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Resumo

Recentemente, métodos para representar dados através de funções ou curvas têm vindo a ganhar

atenção. Tais dados são conhecidos como dados funcionais. Conjuntos de dados funcionais tı́picos

consistem em séries temporais e dados de corte transversal, como por exemplo séries temporais de

preços de ações. Contudo, a presença de outliers tem efeitos adversos na modelação e previsão de

dados funcionais. Neste contexto, deteção de outliers não é uma tarefa fácil considerando que nem

sempre é possı́vel visualizar todo o conjunto de dados funcionais (curvas, imagens ou funções). To-

davia, processos para detetar outliers funcionais têm sido propostos nos últimos anos. Alguns destes

processos são baseados na Análise de Componentes Principais Funcionais (ACPF), onde se assume

que cada curva amostral provem de uma distribuição independente e idêntica. Esta suposição é incon-

sistente com dados financeiros, onde as amostras são frequentemente interligadas por um processo

dinâmico temporal subjacente. Estas dinâmicas deveriam ser consideradas na deteção de outliers em

séries temporais funcionais. Para lidar com esta situação, foi proposta uma extensão dinâmica de

ACPF, que tem em consideração a estrutura de dependências dos dados funcionais. Posto isto, este

trabalho introduz um método de deteção de outliers para séries temporais funcionais baseado nestas

componentes principais dinâmicas. Esta técnica é, então, aplicada na deteção de outliers em dados

financeiros.

Palavras-chave: Dados funcionais, séries temporais funcionais, deteção de outliers, com-

ponentes principais funcionais dinâmicas, dados financeiros
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Abstract

In recent years methods for representing data through functions or curves have gained attention. Such

data are known as functional data. Typical data sets consist of time series and cross-sectional data,

such as time series of stock prices. However, the presence of outliers has adverse effects on the mod-

elling and forecasting of functional data. In this context, outliers detection is not an easy task since

the whole set of functional data (curves, images or functions) is not always possible to visualise. Nev-

ertheless, procedures for detecting functional outliers have been proposed over recent years. Some

of these procedures are based on Functional Principal Components Analysis (FPCA), which assumes

each sample curve is drawn from an independent and identical distribution (i.i.d.). This assumption is

inconsistent with financial data, where samples are often interlinked by an underlying temporal dynamic

process. These dynamics should be taken into account to detect outliers in functional time series. To

overcome this situation, a dynamic extension of FPCA that takes into account the dependence struc-

ture of the functional data has been proposed. Taking this into consideration, this work introduces an

outlier detection method for functional time series based on these dynamic principal components. This

technique is applied to anomaly detection in financial data.

Keywords: Functional data, functional time series, outlier detection, dynamic functional princi-

pal components, financial data
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Chapter 1

Introduction

1.1 Motivation

In recent years data represented by functions or curves have been the receiving subject of a growing in-

terest. More and more it is possible to obtain uninterrupted records of numerous types of data. This kind

of data, which is observed over a continuous measure, is called functional data. The label “functional”

arises from the fact that this data seem to have an underlying function or smooth curve that originated

them. Therefore, time series data are a natural candidate to be treated as functional. In particular, this

work will focus on financial time series consisting of stock prices.

As with any kind of data the presence of outlying observations has severe effects on forecasting and

modelling of functional data. Thus, the first step on any descriptive analysis of the data set should be

outliers detection, before any modelling or prediction method. In the functional context, however, this

can be a very complex task due to the nature of the data and the difficulty in visualising the entire data

set (curves, images or functions). Nonetheless, their analysis in functional data has been seldom ad-

dressed with several methods based on distances and FPCA. The problem is that FPCA assumes the

sample curves are independent with each other. In financial data, samples are most likely interlinked

by an underlying temporal dynamic process, leading to an inconsistency with the assumption of FPCA.

Therefore, in order to properly detect outliers in Functional Time Series (FTS), the dynamics and depen-

dence structure in the data must be taken into account. The Dynamic Functional Principal Components

Analysis (DFPCA) was recently proposed and takes these dependences into consideration. However,

although the DFPCA is a useful tool it has not been used for outliers detection yet.

Furthermore, intraday stock price curves are one of the most natural and obvious functional data. The

functional perspective enables the analysis of the information present in the shapes of these curves,

which reflects the reactions and expectations of intraday investors. Forecasting of the stock prices is

also very important for the investors in the stock exchange markets. On that account, outlier detection

becomes of the utmost importance in dealing with financial data.
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1.2 State Of The Art

With the current technological evolution, it has become easier to record all kinds of data during a contin-

uous time period or another continuous measure. This way, Functional Data Analysis (FDA) arises from

the need to deal with data that are inherently described by functions. The term FDA was first introduced

by Ramsay (1982) and Ramsay and Dalzell (1991), even though the history of this field started further

back in the 1950s, e.g. Rao (1958). Ramsay and Dalzell (1991) also stated some of the advantages of

turning to FDA like: a set of finite observations can be put through a smoothing process in order to obtain

a functional approximation; some problems can be more naturally modelled if looked at from a functional

perspective; derivatives of the observed functions could provide additional information, regarding for

instance data visualisation.

Ramsay and Silverman (2005) comprise a detailed study on FDA, with the application of several

multivariate data analysis methods adapted to the functional scenario. Moreover, Ramsay and Silverman

(2002) show how FDA can be applied to several data sets from different fields of study. In fact, many

applications have been put in practice like: growth curves (Rao, 1958), online auction prices (Wang

et al., 2008), medicine (Erbas et al., 2007), climatology (Meiring, 2007), demography (Hyndman and

Ullah, 2007; Hyndman and Shang, 2009), among many others.

One of the first multivariate data analysis techniques to be adjusted to FDA was Principal Com-

ponents Analysis (PCA) by Dauxois et al. (1982). The idea, however, emerged earlier with Karhunen

(1946) and Loève (1946) independently formulating what would be called the Functional Principal Com-

ponents Analysis (FPCA) expansion or the Karhunen-Loève theorem. As expected, and in a similar

fashion as with the FDA, FPCA has been applied in several fields of study, where medicine (Hasenstab

et al., 2017), spatial data (Li et al., 2017), economics (Chong et al., 2015), stock market (Wang et al.,

2014), electricity market (Vilar et al., 2016), and gene expression (Barra, 2004) are only a few examples.

With the evolving interest around FPCA, some refinements have been proposed. Rice and Silver-

man (1991), for example, added the smoothness to the estimation of FPCA using distinct roughness

penalty strategies. Benko et al. (2009) presented common functional principal components estimated

from discrete noisy data. Robust estimators for the principal components were proposed by Locantore

et al. (1999), reducing the problem to a multivariate one. Hyndman and Ullah (2007) used a projection-

pursuit approach to obtain a Robust Functional Principal Components Analysis (RFPCA), while Gervini

(2008) proposed spherical principal components. Robust functional principal components estimators

with a projection-pursuit approach were also proposed by Bali et al. (2011), and their asymptotic prop-

erties studied. In addition, Boente and Barrera (2015) suggested S-estimators for functional principal

components.

Besides the proposals for RFPCA, there have also been some attempts at identifying outliers through

the use of graphical tools (Hyndman and Shang, 2009; Arribas-Gil and Romo, 2014; Tarabelloni, 2017).

Prior to these, the first efforts consisted of distance based methods, using depth measures (Febrero

et al., 2007, 2008). Sawant et al. (2012), on the other hand, approaches the detection of outliers by

applying robust PCA techniques to a coefficient matrix constructed from the coefficients in the expansion

2



2.14 introduced in Section 2.1. Moreover, Vilar et al. (2016) puts forward two outlier detection methods,

one based on projections and another based on the residual of the original curve with an uncontaminated

version of each curve, using RFPCA and then applying time series outliers detection methods.

Financial and economic data can usually be seen as a Functional Time Series (FTS), considering

they comprise a set of curves registered continuously over time. In order to work with this type of

data, it is necessary to test its stationarity. Horváth et al. (2014) proposes fully functional tests and

tests based on projections that deal with this assumption of stationary Functional Time Series. More

recently, Hörmann et al. (2015) proposed Dynamic Functional Principal Components Analysis (DFPCA),

a functional version of dynamic principal components (Brillinger, 1981; Peña and Yohai, 2016), which

takes into account information in the serial dependence of the functional data. Gao et al. (2018) also

employs DFPCA in forecasting high-dimensional functional time series. Moreover, Kidziński et al. (2016)

further extends this concept to periodically correlated FTS.

On the computational front, Ramsay et al. (2009) presents several practical applications using R and

MATLAB, which is accompanied by the Functional Data Analysis website (Ramsay, 2013). Recently

several R packages focusing on FDA have been made available, like the fda package (Ramsay et al.,

2018), or the fda.usc one (Bande et al., 2019). The packages rainbow (Shang and Hyndman, 2019)

and refund.shiny (Wrobel and Goldsmith, 2016) are more focused on graphical representations of

functional data, while roahd (Tarabelloni et al., 2018) contains methods for the robust analysis of func-

tional data. There are also some packages, freqdom.fda, pcdpca and ftsa, (Hormann and Kidziński,

2017; Kidziński et al., 2017; Hyndman and Shang, 2019) that deal with DFPCA. Package ftsa can also

test the stationarity of FTS.

Wang et al. (2016) offers a thorough review of Functional Data Analysis, including some fundamental

methods. Shang (2011), however, gives greater emphasis to surveying FPCA and functional principal

component regression.

1.3 Objectives

This work aims to analyse two financial data sets from a functional perspective. The main objective is to

compare several outliers detection methods among each other and with external social-economic events

that could have caused the anomalies. Moreover, since most outliers detection methods are based on

FPCA, an important aspect of the analysis is obtaining the principal components. As mentioned in

Section 1.1, Dynamic Functional Principal Components Analysis is better suited to financial data sets.

The idea is to transform the Functional Time Series into a vector time series of low dimension, where

the individual component processes are mutually uncorrelated, and account for most of the dynamics

and variability of the original process. Consequently, an adapted version of the outlier detection method

based on projections introduced by Vilar et al. (2016) is proposed in this work. This new version is based

on DFPCA, since the data in study is considered a FTS.

The first data set under study consists of yearly curves of the closing price of Banco Comercial Por-

tuguês (BCP)’s stocks. BCP is part of PSI-20 and Euronext Lisbon exchange market. This particular

3



data set is composed of 30 curves that range from 1989 to 2018 (366 points per curve). Thus, the objec-

tive is to determine which of these years can be considered as an anomaly, making use of several outlier

detection methods available in R packages. In this case, it is possible to compare the years identified

as having an abnormal behaviour to years of recession and financial crises or economic growth. A sec-

ondary objective is to compute static, dynamic and robust functional principal components, considering

they are a fundamental part of some of the methods used.

The second data set is composed by intraday stock price curves regarding The Walt Disney Company

Stock Price (DIS). In particular, it is comprised by 248 curves covering the year 2018. The objective is

to identify the days over the year that had an anomalous behaviour, once again making use of different

outliers detection methods. Consequently, it is necessary to obtain static, dynamic and robust functional

principal components in order to apply some of these methods.

1.4 Thesis Outline

The objectives previously described are unfolded in this thesis throughout five chapters. After this intro-

ductory chapter, Chapter 2 provides the essential background of Functional Data Analysis. It introduces

the main concepts and tools in FDA and a formal definition of functional data and its representation

using basis functions. Moreover, the static FPCA is presented, which is the natural extension of Prin-

cipal Components Analysis to the functional setting. What is more, the particular type of data in FDA

covered in this thesis, Functional Time Series, will be introduced. Finally, the dynamic and robust FPCA

will be exposed. Chapter 3 is devoted to presenting some tools for outliers detection in Functional Data.

Methods based on distances, graphics and projections will be presented and a novel outlying method,

also based on projections, will be proposed. In Chapter 4, the performance of the new outliers detection

methodology together with some competitors was compared. In order to accomplish this, two real finan-

cial data sets were selected, the Banco Comercial Português and The Walt Disney Company. Both data

sets were analysed as FTS. The R code used to conduct the analysis was relegated to the Appendix.

Finally, Chapter 5 provides the concluding remarks of the dissertation, summarizing the main results

and suggestions for future developments.
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Chapter 2

Background

2.1 Functional Data

Functional data can be obtained from the most various sources and may appear in several forms. Nev-

ertheless, there is one constant characteristic underlying these functional data, they are comprised of

functions or there is a function that originates the observed data. Thus, the observed data functions are

considered as one entity. Moreover, functional data are continuously defined, regardless of in practice

the observed data being typically discrete. These functions are usually defined over time, even though

it could be any variable (e.g. spatial position, frequency, weight, . . . ). Some examples of functional data

are represented in Figure 2.1.

The main goals of FDA are basically the same as most of other branches of statistics: representing

the data in order to facilitate statistical reasoning and further analysis; displaying the data emphasizing

important properties; studying variability and mean; among others. The FDA approach is also useful in a

parsimonious representation of the data by taking advantage of their smoothness. Instead of looking at

a function as a dense vector of values, it can often be represented in an linear combination of a handful

of (well-chosen) basis functions. Much of the foundational description of FDA was recorded in Ramsay

and Dalzell (1991), with a solid theoretical basis. In that sense, the first step is to define the space

where FDA operates, which is not Rn as in multivariate analysis. The Hilbert space of square integrable

absolutely continuous functions defined on a compact domain, T = [a, b], called L2
[a,b], is considered

instead. This choice allows to take advantage of many properties of projection and distance inherent to

a Hilbert space. From the construction of the space, it follows that a random variable X is a function

such that X : (Ω,Σ,P) → L2
[a,b], where (Ω,Σ,P) is a probability space. In more detail, Ω is the sample

space, Σ is a sigma algebra on Ω and P is a probability measure on Σ. In this setting, each realization of

X produces a function rather than a vector on a scalar. Thus, a functional random variable X is a real-

valued function X(t) considered as an element of the Hilbert space L2
[a,b], satisfying

∫ b
a
X2(t)dt < ∞.

From now on, it is considered that an integral sign without the limits of integration denotes the integral

over the whole interval of the domain where the functions are defined.

Being able to measure distances between functional data is of most importance. Consequently, the

5
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Figure 2.1: Examples of functional data, adapted from Ramsay et al. (2009).

definition of a norm that measures the distance between two elements is an essential tool in FDA.

In the L2 Hilbert space, the following inner product 〈·, ·〉 is defined for the functional variables X, Y ,

as 〈X,Y 〉 =
∫
X(v)Y (v)dv. The inner product generates the following L2 norm ‖X‖ = 〈X,X〉. It is

worth noting that a function e with ‖e‖ = 1 can be considered as a direction in the functional space and

thus, 〈X, e〉 can be viewed as projecting the curve X over the direction given by e.

Additionally, an integral operator acting on L2
[a,b] called Φ has the form,

Φ(x)(t) =

∫
φ(t, x)x(s)ds, t ∈ [a, b], x ∈ L2

[a,b], (2.1)

where φ(·, ·) is called the integral kernel of Φ. Some properties of this kernel are listed in the following

theorem known as Mercer’s theorem (e.g. Kokoszka and Reimherr, 2017, Chapter 10).

Theorem 1. Suppose φ(t, s) is a continuous, symmetric and non-negative definite integral kernel, and

Φ is its corresponding integral operator defined in (2.1). Then there is an orthonormal basis (ϕi, i ∈ N)

of L2
[a,b] consisting of eigenfunctions of Φ such that the corresponding eigenvalues (λi, i ∈ N) are non-

negative. (ϕi, i ∈ N) and the corresponding (λi, i ∈ N) are defined by,

λiϕi(t) = Φ(ϕi)(t) =

∫
φ(t, s)ϕi(s)ds, ∀t ∈ [a, b], ∀i ∈ N. (2.2)
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Furthermore, (ϕi, i ∈ N) are continuous on [a, b] and φ(t, s) has the representation,

φ(t, s) =

∞∑
i=1

λiϕi(t)ϕi(s), (2.3)

where the convergence is absolute and uniform.

Moreover, the functional mean of X is defined as,

µ(t) = E[X(t)], t ∈ [a, b], (2.4)

and the covariance function as,

Cov(X(t), X(s)) = γ(t, s) = E [(X(t)− µ(t))(X(s)− µ(s))] . (2.5)

The corresponding positive and semi-defined covariance operator, Γ : L2
[a,b] → L2

[a,b], is such that,

Γ(x) = E[〈X − µ, x〉(X − µ)], x ∈ L2
[a,b]. (2.6)

This leads to,

Γ(x)(t) =

∫
γ(t, s)x(s)ds, t ∈ [a, b], x ∈ L2

[a,b], (2.7)

satisfying, ∫ ∫
γ2(t, s)dtds <∞. (2.8)

Thus, Γ is an Hilbert–Schmidt integral operator and γ(t, s) is its corresponding integral kernel. This

operator is of key importance in Functional Principal Components Analysis (FPCA), as will be addressed

in Section 2.2.

The random function X can be represented with the eigenfunctions of the covariance operator Γ,

which is known as the Karhunen-Loéve representation given by the following theorem (e.g. Kokoszka

and Reimherr, 2017, Chapter 11).

Theorem 2. Suppose X(t) ∈ L2
[a,b] with E[X(t)] = µ(t), then X(t) can be represented by,

X(t) = µ(t) +

∞∑
k=1

〈X(t)− µ(t), ϕk(t)〉ϕk(t), (2.9)

where ϕk(t) are the orthonormal eigenfunctions of the covariance operator Γ defined in (2.7).

Observed Functional Data

Functional data are often considered smooth so that adjacent values are not too different from each

other, which brings some advantages like the possibility of evaluation at any point. Smooth ordinarily

means that the function has one or more derivatives. In practice the observed data is discrete, which is

then used to estimate the function and some of its derivatives. If there is some observational error, this
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transformation will likely use smoothing, while if there is no error, the data will go through interpolation.

Functions can be represented as a linear combination of basis functions. The use of these is a

computational trick that allows to fit hundreds of thousands of data points, providing flexibility and the

possibility of performing calculations resorting to the well-known matrix algebra. Accordingly, smoothing

can be accomplished either using data-driven basis functions or known basis functions. The latter are,

for example, the Fourier basis functions which are better suited for periodic data, or even B-splines for

data without any strong cyclic variation.

Consider now the observed data vector y = (y1, . . . , yn), where each yj is a “snapshot” of the

underlying function x. These can be expressed as,

yj = x(tj) + εj , (2.10)

where εj is the noise or error contributing with roughness to the data, and tj ∈ T the interval over which

data is collected. The standard model considers εj are assumed to be independently distributed with

mean zero and constant variance σ2. Rewriting (2.10) with vector notation results in,

y = x(t) + ε, (2.11)

whose variance assuming the standard model is,

Var(y) = Σε = σ2In×n, (2.12)

where Σε is the residual variance-covariance matrix. Instead of assuming the standard model, it could

be created a model for Σε, but this can slow down computation and waste degrees of freedom, while

the result is usually very similar to what would be obtained using the standard model.

The sampling rate or resolution of the raw data is a local property indicating the density of the ar-

gument values tj comparative to the amount of curvature in the data. This property is important to

determine what is achievable in FDA. The curvature of a function x at argument t is calculated by the

size of the second derivative, |D2x(t)| or
[
D2x(t)

]2, where Dmx represents the m-th derivative of a

function x.

2.1.1 Representing Functional Data using Basis Functions

Each functional variable can be represented as a linear combination of known basis functions. A func-

tional variable X belongs to an infinite dimensional space L2 and, as a consequence, an infinite number

of basis functions are needed in order to represent the functional variable with zero error. Hence, all

the realizations {xn}n∈N of a functional random variable X can be expressed in relation to the same

functional basis as,

x(t) =

∞∑
k=1

ckφk(t), (2.13)
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where φk are known basis functions that are mathematically independent of each other and ck are the

coefficients or coordinates that represent each observation in the selected basis.

In practice, working with an infinite basis is not feasible and the usual approach is to truncate the

number of basis functions to a finite K. So, a function x can be represented by a basis-expansion,

x(t) ≈
K∑
k=1

ckφk(t), (2.14)

provided that K is sufficiently large. Therefore, each observation x(t) is represented by a vector of finite

scores (c1, . . . , cK). Thus, the curves dimensionality has been reduced from infinite to K. Considering

φ = (φ1, . . . , φK) and c = (c1, . . . , cK) one gets,

x = c>φ = φ>c, (2.15)

where K is seen as a parameter to tune based on the data at hand. Optimally, there are more degrees

of freedom to test hypothesis and obtain confidence intervals, if the K is small and the basis functions

represent the data well. The computation also benefits from those conditions. However, there is not

only one good basis. In fact, one criteria for distinguishing a good basis can be if one or more of the

derivatives of the approximation are good estimates.

The Fourier Basis System

A very well known basis expansion used for periodic data is based on the Fourier series,

x̂(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . . , (2.16)

resulting in the Fourier basis φ0(t) = 1, φ2r−1(t) = sin rωt, and φ2r(t) = cos rωt. This basis has period
2π
ω , meaning this periodicity should be present in the data to some degree. The basis functions are

normalized, i.e., their values are bounded, in this case in [−1, 1].

The Fast Fourier Transform (FFT) is an algorithm that determines all the coefficients efficiently if n is

a power of 2 and tj are equally spaced (finding ck and all n smooth values at x(tj) in O(n log n)).

The Spline Basis System

In the event of non-periodic data the most popular approximation system is the spline basis one. Splines

provide flexibility and fast computation of polynomials, with only a small number of basis functions.

Firstly, in order to define a spline it is necessary to split the interval T into L subintervals separated by

values τl, l = 1, . . . , L−1, called breakpoints or knots. Over each subinterval, the spline is a polynomial of

order m (degree of the polynomial + 1). These polynomial segments must be smooth at the breakpoints,

where its values must be the same. Their derivatives up to order m − 2 also need to coincide in these

breakpoints.

Therefore, in order to define a spline function, one needs to establish the order of the polynomials and
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the sequence τl of breakpoints. Hence, the number of degrees of freedom is the order of the polynomials

plus the number of interior breakpoints: m+ L− 1. Furthermore, increasing the number of breakpoints

provides a greater flexibility to the spline, so that in regions where the function’s variation is more complex

there should be more breakpoints. On the other hand, increasing the order also produces a better fit.

This is clearly exemplified in Figure 2.2, where spline functions of increasing order approximate sin(t)

and its derivative over [0, 2π].
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Figure 2.2: Solid lines represent spline functions of orders 2, 3, and 4 fitting the sine (left) function and
its derivative (right), the cosine function, both in dashed lines. The interior breakpoints are shown as the
vertical dotted lines (Ramsay et al., 2009).

B-spline Basis

In order to build a spline function, it is essential to specify a system of basis functions φk(t) with the

subsequent characteristics: each basis function φk(t) is itself a spline function; a linear combination of

φk(t) is a spline function; any spline function can be conveyed as a linear combination of φk(t).

The compact support property implies that a B-spline basis function of order m is positive over m or

less adjacent intervals. This property is indispensable for efficient computation. It is also important to

note that increasing the number K of B-splines, however, might not improve the approximation to the

data. As with the Fourier system, the basis functions are bounded, in this case in [0, 1].

In addition, Bk(t, τ) can be defined as the value at t of the B-spline basis function determined by

the breakpoint sequence τ , where k is the number of the largest knot at or to the immediate left of t.
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Thereby, a spline function S(t) with discrete interior knots is defined as,

S(t) =

m+L−1∑
k=1

ckBk(t, τ). (2.17)

In Figure 2.3, it is possible to see the eight order four B-splines basis functions over the interval

[0, 10], with four equally spaced interior breakpoints. The six central basis functions begin at zero, then

at a breakpoint increase to a peak, followed by a descent back to zero. These transitions are made

smoothly because of the continuity of the cubic splines’ two derivatives. The two central basis splines

are also similar in shape due to the equally spaced knots. The first and last basis functions start growing

from the first and last interior breakpoints until they reach the value one, respectively, on the left and

right boundaries. Moreover, the two central basis functions are positive over four adjacent sub-intervals,

the third and sixth basis functions are positive over three adjacent sub-intervals, while the second and

seventh functions are positive over two. This illustrates the compact support property of the B-splines.
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Figure 2.3: The eight B-spline basis functions of order four, with four equally spaced interior breaking
points represented by the dashed lines, adapted from Ramsay et al. (2009).

Other Basis Systems

Besides the Fourier and Spline basis system, there are several other bases that can also have their own

importance. Some of them consist in,

• Wavelets: Wavelets bring together some characteristics of the Fourier series and of splines. It

is possible to build a basis for all square-integrable functions on (−∞,+∞) using an appropriate

mother wavelet function ψ and its dilations and translations of the form,

ψjk(t) = 2j/2ψ(2jt− k), j, k ∈ Z. (2.18)

The integral of the product of two distinct basis function is zero, so the basis is orthogonal based on
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the construction of the mother wavelet. In general, all the basis functions have compact support,

since the mother wavelet does too. Wavelet expansions also handle discontinuities or drastic

variations in behaviour, unlike Fourier series.

A Discrete Wavelet Transform (DWT) produces n coefficients related to the wavelet coefficients of

a function x observed without error at n = 2M regularly spaced points on an interval T . The DWT

and its inverse can be obtained in O(n).

• Exponential Bases: Exponential functions eλ1t, . . . , eλkt, . . . , where λk are the rate parameters

and all different.

• Power Bases: tλ1 , . . . , tλk , . . . might be important, specially if t > 0 so that the powers can be

negative.

• Polynomial Bases: Monomial basis φk(t) = (t− ω)k, k = 0, . . . ,K, where ω is a shift parameter,

in general set to be in the centre of the interval of approximation. Only the use of a large K allows

it to express local features. Additionally, polynomials have a good fit in the centre of the data unlike

in the tails.

• Empirical Bases: It is possible to construct an empirical base recurring to Functional Principal

Components Analysis (FPCA). The advantages of the functional principal components basis is

that the coordinates are good descriptors of the data, thus it allows selecting a low number of

basis functions while accounting for much of the variability of the original data. This subject is

approached in Section 2.2.

2.1.2 Smoothing by Least Squares

Unweighted Least Squares

Based on (2.10) and (2.14), a linear smoother can be achieved by calculating ck, through the minimiza-

tion of the least squares criterion,

SMSSE(y|c) =

n∑
j=1

[
yj −

K∑
k=1

ckφk(tj)

]2
= (y −Φc)>(y −Φc), (2.19)

where Φ = [φk(tj)]jk is a n×K matrix, and which results in the estimate,

ĉ = (Φ>Φ)−1Φ>y. (2.20)

This method is preferred when assuming the standard model for the error mentioned in Section 2.1.

Weighted Least Squares

Nonetheless, the standard model for the error might not always be suitable. So in cases where the

errors are non-stationary or autocorrelated there is an extension of (2.19) using differential weighting of
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residuals,

SMSSE(y|c) = (y −Φc)>W (y −Φc), (2.21)

where W is a symmetric positive definite matrix, which makes it possible to have unequal weights on

the squares and products of residuals. If Σε is known then W = Σ−1ε . Again, this leads to the estimate,

ĉ = (Φ>WΦ)−1Φ>Wy. (2.22)

Linear Transformations of the Data

In practice, most smoothing methods are linear, which is computationally simpler. So, Sj(tl) can weight

the l-th discrete data value leading to the generation of the fit to yj . On that account, a linear smoother

estimates the function value ŷj = x̂(tj) by a linear combination of the discrete observations,

x̂(tj) =

n∑
l=1

Sj(tl)yl, (2.23)

writing now in matrix form,

x̂(t) = Sy, (2.24)

where S is called the smoothing matrix. In addition, S is a projection matrix, meaning the residual and

fit vectors are orthogonal (y − ŷ)>ŷ = 0. In the case of the weight least squares, the relation turns into

(y − ŷ)>Wŷ = 0. This implies that S is also idempotent: SS = S. In the case of the unweighted least

squares, S = Φ(Φ>Φ)−1Φ>, while in the weighted least squares,

S = Φ(Φ>Φ)−1Φ>W . (2.25)

A linear smoother satisfies the linearity property,

S(ay + bz) = aSy + bSz, (2.26)

which is important to figure out some properties of the smooth representation. The linear smoother wins

in simplicity and efficient computation. However, non-linear smoothers might adjust better to different

behaviour in some regions of the data, or even be robust to outliers.

The number of unknown parameters in smoothing by least squares is K, hence the number of

degrees of freedom (df ) for the error is n − K. However, a more general expression for the degrees

of freedom of the smooth fit is,

df = trace(S). (2.27)

Choosing K

As would be expected, the larger the K is, the better the approximation to the data will also be. However,

this could lead to overfitting the data. In contrast, a smaller K can result in loosing important information.
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On that account, it is possible to find an equilibrium through minimization of the Mean Squared Error

(MSE) or the L2 loss function,

MSE[x̂(t)] = E
[
(x̂(t)− x(t))2

]
= Bias2[x̂(t)] + Var[x̂(t)], (2.28)

where Bias[x̂(t)] = x(t)− E[x̂(t)] and Var[x̂(t)] = E[(x̂(t)− E[x(t)])2].

Occasionally, other loss functions could be more efficient. For example, in the presence of outliers, it

might be better to minimize the L1 norm, E[|x̂(t) − x(t)|]. Furthermore, there are several algorithms for

selecting K, like stepwise variable selection or variable-pruning. Notwithstanding, none of these are full

proof and should be used with caution.

2.1.3 Smoothing with a Roughness Penalty

The roughness penalty or regularization is a more efficient method for fitting a function to discrete data.

It has the advantages of the basis function (and local expansion) smoothing, but evades some of its limi-

tations, usually leading to better results particularly concerning the derivatives. Therefore, this method is

generally preferred over the least squares. Roughness penalty methods are also founded on optimizing

a fitting criterion, which in this case conveys explicitly the significance of smooth.

Spline Smoothing

The objective is to fit a non-periodic function x to discrete and noisy observations in a vector y. This is

the simplest functional case over which it can be applied spline smoothing by using roughness penalties.

This method produces its estimations by making explicit that the aim is assuring a good fit to the data,

while avoiding a fit too good if it implies that x is too locally variable. This can be expressed through the

previously stated formula: MSE = Bias2 + Var. Hence, MSE can be minimized by allowing some bias

so that the sampling variance will be smaller, which is of great importance to ensure smoothness on the

fitted curve.

The curvature of a function x at t is
[
D2x(t)

]2, given that a straight line (no curvature) has a zero

second derivative. Therefore, a possible measure of the function’s roughness is,

PEN2(x) =

∫ [
D2x(s)

]2
ds, (2.29)

which tends to high values if x is highly variable, since its second derivative is large over at least some

of the interval in study. However, it might be necessary to generalize this roughness penalty as,

PENm(x) =

∫
[Dmx(s)]

2
ds. (2.30)

Adapting (2.21), so that PEN2(x) is taken into consideration, leads to a new criterion to be minimized
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that balances smoothing with data fitness. Thus, the penalized residual sum of squares is defined as,

PENSSEλ(x|y) = [y − x(t)]>W [y − x(t)] + λPEN2(x), (2.31)

where x(t) is the vector obtained from evaluating x at the argument values of vector t. In addition,

λ is a smoothing parameter that controls the trading ratio between the fit to the data (1st term) and

the function’s variability (2nd term). Accordingly, as λ → ∞ there is an increasing emphasis on the

smoothness. On the other hand, as λ → 0, the roughness penalty decreases, and so the emphasis

turns to obtaining a better fit to the data.

Assuming that x has a second derivative and that tj , j = 1, . . . , n, are distinct, the function x that

minimizes PENSSEλ(x|y) is a cubic spline with a knot at each data point tj . The knots’ placement

will lead to an exploitation of areas where there is a great amount of observations and to substantial

smoothness where there are few. Hereupon, cubic spline smoothing is the most usual computational

method for spline smoothing. It consist of using a B-spline basis function expansion of order four (piece-

wise cubic fitting function) with a knot at each sampling point, minimizing (2.31) with respect to the

coefficients of the expansion. Hence, there are n+ 2 basis functions to fit the n data points.

The roughness penalty (2.30) can be rewritten in matrix form,

PENm(x) =

∫
[Dmx(s)]

2
ds

(2.15)
=

∫ [
Dmc>φ(s)

]2
ds

=

∫
c>Dmφ(s)Dmφ>(s)cds = c>

[∫
Dmφ(s)Dmφ>(s)ds

]
c

= c>Rc, (2.32)

by defining,

R =

∫
Dmφ(s)Dmφ>(s)ds. (2.33)

This leads to,

PENSSEm(y|c) = (y −Φc)>W (y −Φc) + λc>Rc, (2.34)

and to the estimated coefficient vector,

ĉ = (Φ>WΦ + λR)−1Φ>Wy. (2.35)

As a result, the estimated vector ŷ is,

ŷ = Φ(Φ>WΦ + λR)−1Φ>Wy = Sφ,λy, (2.36)

where,

Sφ,λ = Φ(Φ>WΦ + λR)−1Φ>W . (2.37)

If λ = 0, then the expression is reduced to (2.25). Moreover, unlike S defined in (2.25), Sφ,λ is not

idempotent, considering that Sφ,λSφ,λ 6= Sφ,λ. This fact indicates that the spline smooth of a spline
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smooth is smoother. What is more, Sφ,λ can be used in calculating a value for degrees of freedom for a

spline smooth,

df(λ) = trace(Sφ,λ). (2.38)

The estimation of derivatives might be of interest, however (2.29) only controls the curvature in x, so

it does not demand anything from the second derivative. Consequently, if the highest derivative required

is of order m, then the derivatives of order m + 2 should be penalized, so that the curvature of the

derivative with highest order can be controlled.

This spline smoothing method can be extended in several ways. For example, if the knots are less

than the sampling points the mathematics do not suffer any changes, and a roughness penalty can still

be an effective method. Another example is using another measure of goodness-of-fit to the data, or

even another measure of roughness.

Choosing the Smoothing Parameter

Taking into consideration computational limitations, λR should not be greater than 1010 times the size

of Φ>WΦ. Moreover, λ should be large enough so that the size of λR is at least with ten orders of

magnitude of the size of Φ>WΦ.

One possible method for choosing the smoothing parameter is the leave-one-out cross-validation. In

this method one observation is left out of the estimation in order to be used as a validation sample. This

is repeated leaving at each time a different observation out, resulting in the cross-validated error sum

of squares. Additionally, it is computed over a range of values for λ, being chosen as the smoothing

parameter the λ that leads to the minimum of the error. However, this method can be demanding

computation-wise, and can often result in under-smoothing the data.

A more popular method is the Generalised Cross-Validation (GCV). Unlike cross-validation, it has no

need to re-smooth n times and is less prone to under-smooth. This criterion can be expressed as,

GCV(λ) =
n−1SSE

[n−1trace(I − Sφ,λ)]2
, (2.39)

or even,

GCV(λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)
, (2.40)

where SSE is the sum of squared estimated errors. Nevertheless, minimizing GCV with respect to λ

will require trying a great amount of values of λ. This could be done by grid-search or with a numerical

optimization algorithm.

2.2 Functional Principal Components Analysis

Functional Principal Components Analysis (FPCA) is one of the most important techniques in FDA. It is

used to reduce the dimension of infinitely dimensional functional data to a small finite dimension. The

FPCA can be seen in two ways, as coordinates maximizing variability, or as an optimal orthonormal basis
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(empirical bases). On the other hand, interpreting the variance-covariance and correlation functions can

be a hard task. As such, FPCA can be a very helpful alternative at retrieving information from the

covariance structure.

2.2.1 Defining Functional Principal Components

The main idea behind Principal Components Analysis (PCA) for multivariate data is to find sets of nor-

malized weights, ξ1, . . . , ξp that maximize variation in linear combinations of variable values, f11, . . . , fNp.

Considering xij as the observed values of the jth variable, this can be done in a stepwise manner:

1. Find ξ1 = (ξ11, . . . , ξp1)> for which the values fi1 =
∑
j ξj1xij = ξ>1 xi have maximum mean

square, N−1
∑
i f

2
i1, subject to

∑
j ξ

2
j1 = ‖ξ1‖2 = 1.

2. The subsequent steps, up until a limit of the number of variables p, are the same. On the mth

step calculate ξm in the same way as in the first step with the additional m − 1 constraint(s):∑
j ξjkξjm = ξk>ξm = 0, k < m.

On the first step, one is maximizing the mean square, thus singling out the strongest variation in

the variables. The constraint on the weights is needed so that the problem is well defined. On the

subsequent steps, the additional constraint forces the weights to be orthogonal with the ones already

computed. Furthermore, the weights ξm are not defined uniquely and the values fim are called principal

component scores. What is more, before performing PCA, it is usual to subtract each variable’s mean

from the corresponding variable values, meaning that, when maximizing the mean square of fim, one is

actually maximizing their sample variance.

Subsequently, extending this idea to functional data, the variable values xij are now function values

xi(s). Since in this case xi(s), i = 1, . . . , N , and ξ(s) are functions, the sample principal component

scores are,

fi = 〈ξ, xi〉 =

∫
ξ(s)xi(s)ds, i = 1, . . . , N, (2.41)

and the functional PCA steps are:

1. Choose ξ1(s) that maximizes N−1
∑
i f

2
i1 = N−1

∑
i

(∫
ξ1xi

)2, subject to
∫
ξ1(s)ds = ‖ξ1‖2 = 1.

2. Again, the subsequent steps are the same as step 1, but with the added orthogonality constraint:∫
ξkξm = 0, k < m.

Principal Component Analysis and Eigenanalysis

Another way of looking at PCA is through the eigenanalysis of the variance-covariance function or op-

erator. In the multivariate data case, PCA can be accomplished by computing the eigenvalues and

eigenvectors of the covariance or correlation matrix. In that sense, there is a functional equivalent to

this process. In order to do this, it is assumed that the mean function values have been subtracted

from the observed xi(t), i = 1, . . . , N , meaning that their cross-sectional means, N−1
∑
i xi(t), are zero.
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Accordingly, the sample covariance function is defined by,

υ(s, t) = N−1
N∑
i=1

xi(s)xi(t). (2.42)

The principal component weight functions ξ(s), for a suitable eigenvalue ρ, satisfy the equation,

∫
υ(s, t)ξ(t)dt = ρξ(s). (2.43)

The left side of (2.43) is an integral transform of ξ, called the covariance operator V defined by,

V ξ =

∫
υ(·, t)ξ(t)dt. (2.44)

Hence, the equation (2.43) can also be expressed as,

V ξ = ρξ. (2.45)

This way, functional PCA is also equivalent to performing an eigenanalysis of the covariance operator

V . Therefore, the eigenanalysis of V results in the pairs of eigenvalues/eigenfunction, (ρi, ξi(·)), by the

Mercer’s theorem. The eigenvalues are order descending, ρi > ρi+1, and the eigenfunctions, ξi(·)s, cor-

respond to the functional principal components. However, in this case, the maximum number of different

eigenvalues/eigenfunctions is the number of function values, ergo infinity. Nevertheless, considering the

functions xi are linearly independent, V has rank N − 1 and, as such, there are only N − 1 non-zero

eigenvalues.

Optimal Empirical Orthonormal Basis

As mentioned before in Section 2.1.1, it is possible to find a set of K orthonormal basis functions ξk,

whose expansion of each curve fits it as best as possible. This expansion is a sample approximation of

the Karhunen-Loève expansion given by the Karhunen-Loève theorem (2),

xi(t) ≈ x̂i(t) =

K∑
k=1

fikξk(t). (2.46)

In fact, if one is trying to minimize a global measure of approximation like,

PCASSE =

N∑
i=1

‖xi − x̂i‖2 =

N∑
i=1

∫
[xi(s)− x̂i(s)]2 ds, (2.47)

the basis of choice that minimizes (2.47) is precisely the set of principal component weight functions.
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Selecting the Number K of Principal Components

Another important aspect is choosing how many principal components (K) to use in the approximation.

This is not straightforward and there is not an optimal way of choosing. Some approaches (Li et al.,

2013) are based on the Akaike Information Criterion (AIC) or on the Bayesian Information Criterion

(BIC). On the other hand, some multivariate PCA strategies can also be applied to the functional PCA.

For example, the scree plot or the percentage of explained variance by the first K principal components

given by, ∑K
k=1 ρk∑∞
m=1 ρm

. (2.48)

2.2.2 Visualizing Principal Component Analysis

One of PCA’s hardships is that interpreting the components can be a very complicated matter. A tech-

nique that might help with this problem is plotting the overall mean function, µ̂, and the resulting functions

from adding and subtracting to µ̂ a multiple of the principal component function. In order to choose this

multiple, a constant C is defined,

C2 = T−1‖µ̂− µ̄‖2, (2.49)

where,

µ̄ = T−1
∫
µ̂(t)dt, (2.50)

and T is the length of time over which the integration takes place. Then, it is plotted, for example, µ̂ and

µ̂± 0.2Cξi, where the constant 0.2 should be adjusted according to the behaviour of µ̂.

An additional way of looking at PCA is through plotting the principal component scores fim of each

curve on each component. Yet another approach can be to rotate the principal components into a

new set of just as good orthonormal functions. Therefore, considering ξ as the vector-valued function,

(ξ1, . . . , ξK)>, and T as an orthonormal matrix of order K (T>T = TT> = I), another orthonormal set

is defined by,

ψ = T ξ. (2.51)

On that account, the vector of functions ψ is a rigid rotation of ξ. However, ψ1 is no longer the largest

component of variation, but ψ1, . . . , ψK are just as good at fitting the original curves.

In an attempt to find a rotation that will be easier to interpret, another multivariate analysis tool can

be retrieved, the VARIMAX rotation. DefiningB as a K×n matrix representing the first K principal com-

ponent functions ξ1, . . . , ξK , its m-th row has values ξm(t1), . . . , ξm(tn), for n equally spaced argument

values in T . Then, the matrix A of values of the rotated functions corresponding to (2.51) is,

A = TB. (2.52)

VARIMAX chooses T by maximizing the variation in the values a2mj of the matrix A, arranged as

a single vector. Seeing that T is a rotation matrix,
∑
m

∑
j a

2
mj does not change with the rotation,

i.e.,
∑
m

∑
j a

2
mj = trace(A>A) = trace(B>T>TB) = trace(B>B). Maximizing the variance of the
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a2mj requires that these values are either relatively large or near zero. This fact is what makes these

components easier to interpret, since the information tends to be condensed.

2.2.3 Computational Methods for Functional Principal Components Analysis

Some possible techniques for solving (2.43) involve converting the continuous functional eigenanalysis

problem into a somewhat equivalent matrix eigenanalysis one. One way to accomplish this is by dis-

cretising the observed functions xi, obtaining a grid of n equally spaced values sj , spread over T . This

results in a N × n matrix X that can be used in a classic multivariate PCA. Considering

V u = λu, (2.53)

where u is a n-dimensional vector, this equation is satisfied by the eigenvalues and eigenvectors pro-

vided by the PCA. Then, it is necessary to convert the principal components back into functional domain.

Taking into account that the sample variance-covariance is V = N−1X>X with elements υ(sj , sk), ξ̃ is

a n-vector with values ξ(sj), and ω = T
n , then for each sj ,

V ξ(sj) =

∫
υ(sj , s)ξ(s)ds ≈ ω

∑
υ(sj , sk)ξ̃k. (2.54)

Therefore, an approximate discrete form of (2.45) is,

ωV ξ̃ = ρξ̃, (2.55)

whose solutions are the same as the ones of (2.53), where the eigenvalues are ρ = ωλ. The normaliza-

tion constraint here is ω‖ξ̃‖2 = 1, leading to ξ̃ = ω−1/2u, with u a normalized eigenvector of V . Lastly,

one can apply an interpolation method to transform the discrete values ξ̃ into an approximate function ξ.

Another approach to dealing with (2.43) is to use known basis functions φk in the expansion of the

function xi. How many basis functions (K) are used will depend on several factors like the number

of discrete sampling points (n) in the data, or the need for some smoothing (K < n), among others.

Supposing that,

xi(t) ≈
K∑
k=1

cikφk(t), (2.56)

plus that x = (x1, . . . , xN ), φ = (φ1, . . . , φK), and CN×K is the coefficient matrix, then,

x = Cφ. (2.57)

Hence, the variance-covariance function can be given by,

υ(s, t) = N−1φ(s)>C>Cφ(t). (2.58)

It is also defined a K ×K symmetric matrix, W , with entries wk1,k2 =
∫
φk1φk2 , that is W =

∫
φφ>.
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Moreover, ξ has an expansion ξ(s) =
∑K
k=1 bkφk(s), or ξ(s) = φ(s)>b. This results in,

∫
υ(s, t)ξ(t)dt =

∫
N−1φ(s)>C>Cφ(t)φ(t)>bdt = φ(s)>N−1C>CWb.

Thus, (2.43) can be written as φ(s)>N−1C>CWb = ρφ(s)>b. Seeing that it must hold for all s, the

matrix equation is,

N−1C>CWb = ρb. (2.59)

It is important to take note that ‖ξ‖ = 1 implies b>Wb = 1 and ξ1 and ξ2 are orthogonal if and only if

b>1Wb2 = 0, where b1 and b2 are the corresponding vectors of coefficients. Therefore, in order to obtain

the principal components, it is necessary to define u = W 1/2b, solve,

N−1W 1/2C>CW 1/2u = ρu, (2.60)

and calculate b = W−1/2u for each eigenvector. A special case is if the basis is orthonormal, which

implies that W = I, the FPCA problem is reduced to the multivariate PCA of C and the eigenanalysis

is done over N−1C>C.

Numerical Quadrature

In order to discretise the integral
∫
xi(s)ξ(s)ds it is required to approximate it by a sum of discrete values.

As such, nearly all numerical integration or quadrature strategies entail an approximation of the form,

∫
f(s)ds ≈

n∑
j=1

wjf(sj). (2.61)

Three parameters in this approximation can be adjusted in accordance to objectives: n (number of

discrete argument values sj), sj (quadrature points) and wj (quadrature weights).

Employing (2.61) to the operator V in (2.45), leads to,

V ξ ≈ VWξ̃, (2.62)

which results in the equivalent eigenanalysis problem,

VWξ̃ = ρξ̃, (2.63)

with the orthonormality constraint ξ̃
>
mWξ̃m = 1 and ξ̃

>
m1
Wξ̃m2

= 0, for m1 6= m2.

Bearing in mind that the majority of quadrature schemes use positive weights and defining u =

W 1/2ξ̃ and u>u = 1, it is possible to approximate the eigenequation through,

W 1/2VW 1/2u = ρu. (2.64)

Then the steps to take are,
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1. Select n, the wj ’s and the sj ’s.

2. Calculate the eigenvalues ρm and eigenvectors um of W 1/2VW 1/2.

3. Calculate ξ̃m = W−1/2um.

4. Optional: convert each vector ξ̃ into a function ξm, through an interpolation method.

The maximum number of recovered approximate eigenfunctions is n, if n < N . Nonetheless, most

PCA applications only need a few of the main eigenfuctions, given that they will explain most of the

variability in the data.

2.2.4 Regularised Principal Component Analysis

It would also be pertinent to consider the application of smoothing to FPCA. In order to do so, one can

use the regularization method discussed in Section 2.1 by incorporating it into the PCA, beginning by

taking into account the leading principal component. It is necessary to make the roughness penalty

PEN2(ξ) =
∫
ξ′′(t)2dt of the estimated principal component ξ as small as possible without jeopardizing

too much the maximization of the sample variance. This trade is once again controlled by a smoothing

parameter, λ > 0, that adjusts the roughness penalty.

Thus, the penalized sample variance is defined as,

PCAPSV(ξ) =
Var

(∫
ξxi
)

‖ξ‖2 + λPEN2(ξ)
. (2.65)

Once again, if λ → 0 this measure reduces to the sample variance, while if λ → ∞ the component ξ is

obliged to be the smoothest possible resulting in a linear component.

The subsequent components are estimated by maximizing PCAPSV(ξ), while satisfying the two con-

straints: ‖ξ‖2 = 1 and a modified orthogonality condition,

∫
ξj(s)ξk(s)ds+

∫
D2ξj(s)D

2ξk(s)ds = 0, k = 1, . . . , j − 1. (2.66)

This condition enables the estimation of all principal components through the solution of one eigenvalue

problem.

Once again, a possible way of choosing the smoothing parameter λ is by cross-validation. It is

supposed that x is an observation and that an expansion in terms of ξ1, . . . , ξm is the one withm functions

that best explains the variation in x (principal components property). Therefore, in order to measure this

explained variation, it is necessary to define x∗ as the projection of x onto the subspace spanned by

ξ1, . . . , ξm, and ζm as the residual x − x∗ so that it is orthogonal to the functions ξ1, . . . , ξm. Hence, a

possible candidate to measure the efficiency of these first m components is
∑
m E

[
‖ζm‖2

]
. Therefore,

the cross-validation procedure is:

1. Calculate the observed data xi minus the overall mean.

2. ξ[i]j (λ) is the estimate of ξj obtained from the data with the exception of xi, for a given λ.
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3. ζ [i]m (λ) is the xi’s component orthogonal to the subspace covered by {ξ[i]j (λ) : j = 1, . . . ,m}.

4. Compute the cross-validation scores,

CVm(λ) =

n∑
i=1

‖ζ [i]m (λ)‖2, (2.67)

leading to,

CV(λ) =

∞∑
m=1

CVm(λ). (2.68)

In practice, this sum is truncated at most at n− 1 (n is the number of data curves), given that it is

the maximum of principal components that it is possible to estimate.

5. Choose the λ that minimizes CV(λ).

An alternative to the regularised principal components is to smooth the data and only afterwards

perform a regular PCA. In this case, any method for smoothing can be applied to the data.

2.3 Functional Time Series

In many practical situations functions are naturally ordered in time. For example, when dealing with daily

observations of the stock market. A Functional Time Series (FTS) is a sequence of curves (Xt(u) :

t ∈ Z, u ∈ T ), where t is a discrete parameter and u is a continuous one. In fact, t is the time index,

which typically refers to day or year, and u is the time within that unit. For example, when dealing with

daily observations, t refers to the day and u is the intra-day time parameter. Thus, the main idea behind

Functional Time Series is that the time record can be split into natural intervals, treating the curve within

each interval as a unit.

As a motivating example, Figure 2.4 shows the closing stock price of Banco Comercial Português

(BCP). In this case the discrete parameter t is considered as the year, and u as the days within that

year. Hence, the split here is made by year, so that each year corresponds to a curve. In this case, an

assumption of independence between the curves would be too strong, considering values at the begin-

ning of each year are correlated with values at the end of the previous year. This indicates significant

temporal dependence.

2.3.1 Functional Time Series Stationarity

Many procedures assume the stationarity of FTS. In that sense, the null hypothesis that the series is

stationary can be written as, for any h and any t,

(X1+h, . . . , Xt+h)
d
= (X1, . . . , Xt), (2.69)

where two random variables X and Y are equal in distribution (X d
= Y ) if P (X 6 x) = P (Y 6 x), ∀x.
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Figure 2.4: Time series of the closing price of BCP stocks. The dashed lines indicate the place of the
split, so that each coloured piece will correspond to a curve in the FTS.

Horváth et al. (2014) introduces tests which are nontrivial extensions of the KPSS family tests. Two

classes of tests are considered, based on the curves and on the finite dimensional projections of the

curves on the functional principal components. The fully functional tests are based on two test statistics,

TN =

∫ ∫
Z2
N (x, t)dtdx, (2.70)

MN = TN −
∫ (∫

ZN (x, t)dx

)2

dt =

∫ ∫ (
ZN (x, t)−

∫
ZN (y, t)dy

)2

dxdt, (2.71)

where,

ZN (x, t) = N−1/2
bNxc∑
t=1

Xt(u)− xN−1/2
N∑
t=1

Xt(u), 0 6 x, u 6 1, (2.72)

and N is the number of observed curves in the data. The tests based on projections take advantage of

the eigenvalues, λi (λ1 > · · · > λd+1 > 0), and eigenfunctions, ϕi, of the covariance operator to define,

T 0
N (d) =

d∑
i=1

1

λ̂i

∫
〈ZN (x, ·), ϕ̂i〉2dx, (2.73)

T ∗N (d) =

d∑
i=1

∫
〈ZN (x, ·), ϕ̂i〉2dx, (2.74)

M0
N (d) =

d∑
i=1

1

λ̂i

∫ (
〈ZN (x, ·), ϕ̂i〉 −

∫
〈ZN (u, ·), ϕ̂i〉du

)2

dx, (2.75)

M∗N (d) =

d∑
i=1

∫ (
〈ZN (x, ·), ϕ̂i〉 −

∫
〈ZN (u, ·), ϕ̂i〉du

)2

dx. (2.76)
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Critical values for these two statistics (under the stationarity null hypothesis) can be obtained based

on Monte Carlo simulations (Horváth and Kokoszka, 2012) or on normal approximations (Shorack and

Wellner, 1986).

A common example of FTS are intraday price curves. In that setting, the price of a financial asset

at time tj on day n is defined as Pn(tj), n = 1, . . . , N , j = 1, . . . ,m. The tests when applied to this

kind of data and to sufficiently long periods of time reject the stationarity. For shorter periods of time,

the rejection of stationarity does not always happen. Therefore, a transformation should be employed

to deal with the non-stationarity, resulting in the Cumulative Intraday Returns (CIDR), which were first

introduced by Gabrys et al. (2010) and can be defined as,

Rn(tj) = 100 [lnPn(tj)− lnPn(t1)] , n = 1, . . . , N, j = 1, . . . ,m. (2.77)

CIDR, however, are not directly comparable to daily returns, since they disregard the overnight price

change. The CIDR do enable the statistical analysis of the intraday price curves’ shapes.

2.4 Dynamic Functional Principal Components Analysis

The FPCA presented in Section 2.2 is considered “static”, since it does not take into account possible

dependencies between the several observations or repetitions of the function. In some applications

the data are dependent, like, for example, daily curves of financial transactions or environmental data.

Therefore, considering the observations as independent might conduct to misleading results. In order to

deal with this shortcoming, Hörmann et al. (2015) proposed a “dynamic” alternative to FPCA. The data

should be considered as a stationary Functional Time Series (FTS), (Xt(u) : t ∈ Z), where t is a discrete

parameter and u is a continuous one. The objective of Dynamic Functional Principal Components Anal-

ysis (DFPCA) is very similar to PCA’s in general, obtain a transformation of FTS into a low dimension

vector time series, whose components are uncorrelated to each other and explain most of the dynamics

and variability of the original data. Gao et al. (2018) does just that by making use of DFPCA as part of

a dimension reduction technique in order to forecast high-dimensional FTS.

Considering µ(u) = E[Xt(u)], as the continuous mean function and the auto-covariance function at

lag h as,

γh(u, s) = Cov(Xt(u), Xt+h(s)), (2.78)

the long-run covariance function is,

γ(u, s) =

∞∑
h=−∞

γh(u, s). (2.79)

This leads to the definition of the operator,

Γ(x)(u) =

∫
γ(u, s)x(s)ds, (2.80)
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which admits an eigendecomposition,

Γ(x) =

∞∑
k=1

λk

(∫
x(u)ϕk(u)du

)
ϕk, (2.81)

where λk, k > 1, are the eigenvalues (in descending order) and ϕk, k > 1, its corresponding eigenfunc-

tions.

Analogously to FPCA, Xt(u) can be approximated using the Karhunen-Loève expansion making use

of the first K principal components obtained,

Xt(u) ≈
K∑
k=1

βt,kϕk(u), (2.82)

where the k-th principal component score at time t is given by,

βt,k =

∫
Xt(u)ϕk(u)du. (2.83)

Therefore, the observed FTS, xt(u), can be approximated using the empirical principal components.

The DFPCA is implemented in the R package freqdom.fda.

2.5 Robust Functional Principal Components Analysis

The FPCA’s main use is dimension reduction, but it can also serve as an instrument for outlier detection.

Consequently, a robust version of FPCA should be considered to deal with outlying observations. To

that end, Hyndman and Ullah (2007) introduce a two-step algorithm for Robust Functional Principal

Components Analysis (RFPCA), which combines the weighted principal component method and the

RAPCA projection pursuit algorithm (Hubert et al., 2002). The point is to find the functions ϕk(u) which

maximize the variance of the scores,

zt,k = wt

∫
ϕk(u)Xt(u)du, (2.84)

subject to, ∫
ϕ2
k(u)du = 1 and

∫
ϕk(u)ϕk−1(u)du = 0 if k > 2.

The weights wt are given by,

wt =

1 if υt < s+ λ
√
s

0 otherwise
(2.85)

where s is the median of {υ1, . . . , υt} and λ > 0 is a tuning parameter that controls the level of robustness

(the smaller λ is, the greater the number of curves deemed as outliers). Additionally, υt is the integrated
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squared error given by,

υt =

∫
e2t (u)du =

∫ (
Xt(u)−

K∑
k=1

βt,kϕk(u)

)2

du, (2.86)

where K is the number of components, ϕk are the principal component functions, and βi,k their scores.

Thus, the two-step algorithm follows,

1. Obtain initial values for βt,k and ϕk(u), using the RAPCA algorithm (Hubert et al., 2002) and

assuming equal weights wt.

2. Update the values of wt according to (2.85), and use them to update βt,k and ϕk(u) through the

weighted principal component method described in (Hyndman and Ullah, 2007, Section 3.1).

Assuming that et(u) is normally distributed for large enough K, υt has a χ2 distribution. Hence, using

a normal approximation, the probability that υt < s + λ
√
s is approximately Φ(λ/

√
2), where Φ(·) is

the distribution function of the standard normal distribution. This is also the efficiency of the algorithm

compared to the classical approach when wt = 1 for all t. For example, λ = 3 results in an efficiency of

Φ(3/
√

2) = 98.3%.

This algorithm has been implemented in the R package ftsa.
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Chapter 3

Outlier Detection in Functional Data

Data exploration which aims to reveal some aspects of the dynamics of the underlying process is an

important task. In that sense, outlier detection plays a crucial part, considering outliers can have severe

adverse effects on the modelling and forecasting of the data. There are two types of outlying curves:

“magnitude outliers”, curves that lie outside the range of the rest of the data; “shape outliers”, curves

that have a different shape of the rest of the data even though they are within their range; they can also

be a combination of these two types. In this chapter, several methods to detect outliers in functional data

are presented.

3.1 Methods Based on Distances

The earliest attempt at outlier detection was based on the idea of distance, with Febrero et al. (2007)

using a likelihood ratio test statistic. The statistic is given by,

Λ = max
16t6N

Oα(Xt), (3.1)

where,

Oα(Xt) =

∥∥∥∥Xt − µ̂TM,α

σ̂TM,α

∥∥∥∥ , (3.2)

and where ‖ · ‖ is a norm in the functional space (‖ · ‖1, ‖ · ‖2 or ‖ · ‖∞). Furthermore, µ̂TM,α is the

α-trimmed mean and σ̂TM,α is the α-trimmed standard deviation. Considering the curves X1, . . . , XN

and given a value α, they are defined as,

µ̂TM,α =
1

N − [αN ]

N−[αN ]∑
t=1

X(t), (3.3)

σ̂TM,α =

 1

N − [αN ]

N−[αN ]∑
t=1

(
X(t) − µ̂TM,α

)2 1
2

. (3.4)

The ordered curves, X(1), . . . , X(N), are ranked according to decreasing values of their functional
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depths,

FD(Xt) =

∫
D(Xt(u))du, t = 1, . . . , N, (3.5)

where D is a univariate depth defined on R. Hereupon, the outlier detection method follows,

1. Given X1, . . . , XN , compute the statistic (3.1).

2. Let XM be the curve that attains the maximum value of the statistic (3.1). Then, XM is an outlier

if Λ = Oα(XM ) > C (threshold C is obtained with a bootstrap procedure).

3. If XM is an outlier, remove it from the sample. Then repeat steps 1 and 2, until no more outliers

are discovered.

Febrero et al. (2008) proposes another method based on functional depths. Functional depths mea-

sure the centrality of a curve within a sample of curves. In that sense, depths allow to order the sample

curves from the centre outwards. Thus, depth and outlyingness are inverse notions, which means mag-

nitude outliers are expected to have a significantly low depth. Therefore, the following functional outlier

detection method, looks for the curves with lower depths,

1. Obtain the functional depths DN (X1), . . . , DN (XN ).

2. Let Xt1 , . . . , Xtk be the k curves such that DN (Xtk) 6 C, for a given cutoff C. Then, Xt1 , . . . , Xtk

are considered outliers. Delete them from the sample.

3. Repeat steps 1 and 2, until no more outlliers are found.

Step 3 deals with the masking problem, where some outliers might mask the presence of others.

Moreover, the selection of C is the key feature of the method, so C is selected such that, in the absence

of outliers,

P(DN (Xt) 6 C) = 0.01, t = 1, . . . , N. (3.6)

The threshold C is found by robustly estimating this percentile, using the observed sample curves.

That is possible through two different bootstrap procedures. One is based on trimming the sample of

suspicious curves. The other is based on bootstrapping the curves of the original data set with probability

proportional to their depth.

Hyndman and Ullah (2007) advance another alternative which is a product of the robust functional

principal components algorithm introduced in Section 2.5. It is built on the integrated squared error given

by (2.86), which is used to update the weights wt (2.85). Consequently, a curve is considered an outlier

if its associated weight wt is zero. The higher the integrated squared error is, the most likely a curve can

be considered an outlier.

Another distance to consider is the familiar robust Mahalanobis distance. If the functional data are

recorded on equally spaced points u1, . . . , up, the squared robust Mahalanobis distance is given by,

rt = (Xt(uj)− µ̂)>Σ̂−1(Xt(uj)− µ̂), t = 1, . . . , N, j = 1, . . . , p, (3.7)
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where µ̂ is a robust estimate of the sample mean and Σ̂ is a robust estimate of the covariance matrix of

Xt(uj). Rousseeuw and Leroy (1987) proposes to compute the squared robust Mahalanobis distance

relative to the Minimum Volume Ellipsoid (MVE) estimates for µ̂ and Σ̂. Thus, µ̂ is the centre of the min-

imal volume ellipsoid covering at least [N/2] + 1 points, while Σ̂ is given by the ellipsoid itself (multiplied

by a factor). Additionally, Σ̂ is supposed to be positive definite, in order to assure that Σ̂−1 is nonsingular.

These distances are compared to a threshold that follows a χ2 distribution with p degrees of freedom.

For example if α = 0.99, an observation is considered an outlier if rt > χ2
0.99,p.

All these distance based methods are implemented in the R package rainbow.

3.2 Methods Based on Graphical Tools

The difficulty in visualising the whole set of functional curves can complicate the detection of outliers.

As such, Hyndman and Shang (2009) proposed two graphical methods that can identify outliers: the

functional bagplot and the Highest Density Region (HDR) boxplot. These methods are also available in

the R package rainbow.

The functional bagplot shows the median curve (curve with the greatest depth), inner region (region

enclosed by all curves corresponding to points in the bivariate bag and containing 50% of the curves)

and outer region (region confined by all curves corresponding to points within the bivariate fence region).

Thus, the functional bagplot is obtained by mapping the bagplot of the first two robust principal compo-

nent scores to the functional curves. Although this method can detect outliers when they are distant from

the median, it can misidentify outliers near the median. The functional HDR is more suitable to deal with

those.

The functional HDR is obtained by computing the bivariate kernel density estimate on the first two

robust principal component scores, and then applying the bivariate HDR boxplot. A Highest Density

Region is defined as,

Rα = {z : f̂(z) > fα}, (3.8)

where f̂(z) is the bivariate kernel density estimate and fα is such that
∫
Rα

f̂(z)dz = 1−α. Thus, it is the

region with probability coverage 1 − α and where points have a higher density estimate. The functional

HDR shows the modal curve (curve with the highest density), inner region (region limited by all curves

corresponding to points inside the 50% bivariate HDR, containing 50% of the curves) and outer region

(region limited by all curves corresponding to points within the outer bivariate HDR). Consequently,

curves outside the outer HDR are considered outliers.

Still within the graphical domain, Arribas-Gil and Romo (2014) introduce the outliergram, which helps

identify shape outliers by taking advantage of the relation between two measures of depth for functional

data. These two depth measures consist of the Modified Band Depth (MBD) and the Modified Epigraph

Index (MEI). They offer an idea of how central or deep a curve is with respect to a sample of curves.

Let X1, . . . , XN be N continuous functions defined on a given closed real interval T . For any X ∈
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{X1, . . . , XN} the MBD is defined as,

MBD{X1,...,XN}(X) =

(
N

2

)−1 N∑
i=1

N∑
j=i+1

λ({u ∈ T : min(Xi(u), Xj(u)) 6 X(u) 6 max(Xi(u), Xj(u))})
λ(T )

,

(3.9)

where λ(·) is the Lebesgue measure on R. Moreover, each pair of curves Xi and Xj in the sam-

ple defines in T × R a band, {(u, y) : u ∈ T ,min(Xi(u), Xj(u)) 6 y 6 max(Xi(u), Xj(u))}. Hence,

MBD{X1,...,XN}(X) can be seen as the mean over all possible bands of the proportion of time that X(u)

spends inside a band.

Likewise, the MEI of X ∈ {X1, . . . , XN} is defined as,

MEI{X1,...,XN}(X) =
1

N

N∑
i=1

λ({u ∈ T : Xi(u) > X(u)})
λ(T )

, (3.10)

and it represents the mean proportion of time that X lies below the curves of the sample. Considering

MBD and MEI are closely related, the outliergram consists of mapping the (MEI,MBD) points. As

such, in order to identify the outliers, it is necessary to define the distances, for i = 1, . . . , N ,

di = − 2

N(N − 1)
+

2(N + 1)

N − 1
MEI{X1,...,XN}(Xi)−

2N

N − 1
MEI2{X1,...,XN}(Xi)−MBD{X1,...,XN}(Xi).

(3.11)

Therefore, shape outliers are defined as the curves with di > Qd3 + 1.5IQRd, where Qd3 and 1.5IQRd

are the third quantile and inter-quartile range of d1, . . . , dN , respectively. An additional step is required

for extreme curves (MEI values close to 0 or 1). In this case, the extreme curves are vertically shifted

towards the centre of the sample one by one. If this new (MEI,MBD) point lies in the previous outlying

region, then the curve is considered a shape outlier.

Tarabelloni (2017) also proposes a robust adjusted functional boxplot, this one better suited to the

detection of magnitude outliers. To construct the functional boxplot it is necessary to use a depth mea-

sure to rank the functions from the centre of the distribution outwards. Ranking a sample of N curves in

decreasing order, X(1), . . . , X(N), with respect to a given depth definition, leads to the definition of,

Cα(X) =

{
(u, z(u)) : min

l=1,...,dαNe
X(l)(u) 6 z(u) 6 max

r=1,...,dαNe
X(r)(u)

}
. (3.12)

Here, Cα is the generic, sample, functional α-central region of the data, meaning it contains the α×100%

most central observations of the sample. The functional boxplot is obtained with the following steps:

1. Obtain region C0.5, containing the 50% most central curves of the sample.

2. Inflate it by a factor F > 1 and construct the fences given by the envelope of the functions entirely

contained inside the inflated region.

3. Curves crossing the fences or completely external are identified as outliers.

Here the greatest challenge is tuning the parameter F . This is done through a Gaussian population

simulated using robust estimators.
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Both Arribas-Gil and Romo (2014)’s outliergram and Tarabelloni (2017)’s functional boxplot are avail-

able in the R package roahd.

3.3 Method Based on Projections

More recently, Vilar et al. (2016) introduced two algorithms that detect outliers in Functional Time Series,

which take advantage of FPCA. The following algorithm consists of an adapted version of the method

based on projections,

1. Apply FPCA and obtain the time series of principal components scores {βt,1 . . . , βt,K}nt=1.

2. Apply a time series outlier detection method on the series obtained.

3. Define the set of outliers asO = {Xt : t ∈ I}, where I = {t : (βt,1 . . . , βt,K) was identified as outlier}.

This algorithm allows to combine the power of FPCA with methods that detect outliers in time series. The

projections βt,k display the most prominent characteristics of the data. As such, one of these projections

is considered an outlier, only if its originating curve is also an outlier.

In the implementation of this algorithm it is necessary to specify the type of FPCA and a time series

outliers detection method. In this work, it will be tested the use of static, dynamic and robust FPCA.

It is also required to choose the threshold parameter K (number of principal components to retain).

According to the sensitivity studies performed by Vilar et al. (2016), it is recommended to select K so

that at least 98%/99% of the variability is explained. This value is so high because this method uses the

scores and not the original curves. Moreover, the first scores are related to the presence of magnitude

outliers, while the scores of higher order are related to the presence of shape outliers.
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Chapter 4

Application to Financial Data Sets

In this chapter, two data sets are introduced and studied from a Functional Time Series perspective.

Additionally, the results from the outlier detection methods introduced in Chapter 3 applied to these data

sets are presented.

4.1 Banco Comercial Português

This data set is composed by the closing price of Banco Comercial Português (BCP) stocks, from Jan-

uary 1989 to December 2018, as represented in Figure 4.1(a). BCP trades on Euronext Lisbon, being

the largest contributor to the PSI-20 index. The objective here is to detect outliers using the methods

introduced in Chapter 3 for FTS. In order to accomplish that, it is necessary to split the time series and

create a FTS, as Figure 4.1(b) shows. This way, the observed Functional Time Series, {xt(u)}30t=1, is

composed by thirty curves each corresponding to a year of daily measurements (366 points per curve).

Additionally, the stationarity tests proposed by Horváth et al. (2014), available in R package ftsa, were

performed on the time series. With a p-value of 0.23, the series can be considered as stationary for the

usual significant levels (1%, 5%, 10%).
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(a) Time series of the closing price of BCP stocks.
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(b) Yearly curves of the closing price of BCP stocks.

Figure 4.1: Closing price of BCP stocks.
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Figure 4.2 shows the variance-covariance and cross-correlation surfaces of the BCP data set and

their contour plots. These were obtained using R package fda. It is possible to see that the highest

variability occurs around day 100 (around April), while the lowest happens between days 250 and 300

(around October). From the cross-correlation plot it is possible to discern that correlation among closest

days is higher, which makes sense considering these data are sequential in time.
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(a) Variance-covariance surface of the BCP data set.
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(c) A contour plot of the bivariate variance-covariance surface
for the BCP data set.
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(d) A contour plot of the bivariate cross-correlation surface for
the BCP data set.

Figure 4.2: Variance-covariance and cross-correlation surfaces of the BCP data set.

The graphical methods functional bagplot and HDR boxplot (Hyndman and Shang, 2009) were ob-

tained as shown in Figure 4.3 (R package rainbow). Moreover, the outliergram and functional boxplot

(Tarabelloni, 2017) were also computed and are represented in Figure 4.4 (R package roahd). The

detected outliers by each of these methods are summarized in Table 4.1. The years 2002 and 2008

were identified as outliers by three of the methods. Economically speaking these years were marked by

recession, so it is not unexpected that they are marked as outliers. The year 1997 was detected as an

outlier by two of the methods. This year, on the other hand, saw some economic growth and develop-

ment. It is also worth recalling that the functional boxplot is better suited to detect magnitude outliers.

Additionally, the years 1998 − 2001 identified by this method were precisely years marked by economic

growth, so it makes sense that the stock price curves are above the rest of the curves. The outliergram,

however, is more apt in identifying shape outliers, being that the years selected correspond to periods

of recession.
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(a) Functional bagplot. The dark and light grey regions corre-
spond to the bag and fence regions, respectively. The black
line is the median curve, while the dotted blue lines correspond
to 95% pointwise confidence intervals. The colored curves are
identified as outliers.
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(b) Functional HDR boxplot. The dark and light grey regions
represent the 50% HDR and outer HDR, respectively. The black
line is the modal curve. The colored curves are outliers.

Figure 4.3: Functional graphical tools for outlier detection obtained with R package rainbow for the BCP
data set.
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Figure 4.4: Functional graphical tools for outlier detection obtained with R package roahd for the BCP
data set.

Method Detected Outliers

Functional Bagplot 1997, 2002, 2008

Functional HDR Boxplot 2002, 2008

Outliergram 1989, 1993, 1997, 2003, 2008

Functional Boxplot 1998, 1999, 2000, 2001, 2002

Table 4.1: Outliers detected by the different graphical tools for the BCP data set.
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The methods introduced in Section 3.1 based on distances were also applied to the data set, leading

to the results in Table 4.2 (R package rainbow). The trimming percentage used was α = 0.1.

Method Detected Outliers

Likelihood Ratio Test None

Functional Depth 1998, 1999, 2000, 2002, 2004, 2006, 2007, 2010, 2013

Integrated Square Error 1989, 1990, 1993, 1994, 1997, 1998, 1999, 2001, 2002,

2003, 2006, 2007, 2008, 2011

Robust Mahalanobis Distance 2002

Table 4.2: Outliers detected using methods based on distances for the BCP data set.

Smoothing using a roughness penalty with cubic splines and knots at each day was performed on

the data (R package fda). The weights were all considered equal to 1 (unweighted). The smoothing

parameter mentioned in Section 2.1.3 was chosen by minimizing the GCV, resulting in λ = 105. The

resulting smoothed data can be seen in Figure 4.5(a). The versions of static, dynamic and robust FPCA

were applied on the smoothed data. In any version of FPCA, the number of principal components, K,

was selected so that at least 99% of the variability was explained. The resulting first two static principal

components (K = 3) are represented in Figure 4.6, which shows the mean function and the conse-

quences of adding and subtracting small amounts of each component. The first principal component,

which accounts for 96.9% of the variability, appears to represent a constant vertical shift in the mean.
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(a) Smoothed data obtained using B-spline basis and R pack-
age fda.
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(b) Karhunen-Loève expansion with 2 dynamic principal com-
ponents obtained with freqdom.fda. Smoothed data using an
empirical base.

Figure 4.5: Smoothed BCP data obtained with two different basis systems.

Likewise, the dynamic functional principal components resulted on the Karhunen-Loève expansion

represented in Figure 4.5(b) with K = 2 (q = b
√
Nc = 5 (Hörmann et al., 2015) was taken as the window

size for the kernel estimator). These two dynamic principal components explain 99.15% of the variability

in the data. Moreover, the scores obtained with these components are represented in Figure 4.7. These

are the scores used to construct the new time series in the algorithm introduced in Section 3.3 and over

which are detected the outliers.
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Figure 4.6: Static principal components obtained with R package fda for the BCP data set.
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(a) Scores obtained from the first dynamic functional principal
component.
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(b) Scores obtained from the second dynamic functional princi-
pal component.

Figure 4.7: Scores obtained from the dynamic functional principal components of the BCP data set.

In the method based on projections introduced in Section 3.3, robust FPCA (Hyndman and Ullah,

2007) was computed, with a tuning parameter λ = 3 (efficiency of 98.3%). Therefore, the detected out-

liers using that method are summarized in Table 4.3. As mentioned before, the aim is to compare the

results of using static, dynamic and robust FPCA as dimension reduction tools in FTS. In addition, two

different methods of time series outlier detection methods were experimented on the principal compo-

nents scores. These methods are implemented in the R packages tsoutliers (de Lacalle, 2019) and

anomalize (Dancho and Vaughan, 2019). The tsoutliers uses Chen and Liu (1993)’s outlier detection

method, while anomalize implements a method called generalized extreme studentized deviation.

A summary of the results is reported in Figure 4.8, plotting the outlying frequency of each curve

using the three types of detection methods (graphical, distance and FPCA). Graphical Tools refers to

Table 4.1, Distance Based Methods to Table 4.2, and FPCA Based Methods to Table 4.3. As the barplot

suggests, the years 1997 − 2003 and 2007 − 2008 are the most frequently detected as outliers. In fact,

1997 − 2000 is seen as a period of social-economic development, while 2001 − 2003 and 2007 − 2008

as periods of recession. Thus, this results are not surprising and somewhat correspond to what was

expected based on social-economic events.
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Type of FPCA TS Outlier Method PC Detected Outliers

Static FPCA

tsouliers

1st 1997, 1998, 2000, 2002, 2003, 2007

2nd 1997, 2002, 2008

3rd 1998, 1999

anomalize

1st None

2nd 1997, 1999, 2001, 2002, 2011

3rd 1989, 1998, 1999, 2000, 2001, 2003

Dynamic FPCA

tsouliers
1st 1998, 2003

2nd 1997, 2002

anomalize
1st 1998, 1999, 2000, 2001

2nd 1997, 2002

Robust FPCA
tsouliers 1st 1997, 1998, 2000, 2002, 2003, 2007

anomalize 1st None

Table 4.3: Outliers detected using the method based on projections for the BCP data set.
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Figure 4.8: Outlying frequency of each curve using the three types of detection methods (graphical,
distance and FPCA) for the BCP data set.
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4.2 The Walt Disney Company

This second data set is composed by the stock prices of The Walt Disney Company (DIS) over the year

2018, represented in Figure 4.9(a). It comprises 148 curves of intraday stock prices, with measures

taken in intervals of 10 minutes from 9 : 40h to 16 : 00h, as shown in Figure 4.9(b) (39 points per curve).

These curves form a Functional Time Series, {xt(u)}148t=1. Since these are stock market data, values are

only available for work days (which explains the gaps visible in Figure 4.9(a)). Therefore, days related

to major holidays (Independence Day, Thanksgiving and Christmas), 07/03, 11/23 and 12/24, only had

values for half the day, resulting in their elimination from the dataset. The objective is the same as with

the BCP data set, apply the outlier detection methods introduced in Chapter 3 to this FTS.
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(a) Time series of Disney stock price.
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(b) Intraday curves of Disney stock price.

Figure 4.9: DIS stock prices.

For starters, in order to perform DFPCA it is necessary to verify the stationarity condition. The

stationarity tests (Horváth et al., 2014) performed on the functional time series resulted in a p-value of

0.02 (R package ftsa). Therefore, this time series rejects the null hypothesis of stationarity for the levels

of significance 5% and 10%. To deal with this problem, the Cumulative Intraday Returns transformation

presented in (2.77) was applied. The CIDR are represented in Figure 4.10. After this transformation, the

stationarity tests were repeated which resulted in a p-value of 0.2, confirming that for the usual significant

levels this new time series is stationary. Hence, the rest of the study is performed on these transformed

data.

Figure 4.11 shows the variance-covariance and cross-correlation surfaces. The variance-covariance

surface reflects the nature of the data after the transformation, considering every curve begins in 0 and

then evolves from that. This leads to the very low variance near the starting point and then the steadily

increasing values. The cross-correlation surface seems to indicate the temporal dependence between

the points, considering the correlation is higher for closer times.
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(a) CIDR of the Disney data set.
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(b) Daily CIDR curves of the Disney data set.

Figure 4.10: CIDR transformation over the DIS data set.
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(c) A contour plot of the bivariate variance-covariance surface
for the Disney data set.
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(d) A contour plot of the bivariate cross-correlation surface for
the Disney data set.

Figure 4.11: Variance-covariance and cross-correlation surfaces of the DIS data set.

Once again, the graphical tools for outlier detection were employed. Figure 4.12 shows the functional

bagplot and HDR boxplot (Hyndman and Shang, 2009), while Figure 4.13 shows the outliergram and

functional boxplot (Tarabelloni, 2017). The outliers identified by these methods are gathered in Table

4.4. The functional boxplot only detected one outlier (magnitude outlier), which seems to indicate that

the majority are shape outliers. It is possible to see that, for example, many of the identified curves

correspond to the month of December, which is most likely due to the effect of Christmas.
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(a) Functional bagplot. The dark and light grey regions corre-
spond to the bag and fence regions, respectively. The black
line is the median curve, while the dotted blue lines correspond
to 95% pointwise confidence intervals. The colored curves are
identified as outliers.
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Figure 4.12: Functional graphical tools for outlier detection obtained with rainbow for the DIS data set.
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(a) Outliergram. On the left: original data set with outliers in
colored lines. On the right: outliergram with the outliers’ IDs.
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Figure 4.13: Functional graphical tools for outlier detection obtained with roahd for the DIS data set.

Method Detected Outliers

Functional Bagplot 01/02, 02/01, 02/05, 02/07, 02/08, 03/01, 03/29, 04/02, 04/04, 04/09

04/25, 05/04, 06/13, 06/27, 07/11, 07/13, 07/19, 10/10, 10/23, 10/24

12/04, 12/06, 12/10, 12/17, 12/19, 12/21, 12/26, 12/27, 12/31

Functional HDR Boxplot 01/02, 02/05, 04/04, 07/11, 07/19, 10/10, 10/23, 10/24, 12/04, 12/06

12/17, 12/21, 12/26

Outliergram 02/05, 02/09, 06/20, 07/19, 09/26, 10/23, 11/09, 12/06, 12/17, 12/19

12/21, 12/26

Functional Boxplot 10/24

Table 4.4: Outliers detected by the different graphical tools for the DIS data set.

Furthermore, the methods based on distances described in Hyndman and Shang (2009) were ap-

plied to this data set, resulting in the outliers in Table 4.5 (R package rainbow). The trimming percentage

used was α = 0.1.
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Method Detected Outliers

Likelihood Ratio Test None

Functional Depth None

Integrated Square Error 02/05, 02/06, 02/07, 02/08, 02/09, 03/27, 04/03, 04/06, 06/13, 06/20

06/27, 07/11, 10/24, 10/30, 11/20, 12/19, 12/21, 12/26, 12/27, 12/28

Robust Mahalanobis Distance None

Table 4.5: Outliers detected using methods based on distances for the DIS data set.

Smoothing using cubic splines and knots spaced by ten minutes was performed on the data (R

package fda). The weights were also all considered equal to 1 (unweighted). In this case, it was

opted to use λ = 0, meaning there was no roughness penalization. The resulting smoothed data is

represented in Figure 4.14(a). Functional principal components were then computed over these data,

resulting in the first two components represented in Figure 4.15, which shows the mean function and

the consequences of adding and subtracting small amounts of each component. This first component

accounts for 87.4% of the variability and seems to represent the general shape of the data. The number

of principal components, K, was chosen so that at least 98% of the variability is explained. In this case,

four static principal components were retained.
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(b) Karhunen-Loève expansion with 3 dynamic principal com-
ponents obtained with freqdom.fda. Smoothed data using an
empirical base.

Figure 4.14: The DIS data smoothed through two different basis systems.

Moreover, the dynamic functional principal components were computed over the CIDR curves. The

number of components selected was three, explaining 98.25% of the variability. In addition, q = b
√
Nc =

15 (Hörmann et al., 2015) was taken as the window size for the kernel estimator. Figure 4.14(b) shows

the intraday curves after smoothing with the dynamic functional principal components as basis instead

of the cubic splines. The resulting scores of the first two dynamic principal components are represented

in Figure 4.16. In the application of the outliers detection method based on projections (Section 3.3), the

outliers are detected over a new time series composed by these scores.
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Figure 4.15: Static principal components obtained with R package fda for the DIS data set.
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Figure 4.16: Scores obtained from the dynamic functional principal components of the DIS data set.

In order to apply the algorithm presented in Section 3.3, robust FPCA (Hyndman and Ullah, 2007)

was also performed on the data, with a tuning parameter of λ = 3 (efficiency of 98.3%). The algorithm

was then employed with static, dynamic and robust functional components. Two time series detection

methods required by the algorithm were used, one provided by package tsoutliers (Chen and Liu

(1993)’s method) and the other by package anomalize (“gesd” method). The results provided by these

choices are summarized in Table 4.6.

A summary of the results is reported in Figure 4.17, plotting the outlying frequency of each curve

using the three types of detection methods (graphical, distance and FPCA). In order to make the rep-

resentation easier, it were only considered the outliers that were detected more than twice. Moreover,

Graphical Tools refers to Table 4.4, Distance Based Methods to Table 4.5, and FPCA Based Methods to

Table 4.6. Some of the curves most frequently detected as outliers correspond to days belonging to the

month of December. As mentioned above, this is most likely due to the Christmas season. Moreover,

some of this curves correspond to the month of February, which might be the outcome of the release of

a very profitable movie. Consequently, to some extent these results correspond to what one might have

been expecting from this data set.
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Type of FPCA TS Outlier Method PC Detected Outliers

Static FPCA

tsouliers

1st 10/24

2nd 02/05, 07/19, 12/26

3rd 02/09, 03/27, 12/19

4th 12/27

anomalize

1st 10/24

2nd 02/05, 07/11, 07/19, 12/21, 12/26

3rd 02/09, 03/27, 12/19

4th 02/07, 03/01, 06/20, 12/21, 12/27

Dynamic FPCA

tsouliers

1st 07/11

2nd 02/05, 12/26

3rd 02/09

anomalize

1st None

2nd 02/05, 12/17, 12/21, 12/26, 12/27

3rd 02/09

Robust FPCA

tsouliers

1st 10/24

2nd 02/05, 07/19, 12/26

3rd 02/09, 03/27, 12/19

4th None

5th 02/06, 10/30, 12/26

6th 02/08, 04/06, 12/26, 12/28

7th 02/07

anomalize

1st 10/24

2nd 02/05, 07/19, 12/26

3rd 02/09, 03/27, 12/19

4th 12/21, 12/27

5th 02/06, 02/21, 03/23, 05/02, 10/30, 12/26, 12/27

6th 04/06, 12/27, 12/28

7th 02/06, 02/07

Table 4.6: Outliers detected using the method based on projections for the DIS data set.
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Figure 4.17: Outlying frequency of each curve using the three types of detection methods (graphical,
distance and FPCA) for the DIS data set (only outliers detected more than twice).
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Chapter 5

Conclusions

This last chapter summarizes the developments of this dissertation. The main conclusions from the

outliers detection methods applied to two real data sets, from a functional time series perspective, are

stated. Finally, the open issues that have not been tackled in the thesis, as well as possible future

research lines, are discussed.

5.1 Summary and Conclusions

In this work, two financial data sets were analysed from a functional perspective. In fact, studying time

series from a functional perspective is still not very common. Most existing literature treats time series as

scalars or vectors, and functional data as i.i.d. observations. Thus, Functional Time Series represents

mostly uncharted territory. However, this approach allowed to detect anomalous curves with several

outlying procedures. In this work, the dynamic FPCA was employed in an attempt to deal with the

temporal dependencies inherent to FTS, which is a novelty in the literature.

Starting with the Banco Comercial Português data set, modelling the closing stock prices as a func-

tional time series allowed to search for curves whose behaviour differed from the rest. In this analysis,

as each curve corresponded to a year, the aim was to search for years marked by recession or economic

development. This pursuit begun with outliers detection methods based on graphical tools, on distances,

and finally using a method based on projections. Also, taking into consideration the serial dependence

structure was fundamental in order to avoid misleading conclusions. Consequently, when using dynamic

FPCA two components were enough to explain 99% of the variability in the data, while with static FPCA

three components were necessary. Therefore, DFPCA does seem to be better suited in representing

this type of data. In addition, as reported in Table 4.3, there were less detected outliers over the dynamic

functional principal components. This might be the result of these components accounting for the serial

dependencies in the data, that otherwise would have been seen as outlying curves.

The second data set consisted of intraday stock price curves of The Walt Disney Company. Once

again, the major advantage of using the framework of functional data is analysing information present

in the shapes of these curves. Nonetheless, since this Functional Time Series is not stationary, it
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was necessary to perform a transformation. The CIDR transformation can, however, make it harder to

interpret some results, since it leads to a FTS where each curve always starts from zero. In order to

identify the outlying curves in the data set, methods based on graphical tools, distances and projections

were used. Furthermore, taking into consideration the serial dependence in the data is once again a

key aspect of the analysis. The dynamic FPCA was used to deal with this problem. Similarly to the first

data set, in order to explain at least 98% it were needed three dynamic principal components and four

static principal components. So dynamic FPCA seems once more to be better at representing the data.

Moreover, the tendency to detect less outliers with dynamic FPCA appears to repeat itself in this data

set.

As for the methods based on distances they seem less realistic in terms of results. Considering these

methods were the first attempt at outliers detection in functional data, this is not surprising. The methods

based on graphical tools and on projections seem to have much more plausible results. This methods

use principal component analysis in order to simplify the data representation and only then attempt at

selecting outlying observations. Hence, performing FPCA seems to provide a clear advantage in the

detection of outliers. What is more, in both data sets, the results obtained appear to correspond fairly

well to what was expected based on external social-economic events.

5.2 Future Work

Regarding future work suggestions, there are some lines of research that were left unexplored in the

scope of this work. The most pressing suggestion is performing a simulation study to confront the

outlying efficiency of the different methods. Then it would also be easy to compare the simulation output

with the results obtained for the BCP and The Walt Disney Company data sets. For example, check if

the tendency for detecting less outliers with dynamic FPCA in the method based on projections holds.

Another suggestion is using the robust functional principal components estimators proposed by Bali

et al. (2011) as another type of FPCA in Step 1 of the algorithm based on projections presented in

Section 3.3. Some other time series outliers detection methods could also be experimented in Step 2

of this algorithm. Perhaps a robust time series outlying detector might be more suitable to the task at

hand.

An additional topic would be to apply some changes to the methods based on graphical tools, in par-

ticular, to both the functional bagplot and the functional HDR (Hyndman and Shang, 2009). Considering

that both of these methods first obtain the robust principal components scores, it would be interesting to

obtain new plots based on the dynamic functional principal components scores instead.
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A multi-dimensional functional principal components analysis of eeg data. Biometrics, 73:999–1009.
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Appendix A

R code

A.1 Banco Comercial Português

library(ggplot2)

library(reshape2)

library(fda)

library(ftsa)

library(rainbow)

library(roahd)

library(plot3D)

library(freqdom.fda)

library(tsoutliers)

library(anomalize)

library(tibble)

#dadosTS is a data.frame with 366 rows and 31 columns without missing values.

#The first column corresponds to the breakpoints (366 days).

#The remaining columns correspond each to a different curve (30 years).

meses=c("Jan", "Fev", "Mar", "Apr", "May", "June", "July", "Aug", "Sept",

"Oct", "Nov", "Dec")

##Plot FTS

dadosTS[,1]=as.numeric(dadosTS[,1])

new=melt(dadosTS , id.vars = ’Date’, variable.name = ’Index’)

ggplot(new , aes(Date , value )) + geom_line(aes(colour = Index )) +

scale_color_manual(values = rainbow(30)) +

scale_x_continuous(name="Trade Date (Days)",

breaks=c(1,31,60,91,121,152,182,213,244,274,305,335),

labels=meses) +
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scale_y_continuous(name="Closing Price") + theme_classic ()

##Plot TS

new[,4]=1:10980

colnames(new)[4]=’ID’

ggplot(new , aes(ID, value )) + geom_line(aes(colour = Index )) +

scale_color_manual(values = rainbow(30), guide=F) +

scale_x_continuous(name="Trade Date",

breaks=c(1,1099,2197,3295,4393,5491,6589,7687,8785,9883,10980),

labels=c(1989,1992,1995,1998,2001,2004,2007,2010,2013,2016,2019))

+ scale_y_continuous(name="Closing Price") + theme_classic ()

##Plot example fts

new1=new[4027:7687,]

ggplot(new1, aes(ID, value )) + geom_line(aes(colour = Index )) +

scale_color_manual(values = rainbow(11), guide=F) +

scale_x_continuous(name="Trade Date",

breaks=c(4027,4393,4759,5125,5491,5857,6223,6589,6955,7321,7687),

labels=c(2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010),

minor_breaks = NULL)

+ scale_y_continuous(name="Closing Price", minor_breaks = NULL)

+ theme_light()

+ theme(panel.grid.major.y=element_blank(),

panel.grid.major.x = element_line(colour = "black",

linetype = "dashed"))

##Stationarity

T_stationary(dadosTS[,-1], pivotal=T) #stationary p-value=0.22

##OUTLIERS graphic tools

smoothedopen=fts(x=dadosTS[,1], y=dadosTS[,-1], xname = "Days",

yname = "Index Value") #

fboxplot(smoothedopen , plot.type = "functional", type = "bag",

projmethod = "PCAproj", ncol=3, cex=0.8) #1997 2002 2008

fboxplot(smoothedopen , plot.type = "functional", type = "hdr",

projmethod="PCAproj", cex=0.8) #2002 2008

outliergram(fData(dadosTS[,1], t(dadosTS[,-1]))) #shape: 1989 1993 1997 2003 2008

par(mfrow=c(1,1))

fbplot(fData(dadosTS[,1], t(dadosTS[,-1]))) #amplitude: 1998 1999 2000 2001 2002

##OUTLIERS based on distances
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foutliers(smoothedopen , method = "robMah") #2002

foutliers(smoothedopen , method = "depth.trim") #10 14 19 11 16 22 12 18 25

foutliers(smoothedopen , method = "depth.pond") #10 14 19 11 16 22 12 18 25

foutliers(smoothedopen , method = "HUoutliers") #"1989" "1990" "1993" "1994" "1997"

#"1998" "1999" "2001" "2002" "2003" "2006" "2007" "2008" "2011"

foutliers(smoothedopen , method = "lrt")

##FDA: smoothing

basis=create.bspline.irregular(dadosTS[,1])

# set up range of smoothing parameters in log_10 units

loglam <- 2:10

nlam <- length(loglam)

dfsave <- rep(0,nlam)

gcvsave <- rep(0,nlam)

# loop through smoothing parameters

for (ilam in 1:nlam) {

lambda <- 10^loglam[ilam]

cat(paste("lambda =",lambda ,"\n"))

fdParobj <- fdPar(basis , lambda=lambda)

smoothlist <- smooth.basis(dadosTS[,1], as.matrix(dadosTS[,-1]), fdParobj)

fdobj <- smoothlist [[1]]

df <- smoothlist [[2]]

gcv <- smoothlist [[3]]

dfsave[ilam] <- df

gcvsave[ilam] <- sum(gcv)}

cbind(loglam , dfsave , gcvsave)

par(mfrow=c(1,2), pty="m")

plot(loglam , gcvsave , type="b", cex=1,

xlab="Log_10 lambda", ylab="GCV Criterion",

main="Index Value Smoothing")

plot(loglam , dfsave , type="b", cex=1,

xlab="Log_10 lambda", ylab="Degrees of freedom",

main="Index Value Smoothing")

# minimum GCV estimate

lambda <- 10^5
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fdParobj <- fdPar(basis , lambda=lambda)

smoothlist <- smooth.basis(dadosTS[,1], as.matrix(dadosTS[,-1]), fdParobj)

returnsfd <- smoothlist$fd

##var -cov & cor

var=var.fd(returnsfd) #variance -covariance surface

var_eval=eval.bifd(dadosTS[,1], dadosTS[,1], var)

persp3D(x=as.numeric(dadosTS[,1]),y=as.numeric(dadosTS[,1]),z=var_eval ,

r=3, expand = 0.5, theta = -45, #phi=25,

xlab=’Days’, ylab=’Days’, zlab=’Variance ’)

contour(dadosTS[,1], dadosTS[,1], var_eval)

corr=cor.fd(dadosTS[,1],returnsfd) #cross -correlation surface

persp3D(x=as.numeric(dadosTS[,1]),y=as.numeric(dadosTS[,1]),z=corr ,

r=3, expand = 0.5, theta = -45, #phi=25,

xlab=’Days’, ylab=’Days’, zlab=’Correlation ’)

contour(dadosTS[,1], dadosTS[,1], corr)

##FPCA

pcalist=pca.fd(returnsfd , nharm = 3) #default subtracts the mean

cumsum(pcalist$varprop)

pcascores=pcalist$scores

par(mfrow=c(1,1))

plot(pcalist)

plot(pcascores[,1], pch=20, col=rainbow(30), ylab=’1st PC Scores ’)

plot(pcascores[,2], pch=20, col=rainbow(30), ylab=’2nd PC Scores ’)

plot(pcascores[,3], pch=20, col=rainbow(30), ylab=’3rd PC Scores ’)

##DFPCA

dpca=fts.dpca(center.fd(returnsfd), q=5, Ndpc = 2) #q=floor(sqrt(n))

cumsum(fts.dpca.var(dpca$spec.density ))

scores=dpca$scores

rownames(scores )= colnames(dadosTS)[-1]

plot(scores[,1], pch=20, col=rainbow(30), ylab=’1st DPC Scores ’,

main=’Percentage of variability 97.4’)

plot(scores[,2], pch=20, col=rainbow(30), ylab=’2nd DPC Scores ’,

main=’Percentage of variability 1.8’)

##Plot smoothed data

plot(center.fd(returnsfd), main=’Smoothed Data (B-splines)’, xaxt=’n’,

xlab=’Trade Date’, ylab=’Close Stock Price ’, col=rainbow(30), lty=1)

plot(dpca$Xhat , main=’KL Expansion with 2 DPCs’, xaxt=’n’, xlab=’Trade Date’,
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ylab=’Close Stock Price ’, col=rainbow(30), lty=1)

axis(side = 1, at=c(1,31,60,91,121,152,182,213,244,274,305,335), labels = meses)

##RFPCA

rfpca=ftsm(smoothedopen , order=1, method = "M")

cumsum(rfpca$varprop)

coeffs=rfpca$coeff[,-1]

plot(as.vector(coeffs[,1]) , pch=20, col=rainbow(30), ylab=’1st RPC Scores ’)

plot(as.vector(coeffs[,2]), pch=20, col=rainbow(30), ylab=’2nd RPC Scores ’)

##OUTLIERS based on projections

##tsoutliers

#static FPCA

tso(ts(pcascores[,1], start = 1989, end = 2018))$ outliers$time

#1997 1998 2000 2002 2003 2007

tso(ts(pcascores[,2], start = 1989, end = 2018))$ outliers$time #1997 2002 2008

tso(ts(pcascores[,3], start = 1989, end = 2018))$ outliers$time #1998 1999

#dynamic FPCA

tso(ts(scores[,1], start = 1989, end = 2018))$ outliers$time #1998 2003

tso(ts(scores[,2], start = 1989, end = 2018))$ outliers$time #1997 2002

#robust FPCA

tso(ts(coeffs , start = 1989, end = 2018))$ outliers$time

#1997 1998 2000 2002 2003 2007

##anomalize

#static FPCA

anomalize(as_tibble(pcascores), target = 1, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #

anomalize(as_tibble(pcascores), target = 2, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #1999,1997,2001,2002,2011

anomalize(as_tibble(pcascores), target = 3, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #1989,1998,1999,2000,2001,2003

#dynamic FPCA

anomalize(as_tibble(scores), target = 1, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #1998-2001

anomalize(as_tibble(scores), target = 2, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #1997,2002

#robust FPCA
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anomalize(as_tibble(coeffs), target = 1, method = ’gesd’,

verbose = T)$ anomaly_details$outlier_idx #

##outliers barplot

outliers=c("1989", "1990", "1993", "1994", "1997", "1998", "1999", "2000", "2001",

"2002", "2003", "2004", "2006", "2007", "2008", "2010", "2011", "2013")

freq=cbind(c(1,1,1),c(0,1,0),c(1,1,0),c(0,1,0),c(2,1,6),c(1,2,6),c(1,2,4),

c(1,1,4),c(1,1,3), c(3,3,6),c(1,1,4),c(0,1,0),c(0,2,0),c(0,2,2),c(3,1,1),

c(0,1,0),c(0,1,1),c(0,1,0))

colnames(freq)= outliers

rownames(freq)=c("Graphical Tools", "Distance Based Methods", "FPCA Based Methods")

barplot(freq , col=c("steelblue4","steelblue3","lightskyblue"),

cex.names=1.2, cex.axis = 1.2)

legend("topright", legend = rownames(freq),

fil=c("steelblue4","steelblue3","lightskyblue"), cex=1.2)
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A.2 The Walt Disney Company

library(ggplot2)

library(reshape2)

library(fda)

library(ftsa)

library(rainbow)

library(roahd)

library(plot3D)

library(freqdom.fda)

library(tsoutliers)

library(anomalize)

library(tibble)

#dadosTS is a data.frame with 39 rows and 249 columns without missing values.

#The first column corresponds to the breakpoints (39 intraday measures ).

#The remaining columns correspond each to a different curve (248 days).

##Plot FTS

dadosTS[,1]=1:39

colnames(dadosTS )[1]=’Timestamp ’

new=melt(dadosTS , id.vars = ’Timestamp ’, variable.name = ’Date’)

fc <- colorRampPalette(c("lightskyblue1", "steelblue4"))

ggplot(new , aes(Timestamp , value )) + geom_line(aes(colour = Date))

+ scale_color_manual(values = fc(248), guide=F)

+ scale_x_continuous(name="Time (Hours)", breaks=c(3,9,15,21,27,33,39),

labels=c("10:00","11:00","12:00","13:00","14:00","15:00","16:00"))

+ scale_y_continuous(name="Stock Price") + theme_classic ()

##Plot TS

new[,4]=1:9672

colnames(new)[4]=’ID’

meses=c("Jan", "Fev", "Mar", "Apr", "May", "June", "July", "Aug", "Sept",

"Oct", "Nov", "Dec")

ggplot(new , aes(ID, value )) + geom_line(aes(colour = Date))

+ scale_color_manual(values = fc(248), guide=F)

+ scale_x_continuous(name="Trade Date",

breaks=c(1,820,1561,2380,3199,4057,4876,5656,6553,7294,8191,8971),

labels=meses) + scale_y_continuous(name="Stock Price")

+ theme_classic ()

##Stationarity
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T_stationary(dadosTS[,-1], pivotal = T) #p-value=0.02

#CIDR transformation

dadosCIDR=dadosTS

for (n in 2:249){

for (j in 1:39){

dadosCIDR[j,n]=100*(log(dadosTS[j,n])-log(dadosTS[1,n]))

}

}

T_stationary(dadosCIDR[,-1], pivotal = T) #stationary p-value=0.2

##Plot CIDR

new1=melt(dadosCIDR , id.vars = ’Timestamp ’, variable.name = ’Date’)

new1[,4]=1:9672

colnames(new1)[4]=’ID’

ggplot(new1, aes(Timestamp , value )) + geom_line(aes(colour = Date))

+ scale_color_manual(values = fc(248), guide=F)

+ scale_x_continuous(name="Time (Hours)", breaks=c(3,9,15,21,27,33,39),

labels=c("10:00","11:00","12:00","13:00","14:00","15:00","16:00"))

+ scale_y_continuous(name="CIDR ’s") + theme_classic ()

ggplot(new1, aes(ID, value )) + geom_line(aes(colour = Date))

+ scale_color_manual(values = fc(248), guide=F)

+ scale_x_continuous(name="Trade Date",

breaks=c(1,820,1561,2380,3199,4057,4876,5656,6553,7294,8191,8971),

labels=meses) + scale_y_continuous(name="CIDR ’s") + theme_classic ()

##OUTLIERS graphic tools

smoothedopen=fts(x=dadosCIDR[,1], y=dadosCIDR[,-1],

xname = "Time", yname = "Index Value")

fboxplot(smoothedopen , plot.type = "functional", type = "bag",

projmethod = "PCAproj", cex=0.6) #CIDR: 01/02 02/01 02/05 02/07

#02/08 03/01 03/29 04/02 04/04 04/09 04/25 05/04 06/13 06/27

#07/11 07/13 07/19 10/10 10/23 10/24 12/04 12/06 12/10 12/17

#12/19 12/21 12/26 12/27 12/31

fboxplot(smoothedopen , plot.type = "functional", type = "hdr",

projmethod="PCAproj", cex=0.6) #CIDR: 01/02 02/05 04/04 07/11

#07/19 10/10 10/23 10/24 12/04 12/06 12/17 12/21 12/26

outliergram(fData(dadosCIDR[,1], t(dadosCIDR[,-1])))

#shape: 02/05 02/09 06/20 07/19 09/26 10/23 11/09 12/06 12/17 12/19 12/21 12/26
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par(mfrow=c(1,1))

fbplot(fData(dadosCIDR[,1], t(dadosCIDR[,-1]))) #amplitude: 10/24

##OUTLIERS distance based

foutliers(smoothedopen , method = "robMah") #

foutliers(smoothedopen , method = "lrt") #

foutliers(smoothedopen , method = "depth.trim") #

foutliers(smoothedopen , method = "depth.pond") #

foutliers(smoothedopen , method = "HUoutliers") #CIDR: "02/05" "02/06" "02/07"

#"02/08" "02/09" "03/27" "04/03" "04/06" "06/13" "06/20" "06/27" "07/11"

#"10/24" "10/30" "11/20" "12/19" "12/21" "12/26" "12/27" "12/28"

##FDA: smoothing

basis=create.bspline.irregular(dadosTS[,1])

# set up range of smoothing parameters in log_10 units

loglam <- 2:10

nlam <- length(loglam)

dfsave <- rep(0,nlam)

gcvsave <- rep(0,nlam)

# loop through smoothing parameters

for (ilam in 1:nlam) {

lambda <- 10^loglam[ilam]

cat(paste("lambda =",lambda ,"\n"))

fdParobj <- fdPar(basis , lambda=lambda)

smoothlist <- smooth.basis(dadosCIDR[,1], as.matrix(dadosCIDR[,-1]), fdParobj)

fdobj <- smoothlist [[1]]

df <- smoothlist [[2]]

gcv <- smoothlist [[3]]

dfsave[ilam] <- df

gcvsave[ilam] <- sum(gcv)}

cbind(loglam , dfsave , gcvsave)

par(mfrow=c(1,2), pty="m")

plot(loglam , gcvsave , type="b", cex=1,

xlab="Log_10 lambda", ylab="GCV Criterion",

main="Index Value Smoothing")

plot(loglam , dfsave , type="b", cex=1,
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xlab="Log_10 lambda", ylab="Degrees of freedom",

main="Index Value Smoothing")

# minimum GCV estimate

lambda <- 10^3

fdParobj <- fdPar(basis , lambda=0)

smoothlist3 <- smooth.basis(dadosCIDR[,1], as.matrix(dadosCIDR[,-1]), fdParobj)

returnsfd3 <- smoothlist3$fd

##var -cov & cor

var=var.fd(returnsfd3) #variance -covariance surface

var_eval=eval.bifd(dadosCIDR[,1], dadosCIDR[,1], var)

persp3D(x=as.numeric(dadosCIDR[,1]),y=as.numeric(dadosCIDR[,1]),z=var_eval ,

r=3, expand = 0.5, theta = -45, #phi=25,

xlab=’Time’, ylab=’Time’, zlab=’Variance ’)

contour(dadosCIDR[,1], dadosCIDR[,1], var_eval)

corr=cor.fd(dadosCIDR[,1],returnsfd3) #cross -correlation surface

persp3D(x=as.numeric(dadosCIDR[,1]),y=as.numeric(dadosCIDR[,1]),z=corr ,

r=3, expand = 0.5, theta = -45, #phi=25,

xlab=’Time’, ylab=’Time’, zlab=’Correlation ’)

contour(dadosCIDR[,1], dadosCIDR[,1], corr)

##FPCA

pcalist=pca.fd(returnsfd3, nharm = 4)

cumsum(pcalist$varprop)

plot(pcalist)

plot(pcalist$scores[,1], pch=20, col=fc(248), ylab=’1st PC Scores ’)

plot(pcalist$scores[,2], pch=20, col=fc(248), ylab=’2nd PC Scores ’)

pcascores=pcalist$scores

##DFPCA

dpca=fts.dpca(center.fd(returnsfd3), q=15, Ndpc = 3) #q=floor(sqrt(n))

cumsum(fts.dpca.var(dpca$spec.density ))

scores=dpca$scores

rownames(scores )= colnames(dadosTS)[-1]

plot(dpca$scores[,1], pch=20, col=fc(248), ylab=’1st DPC Scores ’,

main=’Percentage of variability 87.9’)

plot(dpca$scores[,2], pch=20, col=fc(248), ylab=’2nd DPC Scores ’,

main=’Percentage of variability 7.8’)
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#Plot smoothed data

plot(returnsfd3, main=’Smoothed Data (B-splines)’, xaxt=’n’, xlab=’Time’,

ylab=’Stock Price ’, col=fc(248), lty=1)

plot(dpca$Xhat , main=’KL Expansion with 3 DFPCs ’, xaxt=’n’, xlab=’Time’,

ylab=’Stock Price ’, col=fc(248), lty=1)

axis(side = 1, at=c(3,9,15,21,27,33,39),

labels=c("10:00","11:00","12:00","13:00","14:00","15:00","16:00"))

##RFPCA

colnames(dadosCIDR )=1:249

smoothedopen=fts(x=dadosCIDR[,1], y=dadosCIDR[,-1],

xname = "Time", yname = "Index Value")

rfpca=ftsm(smoothedopen , order=7, method = "M")

cumsum(rfpca$varprop)

coeffs=rfpca$coeff[,-1]

plot(as.vector(coeffs[,1]) , pch=20, col=fc(248), ylab=’1st RPC Scores ’)

plot(as.vector(coeffs[,2]), pch=20, col=fc(248), ylab=’2nd RPC Scores ’)

##OUTLIERS based on projections

##tsoutliers

#static FPCA

tso(ts(pcascores[,1], start = 1, end = 248))$ outliers$time #CIDR: "10/24"

tso(ts(pcascores[,2], start = 1, end = 248))$ outliers$time

#CIDR:"02/05" "07/19" "12/26"

tso(ts(pcascores[,3], start = 1, end = 248))$ outliers$time

#CIDR:"02/09" "03/27" "12/19"

tso(ts(pcascores[,4], start = 1, end = 248))$ outliers$time #CIDR:"12/27"

#dynamic FPCA

tso(ts(scores[,1], start = 1, end = 248))$ outliers$time #CIDR:"07/11"

tso(ts(scores[,2], start = 1, end = 248))$ outliers$time #CIDR:"02/05" "12/26"

tso(ts(scores[,3], start = 1, end = 248))$ outliers$time #CIDR:"02/09"

#robust FPCA

for (i in 1:7){ print(tso(ts(coeffs[,i], start = 1, end = 248))$ outliers$time)}

#"10/24"

#"02/05" "07/19" "12/26"

#"02/09" "03/27" "12/19"

#NULL

#"02/06" "10/30" "12/26"

#"02/08" "04/06" "12/26" "12/28"

#"02/07"
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##anomalize

#static FPCA

for (i in 1:4){ print(anomalize(as_tibble(pcascores), target = i,

method = ’gesd’, verbose = T)$ anomaly_details$outlier_idx)}

#"10/24"

#"12/26" "02/05" "07/19" "12/21" "07/11"

#"02/09" "12/19" "03/27"

#"12/27" "12/21" "06/20" "02/07" "03/01"

#dynamic FPCA

for (i in 1:3){ print(anomalize(as_tibble(scores), target = i,

method = ’gesd’, verbose = T)$ anomaly_details$outlier_idx)}

#None

#"02/05" "12/26" "12/17" "12/27" "12/21"

#"02/09"

#robut FPCA

for (i in 1:7){ print(anomalize(as_tibble(coeffs), target = i,

method = ’gesd’, verbose = T)$ anomaly_details$outlier_idx)}

#"10/24"

#"12/26" "02/05" "07/19"

#"02/09" "12/19" "03/27"

#"12/27" "12/21"

#"12/27" "12/26" "02/06" "10/30" "03/23" "05/02" "02/21"

#"12/28" "12/27" "04/06"

#"02/06" "02/07"

##Barplot outliers

outliers=c("02/05", "02/06", "02/07", "02/08", "02/09", "03/27", "04/06",

"06/20", "07/11", "07/19", "10/23", "10/24", "10/30", "12/06", "12/17",

"12/19", "12/21", "12/26", "12/27", "12/28")

freq=cbind(c(3,1,6),c(0,1,3),c(1,1,3),c(1,1,2),c(1,1,6),c(0,1,4),c(0,1,2),

c(1,1,1),c(2,1,2),c(3,0,4),c(3,0,0),c(3,1,4),c(0,1,2),c(3,0,0),c(3,0,1),

c(2,1,4),c(3,1,4),c(3,1,9),c(1,1,6),c(0,1,2))

colnames(freq)= outliers

rownames(freq)=c("Graphical Tools", "Distance Based Methods", "FPCA Based Methods")

barplot(freq , col=c("steelblue4","steelblue3","lightskyblue"),

cex.names=1.2, cex.axis = 1.2)

legend("top", legend = rownames(freq),

fil=c("steelblue4","steelblue3","lightskyblue"), cex=1.2)
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