot encoding representation.

Word embedding tries to tackle these issues. This Language Modelling technique can map words to

number vectors, where words are stored in a low dimensional vector space. This also uses distributional

hypothesis which states that words that appear in similar contexts tend to have similar meanings [35].

Word embeddings can also be pre-trained on large amounts of data, enabling the model to only be

fine-tuned on a smaller, more specific, dataset.

The most common model in word embeddings is Word2Vec [36]. It is a two layer Neural Network

based on the distributional hypothesis. The word embedding vectors are learnt by an unsupervised

model when fed with large amounts of text. The semantic similarity of words, along with other properties,

are embedded in the representation. The vectors are created in a way that the distance between vectors,

for words with close meanings, is smaller (e.g. ”Portugal” and ”portuguese” will be closer than ”Portugal”

and ”banana”). The Figure bellow shows an example of how words with similar meaning can be mapped

in a 3-D vector space. [35].

9

Figure 2.4: Source: Introduction to Word Embeddings and its Applications

While this model is able to capture semantic and syntatic relationships between words, they do not

take the context into account. Meaning that the same word, even having different meanings, will be

assigned the same vector. To address this, ELMo approach was proposed.

ELMo [37] is a deep contextualized word representation that cares for the syntactic and semantics

of words along with how they are used in several linguistic contexts. It works through a bidirectional

Long Short Term Memory (LSTM), explained in Section 2.6.4, pre-trained on a large corpus. ELMo’s

performance, shows a relative improvement of 6 - 20% in some NLP tasks when compared with others

baselines. Its architecture can be seen in Figure 2.5.

Figure 2.5: Source: NLP: Everything about Embeddings.

Finally, for the current state-of-the-art Transformer models (that will be explained later in this section),

they do not use LSTMs like ELMo. Instead of processing words in a sequential manner, all words are

processed in parallel, speeding the process and solving vanishing gradient problem [38]. This problem

10

https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232
https://medium.com/@b.terryjack/nlp-everything-about-word-embeddings-9ea21f51ccfe

arises when using gradient-based learning methods and backpropagation to train artificial NNs. In these

methods, each of the NN’s weights receives an update proportional to the partial derivative of the error

function, with respect to the current weight in each iteration of training. The issue is that in some

situations, the gradient will be so small that the weight will not be able to change. In the worst-case

scenario, the NN’s ability to learn might not be possible.

Transformers use attention mechanisms [39] to describe the connections and dependencies of each

specific word, using all the other words in the sentence. For Transformers, the method responsible for

preparing the inputs for a model is also know as tokenizer. The model text input, when encoded, goes

through the following pipeline [40]:

• Normalization: It is the transformation applied to a raw string to make it less random. These

operations involve stripping white space, removing accented characters or lower-casing all text.

• Pre-Tokenization: It is the act of splitting a text into smaller parts. An intuitive way to think is that

this step will divide the text into words.

• The Model: Once the input is normalized and pre-tokenized, the model has the role of splitting the

words into tokens, using the rules it has learned (since it is a pre-trained model). The tokens will be

segments of those words (e.g. ”work”+”ing”). It will also map those tokens into their corresponding

IDs in the model vocabulary.

• Post-Processing: This last step performs an additional transformation, making inputs suitable for

the model in use, like adding potential special tokens.

2.6 The evolution of Natural Language Generation

Although we might be still far from robots that can think for themselves, ML and NLP have had a massive

evolution over the past decades due to the usage of DL, Artificial and Recurrent Neural Networks,

Sequence to Sequence (Seq2Seq) models and Transformers. The way we interact with technology and

live our daily lives is being revolutionized by robots, where chatbots also play a part.

2.6.1 Markov Chains

Markov chains were one of the first algorithms to be used in language generation tasks. They were

used to create suggestions for the next word in a phrase in older versions of smartphone keyboards.

This model predicts the next word in the sentence by resorting to the current word. It considers the

relationship between each unique word, in order to calculate the likelihood of the following word in the

phrase [41].

11

Figure 2.6: Source: From “What is a Markov Model” to “Here is how Markov Models Work”.

Markov chains, since they only focus on the current word, loses all the context and structure of the

preceding words. This leads to incorrect predictions making it an undesirable approach to solve our

problem.

2.6.2 Introduction to Deep Learning

Deep Learning algorithms are one of the most popular types of ML algorithms, which learn from a

layered model of inputs, called NNs. The “deep” in deep learning is referring to the depth of layers in a

NN. In DL, the learning of a current layer depends on the previous layer input. One advantage of this

type of approach is that, even without understanding semantic or syntactic structure of the language in

use, the models have a better performance on very large datasets, when compared to more traditional

approaches [42]. As mentioned in Chapter 1, making use of MT, it could be possible to obtain a database

large enough to use these algorithms to achieve the desired goal.

2.6.3 Artificial Neural Networks

Identically to the human brain, which has the neuron as its elementary unit, neural networks are com-

posed of perceptrons. These were originally proposed by Frank Rosenblatt in 1957 [43].

Biological neurons communicate through synapse impulses which have both chemical and electrical

reactions. This impulse travels along the entire neuron and are transmitted to other connected cells.

The perceptron, artificial neuron, receives a vector of inputs, also known as features. The dot product

between this input and a weight vector, along with a bias value, that allows a shift on the activation

function (allowing a better fit to the given data) are processed in a non-linear activation function. The

activation function enables this model to deal with more complex data and produces a binary output, 1

12

https://hackernoon.com/from-what-is-a-markov-model-to-here-is-how-markov-models-work-1ac5f4629b71

if the dot product is above a certain threshold or 0 otherwise. The aforementioned perceptron [44] is

described in Figure 2.7,

x1

x2

x3

x4

Σ
m

i=1

(xiwi)+bias og(x)=
1, if Σ(xiwi) + b ≥ 0

0, if Σ(xiwi) + b < 0

Inputs

Weights
Sum and Bias

Activation

Output

w1

w2

w3

w4

Figure 2.7: Perceptron.

In the Figure above, o is the output, x and w are the input data and the weight vectors respectively,

b is the bias value and g is the activation function. For the activation function, there are some variants

that can be use, e.g. ReLU linear function, that outputs the input directly if it is positive, otherwise, it will

output 0. The weight vector, w, in the perceptron, starts with random values and it is updated during the

training process, by receiving an observation and comparing it with the target value.

wnewi = woldi + η(t− o)xi, (2.1)

The update can be formally described in the Equation 2.1, where t is the target value, o is the output

computed by the perceptron and η is the learning rate, that quantifies how much the weights update in

the course of the training process. This process is repeated several times, each time known as an epoch,

for the whole dataset. It finishes when one of two possibilities is encountered: either all the observations

were correctly predicted or a predefined number of iterations has been reached. The perceptron will

converge only if the dataset is linearly separable by a hyperplane.

In order to solve this limitation, and to enhance the artificial brain model, a new model was pro-

posed, called Multi-Layer Perceptron (MLP). MLPs are fully-connected feed-forward networks, whose

key idea is to add intermediate layers of artificial neurons before the final output layer. Each hidden layer

computes some representation of the input and propagates it forward.

In the case of one hidden layer, the model can be described by the Equation 2.2, where go and gh

are the activation functions that correspond to the output and hidden layers, respectively. Wh, Wo and

bh, bo represent the weight matrix and the bias vector for each mentioned layer.

13

f(x) = o = go(gh(x ·Wh + bh) ·Wo + bo), (2.2)

In Figure 2.8, a Perceptron and MLP comparison can be observed.

x1

x2

xn

w1

w2

wn

Σ σ

x1

x2

(...) (...)

b
Input

Output
x1

x2

xn

x1

x2

(...)

σ1

σ2

Input
Layer

Hidden
Layer

Output
Layer

weightsweights

Figure 2.8: Perceptron vs MLP.

For the MLP model, the training phase begins with the forward propagation (feed-forward), where

neurons compute the output predictions. Then the model attempts to minimize the error of a loss function

(L), chosen accordingly to the problem and, in order to find the parameters and the weights that produce

the minimum error, the backpropagation algorithm [45] is used. When the algorithm is performing the

forward feed, an output is obtain, which will be compared do the true labels in order to get the error.

The error is propagated through the network, with the goal of updating the weights of each node. This

computation provides the gradient and describes the importance that each neuron has on the initial

input. Model training comprises the gradient descent method, which is an optimization algorithm that

has the goal of finding the function’s minimum. This optimization algorithm is represented by Equation

2.3.

W ∗ = arg min(L(w)), (2.3)

wnew = wold − η ×∆L(w), (2.4)

The algorithm has a weight’s update formula, that is represented in Equation 2.4, with η as the

learning rate and L as the loss function.

2.6.4 Recurrent Neural Network

A Recurrent Neural Network (RNN) is an artificial NN where the output of a layer is fed into another

artificial NN, as an input. In other words, a RNN has the ability to remember the previous iterations

14

and use its information in current calculations. It differs from the previously mentioned Markov Chains

because it considers more than just the previous word. This characteristic makes this method more

suitable for chatbots, since understanding the context in a conversation is crucial in order to deduce the

intent and build an appropriate answer. [46]. Furthermore, this sequential network shares parameters

along the NN, allowing the model to have a generalization capability, which is useful for words that occur

many times in a sentence. In Figure 2.9 the model representation can be observed.

x

y

b

h

Unfold

xt-1
b

ht-1

xt

ht(...)

W

ht+1

yt-1 yt yt+1

xt+1

U
U U U

WW W (...)W

Figure 2.9: RNN and its unfolded structure.

Formally [47], in the first step, the RNN receives an input sequence vector xt, and a hidden state

vector ht−1 to produce a new state vector ht.

ht = g(U · xt +W · ht−1 + b), (2.5)

At each step t, the hidden state is updated, according to Equation 2.5, where W and U are a weight

matrices, g is a non-linear activation function and b the bias vector.

In the second step, the output yt is obtained by applying an activation function, o, to the hidden state,

as can be seen in Equation 2.6

yt = o(ht) (2.6)

The input and output vectors can be of different sizes and RNNs can have different architectures.

It can be inferred, by looking at the expressions above, that ht and yt are dependent of all previous

inputs. Resorting to backpropagation through time, the error corresponding to a certain loss function is

backpropagated, like in the feed-forward network case. However this method applied to long sentences,

is computationally expensive. They cannot store words encountered far back in the sentence, and

will only make predictions based on recent words. It can also lead to vanishing/exploding gradients.

Recalling, the latter occurs when the gradient that carries the information decreases significantly, making

it impossible to keep training the NN.

Several approaches have been proposed, and LSTM was one approach that succeeded in tackling

this issue. LSTMs comprise a four interacting layer NN instead of a single layer network for RNNs. They

introduce a memory cell and three gate units to control the flow of information in the RNN. The memory

15

cell preserves the error gradients and allows the carry out of the information, whereas the gate units are

responsible for the addition and removal of information from the cell and what is the final output of the

LSTM unit. In Figure 2.10 the LSTM cell architecture can be observed.

x

σtanhσσ

x +
tanh

x

ht-1

xt

Ct-1

ft it ot

ht

Ct

ht

Ct
~

Figure 2.10: LSTM cell architecture.

Considering the sentence ”I am from Portugal. I am fluent in ”. To predict the next word,

”portuguese”, the model will focus on the word ”Portugal” from the past sentence, that was ”saved” in

the memory cell. The cell saves this information while processing the sequence and uses it to forecast

the following word. When the forget gate hits a full stop, it understands that the meaning of the phrase

may have changed, allowing the current cell state information to be discarded. This allows the network

to keep up with relevant information and minimizes the vanishing gradients. The model is able to handle

longer sentences when compared to the previous mentioned models.

A single LSTM [48] module comprises a memory cell C and three gates (input gate, output gate,

forget gate), formally described in Equations 2.7, 2.8, 2.9, respectively.

ft = σ(W f · xt + Uf · ht−1 + bf) (2.7)

it = σ(W i · xt + U i · ht−1 + bi) (2.8)

ot = σ(W o · xt + Uo · ht−1 + bo) (2.9)

Looking again at the Figure 2.10, initially, a cell receives as input the hidden layer vector ht−1 and the

current input vector xt and making use of the forget gate (which is a sigmoid layer), it returns a number

between 0 (values to be removed) and 1 (values to be kept), scaling the impact on the cell’s state. A

candidate input vector C̃t is also generated with the above mentioned vectors, it holds possible values

to add to the cell state. The candidate input vector can be formally described by Equation 2.10

C̃t = tanh (W c · xt + U c · ht−1 + bc) (2.10)

16

Afterwards, the former state Ct−1 is multiplied with the forget gate output value ft, and summed with

the previous values, originating the new cell state value Ct, which has the purpose of lowering the risk

of vanishing/exploding gradient. This computation is represented in Equation 2.11 .

Ct = ft · Ct−1 + it · C̃t (2.11)

Finally, as shown in Equation 2.12 the cell state is normalized by a hyperbolic tangent function, and

then multiplied by the output gate, computing the ht which is passed onto the next cell.

ht = ot · tanhCt (2.12)

LSTM were proven to be very useful when it comes to chatbots, since they have the ability of refer

to a piece of distant information in time [49]. Even though LSTMs and its variations seemed to be the

answer, they have still some limitations. There is still a complex path from the past cells to the current

one, limiting the length of sequences. An additional ”pain point” is that LSTMs are very difficult to train

due to the high computational demand. They are also difficult to parallelize on account of their sequential

structure, inhibiting the ability to take advantage of computing devices like GPUs or even TPUs.

2.6.5 Sequence to sequence

Sequence to Sequence (Seq2Seq) model [50] is based on the RNN architecture, consisting of two RNN.

One is an encoder that takes a sequence (sentence) as input and processes one symbol (word) at each

time step. Its goal is to convert a sequence of symbols into a vector with a fixed size that will encode only

the important information, losing the unnecessary parts. Each hidden state will influence the next hidden

state, being the final one the summary of the sequence. The last hidden state vector can also be called

context. From this vector, the decoder generates another sequence, one symbol (word) at a time. In

each time step the decoder is influenced by the context and by the previous generated symbols [47]. The

encoder and decoder allow the model to be fed with input sentences of different lengths. This model was

the industry best practice for response generation, in 2019, and it is still widely used [46]. Both encoder

and decoder resort to LSTM units (represented by the blue and red rectangles). This architecture can

be seen in Figure 2.11.

17

Embedding

how are you ?

Encoder Decoder
I am fine

<GO>

context

Figure 2.11: Sequence to sequence basic structure.

The goal of this model, is to map an input, x = x1, x2, ...xn, with a fixed length sentence, along with a

context vector, h = h1, h2, ...hn, created by the encoder, into an output, y = y1, y2, ...yn generated by the

decoder. The output is also a fixed length sentence (these sentences can have different lengths between

themselves). This is an auto-regressive model, since the decoder uses the previous steps’ output as

additional input, when computing the current output. The main limitation of this model is that all the

information in the input sentence should be encoded into a fixed length vector, the context. However, as

the length of the sequence increases, the amount of information lost gets bigger too, leading to a poor

performance when handling long sentences.

Attention mechanisms [39] came to solve this issue. When they are used, the encoder provides the

decoder with all its hidden states, rather that just the last one with the intent prediction, allowing the

decoder to notice all the important parts of the input at each timestep. The decoder, has therefore an

additional input at each timestep, which is computed by taking a weighted sum over the encoder hidden

states, creating the context vector for that timestep. The decoder, as mentioned, has as inputs the start

of a sentence and an initial hidden state vector and it generates an output and a new hidden state.

The attention process is performed, from where it results the context vector, which is concatenated with

the decoder hidden state vector. This concatenation is inputed in a feedforward network and a word

is generated, that will serve as input in the next time step, along with the decoder hidden state [51].

Attention mechanisms provided big improvements in ML [52].

2.6.6 The Transformer

Even though the encoder-decoder architecture, using LSTMs with attention mechanisms, was able to

achieve satisfactory results, it is still necessary the state ht−1 to compute ht, therefore it is not possible

to use parallel computing techniques speeding up the training process. To solve this limitation, the

Transformer architecture was proposed in 2017 [1]. It is based on an encoder-decoder model, to address

tasks like automatic translation, conversational chatbots, among others. It leaves recurrence aside and

relies on self-attention mechanisms, where the model uses one sequence of symbols enabling it to focus

18

on different words of the sentence and understand its structure. Transformers have been outperforming

the previous described models in the mentioned tasks and its architecture can be analysed in Figure

2.12.

Input
Embedding

+~Positional
Encoding

Inputs

Multi-Head
Attention

Feed
Forward

Add & Norm

Add & Norm

N

Output
Embedding

+ ~ Positional
Encoding

Outputs

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Output
Probabilities

N

Figure 2.12: The Transformer architecture [1].

The model is constituted by two sub-networks [51]. The encoder, on the left side of Figure 2.12,

with N identical layers, takes the word embedding of the source as input and computes a representation

of it. Afterwards, the decoder network, on the right, with also N identical layers, takes as input this

computation and the embedding of the past generated tokens from the output sentence (if it is not the

beginning of the sentence). With this information, the decoder creates a new output sentence one word

at a time.

The role of the encoder is to generate the context vector from the input sentence. The context vector,

has the same purpose as in the Sequence to Sequence model. It is of the same size as the input vector

and it will have seen all the tokens on every position of the input sentence, differing from standard RNN.

Initially the inputs and outputs are embedded in an n-dimensional space and are added to a positional

encoding layer, since strings cannot be use directly. Due to not having any convolution or recurrence,

information about the positions must be added. The positional encoding vectors are not learned, they

are created using the sine and cosine functions. These functions are specified in Equations 2.13, 2.14,

where pos is the position, i is the dimension of the input embedding and dmodel is the size of the model’s

19

encoding.

PEpos,2i = sin
pos

100002i/dmodel
(2.13)

PEpos,2i+1 = cos
pos

100002i/dmodel
(2.14)

Each dimension is a sinusoid where the wavelengths form a geometric progression from 2π to

10000 · 2π. These computations can be understood like binary encodings for numbers, where the least

significant bit changes every number and the second least changes every two numbers, allowing the

generations of unique encodings for every time-step. Distances between two words are independent of

the sentence length and the model is able to handle longer sentences than those trained. This com-

putation is then passed through the encoder layers, that will map all the input sequence into a abstract

continuous representation. The encoder’s first layer is the Multi-Head Attention which is represented in

Figure 2.13, and it will be analysed further. It calculates the similarity score between each word and the

rest of the words present in the input sentence.

The decoder’s role is to take the encoded representations of the source sentence and convert it into

predicted tokens. It then compares them with the target sentence and calculates the loss that will be

used for further training. Firstly, similarly to the first step of the encoder, the target sentence tokens are

passed through an embedding layer and summed with a positional encoding layer. This step’s output

is passed through a Masked Multi-Head Attention, whose goal is to avoid the current token to see the

future words compromising the attention scores. In the last step, the softmax function normalizes the

scores and the highest scoring word is chosen for that timestep.

An in-depth analysis will be done to the Multi-Head Attention Layer, whose architecture is shown in

Figure 2.13.

Figure 2.13: Multi-Head Attention Layer architecture [1].

Focusing on the left side of the Figure, the self-attention algorithm takes as input Q, which is a matrix

that contains the query. This query is a vector of one word of the sequence. Takes K that are all the

20

keys, meaning they are vectors of all the words in the sequence and V that are the values, which are

again the vectors of all words in the sequence. V is the same word sequence as Q for the encoder and

decoder, multi-head attention modules (represented in orange in Figure 2.12). V differs from Q in the

attention module, that considers both the encoder and decoder sequences. The output computation is

given by Equation 2.15.

y = Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.15)

This computation ensures that the words we want to focus are kept and the irrelevant words are

dropped. The weights, QKT

√
dk

, are determined by how each word in the sequence (represented by Q)

is impacted by the other words (represented by K). This function is also scaled by the square root of

the depth, avoiding exploding and vanishing gradients. The SoftMax function is applied to the weights,

allowing the values to have a distribution between 0 and 1. The result generated by the SoftMax function

is applied to all the words in the sequence that are introduced in V.

The right-side of Figure 2.13 shows that the attention mechanism can be parallelized. It is repeated

multiple times with the linear projections of Q, K, V, enabling the learning of a variety of linear representa-

tions (various contexts at the same time), which are valuable to the model. These linear representations

are achieved by multiplying Q, K, and V by weight matrices W learnt during training.

As already stated, Q, K and V matrices’ values differ if the attention model is in the Encoder, Decoder

or between both. This variation can be explained since the focus of the encoder is the entire input, the

decoder focuses only on a portion of the input and the multi-head attention module that joins the encoder

and decoder, needs to ensure that the encoder input is considered alongside the decoder input up to a

certain position.

Following this last multi-head attention a normalization layer is employed, generating the Feed For-

ward layer’s input. The Feed Forward layer is a fully connected network that increases the non-linearity

and changes the data representation allowing it to have a better generalization and dropout. It consists

of two linear transformations with a ReLU activation in between, shown in Equation 2.16.

FFN(x) = max(0, xW1 + b1)W2 + b2, (2.16)

Transformers for Language Model (LM)

LMs are models that can predict the next word based on a portion of an utterance. For conversa-

tional tasks, the model Large-scale Pretrained Response Generation Model (DialoGPT) [2] was built

by Microsoft researchers. This model was pre-trained using multi-turn dialogues extracted from Reddit

discussion threads. It is based on the Open AI’s Generative Pre-trained Transformer 2 (GPT-2) [53] ar-

chitecture, adopting the generic transformer LM [1] and inheriting from GPT-2 a 12-48 layer transformer,

with normalization layers, an initialization scheme, and a byte pair encoder for the tokenizer.

21

The original Transformer [1] was made up of encoder and decoder blocks also known as transformer

blocks. This type of architecture made sense since the model addressed a MT problem, where encoder-

decoder architectures achieved good results in the past. In later studies, the architecture was stripped

of either the encoder or decoder blocks [54] to adapt to new tasks.

A new method to perform Language Modelling was proposed, where the Transformer-Encoder blocks

were thrown away [54], keeping just the Transformer-Decoder blocks . These latter, that can be seen in

Figure 2.14, were identical to the earlier mentioned decoder blocks, apart from the fact that they did not

have the second layer of self-attention.

fine

Transformer-Decoder
Decoder Block

...
Decoder Block

Feed Forward Neural Network

Masked Multi-Head Attention

Decoder Block

I am<GO> ...

Figure 2.14: Transformer-Decoder architecture.

The GPT-2 model [53], similar to traditional LMs, outputs one token at a time. The model is built

using only the mentioned decoder blocks. It is auto-regressive, since that after a token is predicted it is

added to the input which will be fed again to the model. In a typical self-attention block, at one position,

the model can peak at tokens to its right. However, this is avoided by masked self-attention layers which

are used by the GPT-2 model and the DialoGPT.

The fact that it is pre-trained, can provide the capability of generalization, since it has seen a big

amount of data. The fact that it is an auto-regressive model, can enable it to handle dependencies and

relations between words. The big setback for this model is that it is only possible to use it pre-trained in

English language. Even though it is possible to use it in other languages, the training needs to be done

from scratch by the user, which is slow and computationally expensive.

As mentioned before, transformers have been outperforming the other architectures. However they

have some drawbacks like the large amount of data needed to train and the large amount of memory

needed. Despite the drawbacks, this approach will be used to tackle the desired goals of this thesis

project.

An illustrative comparison was going to be conducted. However, the first drawback encountered was

that most of the comparisons performed to the various models are done in the field of MT. Another

drawback for the construction of this table was that it was not found a paper or article that compared

22

quantitatively these models, with the same dialogue based dataset. As it can be seen in the table bellow,

even though the model DialoGPT is far superior to the RNN model, it has a worse BLEU-2 [55] score.

Therefore, it is not relevant to take conclusions with tables like these.

Model Size BLEU-2

DialoGPT-small 117M 10.36%

Seq2seq 15K 26.8%

Table 2.1: Dialogue Generation model comparison: DialoGPT-small pre-trained [2] and Seq2seq [3] trained on Daily
Dialogue dataset [4].

As seen, unlike previous models, transformers can use representations of all words in context with-

out the need to compress all the information into a single representation. This architecture allows them

to retain information across longer sentences without significantly increasing the computation require-

ments.

2.7 Machine Translation

MT is one of the most active subfields in NLP, with NMT achieving incredible results when a large amount

of data is available. However, for low-resource language-pairs, it still remains sub-optimal. This is due to

the unavailability of large parallel data, meaning it lacks sentences placed alongside its translations. The

advances in ML along with the implementation of NMT techniques impacted significantly the automated

translation field [56].

OPUS-MT models [18] are trained on state-of-the-art transformer-based NMT. Marian-NMT, which

is a stable toolbox with efficient training and decoding capabilities [57], is applied to the framework. The

models are trained on available open source parallel data. Similar to the LMs mentioned before, this

system also uses an encoder-decoder architecture with attention mechanisms. They tested this model’s

accuracy with common benchmarks and test sets, allowing the monitoring of the quality of the NMT

models.

For some languages, it incorporated back-translation, which consists in translating the target text

back to the original language. It allowed the comparison between translations with the original text for

quality and accuracy [58]. This way, more abundant monolingual text data could be used on the web for

training OPUS-MT’s models. This technique, generally also allows the model output to be more fluent,

which is something where low-resourced translation models under-perform [59].

Taking in consideration this and the fact that for every translated sentence, its message is communi-

cated correctly in almost all cases, as seen in Chapter 1, we can use the OPUS-MT Models translation

tool to aid the development of this project.

23

24

3
The Approach

Contents

3.1 Transfer Learning . 26

3.2 The Model . 26

3.3 HuggingFace Transformers . 27

3.4 The Dataset . 31

25

In this chapter some important concepts, like Transfer Learning, will be presented, along with an

overview to the model and libraries that was used to address our problem, and finally the sets of data

that were the key to fine-tune the model.

3.1 Transfer Learning

Humans have an intrinsic ability to transfer knowledge across tasks. The knowledge acquired while

learning one task can be used to solve other related task. The more related, the simpler it is to re-

utilize knowledge. Traditionally, ML and DL algorithms were trained after random parameters or weights

initialization. They were design to work isolated, since they were trained to solve specific problems. Once

the feature space changed, the models would have to be developed from scratch. Transfer Learning

came to fight this dogma and prove that is possible for an already pre-trained model to be applied to a

different but related problem [60]. This process avoids having to create a network’s architecture from

scratch and train it during a significant amount of time. In this technique, a NN is fine-tuned to a specific

problem after being trained on a general problem. It allows DL models to converge faster and with less

requirements [61].

Transfer Learning was one of the foundations for this thesis project. Pre-trained language models

were fine-tuned to address the chatbot problem. The LMs will be described in the upcoming section.

3.2 The Model

There is no doubt that using Transfer Learning brings many advantages, therefore, pre-trained models

were the foundation to attend to this thesis problem.

As seen in chapter 2, GPT-2 works well across a big variety of tasks, mainly due to another innovation

known as fine-tuning. This is one of the most used approaches for Transfer Learning, when working with

DL models [62]. It consists in starting with a pre-trained model on the source task and train it further

on the desired task. When compared to the approach of training a model from scratch, it undoubtedly

improved the performance. When no fine-tuning is used, the idea is to try to optimize all parameters

of the DL model, using the target training data (after initializing the parameters with the pre-trained

weights). However, since the target dataset is small (compared to the one that was used to train the

model) and since the number of different parameters is big, if the whole network is fine-tuned to that

small dataset, overfitting will occur [63]. The solution to this setback can be to only fine-tune the deep

network’s final layers, whilst the parameters of the remaining early layers are frozen at their pre-trained

values. This solution can be supported due to a combination of both the insufficient training data for the

target task and the credible evidence that early layers learn low-level characteristics [64].

26

The pre-trained model that was used is fine-tuned from Open AI’s GPT-2 [53] and is called DialoGPT

[2]. GPT-2 is a unidirectional transformer trained on a 40GB corpus, using language modeling. It had

around 1.5 billions parameters, and it was trained with the goal of predicting the next word given all the

precedent words in a text. Since it was trained on dataset with a lot of topic diversity and across many

domains it is able to generalize [53]. The bittersweet part is that it has no humans labelling the data in

any way. However, this enables it it to use lots of publicly available data with an automatic process to

generate inputs and labels from those texts.

DialoGPT is a ”tunable neural conversational response generation model” [2]. Consists on a GPT-2

model trained on 147M conversation-like data extracted from Reddit comment chains for a 12 year period

(2005-2017). Three main models were released with a different number of parameters: small (117M),

medium (345M) and large (762M). There were also numerous pre-processing steps done to the input

and output samples, before feeding them to the model, as a precaution. Such as:

• Remove sentences where either the source or the target has an URL;

• Remove phrases in which the target comprises repetitions of at least 3 words;

• Remove sentences where there is a trace of toxic language;

• Remove sentences where the response did not contain any word from the top-50 most common

word list in the English Language;

• Remove sentences where response contains special markups like ”[” or ”]”;

• Remove sentences where the length of source and target is above 200 words.

The name DialoGPT is under the assumption that, with these rules, this model would capture the

joint distribution of P(Target, Source) in a dialogue. Its purpose is to mimic the human performance

in a single-turn conversation. This model is suitable for creating a virtual companion for an engaging

conversation. The small and medium pre-trained implementations were tested. As it will be seen further

down, due to having limited resources, the smaller model is preferable and it was able to maintain a

coherent dialogue.

3.3 HuggingFace Transformers

As seen in the previous chapters, research in model architecture as well as in model pre-training have

fueled advancements in NLP, leading to better results in a wide variaty of tasks.

The HuggingFace Transformers [65] is an open-source library, maintained by a team of engineers

and researchers, whose objective is to make these breakthroughs available to the rest of the machine-

learning community. The library is composed by meticulously built state-of-the-art Transformer architec-

tures that are all controlled by a single API which is available at this url.

27

https://github.com/huggingface/transformers

This library takes care of the distribution and usage of a wide-variety of pre-trained models in a

centralized model hub, allowing users to compare various models using the same API. HuggingFace

Transformers include tools to ease the training and development of models. Every model in the collection

can be defined by three main parts:

• A tokenizer: Responsible for converting raw text into encodings, as aforementioned in Chapter 2.

This class can be instantiated from a corresponding pre-tained model or can be configured man-

ually. It comprises the vocabulary token-to-index for the corresponding model and handles the

encoding and decoding of inputs based on the model’s tokenization method. These classes are

accessible at this url.

• A transformer: Responsible for taking the encodings and turning them into contextual embed-

dings, assigning to each word a representation based on its context; With the same API, different

model architectures can be used, empowering users to easily transition between those models.

This is also thanks to the use of Auto classes, which are instantiated automatically using the pa-

rameters given by the pre-trained model, picked by the user.

• A head: Responsible for making prediction, for a specific task, based on the contextual embed-

dings. On top of the Transformer’s contextual embeddings, they add an output layer and an optional

loss function. (They can be used for fine-tuning or pre-training.)

As mentioned, HuggingFace Transformers has the purpose to facilitate the use and distribution of

pre-trained models. It now contains thousands of pre-trained and fine-tuned models. Every model has a

model card describing its properties, architecture and use cases. Models are both available in PyTorch

and Tensorflow and this library makes it extremely easy to use them. Recurring only to a couple of lines

of code, the DialoGPT-small model, can be uploaded and used, as it can be seen in Appendix A. The

Language Modeling use-case (more specifically text generation) was addressed, using HuggingFace

Transformers open-source library.

3.3.1 Generation and decoding methods

The objective of text generation is to produce a comprehensible segment of text that follows from the

provided context. As can be seen in the code listing, present in Appendix A, the pipeline (model) object

invokes the function generate() from the HuggingFace Transformers, that was created to generate text.

DialoGPT generates predictions based on the whole conversation history, which is concatenated before

it is fed into the model. This is then utilized to generate a response, but only using the preset number of

most recent tokens in the input sequence.

Besides having a good dataset and a good model architecture there is also a need of having good

decoding methods. A brief overview to some of the most prominent methods will be conducted.

28

https://github.com/huggingface/tokenizers
https://huggingface.co/microsoft/DialoGPT-small

Starting with greedy search, it simply selects the word with the highest probability as its next word, at

each step [66]. This method is illustrated in Figure 3.1. Even though the generated words tend to follow

the context, the model will quickly start to repeat itself. Another disadvantage is that it misses words with

a high probability that are hidden by low probability words.

Figure 3.1: Greedy Search. Source: How to generate text

To tackle the latter mention disadvantage, Beam Search comes to the picture. It avoids missing

high probability word sequences by storing a number of beams or hypotheses at each time step, end-

ing up choosing the hypothesis carrying the highest probability. Figure 3.2 shows this method with 2

beams. The result can be more fluent, but it will have one of Greedy Search’s problems: still being quite

repetitive, which is a frequent issue in language generation [67]. Penalties for n-grams (sequences of

n words) can be a straightforward solution [68]. The n-grams penalty ensures that no n-gram occurs

twice by setting the likelihood of following words that could generate an already observed n-gram to 0.

Nonetheless, the number of n-gram penalties must be chosen with caution. A 2-gram penalty should

never be applied to text talking about the district of ”Castelo Branco”, for example, otherwise, the name

of the district would only appear once in the entire corpus. In open-domain text generation, beam search

might not be the best possible option since it works well in tasks where the length of the desired gener-

ation is predictable [69], which is not the case for dialogue (where the desired output length can vary). It

also suffers from repetitive generation and since human language does not follow a distribution of high

probability next words [70].

29

https://huggingface.co/blog/how-to-generate

Figure 3.2: Beam Search. Source: How to generate text

To include some randomness in the generated text, Sampling was suggested. Sampling consists of

choosing a word (wt) according to its conditional probability distribution wt ∼ P (w|w1:t−1). To make the

distribution more accurate, the likelihood of high probability words can be increased and the likelihood of

low probability words can be decreased. This can be handled by varying the value of a parameter called

”temperature”.

Later on, Top-K Sampling was introduced, it filters the K most likely next words and redistributes the

probability mass among the K following words [71]. GPT-2 adopted this sampling scheme, which was

one of the reasons for its success in story generation. In Figure 3.3, the illustration of the Top-K Sampling

method, with K=6 can be observed. Top-K Sampling carries, however, some concerns, since it does not

dynamically adapt the number of words that are filtered by the distribution P (w|w1:t−1). Meaning that

some words might be sampled from a flat distribution (left side of the Figure), whereas others might be

from a sharp distribution (right side of the Figure).

Figure 3.3: Top-K Sampling. Source: How to generate text

In the first step, Top-K removes the words ”people”, ”big”, ”house” and ”cat”, which were not that

30

https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate

unlikely. On the other side, in the second step, Top-K includes ”down” and ”a” which don’t fit that well.

Therefore, limiting the sample of words to a fixed size K could limit the models capability to work properly.

To address this pain point, Top-P Sampling was created [70]. Instead of sampling the most likely K words,

the method selects the smallest feasible combination of words whose cumulative probability exceeds the

probability p. The probability mass is then redistributed among this collection of words. In this manner,

the size of the set of words may be dynamically increased and decreased based on the probability

distribution of the following word. This can be observed in Figure 3.4. For example, with p = 0.90, Top-P

samples the minimum number of words that exceed this probability (90%). In the left side of the Figure,

it includes the 9 most likely terms, but in the right side, it only needs to choose the top 3 words to reach

90%.

Figure 3.4: Top-P Sampling. Source: How to generate text

To achieve an even better performance, Top-P and Top-K can be used alongside. Hence, low ranked

words can be avoided while having some dynamic selection. Therefore, this decoding method was the

one chosen for this project.

Lastly, it is important to state that HuggingFace Transformer libraries enable the easy implementation

of this different decoding and generation methods.

3.4 The Dataset

As previously mentioned, open-domain chatbots depend highly on the conversation databases used to

train them. To accomplish this thesis goal, the models were fine-tuned with the two biggest Open-domain

conversation databases, whose source language is English, that are available open source:

• Daily Dialogue [4]: Contains around 13,118 dialog utterances extracted from web pages for En-

glish learners. It includes a variety of topics (relationships, tourism, work, politics, among some

others). This dataset is intended to resemble dialogues humans have in their ”daily life”.

31

https://huggingface.co/blog/how-to-generate

• Topical-Chat [72]: Consists of more than 210,000 utterances, making it the largest social conver-

sation and knowledge dataset available publicly. It underlies knowledge about 8 topics (Fashion,

Politics, Books, Sports, General Entertainment, Music, Science & Technology and Movies).

32

4
The Implementation

Contents

4.1 System architecture . 34

4.2 Resources & Data . 35

4.3 Training . 37

4.4 Metrics for NLG evaluation . 40

4.5 Machine Translation Evaluation . 44

4.6 Chatbot Evaluation . 45

4.7 Physical System . 46

33

In this chapter the system architecture will be described and the ability for a transformer to perform a

NLP task, behaving as a chatbot, will be tested. Alongside the introduction of two different approaches,

the model training process and the testing methods to evaluate it are going to be briefly explained.

4.1 System architecture

The systems described in Sections 4.1.1 and 4.1.2 are based on transfer learning, in which a pre-trained

model is applied to a new problem. As previously seen, it is a popular method in DL, since it tries to

exploit what was learned before, in order to improve generalization in the current task.

4.1.1 System 1: Fine-tune a pre-trained model

DB
Estou a
ver TV!

Estou a
ver TV!

Trained
DialoGPT

Cloud
Speech-To-Text

Cloud
Text-toSpeech

O que estás
a ver?

O que estás
a ver?

Translation
API

Translation
API

I'm watching
TV!

What are you
watching?

Training Data

Validation Data

Pretrained
DialoGPT

 Trained model

Pretrained
DialoGPT

Evaluated model

Testing Data

Figure 4.1: System 1 architecture with DialoGPT.

In figure 4.1, the main steps of the System 1 and the application scenario are shown. This project’s

purpose is to conduct a dialogue with a portuguese elder, to help with the loneliness problem mentioned

in Chapter 1. The system was prepared with a speech-to-text API [73], followed by a translation API,

which will translate the European Portuguese utterance to English. Afterwards, the translated utterance

will be the input for the transformer. The latter will produce the output utterance, that will be translated

to European Portuguese and passed through the text-to-speech module. The main idea is to make use

of the already pre-trained model DialoGPT which was fine tuned with the two open-domain conversation

databases mentioned in Chapter 3. The Transformers, the datasets adjustments and the modules to per-

form the training and evaluation will manipulated in Python, since it is the most widely used programming

language to handle ML systems.

34

4.1.2 System 2: Fine-tune a pre-trained model on a new language

Translation
API

DB Translated DB

Training Data

Validation Data

Pretrained
DialoGPT

 Trained model

Pretrained
DialoGPT

Evaluated model

Estou a
ver TV!

Estou a
ver TV!

Trained
DialoGPT

Cloud
Speech-To-Text

Cloud
Text-toSpeech

O que estás
a ver?

O que estás
a ver?

Testing Data

Figure 4.2: System 2 Architecture with DialoGPT.

In figure 4.2, the second system’s architecture is shown The main idea is to fine-tune the models on

a new dataset with a different language. Again, this project’s purpose is to conduct a dialogue with

a portuguese elder, so the system will also be prepared with a speech-to-text API and the model is

going to be trained with only the small database, due to memory limitations, but translated to European

Portuguese. The trained model will receive as input a portuguese sentence and will produce the output

portuguese utterance, which will be passed through the text-to-speech module. The model, the dataset

adjustments and module to perform the training will again be manipulated in Python.

4.2 Resources & Data

The experiment was going to be conducted in Google Colab, however its resources were not enough to

train the small version of the model. As a result, the models were trained on a GEFORCE GTX 1080 Ti,

with 11 Gbps. Even though this GPU permitted the training of the referred models, DL is still a subject

with considerable computational demands. The chosen GPU will always highly influence the experience

and the results.

The pre-trained models were tested before any fine-tuning was done, to see the experimental result

baseline. As can be seen in the lists below, it is very repetitive and cannot keep a logical and engaging

conversation.

DialoGPT-small

• Human: Good morning.

• Robot: Good morning everyone!

• Human: How are you?

• Robot: Good morning everyone!

35

• Human: My name is Mariana.

• Robot: I’m Mariana.

• Human: What are you doing?

• Robot: I’m Mariana.

• Human: Bye.

• Robot: I’m Mariana.

The model is repetitive and builds its predictions copying from the user input.

DialoGPT-medium

• Human: Hello.

• Robot: Hello.

• Human: I’m going to my daughter’s.

• Robot: I’m going to my daughter’s.

• Human: I want to take a walk today.

• Robot: I want to go to the beach.

• Human: I like to have coffee.

• Robot: I want to go to the beach.

• Human: I want to take a walk this afternoon.

• Robot: I want to go to the beach.

The medium model is again repetitive however it is able to build its predictions, that are logical in the

dialogue context.

GPT2

• Human: Good morning.

• Robot: The first thing you need to know about the new iPhone 6 is that it’s a very good phone. It’s

a very good phone. It’s a very good phone. It’s a very good phone. It’s a very good phone. It’s a

very good phone. It’s a very good phone. (...)

Lastly, the GPT2 is not even able to construct a logic ”answer”, which makes sense since it was not

trained on dialogue data.

The fine-tune of the pre-trained models, was performed using the two datasets (in English) for System

1 and the smaller one (translated to Portuguese) for System 2. The datasets were converted in a way

36

that every sentence row contains 7 previous utterances for context. It was found that 7 was a good

balance between having long enough context to train a conversational model and fit it within the memory

constraints (longer contexts take more memory) [74].

Following that, the dataset was transformed into a format the model can understand. It was tokenized

recurring to HuggingFace’s tokenizers that were discussed in Chapter 3. With the data prepared, the

model could finally be used, trained and tested.

4.3 Training

To train the model, a batch of examples is used, with both the inputs and the respective responses. This

is due to GPT-2’s auto-regressive property, meaning it uses some context to predict the next token. This

prediction is then added to the original context and fed back in as the new context for generating the

next token.

A brief overview will be done to some of the configuration variables and hyperparameters used for

the training and evaluation of the model. Their purpose and the way they affect the model’s behaviour

will be discussed.

Listing 4.1: DialoGPT Training Parameters.

1 class Args ():

2 def __init__(self):

3 self.output_dir = 'output -small'
4 self.model_type = 'gpt2'
5 self.model_name_or_path = 'microsoft/DialoGPT -small '
6 self.config_name = 'microsoft/DialoGPT -small '
7 self.tokenizer_name = 'microsoft/DialoGPT -small '
8 self.cache_dir = 'cached '
9 self.block_size = 512

10 self.do_train = True

11 self.do_eval = True

12 self.evaluate_during_training = False

13 self.per_gpu_train_batch_size = 4

14 self.per_gpu_eval_batch_size = 4

15 self.gradient_accumulation_steps = 1

16 self.learning_rate = 1e-5

17 self.lr_schedule = 'noam'
18 self.weight_decay = 0.0

19 self.adam_epsilon = 1e-8

20 self.max_grad_norm = 1.0

21 self.num_train_epochs = 3

22 self.max_steps = -1

23 self.warmup_steps = 0

24 self.no_cuda = True

25 self.seed = 42

37

https://huggingface.co/transformers/main_classes/tokenizer.html

26 self.fp16 = True

27 self.fp16_opt_level = 'O1'
28

29 args = Args()

• Block Size: Represents maximum number of tokens for each training instance. Up to a specific

maximum sequence length, an encoder block made from original transformer paper can accept

inputs up to 512 tokens. Sequences that are longer than the block size are truncated, while those

that are shorter are padded with zeros.

• Batch Size: This hyperparameter has an influence on the accuracy of the DL models as well as

their training process performance. The available GPU memory currently limits the range of batch

size values. The maximum batch size that may be executed on a single GPU diminishes as the

neural network grows in size. Today, as we run bigger models than ever before, the batch size

options get smaller and may be far from ideal. Gradient accumulation is a simple approach to

enable executing batch sizes that don’t fit within the GPU memory. The batch size refers to the

amount of samples (in this sentences) needed to train a model before changing its trainable model

variables, such as weights and biases. It needs to be taken into consideration that very large batch

sizes may cause bad generalization, implying that outside of the training set, the neural network

will perform badly. However very small batch sizes may lead to slow convergence, since a single

sample has a larger influence on the proposed variable updates. The primary idea is to experiment

with different batch sizes until one is found, that would be optimal for the specific neural network

and dataset in use.

• Gradient Accumulation Steps: The gradient accumulation is a method to prevail over the low

GPU restriction and the need of utilizing lower batch sizes for training the model. It is a technique

for splitting a batch of samples needed to train a neural network into multiple mini-batches that will

be run consecutively. During back propagation, the parameters of the network are not changed in

each step of the mini-batch, and the gradients results are accumulated. When all of the mini-batch

steps are finalized, the models parameters are updated using the collected gradients. This process

is as good as using higher batch size for training since gradients are updated the same number of

times. For example, a Gradient Accumulation Steps of 8 and a batch-size of 4 is identical to using

a batch-size of 8× 4 = 32.

• Learning Rate: The learning rate is a hyperparameter that regulates how much the model changes

each time the model weights are updated in response to the predicted error. A value too little may

result in a long training process that becomes stuck, whereas a value too big may result in learning

a sub-optimal set of weights too quickly or an unstable training process. The default learning rate

38

was selected based on validation loss. Each model is trained until there is no progress in validation

loss [2].

• Learning Rate Schedule: The Noam learning rate scheduler is the default one. It is normally with

used along the Adam optimizer [1]. For the first warmup steps, the Noam scheduler increases the

learning rate linearly, then reduces it proportionally to the inverse square root of the step number.

• Weight Decay: Is a regularization whose goal is to prevent overfitting. It keeps the weights small

and avoids exploding gradient.

• Adam Epsilon: Avoids the dividing by zero error, while updating the variable when the gradient is

almost zero. Ideally epsilon should be a small value.

• Number of training epochs: It is a hyperparameter that sets the number of times the learning

algorithm will run over the whole training dataset. Each sample in the training dataset has the

chance to change the internal model parameters once each epoch. There must be one or more

batches in an epoch. It can be described as a for-loop that runs for the number of epochs, with

each loop running across the entire training dataset. Another nested for-loop is contained within

this for-loop, which iterates over each batch of samples, each batch including the specified mini-

batches.

• Max number of steps: This value is -1 by default. If it is set to a positive number, it will be the

total number of training steps. It overrides the number of training epochs.

• Warmup steps: It is the number of steps used for a linear warmup from 0 to the value of the

learning rate.

• fp16: This option changes from whether to use 16-bit (mixed) precision training instead of 32-bit

training. When set to True, lowers the required memory and enables the training of larger models

and training with larger batches. This option was set to true, due to the GPU limitation.

• fp16 otimization level: For fp16 training, Apex AMP optimization level selected in [‘O0’, ‘O1’, ‘O2’,

and ‘O3’]. The ’O1’ is the mixed precision and it is the recommended one for typical use, when

using 16-bit training.

After all these variables are set, the model is configured. Since the data is also prepared, it is

possible to train the model. The complete developed software code (containing all classes, methods,

and variables, as well as the scripts that were run) is documented in the following GitHub repository.

39

https://github.com/marianafidalgo/GrandPal

4.4 Metrics for NLG evaluation

4.4.1 Language modeling loss (for next-token prediction):

The HuggingFace trainer enables the computation of the loss. This metric on its own does not tell much.

However, it is a good estimator for overfitting detection and to compare the various fine-tunings. When a

model is called with the respective labels, the Cross Entropy Loss [75] between the predictions and the

passed labels is given. After setting the optimizer (in this case the Adam optimizer), a backward pass is

done and an update to the weights is performed.

4.4.2 Perplexity

One of the metrics frequently utilized to evaluate the model is perplexity, which is a basic yet effective

metric that reflects relevancy. Perplexity measures how unsure the model is in its choice of the following

token. The more unsure the model is, the higher its perplexity. Formally, perplexity is the number of

choices the model is trying to choose from when it is producing the next token. One intriguing aspect of

perplexity is that it closely resembles what people classify as coherent and specific natural conversations

[74].

4.4.3 Dialog Ranking Pretrained Transformers (DialogRPT)

Conversational models are currently improving their capability to produce context-relevant turns, and to

be more ”human-like”. In order to evaluate the models, the DialogRPT [76], was used. Since it was only

trained in english it will only be used to evaluate the System 4.1.1.

DialogRPT is a set of GPT-2 models trained on 133M pairs of human feedback data (upvotes/replies

of dialog systems). The ranker outperformed some baselines like perplexity. To rank the machine

generated conversation, the feedback prediction models were combined with a human-like scoring

model. Crowd-source evaluation showed that the DialogRPT ranker correlated better with real human

preferences when compared to baseline models [76]. The following task was used to attend to this

thesis project: human vs machine : ”How likely is the response human-written rather than machine-

generated?”

The approach was to try to re-rank the fine-tuned DialoGPT outputs with DialogRPT using the tools of

HuggingFace Transformers. After analysing the DialogRPT methods, a small Python script was written

that was responsible for:

• Generating 5 different utterances to one input question;

• Outputting the fine-tuned DialoGPT generation probability, for each of those 5 sentences;

40

• Outputting the DialogRPT ranking probability for each of those 5 sentences;

• Saving one random utterance from the pool of 5, as the answer, for later use.

• Calculating the average generation and ranking probability for all answers.

Even though the DialogRPT paper [76] claimed very good results, some issues were found to this

approach. For example, if the input is only ”Hi!”, the ranking probability of having ”Hi!”, as an answer,

is considerably lower (3%) than ”Hi, Mr. Brown. I’m Steven. What seems to be the problem?” (55.4%).

Which can make sense, since the answer is more complete, making it ”sound” more human. However

the first choice would fit the purpose nicely and the second choice can deviate from the target person

and the context.

To calculate these rankings, the Daily Dialogue validation dataset was split by questions and answers.

Each part comprised 3870 sentences. The part with the questions is used as the model input.

4.4.4 BLEU, METEOR and ROUGE scores

To analyze the performance quantitatively BLEU [55], METEOR [77] and ROUGE [78] metrics were

used. These metrics use statistical rules to measure the similarity between the output responses and

reference responses. They were initially proposed for machine translation, however the same idea

applies to evaluating generated text as it does to evaluating labels. If candidate text A matches one of

the reference texts better than candidate text B, we want to give A a higher score than B.

Before diving into the evaluation metrics, there are two important measures to take into consideration.

The first one is Precision that shows the percentage of your results which are relevant. The second one

is Recall that refers to the percentage of total relevant results correctly classified by your algorithm.

Figure 4.3: Source: Precision vs Recall

• BLEU:

Or Bilingual Evaluation Understudy Score is an algorithm that was created with the goal of deter-

mining how accurate the machine translation was. Later it was found that it could be also used to

evaluate the quality of text responses that a chatbot returns for an input text from a user. To esti-

41

https://medium.com/@shrutisaxena0617/precision-vs-recall-386cf9f89488

mate precision the Modified n-gram precision is used, recurring to n-grams to compare an answer

given by a chatbot with the reference text.

However, just using n-grams presents a problem. For example, consider the following two re-

sponses to a reference sentence and the unigram precision:

Reference: I can’t go to school.

Response 1: He can’t go to school.

Response 2: He can’t go go to to school school.

Response 1 has a unigram precision of 60% while for 2 it is 75%. However, it is obvious that 2 is

not a better candidate than 1. With the “modified” n-gram precision, it only matches the n-grams

of the response as many times as they appear in the reference text. So, in the preceding example,

the words will have only matched once, resulting in a 37.5% unigram precision. To include all the

n-gram precision scores the following geometric mean is computed:

Precision = exp (

N∑
n=1

1

n
log pn) (4.1)

To estimate recall, Best match length is used. It is natural to assume that a longer candidate text

will have a higher percentage of some reference than a shorter candidate. Candidate texts are not

very long, as this would result in a poor accuracy score. As a result, shortness can be penalized

in candidate texts to introduce recall.

BP =

{
1, if c > r

exp(1− r
c), otherwise

(4.2)

In the equation above, c is the total length of the candidate, and r is the average length of all the

references. As the candidate length decreases, the ratio r/c increases, and the BP decreases

exponentially. Finally the BLEU score is given by:

BLEU = Precision ·BP (4.3)

The evaluation was done with parameters from 1-gram to 4-grams to compute how good the chat-

bot’s responses are. To understand how the BLEU scoring works, the following example can be

visualized [79]:

Reference: I can’t go to the school now.

Response: I can’t come back from the school now.

42

1-gram 2-grams 3-grams 4-grams

66.67 57.73 46.03 0

Table 4.1: BLEU scores for the example above.

The Table 4.1 shows the BLEU scores for the sample above, from n-gram 1 to 4. The smaller

the n-gram model, the higher the score, and in this case 0 for 4-grams since no sequence of four

following words matches in both sentences.

• METEOR:

Or Metric for Evaluation of Translation with Explicit ORdering is an automated metric for evaluating

machine translation that is based on the idea of unigram comparison between machine and human

translations [77] . It was introduced to tackle some of BLEUs weaknesses and also generate

a strong connection with human judgment at the sentence. This differs from BLEU metric that

seeks correlation at the text level [80]. The difficulty with BLEU is that since the BP value is based

on averaged lengths throughout the whole text, individual sentence scores suffer. To tackle this,

METEOR modifies precision and recall calculations with a weighted F-score based on unigrams

and a penalty function for incorrect word order. The meteor score is given by:

METEOR = (1− Penalty)F (4.4)

With:

Penalty = γ(
c

m
)β , 0 ≤ γ ≤ 1 (4.5)

Where c is the number of matching chunks and m is the total number of matches. The value of

γ determines the maximum penalty and the value of β determines the functional relation between

fragmentation and the penalty. And:

F =
PR

α+ (1− α)R
(4.6)

Suppose that m is the number of unigrams between the two texts. Precision and recall are given as

m/c and m/r, where c and r are candidate and reference lengths, respectively. The free parameters

in the metric, α, β and γ are tuned to achieve maximum correlation [81].

• ROUGE:

Or Recall Oriented Understudy for Gisting Evaluation is based on recall, and is mostly used for

summarizing evaluation. To evaluate this project’s models, ROUGE-L were used. ROUGE-L is

based on the longest common subsequence (LCS) between the model response and reference.

43

ROUGE-L uses F-score, which is the harmonic mean of accuracy and recall values, rather than

just recall. Supposing that A and B are response and reference with lengths of m and n:

P =
LCS(A,B))

m
R =

LCS(A,B)

n
(4.7)

Then F is then calculated as the weighted harmonic mean of P and R:

F =
(1 + b2)RP

R+ b2P
(4.8)

The idea is that a longer common sequence indicates that the two sequences are more compara-

ble. To better see how it works, the following example can be visualized:

Reference: I like school.

Response: I hello my name like school.

R(recall) =
LCS(gram− n)

count(gram− n)
=

2

3
= 66% (4.9)

P (precision) =
LCS(gram− n)

count(gram− n)
=

2

7
= 29% (4.10)

ROUGE − L(F1score) = 2 · 0.29 · 0.66

0.29 + 0.66
= 0.4 (4.11)

Therefore we have a 40% F1 score.

Fortunately to simplify the calculation of these scores, the NLG-Eval [82] API was created and it was

used to evaluate the trained models. As uttered above, the Daily Dialogue testing dataset was divided

among questions and answers. The part with the questions is again used as the model input. The part

with the answers is used as references, which are compared to the prediction of the model for each

input.

4.5 Machine Translation Evaluation

When it comes to evaluating the performance, the ideal would be to have a human-based evaluation,

specially in a system where paraphrasing can lead to inferior metrics, despite still having a good perfor-

mance. Consequently, to add a score to the translated dataset [4], a small interface was developed.

44

10/10/2021 GrandPal-Translation Quality

20.108.185.129:8501 1/4

)

Translation Quality Evaluation

These translations were generated by a Machine Translation Model.

Please give a rating from 1-10 regarding the quality of the translations.

English Portuguese Already done:
14/7998

Great , then let's go visit him . I want to give him some flowers , too ,
to say sorry .

Ótimo, então vamos visitá-lo. Quero dar-lhe algumas flores,
também, para pedir desculpa.

5

I was drying my hair and ironing my shirt ! Can you come here for a
sec ? I need your help .

Estava a secar o cabelo e a passar a camisa! Pode vir aqui por um
segundo? Preciso da tua ajuda.

5

What if this small fever turns into a big fever ? E se esta pequena febre se transformar numa grande febre?

5

Figure 4.4: Translation Quality Evaluation interface.

In this User Interface (UI), from a dataset storing almost 8000 source and target segments pairs, 14

random are displayed to the user. The user has then the option to classify the translation from 1-10.

From the pool of translations, 784 were evaluated.

4.6 Chatbot Evaluation

Once more, as mentioned, human evaluation is preferable and this was done done by recurring to two

methods.

For the past iteration of this thesis project [32], a form was built that followed a base conversation,

keeping the robot speech while hiding all of the human utterances in the discourse. This was conducted

with Google Forms and it was shared with a small sample of people (35 people). The resulting dataset

can be visualized in appendix A. For the first method, to evaluate our model, we tested the different

Training Utterances and check if its answer is equivalent to the Corresponding Robot Utterance. Two

concepts were evaluated: the possibility of the prediction given by the model to be the same as the

Corresponding Robot Utterance, or the possibility of the prediction to be a logical and a feasible answer

to the input. If the answer does not fit in either of these categories, the response was marked as a fail.

The second method took a more direct human interaction. To add a score to the performance of the

Chatbot, a small interface was created. In this User Interface (UI), the user has a chance to engage

45

http://20.108.185.129:8501/
www.quality-mt.grandpal.pt

in a conversation with the system. After a six utterance interaction with the system, the user has then

the option to classify the conversation from 1-10. This experiment was conducted with approximately 40

dialogues.

Figure 4.5: Translation Quality Evaluation interface.

One more advantage of this evaluation is allowing to analyze the ability of the model to ”remember”

previous utterances during the dialogue. The model was trained with 7 sentences for context, therefore

the input only stores the last 6 uttered sentences.

The drawback of this evaluation is that it is time consuming and expensive. One aspect to have in

consideration is that the focus group should be the elderly, however with the ongoing Covid-19 pandemic,

and with the fact that most people belonging to this group may not be accustomed with computers this

possibility is set on standby.

The model was trained with different hyperparameters, to evaluate which were the best for the prob-

lem at hands.

4.7 Physical System

To have a practical view of the project, the system was built recurring to a Raspberry Pi Zero W, a

speaker and a microphone. In order to handle the communication between the Raspberry Pi and the

Deep Learning model, a simple Flask application was built.

With the aim of enhancing the performance and engagement of the Chatbot, a weather API and

a radio API where also added. So taking into consideration the Figures 4.1 and 4.2 with the model

architecture, the entire system architecture can be observed in the Figure below.

46

O que estás a ver?

Estou a ver TV!

Cloud
Speech-To-Text

Cloud
Text-toSpeech

Trained
Transformer

Flask APP

Request
with input

Response
with output

Estou a ver
 TV!

O que estás
a ver?

Figure 4.6: System architecture.

47

48

5
System Evaluation

Contents

5.1 System 1 - Fine-tuning an English pre-trained model 50

5.2 System 2 - Fine-tuning model on a Portuguese Dataset 59

5.3 Machine Translation Evalutation . 61

5.4 Pipeline evaluation . 61

49

In this Chapter the training results will be shown and discussed, for each dataset and model. The

Machine Translation Evaluation and the system overall evaluation will be discussed too.

5.1 System 1 - Fine-tuning an English pre-trained model

5.1.1 Daily Dialogue

The first fine-tuned model was the DialoGPT-small. Some model ablation was conducted, to analyze

the way the configuration variables and hyper parameters affected the model. In a first stage, to avoid

having such a lengthy training, the model was only fine-tuned with the small English dataset, Daily

Dialogue [4]. The memory limitation was inspected, along with the performance of the model, for each

different training. The transformer was trained with 3 epochs, 5 epochs, and 7 epochs. With the increase

of the number of epochs, the duration of the training rose too. Being, respectively, near to 4, 6 and 8

hours. The 8 trained models’ results are shown in Table 5.1.

The goal in mind was to try to decrease the metrics loss and perplexity. These metrics were calcu-

lated using the Daily Dialogue testing dataset, that contained 8069 utterances. For each experiment,

the DialoRPT ranking was also calculated, with the generation and ranking probabilities as mentioned in

Section 4.4.3. The Daily Dialogue validation dataset was split into two. Here, we assume that a normal

dialogue has a format of ’question-answer-question-answer...’. Therefore, by splitting it, two new sets

were obtained: Questions and Answers. The first containing the questions and the other with the an-

swers, each with 3870 utterances. Finally, as referred in Section 4.4.4, the Bleu-(1,2,3,4), METEOR and

ROUGE-L scores were also computed. To estimate them, the Answers dataset was used as reference

and the model’s predictions to the Questions dataset was used as hypotheses. Even though this may

not be the ideally suited method, since more than one reference to the scores computation should be

used (paraphrasing), it still enabled a performance contrast among the several experiments.

The datasets used for training, testing and validation (questions and answers sets) can be found in

the following GitHub repository.

DialoGPT small - Daily Dialogue

Nº BatchSize/
GPU

Grad.
Acc. Epochs Perplexity Loss Gen Rank Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

RAW - - - - - 57.54% 36.22% 4.00% 1.31% 0.52% 0.23% 4.64% 5.31%
1 2 4 3 11.82 1.36 58.33% 57.31% 4.81% 1.97% 1.07% 0.67% 6.13% 6.73%
2 2 32 3 10.95 1.90 52.89% 54.93% 4.03% 1.54% 0.72% 0.34% 5.71% 6.30%
3 2 32 5 10.99 1.67 55.65% 55.60% 4.52% 1.89% 1.01% 0.60% 6.16% 6.78%
4 4 16 5 9.68 1.44 55.26% 55.83% 4.20% 1.65% 0.83% 0.45% 5.75% 6.25%
5 4 8 5 10.17 1.26 57.57% 56.99% 4.66% 1.83% 0.94% 0.55% 6.06% 6.58%
6 4 12 5 9.81 1.40 56.11% 56.40% 4.59% 1.87% 0.98% 0.55% 5.96% 6.66%
7 2 32 7 10.15 1.45 57.49% 56.96% 4.36% 1.67% 0.85% 0.47% 5.90% 6.25%
8 4 16 7 11.56 1.24 57.06% 56.84% 4.56% 1.81% 0.95% 0.56% 5.92% 6.35%

Table 5.1: DialoGPT-small training results with Daily Dialogue dataset

50

https://github.com/marianafidalgo/GrandPal

The first row in Table 5.1, shows the performance of the raw model with no fine-tuning. This way, it

allows a better understanding of the fine-tuning’s impact.

Making an analysis to Table 5.1, it is clear that the model that showed the worst performance was

the raw model. Therefore, it can be deduced that fine-tuning a model to a narrower domain can lead

to an improvement. The red highlighted values point the poorest score, whereas the values highlighted

in green show the best value, for each metric. In addition, we see that with the increase of the number

of epochs, the system tends to overfit. For example in the experiment Nº 8, the loss value decreased,

however the perplexity increased significantly.

Finally, the model with the overall best scores was experiment Nº 1, since it is the one with more

green highlighted values. Nonetheless, experiment Nº 4 was the one with the lowest perplexity (being

the most confident model) and experiment Nº 3 was the one with the best scores for METEOR and

ROUGE-L. As noted in Section 4.4.4, these latter metrics are better evaluating the Chatbot task.

To conclude which experiment was the most successful, the models experiments Nº 1, Nº 3 and Nº

4 will be compared. The Utterances from Appendix B, Table B.2, will be inputed into the model and

the predictions were juxtaposed with the Corresponding Robot Utterance. As mentioned in Section 4.6,

two concepts were surveyed: the possibility of the prediction given by the model to be the same as the

Corresponding Robot Utterance, or the possibility of the prediction to be a logical answer. If the answer

does not fit in these categories, the response falls out of context. One setback of this evaluation is that it

does not have the conversation history in consideration, however it enables us to see if the model replies

adequately to questions.

Experiment Nº 1

For the first model, from the 45 given utterances, 7 (11, 20, 21, 33, 36, 42 and 44) fell out of context.

Nevertheless, 5 utterances (1, 7, 17, 25, 28) matched the Corresponding Robot Utterance and the

remaining utterances were feasible answers. Some examples of these feasible answers are:

• Human: I’m fine, too.

• Robot: I’m glad to hear that.

• Human: What’s the weather for this morning?

• Robot: The weatherman says it’s going to snow.

• Human: I’m going to the supermarket today.

• Robot: You mustn’t go shopping alone.

To show an example of a failed answer:

• Human: I’m having lunch with my brother today.

51

• Robot: What do you think of the film?

One other curious fact to note is that, even though some of the answers fell out of context, all sen-

tences were written correctly and were coherent.

Experiment Nº 3

For this experiment, from the 45 given utterances, only 4 (10, 11, 12 and 27) fell out of context.

Nonetheless, just 2 utterances (29 and 37) matched the Corresponding Robot Utterance. The remaining

utterances were feasible answers. Below are again some examples of feasible answers:

• Human: I’m going to my daughter’s.

• Robot: Oh, that’s so nice of you.

• Human: What’s the weather for this morning?

• Robot: It’s supposed to snow in the morning.

Once again, all the uttered sentences were logical and coherent.

Experiment Nº 4

For this model, from the 45 given utterances, 6 (7, 11, 19, 38, 39, 40) fell out of context. Nevertheless,

4 utterances (1, 24, 25, 26) matched the Corresponding Robot Utterance and the remaining utterances

were feasible answers. Again, a feasible answers is:

• Human: Is everything all right with you?

• Robot: Not at all.

Showing a failed answer:

• Human: With me this is all magnificent.

• Robot: What’s the matter with you, Mr. Smith? You look down in the dumps.

All sentences, once more, were written correctly and were coherent.

Comparing the three experiments, although Experiment Nº 1 had more answers that matched the

Corresponding Robot Utterances, it also had more failed answers. The model with the best execution

was the one from Experiment Nº 3, since it was the one with less failed predictions. It can be concluded

that, despite not having the best scores for each single metric, it is the one with the best average and

also the best performance.

The second fine-tuned model was DialoGPT-medium. The memory limitations became substantial

when performing the fine-tuning with this medium model. First off, the training took 17 hours to complete.

52

Secondly, all the training with a higher Batch Size/GPU or Gradient Accumulation than the one shown

in the Table below, failed. The same occurred when the number of epochs was increased. Lastly, this

model is really heavy when compared with the DialoGPT-small. The comparison between the raw model

and the fine-tuning experiment can be observed in Table 5.2.

DialoGPT medium - Daily Dialogue

Nº BatchSize/
GPU

Grad.
Acc. Epochs Perplexity Loss Gen Rank Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

RAW - - - - - 56.29% 36.88% 4.40% 1.55% 0.67% 0.29% 5.07% 5.46%
1 1 8 3 1.63 0.49 80.29% 60.16% 8.16% 4.93% 3.65% 2.92% 8.52% 10.25%

Table 5.2: DialoGPT-medium training results with Daily Dialogue dataset

Even without being able to do an extensive number of experiments, as deducted before, the fine-

tuning of a model improves its performance. The generation and ranking scores rose above the ones

from the raw model, and even the ones from the previous experiments. All the remaining metrics almost

doubled their value, when put against the raw model.

To test if the experiment successful, and the model is able to conduct a conversation, the utterances

from Appendix B, Table B.2, were again inputed into the model and the prediction was compared with

the Corresponding Robot Utterance.

Experiment Nº 1

The model, from the 45 given utterances, fell out of context 9 times (2, 11, 12, 18, 22, 30, 32, 36

and 38). However, 5 utterances (1, 24, 26, 27, 28) matched the Corresponding Robot Utterance and the

remaining sentences were logical answers. A feasible answers could be:

• Human: I can’t get through without a cup of coffee a day.

• Robot: That’s true. Coffee helps me wake up, keep alert, and improve my short term memory.

To show an example of a failed answer:

• Human: Hello.

• Robot: Hello. Is this Ann?

In this case, even though the answer is well written and logical it doesn’t fit the project’s purpose or

domain.

Once more, even though some of the answers fell out of context, all sentences were again written

correctly and were coherent. One other interesting fact to note is that this model was more eloquent

and was better to constructs its predictions. This can be understandable since the medium model has

almost the triple of the number of parameters of the small model (345M vs 117M). An overview to the

results with this dataset is shown in Figure 5.1.

53

0

10

20

30

40

Failed Utterances Matched Utterances Logical Utterances

DialoGPT-small- Exp1 DialoGPT-small- Exp3 DialoGPT-small- Exp4
DialoGPT-medium- Exp1

Fine-tuned pre-trained model with Daily Dialogue

Figure 5.1: Fine-tuned pre-trained model with Daily Dialogue .

It can be concluded that the best performance was the one with DialGPT-small, Experiment Nº3,

event though it was the one with less matched utterances, it was almost always able to answer coher-

ently.

5.1.2 Topical Chat

DialoGPT-small was again fine-tuned. Now with the biggest English dataset, Topical Chat [31], available

open-source. The memory limitation was once again inspected, along with the performance of the

model, for each fine-tuning trial. These experiments were longer than the ones conducted with the

smaller dataset. As before, with the increase of the number of epochs, the duration of the training rose

too. Being, respectively for 3, 5 and 7 epochs, near to 11, 14 and 18 hours. Once again, the red

highlighted values point the poorest scores, whereas the values highlighted in green show the most

satisfactory value, for each metric. The 4 trained models’ scores are shown in the Table below.

DialoGPT small - Topical Chat

Nº BatchSize/
GPU

Grad.
Acc. Epochs Perplexity Loss Gen Rank Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

RAW - - - - - 57.54% 36.22% 4.00% 1.31% 0.52% 0.23% 4.64% 5.31%
1 2 4 3 16.25 2.87 61.72% 64.89% 7.58% 2.18% 0.74% 0.25% 6.32% 6.65%
2 2 16 5 15.00 2.77 61.41% 64.38% 7.59% 2.07% 0.72% 0.27% 6.27% 6.60%
3 2 32 5 14.27 2.66 60.41% 63.50% 7.60% 2.10% 0.73% 0.30% 6.33% 6.66%
4 2 32 7 17.63 1.82 60.41% 65.21% 7.56% 2.04% 0.64% 0.20% 6.30% 6.67%

Table 5.3: DialoGPT-small training results with Topical Chat dataset

The memory limitations were prominent when training the model with a larger dataset. GPU lim-

itations did not allow to train the model with more than 2 Batch Size/GPU, or with a greater gradient

accumulation than the one shown. The same occurred when the number of epochs was increased.

Once more, the raw model had a significantly worse performance when compared to the conducted

experiments. The training with the finest metrics was Nº 3. This experiment shows the most confident

54

model (lower perplexity), shows good ranking scores, and the best Bleu-1, Bleu-4 and METEOR. Simi-

larly to before, with 7 epochs the model starts to overfit. This can be concluded since it shows the higher

perplexity, and also the lowest loss. The evaluation, for the perplexity and loss, was done using the

Topical Chat testing dataset, that contained 11736 utterances.

To estimate the rankings and BLEU, METEOR and ROUGE-L scores, the splitted Daily Dialogue

validation dataset was used. Once more, this may not be the most precise method. However, it allows

the contrast for the several experiments.

To test which experiment was the most successful and see if the model is able to dialogue, the exper-

iments Nº 2 and Nº 3 will be compared. The utterances from Appendix A, Table B.2, were again inputed

into the model and the prediction was compared with the Corresponding Robot Utterance.

Experiment Nº 2

The model, from the 45 given utterances, fell out of context 9 times (8, 10, 12, 18, 20, 21, 26, 27 and

43). Only 1 utterance (1) matched the Corresponding Robot Utterance and the remaining sentences

were logical answers. Showing a feasible answer:

• Human: What’s the weather for today?

• Robot: It’s going to be really cold, I think. I’m not sure what the forecast is though.

To show an example of a failed answer:

• Human: I love tea.

• Robot: I love the tea too. I think it is important to have a healthy relationship with the tea party.

In this last example, even though the answer is again well written it misses the purpose and it lacks

logic.

Experiment Nº 3

For this model, from the 45 given utterances, 8 (3, 7, 11, 21, 24, 25 and 36) fell out of context. None

of the utterances matched the Corresponding Robot Utterance, so the remaining sentences were logical

answers. One example of a feasible answers is:

• Human: Today I’ll be with my son.

• Robot: You are a great dad! Do you like to read?

To show an example of a failed answer:

• Human: Everything’s great with me.

• Robot: Did you know that the president of Indonesia has released 3 pop albums while in office?

55

In this last example, even though the answer is well organize, once again misses the purpose and it

is to some extent, random.

0

10

20

30

40

Failed Utterances Matched Utterances Logical Utterances

DialoGPT-small- Exp2 DialoGPT-small- Exp3

Fine-tuned pre-trained model with Topical Chat

Figure 5.2: Fine-tuned pre-trained model with Topical Chat.

Analyzing both experiments results results and Figure 5.2, it can be concluded that Experiment Nº 3,

had a better performance, since it had one less failed predictions and more logical outputs. Comparing

these experiments with the ones from the dataset before, despite the fact that the metrics had better

scores, the model failed more to answer accordingly. It was identified that the times the model fell out

of context, its answer was to introduce a new topic or to present a random fact. This led to the thought

that this dataset may not be as appropriate for the task that wants to be achieved. Nevertheless, it is

engaging to enrol in a conversation with this model, since it teaches a various amount of trivias.

This dataset, Topical Chat, could not be used to train the DialoGPT-medium model, due to the GPU

constraint.

5.1.3 Daily Dialogue + Topical Chat

Comparing the performance of the DialoGPT-small trained on the Daily Dialogue and trained on the

Topical Chat, it can be inferred that with more data in the training, the model becomes more eloquent

and smarter (since it is trained with more information). And even though the model’s perplexity increased

in the latter, overall the ranking and the metrics scores were better.

Therefore, an experiment was conducted where both datasets, Daily Dialogue and Topical Chat,

were merged. Resulting in a bigger dataset with a total of 284153 utterances. In order to compute

the perplexity and the loss, the model evaluation was done with both testing sets from Daily Dialogue

and from Topical Chat. With the results from each dataset, the mean was calculated. The training,

with 3 epochs, took around 15h and the one with 5 epochs took 24h. The results are shown below. The

attempts to increase the BatchSize/GPU and gradient accumulation failed, again due to the limited GPU.

56

The same occurred when the number of epochs was increased.

DialoGPT small - Daily Dialogue + Topical Chat

Nº BatchSize/
GPU

Warmup
Steps

Grad.
Acc. Epochs Perplexity Loss Gen Rank Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

RAW - - - - - - 57.54% 36.22% 4.00% 1.31% 0.52% 0.23% 4.64% 5.31%
1 2 200 16 3 13.05 2.56 65.47% 53.21% 3.90% 1.78% 1.00% 0.60% 6.19% 6.99%
2 2 200 32 3 13.23 2.57 64.13% 52.70% 3.63% 1.64% 0.93% 0.56% 5.94% 6.72%
3 2 200 16 5 13.54 2.59 68.11% 55.50% 4.75% 2.39% 1.52% 1.04% 6.88% 8.07%
4 2 200 32 5 13.13 2.50 66.13% 54.10% 4.05% 1.87% 1.10% 0.71% 6.30% 7.14%

Table 5.4: DialoGPT-small training results with Daily Dialogue + Topical Chat dataset

Comparing the results from Tables 5.1 and 5.3 with Table 5.4, it can be noted that the best generation

probabilities and ROUGE-L scores were obtained with this dataset.

To test the success of the experiments, and see if the models are able to dialogue, the utterances

from Appendix B, Table B.2, were inputed into the models and the predictions were compared with the

Corresponding Robot Utterance.

Experiment Nº 1

The model, from the 45 given utterances, fell out of context only 2 times (3 and 11). 3 utterances (1,

25, 30) matched the Corresponding Robot Utterance and the remaining sentences were logical answers.

Experiment Nº 3

The model, from the 45 given utterances, fell out of context only 1 time (11). 1 utterance (1) matched

the Corresponding Robot Utterance and the remaining sentences were logical answers. Some examples

of the feasible answers are:

• Human: Today I’ll be with my son.

• Robot: Oh, that’s good. I’ll talk to you later.

• Human: I’m going shopping today, I need food.

• Robot: Are you shopping online?

To show an example of one failed answer:

• Human: With me this is all magnificent.

• Robot: I think it’s a beautiful piece of work. I am not a fan of the style, but I appreciate the work

that went into it.

In this last prediction, even though the answer is well written, it misses the context of the user input.

We should note, observing the original source utterance and the target segment, that the translation is

not perfect. From ”Comigo está tudo magnı́fico.” the correct translation should be something near ”With

57

me everything is magnificent.”, instead of ”With me this is all magnificent.”.

Experiment Nº 4

For this model, from the 45 given utterances, only 2 (7 and 18) fell out of context. 4 utterances (1, 2,

30, 32) matched the Corresponding Robot Utterance and the remaining sentences were logical answers.

An example of a feasible answer is:

• Human: How’s the afternoon weather?

• Robot: Not too bad today. It’s supposed to get cold tomorrow. I didn’t know that the sun is actually

white.

To show an example of two failed answers:

• Human: Everything’s great with me.

• Robot: Hi. Are you interested in politics?

• Human: I must go to my son’s house.

• Robot: Hello. Did you know that the first president of Zimbabwe was called President Banana.

0

10

20

30

40

50

Failed Utterances Matched Utterances Logical Utterances

DialoGPT-small- Exp1 DialoGPT-small- Exp3 DialoGPT-small- Exp4

Fine-tuned pre-trained model with Daily Dialogue +
Topical Chat

Figure 5.3: Fine-tuned pre-trained model with Daily Dialogue + Topical Chat.

These experiments are the proof that with a bigger dataset, the model is able to generalize more,

”learning” how to dialogue in a wider domain. Despite the fact that the scores are not the best in

comparison to the previous experiments, the model from experiment Nº 3 was the one that had the best

performance when conducting a dialogue, only having failed 1 utterance.

Equally to the previous section, it was not possible to use this big dataset to fine-tune the DialoGPT-

medium model, again due to the GPU constraint.

58

5.2 System 2 - Fine-tuning model on a Portuguese Dataset

5.2.1 Translated Daily Dialogue

Since this thesis project’s goal is to have a Portuguese speaking Chatbot, we also tried to fine-tune the

model on a new language, as stated in 4.1.2.

To obtain the portuguese dataset, the OPUS-MT model, mentioned in Section 2.7, was used to

translate the Daily Dialogue training, testing and validation datasets.

For this model and dataset, we strove to put the same configuration variables and hyper parameters

as the previous best models. All the training with a higher Batch Size/GPU or Gradient Accumulation

than the one shown in the Table below, failed. The same occurred when the number of epochs was in-

creased. This can be justified by the length of sentences, in words and characters. Normally portuguese

words are bigger than english words, and the same happens regarding the length of the sentences [83].

Hence, the memory used is greater.

The metrics were calculated using the translated Daily Dialogue testing dataset, containing 8069

utterances. For each experiment, the Bleu-(1,2,3,4), METEOR and ROUGE-L scores were computed.

The first two rows in Table 5.5, shows the performance of the raw model with no fine-tuning with the

english Daily Dialogue validation dataset and with the translated Daily Dialogue validation dataset.

The datasets used for training, testing and validation (Questions and Answers sets) can be found in

the following repository.

DialoGPT small - Translated Daily Dialogue

Nº BatchSize/
GPU

Warmup
Steps

Grad.
Acc. Epochs Perplexity Loss Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

RAW - - - - - - 4.00% 1.31% 0.52% 0.23% 4.64% 5.31%
RAW-PT - - - - - - 3.37% 0.63% 0.12% 0.00% 2.66% 3.33%

1 2 200 8 3 6.87 1.93 3.02% 1.33% 0.72% 0.41% 3.64% 5.18%
2 2 200 16 3 7.22 2.05 2.36% 0.87% 0.40% 0.21% 3.16% 3.97%

Table 5.5: DialoGPT-small training results with the translated Daily Dialogue dataset

It is curious to see that the Bleu-1 score, from the RAW-PT model is higher than the score from

the fine-tuned model. This can be justified since the raw models, as already seen, are very repetitive.

For that reason, if the model knows how to utter some portuguese words and they happen to be in the

reference, the score increases as many times as they appear.

To the same input question ”Sim, tenho um entendimento geral.”, the reference answer and the

RAW-PT model prediction were compared.

• Answer reference: Eu acho que você já tem bom conhecimento sobre a nossa empresa.

• Model Hypothesis: Eu n o fazia eu acho que acho que eu n o fazia eu acho que eu acho que eu

acho que eu acho que acho que acho que eu acho que acho que eu acho que acho que acho que

eu acho que.

59

https://github.com/marianafidalgo/GrandPal

Looking into the Model Hypothesis above, it is interesting to note that the model, is able to create

portuguese words without being trained on a portuguese dataset. Leaving us to guess that the data

extracted from Reddit comment chains probably had some portuguese sentences. And it is amazing to

observe that the model was able to ”identify the language” and answer in accordance to the language.

Analysing the rest of the Table, we conclude that from the two experiments, the model that performed

best was Nº 1, however the metrics are still poorer when compared to the RAW model.

To test the success of the experiment, and see if the model is able to dialogue, the utterances from

Appendix B, Table B.1, were inputed into the model and the prediction was compared with the Corre-

sponding Robot Utterance.

Experiment Nº 1

The model, from the 45 given utterances, 15 (1, 6, 7, 8, 12, 15, 20, 25, 27, 31, 33, 34, 36, 40 and

45) were logical answers. None of the utterances matched the Corresponding Robot Utterance, and the

remaining sentences fell out of context. One example of a feasible answers is:

• Human: Vou jantar hoje com a minha filha.

• Robot: Porque é que não vais jantar amanhã?

To show an example of a failed answer:

• Human: Olá.

• Robot: Olá, Mary. O que se passa contigo?

In this last prediction, even though the answer is well written and logical it doesn’t fit the project’s

purpose or domain.

Figure 5.4: Fine-tuned pre-trained model with translated Daily Dialogue

It is a fact that this model was the one that perform the worse, in comparison to the previous models.

By training the model with a small, translated dataset, one layer of error is already being added to the

system. This is due to the fact that the translation is not flawless.

60

As seen, the DialoGPT-small model trained on the Daily Dialogue has some issues. By translating

the dataset, the performance only decreased more. However, since this thesis purpose is to have a

portuguese speaking robot, another approach will be evaluated, which consists in translating the input

and output of the model that performed best: DialoGPT-small model, fine-tuned on the merged dataset

(Daily Dialogue + Topical Chat), experiment Nº 3.

Similarly to the previous sections, it was not possible to use this dataset to fine-tune the DialoGPT-

medium model, or even train the DialoGPT-small model with the Topical Chat translated dataset, again

due to the GPU constraint.

5.3 Machine Translation Evalutation

To evaluate the Machine translation model, the human classifications from the interface mentioned be-

fore were analyzed. From the 8000 utterances, 784 were evaluated. Taking into consideration that 14

sentences are displayed per page, there were 56 evaluated pages. Counting with, approximately, 2

pages per person, we estimate a participation of 30 people. The results can be analyzed in Figure 5.5.

This grading goes in accordance to the belief mentioned that for every translated sentence, its message

is communicated correctly in almost all cases, since most of the translations obtained the maximum

grade.

Number of Ratings Given

R
at

in
g

G
iv

en

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400

Machine Translation Human Rating

Figure 5.5: Human Evaluation to the Machine Translation model.

5.4 Pipeline evaluation

To complete this result analysis, an experiment was conducted were the whole system was put into

action.

61

Firstly only part of the system was tested. Following the Diagram from Figure 4.6, the Trained trans-

former used was the one from Experiment Nº 3, trained on the merged dataset (Daily Dialogue + Topical

Chat) and the Translation API was OPUS-MT.

The first test, similarly to before was to use the utterances from Appendix B, Table B.1. The por-

tuguese utterances were inputed into the system, with the translation API for the input and output. The

prediction was compared with the Corresponding Robot Utterance. It should be noted that we are intro-

ducing again some error layers. The first error layer is the translation. Even though the model is able to

answer logically, the translation might miss the context.

For this system, from the 45 given utterances, 2 were wrongly translated but only 1 fell out of context.

None of the utterances matched the Corresponding Robot Utterance, and the remaining sentences

were logical answers. One example of a feasible answers is:

• Human: Hoje vou passar o dia com os meus netos.

• Robot: Oh bom, bem espero que gostes do resto do teu dia, foi um prazer falar contigo, espero

que o teu dia tenha sido muito melhor.

To show some examples of failed translations:

• Source: What’s up? Do you like rap music?

• Translation: O que se passa? Gostas de música rap?

• Correct: Tudo bem? Gostas de música rap?

• Source: It’s supposed to snow in the afternoon but it’s going to be drizzling all afternoon.

• Translation: É suposto nevar à tarde, mas vai estar a passar a tarde toda.

• Correct: É suposto nevar à tarde, mas vai estar a chuviscar a tarde toda.

To show an example of a failed answer:

• Human: Tudo bem?

• Robot: Sim, não sou um grande fã desse tipo de coisas. Sabia que é ilegal aquecer o teu carro

em Ohio. Isso é muito estranho.

Secondly, the entire system was tested. The conversion from speech-to-text [73] and vice-versa was

added. With this addition one second layer of error was added too, because if the API fails to do the

conversion, the whole execution will fail.

Finally, for the last test, the human classifications taken from the interface interactions were analyzed.

We counted with the participation of around 30 people resulting in 40 conducted dialogues. The results

can be analyzed in Figure 5.6. This grading means that the Chatbot is able to conduct a fair dialogue,

being 7 the rating with more occurrence.

62

Number of Ratings Given

R
at

in
g

G
iv

en

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Chatbot Human Rating

Figure 5.6: Human Evaluation to the System.

5.4.1 Summary

In summary, some of the conclusions that could be taken from these experiments are:

• Fine-tuning with more data, improves the model performance, for every conducted experiment;

• Increasing the number of epochs, for the DialoGPT-small model, to more than 7 leads to an overfit,

for the Daily Dialogue and the Topical Chat Datasets. For the merged dataset the training with

more than 5 epochs was not possible due to the limit of resources;

• For DialoGPT-small, having a BatchSize of 2 and a Gradient Accumulation of 32 led to the best

execution;

• Fine-tuning a pre-trained model on another language with a translated dataset does not led to a

good result;

• The MT model, for each translated utterance is able to correctly transmit the intended message.

• The system, was able to conduct a logical conversation with a user, almost every time.

63

64

6
Conclusion & Future Work

Contents

6.1 Conclusion . 66

6.2 Future Work . 67

65

”Our imagination is the only limit to what we can hope to have in the future.” - Charles F. Kettering.

In this Chapter the conclusions of this work will be presented, along with the possible future Work.

6.1 Conclusion

This thesis created a feasible solution to the problem defined in chapter 1: given that a system that

generates a robot utterance for every human utterance, allowing a coherent conversation between a

person and a robot is obtained. Nevertheless, before concluding that the obtained system is the best

solution, an overview of the system and the evaluation conducted to the model should be inspected.

First of all, one asset of this solution is that the system architecture is based on State-of-the-Art

transformer. Nevertheless, deciding on a Deep Learning path brings some challenges such as:

• The need of having huge amount of data for the model training;

• The need of a good graphics card (GPU) with a considerable memory size;

• The lack of data specialized in elderly dialogue.

Notwithstanding, despite those drawbacks, the possibility of using Transfer Learning makes up for

them. In this thesis, it was presented, a moderate open-domain chatbot that was trained with limited

GPU resources.

Second of all, with the use of Machine Translation the obstacle of the lack of Portuguese dialogue

data was practically surpassed. It cannot be presumed that it was entirely surpassed since adding the

layers of translation also adds a new layer of error. Nevertheless, as acknowledged several times, a

perfect translation might not be possible, but the intent is passed along almost every time, as can be

concluded by the Machine Translation Evaluation grading that was given by human testers, by testing

the model in the User Interface.

Third of all, the system could benefit if the conversational data was not only comprised of general

conversation. The best possible solution could be to have conversations recorded in nursing homes

and transcribed to text. However, gathering enough data from the nursing home context would require

human resources beyond the available ones for this thesis. Therefore, extracting tons of conversational

data from open-source websites is considerably more efficient.

Coming down to the evaluation conducted to the model, all the trained models obtained better results

than their corresponding baselines. As can be inferred by the Chatbot Evaluation grading seen in 4.6

the model has the ability to conduct a coherent dialogue. Regardless of the success of the developed

system, it is not without flaws. Inspecting some of the utterances that were wrongly predicted by the

system, it was observed that the predicted phrases introduces one random topic leading to the belief

66

http://20.108.185.129:8501/

that it has not been trained with sentences similar to the input. The most adequate model for human-

robot conversation is the model DialoGPT, fine-tuned in the English-based (formed by Daily Dialogue

with Topical Chat) dataset, with a translation layer to the input and output.

The robot responds to the last human phrase uttered. It also considers the course of the conver-

sation, due to the introduction of the last human and robot utterances, as well as the history of human

inputs to the model and the robot predictions.

6.2 Future Work

Future work could focus on a more in-depth study of certain transformers, new ideas to test various

systems, to turn the training more efficient, or to repeat the experiments with better resources.

The following ideas could be tested and implemented:

• Each passing day new and better transformers models, for a huge variety of tasks, are released.

It could be interesting to try other conversational transformers and compare the performance;

• Recur to better GPUs, that could allow the carrying on of experiments with higher Batch Sizes and

with more training epochs. This suggestion might really improve the performance of the model and

a better understanding of the impact of the model ablation;

• Evaluate the MT model responsible for the translation with English language as source and Por-

tuguese language as target.

• Implement the system with a better translation model. Even though the translation results were

quite impressive with the open-source MT model, there are better models now (like Unbabel,

DeepL) that know better how to deal better with paraphrasing and double meaning words. (i.e.

Avoid the translation of ”Tudo bem?” to ”All right?”, but to ”How are you?”).

• Like mentioned, another good improvement could be to have conversations recorded in nursing

homes and transcribe them to text, to better fine-tune the model. Understanding the important

conversations topics for the elders would make it more adapt to the problem in cause.

• One more improvement, again to improve the data, could be to store the conversations conducted

with the Chatbot APP and use them to inspect from where the bad classifications came and use

the good ones to to enlarge our dataset.

• Lastly, some improvements to the evaluation could be done too. Instead of only using one random

sentence to compute the metrics (BLEU, ROUGE, METEOR), the 5 predicted utterances (used to

calculate the rankings) could be used as hypotheses to be compared with the reference.

67

https://unbabel.com/channels/chat/
https://www.deepl.com/translator
http://20.108.185.129:8052/

• To evaluate the predictions of the model, the dataset, 6k multi-reference dataset created from

Reddit data, used to evaluate the baseline of DialoGPT could have been used too. Instead of

having only a dataset, split into question and answers and using the answers as reference.

68

https://github.com/microsoft/DialoGPT

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you

need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.

[2] Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan, “Dialogpt: Large-scale generative

pre-training for conversational response generation,” arXiv preprint arXiv:1911.00536, 2019.

[3] S. Bao, H. He, F. Wang, H. Wu, and H. Wang, “Plato: Pre-trained dialogue generation model with discrete latent variable,”

arXiv preprint arXiv:1910.07931, 2019.

[4] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu, “Dailydialog: A manually labelled multi-turn dialogue dataset,” arXiv preprint

arXiv:1710.03957, 2017.

[5] A. Richard, S. Rohrmann, C. L. Vandeleur, M. Schmid, J. Barth, and M. Eichholzer, “Loneliness is adversely associated with

physical and mental health and lifestyle factors: Results from a swiss national survey,” PloS one, vol. 12, no. 7, p. e0181442,

2017.

[6] M.-H. Su, C.-H. Wu, K.-Y. Huang, Q.-B. Hong, and H.-M. Wang, “A chatbot using lstm-based multi-layer embedding for elderly

care,” in 2017 International Conference on Orange Technologies (ICOT). IEEE, 2017, pp. 70–74.

[7] A. K. Bekhet and J. A. Zauszniewski, “Mental health of elders in retirement communities: Is loneliness a key factor?” Archives

of psychiatric nursing, vol. 26, no. 3, pp. 214–224, 2012.

[8] B. Hanratty, D. Stow, D. Collingridge Moore, N. K. Valtorta, and F. Matthews, “Loneliness as a risk factor for care home

admission in the english longitudinal study of ageing,” Age and ageing, vol. 47, no. 6, pp. 896–900, 2018.

[9] M. Scheutz, R. Cantrell, and P. Schermerhorn, “Toward humanlike task-based dialogue processing for human robot interac-

tion,” Ai Magazine, vol. 32, no. 4, pp. 77–84, 2011.

[10] M. A. Goodrich and A. C. Schultz, Human-robot interaction: a survey. Now Publishers Inc, 2008.

[11] T. B. Sheridan, “Human–robot interaction: status and challenges,” Human factors, vol. 58, no. 4, pp. 525–532, 2016.

[12] A. Gatt and E. Krahmer, “Survey of the state of the art in natural language generation: Core tasks, applications and evalua-

tion,” Journal of Artificial Intelligence Research, vol. 61, pp. 65–170, 2018.

[13] J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science, vol. 349, no. 6245, pp. 261–266,

2015.

[14] M. Henderson, I. Casanueva, N. Mrkšić, P.-H. Su, T.-H. Wen, and I. Vulić, “Convert: Efficient and accurate conversational

representations from transformers,” arXiv preprint arXiv:1911.03688, 2019.

[15] S. Ruder, “Why You Should Do NLP Beyond English,” http://ruder.io/nlp-beyond-english, 2020.

[16] O. Firat, K. Cho, B. Sankaran, F. T. Y. Vural, and Y. Bengio, “Multi-way, multilingual neural machine translation,” Computer

Speech & Language, vol. 45, pp. 236–252, 2017.

69

http://ruder.io/nlp-beyond-english

[17] N. MCGUIRE, “How Accurate is Google Translate in 2019?” https://www.argotrans.com/blog/

accurate-google-translate-2019/, 2019.

[18] J. Tiedemann and S. Thottingal, “Opus-mt–building open translation services for the world,” in Proceedings of the 22nd

Annual Conference of the European Association for Machine Translation, 2020, pp. 479–480.

[19] A. M. Turing, “Computing machinery and intelligence,” in Parsing the turing test. Springer, 2009, pp. 23–65.

[20] T. Winograd, “Procedures as a representation for data in a computer program for understanding natural language,” MAS-

SACHUSETTS INST OF TECH CAMBRIDGE PROJECT MAC, Tech. Rep., 1971.

[21] A. Chopra, A. Prashar, and C. Sain, “Natural language processing,” International journal of technology enhancements and

emerging engineering research, vol. 1, no. 4, pp. 131–134, 2013.

[22] K. Hao, “We analyzed 16.625 papers to figure out where AI is headed next,” https://www.technologyreview.com/2019/01/25/

1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next, 2019.

[23] L. Lei, X. Jing, G. Yuan, Z. Yan-quan, W. Cong, and Z. Yi-xin, “Ci-nlu based text processing after speech recognition,” Journal

of Beijing University of Posts and Telecommunications, vol. 29, no. s2, p. 192, 2006.

[24] P. Semaan, “Natural language generation: an overview,” J Comput Sci Res, vol. 1, no. 3, pp. 50–57, 2012.

[25] E. D. Liddy, “Natural language processing,” 2001.

[26] M. Dahiya, “A tool of conversation: Chatbot,” International Journal of Computer Sciences and Engineering, vol. 5, no. 5, pp.

158–161, 2017.

[27] F. Colace, M. De Santo, M. Lombardi, F. Pascale, A. Pietrosanto, and S. Lemma, “Chatbot for e-learning: A case of study,”

International Journal of Mechanical Engineering and Robotics Research, vol. 7, no. 5, pp. 528–533, 2018.

[28] M. Neururer, S. Schlögl, L. Brinkschulte, and A. Groth, “Perceptions on authenticity in chat bots,” Multimodal Technologies

and Interaction, vol. 2, no. 3, p. 60, 2018.

[29] A. P. Chaves and M. A. Gerosa, “How should my chatbot interact? a survey on social characteristics in human–chatbot

interaction design,” International Journal of Human–Computer Interaction, pp. 1–30, 2020.

[30] S. Ruan, L. Jiang, J. Xu, B. J.-K. Tham, Z. Qiu, Y. Zhu, E. L. Murnane, E. Brunskill, and J. A. Landay, “Quizbot: A dialogue-

based adaptive learning system for factual knowledge,” in Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, 2019, pp. 1–13.

[31] K. Gopalakrishnan, B. Hedayatnia, Q. Chen, A. Gottardi, S. Kwatra, A. Venkatesh, R. Gabriel, D. Hakkani-Tür, and A. A. AI,

“Topical-chat: Towards knowledge-grounded open-domain conversations.” in INTERSPEECH, 2019, pp. 1891–1895.

[32] C. Henrique and O. Silva, “Natural Language Processing : My ” grandchild-Bot ” Electrotechnical and Computer Engineering,”

no. June, 2020.

[33] T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” in European confer-

ence on machine learning. Springer, 1998, pp. 137–142.

[34] A. Kulkarni and A. Shivananda, Natural language processing recipes: Unlocking text data with machine learning and deep

learning using python. Apress, 2019.

[35] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint

arXiv:1301.3781, 2013.

[37] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word represen-

tations,” arXiv preprint arXiv:1802.05365, 2018.

70

https://www.argotrans.com/blog/accurate-google-translate-2019/
https://www.argotrans.com/blog/accurate-google-translate-2019/
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next

[38] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets and problem solutions,” International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[39] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint

arXiv:1409.0473, 2014.

[40] T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac, M. Funtowicz, J. Davison, S. Shleifer et al.,

“Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: System Demonstrations, 2020, pp. 38–45.

[41] T. K. Kumar and A. LeenaRani, “Generate and ranking the multiple sentences based on context using natural language

generation.”

[42] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classification,” Advances in neural informa-

tion processing systems, vol. 28, pp. 649–657, 2015.

[43] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323,

no. 6088, pp. 533–536, 1986.

[46] S. Hussain, O. A. Sianaki, and N. Ababneh, “A survey on conversational agents/chatbots classification and design tech-

niques,” in Workshops of the International Conference on Advanced Information Networking and Applications. Springer,

2019, pp. 946–956.

[47] A. Sojasingarayar, “Seq2seq ai chatbot with attention mechanism,” arXiv, pp. arXiv–2006, 2020.

[48] S. Minaee, E. Azimi, and A. Abdolrashidi, “Deep-sentiment: Sentiment analysis using ensemble of cnn and bi-lstm models,”

arXiv preprint arXiv:1904.04206, 2019.

[49] K. Ramesh, S. Ravishankaran, A. Joshi, and K. Chandrasekaran, “A survey of design techniques for conversational agents,”

in International Conference on Information, Communication and Computing Technology. Springer, 2017, pp. 336–350.

[50] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” Advances in neural information

processing systems, vol. 27, pp. 3104–3112, 2014.

[51] R. Csaky, “Deep learning based chatbot models,” arXiv, pp. arXiv–1908, 2019.

[52] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language processing,” IEEE Transactions on Neural Networks and

Learning Systems, 2020.

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,”

OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[54] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer, “Generating wikipedia by summarizing long

sequences,” arXiv preprint arXiv:1801.10198, 2018.

[55] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Pro-

ceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318.

[56] S. Ranathunga, E.-S. A. Lee, M. P. Skenduli, R. Shekhar, M. Alam, and R. Kaur, “Neural machine translation for low-resource

languages: A survey,” arXiv preprint arXiv:2106.15115, 2021.

[57] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K. Heafield, T. Neckermann, F. Seide, U. Germann, A. F. Aji,

N. Bogoychev et al., “Marian: Fast neural machine translation in c++,” arXiv preprint arXiv:1804.00344, 2018.

[58] R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine translation models with monolingual data,” arXiv preprint

arXiv:1511.06709, 2015.

71

http://www.deeplearningbook.org

[59] I. Caswell and B. Liang, “Recent advances in google translate.”

[60] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10,

pp. 1345–1359, 2009.

[61] A. Malte and P. Ratadiya, “Evolution of transfer learning in natural language processing,” arXiv preprint arXiv:1910.07370,

2019.

[62] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spottune: transfer learning through adaptive fine-tuning,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4805–4814.

[63] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?” arXiv preprint

arXiv:1411.1792, 2014.

[64] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, “Convolutional neural networks

for medical image analysis: Full training or fine tuning?” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1299–1312,

2016.

[65] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s

transformers: State-of-the-art natural language processing,” arXiv preprint arXiv:1910.03771, 2019.

[66] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with recurrent neural networks,” arXiv preprint

arXiv:1511.06732, 2015.

[67] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. Crandall, and D. Batra, “Diverse beam search: Decoding

diverse solutions from neural sequence models,” arXiv preprint arXiv:1610.02424, 2016.

[68] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization,” arXiv preprint

arXiv:1705.04304, 2017.

[69] Y. Yang, L. Huang, and M. Ma, “Breaking the beam search curse: A study of (re-) scoring methods and stopping criteria for

neural machine translation,” arXiv preprint arXiv:1808.09582, 2018.

[70] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” arXiv preprint

arXiv:1904.09751, 2019.

[71] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” arXiv preprint arXiv:1805.04833, 2018.

[72] K. Gopalakrishnan, B. Hedayatnia, Q. Chen, A. Gottardi, S. Kwatra, A. Venkatesh, R. Gabriel, D. Hakkani-Tür, and A. A. AI,

“Topical-chat: Towards knowledge-grounded open-domain conversations.” in INTERSPEECH, 2019, pp. 1891–1895.

[73] Google, “Speech-to-Text,” https://cloud.google.com/speech-to-text/, 2020.

[74] D. Adiwardana and T. Luong, “Towards a conversational agent that can chat about. . . anything,” Google AI Blog, 2020.

[75] N. Ketkar, “Introduction to pytorch,” in Deep learning with python. Springer, 2017, pp. 195–208.

[76] X. Gao, Y. Zhang, M. Galley, C. Brockett, and B. Dolan, “Dialogue response ranking training with large-scale human feedback

data,” arXiv preprint arXiv:2009.06978, 2020.

[77] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with improved correlation with human judgments,” in

Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization,

2005, pp. 65–72.

[78] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summarization branches out, 2004, pp. 74–81.

[79] S. Dutta and D. Klakow, “Evaluating a neural multi-turn chatbot using bleu score,” Universität des Saarlandes, p. 10, 2019.

[80] R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau, “Towards an automatic turing test:

Learning to evaluate dialogue responses,” arXiv preprint arXiv:1708.07149, 2017.

72

https://cloud.google.com/speech-to-text/

[81] A. Agarwal and A. Lavie, “Meteor, m-bleu and m-ter: Evaluation metrics for high-correlation with human rankings of machine

translation output,” in Proceedings of the Third Workshop on Statistical Machine Translation, 2008, pp. 115–118.

[82] S. Sharma, L. El Asri, H. Schulz, and J. Zumer, “Relevance of unsupervised metrics in task-oriented dialogue for evaluating

natural language generation,” CoRR, vol. abs/1706.09799, 2017. [Online]. Available: http://arxiv.org/abs/1706.09799

[83] R. Ishida, “Text size in translation,” W3C Internationalization. N. p, vol. 3, 2007.

73

http://arxiv.org/abs/1706.09799

74

A
DialoGPT-small Usage

75

Listing A.1: DialoGPT-small example

1 from transformers import AutoModelForCausalLM, AutoTokenizer

2 import torch

3

4 tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")

5 model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")

6

7 # Let's chat for 5 lines

8 for step in range(5):

9 # encode the new user input, add the eos_token and return a tensor in Pytorch

10 new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
11 # append the new user input tokens to the chat history

12 bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else

new_user_input_ids

13 # generated a response while limiting the total chat history to 1000 tokens,

14 chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.

eos_token_id)

15 # pretty print last ouput tokens from bot

16 print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0],

skip_special_tokens=True)))

76

B
Testing Utterances

77

Nº Utterances Corresponding Robot Utterance
1 Bom dia. Bom dia.
2 Olá. Bom dia.
3 Tudo bem? Está tudo bem e consigo?
4 Tudo bem consigo? Está tudo bem e consigo?
5 Tudo bem contigo? Está tudo bem e consigo?
6 Está tudo a andar? Está tudo bem e consigo?
7 Comigo está tudo. Ainda bem.
8 Tambem estou bem. Ainda bem.
9 Eu estou ótimo. Ainda bem.

10 Eu estou excelente. Ainda bem.
11 Comigo está tudo magnı́fico Ainda bem.
12 Eu estou excelente. Ainda bem.
13 Como está o tempo hoje? Hoje está um tempo fantástico.
14 Como está o tempo à tarde? Hoje está um tempo fantástico.
15 Como está a meteorologia? Hoje está um tempo fantástico.
16 Qual é a meteorologia para esta manhã? Hoje está um tempo fantástico.
17 Qual é a meteorologia para hoje? Hoje está um tempo fantástico.
18 Devo ir até a casa do meu filho. Aproveite o tempo com a sua famı́lia.
19 Hoje vou estar com o meu filho. Aproveite o tempo com a sua famı́lia.
20 Vou jantar hoje com a minha filha. Aproveite o tempo com a sua famı́lia.
21 Hoje vou almoçar com o meu irmão. Aproveite o tempo com a sua famı́lia.
22 Vou a casa da minha filha. Aproveite o tempo com a sua famı́lia.
23 Hoje vou passar o dia com os meus netos. Aproveite o tempo com a sua famı́lia.
24 Vou hoje ao supermercado. O que é que vai comprar?
25 Hoje vou as compras, preciso de comida. O que é que vai comprar?
26 Vou as lojas de roupa hoje. O que é que vai comprar?
27 Vou as lojas à tarde. O que é que vai comprar?
28 Hoje vou ao centro comercial. O que é que vai comprar?
29 Vou ao centro comercial de manhã. O que é que vai comprar?
30 Hoje quero passear. Então divirta-se.
31 Vou dar um passeio. Então divirta-se.
32 Quero dar uma volta esta tarde. Então divirta-se.
33 Vou sair de casa hoje. Então divirta-se.
34 Hoje vou dar uma volta. Então divirta-se.
35 Hoje vou fazer uma excursão. Então divirta-se.
36 Gosto de tomar um café. Eu também, o sabor é ótimo.
37 Adoro um café todas as manhãs. Eu também, o sabor é ótimo
38 Amo café. Eu também, o sabor é ótimo
39 Nao consigo passar sem um café por dia. Eu também, o sabor é ótimo
40 A minha bebida favorita é café. Eu também, o sabor é ótimo
41 Gosto de tomar um chá Eu prefiro café em relaçao ao chá.
42 Adoro um chá todas as manhãs. Eu prefiro café em relaçao ao chá.
43 Amo chá. Eu prefiro café em relaçao ao chá.
44 Nao consigo passar sem um chá por dia. Eu prefiro café em relaçao ao chá.
45 A minha bebida favorita é chá. Eu prefiro café em relaçao ao chá.

Table B.1: Utterances used in the testing phase

78

Nº Translated Utterances Translated
Corresponding Robot Utterance

1 Good morning. Good morning.
2 Hello. Good morning.
3 All right? Is everything okay with you?
4 Everything okay with you? Is everything okay with you?
5 Is everything all right with you? Is everything okay with you?
6 Is everything moving? Is everything okay with you?
7 Everything’s great with me. Good.
8 I’m fine, too. Good.
9 I’m fine. Good.
10 I’m excellent. Good.
11 With me this is all magnificent. Good.
12 I’m excellent. Good.
13 How’s the weather today? Today the weather is great.
14 How’s the afternoon weather? Today the weather is great.
15 How’s the weather? Today the weather is great.
16 What’s the weather for this morning? Today the weather is great.
17 What’s the weather for today? Today the weather is great.
18 I must go to my son’s house. Enjoy your time with your family.
19 Today I’ll be with my son. Enjoy your time with your family.
20 I’m having dinner tonight with my daughter. Enjoy your time with your family.
21 I’m having lunch with my brother today. Enjoy your time with your family.
22 I’m going to my daughter’s. Enjoy your time with your family.
23 Today I’m spending the day with my grandchildren. Enjoy your time with your family.
24 I’m going to the supermarket today. What are you going to buy?
25 I’m going shopping today, I need food. What are you going to buy?
26 I’m going to the clothes shops today. What are you going to buy?
27 I’m going to the shops in the afternoon. What are you going to buy?
28 I’m going to the mall today. What are you going to buy?
29 I’m going to the mall in the morning. What are you going to buy?
30 I want to take a walk today. Then have fun.
31 I’m going for a walk. Then have fun.
32 I want to take a walk this afternoon. Then have fun.
33 I’m leaving the house today. Then have fun.
34 I’m going for a walk today. Then have fun.
35 I’m going on a tour today. Then have fun.
36 I like to have coffee. Me too, the taste is great.
37 I love coffee every morning. Me too, the taste is great.
38 I love coffee. Me too, the taste is great.
39 I can’t get through without a cup of coffee a day. Me too, the taste is great.
40 My favorite drink is coffee. Me too, the taste is great.
41 I like to have tea. I prefer coffee to tea.
42 I love tea every morning. I prefer coffee to tea.
43 I love tea. I prefer coffee to tea.
44 I can’t get through without a tea a day. I prefer coffee to tea.
45 My favorite drink is tea. I prefer coffee to tea.

Table B.2: Translated utterances used in the testing phase

79

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 The challenge
	1.3 Problem Formulation & Objectives
	1.4 Thesis Document Outline

	2 State of the Art
	2.1 Natural Language Processing
	2.2 NLP subfields and applications
	2.3 An High-Level NLP application: Conversational Robots
	2.4 Past work
	2.5 Word Embeddings
	2.6 The evolution of Natural Language Generation
	2.6.1 Markov Chains
	2.6.2 Introduction to Deep Learning
	2.6.3 Artificial Neural Networks
	2.6.4 Recurrent Neural Network
	2.6.5 Sequence to sequence
	2.6.6 The Transformer

	2.7 Machine Translation

	3 The Approach
	3.1 Transfer Learning
	3.2 The Model
	3.3 HuggingFace Transformers
	3.3.1 Generation and decoding methods

	3.4 The Dataset

	4 The Implementation
	4.1 System architecture
	4.1.1 System 1: Fine-tune a pre-trained model
	4.1.2 System 2: Fine-tune a pre-trained model on a new language

	4.2 Resources & Data
	4.3 Training
	4.4 Metrics for NLG evaluation
	4.4.1 Language modeling loss (for next-token prediction):
	4.4.2 Perplexity
	4.4.3 DialogRPT
	4.4.4 BLEU, METEOR and ROUGE scores

	4.5 Machine Translation Evaluation
	4.6 Chatbot Evaluation
	4.7 Physical System

	5 System Evaluation
	5.1 System 1 - Fine-tuning an English pre-trained model
	5.1.1 Daily Dialogue
	5.1.2 Topical Chat
	5.1.3 Daily Dialogue + Topical Chat

	5.2 System 2 - Fine-tuning model on a Portuguese Dataset
	5.2.1 Translated Daily Dialogue

	5.3 Machine Translation Evalutation
	5.4 Pipeline evaluation
	5.4.1 Summary

	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Appendix A

	A DialoGPT-small Usage
	Appendix B

	B Testing Utterances

