
Advanced Implementation of Mobile Applications

Gabriel Batista de Almeida

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Examination Committee

Chairperson: Prof. Pedro Tiago Gonçalves Monteiro
Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Member of the Committee: Prof. João Coelho Garcia

September 2022

Acknowledgments

I would like to thank my thesis supervisor Prof. Fernando Mira da Silva for his guidance, support,

and advice that helped me throughout the whole thesis.

I would also like to express my gratitude towards the DSI team that offered me the best support one

could have asked for in the development of the proposed solution for this thesis. I would like to thank

mainly Marco Cerdeira for always being available to assist me with anything, especially concerning the

Fenix backend, Catarina Cepeda for helping me with the app development, decision making, and any

other frontend related matter, and finally, Rita Severo for providing most of the design, allowing me to

focus more on this thesis and the solution development.

I would like to extend my gratefulness to my parents as well, for always trying to provide the best

education possible, for all the advice and help throughout the years, and for being there for me in the

good and bad times in my life.

Lastly but certainly not least, to my close friends for providing feedback on this work, for their constant

support, for giving me happy memories, and for always being there for me.

To each and every one of you – Thank you.

i

Abstract

Mobile applications are becoming more and more popular, to the point that most people prefer using

mobile applications instead of their desktop counterparts. The development of native mobile applications

can be very challenging due to the costs and expertise associated with them since each platform has its

separate codebase built using different technologies. With this in mind, a cross-platform development

framework is a possible solution to this problem, since this kind of approach allows sharing a majority

of the codebase between all supported platforms, eliminating the need to develop and maintain two or

more separate codebases. Such approaches are described and compared in this thesis, particularly

React Native, Flutter, and Progressive Web Apps, due to their recent success and their vast number of

features. After comparing the aforementioned frameworks and using Instituto Superior Técnico as our

case study, we considered the best choice currently to be React Native due to its performance, native

UI looks, big and active community, and largely thanks to the use of a programming language known

by many developers, JavaScript. The whole development process was registered in detail, namely

the requirements gathering and discussion, taking into consideration the feedback and suggestions

gathered from a survey, the design, implementation and evaluation. Final tests and evaluations showed

high responsiveness and an excellent user experience, at a moderate cost of higher resource usage

relative to its native counterparts.

Keywords

Cross-Platform Development; React Native; Flutter; Progressive Web Apps; Mobile App Development;

Academic Applications.

iii

Resumo

As aplicações móveis têm vindo a tornar-se cada vez mais populares, ao ponto de a maioria das

pessoas preferir o uso de aplicações móveis aos seus websites equivalentes. O desenvolvimento de

aplicações móveis nativas pode ser muito desafiante devido aos custos e competências associados a

elas, visto que cada plataforma tem uma base de código independente, desenvolvida usando diferentes

tecnologias. Com isto em mente, uma abordagem de desenvolvimento cross-platform é uma solução

possı́vel para este problema, visto que esta abordagem permite partilhar a maioria da base de código

com todas as plataformas suportadas, eliminando a necessidade de ter que desenvolver e manter mais

que uma base de código. Tais abordagens são descritas e comparadas nesta tese, nomeadamente

o React Native, o Flutter, e as Progressive Web Apps, devido ao seus recentes sucessos e grande

número de funcionalidades. Depois de comparar as alternativas anteriores e usando o Instituto Supe-

rior Técnico como um caso de estudo, consideramos o React Native como a melhor escolha atualmente,

devido ao seu desempenho, interface nativa, grande comunidade, e especialmente devido ao uso de

JavaScript. Todo o processo de desenvolvimento foi registado em detalhe, nomeadamente a definição

e discussão dos requisitos, tendo em conta o feedback e as sugestões obtidas de um inquérito real-

izado, o design, a implementação e a avaliação. Testes e avaliações finais mostraram uma alto nı́vel

de desempenho e uma excelente experiência de utilizador, a um custo moderado de um maior uso de

recursos relativamente às respetivas aplicações nativas.

Palavras Chave

Desenvolvimento Cross-Platform; React Native; Flutter; Progressive Web Apps; Desenvolvimento de

Aplicações Móveis; Aplicações Académicas.

iv

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Document Structure . 4

2 State of the art 5

2.1 Current App Taxonomy . 7

2.1.1 Native Apps . 7

2.1.2 Web Apps . 7

2.1.3 Hybrid Apps . 8

2.1.4 Interpreted Apps . 9

2.1.5 Generated Apps . 9

2.2 An Alternative Taxonomy . 9

2.3 Main Cross-Platform Frameworks . 10

2.3.1 React Native . 10

2.3.1.A Rendering . 11

2.3.1.B The Bridge . 11

2.3.1.C The New React Native Architecture . 12

2.3.1.D Components . 13

2.3.1.E Props and States . 15

2.3.1.F Styling . 15

2.3.1.G Performance . 15

2.3.2 Flutter . 16

2.3.2.A Dart . 16

2.3.2.B Widgets . 17

2.3.2.C Rendering . 17

2.3.2.D Performance . 18

2.3.3 Progressive Web Apps . 18

v

2.3.4 Choosing the Right Framework . 20

2.4 Mobile App Development . 21

2.4.1 Best Development Practices . 21

2.4.2 Development Life Cycle . 22

2.4.3 Challenges . 23

2.5 Similar use cases . 24

2.5.1 Current IST App . 24

2.5.2 IST GO . 26

2.5.3 Other Academic Applications . 26

3 Proposed Solution 28

3.1 Requirements . 29

3.1.1 Original App Requirements . 29

3.1.2 Survey . 30

3.1.3 Defined Requirements . 31

3.1.3.A Functional requirements . 32

3.1.3.B Non-functional requirements . 33

3.1.3.C Fault Model . 33

3.2 Choosing the Cross-Platform Framework . 34

3.3 Application Architecture . 34

3.4 Authentication . 35

3.5 Interface Design . 37

4 Implementation 39

4.1 Application Implementation . 41

4.1.1 Development Language . 41

4.1.2 Emulation . 41

4.1.3 Third-party Libraries . 41

4.2 API Constraints . 42

4.3 Implemented Requirements . 43

4.4 Debugging . 44

4.5 Testing . 46

4.5.1 Component Testing . 46

4.5.2 End-to-End Testing . 46

4.6 React Native Analysis . 49

4.6.1 Positive Factors . 49

4.6.2 Negative Factors and Issues . 50

vi

5 Solution Evaluation 52

5.1 Performance Testing . 53

5.1.1 CPU . 54

5.1.2 RAM . 56

5.1.3 Network Requests . 57

5.1.4 Energy Comsumption . 58

5.1.5 Storage Size . 58

5.1.6 Overall Discussion . 58

5.2 User Acceptance Tests . 58

5.2.1 User Test Cases . 59

5.2.2 Results . 60

6 Conclusion 64

6.1 Future Work . 65

Bibliography 66

A Requirements Survey 73

B API Endpoints 82

C UI Survey 84

D User Acceptance Tests Survey 88

vii

List of Figures

2.1 React Native architecture. Adapted from [1] . 12

2.2 React Native new architecture. Adapted from [1] . 13

2.3 Flutter trees diagram. Image retrieved from [2] . 17

3.1 Features not working properly in the current app . 30

3.2 Feature requests for the new app . 31

3.3 Simplified application architecture . 35

3.4 Authorisation code flow for OAuth with PKCE. Retrieved from [3] 36

3.5 Zeplin interface with React Native code generation of design elements 38

4.1 Quick actions in the new iOS app . 43

4.2 Debugging a React Native application running on Hermes, with Chrome developer tools . 45

4.3 How a real component or a mock component is selected using Detox 47

5.1 Device’s metric shown in Android Studio while performing the first test case 53

5.2 Device’s metric shown in Xcode while performing the first test case 54

5.3 CPU usage on an Android emulator for the first test case 55

5.4 CPU usage on an iOS device for the first test case . 55

5.5 RAM usage on an Android emulator for the first test case 56

5.6 RAM usage on an iOS device for the first test case . 57

5.7 UX rated by users during user acceptance tests . 61

5.8 UX rated by users during the survey related to the current app 62

5.9 Time took on average for each test case in user acceptance tests 63

A.1 Roles of the participants from the current app survey . 74

A.2 Current application usage by the users . 74

A.3 User satisfaction with the UX of the current application . 75

A.4 User satisfaction with the intuitiveness of the current application 75

viii

A.5 User satisfaction with the UI of the current application . 76

A.6 User satisfaction with the performance of the current application 76

A.7 What is liked the most in the current app . 77

A.8 Disliked aspects about the current application . 78

A.9 Most used features on the current application . 79

A.10 Features not working properly in the current application 79

A.11 New suggested features for the application . 80

A.12 Reasons for not using the current application . 81

C.1 Participants roles of the UI test survey . 85

C.2 User satisfaction with intuitiveness of the new user interface 85

C.3 User satisfaction with quality of the new user interface . 86

C.4 How appropriate the users thought the new design was for new application 86

C.5 Participants opinion on whether or not the new design surpassed their expectations . . . 87

D.1 Roles of the participants from the user acceptance tests 89

D.2 User satisfaction with the intuitiveness of the new application 89

D.3 User satisfaction with the UI of the new application . 90

D.4 User satisfaction with the UX of the new application . 90

ix

List of Tables

2.1 Comparison between PWAs, React Native and Flutter . 20

x

Listings

2.1 Class component in React Native . 14

2.2 Functional component in React Native . 14

2.3 Setting a value for a prop in a React Native component 15

4.1 End-to-end test using Detox . 48

xi

Acronyms

ADB Android Debug Bridge

AP Access Point

API Application Programming Interface

ARM Advanced RISC Machines

CI/CD Continuous Integration and Continuous Delivery

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

DSI Direção de Serviços de Informática

FPS Frames per Second

GPU Graphics Processing Unit

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IST Instituto Superior Técnico

JSI JavaScript Interface

JSX JavaScript Syntax Extension

NDA Non-Disclosure Agreement

OAuth Open Authorization

OS Operating System

PKCE Proof Key for Code Exchange

xii

PWA Progressive Web App

RAM Random Access Memory

SDK Software Development Kit

SSL Secure Sockets Layer

UI User Interface

URL Uniform Resource Locator

UX User Experience

VS Code Visual Studio Code

xiii

1
Introduction

Contents

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Document Structure . 4

1

2

Since the unveiling of the first iPhone in 2007, smartphones are becoming an increasingly crucial part

of our daily lives, and with that, the demand for mobile apps is increasing. According to recent statistics,

the current number of smartphone users is 6.3 billion and is estimated to be 7.5 billion in 2026 [4], an

annual increase of approximately 3.5%. Furthermore, according to recent studies [5], more than 54%

of web traffic originated from mobile devices, and the number of mobile applications downloaded in

2020 alone was more than 200 billion [6], stating that the use of mobile apps is more popular than their

equivalent desktop websites.

This rise in popularity, however, caused a problem for companies and software developers that want

to create an app for mobile devices. For an application to reach as many users as possible, it is important

to decide for which platforms is it going to be distributed, and as of today, Android and iOS dominate the

smartphone industry with 72.44% and 26.75% of market share respectively [7]. If both platforms have

to be supported, the use of separate codebases and different technologies for each platform increases

the development and maintenance costs.

Therefore, a unified solution that reaches both platforms is needed to reduce costs and increase time-

to-market. A cross-platform framework that reuses most of its codebase for all of its target platforms,

simplifying the development process, is an obvious solution for this goal. However, it also implies several

technical challenges and may raise performance issues.

1.1 Motivation

In 2015, Facebook, launched React Naive, a cross-platform framework that fixed most of the disadvan-

tages of previous cross-platform approaches, allowing the development of an application that looks and

feels exactly like a native app, while sharing most of its codebase with their target platforms. Since then,

the popularity and use of this kind of approach have been increasing, giving birth to new cross-platform

frameworks, like Flutter and Progressive Web Apps Progressive Web Apps (PWAs), both created by

Google.

With several frameworks available, it is hard to decide the best approach to build a mobile application

that both reaches the maximum number of users possible and cuts costs at the same time, both in time

and money. Furthermore, the type of application that is going to be developed also plays a relevant role

in the framework selection, so it is essential to be aware of the advantages and disadvantages of each

framework to perform the best choice possible.

Deciding on the framework, however, is not everything, and there are a lot of other aspects that need

to be taken into account, like the steps and phases needed to create an optimised mobile application

and the challenges and complexities of doing so.

In order to investigate these points in a more practical case, the Instituto Superior Técnico (IST) mo-

3

bile application was used. It was chosen since it was developed using native code, so a new application

that is easier to maintain and develop is needed to replace it.

1.2 Objectives

The objective of this work is to find the best current alternatives to native development, their advantages,

disadvantages, and depending on the requirements and the type of application, which is currently the

best overall approach to develop an application from scratch. Moreover, the best practices to develop a

mobile application and the challenges and complexities of developing them are going to be enumerated

and analysed.

At the same time, it was set as a goal to validate this work with the development of a new application

for IST, containing features to help the daily lives of students, teachers, and staff, which corrected the

flaws of the existing one and replace it in the future. This case study and the development context were

also taken into account in the framework selection process.

1.3 Document Structure

The remaining of this thesis is structured as follows: Chapter 2 describes the current state of the art

and similar work to the case study that is going to be used. Chapter 3 defines the requirements for the

application that is going to be developed, and based on those requirements, the solution found that best

suits the case study. Chapter 4 details the development experience and the implemented requirements.

Chapter 5 describes and analyses the evaluation methods and their results. Finally, Chapter 6, discusses

the conclusions of this work and proposes some future work.

4

2
State of the art

Contents

2.1 Current App Taxonomy . 7

2.2 An Alternative Taxonomy . 9

2.3 Main Cross-Platform Frameworks . 10

2.4 Mobile App Development . 21

2.5 Similar use cases . 24

5

6

To find the best approach to develop a mobile app, the different types of application methodologies

need to be understood. Based on the upsides and downsides of each approach, and the purpose and

requirements of the target app, it is possible to discuss the best approach.

2.1 Current App Taxonomy

The most common taxonomy for mobile applications, is the one described by Xanthopoulos and Xino-

galos [8], which divides applications into Native Apps, Web Apps, Hybrid Apps, Interpreted Apps, and

Generated Apps. Except for native apps, all of the other types of applications are cross-platform ap-

proaches. Cross-platform approaches have been widely used, particularly since the unveil of React

Native [9], created by Facebook. Later on, Flutter [10], developed by Google, also contributed to in-

crease the popularity of cross-platform frameworks.

2.1.1 Native Apps

Native apps are developed using the official Software Development Kit (SDK), for the target platform,

following the operating system design language and guidelines. The Integrated Development Environ-

ment (IDE) for iOS is Xcode [11] and for Android is Android Studio [?]. Apps are developed using the

recommended native programming language for the platform, namely, Objective-C or Swift for iOS [12]

and Java or Kotlin for Android [13]. Although multiple programming languages are supported, Apple and

Google recommend using Swift and Kotlin, respectively. These IDEs provide features to help develop,

test, debug, and emulate the application.

The advantages of native apps are that they support the latest software and hardware features, and

they provide the intended native User Experience (UX) that makes them look like they belong to the

native ecosystem. Moreover, they have near-optimal performance, since they are compiled directly to

binary code, not needing any further translation.

The greatest downside that makes most companies look for a cross-platform approach is the fact that

if the application is available on multiple platforms, more than one codebase needs to be maintained,

increasing the cost of development and maintenance. Other factors are the expertise needed to develop

a native app, as well as the need to learn a native language and IDE.

2.1.2 Web Apps

Web apps are applications that run in an internet browser. In other words, it is a website that is especially

made for mobile devices. They are developed using common web technologies like HyperText Markup

Language (HTML) and JavaScript, and sometimes they are used alongside frameworks like VueJS,

7

Angular, Ruby on Rails and so on [14]. Since they act as websites, they are built using a three-tiered

architecture [15] composed of the following layers:

• The presentation tier, that communicates with the other tiers through Application Programming

Interface (API) calls, displays information, and receives user input;

• The application tier, which contains the logic of the application and is usually stored on a server;

• The data tier contains the database for the application.

Despite having the advantage of being a cross-platform approach and having the ability to run with-

out being installed on the mobile device, web apps do not have access to many hardware features,

they are slower, since they are rendered in a browser, and the main logic is not present on the device

itself, so each web page needs to be downloaded. Moreover, they do not work offline, which can be a

disadvantage to some applications that do not require constant internet access to function.

Web apps are quite simple to develop, which is a major positive factor. However, given their limi-

tations, they are only suited to simple apps that do not have strict performance requirements and only

need to access basic hardware features.

2.1.3 Hybrid Apps

Hybrid apps are a mix of native apps and web apps, where a web page, like a web app, is built using

HTML and JavaScript and runs on a native container through a web view component. This component

renders the page like a browser, and the native container provides more access to the device’s hard-

ware than traditional web apps. This access is done through API calls that are then translated to the

appropriate one for the platform being used [14]. Since it runs on a native container, hybrid apps can be

installed on the device and they do not need to obtain the source code for the app on a remote server.

Apache Cordova, Ionic, and Adobe PhoneGap are popular hybrid app frameworks. PhoneGap was the

first cross-platform approach, being released on 2009 and was later bought by Adobe in 2011, that do-

nated the source code to Apache, creating Cordova. However, Adobe PhoneGap was discontinued in

2020.

Even though hybrid apps have the advantages of web apps, like being cross-platform, and resolving

some of the issues present in them, they still have some disadvantages when compared to native apps.

For instance, the number of device-specific features that they can access is limited, and the graphics

quality is inferior to native apps [16], performance is not as good, since it basically runs on a browser,

and their hardware resource efficiency is far worse than native apps. In a study comparing the same

application developed using a native and hybrid approach [17], it was found that hybrid apps use on

8

average twice the Central Processing Unit (CPU) load of native apps, which can be a problem in low-

end devices. This high CPU consumption can also lead to higher energy consumption, which is always

a critical design factor in mobile apps.

2.1.4 Interpreted Apps

Interpreted apps have a layer between the application itself and the platform, called the bridge, that

enables the use of native user interface components and hardware features [18]. While keeping an

abstract model of the platform, interpreted apps can be programmed using a variety of programming

languages, like JavaScript, Java, and others. Currently, React Native is the most used interpreted

approach.

Their main advantages are to use native user interface components, to adopt well-known program-

ming languages, which reduces cost and increases efficiency, to have performance levels close to native

apps, and to use almost all of the hardware features available. Hansson and Vidhall [19] compared a

React Native application with a similar native app in both Android and iOS and showed that both appli-

cations have equivalent user experiences.

A downside of this design is that apps occupy more storage and, despite having similar performance,

they can use more resources when compared to their native counterparts. This can be an issue, es-

pecially on low-end devices, since the main goal of cross-compiled approaches is to reach the widest

range of different platforms and devices.

2.1.5 Generated Apps

Generated apps use the same code base to compile and generate machine code for each platform. The

natural consequence is the higher performance of these apps, which can be on par with native apps,

since no further translation is needed. One example of this approach is Flutter, which uses Dart as its

main language and generates native Advanced RISC Machines (ARM) machine code.

Another approach for building generated apps is using a Model-Driven approach. In this kind of

approach, a model of the application is constructed with its specifications and features. Then, from this

model, native code is generated for each target platform [8].

2.2 An Alternative Taxonomy

Recently, a new alternative taxonomy for mobile applications was proposed by Nunkesser [20], which

attempts to overcome some issues found in the conventional taxonomy [8] adopted in this document.

Nunkesser states that ”the current state of cross-platform development does not really suit the taxon-

9

omy”, giving the example of Xamarin, which is developed using C# and compiles applications into binary

code, that does not fit into any category. The taxonomy proposed by Nunkesser divides the mobile app

categories more clearly in the following manner [20]:

• Endemic Apps are applications that use the operating system’s SDK, for instance, Swift in Xcode

for iOS;

• Pandemic Apps use programming languages that are supported by most Operating Systems

(OSs), like HTML, Cascading Style Sheets (CSS), JavaScript, C and C++. This category contains

4 subcategories:

– Web Apps correspond to the web apps described in Section 2.1.2;

– Hybrid Web Apps are web apps encapsulated in an endemic shell, corresponding to the

hybrid apps in Section 2.1.3;

– Hybrid Bridge Apps use endemic JavaScript engines and can use endemic User Interface

components as React Native does;

– System Language Apps are apps that are built using C or C++.

• Ecdemic Apps are applications that are developed using a programming language that is not

understood by the operating system.

Despite fixing some issues and introducing an improved classification, this taxonomy still has some

issues. For example, it assigns the Hybrid Bridge Apps category to Flutter, which is debatable, since it

does not use any JavaScript bridge or engine. In our view, it fits better into the Ecdemic Apps category,

since its programming language, Dart, is not understood by most OSs. Also, the use of terminologies

like Endemic, Ecdemic and Pandemic are not easily understandable and are not widely used. For these

reasons, the taxonomy of Xanthopoulos and Xinogalos [8] was followed in this document.

2.3 Main Cross-Platform Frameworks

The most used cross-platform approaches today are React Native and Flutter, which in 2020 were used

by 42% and 39%, of the developers using a cross-platform framework [21]. Recently, Progressive Web

Apps (PWAs) have also become a viable alternative, due to their simplicity, In the following section,

these frameworks are described and discussed in more detail.

2.3.1 React Native

React Native was launched by Facebook in March of 2015 as an open-source framework, and it started

out as an internal hackathon back in 2013 [22]. Being open-source meant that anyone could contribute

10

to the project. Shortly after its launch, Microsoft and Samsung decided to help develop React Native and

use it in their operating systems [23]. The fact that React Native was also based on Facebook’s ReactJS

made most developers feel right at home when using it, decreasing its learning curve. Another feature

to ease the development is the support for hot reloading, which allows seeing the changes performed in

the application files being applied live in the emulator, or in the device itself, without losing the state of

the app.

All of this made React Native incredibly popular, to the point that its own GitHub repository is one

of the most starred projects of all time. Another consequence is that there are numerous custom-

made components and libraries made by the enormous community. If a developer needs something not

available in React Native chances are that there is already a community-made component or library for

it.

Currently, many popular applications are using React Native, namely: Facebook, Instagram, Discord,

Skype, Bloomberg, and Tesla, among others [24].

2.3.1.A Rendering

React Native uses the Virtual Document Object Model (DOM) to render the components, which is similar

to a browser’s DOM. The Virtual DOM is a node tree that keeps all view elements and their properties,

acting like a snapshot of the state of the app. When a change of state happens in the application, the

Virtual DOM plus a diffing algorithm is used to only re-render the necessary parts and thus improving

the performance. To perform this update, the following steps are executed [18]:

• Update the state or the properties of the affected components,

• Create a new Virtual DOM tree with the updated components,

• Find the difference between the new tree and the old one, using a diffing algorithm,

• Re-render only the difference between the two trees with the minimum amount of changes.

This process of diffing the trees and selecting which nodes in the Virtual DOM need to be updated

or replaced is called reconciliation [25].

2.3.1.B The Bridge

Since React Native is an interpreted app, it uses a JavaScript bridge to access the native APIs. The

access to these APIs gives React Native the ability to access all the platform’s features, and if a feature

is not available, the developer can modify the bridge by creating native modules1 to add the missing

1Native Module – https://reactnative.dev/docs/native-modules-android

11

https://reactnative.dev/docs/native-modules-android

Figure 2.1: React Native architecture. Adapted from [1]

feature. Native modules allow the JavaScript side of React Native to access a module created using

native code. The bridge not only provides native features, but it allows access to native rendering

methods and elements, giving it an User Interface (UI) indistinguishable from a native application [18].

To further increase the performance, this bridge runs on a different thread from the main UI thread, so

the UI always feels responsive [19]. This bridge can communicate asynchronously both ways between

the main UI thread and the JavaScript thread (Figure 2.1), which places the messages in a queue that

is also running on a separate thread [26].

Over the years, however, some issues were found with this asynchronous design. Being asyn-

chronous makes the implementation of new features harder to implement, it is not possible to cancel

events and makes it difficult to introduce JavaScript code into native modules while expecting a syn-

chronous response, among other problems [27].

A simple example of this problematic behaviour is the onScroll event on any item list. In the edge

case where a list has many items, while a scrolling action is being performed, a message is sent from

the main thread to the JavaScript thread to get the items that need to be rendered. If the scrolling speed

is high and the list is large, it is possible to scroll faster than the JavaScript thread can respond to the

main thread. When this happens, React Native renders empty space instead of the list items, creating a

visual gap between the interface and the intended action.

2.3.1.C The New React Native Architecture

In order to overcome the limitations of the asynchronous design, the React team is working on a new

architecture that is currently deployed on the Facebook app and is starting to be implemented on ex-

isting libraries [28]. One of the issues of the current architecture is the need for the bridge to serialize

12

Figure 2.2: React Native new architecture. Adapted from [1]

everything to JSON in order to communicate between the JavaScript realm and the native one. This

can easily become a bottleneck and also introduces unnecessary operations, which take more time.

To remove the bridge entirely, the new architecture has a similar approach to how ReactJS works in a

browser, containing two important components to overcome the aforementioned issues:

• The JavaScript Interface (JSI), which now integrates the bridge functions;

• The new UI manager, Fabric.

When a node is created in a browser, the browser returns an object that contains a reference to the

corresponding native element. JSI works similarly to this, returning an object containing a reference to

the appropriate host object, written in C++, allowing the use of native methods directly using this refer-

ence. With this, instead of using a bridge, JSI would be used to communicate between the JavaScript

and native threads (Figure 2.2). This change also made the use of other better-performing JavaScript

engines possible, since React Native is no longer dependent on its engine, the JavaScript Core engine.

The new UI manager, Fabric, allows the use of both synchronous and asynchronous UI operations,

resolving the other issues presented above, like the onScroll event. The use of synchronous operations

is possible due to the fact that Fabric is able to block the UI thread and run operations on it, resuming

the asynchronous operations afterwards.

2.3.1.D Components

Everything in React Native is built using components. These components are programmed using

JavaScript Syntax Extension (JSX). JSX is a syntactic extension of JavaScript [29] that instead of sep-

13

arating technologies, enables to integrate the logic, the UI, and styling for a component on a single file.

Separation of concerns is used instead of a separation of technologies [22]. JSX allows components to

be developed as classes, making code re-utilisation possible with class hierarchies (Listing 2.1). Instead

of classes, they can be developed as functional components (Listing 2.2).

Listing 2.1: Class component in React Native

1 class MyComponent extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {aSimpleState: true};

5 }

6

7 render () {

8 return {

9 <View>

10 <Text>Hello World!</Text>

11 </View>

12 }

13 }

14 }

Listing 2.2: Functional component in React Native

1 export default function MyComponent(props) {

2 const [aSimpleState , setASimpleState] = React.useState(true);

3

4 return (

5 <View>

6 <Text>Hello World!</Text>

7 </View>

8);

9 }

Components can receive external properties, called props, have internal state, and a render method.

Built-in components can either be cross-platform or platform specific. For instance, the View component,

which is the most basic component and equivalent to the div in ReactJS, that in turn is HTML, is rendered

14

as a View component in Android and UIView in iOS [18]. An example of a platform specific component

is the date picker, that in Android is DatePickerAndroid and in iOS DatePickerIOS [22]. It is also possible

to develop platform specific components. The files need only to have a different extension, for example,

for Android myComponent.android.js and for iOS myComponent.ios.js [22].

2.3.1.E Props and States

As mentioned before, props are properties of a component given by its parent, and they are immutable.

In other words, the child cannot change the values of those properties, only its parent (Listing 2.3) [25].

Listing 2.3: Setting a value for a prop in a React Native component

1 <MyComponent aSimpleProp={value}/>

The state is initialised whenever a component is mounted, and the syntax used to create it is differ-

ent depending on the type of the component (Listing 2.1 and Listing 2.2). They can hold any time of

information deemed to be useful.

Both of them are useful for creating dynamic components since changing the values of props and

states causes a re-render of the component on its affected parts.

2.3.1.F Styling

Although styling in React Native is not done through CSS, its syntax is quite similar and contains many

of the CSS features used frequently. Styling can be done in three ways [30]:

• Passed as a style prop in the component;

• Used as a JavaScript Object;

• Created using the Stylesheet.create method, which is the recommended method [22].

2.3.1.G Performance

A study made by Danielsson [26] compared the same application developed for both native Android

and React Native, testing CPU, Graphics Processing Unit (GPU) and Random Access Memory (RAM)

utilisation and power consumption. In their first test, they tested both applications at idle (opened and

then kept in the background). In their results, the CPU, GPU, and power consumption were similar.

However, React Native clearly had higher RAM requirements.

The difference between both was more apparent in the other tests, where some user interaction was

involved. In those tests, the GPU usage was the only one that remained similar between them. The

15

average CPU utilisation for native Android was around 36.1% and for React Native 41.6%, representing

an increase of approximately 15%, which can be noticeable on some devices. Lastly, both the power

consumption and memory were very similar, but slightly higher in React Native.

Another study made by Hansson and Vidhall [19] obtained similar results to the one performed by

Danielsson [26]. Their experiments, however, showed a larger difference in the CPU utilisation during

the startup of the application, where React Native had a CPU utilisation of more than double of the one

used by the native app, averaging 14% and 6% respectively. This is due to the fact that React Native has

to start the JavaScript thread besides the main thread, create the Virtual DOM in the JavaScript thread,

and send it through the bridge to the main thread, so it can render the application.

Their results also show that React Native had a larger app size compared to Android, which is

expected since it needs to store the framework in the application itself.

Overall, it is clear that the CPU utilisation is higher in React Native compared with native apps, as

would be expected. The other metrics, however, were mostly similar.

2.3.2 Flutter

Flutter is an open-source cross-platform framework that is developed by Google and was first released

in 2017. Flutter requires Dart, a programming language created by Google as well, to develop its

applications. Like React Native, Flutter can be used to develop applications for both iOS and Android,

but it can also build apps for Fuschia, Google’s next-gen mobile operating system [25].

Besides being able to develop apps for mobile devices, Flutter can be also used to create web and

desktop applications [31]. To help the development of these apps, Flutter supports hot reloading, pre-

made widgets to give a native look and feel, and a high-performance rendering engine.

Similarly to React Native, there are many applications and companies currently using Flutter, like

BMW Group, Alibaba Group, eBay, Tencent, Toyota, and many others [32].

2.3.2.A Dart

The main goal of Dart is to build high-performance scalable web applications. It can be used to de-

velop both the frontend and the backend of the application. It is being used by Google internally since

JavaScript could not provide the features and, above all, the performance needed for their web apps [18].

Google created Dart with the intent of replacing JavaScript, so naturally, it supports most of JavaScript’s

features. However, Dart has a Java-like syntax [25], and it is not similar to JavaScript.

JavaScript allows for various unpredictable programming errors in runtime due to its ”little declarative

syntax” [18], allowing the assignment of wrong types for instance. To fix this, Google made Dart a type-

safe language or, in other words, it has a sound type system. This means, for example, that a variable

of type String always remains as a String. Type soundness is possible due to the combination of static

16

checking and runtime checking [33]. Some of the advantages of this approach mentioned in Dart’s

development guide [33] include: ”more readable code”, ”more maintainable code”, and ”type-related

bugs are revealed at compile time”.

2.3.2.B Widgets

Everything in Flutter is built using widgets. For instance, styling elements like margins, padding, and

so on, are built using widgets. Unlike React Native, Flutter does not use native UI elements. Instead,

it offers widgets with the look and feel of Android and iOS, named Material and Cupertino widgets,

respectively [18]. Widgets also inherit properties from their parent widgets.

Regarding their state, widgets can either be stateless or stateful. Stateless widgets do not have a

mutable state and they extend the class StatelessWidget. Stateful widgets extend StatefulWidget, and

as the name suggests, they have a mutable state, however, since widgets are immutable, when the state

is changed, a new widget is created to replace the old one [34].

2.3.2.C Rendering

Figure 2.3: Flutter trees diagram. Image retrieved from [2]

To render its widgets, as shown in Figure 2.3, Flutter’s widgets are organised in three different

trees [2]:

• The Widget tree contains all widgets necessary to create the user interface;

• The Element tree is made of elements that were created from the widgets used in the Widget

tree by calling a specific method on the widget. Elements are an instantiation of a widget that

is mutable, unlike widgets. Since they are mutable, one of the main purposes of this tree is to

manage the widgets’ state;

17

• The Render tree for each element on the Element tree, Flutter calls a method to create a render

object.

When a widget is changed, a new one is created and replaces the old one in the Widget tree, since

they are immutable. Then if the new one is of the same type, the element can just be updated with the

reference of the newly created widget and the render object can be updated as well, instead of creating

a new render object, which is computationally expensive. Otherwise, a new element and a new render

object are created [18].

Additionally, the widgets instead of being rendered at the system level, are rendered at the application

level, which makes them more customizable but with the trade-off of the larger application size [25].

2.3.2.D Performance

According to Flutter’s own main page, Flutter has achieved near-native performance, mainly due to its

Dart compiler that uses both a Dart Virtual Machine with just-in-time compilation, which compiles the

code during the execution of the program, which provides support for hot-reloading, and an ahead-of-

time compiler that compiles the code into a lower level one (ARM in this case) before execution [2].

This high performance although, is not all due to the compiler. The use of three trees, promotes

separation of concerns, that in turn increases performance. Pre-included widgets are also tuned with

performance in mind. The ListView widget for instance, only renders the items in the list that are currently

visible [35]. It can not only run at 60Hz, as a native application, but also at 120Hz if the device supports

it, augmenting its visual performance.

In a study made by Fentaw [31], the performance between Flutter and React Native on both Android

and iOS was tested and compared, providing interesting results. In all tests, the values registered

resulted from the mean of five test runs for each of the 4 different tests performed.

In Android, no framework stood particularly out in the case of CPU usage, since in half of the tests

React Native had a better CPU usage and in the other was Flutter. As for memory, both of them had

similar results, except for one test case, where Flutter had clearly better memory management.

In iOS, on the other hand, results were drastically different in both CPU and RAM consumption. In

all CPU tests, Flutter always had better efficiency than React Native. In memory usage, the results were

the opposite, where React Native in some tests had five times less memory usage than Flutter. In GPU,

however, both frameworks obtained similar results.

2.3.3 Progressive Web Apps

In an attempt to overcome the web apps’ disadvantages and promote their use, Google created a new

concept called Progressive Web Apps, which had the goal of closing the gap between web apps and

18

native apps combining the best features of each one. In order to accomplish this, PWAs have the

following features [36–38]:

• Homescreen installation: PWAs can be installed on the device and, in some operating systems,

like Android, the system treats them as a normal native app, even during the installation process.

The size of PWA apps, when compared to other approaches is much smaller, as shown in [36],

where the size of the PWA app was approximately 157 times smaller than React Native. This is

mainly due to its web app similarities, where the application is rendered using a browser, so the

application does not need a framework or a layer translating the source code;

• Background synchronisation: This kind of application can use background synchronisation as

any other native app can;

• Offline support: With the capability to be installed on the device, once downloaded and installed,

these apps can run offline, since the elements of the web pages are cached on the device, which

can be useful for apps like games, or simple apps that do not require access to the internet;

• Push notifications are available, but they are limited to browsers that support it;

• Trying the app before installing: Another important feature that originates from its web app

similarity is the ability to try the app on the browser before deciding whether or not to install it;

• Available in app stores: PWAs can also be available in app stores. As of now, only Microsoft

Store for Windows and Google Play Store for Android allow PWAs to be published to them, not

being supported by the Apple App Store, which is a major downside for cross-platform solutions.

For a browser to be able to support some of the features aforementioned above, it needs to support

the Service Workers API. This API runs on a separate browser thread and is responsible for providing

features present in native apps, namely [38]: background synchronisation, push notifications, caching

mechanisms, and interception of network requests [36].

Another key functionality besides the Service Workers is the App Shell, which caches offline all in-

terface elements needed like HTML, CSS, and JavaScript to decrease the number of Hypertext Transfer

Protocol (HTTP) requests sent, to increase performance [39]. Although its performance is not as good

as native apps, it is close to it, but only if the browser is running in the background, otherwise its perfor-

mance can be up to three times worse, as shown in [36].

Despite all of these improvements over traditional web apps, PWAs still have some downsides. For

instance, not all browsers have support for the Service Workers API equally, so features can vary from

browser to browser, and they are not available in all app stores, like the iOS App Store. As mentioned

before, if the browser is not running in the background, it is much slower. Additionally, despite being

19

Table 2.1: Comparison between PWAs, React Native and Flutter

Features PWAs React Native Flutter
Language Web technologies JavaScript Dart
Hot reload Depends on the frame-

work used
✓ ✓

Availability Can run on a browser,
cannot be submitted to
the App Store

All app stores All app stores

Hardware
features

Partial support All features can be used
and implemented when
missing

All features can be used
and implemented when
missing

UI Native like UI can be ob-
tained using third party li-
braries

Native elements Elements that mimic na-
tive ones

Performance To perform well the
browser needs to be run-
ning in the background

Similar to Flutter in An-
droid, but worse efficiency
on iOS

The fastest overall, but
not as fast as native apps

Size Extremely small Slightly less than Flutter The largest

able to support more features, there are still some features that native apps have that are not available

in PWAs.

An example of a progressive web app is Google Maps Go2, which is a lighter version of the original

Google Maps app that occupies ”100 times less space”, as stated in the app description, made especially

for low-end devices. This version of Maps is even pre-installed on Android GO3, a lightweight version of

Android made for such devices.

2.3.4 Choosing the Right Framework

Unless time and money are not an issue, native apps always provide the best experience possible and

are the best approach. Otherwise, cross-platform frameworks, like React Native, Flutter, or Progressive

Web Apps, provide a native-like experience, both in terms of looks, features, and performance, whilst

reducing development costs by a large amount.

Choosing between these frameworks also depends on the budget and the type of application that is

going to be developed. Progressive Web Apps are a good choice for simple apps, especially for low-end

devices, since most developers are familiar with web development, they use few resources, and they

are small in size. However, the lack of support from the Apple App Store is a major drawback for a

cross-platform solution. Even when installed from a web browser, the iOS does not treat it like a normal

application, not showing in the application drawer, for instance.

React Native and Flutter both support most hardware features, have a native-like UI, and have great

2Google Maps GO – https://play.google.com/store/apps/details?id=com.google.android.apps.mapslite
3Android GO – https://www.android.com/versions/go-edition/

20

https://play.google.com/store/apps/details?id=com.google.android.apps.mapslite
https://www.android.com/versions/go-edition/

performance. If the fastest performance possible is one of the requirements of the app, Flutter is possibly

the best choice, as seen in the study performed by Fentaw [31]. This is especially true in iOS, where the

CPU efficiency was drastically better than React Native, and GPU performance in Frames per Second

(FPS) was also better. This is due to the fact that the code is directly compiled to ARM machine code.

However, this comes at the cost of being developed using Dart, which most developers are unfamiliar

with, indirectly increasing the development cost of the application. If performance is not an issue, React

Native is the best choice overall to develop a new application, due to the use of JavaScript, Native UI

elements, support for all hardware features, and a big development community.

Table 2.1 summarises and compares the characteristics and supported features of these 3 ap-

proaches.

2.4 Mobile App Development

Developing mobile applications is not only about just choosing a framework, developing the app, and

shipping it. There are several other factors that contribute to the success or failure of mobile apps, and

developers and companies should be aware of them in order to build a successful app.

2.4.1 Best Development Practices

One should always strive to build the best possible product, and the same goes for mobile applica-

tions. To achieve this, [40] describes what should be avoided and the best practices in order to develop

a successful application. Among the mentioned practices, the following general principles should be

followed:

• Adhering to user standards, which the most relevant are:

– Good performance;

– Intuitive and good-looking user interface, that also complies with the OS’s design language;

– Strong security;

– Robust code, avoiding spurious crashing;

– Support of similar features on all platforms (fair use for all platforms);

– Should not drain a lot of battery, which is essential in a mobile device.

• Following the development life cycle phases. Complying with this life cycle ensures that the most

important aspects of software development, like requirements gathering and testing, are not over-

looked, and so, most of the common issues can be avoided. This cycle is going to be described in

more detail in Section 2.4.2;

21

• Developers should take user feedback into consideration. User feedback can be obtained from

user testing, before launching the application, through surveys and reviews on the OS’s application

store. It is also important to build into the application itself, a way for the users to give feedback;

• Avoiding tedious and difficult app registration process, which can turn users away from using the

app any further, eventually leading to uninstalling the app itself;

• Balanced use of notifications. Too many may lead to turning off notifications or uninstalling the

app, too few may lead to forget the application;

• Testing and maintaining the application properly, namely, coping with the OSs’ evolutions, can

prevent several bugs and security issues from compromising the user experience.

Failing to comply with these good practices can have both short and long-term consequences. In

the short term, revenue is going to be lost, due to bad reviews on the platform’s application store, which

users normally verify before downloading a new app. In the long term, users might not want to install a

new app made by a company that previously made an undesirable app, so companies can struggle to

attain success in future projects.

There are other aspects that can lead to the success of mobile apps that are outside the scope of a

developer, like marketing, which is paramount these days for the success of applications, but this factor

is not the focus of this thesis.

2.4.2 Development Life Cycle

As discussed in [40], traditional software development life cycles, like the ones described in [41], con-

taining planning, analysis, design, implementation, testing, and maintenance phases, can be used suc-

cessfully for the development of mobile applications, helping increase their overall quality.

In a survey performed by [42], mobile app companies, developers, researchers, stakeholders, and

experts were asked what were the best and common methods and practices to apply during mobile app

development. The conclusion reached from this survey and others performed in the past was not far

from the aforementioned traditional software development phases.

Since the traditional software development life cycle can be applied to the development of mobile

applications successfully, the following phases should be followed throughout the product development:

• Requirements Gathering or Analysis: this is possibly one of the most important ones, where

both the functional and non-functional requirements are gathered. Functional requirements de-

scribe the features and services of the application, and the business requirements, which detail

purpose, target audience, goals, and data requirements, among other aspects. In sum, they can

answer the question of what the application can and cannot do. Non-functional requirements, on

22

the other hand, can answer to how does the application accomplish what it does. These can be

performance, security, usability, and so on;

• Planning: In the planning phase, as the name suggests, a plan of the entire product life cycle is

made, with the main purpose of estimating time and cost. Risk assessment can also be done in

this phase, where multiple project plans can be developed to replace the original one if needed;

• Design: The goal of this phase is to build mock-up screens and wireframes showing the interaction

between the application’s screens or even prototypes for client approval. This is done before the

development, so the time and cost needed to change something during development are reduced;

• Development: This is the longest phase of the life cycle, and is where the code starts to get

written, ultimately turning the design mock-ups into reality, while following the requirements estab-

lished before. This phase should be performed with an agile approach, Scrum [43], for instance,

where, in each spring functionalities or smaller modules are implemented one at a time, and tested

at the same time to fix bugs as early as possible, reducing costs. This testing is often overlooked by

developers and often leads to ”buggy” and unreliable applications. Regression testing is essential

while using this approach, making sure that new functionalities do not break previously developed

ones;

• Testing: After the development of the application, it should be carefully tested against the require-

ments and designs obtained from the previous phases. In addition to the unit tests, regression

tests, and implementation tests done during the iterative development phase, with an agile ap-

proach, user acceptance tests and system tests should be performed to ensure that the final

product meets the client’s expectations. Besides these tests, tests that verify the non-functional

requirements, like performance testing should also be done [44];

• Deployment: After being certain that the app complies with the requirements through testing, it is

time to release the app into the compatible operating systems’ application stores;

• Maintenance: After the release of the application to the public, it is likely that some users are

going to encounter some issues with the application, so it is important to perform maintenance on

the application, releasing updates regularly to fix those issues. The development of new features

can also be important to keep the users engaged in the app.

2.4.3 Challenges

Even when following the recommendations above, mobile app developers still encounter some issues

and challenges, as demonstrated in surveys performed by [45] and [42]. Some of the main issues

encountered were:

23

• The existence of multiple platforms, like iOS and Android, can be an issue, especially if they tend

to follow divergent paths for their interfaces. Developers have to keep up with the different APIs

and design languages from both platforms. Even inside the same operating system, which is the

case of Android, a multitude of different devices can exist, with different screen sizes, resolutions,

memory, CPU, and so on. This implies extra work for testing and optimising the app for multiple

devices, especially low-end ones. And, even so, it does not guarantee the intended experience for

all devices;

• Testing, although essential, can also be a big challenge, since not only do apps need to be tested

on emulators and then on real devices, but also the tools available for doing so are not as robust

as the ones for desktop software. In one of the studies in [45], the participants complained about

the limited support for automation testing in mobile applications, stating that the tools and emula-

tors lacked good analysis tools to give insight into the device’s metrics, and some of the features

needed for testing were not available, like sensors;

• Security can also be difficult to guarantee with the plethora of platforms and devices, due to the

different ways they manage data;

• User expectation is getting higher and higher, so delivering mobile applications with good quality

can be difficult. Requirements gathering and testing can help increase the quality of apps and

meet user expectations;

• For the ones used to develop software for desktop platforms, designing and building the UI/UX for

a mobile device can be quite challenging as well, so it is important to validate them with users;

• The application maintenance itself can also prove to be a challenge. Developers need to keep up

with APIs, comply with new requirements, and improve the overall experience through fixing bugs

or issues, for instance, publishing updates whenever required [46].

2.5 Similar use cases

The subsequent subsections describe similar applications to the case study of this thesis.

2.5.1 Current IST App

As mentioned in Section 1.2, a new academic mobile application for Instituto Superior Técnico (IST) is

going to be developed to validate this work. The current one [47] was originally developed in 2013 as a

Master’s Thesis by Barata [48], in native Android. A year later, the development of the application for the

24

iOS platform started, through native development again, by both Barata and Direção de Serviços de In-

formática (DSI), which is responsible for the development and maintenance of IST’s digital infrastructure.

Since it was built through native development again, the application was developed from scratch using

Swift, which is a programming language used exclusively for developing apps for the Apple ecosystem,

and a slightly different design to conform with the iOS design patterns.

Since DSI has many other projects, and the team is relatively small, resources need to be optimised.

Since only a few developers can program in native iOS and Android, the application had few updates.

This is clearly visible, for instance, in the news section, where sometimes the news and courses’ names

are in Portuguese, even though the application’s language is in English. This is one example among

other issues, like duplicated courses in the curriculum feature, push notifications not working, and others

that were already reported by users.

A cross-platform solution will enable to have only one one codebase for both platforms instead of

two, and will ease the overall development effort.

The current app supports the following features, although some of them are currently working with

limited functionality:

• Login into the user’s account using the Open Authorization (OAuth) protocol;

• News feed with school news and courses’ announcements. The feed is also personalisable;

• Cafeteria’s menu for both campuses;

• Schedule of the shuttle that connects both campuses;

• Available capacity for the parking lots;

• Possibility to withdraw a queue ticket from the university services for on campus assistance;

• Courses’ information;

• Evaluation schedule and enrolment;

• Curriculum information, which courses are completed, their grade, the student’s average grade,

completed credits and years;

• The teachers can publish their classes’ summaries;

• The Staff can report and review their assiduity;

• Outstanding and paid payments;

• University’s contacts;

• Synchronisation of the student’s schedule with their smartphone’s calendar;

25

• Both Portuguese and English language support;

• Help set up the university WiFi, by installing certificates if needed and logging into the users’

accounts.

2.5.2 IST GO

Along with the pandemic, came many contact tracing apps like STAYAWAY COVID [49], among others.

IST Go [50] was one of these apps, and as the name suggests, it is being developed for the IST com-

munity. However, this app was not like the other contact tracing apps that mainly used Bluetooth and

GPS to determine the location of the user. Instead, it analysed the number of devices connected to the

Access Point (AP) in each university building to determine its occupation. Unlike the other apps, the

information was not sent to another entity but shown to the user.

The application was developed using Flutter, and has the following main features:

• Using a map, it shows how many people are in each building and in each room inside it;

• Since it is much harder to detect how many people are inside each classroom using the APs, users

can report how many people are inside it and can request other users to report that information;

• Users can make a reservation for a classroom, indicating the time and number of people;

• There is also a survey area to facilitate their proliferation among the community;

• To encourage students to use the app, gamification was introduced. Each action performed, like

answering a survey, gives the user experience points, which makes a user level up and climb its

way up the leaderboard.

2.5.3 Other Academic Applications

Although there are a great number of apps for universities, there are only a few papers that document this

process [51]. In one of them, similar to our case study, a new mobile application for the LNU university

(Linnaeus University) was needed [52]. Before developing the new application, the requirements for the

new one had to be gathered. To do this, some steps were taken, the most important ones being:

• Survey students about the quality of the existing app and what features they considered important

to have

• Investigate other universities’ applications

The results from their second step can be interesting and helpful for our case study. The features

supported by other universities, listed from the most common to the less common features are:

26

• Academic schedule and map, around 50% of universities offered them in their apps;

• School’s information;

• Events/news;

• Cafeteria menu;

• Staff info;

• Feedback;

• Transportation, information on how to get to the school, either by train, metro or other means of

transport;

• Reminders and Exam results, with only a 7% adoption rate. The latter, as mentioned in [52], would

not be feasible, due to the amount of changes needed in the backend and the school’s API to allow

such a feature.

In [52], it is advised to develop the application in an iterative way, instead of an incremental way, for

the same reasons aforementioned in section 2.4.2. The importance of feedback is also emphasised and

should be dealt with in the maintenance phase. Besides user feedback, the collection of user data can

also prove to be useful.

Similarly to [52], in [51] a study of features present in other universities’ apps was also performed,

revealing similar results. Besides this, the architecture of their application is described as a simple inter-

face that performs API calls to the school’s server to retrieve information. To reduce the number of API

calls, in order to increase performance, the app contains a local database that stores user preferences

and other information that does not change so frequently, like the student’s courses. Although the appli-

cation was only released for iOS initially, it was developed using a cross-platform framework, PhoneGap,

which makes it easier to release the app to other operating systems in the future.

27

3
Proposed Solution

Contents

3.1 Requirements . 29

3.2 Choosing the Cross-Platform Framework . 34

3.3 Application Architecture . 34

3.4 Authentication . 35

3.5 Interface Design . 37

28

After describing the different types of mobile applications and discussing the best alternatives to

native apps, the definition of the application requirements is a crucial step to be able to make a good

decision on the best development approach.

3.1 Requirements

There are multiple methods to gather requirements that can vary in both time and money. As described

in [53], the most relevant ones are:

• ”interviews”: allows to obtain information from individual users through interviews;

• ”surveys”: questionnaire to the target audience to obtain information, such as user needs;

• ”wants and needs analysis”: is a brainstorming activity between the team members, the product

owner, stakeholders, and others involved in the requirements definition, that seeks to create a

priority list of the potential users’ desires and needs to validate the current requirements and find

new ones;

• ”group task analysis”: records the steps taken by a user to complete a predefined task under

analysis to later on be able to improve it if necessary.

Due to the time constraints of this work, only part of these methods were adopted, namely ”surveys”

and ”wants and needs analysis”.

3.1.1 Original App Requirements

Since the new application is meant to replace the current one, its requirements and features should also

be taken into account and analysed. The original functional requirements for the application, defined

in [48] are divided into four categories, depending on the user role, and ordered by their priority (highest

priority first). The original requirements were the following:

• General: ”news feed, available courses, institutional contacts, find points of interest nearby, finding

buildings and rooms, schedule and bus-stops of the IST shuttle”;

• Students: ”course announcements, class schedule, academic calendar, personal curriculum, fees

and payments’ information, courses, classes, and groups enrolments and exams registrations,

synchronise digital calendar with the IST calendar, and available rooms”;

• Professors: ”academic schedule, academic calendar, synchronise digital calendar with the IST

calendar, show and add courses’ announcements, show and add classes’ summaries, show stu-

dents/groups, and information about received documents”;

29

• Alumni: ”personal curriculum, and fees and payments’ information”.

Comparing the features available in the current application (Section 2.5.1) with the original require-

ments, some features initially deemed to be a high priority, such as students’ class schedules and the

academic calendar, among others, are missing from the current application, and need to be reconsid-

ered if whether or not they are still going to be kept as requirements.

3.1.2 Survey

Following the approach described in [52] and in [53], a user survey was made (Appendix A) and dis-

seminated to the IST community through the IST website and social media. The goal of the survey was

to gather feedback on the current application, user satisfaction, features that need to be improved, and

suggestions for new ones. 167 responses were collected from students, 16 from professors, six from

staff, five from alumni, and two from investigators, in a total of 175 responses. Note that it is possible to

have more than one role at the university.

Concerning the non-functional requirements (Figure A.3, Figure A.4, Figure A.5, and Figure A.6), the

feedback was overall positive, averaging 3 out of 4 in all of them, except for the User Experience (UX)

(Figure A.3). This can be explained by the fact that there were many features that were reported as not

working properly, as it can be seen in Figure 3.1.

Figure 3.1: Features not working properly in the current app

Most of these responses were expected since some of the original features are not working properly

due to changes in the Fenix API that were not updated in the app, or the API itself needs updating.

This large number of unavailable or deficient features also leads to user dissatisfaction, which is visible

in Figure A.8. Over 50% of the responses, when asked about the deficiencies of the application and

30

reasons for not using it, identified some features not working as they should (Figure A.12). This overall

dissatisfaction is also shown in the overall application usage (Figure A.2), where a third of the users

answered almost never using the app and the other third answered only using it sometimes.

Figure 3.2: Feature requests for the new app

As for the suggested new features (Figure 3.2), the two most requested ones were the student and

teacher class schedule in the application, and the ability to search people and spaces. These require-

ments were already identified in the original application, as described in Section 3.1.1. In particular,

the schedule in the application was listed as the highest priority requirement for faculty and the second

highest for students. Some of the other suggested features show a correlation with the disliked aspects

of the application (Figure A.8), namely as the in-app browser, the language selector, webmail access,

search people/spaces, and dark mode.

3.1.3 Defined Requirements

Following the ”wants and needs analysis” method described in [53], a meeting was held with some

members of the DSI team to discuss the aforementioned survey results (Section 3.1.2) and to define

the application requirements. In this meeting, the disliked aspects (Figure A.8), the features not working

31

properly (Figure A.10), and the suggested features (Figure A.11), were predominantly discussed and

analysed, to decide whether or not they should become a requirement.

3.1.3.A Functional requirements

The first and most important requirement established was that the new application should support all the

features of the current application, as described in Section 2.5.1, except for the Assiduity feature for the

university staff, since the system that manages human resources moved to a new platform, for which

the API is still not available. Besides supporting the current features, the issues identified by the users in

the survey needed to be addressed and fixed as well, mainly the most reported ones, for instance: the

canteen feature is not showing any information regarding the meals, the payments feature is not showing

up to date information, notifications are not working, the shuttle is not displaying any information, and

fixing the calendar sync with the users’ mobile device (Figure A.10).

In order to define what needs to be improved, the features suggested by the respondents (Fig-

ure A.11) were analysed. Since the two most requested features, the schedule in the application and

the search people/spaces, represented 57% of the requests and, were initially part of the original re-

quirements, they were considered part of the requirements of the new application as well. Aside from

these, and based on the requests from users, some new features also became part of the requirements:

• An in-app browser to avoid going out of the application to open Uniform Resource Locators (URLs),

especially URLs belonging to the IST domain, making the in-app navigation easier;

• An option to select the desired application language on the settings page. By default the application

should choose Portuguese if the platform’s language is in Portuguese, and English otherwise;

• Dark mode for the application tied with the device’s dark mode preferences;

• Using the students affluence already registered by the libraries, show the occupation of the li-

braries, their location and business hours;

• Show the location and business hours of the study rooms;

• Separate courses’ announcements from news, to facilitate their visualisation and consultation.

Besides these, considering that DSI has a guide available on how to add the user’s university email

account to an email client, it was concluded that adding a feature to read the user’s email would require

to develop or emulate an email client, what would be complex and out of scope, duplicating already

available apps. So, only a reference to that guide or instructions on how to do it is required.

32

3.1.3.B Non-functional requirements

As for non-functional requirements, based on the list of non-functional requirements in [54], the following

ones were defined:

• Performance: as described by Nielsen [55], for the UI interaction to feel responsive and the ap-

plication to react instantaneously, the response time should be of 0.1 seconds. If an immediate

response is not possible, the application should respond in one second or less, without the need of

showing any feedback. For loading times, they should not exceed 10 seconds, and should always

provide some feedback to the user, indicating that a task is being performed by the system;

• Usability: the application should be at least, as intuitive as the current application is (Figure A.4),

and should provide a better user experience than the current one (Figure A.3), since the issues

identified in the current application will be resolved;

• Compatibility: the application must be supported on older devices, to reach as many users as

possible. In iOS, due to its better upgradability when compared to Android, this is not a problem

since most devices (approximately 85% as of January of 2022 in Portugal) are running the latest

or previous version of iOS [56]. With this in mind, at least iOS 14 would need to be supported.

To decrease the number of unsupported devices, iOS 12 should be supported. As for Android,

more than 94% of Android devices in Portugal are running Android 8 or newer [57], so at least this

version needs to be supported;

• Security: user accounts should be securely stored on the device through encryption. Any other

data that is not private should not be accessible by other means besides the application itself. To

reduce the possibility of attacks, like Man in the Middle attacks, only secure connections should be

used, such as Hypertext Transfer Protocol Secure (HTTPS). Furthermore, the application should

not be able to retrieve information from any domain not belonging to the university. Users should

only be able to perform actions and access features they have permission for through their roles.

3.1.3.C Fault Model

As part of the application’s requirements, the types of faults that it can sustain should also be established.

The following use cases should be supported:

• If there is no internet connection available, the application must show the latest information re-

trieved, depending on the feature being used, so the user can still access it even without an inter-

net connection. Otherwise, feedback that no information could be retrieved should be provided to

the user;

33

• Similarly to the previous use case, if an API request fails to return valid information, the previous

retrieved information, or feedback that it was not possible to retrieve it, should be provided to the

user;

• When a user is editing information, for instance, writing a class summary, and the request is not

completed successfully, feedback should be provided to the user, and the already filled information

should persist to enable to complete the operation when connectivity recovers, without having to

retype the whole content.

3.2 Choosing the Cross-Platform Framework

To choose between the frameworks described in Section 2.3, various aspects were taken into consider-

ation. PWAs could have been a good choice, due to their small size, the use of familiar programming

languages, good hardware feature support and their ability to be installed on the device. Although the

latter is true, the fact that PWAs cannot be submitted to the App Store makes this choice unfeasible.

Also, despite having support for the most commonly used hardware features, some features like syncing

the calendar without user input, which the current application supports, are not currently possible on

PWAs, leaving only React Native and Flutter.

Since performance is not a critical requirement for this type of app and the fact that DSI, which will be

maintaining the application in the future, uses mainly JavaScript for their frontend projects, React Native

was considered the best choice overall to develop IST’s new academic application, due to the use of

JavaScript, Native UI elements, and a large development community.

3.3 Application Architecture

To keep the application as light as possible, and to be easily run on a multitude of devices, the app

is going to depend mainly on the faculty academic management platform, Fenix. Fenix API provides

an API [58], which supplies most of the essential information needed, namely: information about the

user (courses, curriculum, payments, schedule, evaluations), the courses, the university’s spaces, and

contacts, among others. This API is also publicly available. Although, due to recent changes in the

backend, some endpoints were not returning the most updated information, as mentioned previously. To

remedy this, for the most part, the Fenix API is currently being updated, except for the Shuttle feature,

where a new API was used. Similarly to the ongoing application, the Ticketing feature, which allows to

withdraw tickets from the university’s services, is supported by another API as well. The endpoints for

the APIs being used are listed in Appendix B.

34

Figure 3.3: Simplified application architecture

In order to have access to user-protected information, the Fenix and Tickets APIs need, in some

way, to use the user’s account. For this purpose, the Fenix backend supports authentication through

OAuth [59], for which a specific OAuth protocol flow was implemented. After the user signs in, it is

important to understand what kind of roles the user has, in order to show different features depending

on the role. For instance, users with the teacher role need to have the summaries feature to write

courses’ summaries, but the rest of the roles do not have permission to do so, so this feature should not

appear to them. It is also important to note that users can have multiple roles.

Relying solely on APIs to get the necessary information means that the application would only work

with an internet connection. To overcome this restriction, in a similar fashion to [51], a cache was

implemented to provide the last information retrieved whenever it exists, instead of not showing any

information at all. In most cases the cached information would be the same as the current one, since

most of it does not change frequently, apart from the news and courses summaries. A simplified version

of the application’s architecture is shown in Figure 3.3.

3.4 Authentication

OAuth is an open standard authorisation protocol that provides services or apps the option to allow

secure authorisation by using tokens instead of credentials [60].

In an OAuth flow, after a user authenticates and authorises the service, an access token is used

35

instead of the user account, improving security and privacy at the same time. Since it was going to be

implemented on a mobile application, which was going to be public, it could be exploited through au-

thorisation code interception, where a malicious app is running alongside the legitimate application and

intercepts the authorisation code, allowing it to obtain the access token afterwards, and impersonating

the user. To prevent this, an OAuth with Proof Key for Code Exchange (PKCE) [3] mechanism was used.

Figure 3.4: Authorisation code flow for OAuth with PKCE. Retrieved from [3]

This variant instead of only sending the authorisation code request, it creates a random string, called

the code verifier, that is usually encrypted with SA256, creating the code challenge. This code challenge

is then sent alongside the authorisation code request. After the user authenticates and authorises the

service, an authorisation code is returned. To prevent the aforementioned attack, then the application

sends the authorisation code with the code verifier in plain text, for the authorisation server to verify

the user. Using this approach, even if the authorisation code and the code challenge are intercepted,

it is not possible to obtain the access token, since it is not possible to obtain the code verifier from

the code challenge. With this, authentication with OAuth with PKCE provides a simple way for secure

36

access to user private information or role-based protected activities. The diagram of this flow is shown

in Figure 3.4.

To prevent the user from having to log in every time the application is used, a refresh token is sent

with the access token. This token can be stored securely on the device and allows one to obtain a

new access token without performing the aforementioned process. A certain duration is assigned to the

refresh token, so when a new access token is requested, a new refresh token is provided as well.

3.5 Interface Design

The web design team at DSI had already been working on a design for a new mobile application for

some time before the start of this thesis. This new design is based on the new design language that

is currently being implemented on every service provided by DSI. Similarly to other design projects, it

is being developed using Sketch1, which allows for multiple users to work on the same project, build

wireframes, and prototypes, and share design elements like icons, fonts, and others, between projects.

When the design of a screen, or feature, is complete, the designs are uploaded to Zeplin2, which gives

developers easy access to templates, which are organised by features, allowing them to access design

items, like icons, fonts, images, the spacing between elements, and others, with ease. Furthermore,

Zeplin also provides extensions that allow code generation for design elements, allowing developers to

focus more on developing the logic of the application and not the design, as demonstrated in Figure 3.5,

where Zeplin generated the style for a text component in React Native.

Since new features were going to be implemented, their design needed to be drawn. To do so, the

remaining features were designed based on:

• The new existing designs;

• The design language being used;

• The design goals described in [61], namely: ”it makes it easy to recover from mistakes”, ”it has uni-

formly designed interface elements, but leverages irregularity to create meaning and importance”,

or ”it conforms to users’ mental model of what it does”.

It is important to note that since the same codebase is shared between multiple platforms, it is of

high importance to create designs that fit both the iOS and Android design languages and make sure

that they do not feel out of place.

After doing so, the design needed to be evaluated against the requirements [62]. Considering that

user acceptance tests are going to be performed on a later stage of the application development (Sec-

tion 5.2), a simple test with users that only evaluated and validated the UI was made.
1Sketch – https://www.sketch.com/
2Zeplin – https://zeplin.io

37

https://www.sketch.com/
https://zeplin.io

Figure 3.5: Zeplin interface with React Native code generation of design elements

In this user test, the designs for each functionality were shown to the participants, using the prototype

generated by Sketch, which used the design’s wireframes. After the UI was presented to the participants,

a small survey (Appendix C) about it was performed. This test was made with only seven users, mainly

students, which are the main target for the application. In spite of the design being made by an expe-

rienced team, this test still proved to be very useful. Most of the users rated the UI with the maximum

score available (Figure C.3), and all of them stated that it had surpassed their expectations (Figure C.5).

Moreover, every participant provided constructive feedback on how they thought some aspects of the

design could be improved, for instance, allowing the user to sort the curriculum courses by academic

year or alphabetically, or only showing the shuttle trips that have not started yet. This allowed gathering

some feedback that would only be received in the user acceptance tests, which would be performed at

the end of the development (Section 5.2), much earlier.

38

4
Implementation

Contents

4.1 Application Implementation . 41

4.2 API Constraints . 42

4.3 Implemented Requirements . 43

4.4 Debugging . 44

4.5 Testing . 46

4.6 React Native Analysis . 49

39

40

After defining the requirements (Section 3.1.3) and validating the design (Section 3.5), the imple-

mentation details are described in this chapter.

4.1 Application Implementation

At the beginning of the development period, there were three key factors that were considered concern-

ing React Native development: what language to use, what emulator to use, and how many third-party

libraries should be used.

4.1.1 Development Language

Although JavaScript is the programming language used to program in React Native, a superset of it,

TypeScript, can be used. TypeScript is developed by Microsoft and in its essence is just JavaScript, but

with types [63]. Lately, it has been widely used for this reason. This way, some of the issues inherited

by JavaScript for not using types could be avoided altogether. But due to its slightly different syntax, it

could make the application maintenance more difficult, so it was decided that it would be better to use

plain JavaScript instead. To compensate for this lack of types throughout the codebase and to ease the

future maintenance of the app, detailed documentation was made, identifying the types of the function

arguments and component properties, for instance.

4.1.2 Emulation

The emulator provided by Android Studio, which is the one recommended in the React Native documen-

tation, proved to be extremely slow and hard to work with, in the main development environment used,

running Ubuntu 20.04 LTS. This, however, was not an issue in the Mac OS development environment,

even though the machine was much older than the one running Ubuntu. Thankfully, there are alternatives

that provide most of the same features as the Android Studio emulator and have better performance,

like Genymotion1, the chosen alternative. Genymotion, besides its superior performance, provided a

simpler UI to create and edit emulators, and connected to the application’s development server like the

recommended emulator, due to being recognised as an Android Debug Bridge (ADB) device.

4.1.3 Third-party Libraries

To keep the app as light as possible, the use of third-party libraries was avoided as much as possible.

However, in the end, many were still used. This is mainly because React Native does not include some

essential UI elements, or features, like a toggle component, in order to have a small footprint. Most
1Genymotion – https://www.genymotion.com/

41

https://www.genymotion.com/

of these features were initially provided by React Native and are currently being developed and main-

tained by the React Native community. This ultimately, increased the number of external dependencies,

expanding the local project size. This was worrying at the beginning since it was not desirable for the

app to have a large size. In the end, this proved to not be a problem in terms of size, as discussed in

Section 5.1.5. Despite this, it still can be a problem when it comes to maintenance since it is impor-

tant to keep track of each dependency and keep them always updated, especially to avoid any security

concerns.

4.2 API Constraints

During the development process, some issues with the Fenix API [58] were identified. Some of these

issues conditioned the development of new features. The following issues were identified:

• /contacts: endpoint has a lot of missing contacts when compared to IST web page;

• /person/payments: a recent update to the Fenix backend changed the way payments are han-

dled and processed. Due to this change, payments’ information for the present academic year,

2021/2022, are not returned by this endpoint;

• /canteen: no information at all is returned, making it unfeasible to implement the canteen feature

without having to use fake information. Besides not returning any information, more information

should be returned compared to when it was working, like more dietary information about the

menu, ingredients, and meal energetic value. Of course, keeping this information up to date de-

pends also on external entities.

Furthermore, push notification endpoints in the Fenix API [58] were not working and need to be

fixed in order for these to work. Initially, a workaround was implemented, where a background task

would run each hour on the device and fetch course announcements to compare with the ones stored

in cache to understand if there were any new announcements. If there were new announcements, then

local notifications were created. The downside of this initial implementation was the fact that iOS could

only run background tasks if the application was already opened once and running in the background.

Android, on the other hand, could schedule the background tasks when the device booted up, without

having to open the application.

Besides the problems in the existing endpoints, there were are also endpoints that had to be created

in order to support some of the newly implemented features. For example, the Search feature was one of

these, which already has all the code needed in the application to search spaces, people, and courses,

but which could only search people with the previously available endpoints.

42

4.3 Implemented Requirements

Despite all the issues identified in the used APIs, all the currently available features in the ongoing

application and still required were implemented. Further to these, all the newly established requirements

(Section 3.1.3.A) were also implemented.

(a) Quick actions for users when they are not logged in (b) Quick actions for users with the Student role

Figure 4.1: Quick actions in the new iOS app

Besides the established functional requirements, there were also new functionalities that were added

to the application throughout its development. The new features are:

• User account page that shows the user’s roles, personal information, namely full name, birthday,

and gender, and the user contacts and web pages;

• Quick actions for both iOS and Android that depend on the role of the user, as shown in Figure 4.1.

If the user is not logged into an account, the shortcuts available are the ones in Figure 4.1(a), news,

shuttle, and contacts. If the user is a student, the quick actions are announcements, courses,

evaluations, and curriculum (Figure 4.1(b)). If the user is an alumnus, payments, curriculum, and

news. If the user is a teacher, the shortcuts are curriculum, shuttle, news, and summaries. Finally,

if the user is a staff member, the quick actions are the same as when a user is logged out. Since

most of the users are students, their quick actions were based on the responses to the ninth

question of the survey (Figure A.9), which are the same as shown in Figure 4.1(b), except for the

43

announcements, since the news and announcements were split into two different functionalities to

facilitate their visualisation;

• An option for the users to customise the feature that is loaded once the application starts. By the

default it is the news feature;

• An option to select the closest shuttle stop using the user’s location, if permission is given by the

user to access location services;

• In order to improve the overall security of the Fenix system, support for two-factor authentica-

tion was implemented in the application. This was done through developing notifications, a page

displaying the generated code, which also allows to request a new code as well. With this, two-

factor authentication is ready to be used with few changes required once it is implemented in the

backend;

• User interaction logs were added and are sent automatically, if the user allows it, when a crash

occurs, due to the use of Crashlytics2. This tool automatically gathers information about the device

of the user and sends it along side the source of each crash. This makes it easier to analyse and

understand what was the source of the crash.

As for the non-functional requirements defined in Section 3.1.3.B, all of them were met. To achieve

the compatibility requirements, the application is able to run on iOS devices running iOS 12 or later and

on Android 6.0 or later, exceeding the minimum requirement established by a couple Android versions.

To comply with the security requirements, no HTTP connections are allowed. Moreover, as mentioned

in Section 3.3, the application stores the refresh token provided by the OAuth mechanism in a secure

way. In the application this is done through a popular and regular maintained third party library, react-

native-keychain3, that provides access to the native iOS Keychain4 and Android Keystore5, which are

the recommended and most secure way to store authentication information on both platforms.

For the remaining non-functional requirements, Performance and Usability, performance testing and

user acceptance tests were performed and their results are going to be analysed in detail in Chapter 5.

4.4 Debugging

Similarly to traditional software development, to fix the issues encountered during development, debug-

ging had to be performed. Fortunately, React Native already provides guides and tools for this purpose.

2Crashlytics – https://firebase.google.com/products/crashlytics
3React Native Keychain – https://www.npmjs.com/package/react-native-keychain
4iOS Keychain – https://developer.apple.com/documentation/security/keychain_services
5Android Store – https://developer.android.com/training/articles/keystore

44

https://firebase.google.com/products/crashlytics
https://www.npmjs.com/package/react-native-keychain
https://developer.apple.com/documentation/security/keychain_services
https://developer.android.com/training/articles/keystore

If the default JavaScript engine is being used, the development menu can be used to start the debug-

ging server. This will open http://localhost:8081/debugger-ui on Chrome, allowing the debugging of the

application using Chrome’s developer tools, like a website or a NodeJS application. The aforementioned

tools allow browsing the application’s files, introducing multiple breakpoints, querying the application

using the console, observing the value of the variables used in each breakpoint, analysing errors and

warnings, and CPU and memory profiling.

Figure 4.2: Debugging a React Native application running on Hermes, with Chrome developer tools

Another method to debug the application, is through Visual Studio Code (VS Code) 6, the IDE used

to develop the application. To do so, firstly the React Native Tools7 extension, provided by Microsoft,

needs to be installed. Having done so, depending on the React Native configuration, the launch.json file

needs to be configured accordingly to the extension’s setup guide. After setting up, to start debugging,

the play button needs to be pressed on VS Code’s debug tab. This extension provides most of the

features in Chrome developer tools, with the exception of CPU and memory profiling.

Having tested all of these methods, the easiest one to use, was VS Code, due to its simplicity (only a

button needs to be pressed to start debugging after setting up). Also, being able to introduce breakpoints,

6Visual Studio Code – https://code.visualstudio.com/
7Visual Studio extension – https://marketplace.visualstudio.com/items?itemName=msjsdiag.vscode-react-native

45

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=msjsdiag.vscode-react-native

query the console, and check variables’ values inside the development IDE, instead of using another

application to do it, makes it simpler and more productive.

4.5 Testing

During the development process, with the main purpose of catching errors as soon as possible, unit and

integration testing were considered. These, however, did not test the interactions of the user with the

created components, which is their most important characteristic. To test these interactions, according

to React Native’s documentation [64], component testing is the most adequate method.

Besides automated testing, manual testing of different aspect ratios on different devices, and different

accessibility options, such as bigger fonts, were also tested, which proved to be a time-consuming task.

4.5.1 Component Testing

To start component testing, as recommended by the documentation [64], the React Native Testing Li-

brary8 should be used. This third-party library is based on Jest9, which is a powerful, yet simple,

JavaScript testing framework, compatible not only with React Native, but also with VueJS, AngularJS,

Node, and TypeScrypt, among others.

However, soon after, component testing started to reveal some problems. The biggest one was the

fact that when a change of state happened in a component, it caused the component to be unmounted

during testing, which made it impossible to test anything after that state change, leading to an error

stating that the component had been unmounted. This made component testing unfeasible since most

components have an internal state and depend on them to work properly. So, another approach had to

be used.

4.5.2 End-to-End Testing

The last method described in React Native’s documentation [64] that allowed testing the interaction with

components, was end-to-end testing. In this type of testing, instead of testing an application component,

the whole application is used for testing on a real or emulated device. They also emulate well the

interaction of a user with the application, since the actual elements of the application are being interacted

with.

To perform end-to-end tests, the React Native team recommends two frameworks, Detox10, and

Appium11. The first one was the chosen framework, due to the use of Jest, since it was already used
8React Native Testing Library – https://callstack.github.io/react-native-testing-library/
9Jest – https://jestjs.io/

10Detox – https://wix.github.io/Detox/
11Appium – http://appium.io/

46

https://callstack.github.io/react-native-testing-library/
https://jestjs.io/
https://wix.github.io/Detox/
http://appium.io/

when trying to perform component testing, and it has easier to read and understand documentation.

Setting up Detox was a time-consuming, yet simple process, due to its comprehensive documentation.

This long setup process was mainly due to the steps required to make end-to-end tests work on Android.

For this platform, both changes in the native code and the application’s Android properties files had to be

made. In iOS, the only setup needed was to configure the Detox property file that contains information

about the devices that are going to be used for testing. In Android, this configuration also needs to be

done, and besides supporting the Android Studio emulator, it also supports Genymotion (the emulator

being used, for the reasons aforementioned in Section 4.6.2).

For the tests to be consistent, the APIs needed to return always the same response or return an

empty response to test empty states. To achieve this, mocks for the APIs were developed. Mocks

replace components or functions with a different implementation or fixed response for testing purposes.

Besides the APIs, the OAuth login flow also needed to be faked, since Detox cannot interact with web

views, which are required to log in. Since it would not be safe from a security standpoint to have the

credentials for multiple accounts (one for each role) registered in plain text in the test files, a simple

component to select the role of the user was made. Each role in the mocked component would set the

appropriate roles in the app and cache information about the user, which in this case is a made-up user,

similarly to the real login.

Figure 4.3: How a real component or a mock component is selected using Detox

Detox ’s mocks, when compared with the ones developed when component testing, were much sim-

pler. To do so, as illustrated in Figure 4.3, only three steps need to be taken:

• Create a proxy component that only imports the real component and exports it;

47

• Create a fake component, like a normal component, in the same directory as the proxy with the

.e2e.js file extension and the same name as the proxy;

• launch the Metro server (the application server) with the RN SRC EXT 12 variable set. This way

when the application is running, the server will use the mock components instead of the real ones.

Listing 4.1: End-to-end test using Detox

1 describe('News screen ', () => {

2 beforeAll(async () => {

3 await device.launchApp ()

4 })

5

6 it('should display news component ', async () => {

7 await expect(element(by.id('newsList '))).toBeVisible ()

8

9 await expect(element(by.id('newsItem0 '))).toBeVisible ()

10 await expect(element(by.id('newsItem0-title '))).toHaveText('A title ')

11 await expect(element(by.id('newsItem0-cat '))).toHaveText('Events ')

12 })

13 })

After mocking all the needed components, tests can be easily written using Jest, like the one shown

in Listing 4.1. The test files need to be located in the e2e directory with the .e2e.js file extension, similarly

to the mock components. In this and other tests, methods from Jest, like describe (line 1), to group tests,

or beforeAll (line 2), code to run before all tests, are needed to write them. Besides using the Jest library,

Detox also offers its own library to ease testing, with methods to tap a component, write in a text box like

a user would, sliding, pinching, assessing methods (line 7 to 11), among others. Besides these methods,

it also offers a device object with methods that allow uninstalling, installing, restarting, terminating, and

launching the application (line 3), sending a notification, setting the device location, and many others.

Also, it is important to note that to find the components with ease, their testID can be used like in line 7

of Listing 4.1, which is a property that can be given to all React Native components.

End-to-end testing a functionality proved to be quite useful due to the fact that a considerable amount

of errors were found, like missing empty states, toggles not working correctly, or roles having access to

features that they should not have, and the small amount of time they took to write. After developing all

the functional requirements listed in Section 4.3, a total of 165 tests were developed and, after some

12https://wix.github.io/Detox/docs/guide/mocking/#triggering

48

https://wix.github.io/Detox/docs/guide/mocking/#triggering

corrections, all of them run successfully. These tests can also be integrated into a Continuous Integration

and Continuous Delivery (CI/CD) pipeline, making sure that any update to the code passes all end-to-

end tests.

Although end-to-end tests are the best method to test user interaction with the application, the React

Native team identifies some of their disadvantages: they are more cumbersome to write, slower to run,

and, sometimes without any changes to the source code, a test can either pass or fail (flakiness) [64].

The last one is due to the application being tested on the release version, so cached data, for instance,

can affect the outcome of tests, if they are not accounted for. The fact that they are slower is true since

the test is being run in a real or emulated device. End-to-end tests, when compared with component

testing, contrary to what was stated by the React Native team, were simpler to write, so more tests could

be written in the same amount of time. As for the flakiness, it did not prove to be true as well while

developing the tests.

4.6 React Native Analysis

Throughout the application development, both positive and negative points of React Native were found

and are described in the following subsections.

4.6.1 Positive Factors

Right from the start of the development, it was clear that the environment setup, although more complex

on Linux than on Mac OS, was straightforward due to the detailed and comprehensive documentation

provided by the React Native team. This detailed documentation can be seen everywhere in React

Native, especially in components’ documentation, which lists and explains every prop the component

can use, exemplifies the use of the component through an example that can be tested and interacted

with through the web browser, and has a list of methods provided by the component. Besides com-

ponent documentation, there are testing, debugging, performance, and design guides, among many

others. Comprehensive documentation can also be found in many third-party packages offered by the

community.

The big and active community of React Native also eased the development of the application due to

two factors. The factor stems from its popularity, if a problem in React Native or in a popular third-party

component is found during development, it is highly likely that other developers had already encountered

a similar issue and clear solutions are already available on internet forums. The second factor is the fact

that if something is needed that is not currently provided by React Native, it is almost certainly provided

by a third-party library developed by the community. For example, the in-app web browser used in the

49

IST app, the calendar synchronisation, HTML renderer, among others, are community components or

libraries.

Another way to avoid some of the issues already identified in React Native, especially the ones that

come with the use of the Bridge, as mentioned in Section 2.3.1.B, is to use another JavaScript engine.

For the development of the application, Hermes [65], an engine also developed and made open source

by Facebook, was used. This engine was mainly chosen due to the use of JSI, which brings many

advantages, such as the ones described in Section 2.3.1.C, its smaller application size and memory

usage, and faster application startup.

Not only can the application run on emulators, but it can also run on real devices and be connected

to the application server (the Metro server), allowing testing the application on real devices at the same

time the application is being developed. When the application is running on a real device, it offers

the same debugging features available in emulators, like an element inspector, and live performance

metrics, among others.

Lastly but not least, the use of JavaScript, together with hot-reloading, contributes to simplify the use

of React Native. As previously described, the use of hot-reload allows changes in the application to be

applied live both in the used emulators and the real devices, eliminating the time needed to compile the

application, which can take time in slower machines.

4.6.2 Negative Factors and Issues

Despite all the positive aspects described in the previous section, there were some issues found while

developing the application that are relevant to all React Native applications. As mentioned previously,

almost anything that is missing in React Native can be provided by a third-party package. However, even

basic features that are used in all applications, like a splash screen, are missing in React Native. This

means that the developer has to spend time selecting all the available custom packages and deciding

which is the best to use, eventually leading to multiple packages being tested, raising maintenance

concerns.

In the case of the aforementioned custom splash screen, it leads to another downside of React Na-

tive: although JavaScript is the language used to program in React Native, eventually more programming

languages are used to make a React Native application. In this case, as well as others, like setting up

notifications, changing the application icon, allowing HTTP requests to test internally, and changing the

application name, among others, imply changes to the native code and property files for both platforms.

Ultimately, it may be less of a problem than it seems since most third-party packages have detailed

explanations and step-by-step setup instructions for these cases. However, it is important to note that

changes in native code will most likely happen. A bigger problem arises when a feature is not currently

provided by React Native nor the community. In these cases, the only way to implement it is through the

50

creation of a native module.

Lastly, a major inconvenience found while developing the application was the fact that, on several

occasions, React Native did not provide a useful stack trace to identify the root of a problem, which lead

to extra time spent on finding the source of the error.

51

5
Solution Evaluation

Contents

5.1 Performance Testing . 53

5.2 User Acceptance Tests . 58

52

To evaluate the new solution, the current IST application was used as a baseline, in order to compare

and evaluate the non-functional requirements, such as performance and usability, against the new React

Native application.

5.1 Performance Testing

Since React Native applications are interpreted apps, it is expected that the use of resources, namely

CPU, RAM, and power consumption, will be higher when compared with its native counterparts. To

check this, and to evaluate how many resources the new application requires, the following subsec-

tions describe the methodology and results obtained from testing both the performance of the original

application and the new one, for each supported platform.

On both platforms, two tests were performed. The first one launched both applications for the first

time, logged in, and went through all the common features between the two. The second test evaluated

the performance of the applications in standby (both with it opened and running in the background).

In Android, to monitor in real-time the device’s metrics while conducting the aforementioned tests,

Android Studio provides an application profiler that allows to observe the CPU consumption, RAM usage,

and power usage, as shown in Figure 5.1. The profiler also allows to connect to any device, so a real

device, or an emulator, can be used to test the application. To conduct the tests in Android, an emulator

running Android 10 was used.

Figure 5.1: Device’s metric shown in Android Studio while performing the first test case

In iOS, Xcode can be used to monitor the device’s metrics as well (Figure 5.2). Despite Xcode offering

a more complete profiling tool (Instruments) with more metrics and customizability than Android Studio,

it proved to be quite challenging to use. Although both emulators and real devices can be profiled, some

metrics, including some of those captured during the aforementioned tests, can only be monitored using

real devices and not emulators. For this reason, instead of an emulator, like in Android, the tests were

53

performed on a real device. The test device was an iPhone Xs running iOS 15.0, which represents a

good middle ground between newer and older iOS devices.

Figure 5.2: Device’s metric shown in Xcode while performing the first test case

5.1.1 CPU

During the first test on both platforms, the CPU performance tests yielded similar results to the ones de-

scribed in Section 2.3.1.G. For the first test case, the user interaction test, the React Native application

had at startup approximately two times the CPU consumption of the original native Android application,

namely 55% and 27% respectively (Figure 5.3), and 70% for React Native and 50% for native iOS (Fig-

ure 5.4). These results are consistent with those obtained by Hansson and Vidhall [19]. This behaviour

was expected for the same reasons mentioned in Section 2.3.1.G.

For the remaining of the test, the CPU usage proved to be higher in React Native than its native

counterpart, having an average in Android of approximately 14% for React Native and 10% for native

Android, and in iOS of 49% in React Native and 41% in the native application. In Android, despite the

average being smaller than expected, it still represented a 40% increase over native. In iOS on the other

hand, although the average CPU usage was higher, the increase was significantly smaller, being about

19.5%. The spikes in each graph coincided with the loading of a new feature.

This higher CPU usage can be explained not only by the use of React Native, but also result from a

more complex UI. This is mainly due to the elaborate animations used, which were almost nonexistent

in the original application. Moreover, some features, such as the shuttle, were not working on the current

application, so they were only displaying an empty state.

Lastly, for the second test case, in Android, both applications had similar CPU consumption of 12%

while idling and 0% while running in the background. iOS, on the other hand, had a 5% CPU consump-

tion in the native app while idling and 0% in the React Native app. As for background utilisation, both

applications used 0%.

54

Figure 5.3: CPU usage on an Android emulator for the first test case

Figure 5.4: CPU usage on an iOS device for the first test case

55

5.1.2 RAM

Regarding memory usage, the new application required on average 30MB more in Android (Figure 5.5)

than the original one, and 17MB more in iOS (Figure 5.6). This represented a 29.4% increase in Android

and 35.8% in iOS. This can be explained by the same reasons mentioned for the increase in CPU usage.

In a similar fashion to the CPU usage, the RAM usage can also decrease in a day to day use, since

it is expected that each user will only use regularly a handful of features. This is shown in the survey

answers (Figure A.9). This coupled with the fact that react navigation1, the library used to navigate

through the screens, only loads a screen after the first time it is needed, justifies that the amount of used

RAM will be lower on a daily basis.

In the second test case, the RAM usage on Android was more than 100% higher on the React Native

app, 118MB for the new application while idling and 103.6MB while in the background, and 49.8MB for

the current one in both cases. The situation in iOS was similar, with an idle consumption of 53.4MB

and 48.6MB while in the background, compared with 20MB and 10MB respectively of the native iOS

application.

Figure 5.5: RAM usage on an Android emulator for the first test case

1React Navigation – https://reactnavigation.org/

56

https://reactnavigation.org/

Figure 5.6: RAM usage on an iOS device for the first test case

5.1.3 Network Requests

To monitor the number of network requests and their latency in Android, Android Studio provides a

network profiler, but unfortunately, it was not working in the current version2. Therefore, third-party

alternatives had to be used. For React Native, reactotron3 proved to be extremely useful, not only

showing network requests but AsyncStorage calls as well. Unfortunately, it only worked for the React

Native App. A more global solution was to use Charles4, an HTTP and Secure Sockets Layer (SSL)

proxy tool, that allows to perform a man in the middle attack and observe every request sent from the

device or emulator. In iOS, since it was not possible to build the native app on Xcode, due to the great

amount of produced errors, Charles needed to be used as well, since Xcode does not show detailed

network information of external apps.

After analysing the results, the average network call duration in React Native was 95.28ms for An-

droid and 138.43ms for iOS, which are similar to their respective native counterparts, as it was expected.

Besides their duration, it was interesting to compare the number of requests the new application per-

formed compared with the original one, which was much less in the React Native application than the

current native one: 25 and 47 requests respectively. This difference can be explained by the fact that the

original application performs all the requests once the application loads, which decreases the load time

of each feature, but it also performs API requests in each feature. With this approach, most requests are

2Android Studio Bumblebee – 2021.1.1 Patch 2
3Reactotron – https://infinite.red/reactotron
4Charles – https://www.charlesproxy.com/

57

https://infinite.red/reactotron
https://www.charlesproxy.com/

being performed twice. This shows that the new application is more efficient than the current one. Note

that in iOS, the React Native application each couple of minutes performs a network request to verify its

internet connection, which does not happen in Android, but these were filtered out during the network

testing.

5.1.4 Energy Comsumption

In both tests running on Android, despite the React Native application consuming more energy, among

the three Android Studio’s energy categories, ”light”, ”medium”, and ”heavy”, both applications still aver-

age a ”light” consumption. In iOS, the results were similar to the ones obtained in Android.

5.1.5 Storage Size

Besides testing both applications, their storage size after the tests was also analysed in order to better

simulate the state of the application after some use. In Android, the new application occupied 54.05MB,

while the original one was only 28.62MB. In iOS, the new application had a size of 23.7MB while the

original one had 21.1MB. The increase in the Android app size was expected since a React Native

application needs to contain the React Native framework. In iOS, on the other hand, the size was almost

the same, which was anticipated, but not to this extent. This smaller size in iOS is because applications

generated for Apple devices are more optimised for each individual device, whilst on Android, apps are

only optimised for a given architecture, since it needs to work for a greater number of devices. In any

case, storage on mobile devices increased drastically compared to the devices available at the time the

current app was developed, so this increase does not pose any problem.

5.1.6 Overall Discussion

Despite the overall higher resource consumption in the React Native app, the increase in most cases

is minor and justifiable, considering that the app is more computationally intensive, due to its modern

animations and the number of features being greater. React Native itself contributes to this as well. In

general, this increase in resource usage was similar to the results obtained in [19] and [26], discussed in

Section 2.3.1.G. This gap would probably be even smaller, if the current native applications were similar

to the newly developed one, similarly to the aforementioned studies.

5.2 User Acceptance Tests

According to [66] there are three types of user acceptance tests:

58

• behaviour or scenario based acceptance tests: evaluates the system based on the perspective

of the users, by analysing the external behaviour of the system;

• black-box acceptance tests: tests the functional requirements of the product;

• operation-based acceptance tests: testing is based on the probability of occurrence and each

test case is different depending on the profile of the user.

To choose the best approach, the identified drawbacks of each one of them were considered. The

first one has limited user involvement and it does not specify the acceptance criteria from the user’s

point of view. Since the users should be involved the most in this process to validate the product, this

approach is not the best one. The second one, the black-box approach is the most widely used one and

does not have any major downside. The last one is a new framework presented in the aforementioned

article and seems to be promising, but it requires more previous analysis and it was not tested in a

real application with users, so it could have unknown disadvantages. Having this in mind, the black-box

approach was the chosen one.

5.2.1 User Test Cases

The next step was defining the test cases to be performed by the users. Hetzel and Hetzel [67] state

that the test cases should be based on major functional requirements, and in [66] that they should be

decomposed into single condition cases. This being said, the following test cases for each of the major

functionalities available to all user roles were considered:

• Setup screen: Open the app and go through the initial setup;

• News: Read the first article of the ”Campus and Community” category;

• Cafeteria: Check the ingredients of the soup being served for dinner on Tuesday for the Alameda

campus;

• Shuttle Check the bus stops for the first shuttle trip tomorrow from Taguspark to Alameda;

• Search: Find the location of room FA1, including its location on the building floor;

• Parking: Check how many hours a day the Alameda car park is open;

• Contacts: Find the phone contact of DSI;

• Tickets: Get a ticket for the ”General Service” queue in the academic service;

• Payments: Share the payment information of the first outstanding payment;

59

• Account: Discover the roles of the logged user;

• Calendar sync: Disable the evaluation calendar sync;

• Custom initial feature: Change the start-up screen to the Shuttle feature;

• Email: Check the email setup guide.

For participants with the student role, the following additional test cases were performed as well:

• Announcements: Read the first announcement of the ”Master Dissertation” course;

• Courses: Find out the teachers of the ”Communication Skills” course;

• Schedule: Figure out the student schedule for tomorrow;

• Evaluations: Discover the rooms for the next incoming student evaluation;

• Curriculum: Discover the student grade of the first course alphabetically of the Master’s degree;

• Study: Find the most empty library in the ”Pavilhão Central” building.

For the users with the teacher role, only the schedule test case, together with a new test case for the

Summaries feature is needed: edit the first filled summary, adding a Portuguese title translation. For the

Alumni, the Curriculum test case described above was used. Lastly, participants with the staff role only

needed to do the first mentioned test cases.

5.2.2 Results

After defining the test cases, and using the acceptance criteria presented in [66], ”No major problems

found”, the user acceptance tests were performed. In these tests, the users interacted with the applica-

tion running on their own devices, allowing to gather feedback and observe the application running on

a multitude of different devices, more importantly, different screen aspect ratios. It is also important to

mention that the application used for testing was a slightly modified version of the developed application

that used mocks for logging in and to gather most of the information, allowing to have more consistent

tests among each participant.

Nielsen [68] argues that five users are enough to perform user tests and provide the best return on

investment. Also, according to [69], the participants should either be a user of the product, or a partic-

ipant with similar needs and background to the ones that do use the product. For these reasons, ten

users participated in the user acceptance tests, since there were no costs besides the time involved

with testing. Of the ten, three were students, but not at IST, allowing to simulate the experience of new

students and foreign exchange students enrolling at the university and interacting with the application

60

for the first time. Three were students at IST, one alumnus, and three were teachers. Also, one of the

students and the alumnus were also teachers before, so they also performed the test cases assigned

to teachers. Users with the staff and investigator roles were not tested, since there were no exclu-

sive features for those users. Before starting testing, the participants needed to sign a Non-Disclosure

Agreement (NDA) to guarantee that the current version of the application is not leaked. Throughout the

duration of the tests, the users were encouraged to give feedback on the test case being performed, as

described in [69]. After completing the test cases, the users answered a survey (Appendix D), where

they could leave their feedback anonymously about the application as a whole.

Afterwards, the feedback provided from the final survey was compiled and analysed, and it is avail-

able in Appendix D. Overall, the participants considered the new application very good, despite some

suggestions that could improve the UX of the application. This can especially be observed in the re-

sponses got from the participants when asked to rate the overall user experience of the application,

where every participant answered with the maximum score (Figure 5.7). This result was a substantial

improvement over the original application (Figure 5.8), and allowed to fulfil the usability requirements

established in Section 3.1.3.B.

Figure 5.7: UX rated by users during user acceptance tests

61

Figure 5.8: UX rated by users during the survey related to the current app

As for the other metrics, UI (Figure D.3) and intuitiveness (Figure D.2), both of them achieved the

same results overall as the UX metric. Intuitiveness, however, had one participant who did not rate it

with the maximum score. This was due to a design decision that most users did not agree with: the

search feature and the study spaces one are separate features, where they could be just one since the

search functionality can search for spaces in the university’s campus, it will also find the study spaces.

Also, it was not clear what could be searched, and the location of the search menu item in the menu

itself was not the best one. Despite this, another indicator of how intuitive the application was is the time

taken on average by each participant to accomplish a task or a test case. On average, more than 84%

of the test cases were completed in less than 15 seconds, as shown in Figure 5.9. Unsurprisingly, the

tasks that had a bigger time disparity were the ones related to the search and study features, which, as

mentioned before, were the ones that the users thought could be improved the most.

Besides the aforementioned issue, the users identified small improvements that could be done to

further ease the use of the application, such as: moving the help section from the settings to the menu

drawer for easy access, a more conventional date picker to consult the shuttle schedule, adding the

day of the month bellow the day of the week on the user’s schedule and the canteen menu to easily

identify which week it is, and move the study spaces outside the student menu so everyone could use

it. Apart from improvements, additional features were also suggested, like: adding more information

to the courses’ pages (the most recent announcement and a link to consult all of them, summaries,

among others), in a similar fashion to students, teachers could have their own menu with more features

(such as information on the courses they are teaching, their announcements), and for the students that

are also teachers, have a separate schedule for their student and teacher roles. The last ones are of

62

Figure 5.9: Time took on average for each test case in user acceptance tests

high importance since only a few teachers had answered the survey regarding the current application

(Section 3.1.2), so there were no specific features for teachers mentioned in the answers that users

would like to have. This way, it was possible to discuss directly with the participants their needs and

analyse if they would be a good addition to the application.

Despite the overall feedback being exceptionally positive and the design being already validated by

users, as described in Section 3.5, the user acceptance tests still proved to be useful. These tests al-

lowed the verification of the design once more, since it suffered some alterations during the development

of the application. It also verified the application itself, if it was responsive and if no major bugs were

found, which was the established acceptance criteria. Most important of all, the feedback gathered will

make it possible to further improve the product before its release, since no major problem was found

during testing.

63

6
Conclusion

Contents

6.1 Future Work . 65

64

The goal of this work was mainly to find a viable alternative to native mobile development using

the IST app as a use case. After understanding the different types of applications, and the different

types of cross-platform approaches, the three main ones were described and compared, namely, React

Native, Flutter, and Progressive Web Apps. To choose between them, however, the requirements of the

application needed to be gathered, to find the best fit for the new application. The environment where

the application was going to be developed and maintained also took a major role in the decision. The

final decision was to use React Native, which was identified as the best overall cross-platform solution,

mainly due to the use of native UI elements, hardware and software feature support, and the use of

JavaScript.

After developing the application two metrics were used to verify if the goal was accomplished: the

time taken to develop the application from start to finish, and the results obtained from testing the non-

functional requirements. As for the first one, the whole application was developed in only five months

by only one developer with the help of one designer, working on average only four to five hours a day.

This could even be reduced to almost half the time if a full-time job schedule were to be used (around

eight hours a day), or if more developers worked in the project. This demonstrates how simple it is to

develop a mobile app using a cross-platform framework, especially using one with a known programming

language. As for the second metric, the results from the performance testing show that the application

uses slightly more resources than the native ones. This is a trade-off worth to be taken, due to the

feedback obtained from the user acceptance tests, which showed better results, especially in the UX of

the application, than the ones obtained from the survey of the current application.

Also, to help achieve these better results, it was crucial to involve the target audience as much as

possible during the development of the application. This was done through a survey that allowed the

users to express what they thought should be improved and also what new features they would like to

have in the application. Besides the survey, testing the application design with users before starting

development, helped improve even further the design, and helped to achieve better results in the user

acceptance tests.

6.1 Future Work

In the future, the feedback received from the user tests should be applied, resulting in the modification

of the UI and the addition of new features. Also, a new round of user testing should be done after

implementing all the necessary changes and before publishing the application, to validate the application

once more with users. To improve the application itself and its development environment even further,

there are a couple of aspects that could be further performed, such as:

• The use of TypeScript instead of JavaScript, to enforce the use of types, preventing many type-

65

related errors in JavaScript, since it does not have a sound type system;

• Integrate the end-to-end tests in a CI/CD pipeline, to assure that any new alteration to the applica-

tion code does not break any previous feature;

• Customizable quick action, allowing the user to decide which shortcuts the application should have

according to their preferences;

• Customizable notifications, giving the user the ability to choose, for instance, which courses send

notifications, and to turn on or off payments’ notifications. For this, changes in the backend and in

the API would also need to be done.

66

Bibliography

[1] “React Native will be re-architecture in 2020,” Jun. 2020, (visited on 14/12/2021). [Online].

Available: https://itzone.com.vn/en/article/react-native-will-be-re-architecture-in-2020/

[2] Flutter, “Flutter architectural overview,” 2022, (visited on 24/10/2021). [Online]. Available:

https://flutter.dev/docs/resources/architectural-overview

[3] Auth0, “Authorization Code Flow with Proof Key for Code Ex-

change (PKCE),” 2022, (visited on 02/03/2022). [Online]. Avail-

able: https://auth0.com/docs/get-started/authentication-and-authorization-flow/

authorization-code-flow-with-proof-key-for-code-exchange-pkce

[4] “Smartphone users 2026,” (visited on 16/10/2021). [Online]. Available: https://www.statista.com/

statistics/330695/number-of-smartphone-users-worldwide/

[5] “Desktop vs Mobile vs Tablet Market Share Worldwide,” (visited on 16/10/2021). [Online]. Available:

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide

[6] “Annual number of mobile app downloads worldwide 2020,” (vis-

ited on 03/11/2021). [Online]. Available: https://www.statista.com/statistics/271644/

worldwide-free-and-paid-mobile-app-store-downloads/

[7] “Mobile Operating System Market Share Worldwide,” (visited on 16/10/2021). [Online]. Available:

https://gs.statcounter.com/os-market-share/mobile/worldwide

[8] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-platform development ap-

proaches for mobile applications,” in Proceedings of the 6th Balkan Conference in Informatics, ser.

BCI ’13. New York, NY, USA: Association for Computing Machinery, Sep. 2013, pp. 213–220.

[9] “React Native · Learn once, write anywhere,” (visited on 17/10/2021). [Online]. Available:

https://reactnative.dev/

[10] “Flutter - Beautiful native apps in record time,” (visited on 17/10/2021). [Online]. Available:

https://flutter.dev/

67

https://itzone.com.vn/en/article/react-native-will-be-re-architecture-in-2020/
https://flutter.dev/docs/resources/architectural-overview
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://reactnative.dev/
https://flutter.dev/

[11] “Xcode,” (visited on 16/10/2021). [Online]. Available: https://developer.apple.com/xcode/

[12] “Swift - Apple Developer,” (visited on 16/10/2021). [Online]. Available: https://developer.apple.com/

swift/

[13] “Kotlin and Android,” (visited on 16/10/2021). [Online]. Available: https://developer.android.com/

kotlin

[14] K. Shah, H. Sinha, and P. Mishra, “Analysis of Cross-Platform Mobile App Development Tools,” in

2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Mar. 2019, pp. 1–7.

[15] S. Helal, J. Hammer, J. Zhang, and A. Khushraj, “A three-tier architecture for ubiquitous data ac-

cess,” in Proceedings ACS/IEEE International Conference on Computer Systems and Applications,

Jun. 2001, pp. 177–180.

[16] A. Hrivas and A. Pardeshi, “IMPLEMENTATION OF CROSS-PLATFORM MO-

BILE APPLICATION USING PHONEGAP FRAMEWORK,” Nov. 2019. [On-

line]. Available: https://www.researchgate.net/publication/337623551 IMPLEMENTATION OF

CROSS-PLATFORM MOBILE APPLICATION USING PHONEGAP FRAMEWORK

[17] N. Anggraini, R. Fajriansyah, N. Hakiem, I. Munawar, T. Rosyadi, and L. K. Wardhani, “Development

of mobile academic information system (AIS) UIN Syarif Hidayatullah Jakarta based on Android

with performance evaluation based on ISO/ IEC 25010,” in Proceedings of the 18th International

Conference on Advances in Mobile Computing & Multimedia, ser. MoMM ’20. New York, NY, USA:

Association for Computing Machinery, Nov. 2020, pp. 215–218.

[18] E. Hjort, “Evaluation of React Native and Flutter for cross-platform mobile application development,”

Master’s thesis, Åbo Akademi University, 2020, accepted: 2020-12-01T07:34:58Z Publisher: Åbo

Akademi. [Online]. Available: https://www.doria.fi/handle/10024/180002

[19] N. Hansson and T. Vidhall, “Effects on performance and usability for cross-platform application

development using React Native,” Master’s thesis, Linköping University, 2016. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130022

[20] R. Nunkesser, “Beyond web/native/hybrid: a new taxonomy for mobile app development,” in

Proceedings of the 5th International Conference on Mobile Software Engineering and Systems,

ser. MOBILESoft ’18. New York, NY, USA: Association for Computing Machinery, May 2018, pp.

214–218. [Online]. Available: https://doi.org/10.1145/3197231.3197260

[21] “Cross-platform mobile frameworks used by global developers 2021,” (vis-

ited on 17/10/2021). [Online]. Available: https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/

68

https://developer.apple.com/xcode/
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://www.researchgate.net/publication/337623551_IMPLEMENTATION_OF_CROSS-PLATFORM_MOBILE_APPLICATION_USING_PHONEGAP_FRAMEWORK
https://www.researchgate.net/publication/337623551_IMPLEMENTATION_OF_CROSS-PLATFORM_MOBILE_APPLICATION_USING_PHONEGAP_FRAMEWORK
https://www.doria.fi/handle/10024/180002
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130022
https://doi.org/10.1145/3197231.3197260
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/

[22] B. Eisenman, Learning React Native: Building Native Mobile Apps with JavaScript. ”O’Reilly

Media, Inc.”, Dec. 2015, google-Books-ID: 274fCwAAQBAJ.

[23] “React Native: A year in review,” Apr. 2016, (visited on 03/11/2021). [Online]. Available:

https://engineering.fb.com/2016/04/13/android/react-native-a-year-in-review/

[24] “Who’s using React Native? · React Native,” (visited on 14/12/2021). [Online]. Available:

https://reactnative.dev/showcase

[25] W. Wu, “React Native vs Flutter, Cross-platforms mobile application frameworks,” Bachelor’s

Thesis, Metropolia University of Applied Sciences, 2018, accepted: 2018-05-15T10:36:08Z

Publisher: Metropolia Ammattikorkeakoulu. [Online]. Available: http://www.theseus.fi/handle/

10024/146232

[26] W. Danielsson, “React Native application development : A comparison between native

Android and React Native,” Master’s thesis, Linköping University, 2016. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131645

[27] “State of React Native 2018 · React Native,” Jun. 2018, (visited on 14/12/2021). [Online]. Available:

https://reactnative.dev/blog/2018/06/14/state-of-react-native-2018

[28] “React Native in H2 2021 · React Native,” Aug. 2021, (visited on 14/12/2021). [Online]. Available:

https://reactnative.dev/blog/2021/08/19/h2-2021

[29] “Introducing JSX – React,” (visited on 21/10/2021). [Online]. Available: https://reactjs.org/docs/

introducing-jsx.html

[30] J. Warén, “Cross-platform mobile software development with React Native,” 2016.

[31] A. E. Fentaw, “Cross platform mobile application development : a comparison study of React

Native Vs Flutter,” Master’s thesis, University of Jyväskylä Faculty of Information Technology, 2020.

[Online]. Available: https://jyx.jyu.fi/handle/123456789/70969

[32] “Showcase - Flutter apps in production,” (visited on 14/12/2021). [Online]. Available:

https://flutter.dev/showcase/

[33] “Dart overview,” (visited on 25/10/2021). [Online]. Available: https://dart.dev/overview.html

[34] Flutter, “Introduction to widgets,” 2022, (visited on 24/10/2021). [Online]. Available: https:

//flutter.dev/docs/development/ui/widgets-intro

[35] T. Tran, “Flutter Native Performance and Expressive UI/UX,” Bachelor’s Thesis, Metropolia

University of Applied Sciences, 2020, accepted: 2020-05-07T05:35:35Z. [Online]. Available:

http://www.theseus.fi/handle/10024/336980

69

https://engineering.fb.com/2016/04/13/android/react-native-a-year-in-review/
https://reactnative.dev/showcase
http://www.theseus.fi/handle/10024/146232
http://www.theseus.fi/handle/10024/146232
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131645
https://reactnative.dev/blog/2018/06/14/state-of-react-native-2018
https://reactnative.dev/blog/2021/08/19/h2-2021
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://jyx.jyu.fi/handle/123456789/70969
https://flutter.dev/showcase/
https://dart.dev/overview.html
https://flutter.dev/docs/development/ui/widgets-intro
https://flutter.dev/docs/development/ui/widgets-intro
http://www.theseus.fi/handle/10024/336980

[36] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli, “Progressive Web Apps: The Possible Web-

native Unifier for Mobile Development,” Jan. 2017, pp. 344–351.

[37] D. Fortunato and J. Bernardino, “Progressive web apps: An alternative to the native mobile Apps,”

in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp.

1–6.

[38] K. Behl and G. Raj, “Architectural Pattern of Progressive Web and Background Synchronization,”

in 2018 International Conference on Advances in Computing and Communication Engineering

(ICACCE), Jun. 2018, pp. 366–371.

[39] “The App Shell Model | Web Fundamentals,” (visited on 19/10/2021). [Online]. Available:

https://developers.google.com/web/fundamentals/architecture/app-shell

[40] V. N. Inukollu, D. D. Keshamoni, T. Kang, and M. Inukollu, “Factors Influencing Quality of Mobile

Apps:Role of Mobile App Development Life Cycle,” arXiv:1410.4537 [cs], Oct. 2014, arXiv:

1410.4537. [Online]. Available: http://arxiv.org/abs/1410.4537

[41] N. B. Ruparelia, “Software development lifecycle models,” ACM SIGSOFT Software Engineering

Notes, vol. 35, no. 3, pp. 8–13, May 2010. [Online]. Available: https://doi.org/10.1145/1764810.

1764814

[42] H. K. Flora, H. K. Flora, X. Wang, and S. V. Chande, “An Investigation into Mobile Application Devel-

opment Processes: Challenges and Best Practices,” International Journal of Modern Education and

Computer Science, vol. 6, no. 6, pp. 1–9. [Online]. Available: https://www.academia.edu/8106746/

An Investigation into Mobile Application Development Processes Challenges and Best Practices

[43] K. Schwaber, “SCRUM Development Process,” in Business Object Design and Implementation,

J. Sutherland, C. Casanave, J. Miller, P. Patel, and G. Hollowell, Eds. London: Springer, 1997, pp.

117–134.

[44] G. D. Everett and R. McLeod, Software Testing: Testing Across the Entire Software Development

Life Cycle. Wiley-IEEE Press, 2007. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?

bknumber=5201507

[45] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real Challenges in Mobile App Development,” in

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement,

Oct. 2013, pp. 15–24, iSSN: 1949-3789.

[46] J. Gao, L. Li, T. Bissyandé, and J. Klein, “On the Evolution of Mobile App Complexity,” Nov. 2019,

pp. 200–209.

70

https://developers.google.com/web/fundamentals/architecture/app-shell
http://arxiv.org/abs/1410.4537
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://www.academia.edu/8106746/An_Investigation_into_Mobile_Application_Development_Processes_Challenges_and_Best_Practices
https://www.academia.edu/8106746/An_Investigation_into_Mobile_Application_Development_Processes_Challenges_and_Best_Practices
https://ieeexplore.ieee.org/servlet/opac?bknumber=5201507
https://ieeexplore.ieee.org/servlet/opac?bknumber=5201507

[47] T. Lisboa, “Técnico Mobile App,” 2022, (visited on 27/11/2021). [Online]. Available:

https://tecnico.ulisboa.pt/en/campus-life/services/tecnico-mobile-app/

[48] R. S. Barata, “Mobility and Location in Academic Information Systems,” Master’s thesis, Instituto

Superior Técnico, Lisbon, Portugal, Oct. 2013. [Online]. Available: https://fenix.tecnico.ulisboa.pt/

cursos/meic-a/dissertacao/2353642465450

[49] R. Oliveira and J. M. Mendonça, “STAYAWAY COVID. Contact Tracing for COVID-19,”

INESC TEC Science&Society, vol. 1, no. 1, pp. 58–61, Dec. 2020. [Online]. Available:

https://science-society.inesctec.pt/index.php/inesctecesociedade/article/view/33

[50] “Tecnico Go!” (visited on 18/11/2021). [Online]. Available: http://istgo.tecnico.ulisboa.pt/#/

[51] M. Chacón-Rivas and C. Garita, “Mobile Course: Development of a mobile app to access university

courses information,” in 2013 XXXIX Latin American Computing Conference (CLEI), Oct. 2013, pp.

1–6.

[52] A. Gündogdu, “Designing a Better App for Universities,” Bachelor’s Thesis, Linnaeus University,

2017. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-60512

[53] C. Courage and K. Baxter, Understanding Your Users: A Practical Guide to User Requirements

Methods, Tools, and Techniques, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2005.

[54] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in Software Engi-

neering. Springer Science & Business Media, Dec. 2012.

[55] J. Nielsen, Usability Engineering. Morgan Kaufmann, Oct. 1994, google-Books-ID:

95As2OF67f0C.

[56] S. GlobalStats, “iOS Version Market Share Portugal,” 2022, (visited on 24/02/2022). [Online].

Available: https://gs.statcounter.com/ios-version-market-share/all/portugal

[57] ——, “Mobile & Tablet Android Version Market Share Portugal,” 2022, (visited on 24/02/2022).

[Online]. Available: https://gs.statcounter.com/android-version-market-share/mobile-tablet/portugal

[58] FenixEdu, “FenixEdu™ API Endpoints,” 2022, (visited on 27/11/2021). [Online]. Available:

https://fenixedu.org/dev/api/

[59] R. Boyd, Getting Started with OAuth 2.0. ”O’Reilly Media, Inc.”, Feb. 2012, google-Books-ID:

qcsoLHusAFsC.

[60] Oauth, “OAuth 2.0 — OAuth,” 2022, (visited on 12/09/2022). [Online]. Available: https://oauth.net/2/

71

https://tecnico.ulisboa.pt/en/campus-life/services/tecnico-mobile-app/
https://fenix.tecnico.ulisboa.pt/cursos/meic-a/dissertacao/2353642465450
https://fenix.tecnico.ulisboa.pt/cursos/meic-a/dissertacao/2353642465450
https://science-society.inesctec.pt/index.php/inesctecesociedade/article/view/33
http://istgo.tecnico.ulisboa.pt/#/
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-60512
https://gs.statcounter.com/ios-version-market-share/all/portugal
https://gs.statcounter.com/android-version-market-share/mobile-tablet/portugal
https://fenixedu.org/dev/api/
https://oauth.net/2/

[61] R. H. Jr, Designing the Obvious: A Common Sense Approach to Web & Mobile Application Design.

Pearson Education, Nov. 2010, google-Books-ID: KNIeucozRpoC.

[62] N. Z. b. Ayob, A. R. C. Hussin, and H. M. Dahlan, “Three Layers Design Guideline for Mobile

Application,” in 2009 International Conference on Information Management and Engineering, Apr.

2009, pp. 427–431.

[63] “JavaScript With Syntax For Types.” (visited on 12/09/2022). [Online]. Available: https:

//www.typescriptlang.org/

[64] “Testing · React Native,” (visited on 30/03/2022). [Online]. Available: https://reactnative.dev/docs/

testing-overview

[65] “Using Hermes · React Native,” (visited on 07/03/2022). [Online]. Available: https://reactnative.dev/

docs/hermes

[66] H. K. Leung and P. W. Wong, “A study of user acceptance tests,” Software Quality Journal, vol. 6,

no. 2, pp. 137–149, Jun. 1997. [Online]. Available: https://doi.org/10.1023/A:1018503800709

[67] B. Hetzel and W. Hetzel, The complete guide to software testing, 2nd ed. QED Information

Sciences, 1988. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/42384

[68] J. Nielson, “Discount Usability: 20 Years,” Sep. 2009, (visited on 28/06/2022). [Online]. Available:

https://www.nngroup.com/articles/discount-usability-20-years/

[69] K. Moran, “Usability Testing 101,” Dec. 2019, (visited on 28/06/2022). [Online]. Available:

https://www.nngroup.com/articles/usability-testing-101/

72

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://reactnative.dev/docs/testing-overview
https://reactnative.dev/docs/testing-overview
https://reactnative.dev/docs/hermes
https://reactnative.dev/docs/hermes
https://doi.org/10.1023/A:1018503800709
https://dl.acm.org/doi/abs/10.5555/42384
https://www.nngroup.com/articles/discount-usability-20-years/
https://www.nngroup.com/articles/usability-testing-101/

A
Requirements Survey

We are making a new application for our university and we would love to hear your opinion of the current

one, as well as your suggestions for new features, to help us build a better experience for the IST

community. The survey should only take 5 minutes, and your responses are completely anonymous.

The development of the new application is within the scope of the thesis ”Advanced Implementation

of Mobile Applications”, oriented by Professor Fernando Mira da Silva, which has the goal of finding

the best practices to develop a mobile application, the challenges and complexities of developing them,

and most importantly what are the best current alternatives to native development, their advantages,

disadvantages, and which is is currently the best overall approach.

The survey will be open to answers until 23 of January. If you have any questions feel free to contact

us at gabriel.almeida@tecnico.ulisboa.pt.

1. What are your roles at the university?

2 Student

2 Professor

2 Staff

73

2 Alumni

2 Investigator

Figure A.1: Roles of the participants from the current app survey

2. How often do you use the application?

Every day

Almost every day

Sometimes

Almost Never

Never

Figure A.2: Current application usage by the users

74

3. On a scale of 1 to 4, how would you rate your overall experience with the application?

Very bad 1 2 3 4 Excellent

Figure A.3: User satisfaction with the UX of the current application

4. On a scale of 1 to 4, how intuitive is the application?

Not intuitive at all 1 2 3 4 Very intuitive

Figure A.4: User satisfaction with the intuitiveness of the current application

75

5. On a scale of 1 to 4, how would you rate the user interface?

Very bad 1 2 3 4 Excellent

Figure A.5: User satisfaction with the UI of the current application

6. On a scale of 1 to 4, how fast is the mobile app for you?

Very slow 1 2 3 4 Very fast

Figure A.6: User satisfaction with the performance of the current application

76

7. What do you like the most about the Técnico mobile app?

Figure A.7: What is liked the most in the current app

8. What do you like the least about the application?

77

Figure A.8: Disliked aspects about the current application

9. When you use the application, which features do you tipically use?

2 News

2 Cafeteria

2 Shuttle

2 Parking

2 Tickets

2 Courses

2 Summaries

2 Evaluations

2 Curriculum

2 Payments

2 Contacts

2 Assiduity

2 Other...

78

Figure A.9: Most used features on the current application

10. Are there any features that did not work as expected? If so, which ones and why?

Figure A.10: Features not working properly in the current application

79

11. Are there any missing features in the app that could be useful for your daily life at Técnico?

Figure A.11: New suggested features for the application

12. Do you feel there is room for improvement in Técnico’s mobile app? If so, what?

(Similar answers to the previous question)

80

13. Is there any reason for never having used the application? (Only if answered ”Never” in question

2)

Figure A.12: Reasons for not using the current application

Thank you for your feedback!

81

B
API Endpoints

The new shuttle API being used is located at https://shuttle.tecnico.ulisboa.pt/api, and contains

the following endpoints:

• /stops: contains information about all the stops;

• /stops/{id}: returns information about a given stop;

• /routes: shows every route the shuttle can take;

• /routes/{id}: returns information about a specific route;

• /trips/schedulers: contains all the planned trips for the shuttle service, with their respective time

and date. This endpoint can also receive a start and end parameters to choose the start and end

date respectively.

As for the ticketing API, it is hosted at https://fenix.tecnico.ulisboa.pt/api/ticketing, and

provides the following endpoints:

• /services: provides information on all the services that support ticketing;

82

https://shuttle.tecnico.ulisboa.pt/api
https://fenix.tecnico.ulisboa.pt/api/ticketing

• /tickets: needs authentication and returns all the user’s tickets;

• /services/{serviceId}/queues/{queueId}/tickets: POST request that assigns a new ticket, from

a given queue and service, to an authenticated user.

Lastly, the Fenix API is still being updated, and besides the endpoints listed in [58], new ones are

being added:

• /search/spaces: allows to search spaces within the IST campuses, and to filter which type of

spaces it searches, like libraries, study spaces, classrooms, among others;

• /search/people: allows to search the members of the IST community;

• /search/courses: allows to search the courses lectured at IST.

83

C
UI Survey

We are making a new application for Instituto Superior Técnico and we would love to hear your opinion

about the new design we are building for it. The survey should only take 2 to 5 minutes, and your

responses are completely anonymous.

The development of the new application is within the scope of the thesis ”Advanced Implementation

of Mobile Applications”, oriented by Professor Fernando Mira da Silva, which has the goal of finding

the best practices to develop a mobile application, the challenges and complexities of developing them,

and most importantly what are the best current alternatives to native development, their advantages,

disadvantages, and which is is currently the best overall approach.

If you have any other suggestions feel free to contact us at gabriel.almeida@tecnico.ulisboa.pt.

1. What are your roles at your current university?

2 Student

2 Professor

2 Staff

2 Alumni

84

2 Investigator

Figure C.1: Participants roles of the UI test survey

2. On a scale of 1 to 4, how intuitive is the user interface?

Not intuitive at all 1 2 3 4 Very intuitive

Figure C.2: User satisfaction with intuitiveness of the new user interface

85

3. On a scale of 1 to 4, how would you rate the user interface?

Very bad 1 2 3 4 Excellent

Figure C.3: User satisfaction with quality of the new user interface

4. On a scale of 1 to 4, how appropriate do you think the UI is to this kind of application?

Not appropriate at all 1 2 3 4 Very appropriate

Figure C.4: How appropriate the users thought the new design was for new application

86

5. Did this UI exceed your expectations when you think about academic applications?

Yes

No

Figure C.5: Participants opinion on whether or not the new design surpassed their expectations

6. Do you have any suggestions? If so, what are they?

87

D
User Acceptance Tests Survey

Thank you for participating the user testing for the new application for Instituto Superior Técnico. We

would love to hear your opinion about the new application as a whole. The survey should only take 2 to

5 minutes, and your responses are completely anonymous.

The development of the new application is within the scope of the thesis ”Advanced Implementation

of Mobile Applications”, oriented by Professor Fernando Mira da Silva, which has the goal of finding

the best practices to develop a mobile application, the challenges and complexities of developing them,

and most importantly what are the best current alternatives to native development, their advantages,

disadvantages, and which is is currently the best overall approach.

If you have any other suggestions feel free to contact us at gabriel.almeida@tecnico.ulisboa.pt.

1. What are your roles at your current university?

2 Student

2 Professor

2 Staff

2 Alumni

88

2 Investigator

Figure D.1: Roles of the participants from the user acceptance tests

2. On a scale of 1 to 4, how intuitive and easy to use was the user interface?

Not intuitive at all 1 2 3 4 Very intuitive

Figure D.2: User satisfaction with the intuitiveness of the new application

89

3. On a scale of 1 to 4, how would you rate the user interface?

Very bad 1 2 3 4 Excellent

Figure D.3: User satisfaction with the UI of the new application

4. On a scale of 1 to 4, how would you rate your overall experience with the application?

Very bad 1 2 3 4 Excellent

Figure D.4: User satisfaction with the UX of the new application

5. Was there anything unexpected or that made you confuse in the application? If so what?

Yes

No

90

6. Do you have any suggestions on how it could be further improved? If so, what are they?

91

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Structure

	2 State of the art
	2.1 Current App Taxonomy
	2.1.1 Native Apps
	2.1.2 Web Apps
	2.1.3 Hybrid Apps
	2.1.4 Interpreted Apps
	2.1.5 Generated Apps

	2.2 An Alternative Taxonomy
	2.3 Main Cross-Platform Frameworks
	2.3.1 React Native
	2.3.1.A Rendering
	2.3.1.B The Bridge
	2.3.1.C The New React Native Architecture
	2.3.1.D Components
	2.3.1.E Props and States
	2.3.1.F Styling
	2.3.1.G Performance

	2.3.2 Flutter
	2.3.2.A Dart
	2.3.2.B Widgets
	2.3.2.C Rendering
	2.3.2.D Performance

	2.3.3 Progressive Web Apps
	2.3.4 Choosing the Right Framework

	2.4 Mobile App Development
	2.4.1 Best Development Practices
	2.4.2 Development Life Cycle
	2.4.3 Challenges

	2.5 Similar use cases
	2.5.1 Current IST App
	2.5.2 IST GO
	2.5.3 Other Academic Applications

	3 Proposed Solution
	3.1 Requirements
	3.1.1 Original App Requirements
	3.1.2 Survey
	3.1.3 Defined Requirements
	3.1.3.A Functional requirements
	3.1.3.B Non-functional requirements
	3.1.3.C Fault Model

	3.2 Choosing the Cross-Platform Framework
	3.3 Application Architecture
	3.4 Authentication
	3.5 Interface Design

	4 Implementation
	4.1 Application Implementation
	4.1.1 Development Language
	4.1.2 Emulation
	4.1.3 Third-party Libraries

	4.2 API Constraints
	4.3 Implemented Requirements
	4.4 Debugging
	4.5 Testing
	4.5.1 Component Testing
	4.5.2 End-to-End Testing

	4.6 React Native Analysis
	4.6.1 Positive Factors
	4.6.2 Negative Factors and Issues

	5 Solution Evaluation
	5.1 Performance Testing
	5.1.1 CPU
	5.1.2 RAM
	5.1.3 Network Requests
	5.1.4 Energy Comsumption
	5.1.5 Storage Size
	5.1.6 Overall Discussion

	5.2 User Acceptance Tests
	5.2.1 User Test Cases
	5.2.2 Results

	6 Conclusion
	6.1 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Requirements Survey
	Appendix B

	B API Endpoints
	Appendix C

	C UI Survey
	Appendix D

	D User Acceptance Tests Survey

