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Resumo

O estudo das propriedades das heteroestruturas de van der Waals é um tópico de investigação recente

em f́ısica da matéria condensada, com enorme potencial [1–3] mas ainda numa fase inicial. Nesta dis-

sertação, o foco está na descrição teórica de um dos amontoamentos mais simples, a bicamada de grafeno

rodada, que pode ser vista como um dos constituintes fundamentais em empilhamentos mais complexos.

Começa-se por reproduzir uma teoria a uma part́ıcula, baseada num modelo cont́ınuo de baixa en-

ergia, para os estados eletrónicos deste material; a determinação dos perfis da densidade de estados e

da densidade de portadores de carga segue-se imediatamente. Depois, prossegue-se para o estudo das

propriedades óticas, nomeadamente a condutividade ótica (no contexto da teoria da resposta linear) e o

espectro dos plasmões-polaritões de superf́ıcie no grafeno (usando um tratamento semi-clássico). Por fim,

os efeitos das interações eletrão-eletrão são investigados, em particular o termo corretivo de auto-energia

para a renormalização das bandas devido ao potencial repulsivo de Coulomb de longo alcance (blindado).

Neste trabalho, alcançou-se um profundo entendimento dos mais recentes modelos efetivos semi-

anaĺıticos e das suas particularidades. Quanto aos cálculos da condutividade ótica, verificou-se que

os resultados são compat́ıveis com a literatura e discutiram-se ainda as implementações numéricas,

introduzindo-se um novo método eficaz para calcular a condutividade de Drude. Obtiveram-se também

resultados originais para a resposta plasmónica deste sistema. Relativamente aos efeitos das interações

eletrão-eletrão, embora não se tenha conseguido preencher esta lacuna na literatura, apresentou-se uma

discussão sobre como abordar, em trabalhos futuros, as dificuldades encontradas.

Palavras-chave: bicamada de grafeno rodada, modelo cont́ınuo de baixa energia, condutivi-

dade ótica, plasmões-polaritões de superf́ıcie, auto-energia.
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Abstract

The study of the properties of van der Waals heterostructures is a new trending research field in

condensed matter physics, with huge potential [1–3] but still in an early stage. In this thesis, we focus

on the theoretical description of one of the simplest stackings, the twisted bilayer graphene, which can

be seen as one of the fundamental pieces for more complex assemblies.

We reproduce a single-particle theory, based on a low-energy continuum model, for the electronic

states in this material; the profile determination of the density of states and the carrier density follows

directly. Then, we proceed with the study of the optical properties, namely the optical conductivity

(within the linear response theory) and the spectrum of graphene surface plasmon-polaritons (using a

semi-classical treatment). Lastly, we address the effects of electron-electron interactions, in particular

the self-energy correction term for the band renormalization due to the long range (screened) Coulomb

repulsion.

In this work, a profound understanding of the most recent semi-analytical effective models and their

features was attained. As for the optical conductivity calculations, our results were compatible with the

literature and we also discussed the numerical implementations, introducing a new and improved method

for computing the Drude conductivity. Original results for the plasmonic response of this system were

achieved. Regarding the electron-electron interaction effects, although we could not fulfill this gap in

the literature, we believe we have provided a useful discussion on how to tackle the difficulties in future

works.

Keywords: twisted bilayer graphene, low-energy continuum model, optical conductivity, surface

plasmon-polaritons, self-energy.

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 Framework and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The rise of graphene and other 2D crystals . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Van der Waals heterostructures — a new trending research field . . . . . . . . . . 4

1.2.3 Overview on twisted bilayer graphene breakthroughs . . . . . . . . . . . . . . . . . 6

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Low-energy continuum model 11

2.1 Single layer graphene basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Reciprocal space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Dirac Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Folded Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.6 Density of states and carrier density . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Introduction to bilayers: Bernal-stacked bilayer graphene . . . . . . . . . . . . . . . . . . 19

2.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Low-energy Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Twisted bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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Glossary

BLG Bilayer graphene (BLG) is the physical system

composed of two graphene sheets on top of each

other, with no particular arrangement specified.

BZ A Brillouin zone (BZ) is a Wigner-Seitz primi-

tive cell in reciprocal space.

DOS The density of states (DOS) of a system de-

scribes the number of states per interval of en-

ergy at each energy level that are available to

be occupied.

GSPPs Graphene surface plasmon-polaritons (GSPPs)

are SPPs in which graphene is the 2D surface.

SLG Single layer graphene (SLG) is the physical sys-

tem composed of one single sheet of graphene

only.

SPPs Surface plasmon-polaritons (SPPs) are collec-

tive plasma oscillations, coupled to photons,

which propagate in a 2D surface.

SPs Surface plasmons (SPs) are collective plasma os-

cillations which propagate in a 2D surface.

TE In the context of electromagnetic radiation,

a transverse electric (TE) mode designates a

waveguide where there is no electric field in the

direction of propagation.
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TM In the context of electromagnetic radiation, a

transverse magnetic (TM) mode designates a

waveguide where there is no magnetic field in

the direction of propagation.

mSL Moiré superlattice (mSL) is the emergent large-

scale (quasi)periodic structure appearing in

tBLG systems.

tBLG The twisted bilayer graphene (tBLG) is a par-

ticular arrangement of a BLG, characterized by

a twist angle between the top and the bottom

layers.

vdW heterostructure A van der Waals (vdW) heterostructure is an ar-

tificial 3D material made by stacking 2D crystals

together.
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Chapter 1

Introduction

1.1 Framework and motivation

The developments in materials science are intimately related to technological progress: when a new

material with unusual properties is discovered/synthesized, its applicabilities are deeply explored and

major technological breakthroughs may hopefully follow. Both experimentalists and theorists have im-

portant and complementary roles in the whole process: on the one hand, these new materials need to

be synthesized and tested in the laboratory by experimentalists, so that they can ultimately be available

for practical purposes; on the other hand, a theoretical description of the unusual features of these new

materials is of interest, whether for their quantitative description and consequent understanding of reality

or to predict new emerging properties which, then, need to be tested and confirmed in the laboratory.

Two-dimensional (2D) crystals are recent examples of promising new materials, graphene being just

the most known example of this large class. Having as principal feature their low dimensionality, these

2D crystals present unique physical properties that already have many technological applications. The

continuous refinement and optimization of their manufacturing processes and decreasing production costs

are responsible for an increasing impact in industry and are expected to lead these crystals to be more

and more present in our lives.

Taking into account that the current fabrication methods of 2D crystals are sufficiently well established

(at least for some of them), a new trend in modern materials science is to develop novel three-dimensional

(3D) materials by controlled multi-stacking of these 2D structures. The variety of possible heterostruc-

tures generated, often referred to as van der Waals (vdW), seems to be practically unlimited but, at the

same time, their behavior is expected to be hard to predict due to the huge complexity of each 2D struc-

ture involved. Therefore, in order to come up with tailored heterostructures, one is required to have a

complete understanding of each of the 2D material properties and their mutual interactions when stacked

together. Moreover, since these vdW heterostructures are still very hard to produce experimentally,

efforts are only made when a particular heterostructure proves to be really worthy of attention.

In this dissertation, we focus on one of the simplest stackings, the twisted bilayer graphene (tBLG)

—a graphene sheet on top of other graphene sheet, with a twist angle. We investigate, in a theoretical

1



frame, the spectrum reconstruction, the optical response and the effect of electron-electron interactions.

The motivation follows that, by understanding and modeling the properties of this stacking, we are

taking a step into the ultimate goal of understanding and predicting the behavior of arbitrary vdW

heterostructures, which will, in principle, allow us to come up with new revolutionary tailored materials.

This, allied with the intrinsic desire of a physicist to describe nature, even when the technological potential

is not very appealing (which is certainly not the case), motivated all the work that was done in this

dissertation.

1.2 State of the art

1.2.1 The rise of graphene and other 2D crystals

Dimension matters! And physicists are very well aware of this. In fact, although it seems, at first

sight, that for natural phenomena we are stuck with three spatial dimensions plus one time dimension,

physicists have been idealizing, for many years, systems with just two spatial dimensions and the results

have been remarkable. For example, layered semiconductors with finite thickness (typically around 10-

100 atomic layers) have been accurately described as 2D because of quantum size effects that make the

degrees of freedom for electron motion in the short direction irrelevant; indeed, every computer chip

today relies on this description, particularly in the properties of the electronic flatland at the interface

between silicon and its oxide [4].

2D crystals were already known as integral parts of 3D crystalline structures. However, it took a long

time to successfully isolate an ultimate one atom thick flatland for the first time. Indeed, to some extent,

monolayers were presumed not to exist without a 3D base due to a divergent contribution of thermal

fluctuations in these low-dimensional structures [5–7]. Only in 2004, a research group at the University

of Manchester, led by Andre Geim and Konstantin Novoselov, reported for the first time stable “free-

standing atomic crystals that are strickly 2D and can be viewed as individual atomic planes pulled out of

bulk crystals” [8] —figure (fig.) 1.1(A). For this and other contributions to this field, they were awarded

with the Nobel Prize in Physics 2010. The reason why their discovery does not contradict the thermal

fluctuation arguments is complex, but, in short, it is related to the fact that 2D crystals are embedded

in 3D space, so that they can deform into the third, out-of-plane direction [9, 10].

Since 2004, several experimental procedures have been introduced for synthesizing 2D crystals. This

includes mechanical exfoliation, chemical exfoliation and epitaxial growth by thermal decomposition of

SiC or by chemical vapor deposition of hydrocarbons on catalytic metallic surfaces [11]. The original

one —mechanical exfoliation— is currently refined to the level of art, such that single-layered graphite

crystallites isolated this way can be obtained commercially nowadays. This procedure takes advantage

of the fact that we are actually surrounded by 2D materials. For example, in a simple trace of pencil

there are debris composed mostly of readily visible thick graphite flakes rubbed from the bulk crystal.

Yet, thinner, nearly transparent, crystallites —some a single layer thick— are also present: typically, in

1cm2 of graphite debris, there are already few micron-sized graphene crystallites [4]. Roughly speaking,

mechanical exfoliation consists in repeatedly peeling debris of 3D layered structure crystals with adhesive

2



(A) (B)

Figure 1.1: (A) 2D crystal matter. Single layer crystallites of (a) NbSe2, (b) graphite, (c) Bi2Sr2CaCu2OX

and (d) MoS2 visualized by atomic force microscopy (a,b), scanning electron microscopy (c) and in an
optical microscope (d). All scale bars are 1µm. Source: reference (ref.) [8]. (B) Mechanical exfoliation
of 2D crystals: (a) adhesive tape is pressed against the thin debris of a 3D layered structure crystal, so
that the top few layers stay attached to the tape (b); (c) after repeatedly peeling the tape against itself,
the part of the tape with the thinnest crystals of layered material is pressed against a surface of choice;
(d) upon peeling off, the bottom layer is left on the substrate, ready for microscope inspections. Source:
ref. [11].

tape until finding the thinnest flakes (fig. 1.1(B)). The hard part is to find them. The required atomic

resolution is attained with atomic-force and scanning-tunneling microscopes, but scanning the entire area

of debris with atomic resolution is not viable. Manchester’s group managed to find the thinnest flakes by

using an oxidized Si wafer as the surface on which the tape is pressed against. This oxide surface reflects

a rainbow of colors and the interference pattern produced by the monolayers on the oxide was fortunately

shown to provide a faint but visible contrast in rapid optical microscope inspections. This way, atomic

resolution is used only after identifying probable 2D crystallites with this faster method.

Nowadays, there is a vast library of existent 2D crystals (fig. 1.2). Amongst them, graphene is an

unequivocal champion, exhibiting outstanding properties that have attracted widespread interest from

the scientific community all over the world. In fact, it is actually very hard to keep track of all the

developments made within this topic in the past few years, even for experienced researchers. So, here,

we indicate some refs. [10, 12–15] and give just a brief insight of some of those properties which have

triggered so much attention in a wide variety of scientific areas:

• Graphene is a gapless semiconductor: in its band spectrum, the conduction and valence band edges

touch. This absence of gap makes this type of materials highly sensitive to external stimuli and

adds value to the industry of electronic devices.

• In a quantum mechanical treatment, graphene’s electrons follow a Dirac-like equation of motion in

the limit of zero rest mass. Thus, graphene provides a way of investigating quantum electrodynamics

(QED) phenomena in a benchtop experiment, bringing together issues from both condensed matter

and particle physics.
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Figure 1.2: Current 2D library: monolayers proved to be stable under ambient conditions are shaded
blue; those probably stable are shaded green; the ones unstable in air but that may be stable in inert
atmosphere are shaded pink; grey shading indicates 3D compounds that have been successfully exfoliated
down to monolayers but for which there is little further information. Source: ref. [1].

• Electron mobility in graphene is remarkable: even at room temperature and in atomically rough

substrates, graphene exhibits astonishing electron quality with its electrons covering significant

areas with little scattering (this is the Klein paradox —a counterintuitive QED phenomena— in

action in graphene).

• Mechanically, graphene is the strongest material ever tested. Experimental measurements (breaking

strenght of ∼ 40N m−2) revealed that graphene is more than 100 times stronger than the strongest

steel. As curiosity, the Nobel announcement illustrated this property by stating that a 1m2 graphene

hammock would support a 4kg cat but would weigh only as much as one of the cat’s whiskers, at

0.77mg (about 0.001% of the weight of 1m2 of paper).

• Chemical modifications in graphene sheets are often explored, in order to put in evidence more

pronounced and distinct properties. As an example, graphene-based ultra molecular filters have

been designed with an experimental procedure that involves inducing artificial deffects in the sheet

(with a gallium ion beam bombardment) and exposing them to adequate etching solutions to ensure

that the deffects convert into pores with the desired dimensions.

At the date, most developments in graphene are still at a R&D (research and development) stage,

though there is already some market for semiconductor electronics, energy (mainly batteries) and com-

posite material industries. According to a 2015 graphene market report [16], graphene market reached

about 20 million dollars in 2014 and is predicted to grow to over 200 million by 2026.

1.2.2 Van der Waals heterostructures — a new trending research field

In parallel with the efforts being made on graphene and other 2D materials, another research field has

recently emerged; it deals with vdW heterostructures —artificial structures made by stacking 2D crystals

on top of each other (fig. 1.3). The basic principle is simple: we stack monolayers in a chosen sequence,

as in building with Lego, and develop artificial materials composed of blocks defined with one-atomic-

plane precision; strong covalent bonds provide in-plane stability of 2D crystals, whereas relatively weak
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Figure 1.3: Illustration of a vdW heterostructure. Source: ref. [1].

van-der-Waals-like forces are hopefully sufficient to keep the stack together. With the already existing

variety of 2D materials presenting unique properties, the aim is to design artificial heterostructures that

exhibit tailored properties for technological applications; the real advantage of this approach is that one

should be able to synthesize materials that can perform several functions simultaneously. Although this

field is still very recent, vdW heterostructures clearly do not lack ambition.

Given the vast library of 2D crystals available, one should be expecting a countless number of possible

stacking combinations. However, only few of these assemblies really work. Firstly, as mentioned, not

all 2D crystals are stable under the same conditions, so we can’t explore all the possible combinations.

Secondly, the complexity of these heterostructures is huge, leading many times to unpredictable failures.

At the date, only few groups have reported vdW heterostructures made from more than two atomically

thin crystals, and only graphene and few-layer BN, MoS2 and WS2 were used for those assemblies [1].

A typical stacking procedure [1, 2] starts by isolating micrometer-sized 2D crystals on top of a thin

transparent film (a polymer, for example). The resulting 2D crystal can then be put face down onto a

chosen target. Finally, the supporting film is removed or dissolved and this process is repeated again

and again until the desired stack is assembled. Conceptually, the procedure is simple to understand and

requires only basic facilities such as a good optical microscope. In pratice, however, this is still very hard

to master, mainly due to contamination effects between the layers. In fig. 1.4, we present the state of

the art of the experimental developments: a vdW heterostructure made from six alternating bilayers of

graphene and BN —the largest reported so far.

At the moment, this field is still deeply unexplored and potential applications are yet speculative.

However, little evolutionary steps with graphene-BN and graphene-graphene heterostructures have been

published (a review of some of them can be seen in ref. [1]), making these ones the most appealing for
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Figure 1.4: Graphene-BN structure consisting of six stacked bilayers: on the left side it is represented a
schematic view of the layer sequence; on the right, its cross-section and intensity profile seen by scanning
transmission electron microscopy are shown. Scale bar is 2nm. Source: ref. [1].

investigation nowadays. The expectations are that this field should develop into a large field of its own,

as was the case for graphene.

1.2.3 Overview on twisted bilayer graphene breakthroughs

In this section, we intend to give a brief review, without going into too much detail, on the latest

developments made within tBLG systems. We mainly focus on the theoretical work, since that is the

tone of this thesis, but we also try to motivate, as much as possible, the interest regarding its applications

and/or promising features. Within this scope, we highlight the work done by Rozhkov et al. [17], which

serves as a foundation for the whole section. This recent review paper starts with an introduction to the

basics of the single layer graphene (SLG) system and then moves into the bilayers. From the three types

of bilayer graphene (BLG) stackings discussed —AA, AB/Bernal and tBLG—, the tBLG is referred to as

the most intricate and open to investigation, which leads to a separate discussion of the most commonly

studied topics. From those, we address here the ones which are somehow related with the work done

in this dissertation. When discussing the particular topic of graphene plasmonics, we also highlight two

main references on which we have based our overview: the review paper by Luo et al. [18] and the book

by Gonçalves and Peres [19].

Models

The complex geometry of the tBLG affects significantly its electronic properties, making even the

single-particle models quite involved. Before moving onto a review of these models, we thus devote

some attention to the crystal structure of tBLG systems. The twist angle, θ, between one graphene

layer with respect to the other manifests itself in the appearance of a moiré pattern, which can be

visualized experimentally (fig. 1.5). This pattern reveals a periodicity (or quasiperiodicity) of the crystal

structure, which we call moiré superlattice (mSL). While the moiré exists for any θ, the superstructure,
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Figure 1.5: Scanning tunneling microscope images of tBLG moiré patterns. All scale bars are 5nm.
Source: ref. [21].

that is, strickly periodic repetition of some large multiatomic supercell, occurs only for the so-called

commensurate angles. The commensurability relation is given by [20]

cos (θ) =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
, 0◦ < θ < 30◦ , (1.1)

where m and r are coprime positive integers.

For commensurate structures, numerical studies based on density functional theory (DFT) have been

performed [22–24]. However, since the unit cell of the tBLG superlattice contains a large number of

sites, especially at small θ, these ab initio calculations incur a significant computational cost and are

therefore rather unpractical. To avoid this difficulty, semi-analytical theories have been developed in

order to describe the low-energy electronic properties of the tBLG. These theories operate mainly on

the electronic states near the Dirac cones in a way that the Hamiltonian construction is accomplished

by considering Dirac electrons moving in each layer and hybridized by interlayer hopping. The first

low-energy theory was proposed by Lopes dos Santos et al. [25], and further developed in ref. [20]. A

similar treatment based on a continuum approximation was done by Bistritzer and MacDonald [26]. The

construction of this model is slightly different in the sense that it is valid for arbitrary twist angles and not

necessarily commensurate ones; therefore, although the approach is very similar, the starting point of this

work is more general because there is no geometrical impositions required. In ref. [27], the authors made

further simplifications to these low-energy Hamiltonians and derived a simple effective 2×2 Hamiltonian,

from which analytical expressions for the electronic spectrum can be obtained. Recently, Weckbecker

et al. [28] introduced a model which is identical to that derived by Bistritzer and MacDonald, but with a

rescaling in the coupling momentum scale, in better agreement with tight-binding ab initio calculations.

Although there is a lot of work based on single-electron theories, papers studying the effects of

electron-electron interactions in tBLG are still absent.

Optical response

In general, the study of light-matter interactions is a topic of interest in science, with a wide variety

of applications, for example in the field of photonics. For graphene, and in particular for the tBLG

system, the response to an applied electromagnetic field is characterized by the optical conductivity,

which has been measured experimentally [29–31]. Within the theoretical framework, we highlight the

7



Figure 1.6: Representation of the experimental setup for exciting GSPPs (side view): graphene (blue
line) is located between two dielectric media (III and IV), with a periodic grid of graphene micro-ribbons
placed on top; the polarized light is shinned from the outside (medium I). Image kindly provided by
Eduardo Dias.

following works: Tabert and Nicol [32] used the simplified model from ref. [27] to compute the dynamical

(frequency dependent) conductivity at different levels of the chemical potential; tight-binding ab intio

calculations of the dynamical conductivity were performed by Moon and Koshino [33]; the real and

imaginary parts of the dynamical conductivity were calculated by Stauber et al. [34] using a continuum

low-energy models based on refs. [25, 26].

Over the last few years, graphene plasmonics has emerged as a new research topic, especially after the

experimental realization achieved by the end of 2011, when Ju et al. [35] showed the possibility of exciting

graphene surface plasmon-polaritons (GSPPs) in the THz spectral range by shinning electromagnetic

radiation onto a periodic grid of graphene micro-ribbons (fig. 1.6); in short, the idea is that the periodic

grid provides the momentum which the light lacks for exciting the plasmons. For a complete historical

review on the developments following this work, we recommend the reading of sections 1.2 and 7.1 from ref.

[19]. Owing to the 2D nature of the collective excitations, surface plasmons (SPs) excited in graphene are

confined much more strongly than those in conventional metals (particularly in the THz spectral range),

leading it to be a promising alternative in future applications [18, 36, 37]. In addition, perhaps the most

important advantage of using graphene is the tunability of the SPs, since carrier densities in graphene can

be easily controlled by electrical gating and doping [35, 38–40]. SPs in graphene can also be coupled with

photons, leading to the so-called surface plasmon-polaritons (SPPs), which have been observed recently

[41, 42]. As we will see, in the semi-classical model, the dispersion relation of these SPPs in graphene

depends explicitly on the optical conductivity, wherefore the study of their spectrum follows as a direct

application of what we have discussed in the previous paragprah. Within the theoretical framework,

using the knowlegde of both the real and imaginary parts of the dynamical conductivity, Stauber et al.

[34] were the first to study the plasmon excitation spectrum in tBLG, which is a topic that is still in its

infancy.
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1.3 Objectives

The primary objective is to obtain a theoretical description for the tBLG, investigating its electronic

spectrum, optical response and the effect of electron-electron interactions. In order to achieve this goal,

the work was divided into the following parts:

1) Brief revision of the tight-binding model for a SLG. Initiation into the treatment of bilayers, namely

by studying the simplest system of BLG, the Bernal stacking.

2) Spectrum reconstruction, within a low-energy continuum model, of tBLG systems.

3) Density of states (DOS) and carrier density profiles determination.

4) Calculation of the optical conductivity (real and imaginary parts).

5) Computation of reflectance, transmittance and absorption.

6) Plasmonic spectrum obtention.

7) Study of electron-electron interaction effects. In particular, the computation of the exchange energy

correction to the band structure and the investigation of magnetic instabilities are in the plan of

work.

1.4 Thesis Outline

The dissertation is organized as follows: in chapter 2, we begin with the introduction of basic concepts

related to the theoretical description of graphene systems and then we derive a low-energy effective model

for the tBLG, which is the starting point for the remaining work. In chapter 3, we compute the optical

conductivity within the linear response theory and apply this result to the study of the spectrum of

GSPPs. Chapter 4 contains a discussion on the effects of electron-electron interactions, in particular the

band renormalization. Finally, in chapter 5, we present our main conclusions and proposals for future

work. Additionally, we provide auxiliar derivations in the appendixes.
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Chapter 2

Low-energy continuum model

In this chapter, we aim at deriving a model for the tBLG system. As starting point, we explain the

tight-binding model for SLG, which allow us to introduce general concepts and fix notation. Within the

SLG system, we also look into the folded description, since it will provide us a better understanding of the

tBLG system. Then, we move to the bilayers. We begin with a particular stacking of BLG, the Bernal

stacking, and treat that simpler system first. At last, we study the arbitrary arrangement of BLG, the

tBLG. We follow the work done by Bistritzer and MacDonald [26], and construct a continuum low-energy

effective Hamiltonian, which is valid for twist angles θ . 10◦ and independent of the structure being

commensurate or incommensurate.

2.1 Single layer graphene basics

2.1.1 Geometry

A SLG is a 2D layer made out of carbon atoms arranged into a honeycomb structure. We choose

the coordinate system depicted in fig. 2.1 and define the following hexagonal lattice which describes the

possible positions for the unit cells of this system:

RRRn1,n2 = n1aaa1 + n2aaa2, n1, n2 ∈ Z, (2.1)

in which the primitive vectors aaa1 and aaa2 are given by

aaa1 =
(

1/2,
√

3 /2
)
dhex, aaa2 =

(
−1/2,

√
3 /2

)
dhex, (2.2)

and their length, dhex, is easily shown to be related to the carbon-carbon distance, d, by dhex =
√

3 d.

Without loss of generality, we set the dimension of our physical system such that

ni = 0, 1, ..., Ni − 1. (2.3)
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Figure 2.1: SLG geometry. The honeycomb structure can be seen as two interpenetrating hexagonal
lattices, A (blue) and B (red). Its experimental structure parameter, the carbon-carbon distance, is
d = 1.42Å [4]. The dashed green line marks a unit cell of this system, which contains 2 atoms. The
coordinate system is centered at a carbon of sublattice A.

2.1.2 Tight-binding model

We intend to describe the physical properties of a SLG. In this material, each carbon has 4 valence

electrons, 3 of them localized in covalent bonds between 2 carbon atoms and forming the so-called sp2

hybrids. The remaining electron is delocalized in a pz orbital. Most physical properties can be obtained

taking into consideration only these delocalized electrons, typically in a tight-binding approximation with

hopping between first neighbors. This is the model we shall adopt and detail.

According to Bloch’s theorem, the wave function for an electron in a periodic crystal has the form of

a Bloch wave,

ψkkk(rrr) = eikkk.rrrukkk(rrr), (2.4)

where rrr is the position, kkk the wave vector and u a periodic function with the same periodicity of the

crystal, i.e.,

ukkk(rrr) = ukkk(rrr +RRR), (2.5)

for all crystal lattice vectors RRR. From now on, we will generally refer to kkk as momentum, due to de

Broglie’s relation, ppp = ~kkk, which relates the crystal momentum ppp to the wave vector kkk by the reduced

Planck constant ~. Combining the previous equations, we obtain an equivalent statement of Bloch’s

theorem,

ψkkk(rrr +RRR) = eikkk.RRRψkkk(rrr). (2.6)
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In the tight-binding approximation, we write the solution of the time-independent single-electron

Schrödinger equation as a linear combination of orthonormal atomic orbitals. Using the bra-ket notation,

the time-independent single-particle Schrödinger equation reads

H |ψ〉 = E |ψ〉 , (2.7)

where H is the time-independent Hamiltonian of the system, which acts on the state |ψ〉, and E its

energy. For the SLG system, we use plane waves as the coefficients in the linear combination and write

|ψkkk,α〉 =
1√

N1N2

∑
n1,n2

eikkk.(RRRn1,n2
+δδδα) |RRRn1,n2

+ δδδα, α〉 , (2.8)

where |RRR,α〉 is the ket corresponding to an atomic orbital in position RRR and sublattice α = A,B and δδδα

is the vector that links the origin of the unit cell to its respective sublattice α atom,

δδδA = 0, δδδB = δδδ = (0, d). (2.9)

With this choice of normalization, the (approximate) orthonormality of the atomic orbitals (written with

the help of the following Kronecker delta functions),

〈RRRn1,n2 + δδδα, α|RRRn′1,n′2 + δδδβ , β〉 = δn1,n′1
δn2,n′2

δα,β , (2.10)

implies orthonormality for the wave functions,

〈ψkkk,α|ψk′k′k′,β〉 = δkkk,k′k′k′δα,β , (2.11)

as it should be. Moreover, equation (eq.) (2.8) respects Bloch’s theorem. Finally, since we have 2 atoms

per unit cell, the total wave function should be written as

|ψkkk〉 =
∑
α

cα(kkk) |ψkkk,α〉 , (2.12)

where cα(kkk) is a complex constant of unit modulus. Note that there is some arbitrariness in these

expressions since we can change the phase in (2.8) and include it in the complex constant in (2.12). This

corresponds to a change of basis. For convenience, we will stick to this convention.

Assuming an homogeneous nonzero hopping term, −t, only between nearest neighbors (NN), which

takes into account the possibility of an electron being tranferred (“hopping”) from an atom to its NN,

and a diagonal term, εpz , reflecting the atomic energy of an electron in the pz orbital in the absence of

any other nuclei, the tight-binding model yields the following non-null matrix elements:

〈RRRn1,n2
, A|H |RRRn1,n2

+ δδδ + δδδNN , B〉 = −t, (2.13)

〈RRRn1,n2
+ δδδα, α|H |RRRn1,n2

+ δδδα, α〉 = εpz , (2.14)
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where δδδNN are the vectors that, for any carbon of sublattice A, connect its NN from sublattice B,

δδδNN = 0,−aaa1,−aaa2. (2.15)

In order to obtain the electronic spectrum, we use the Schrödinger equation (2.7) for the states (2.12)

and apply the bras 〈RRRn1,n2
, A| and 〈RRRn1,n2

+ δδδ,B| so that we end up with a closed system of equations

that we conveniently write in a matrix form, εpz −tf(kkk)

−tf∗(kkk) εpz

cA(kkk)

cB(kkk)

 = E

cA(kkk)

cB(kkk)

 , (2.16)

where

f(kkk) = eikkk.δδδ(1 + e−ikkk.aaa1 + e−ikkk.aaa2) (2.17)

and ∗ stands for complex conjugate. In (2.16), we recognize the Hamiltonian matrix. After redefining

the zero energy such that it coincides with εpz , we get

H(kkk) =

 0 −tf(kkk)

−tf∗(kkk) 0

 , (2.18)

with eigenvalues (energies)

E(kkk) = ±t

√√√√4 cos

(√
3

2
dkx

)
cos

(
3

2
dky

)
+ 2 cos

(√
3 dkx

)
+ 3 . (2.19)

As every physical Hamiltonians, (2.18) is hermitian, i.e., H = H† († stands for hermitian conjugate) and

thus has real eigenvalues.

2.1.3 Reciprocal space

Let us take a look into the features of our kkk-space (fig. 2.2(a)). Given the (direct/real space) lattice

(2.1), we can define the corresponding reciprocal lattice,

GGGm1,m2
= m1bbb1 +m2bbb2, m1,m2 ∈ Z, (2.20)

where the reciprocal primitive vectors bbb1 and bbb2 obey, by definition, the relation

aaai.bbbj = 2πδi,j . (2.21)

This leads to

bbb1 =
(√

3 /2, 1/2
) 4π

3d
, bbb2 =

(
−
√

3 /2, 1/2
) 4π

3d
. (2.22)

The concept of periodicity in real space thus extends to momentum space in a way that we need a single

BZ to completely characterize the behavior of a Bloch wave in a crystal; in other words, physical waves
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Figure 2.2: (a) The blue circles represent points in the reciprocal lattice; just like the direct lattice,
the reciprocal one is also hexagonal, though rotated and with a different lattice parameter. The green
primitive unit cell marks the first Brillouin zone (BZ); some relevant points are plotted in it: Γ = (0, 0),
M =

(
1, 1/
√

3
)

π
dhex

, K = ( 4π
3dhex

, 0), K ′ = −K. (b) The tight-binding parameter was set as t = 2.97eV, in

agreement with first-principles calculations [10, 43]. The green dashed line marks the first BZ boundaries.

in crystals remain unchanged if their wave vector is shifted by a reciprocal lattice vector, i.e., kkk → kkk+GGG.

The electronic spectrum, determined in (2.19), is plotted in fig. 2.2(b), where we can explicitly observe

this reciprocal space periodicity.

2.1.4 Dirac Hamiltonian

From the whole spectrum (fig. 2.2(b)), we are mainly interested in the low energy range, since that

is the regime we can easily access experimentally. This regime is found near the first BZ corners 1. We

choose the two nonequivalent corners K and K ′ = −K (all others can be reached by adding reciprocal

lattice vectors to the former ones) and make a Taylor series expansion of the Hamiltonian (2.18) around

them, obtaining, to the first nonvanishing order,

H(qqq) = ~vF

 0 ±qx − iqy
±qx + iqy 0

 = ±~vFσσσ.qqq, (2.23)

where the Fermi velocity, vF , is identified as vF = 3dt
2~ , σσσ are the Pauli matrices and kkk = ±K+qqq for small

qqq in this expansion. This low-energy Hamiltonian is recognized as a (massless) Dirac-like Hamiltonian;

K and K ′ are thus called nonequivalent Dirac points.

1In neutral graphene, we have 1 valence electron, per carbon atom, contributing to the electronic structure. Also, we
know that we have as many bands, λ, as atoms in the unit cell and that every state Eλ(kkk) gets filled with 2 electrons, due
to spin degeneracy. Therefore, the neutral configuration corresponds to the situation where half of the bands are filled, by
increasing order of energy. We then see that this half-filling situation is attained at the first BZ corners. In this case, it also
corresponds to E = 0, but we stress that this is not always necessarily true.
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2.1.5 Folded Hamiltonian

It is worth to introduce an equivalent Hamiltonian description for a folded BZ. We start by noticing

that, although we have chosen the lattice (2.1), we can opt for larger ones, as long as they still capture

the system’s periodicity. As we shall see, the simplest cases are when we choose unit cells 3p (p ∈ N)

times larger than the original one, which corresponds to folding the BZ to 1/3p of its previous size. Let

us see some examples:

A) p = 0: original 2-atom unit cell

As we saw, the real space basis vectors read

aaa
(0)
1 =

(
1/2,
√

3 /2
)√

3 d, aaa
(0)
2 =

(
−1/2,

√
3 /2

)√
3 d, (2.24)

while the respective reciprocal space ones are given by

bbb
(0)
1 =

(√
3 /2, 1/2

) 4π

3d
, bbb

(0)
2 =

(
−
√

3 /2, 1/2
) 4π

3d
. (2.25)

B) p = 1: 6-atom unit cell

Taking a look at fig. 2.3(a), we observe that

aaa
(1)
1 =

(√
3 /2, 1/2

)
3d, aaa

(1)
2 =

(
−
√

3 /2, 1/2
)

3d, (2.26)

and, therefore, we obtain

bbb
(1)
1 =

(
1/2,
√

3 /2
) 4π

3
√

3 d
, bbb

(1)
2 =

(
−1/2,

√
3 /2

) 4π

3
√

3 d
. (2.27)

C) p = 2: 18-atom unit cell

In this case (fig. 2.3(b)), we have

aaa
(2)
1 =

(
1/2,
√

3 /2
)

3
√

3 d, aaa
(2)
2 =

(
−1/2,

√
3 /2

)
3
√

3 d, (2.28)

and we get

bbb
(2)
1 =

(√
3 /2, 1/2

) 4π

9d
, bbb

(2)
2 =

(
−
√

3 /2, 1/2
) 4π

9d
. (2.29)

We observe a pattern that occurs at all levels: the basis vectors directions interchange with respect to

the previous ones, while the parameter rescales as d→
√

3 d. We can thus write, for the general case,

aaa
(p)
1 =


(
1/2,
√

3 /2
)√

3 p+1d if p is even(√
3 /2, 1/2

)√
3 p+1d if p is odd

, aaa
(p)
2 =


(
−1/2,

√
3 /2

)√
3 p+1d if p is even(

−
√

3 /2, 1/2
)√

3 p+1d if p is odd

, (2.30)
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Figure 2.3: Basis vectors and unit cells for a folded SLG description with (a) p = 1 (6-atom unit cell),
(b) p = 2 (18-atom unit cell).

bbb
(p)
1 =


(√

3 /2, 1/2
)

4π√
3 p3d

if p is even(
1/2,
√

3 /2
)

4π√
3 p3d

if p is odd

, bbb
(p)
2 =


(
−
√

3 /2, 1/2
)

4π√
3 p3d

if p is even(
−1/2,

√
3 /2

)
4π√
3 p3d

if p is odd

. (2.31)

With this established, we now want to write down the Hamiltonian for the general case. We could

always rewrite the Hamiltonian for the new, larger unit cell in direct space and then follow the same

procedure as before. But we do not want to do that. We expect that it should be possible to write the

new Hamiltonian directly in reciprocal space in terms of the previous unfolded one. The strategy can

be figured out by a close inspection on fig. 2.4(a). When using the enlarged unit cell, we are reducing

the size of the BZ by 1/3. However, although the description is different, the overall system is the same.

Hence, we are basically comprising the information from regions 2 and 3 to the new BZ (labeled 1). Let

us now imagine that we already have the Hamiltonian for the folded case. Since we have 6 atoms per unit

cell, we must have 3 sets of 2 bands (positive and negative, due to particle-hole symmetry). If we then

represent the spectrum using an extended zone scheme —the first 2 bands in the first BZ, the second

ones in the second BZ and the third ones in the third BZ— we obtain a spectrum that coincides exactly

with the unfolded one. This provides a way of putting the information from regions 2 and 3 into 1. We

observe that, for each kkk in region 1, we can get to regions 2 and 3 (or equivalents) by translations of bbb
(1)
1

and bbb
(1)
2 . Recalling our unfolded original Hamiltonian,

H
(0)
kkk =

 0 −tf(kkk)

−tf∗(kkk) 0

 , (2.32)
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Figure 2.4: (a) Reciprocal space folding scheme. The green dashed line marks the original BZ, while
the purple line marks the BZ for a p = 1 folding. Regions labeled by 1, 2 and 3 correspond to the first,
second and third BZs for the folded case. (b) Electronic spectrum for p = 0 (top) and p = 1 (bottom).
Plots with ky = 0Å−1.

we may now write the folded Hamiltonian in the enlarged basis, |kkk〉, |kkk + bbb
(1)
1 〉, |kkk + bbb

(1)
2 〉, as

H
(1)
kkk =


H

(0)
kkk 0 0

0 H
(0)

kkk+bbb
(1)
1

0

0 0 H
(0)

kkk+bbb
(1)
2

 . (2.33)

For a given p, it is straightforward to generalize and write

H
(p)
kkk =


H

(p−1)
kkk 0 0

0 H
(p−1)

kkk+bbb
(p)
1

0

0 0 H
(p−1)

kkk+bbb
(p)
2

 . (2.34)

Note that inside H(p), we have informations of all Hamiltonians back to the original one, H(0).

In fig. 2.4(b), we plot the eigenvalues for both original and 1/3 folded Hamiltonians. This construction

will be useful to understand the tBLG, as we will see in section 2.3.6.

2.1.6 Density of states and carrier density

In appendix A, we briefly introduce general concepts about DOS and carrier density and explain a

numerical method to compute them, given the electronic spectrum. Results for the SLG are presented

in fig. 2.5. We first address the carrier density. Experimentally, record values up to |n| ∼ 4× 1014cm−2

have been reported [44]. Nevertheless, under ambient conditions, typical values for doping are one order

of magnitude below [45–47]. We will stick within this range, which corresponds to the zoomed region in

the plot (fig.2.5(b)). As can be seen from this representation, the corresponding Fermi level is too far
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Figure 2.5: DOS and carrier density for SLG.

from what is needed to reach the peaks in the DOS (van Hove singularities), making them inaccessible.

This is a big downside since electronic instabilities that can lead to new phases of matter are expected

when we cross the Fermi level with a van Hove singularity [48–50]. One of the reasons that motivates the

study of tBLG systems is precisely the fact that we can bring van Hove singularities to arbitrarily low

energies by varying the rotation angle [51].

2.2 Introduction to bilayers: Bernal-stacked bilayer graphene

2.2.1 Geometry

A BLG is a stacking of two SLGs, where the typical experimental interlayer distance is d⊥ = 3.35Å

[17]. It can exist in three distinct arrangements: 1) AA stacking, where each carbon atom from the top

layer is placed exactly above its correspondent in the lower layer; 2) AB stacking, or Bernal stacking,

in which the atoms of sublattice A from one layer are aligned with the atoms of sublattice B from the

other layer, implying the remaining to be located in the center of the hexagons; 3) tBLG, where one

layer is rotated by some angle θ with respect to the other. Experimentally, the AA stacking is considered

metastable, while both AB stacking and tBLG are found to be stable [17]. In this section, we will focus

on the AB stacking, whose geometry we show in fig. 2.6.

2.2.2 Tight-binding model

To model this system, we will retain the approximations used before for each individual layer; in

addition, we will take into account interlayer hopping, in a transversal tight-binding approximation

between NN only. We start by splitting the total Hamiltonian in three terms,

H = H1 +H2 +H⊥, (2.35)

where Hi is the Hamiltonian for each individual layer i, while H⊥ takes into account interlayer (transver-

sal) hopping terms. In the second quantized formalism, using the former approximations and already
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Figure 2.6: AB stacking BLG geometry (top view). We call the bottom layer (dashed black lines) layer
1 and the top layer (filled black lines) layer 2. We maintain the same unit cell used for the SLG (green
dashed line), keeping both direct and reciprocal space descriptions identical as before, except that each
unit cell now contains 4 atoms.

redefining the zero of energy to εpz , we can write

H1 = −t
∑
n1,n2

∑
σ

a†1,σ (RRRn1,n2) [b1,σ (RRRn1,n2) + b1,σ (RRRn1,n2 − aaa1) + b1,σ (RRRn1,n2 − aaa2)] + h.c., (2.36)

H2 = −t
∑
n1,n2

∑
σ

a†2,σ (RRRn1,n2
) [b2,σ (RRRn1,n2

) + b2,σ (RRRn1,n2
− aaa1) + b2,σ (RRRn1,n2

− aaa2)] + h.c., (2.37)

where c†i,σ (RRR) (ci,σ (RRR)) is the creation (destruction) fermionic operator for an electron of spin σ (σ =↑, ↓)

on an atom in layer i, cell RRR and sublattice C and h.c. stands for hermitian conjugate. For the interlayer

hopping terms, we consider an homogeneous interlayer hopping, t⊥, between NN only, and obtain the

following non-null matrix elements for H⊥:

〈RRRn1,n2
, A, 1|H⊥ |RRRn1,n2

, B, 2〉 = t⊥, (2.38)

where we added another label to our bra-ket notation to distinguish between layers. In the second

quantized formalism, we can thus write

H⊥ = t⊥
∑
n1,n2

∑
σ

a†1,σ (RRRn1,n2
) b2,σ (RRRn1,n2

) + h.c.. (2.39)

Now, we move to the reciprocal space. Since our fermionic operators are only defined in lattice points,
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we shall perform a discrete Fourier transform (dFT), which is usually defined in the following manner:

for a function gRnRnRn defined only in lattice points RnRnRn, the dFT and its inverse (IdFT) are, respectively,

g(kkk) =
∑
RnRnRn

gRnRnRne
−ikkk.RnRnRn , (2.40)

gRnRnRn =
1

VBZ

∫
BZ

dkkk g(kkk)eikkk.RnRnRn , (2.41)

where VBZ is the BZ volume. At this point, we stress that a Fourier transform (FT) always has some

arbitrariness in its definition, since normalizations and phases can be changed consistently. According to

ref. [52], in order to keep the basis convention we used for the SLG (and the orthonormality), we should

have

a1,σ (RRRn1,n2
) =

1√
ABZ

∫
BZ

dkkk a1,σ(kkk)eikkk.RRRn1,n2 , (2.42)

b1,σ (RRRn1,n2
) =

1√
ABZ

∫
BZ

dkkk b1,σ(kkk)eikkk.(RRRn1,n2
+δδδ), (2.43)

a2,σ (RRRn1,n2
) =

1√
ABZ

∫
BZ

dkkk a2,σ(kkk)eikkk.(RRRn1,n2
−δδδ), (2.44)

b2,σ (RRRn1,n2
) =

1√
ABZ

∫
BZ

dkkk b2,σ(kkk)eikkk.RRRn1,n2 , (2.45)

where we changed notation, from VBZ to ABZ (BZ area), because our system is 2D. Applying these

IdFTs, and making use of the orthogonality relation,

∑
n1,n2

e±i(kkk−k
′k′k′).RRRn1,n2 = N1N2δkkk,k′k′k′ , kkk,k′k′k′ ∈ BZ, (2.46)

we obtain

H1 = −tN1N2

ABZ

∑
σ

∫
BZ

dkkk a†1,σ(kkk)b1,σ(kkk)f(kkk) + h.c., (2.47)

H2 = −tN1N2

ABZ

∑
σ

∫
BZ

dkkk a†2,σ(kkk)b2,σ(kkk)f(kkk) + h.c., (2.48)

H⊥ = t⊥
N1N2

ABZ

∑
σ

∫
BZ

dkkk a†1,σ(kkk)b2,σ(kkk) + h.c., (2.49)

where f(kkk) is given by (2.17). Using that

Au.c. = |aaa1 × aaa2| =
√

3 d2
hex

2
, ABZ = |bbb1 × bbb2| = (2π)2 2√

3 d2
hex

, (2.50)

we obtain the useful relation,

ABZ =
(2π)2

Au.c.
, (2.51)

from which we can re-write the total Hamiltonian as

H = −tAtotal
(2π)2

∑
σ

∫
BZ

dkkk

[
a†1,σ(kkk)b1,σ(kkk)f(kkk) + a†2,σ(kkk)b2,σ(kkk)f(kkk)− a†1,σ(kkk)b2,σ(kkk)

t⊥
t

+ h.c.

]
, (2.52)
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Figure 2.7: Electronic spectrum for AB stacking BLG, along the kkk-space trajectory Γ → K → M → Γ.
We set t⊥ = 0.33eV, compatible with the range of estimated values [17].

where Atotal = N1N2Au.c. is the total area. Arranging (2.52) in a convenient matrix form,

H =
Atotal
(2π)2

∑
σ

∫
BZ

dkkk Ψ†σ(kkk)H(kkk)Ψσ(kkk), (2.53)

where Ψσ(kkk) is a four component spinor for destruction operators,

Ψσ(kkk) =


a1,σ(kkk)

b1,σ(kkk)

a2,σ(kkk)

b2,σ(kkk)

 , (2.54)

we recognize H(kkk) as the Hamiltonian in the matrix form,

H(kkk) = −t


0 f(kkk) 0 −t⊥/t

f∗(kkk) 0 0 0

0 0 0 f(kkk)

−t⊥/t 0 f∗(kkk) 0

 . (2.55)

Diagonalizing it, we obtain the eigenvalues

E(kkk) = ±t

√√√√( t⊥
2t

)2

+ 4 cos

(√
3

2
dkx

)
cos

(
3

2
dky

)
+ 2 cos

(√
3 dkx

)
+ 3 ± t⊥

2
, (2.56)

which we plot for a representative first BZ path in fig. 2.7.
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2.2.3 Low-energy Hamiltonian

Once again, we find the low-energy regime near the first BZ corners. We may then expand, as before,

the Hamiltonian (2.55) around K and K ′, obtaining

H(qqq) = ~vF


0 ±qx − iqy 0 t⊥/(~vF )

±qx + iqy 0 0 0

0 0 0 ±qx − iqy
t⊥/(~vF ) 0 ±qx + iqy 0

 . (2.57)

At this point, it is worth introducing a method to simplify this 4×4 Hamiltonian even further. When

we are interested in an (even lower) energy scale E � t⊥, we may neglect the high energy bands at

E ∼ ±t⊥ (see the inset from fig. 2.7) and work with an effective 2 × 2 matrix Hamiltonian. In order

to derive this effective Hamiltonian, we have to eliminate (integrate out) high energy degrees of freedom

associated with states living essentially in the coupled sublattices A1 and B2. We will perform this

elimination using a method based on Green’s functions, which we derive in appendix B.

Before applying (B.13) to our matrix Hamiltonian, (2.57), we have to order the basis properly. Given

our spinor (2.54), we see that we are currently using the basis A1, B1, A2, B2. Since we want to eliminate

the high energy degrees of freedom associated with sites A1 and B2, we should reorder our basis to

A2, B1, A1, B2 (for example). In this basis, (2.57) becomes

H(qqq) = ~vF


0 0 0 ±qx − iqy
0 0 ±qx + iqy 0

0 ±qx − iqy 0 t⊥/(~vF )

±qx + iqy 0 t⊥/(~vF ) 0

 . (2.58)

Applying (B.13) to our reordered Hamiltonian, and using E ≈ 0 (valid in the limit E � t⊥), we finally

get:

Heff (qqq) = 0− (~vF )2

t⊥

 0 ±qx − iqy
±qx + iqy 0

0 1

1 0

−1  0 ±qx − iqy
±qx + iqy 0


= − (~vF )2

t⊥

 0 ±qx − iqy
±qx + iqy 0

±qx + iqy 0

0 ±qx − iqy


= − (~vF )2

t⊥

 0 (±qx − iqy)2

(±qx + iqy)2 0


= − p̃2

2m∗
σσσ.nnn(±2θqqq), (2.59)

where p̃ = ~|qqq| is the momentum measured from the Dirac point, m∗ = t⊥/(2v
2
F ) is recognized as

the effective mass, θqqq = arg(qx + iqy) is the momentum orientation relative to the x axis and nnn(x) =

(cos(x), sin(x)) is a unitary vector. This has differences and similarities with both Schrödinger and Dirac

Hamiltonians.
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2.3 Twisted bilayer graphene

2.3.1 Geometry and moiré pattern

We begin by establishing a general geometry for a tBLG. A completely arbitrary arrangement can

be achieved in the following manner: we start with a Bernal stacking, then rotate the second layer by θ

(anti-clockwise and about the origin) and finally translate it by τττ . This way, each layer is described by

the following lattice:

RRR(1)
n1,n2

= n1aaa1 + n2aaa2, (2.60)

RRR(2)
n1,n2

= Rθ (n1aaa1 + n2aaa2 − δδδ) + τττ , (2.61)

where Rθ is the rotation matrix that describes an anti-clockwise rotation by θ about the origin of a 2D

coordinate system,

Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (2.62)

We stress that, by our convention, each lattice vector takes us to a sublattice A carbon. From (2.60) and

(2.61), we retain the useful relation

RRR(2)
n1,n2

= Rθ

(
RRR(1)
n1,n2

− δδδ
)

+ τττ . (2.63)

In fig. 2.8, we present a particular case of a tBLG geometry, highlighting the moiré pattern arising from

its crystallographic alignment. This moiré pattern can be predicted for any configuration, as we detail

below.

Moiré pattern determination

Layer 1 is described by a direct lattice RRR(1) with basis vectors aaa1 and aaa2; by definition, the corre-

sponding reciprocal lattice, GGG(1), has basis vectors bbb1 and bbb2. In the same way, layer 2 is described by a

lattice RRR(2) with basis vectors aaaθ1 and aaaθ2 (introducing the notation vvvθ ≡ Rθvvv, where vvv is an arbitrary 2D

vector); its corresponding reciprocal lattice, GGG(2), has, therefore, basis vectors bbbθ1 and bbbθ2
2. Translations

in real space do not affect the kkk-space description, wherefore it is valid to keep track of the basis vec-

tors only. For commensurate structures —structures where there are atoms from one layer that exactly

overlap atoms from the other— there is a (larger) lattice R′R′R′ belonging to both original lattices. Using an

equivalent definition for the reciprocal lattice (compatible with (2.21)),

eiRRR.GGG = 1, (2.64)

we see that R′R′R′ must satisfy

eiR
′R′R′.GGG(1)

= 1, eiR
′R′R′.GGG(2)

= 1. (2.65)

2It is straightforward to check, from definition (2.21), that a rotation in real space implies the same rotation in reciprocal
space, and vice versa.
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Figure 2.8: tBLG geometry for θ = 5◦ and τττ = 0 (top view). Vectors aaam1 and aaam2 mark the basis for the
(readily visible) large-scale hexagonal moiré pattern.

The reciprocal lattice for our moiré pattern, GGGm, also satisfies, by definition,

eiR
′R′R′.GGGm = 1, (2.66)

so we see that

{GGGm} = {GGG(1)} ∪ {GGG(2)}. (2.67)

From this last result, we conclude that the basis vectors for GGGm, bbbm1 and bbbm2 , are the smallest vectors

obtained by the union of all vectors GGG(1) and GGG(2). For |θ| ≤ 30◦ , we choose

bbbm1 = bbb1 − bbbθ1, bbbm2 = bbb2 − bbbθ2, (2.68)

which is compatible with an hexagonal mSL. For |θ| > 30◦ , we can use the SLG π
3 symmetry and reduce

this case to the former one. With this mSL defined in reciprocal space, the corresponding mSL in real

space, RRRm, is trivially obtained by calculating its basis vectors aaam1 and aaam2 from definition,

aaami .bbb
m
j = 2πδi,j . (2.69)

For incommensurate structures, these results were verified to hold by our numerical results. In short, we

generated a function with the same periodicity of layer 2 (for arbitrary θ and τττ); then, we evaluated it in

the points that define layer 1; finally, we performed a numerical dFT to this list of points and extracted

the maximums, obtaining dominant kkk’s in agreement with the expected ones for an hexagonal mSL with

basis vectors bbbm1 and bbbm2 .
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2.3.2 Rotated Dirac Hamiltonian

From now on, we closely follow the work done in ref. [26] and explain the model we shall adopt for

this material. We begin by obtaining the Dirac Hamiltonian for a rotated SLG. We start with the SLG

Dirac Hamiltonian (2.23) and write it as

H±KSLG(qqq) = ±~vF |qqq|

 0 e∓iθqqq

e±iθqqq 0

 , (2.70)

For a rotated SLG 3, we may argue that, applying the same (passive) transformation to our coordinate

system, we obtain the same expression. Then, we can go back to our primary coordinate system and

write

H±KSLG(qqq, θ) = ±~vF |qqq|

 0 e∓i(θqqq+θ)

e±i(θqqq+θ) 0

 , (2.71)

where qqq is now measured from the rotated Dirac points, ±Kθ.

2.3.3 Interlayer hopping term

We proceed to the derivation of an expression for the interlayer hopping term. We start by defining

the matrix element,

Tα,β
kkk,k′k′k′

= 〈ψ(1)
kkk,α|H⊥ |ψ

(2)

k′k′k′,β
〉 , (2.72)

which describes a process where an electron with momentum k′k′k′ in layer 2, sublattice β, hops to a

momentum state kkk in layer 1, sublattice α. In the tight-binding approximation, we have

|ψ(1)
kkk,α〉 =

1√
N1N2

∑
n1,n2

eikkk.(RRR
(1)
n1,n2

+δδδ(1)α ) |RRR(1)
n1,n2

+ δδδ(1)
α , α〉 , (2.73)

|ψ(2)

k′k′k′,β
〉 =

1√
N1N2

∑
n1,n2

e
ik′k′k′.
(
RRR(2)
n1,n2

+δδδ
(2)
β

)
|RRR(2)
n1,n2

+ δδδ
(2)
β , β〉 , (2.74)

where

δδδ(1)
α = δδδα, δδδ

(2)
β = δδδθβ . (2.75)

Let us now calculate the following matrix element of interest (which is, for now, completely general):

Tα,β
K+qqq1,Kθ+qqqθ2

=
1

N1N2

∑
n1,n2

∑
n′1,n

′
2

e−i(K+qqq1).(RRR(1)
n1,n2

+δδδ(1)α ) e
i(Kθ+qqqθ2).

(
RRR

(2)

n′1,n
′
2
+δδδ

(2)
β

)
×

× 〈RRR(1)
n1,n2

+ δδδ(1)
α , α|H⊥ |RRR(2)

n′1,n
′
2

+ δδδ
(2)
β , β〉 . (2.76)

3From now on, by convention, when we do not specify the rotation, we are always referring to anti-clockwise rotations
by θ about the origin. Once again, translations do not affect anything at this point.
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Similarly to what we did before, we introduce an interlayer matrix element, t⊥; however, this time, we

do not consider it as homogeneus but rather dependent on the distance between both atomic orbitals,

〈RRR(1)
n1,n2

+ δδδ(1)
α , α|H⊥ |RRR(2)

n′1,n
′
2

+ δδδ
(2)
β , β〉 = t⊥

(
RRR(1)
n1,n2

+ δδδ(1)
α −RRR

(2)
n′1,n

′
2
− δδδ(2)

β

)
. (2.77)

Recalling eq. (2.63), and dropping the index (1) in RRR(1) in order to simplify the notation, we then write

Tα,β
K+qqq1,Kθ+qqqθ2

=
1

N1N2

∑
n1,n2

∑
n′1,n

′
2

e−i(K+qqq1).(RRRn1,n2
+δδδα) e

i(Kθ+qqqθ2).(RRRθ
n′1,n

′
2
−δδδθ+τττ+δδδθβ)×

× t⊥
(
RRRn1,n2

−RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ
)
. (2.78)

Applying a FT to t⊥,

t⊥

(
RRRn1,n2

−RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ
)

=

∫
R2

dkkk

(2π)2
t⊥(kkk) e

ikkk.

(
RRRn1,n2−RRR

θ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)
, (2.79)

and making use of the well-known relation,

∑
kkk

→ Atotal
(2π)2

∫
R2

dkkk, (2.80)

which states the way we can alternate from an infinite sum in the quantized kkk’s of a finite system with

PBC to an integral in the limit Ni →∞ (and vice-versa), we obtain

Tα,β
K+qqq1,Kθ+qqqθ2

=
1

(N1N2)2

∑
n1,n2

∑
n′1,n

′
2

∑
kkk

ei[kkk−(K+qqq1)].RRRn1,n2 e
i[(Kθ+qqqθ2)−kkk].RRRθn′1,n′2×

× ei[kkk−(K+qqq1)].δδδα ei[(K
θ+qqqθ2)−kkk].(δδδθβ−δδδ

θ+τττ) t⊥(kkk)

Au.c.
. (2.81)

Now, we use the orthogonality relations,

∑
n1,n2

ei[kkk−(K+qqq1)].RRRn1,n2 =

N1N2 if kkk − (K + qqq1) = GGG
(1)
k,l ≡GGGk,l, ∀k, l ∈ Z

0 otherwise

, (2.82)

∑
n′1,n

′
2

e
i[(Kθ+qqqθ2)−kkk].RRRθn′1,n′2 =

N1N2 if kkk − (Kθ + qqqθ2) = GGG
(2)
m,n ≡GGGθm,n, ∀m,n ∈ Z

0 otherwise

, (2.83)

which imply

kkk = K + qqq1 +GGGk,l = Kθ + qqqθ2 +GGGθm,n, (2.84)

to simplify our expression into

Tα,β
K+qqq1,Kθ+qqqθ2

=
∑

k,l,m,n

t⊥(K + qqq1 +GGGk,l)

Au.c.
ei[GGGk,l.δδδα−GGGm,n.(δδδβ−δδδ)−GGG

θ
m,n.τττ] δK+qqq1+GGGk,l,Kθ+qqqθ2+GGGθm,n

. (2.85)
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Taking a look at this expression, we notice that the moiré pattern reveals itself in the Kronecker delta,

δK+qqq1+GGGk,l,Kθ+qqqθ2+GGGθm,n
. This delta dictates that the momentum difference in the interlayer hopping must

be a vector resulting from the union of all vectors GGG and GGGθ, as expected.

2.3.4 Fourier transform for the two-center interlayer hopping

The continuum low-energy model is obtained by considering wave vectors in both layers relative to

their respective Dirac points with small deviations compared to the BZ dimensions: |qqq1|, |qqq2| � |K|.

Notice that, by doing so, a K expansion is implicit at this point. The model’s usefulness rests, as we shall

see, on numerical results known for t⊥(kkk), which indicate that it should fall to zero very rapidly with |kkk| on

the reciprocal lattice scale. Intuitively, since d⊥ > d by more than a factor of 2, the two-center interlayer

hopping term, t⊥(rrr(1) − rrr(2)), which depends on the three dimensional separation,
√
|rrr(1) − rrr(2)|2 + d2

⊥ ,

varies with rrr(1) − rrr(2) on the scale of d⊥ for the small rrr(1) − rrr(2) regime (which describes the dominant

interlayer hopping). Therefore, t⊥(rrr(1) − rrr(2)) has a broadened distribution and t⊥(kkk), its FT, is sharp

and declines very rapidly for |kkk|d⊥ > 1. Below, we quantitatively show this results.

We start by finding the expression for t⊥(kkk). Recalling (2.79), we proceed with the following manip-

ulation:

∑
n1,n2

e
−ik′k′k′.

(
RRRn1,n2−RRR

θ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)
t⊥

(
RRRn1,n2

−RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ
)

=
∑
n1,n2

∫
R2

dkkk

(2π)2
t⊥(kkk) e

i(kkk−k′k′k′).
(
RRRn1,n2−RRR

θ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)

= N1N2

∫
R2

dkkk

(2π)2
t⊥(kkk)δkkk−k′k′k′,GGG e

i(kkk−k′k′k′).
(
−RRRθ

n′1,n
′
2
+δδδα−δδδθβ+δδδθ−τττ

)

=
N1N2

Atotal

∑
kkk

t⊥(kkk)δkkk−k′k′k′,GGG e
i(kkk−k′k′k′).

(
−RRRθ

n′1,n
′
2
+δδδα−δδδθβ+δδδθ−τττ

)

=
1

Au.c.

∑
GGG

t⊥(k′k′k′ +GGG) e
iGGG.

(
−RRRθ

n′1,n
′
2
+δδδα−δδδθβ+δδδθ−τττ

)
. (2.86)

We now notice that, while eiGGG.RRRn1,n2 = 1 holds for any reciprocal lattice vectorGGG of the unrotated lattice,

it does not hold in general for the rotated one, e
iGGG.RRRθ

n′1,n
′
2 6= 1, unless GGG = GGGθ. Therefore, if we sum over

RRRθn′1,n′2
on both sides, we arrive at

∑
n1,n2

∑
n′1,n

′
2

e
−ik′k′k′.

(
RRRn1,n2

−RRRθ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)
t⊥

(
RRRn1,n2 −RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ

)
=
N1N2

Au.c.

∑
G̃GG

(G̃GG=GGG=GGGθ)

t⊥(k′k′k′ + G̃GG) eiG̃GG.(δδδα−δδδ
θ
β+δδδθ−τττ). (2.87)

If our system is incommensurate, we only have one vector G̃GG satisfying G̃GG = GGG = GGGθ, which is G̃GG = 0. If

not, we have others, but we expect them to be dominated by the smallest one, G̃GG = 0, by our previous
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intuitive argument. Therefore, we continue retaining only G̃GG = 0 and write

t⊥(k′k′k′) =
Au.c.
N1N2

∑
n1,n2

∑
n′1,n

′
2

e
−ik′k′k′.

(
RRRn1,n2−RRR

θ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)
t⊥

(
RRRn1,n2

−RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ
)
.

(2.88)

Summing over the sublattices on both sides,

∑
α,β

t⊥(k′k′k′) = 4 t⊥(k′k′k′)

=
Au.c.
N1N2

∑
α,β

∑
n1,n2

∑
n′1,n

′
2

e
−ik′k′k′.

(
RRRn1,n2

−RRRθ
n′1,n

′
2
+δδδα−δδδθβ+δδδθ−τττ

)
t⊥

(
RRRn1,n2 −RRRθn′1,n′2 + δδδα − δδδθβ + δδδθ − τττ

)
=

Au.c.
N1N2

∑
rrr(1)

∑
rrr(2)

e−ik
′k′k′.(rrr(1)−rrr(2))t⊥

(
rrr(1) − rrr(2)

)
, (2.89)

where rrr(i) represents all points in the honeycomb structure of layer i, we arrive at

t⊥(k′k′k′) =
1

4

Au.c.
N1N2

∑
rrr(1)

∑
rrr(2)

e−ik
′k′k′.(rrr(1)−rrr(2))t⊥

(
rrr(1) − rrr(2)

)
. (2.90)

At this point, we notice that the function t̃⊥(rrr(1)), which we write as

t̃⊥(rrr(1)) =
∑
rrr(2)

e−ik
′k′k′.(rrr(1)−rrr(2))t⊥

(
rrr(1) − rrr(2)

)
, (2.91)

is a periodic function with the periodicity of the moiré pattern, i.e., t̃⊥(rrr(1) +RRRm) = t̃⊥(rrr(1)). To show

this, we invoke that all differences rrr(1)−rrr(2) can be obtained by letting rrr(2) run over all points from layer

2, while rrr(1) runs over points from layer 1 inside a moiré unit cell only. We may then write

t⊥(k′k′k′) =
1

4

Au.c.
N1N2

Nm.u.c.
∑

rrr(1)∈moiré

∑
rrr(2)

e−ik
′k′k′.(rrr(1)−rrr(2))t⊥

(
rrr(1) − rrr(2)

)
, (2.92)

where Nm.u.c. is the total number of moiré unit cells in our system. Finally, we use the relation

N1N2

Nm.u.c.
= Nm

u.c. =
Nm
sites

2
, (2.93)

where Nm
u.c and Nm

sites are, respectively, the number of unit cells and sites in a moiré unit cell, to arrive

at our final expression for t⊥(kkk),

t⊥(kkk) =
1

2

Au.c.
Nm
sites

∑
rrr(1)∈moiré

∑
rrr(2)

e−ikkk.(rrr
(1)−rrr(2))t⊥

(
rrr(1) − rrr(2)

)
. (2.94)

To model t⊥
(
rrr(1) − rrr(2)

)
, we begin by expressing it via Slater-Koster parameters [53], Vppσ and Vppπ,

as follows:

t⊥

(
rrr(1) − rrr(2)

)
= cos2(γ) Vppσ

(√
d2
⊥ + |rrr(1) − rrr(2)|2

)
+ sin2(γ) Vppπ

(√
d2
⊥ + |rrr(1) − rrr(2)|2

)
, (2.95)
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Figure 2.9: FT for the interlayer hopping in tBLG (real part). Although not plotted, the imaginary part
was shown to be negligible, as expected. In (a), we show the full 2D FT, where we observe an apparently
circular symmetry, t⊥(kkk) ≈ t⊥(|kkk|). In (b), t⊥(kkk) is plotted along the kx axis, with the black dashed line
crossing it at the Dirac point K.

where Vppσ(r) and Vppπ(r) depend only on the distance between the two sites, and γ is the angle between

the z axis and the line connecting rrr(1) to rrr(2), which leads to

cos2(γ) =
d2
⊥

d2
⊥ + |rrr(1) − rrr(2)|2

. (2.96)

In ref. [22], the authors explored an exponentially-decreasing model for Vppσ and Vppπ, which we shall

adopt:

Vppσ(r) = t⊥ exp [qσ(1− r/d⊥)] , Vppπ(r) = −t exp [qπ(1− r/d)] . (2.97)

We stress that Vppπ(d) = −t and Vppσ(d⊥) = t⊥, which is consistent with the previous results for the SLG

and the AB stacking BLG. To fix qπ, the authors took the characteristic second NN hopping amplitude

in SLG, t′ ≈ 0.1t [54], and obtained

Vppπ(d)

Vppπ(
√

3 d)
=

t

t′
= 10 =

1

exp
[
qπ(1−

√
3 )
] = exp

[
qπ(
√

3 − 1)
]
⇔ qπ =

log(10)√
3 − 1

' 3.15. (2.98)

The remaining parameter, qσ, was fixed assuming equal spatial exponential-decreasing coefficients, i.e.,

qπ
d

=
qσ
d⊥
⇔ qσ = qπ

d⊥
d
' 7.42. (2.99)

Using this model, we numerically computed the desired FT (2.94). The results (fig. 2.9) are in agreement

with what we antecipated. We verified that it suffices to consider only the NN from layer 2 in the sum

over all rrr(2); moreover, it checks out that the obtained results are roughly independent of θ.
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2.3.5 Interlayer hopping term: simplifications and picture

Within the continuum low-energy model, we may simplify (2.85) by performing the sum in k, l retain-

ing only the largest values for t⊥(K + qqq1 +GGGk,l). In this approximation, we keep the reciprocal lattice

vectors GGG = 0, bbb2,−bbb1, which correspond to interlayer hopping terms with momentum close to the three

equivalent Dirac points K. This leads to

Tα,β
K+qqq1,Kθ+qqqθ2

' t⊥(K)

Au.c.

∑
m,n

[
e−i[GGGm,n.(δδδβ−δδδ)+GGG

θ
m,n.τττ] δK+qqq1,Kθ+qqqθ2+GGGθm,n

+

+ ei[bbb2.δδδα−GGGm,n.(δδδβ−δδδ)−GGG
θ
m,n.τττ] δK+qqq1+bbb2,Kθ+qqqθ2+GGGθm,n

+

+ e−i[bbb1.δδδα+GGGm,n.(δδδβ−δδδ)+GGGθm,n.τττ] δK+qqq1−bbb1,Kθ+qqqθ2+GGGθm,n

]
. (2.100)

Due to the Kronecker deltas, and recalling our regime |qqq1|, |qqq2| � |K|, we observe that the remaining

summation necessarily yields just one vector GGGθ for each of the three terms,

Tα,β
K+qqq1,Kθ+qqqθ2

=
t⊥(K)

Au.c.

[
δK+qqq1,Kθ+qqqθ2

+ ei[bbb2.(δδδα−δδδβ+δδδ)−bbbθ2.τττ] δK+qqq1+bbb2,Kθ+qqqθ2+bbbθ2
+

+ e−i[bbb1.(δδδα−δδδβ+δδδ)−bbbθ1.τττ] δK+qqq1−bbb1,Kθ+qqqθ2−bbbθ1

]
. (2.101)

In a matrix notation where T =

TA,A TA,B

TB,A TB,B

, we re-write the last expression as

TK+qqq1,Kθ+qqqθ2
=
t⊥(K)

Au.c.

[
T1 δqqqθ2−qqq1,K−Kθ + T2 δqqqθ2−qqq1,(K+bbb2)−(Kθ+bbbθ2) + T3 δqqqθ2−qqq1,(K−bbb1)−(Kθ−bbbθ1)

]
= Tqqqb δqqqθ2−qqq1,qqqb + Tqqqtr δqqqθ2−qqq1,qqqtr + Tqqqtl δqqqθ2−qqq1,qqqtl , (2.102)

where

Tqqqb =
t⊥(K)

Au.c.
T1, Tqqqtr =

t⊥(K)

Au.c.
T2, Tqqqtl =

t⊥(K)

Au.c.
T3, (2.103)

T1 =

1 1

1 1

 , T2 = e−ibbb
θ
2.τττ

 eiφ 1

e−iφ eiφ

 , T3 = eibbb
θ
1.τττ

e−iφ 1

eiφ e−iφ

 , φ =
2π

3
, (2.104)

and

qqqb = K −Kθ, qqqtr = (K + bbb2)− (Kθ + bbbθ2), qqqtl = (K − bbb1)− (Kθ − bbbθ1). (2.105)

Taking the limit θ → 0, τττ = 0, which corresponds to the AB stacking configuration, we obtain

〈ψ(1)
K+qqq1,α

|H⊥ |ψ(2)
K+qqq2,β

〉 = Tα,βK+qqq1,K+qqq2
=
t⊥(K)

Au.c.

0 3

0 0

 δqqq1,qqq2 = 3
t⊥(K)

Au.c.
δα,Aδβ,Bδqqq1,qqq2 , (2.106)
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Figure 2.10: Momentum-space geometrical picture for the interlayer hopping on a tBLG. (a) The green
dashed line marks the first BZ for an unrotated SLG; the red (blue) circles mark the three equivalent Dirac
points K for layer 1 (2). Crystal momentum conservation is attained when qqqθ2 − qqq1 = qqqb, qqqtr, qqqtl; in this
reference frame, the three momentum transfers have modulus |qqqj | = 2|KKK| sin(θ/2) and directions (0,−1)
for j = b (bottom), (

√
3 /2, 1/2) for j = tr (top right), and (−

√
3 /2, 1/2) for j = tl (top left). (b) The

three equivalent Dirac points in the first BZ result in three distinct hopping processes in reciprocal space
(matrix elements); when we capture all “orders” of hopping (possible hopping processes after previous
ones), we obtain this kkk-space honeycomb structure, which captures the periodicity of the moiré pattern.
The purple dashed line marks a moiré unit cell in reciprocal space.

which we can compare with our previous result (2.49) and therefore fix our unknown parameter t⊥(K)

by the relation

3
t⊥(K)

Au.c.
= t⊥. (2.107)

We highlight that this relation fixes t⊥(K) such that

t⊥(K) =
Au.c.

3
t⊥ ' 0.58eV Å2, (2.108)

which is, to a good approximation, consistent with the result obtained by the numerical computation

(fig. 2.9(b)).

The interpretation of these results is more elegant when we move to the reference frame where layer 1

is rotated by −θ/2 and layer 2 by θ/2 (it suffices to rotate our previous coordinate system by θ/2). Our

demonstration was sufficiently general to allow us to do that, and we will stick to this reference frame

from now on. The geometrical picture for this interlayer hopping is shown in fig. 2.10. The following

relevant relations are also easily deduced in this reference frame:

qqqb =
8π sin(θ/2)

3
√

3 d
(0,−1), qqqtr =

8π sin(θ/2)

3
√

3 d
(
√

3 /2, 1/2), qqqtl =
8π sin(θ/2)

3
√

3 d
(−
√

3 /2, 1/2), (2.109)

bbbm1 = qqqb − qqqtl =
8π sin(θ/2)

3d
(1/2,−

√
3 /2), bbbm2 = qqqtr − qqqb =

8π sin(θ/2)

3d
(1/2,

√
3 /2), (2.110)
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aaam1 =

√
3 d

2 sin(θ/2)
(
√

3 /2,−1/2), aaam2 =

√
3 d

2 sin(θ/2)
(
√

3 /2, 1/2), (2.111)

Am.u.c. = |aaam1 × aaam2 | =
3
√

3 d2

8 sin2(θ/2)
. (2.112)

In the last equation, we introduced the notation Am.u.c. for the moiré unit cell area.

2.3.6 Hamiltonian matrix construction

Let us briefly summarize the results and assumptions we have in our model for the tBLG. The total

Hamiltonian for this material is splitted as

H = H1 +H2 +H⊥. (2.113)

In the tight-binding approximation, the wave functions read

|ψkkk〉 =
∑
α,i

c(i)α (kkk) |ψ(i)
kkk,α〉 , (2.114)

where c
(i)
α (kkk) is a complex constant of unit modulus. In the continuum low-energy model and within a

K expansion, we obtained the following non-null matrix elements for the interlayer hopping:

〈ψ(1)
K+qqq1,α

|H⊥ |ψ(2)

Kθ+qqqθ2,β
〉 = Tα,β

K+qqq1,Kθ+qqqθ2
= Tα,βqqqb

δqqqθ2−qqq1,qqqb + Tα,βqqqtr δqqqθ2−qqq1,qqqtr + Tα,βqqqtl
δqqqθ2−qqq1,qqqtl . (2.115)

The remaining non-null matrix elements come from each single layer Dirac Hamiltonian,

〈ψ(1)
K+qqq1,α

|H1 |ψ(1)
K+ppp1,β

〉 = Hα,β
SLG,K(qqq1,−θ/2) δqqq1,ppp1 , (2.116)

〈ψ(2)

Kθ+qqq2,α
|H2 |ψ(2)

Kθ+ppp2,β
〉 = Hα,β

SLG,K(qqq2, θ/2) δqqq2,ppp2 , (2.117)

where Hα,β
SLG,K(qqq, θ) is given by (2.71) (using the same matrix notation as we used for T ) and qqqi, pppj are

small enough to make the Dirac K-expansion valid.

In order to determine the electronic spectrum, we use the Schrödinger equation (2.7), which for our

system reads

(H1 +H2 +H⊥) |ψkkk〉 = E |ψkkk〉 . (2.118)

We immediately realize we can never get a closed system of equations by applying bras, 〈ψ(i)
kkk,α| ≡ 〈kkk, i, α|,

as we did for the SLG. If we start, for example, with the bra 〈K + qqq, 1| (dropping the index of sublattice),

we will have, aside from the diagonal term, reciprocal space hopping terms (matrix elements) with states

|Kθ + qqq + qqqb, 2〉, |Kθ + qqq + qqqtr, 2〉 and |Kθ + qqq + qqqtl, 2〉 (we will call them the first NN in reciprocal space,

in lack of better terminology); in turn, each one of these will have hopping terms with the former one

and with two new states (second NN), and so on. At this point, the picture drawn in fig. 2.10(b) is really

useful to understand this reasoning. We point out that the dimension of the matrix that characterizes

our system of equations is always increasing with the number of NN considered; however, it does not
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increase with constant proportion since there are “repetitions”: for example, we can readily see in the

figure that both states |K + qqq + bbbm1 , 1〉 and |K + qqq + bbbm1 + bbbm2 , 1〉 have hopping terms with the same state

|Kθ + qqq + qqqtr + bbbm1 , 2〉.

Let us clarify the matrix construction by showing examples. If we start with the bra 〈K + qqq, 1| and

consider just first NN, we obtain

HK(qqq)



c
(1)
A (K + qqq)

c
(1)
B (K + qqq)

c
(2)
A (Kθ + qqq + qqqb)

c
(2)
B (Kθ + qqq + qqqb)

c
(2)
A (Kθ + qqq + qqqtr)

c
(2)
B (Kθ + qqq + qqqtr)

c
(2)
A (Kθ + qqq + qqqtl)

c
(2)
B (Kθ + qqq + qqqtl)



= EK(qqq)



c
(1)
A (K + qqq)

c
(1)
B (K + qqq)

c
(2)
A (Kθ + qqq + qqqb)

c
(2)
B (Kθ + qqq + qqqb)

c
(2)
A (Kθ + qqq + qqqtr)

c
(2)
B (Kθ + qqq + qqqtr)

c
(2)
A (Kθ + qqq + qqqtl)

c
(2)
B (Kθ + qqq + qqqtl)



, (2.119)

where

HK(qqq) =


HK
SLG(qqq,−θ/2) Tqqqb Tqqqtr Tqqqtl

T †qqqb HK
SLG(qqq + qqqb, θ/2) 0 0

T †qqqtr 0 HK
SLG(qqq + qqqtr, θ/2) 0

T †qqqtl 0 0 HK
SLG(qqq + qqqtl, θ/2)

 . (2.120)

Without further low-energy approximations, we thus see that the minimum matrix Hamiltonian for the

tBLG is 8 × 8. Instead of writting the whole system of equations, we can compress and interpret it by

using the following convenient picture for the K-Hamiltonian matrix elements:

|K + qqq, 1〉 |Kθ + qqq + qqqb, 2〉 |Kθ + qqq + qqqtr, 2〉 |Kθ + qqq + qqqtl, 2〉
HK
SLG(qqq,−θ/2) Tqqqb Tqqqtr Tqqqtl 〈K + qqq, 1|

T †qqqb HK
SLG(qqq + qqqb, θ/2) 0 0 〈Kθ + qqq + qqqb, 2|

T †qqqtr 0 HK
SLG(qqq + qqqtr, θ/2) 0 〈Kθ + qqq + qqqtr, 2|

T †qqqtl 0 0 HK
SLG(qqq + qqqtl, θ/2) 〈Kθ + qqq + qqqtl, 2|

Table 2.1: tBLG K-Hamiltonian matrix elements for NN = 1.

Let us now use this picture and extend our previous example to second NN. Introducing the convenient

notation,

|K + qqq +m1bbb
m
1 +m2bbb

m
2 , 1〉 ≡ |(m1,m2), 1〉 , (2.121)

|Kθ + qqq + qqqb +m1bbb
m
1 +m2bbb

m
2 , 2〉 ≡ |(m1,m2), 2〉 , (2.122)

we obtain the following non-diagonal matrix elements (the diagonal ones are trivial and are hence omitted

to save space):
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|(0, 0), 1〉 |(0, 0), 2〉 |(0, 1), 2〉 |(−1, 0), 2〉 |(0,−1), 1〉 |(1, 0), 1〉 |(0, 1), 1〉 |(1, 1), 1〉 |(−1, 0), 1〉 |(−1,−1), 1〉 〈(0, 0), 1|
- Tqqqb Tqqqtr Tqqqtl 0 0 0 0 0 0 〈(0, 0), 1|
T †qqqb - 0 0 T †qqqtr T †qqqtl 0 0 0 0 〈(0, 0), 2|
T †qqqtr 0 - 0 0 0 T †qqqb T †qqqtl 0 0 〈(0, 1), 2|
T †qqqtl 0 0 - 0 0 0 0 T †qqqb T †qqqtr 〈(−1, 0), 2|
0 Tqqqtr 0 0 - 0 0 0 0 0 〈(0,−1), 1|
0 Tqqqtl 0 0 0 - 0 0 0 0 〈(1, 0), 1|
0 0 Tqqqb 0 0 0 - 0 0 0 〈(0, 1), 1|
0 0 Tqqqtl 0 0 0 0 - 0 0 〈(1, 1), 1|
0 0 0 Tqqqb 0 0 0 0 - 0 〈(−1, 0), 1|
0 0 0 Tqqqtr 0 0 0 0 0 - 〈(−1,−1), 1|

Table 2.2: tBLG K-Hamiltonian matrix elements for NN = 2.

Making use of this convenient notation, it becomes straightforward to show that if we perform the

(unitary) change of basis,

|(m1,m2), i〉 → eim1bbb
θ
1.τττeim2bbb

θ
2.τττ |(m1,m2), i〉 , (2.123)

which is equivalent to

c(1)
α (K + qqq +m1bbb

m
1 +m2bbb

m
2 )→ eim1bbb

θ
1.τττeim2bbb

θ
2 c(1)

α (K + qqq +m1bbb
m
1 +m2bbb

m
2 ), (2.124)

c(2)
α (Kθ + qqq + qqqb +m1bbb

m
1 +m2bbb

m
2 )→ eim1bbb

θ
1.τττeim2bbb

θ
2 c(2)

α (Kθ + qqq + qqqb +m1bbb
m
1 +m2bbb

m
2 ), (2.125)

our Hamiltonian becomes τττ -independent and we can therefore set τττ = 0 without any loss of generality.

In this matrix construction, we point out the similarities with what we have shown for the folded SLG

(section 2.1.5). In fact, if we eliminate the hopping terms, we are basically using a folded description that

explicitly captures the moiré periodicity to some extent (depending on the truncation). In real space, the

interpretation is that we are using an enlarged unit cell with the moiré periodicity, which makes sense.

Obviously, this is not as elegant as the case of the 1/3p SLG folding which could always be written as

a finite dimension matrix that captured the periodicity for all momenta. The major difference is that

we are now using a Dirac approximation. For this reason, we should also be aware that we will obtain

high-energy bands lacking physical meaning; however, this should not constitute a major problem since

we are not interested in them anyway. When we add the hopping terms, we see that, the more we add,

the less important we expect them to be. Nevertheless, we cannot always stick to first NN hopping terms

only, because, depending on the angle, the low-energy bands may still depend on high-order NN hopping

processes. This is the balance we have to test numerically in order to truncate our (in principle infinite)

matrix, whose construction is automatized in our code.

2.3.7 Electronic spectrum — K and K ′ bands

Before moving to the electronic spectrum determination, we recall that our Hamiltonian was obtained

within a low-energy expansion around K. Yet, nothing prevents us to choose the other nonequivalent

Dirac point, K ′. Therefore, in order to describe the complete electronic properties of this material, we

should always consider both contributions, usually called K and K ′ bands. The deductions for the K ′

expansion are completely straightforward, so we will just present the final results that differ from what
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Figure 2.11: K and K ′ bands on a tBLG. (a) Blue/red hexagons describe the BZs for layers 1/2. Dashed
purple/green hexagons represent moiré unit cells in reciprocal space for K/K ′ expansions. (b) Moiré BZ
with relevant points plotted in it.

we have obtained before:

〈ψ(1)
K′+qqq1,α

|H1 |ψ(1)
K′+ppp1,β

〉 = Hα,β
SLG,−K(qqq1,−θ/2) δqqq1,ppp1 , (2.126)

〈ψ(2)

K′θ+qqq2,α
|H2 |ψ(2)

K′θ+ppp2,β
〉 = Hα,β

SLG,−K(qqq2, θ/2) δqqq2,ppp2 , (2.127)

〈ψ(1)
K′+qqq1,α

|H⊥ |ψ(2)

K′θ+qqqθ2,β
〉 = Tα,β−qqqb δqqqθ2−qqq1,−qqqb + Tα,β−qqqtr δqqqθ2−qqq1,−qqqtr + Tα,β−qqqtl δqqqθ2−qqq1,−qqqtl , (2.128)

T−qqqb =
t⊥
3

1 1

1 1

 , T−qqqtr =
t⊥
3

 eiφ̃ 1

e−iφ̃ eiφ̃

 , T−qqqtl =
t⊥
3

e−iφ̃ 1

eiφ̃ e−iφ̃

 , φ̃ = −2π

3
. (2.129)

The way to represent both K and K ′ bands in the same BZ is sketched in fig. 2.11. We notice that,

in a K expansion, the wave vector qqq is measured from K(1) (kkk = K(1) + qqq) while, in a K ′ expansion,

we measure it from K ′(1). Therefore, in order to match both moiré unit cells in reciprocal space (purple

and green), we identify the points K(1) and K ′(2) as the same point in the moiré BZ, such that the

path Km → K ′m → Mm → Km becomes equivalent. By doing so, we are making a correspondence

HK(qqq)↔ HK′(qqq + qqqb) in the Hamiltonians obtained within K and K ′ expansions.

Results for electronic spectrum, DOS and carrier density are plotted in figs. 2.12 and 2.13. Looking

at the spectrum, we see that a symmetry for positive and negative bands is apparently conserved. This is

unexpected a priori. We also observe a renormalization of the Fermi velocity, which is explored in more

detail in refs. [25, 26]. Magic angles for which the Fermi velocity vanishes will be avoided in our work,

due to the huge complexity that arises from describing the emergent flat bands. Addressing fig. 2.13, we

confirm that, by varying the twist angle, van Hove singularities can be brought to reachable energies. For

the carrier density, we observe that we start to lose the “signature behavior” of the decoupled BLG when

we reach small angles. Finally, we finish with a discussion about the validity of the model. The leading
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Figure 2.12: Electronic spectrum and DOS for tBLG with θ = 5◦ . Solid and dashed lines in the spectrum
are for K and K ′ expansions, respectively; the color code clarifies the situation in which both bands are
superimposed.
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Figure 2.13: DOS and carrier density for different angles of a tBLG. Since the size of the unit cells varies
with the angle, the DOS is normalized to the graphene unit cell (g.u.c).

corrections involve hopping amplitudes that, due to the momentum conservationK+qqq1+GGG = Kθ+qqq2+GGGθ,

are negligible when compared to t⊥(K) (see the approximation done in (2.100)). We should also not forget

that we are using a Dirac approximation for the in-plane hopping. Therefore, we expect our model to be

very accurate up to energies of ∼ 1eV, which can still capture the first low-energy bands for θ . 10◦ .
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Chapter 3

Optical response

The scope of this chapter consists in studying the response of the tBLG system to electromagnetic

stimuli. We begin with the optical conductivity. Using the linear response theory, we derive expressions

that can be implemented numerically when an analytical Hamiltonian matrix is known. As benchmark,

we compute the results for the SLG and interpret them; then, we apply the same method to the tBLG

and compare our results to the ones obtained in the literature. In addition, we aim at determining the

dispersion relation of GSPPs. We consider monolayer graphene embedded in dielectric media, and derive

the equation that describes the propagation of transverse magnetic (TM) waves in the 2D surface; this

equation depends on the dynamical conductivity, wherefore this follows as a direct application. Again,

we make the calculations for both the SLG and tBLG.

3.1 Conductivity

3.1.1 Linear response theory

Tight-binding general description

Within a spin-independent tight-binding description of a periodic system, the electrons are described

in the most general form by the Hamiltonian

H0 =
∑
kkk∈BZ,
γ,γ′,σ

εγ,γ′(kkk)c†kkk,γ,σckkk,γ′,σ, (3.1)

where εγ,γ′(kkk) = 〈kkk, γ|H0(kkk)|kkk, γ′〉 ≡ 〈γ|H0(kkk)|γ′〉 are the matrix elements of the (spin-independent)

single-electron Hamiltonian matrix, H0(kkk), and the γ’s are indices that label the entries of the states

|kkk, γ〉. For SLG, γ is the sublattice index, γ = α = A,B, whereas, for AB stacked BLG, γ labels

sublattice and layer, γ = {α, i}, i = 1, 2. In the case of tBLG, γ runs over all the entries of the column

vectors like the one shown in (2.119), and has therefore information about sublattice and layer. Obviously,

in this case, we also have to separate the sum over the momentum kkk ∈ BZ into two sums over qqq in moiré

BZs centered around K and K ′. Finally, we stress that in this basis, |γ〉, the Hamiltonian is not diagonal.
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Perturbative treatment to the minimal coupling

We introduce the interaction with an electromagnetic field via minimal coupling [55],

H(t) =
∑
kkk∈BZ,
γ,γ′

εγ,γ′
(
kkk +

e

~
AAA(t)

)
c†kkk,γckkk,γ′ , (3.2)

where e > 0 is the elementary charge and AAA is the magnetic vector potential (uniform or slowly varying

in space, such that kkk is still a good quantum number). Notice that the summation over spin σ is now

omitted. Expanding the Hamiltonian around kkk, we obtain the standard description of the unperturbed

Hamiltonian plus a time-dependent perturbation,

H(t) = H0 + V (t), (3.3)

with the perturbative potential given by

V (t) =
∑
kkk∈BZ,
γ,γ′

(
e

~
∂εγ,γ′

∂ka1
(kkk)Aa1(t) +

1

2!

( e
~

)2 ∂2εγ,γ′

∂ka1∂ka2
(kkk)Aa1(t)Aa2(t) + ...

)
c†kkk,γckkk,γ′ . (3.4)

In the equation above, we clarify that we are using Einstein’s summation convention for the mute indices

aj = x, y.

The current density operator is obtained by the functional derivative of the potential to the magnetic

vector potential field, yielding

Ja1(t) = − 1

Vtotal

∂V (t)

∂Aa1
= − e

~Atotal

∑
kkk∈BZ,
γ,γ′

(
∂εγ,γ′

∂ka1
(kkk) +

e

~
∂2εγ,γ′

∂ka1∂ka2
(kkk)Aa2(t) + ...

)
c†kkk,γckkk,γ′ , (3.5)

where Vtotal = Atotal is the total volume of the system (area in 2D systems). Using the time-dependent

perturbation theory in the interaction representation (see appendix C), we get, for the average current

density,

〈JIa1(t)〉 = 〈JIa1(t)〉
0

+

(
− i
~

)∫ t

t0

dt1 〈
[
JIa1(t), VI(t1)

]
〉
0

+

+

(
− i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 〈
[[
JIa1(t), VI(t1)

]
, VI(t2)

]
〉
0

+ ... , (3.6)

where 〈 〉0 represents a thermal average over unperturbed states1.

We now want to write (3.4) and (3.5) in the interaction picture. First, we change to the basis |λ〉,

where H0 is diagonal with eigenvalues ελ = ~ωλ (ω being the angular frequency), and write the creation

and annihilation operators in the interaction picture as

ckkk,γ =
∑
λ

〈γ|λ〉 e−iωλ(t−t0)ckkk,λ, c†kkk,γ =
∑
λ

〈λ|γ〉 eiωλ(t−t0)c†kkk,λ. (3.7)

1Here, we are assuming that the initial condition of our system is a thermal state of the unperturbed Hamiltonian, H0.
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Then, we plug (3.7) into (3.4) and (3.5) and, using the closure relation,
∑
γ
|γ〉 〈γ| = 1, we obtain

VI(t) =
∑
kkk∈BZ,
λ,λ′

〈λ|
(
e

~
∂H0(kkk)

∂ka1
Aa1(t) +

1

2!

( e
~

)2 ∂2H0(kkk)

∂ka1∂ka2
Aa1(t)Aa2(t) + ...

)
|λ′〉 eiωλλ′ (t−t0)c†kkk,λckkk,λ′ ,

(3.8)

JIa1(t) = − e

~Atotal

∑
kkk∈BZ,
λ,λ′

〈λ|
(
∂H0(kkk)

∂ka1
+
e

~
∂2H0(kkk)

∂ka1∂ka2
Aa2(t) + ...

)
|λ′〉 eiωλλ′ (t−t0)c†kkk,λckkk,λ′ , (3.9)

where ωλλ′ = ωλ − ωλ′ .

Equilibrium curent

Collecting the zeroth-order terms (in the fields) from the average current (3.6), we obtain the so-called

equilibrium current,

J0
a1(t) = − e

~Atotal

∑
kkk∈BZ,
λ,λ′

〈λ|∂H0(kkk)

∂ka1
|λ′〉 eiωλλ′ (t−t0) 〈c†kkk,λckkk,λ′〉0

= − e

~(2π)2

∑
λ

∫
BZ

dkkk 〈λ|∂H0(kkk)

∂ka1
|λ〉nF (ελ(kkk)) . (3.10)

In the equation above, the thermal average was trivially computed as 〈c†kkk,λckkk,λ′〉0 = δλ,λ′ nF (ελ(kkk)),

where nF stands for the Fermi-Dirac function,

nF (ε) =
1

1 + exp
(
ε−µ
kBT

) , (3.11)

in which kB is the Boltzamnn constant, T is the absolute temperature and µ is the Fermi level.

We proceed to the derivation of an important result that will be used repeatedly in what follows.

To keep the notation light, we will drop the explicit dependency on momentum in the Hamiltonian,

H0(kkk) ≡ H0, as we did for the states |kkk, γ〉 ≡ |γ〉 or |kkk, λ〉 ≡ |λ〉. We rewrite the average of the

Hamiltonian’s derivative as

〈λ|∂H0

∂ka
|λ′〉 =

∑
λ1

〈λ|∂ (H0 |λ1〉 〈λ1|)
∂ka

|λ′〉 =
∑
λ1

〈λ|∂ (ελ1 |λ1〉 〈λ1|)
∂ka

|λ′〉

=
∑
λ1

〈λ|
(
∂ελ1

∂ka
|λ1〉 〈λ1| + ελ1

∂ |λ1〉
∂ka

〈λ1| + ελ1 |λ1〉
∂ 〈λ1|
∂ka

)
|λ′〉

=
∂ελ
∂ka

δλ,λ′ + ελ′ 〈λ|∂kaλ′〉 + ελ 〈∂kaλ|λ′〉

=
∂ελ
∂ka

δλ,λ′ + (ελ′ − ελ) 〈λ|∂kaλ′〉 , (3.12)

where, in the last step, we used ∂
∂ka
〈λ|λ′〉 ≡ ∂ka 〈λ|λ′〉 = 0⇔ 〈∂kaλ|λ′〉 = −〈λ|∂kaλ′〉.
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Using this last result, the equilibrium current becomes

J0
a1(t) = − e

~(2π)2

∑
λ

∫
BZ

dkkk
∂ελ
∂ka1

nF (ελ) . (3.13)

Taking into account the time inversion symmetry in reciprocal space, ελ(−kkk) = ελ(kkk), and the fact that

the integral is over a BZ that is symmetric under the inversion of kkk, we show that the equilibrium current

is zero, J0
a1(t) = 0. We point out that, even in our model for the tBLG, time inversion symmetry is not

broken: we can explicitly see that, for every point qqq in the moiré BZ centered around K (kkk = K + qqq), we

have a completely equivalent point in −kkk = −K − qqq, which corresponds to a point −qqq in the moiré BZ

centered around K ′ = −K.

Linear response current and conductivity

Now, we collect the first order terms, which lead to the following linear response current:

J1
a1(t) =− e2

~2Atotal

∑
kkk∈BZ,
λ,λ′

〈λ| ∂2H0

∂ka1∂ka2
|λ′〉Aa2(t)eiωλλ′ (t−t0) 〈c†kkk,λckkk,λ′〉0 +

+
ie2

~3Atotal

∑
kkk∈BZ,
λ1,λ2

∑
k′k′k′∈BZ,
λ3,λ4

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ3|

∂H0

∂k′a2
|λ4〉 〈

[
c†kkk,λ1

ckkk,λ2
, c†

k′k′k′,λ3
ck′k′k′,λ4

]
〉
0
×

×
∫ t

t0

dt1 e
iωλ1λ2 (t−t0)eiωλ3λ4 (t1−t0)Aa2(t1). (3.14)

Using the fermionic commutation relations, we can solve

〈
[
c†kkk,λ1

ckkk,λ2
, c†

k′k′k′,λ3
ck′k′k′,λ4

]
〉
0

= 〈c†kkk,λ1
ckkk,λ2

c†
k′k′k′,λ3

ck′k′k′,λ4
〉
0
− 〈c†

k′k′k′,λ3
ck′k′k′,λ4

c†kkk,λ1
ckkk,λ2

〉
0

= 〈c†kkk,λ1
ckkk,λ2

c†
k′k′k′,λ3

ck′k′k′,λ4
〉
0
− 〈c†kkk,λ1

c†
k′k′k′,λ3

ck′k′k′,λ4
ckkk,λ2

〉
0
− δkkk,k′k′k′δλ1,λ4 〈c

†
k′k′k′,λ3

ckkk,λ2
〉
0

= −δkkk,k′k′k′δλ1,λ4 〈c
†
k′k′k′,λ3

ckkk,λ2
〉
0

+ δkkk,k′k′k′δλ2,λ3 〈c
†
kkk,λ1

ck′k′k′,λ4
〉
0

= δkkk,k′k′k′δλ1,λ4
δλ2,λ3

(nF (ελ1
)− nF (ελ2

)) , (3.15)

and use this to simplify

J1
a1(t) =− e2

~2Atotal

∑
kkk∈BZ,λ

〈λ| ∂2H0

∂ka1∂ka2
|λ〉nF (ελ)Aa2(t) +

+
ie2

~3Atotal

∑
kkk∈BZ,
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉 (nF (ελ1

)− nF (ελ2
))

∫ t

t0

dt1 e
iωλ1λ2 (t−t1)Aa2(t1).

(3.16)

At this point, we make a FT to the magnetic vector potential,

Aa(t) =

∫
R

dω

2π
Aa(ω)e−iωt, (3.17)
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and use the relation between the Fourier amplitude of the magnetic vector potential, Aa(ω), and the

Fourier amplitude of the electric field, Ea(ω),

Ea(t) = −dAa(t)

dt
⇒ Aa(ω) =

Ea(ω)

iω
, (3.18)

to obtain

Aa(t) =

∫
R

dω

2π

Ea(ω)

iω
e−iωt, (3.19)

where, in the adiabatic regime, we make ω → ω + iγ, γ → 0+, meaning that we switch on the electro-

magnetic fields very slowly.

Substituting (3.19) into (3.16), we get

J1
a1(t) =

∫
R

dω

2π

 e2

~2Atotal

∑
kkk∈BZ,λ

〈λ| ∂2H0

∂ka1∂ka2
|λ〉 inF (ελ)

ω

Ea2(ω)e−iωt +

+
ie2

~3Atotal

∑
kkk∈BZ,
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉 (nF (ελ1

)− nF (ελ2
))×

×
∫ t

t0

dt1 e
iωλ1λ2 (t−t1)

∫
R

dω

2π

Ea2(ω)

iω
e−iωt1 . (3.20)

We can compute the integral in time,

∫ t

t0

dt1 e
iωλ1λ2 (t−t1)e−iωt1 = eiωλ1λ2 t

∫ t

t0

dt1 e
−i(ωλ1λ2+ω)t1 =

ie−iωt

ωλ1λ2
+ ω

+��*..., (3.21)

where we eliminated the last the term by making t0 → −∞, which means that we have waited long

enough for the transient terms to be negligible. Using this result, we simplify the linear response current

expression into

J1
a1(t) =

∫
R

dω

2π

 e2

~2Atotal

∑
kkk∈BZ,λ

〈λ| ∂2H0

∂ka1∂ka2
|λ〉 inF (ελ)

ω

Ea2(ω)e−iωt +

+

∫
R

dω

2π

 e2

~3Atotal

∑
kkk∈BZ,
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

i (nF (ελ1)− nF (ελ2))

ω(ωλ1λ2
+ ω)

Ea2(ω)e−iωt.

(3.22)

Taking a closer look at the last expression, we identify the conductivity (rank-2) tensor, σ, which

leads to the current that arises in response to an electric field (JJJ = σEEE in matrix form), as

σa1a2(ω) =
ie2

~2Atotal

∑
kkk∈BZ,λ1

(
〈λ1|

∂2H0

∂ka1∂ka2
|λ1〉

nFλ1

ω
+

1

~
∑
λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

ω(ωλ1λ2
+ ω)

)

=
i4σ0

N1N2Au.c.

∑
kkk∈BZ,λ1

〈λ1|
∂2H0

∂ka1∂ka2
|λ1〉

nFλ1

~ω
+
∑
λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

~ω(ελ1λ2 + ~ω)

 ,

(3.23)
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where σ0 = e2/(4~) is the graphene universal conductivity and nF (ελ) ≡ nFλ . Once again, we used PBC

to discretize the sum in momentum in N = N1N2 terms. At last, we recall that we have ommited the sum

in spin; therefore, since we do not have any spin dependency, we may add a factor of 2 to the conductivity,

σa1a2(ω) =
8σ0i

NAu.c.

∑
kkk∈BZ,
λ1

〈λ1|
∂2H0

∂ka1∂ka2
|λ1〉

nFλ1

~ω
+
∑
λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

~ω(ελ1λ2
+ ~ω)

 .

(3.24)

Drude and regular conductivity

It is usual to split the conductivity in a Drude contribution plus a regular term. Making

1

~ω(ελ1λ2 + ~ω)
=

1

~ω ελ1λ2

− 1

ελ1λ2(ελ1λ2 + ~ω)
, ελ1λ2 6= 0, (3.25)

we write the Drude conductivity as

σDa1a2(ω) =
8σ0i

NAu.c.~ω
∑

kkk∈BZ,λ1

〈λ1|
∂2H0

∂ka1∂ka2
|λ1〉nFλ1

+
∑
λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

ελ1λ2

 ,

(3.26)

and the regular conductivity as

σrega1a2(ω) =
−8σ0i

NAu.c.

∑
kkk∈BZ,
λ1,λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

ελ1λ2
(ελ1λ2

+ ~ω)
. (3.27)

Using the mathematical relation,

1

x± iη
= P

(
1

x

)
∓ iπδ(x), η → 0+, (3.28)

where P stands for the Cauchy principal value, we can rewrite the expression for the Drude conductivity

in the adiabatic regime as

σDa1a2(ω) =
i

π

Da1a2

~ω + iΓ
→ Da1a2

(
δ(~ω) + P

(
i

π~ω

))
, (3.29)

where Γ = ~γ → 0+ and the Drude weight is given by

Da1a2 =
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

〈λ1|
∂2H0

∂ka1∂ka2
|λ1〉nFλ1

+
∑
λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

ελ1λ2

 .

(3.30)

We can thus see that the real part of σD corresponds to the typical Drude peak for ω = 0, characteristic

of metals [56]. Therefore, we interpret this contribution as an intraband term (where momentum is not

conserved), which reflects the response of the electrons to a static applied electric field. Consequently, the

regular conductivity is understood as an interband term, which corresponds to electronic band transitions

(within the same kkk) with energy ~ω, induced by an applied harmonic electric field, EEE ∼ e−iωt. We also

44



note that we can empirically account for disorder effects by considering a finite Γ, which is a broadening

parameter (usually interpreted as a scattering rate) that may depend on intrinsic and extrisic aspects,

such as impurities, electron-electron interactions and substrate, for example.

At this point, we see that we already have expressions to compute the conductivity. Let us clarify

the numerical computations by expressing all the dependencies that were ommited before. For the Drude

conductivity, we compute the Drude weight by (3.30),

Da1a2 =
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

[
〈λ1, kkk|

∂2H0(kkk)

∂ka1∂ka2
|λ1, kkk〉nF (ελ1

(kkk)) +

+
∑
λ2 6=λ1

〈λ1, kkk|
∂H0(kkk)

∂ka1
|λ2, kkk〉 〈λ2, kkk|

∂H0(kkk)

∂ka2
|λ1, kkk〉

nF (ελ1(kkk))− nF (ελ2(kkk))

ελ1
(kkk)− ελ2

(kkk)

]
, (3.31)

and then apply (3.29) with a finite Γ,

σDa1a2(ω) =
i

π

Da1a2

~ω + iΓ
. (3.32)

For the regular conductivity, we use (3.27) with ~ω → ~ω + iΓ,

σrega1a2(ω) =
−8σ0i

NAu.c.

∑
kkk∈BZ,
λ1,λ2 6=λ1

〈λ1, kkk|
∂H0(kkk)

∂ka1
|λ2, kkk〉 〈λ2, kkk|

∂H0(kkk)

∂ka2
|λ1, kkk〉×

× nF (ελ1
(kkk))− nF (ελ2

(kkk))

[ελ1(kkk)− ελ2(kkk)] [ελ1(kkk)− ελ2(kkk) + ~ω + iΓ]
. (3.33)

These expressions must work when we have the complete Hamiltonian defined in the full BZ. However,

for effective Hamiltonians, they might not be the most appropriate. In particular, when computing the

Drude weight, we expect that all the dependency comes from the electrons near the Fermi level, which

are the ones that can flow in response to the static applied electric field. Yet, this is not explicit in our

expression, which indicates that there should be an underlying annulment of the other terms. For this

reason, we will work the expression (3.30) into a convenient form. Regarding the regular conductivity, we

observe that the real part is strongly constrained to eigenstates within ~ω of the Fermi level; therefore,

this computation should not be problematic and we will keep this method. For the imaginary part, we

see that, even for small ω, we do not have an argument to avoid a summation over all the bands; we will

thus make use of the Kramers-Kronig (KK) relations to compute the imaginary part using the results

obtained for the real part.

Drude weight — 2nd method

Here, we derive an alternative expression for computing the Drude weight. Using the result obtained

in (3.12), the second term in the equation describing the Drude weight, (3.30), can be written as

∑
λ1,λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|

∂H0

∂ka2
|λ1〉

nFλ1
− nFλ2

ελ1λ2

=
∑

λ1,λ2 6=λ1

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|∂a2λ1〉 (nFλ1

− nFλ2
). (3.34)
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Clearly, the last sum can be extended to the case where λ2 = λ1. We then proceed with the following

manipulations:

∑
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|∂a2λ1〉 (nFλ1

− nFλ2
)

=
∑
λ1

〈λ1|
∂H0

∂ka1
|∂a2λ1〉nFλ1

−
∑
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈λ2|∂a2λ1〉nFλ2

=
∑
λ1

〈λ1|
∂H0

∂ka1
|∂a2λ1〉nFλ1

+
∑
λ1,λ2

〈λ1|
∂H0

∂ka1
|λ2〉 〈∂a2λ2|λ1〉nFλ2

=
∑
λ1

〈λ1|
∂H0

∂ka1
|∂a2λ1〉nFλ1

+
∑
λ1,λ2

〈∂a2λ1|λ2〉 〈λ2|
∂H0

∂ka1
|λ1〉nFλ1

=
∑
λ1

(
〈λ1|

∂H0

∂ka1
|∂a2λ1〉+ 〈∂a2λ1|

∂H0

∂ka1
|λ1〉

)
nFλ1

. (3.35)

Collecting all terms, the Drude weight yields:

Da1a2 =
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

(
〈λ1|

∂2H0

∂ka1∂ka2
|λ1〉+ 〈λ1|

∂H0

∂ka1
|∂a2λ1〉+ 〈∂a2λ1|

∂H0

∂ka1
|λ1〉

)
nFλ1

=
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

nFλ1

∂

∂ka2
〈λ1|

∂H0

∂ka1
|λ1〉

=
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

∂2ελ1

∂ka1∂ka2
nFλ1

=
8πσ0

NAu.c.

∑
kkk∈BZ,λ1

(
∂

∂ka1

(
∂ελ1

∂ka2
nFλ1

)
− ∂ελ1

∂ka2

∂nFλ1

∂ka1

)
. (3.36)

The first term is shown to be null, making use of time inversion symmetry,

∑
kkk∈BZ,λ1

∂

∂ka1

(
∂ελ1

∂ka2
nFλ1

)
=

∂

∂ka1

 ∑
kkk∈BZ,λ1

∂ελ1

∂ka2
nFλ1

 =
∂

∂ka1
(0) = 0. (3.37)

The final expression therefore reads

Da1a2 = − 8πσ0

NAu.c.

∑
kkk∈BZ,λ1

∂ελ1

∂ka2

∂nFλ1

∂ka1

= − 8πσ0

NAu.c.

∑
kkk∈BZ,λ1

∂ελ1

∂ka2

∂ελ1

∂ka1

∂nFλ1

∂ελ1

= − 8πσ0

NAu.c.

∑
kkk∈BZ,λ

∂ελ(kkk)

∂ka1

∂ελ(kkk)

∂ka2

∂nF (ε)

∂ε
(ελ(kkk)) . (3.38)

As foreseen, this expression only takes into account electrons near the Fermi level. This can be directly

detected by the presence of the derivative of the Fermi-Dirac function.
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Imaginary part of the regular conductivity — 2nd method

The KK relations relate the real part of a response function with its imaginary part. They enable us

to find one of the components if we know the other at all frequencies. In our case, we want to compute

the imaginary part of the regular conductivity. The appropriate relation is [57]

Im {σreg(ω)} = −2ω

π
P

∫ +∞

0

ds
Re {σreg(s)}
s2 − ω2

. (3.39)

Looking at this expression, there is apparently no advantage in using this method for effective models,

since the integral extends to infinity. Moreover, this integral is ill defined, since at high frequencies our

continuum model for the tBLG is expected to yield a constant Re {σreg(ω)} = 2σ0. We can thus perform

a regularization of eq. (3.39) by invoking the following property (which we verified numerically):

P

∫ +∞

0

ds
1

s2 − ω2
= 0. (3.40)

The final regularized definition then reads

Im {σreg(ω)} = −2ω

π
P

∫ +∞

0

ds
Re {σreg(s)} − 2σ0

s2 − ω2
, (3.41)

which we can now evaluate by introducing a finite cutoff Λ for which Re {σreg(Λ)} ' 2σ0. The fact that

our model yields a constant for high frequencies is not problematic in the range of frequencies that we

are interested in.

3.1.2 Results for single layer graphene

Drude weight

The results for the Drude weight in SLG are presented in fig. 3.1. We stress that both methods —eqs.

(3.31) and (3.38)— yielded the same results and that they were isotropic, i.e., Dxx = Dyy, Dxy = 0. The

low-energy results for Dxx = Dyy ≡ D are in agreement with the theoretical predictions for the Drude

conductivity at T = 0K [19, 58],

σD(ω) = 4σ0
i

π

µ

~ω + iΓ
. (3.42)

From this expression, we recognize the Drude weight as D/σ0 = 4µ, which we compare to the zoomed

plot in fig. 3.1(a). The smoothed behavior near µ ∼ µ0 = 0 is explained by the finite temperature: we

only have electrons available for the transport due to thermal activation.
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Figure 3.1: Drude weight results for SLG: (a) as a function of the Fermi level; (b) as a function of the
carrier density.

Regular conductivity

In fig. 3.2, we present the results for the regular conductivity in SLG. Here, and in what follows, we

set Γ = 16meV in agreement with ref. [35]. Once again, both methods —eq. (3.33) for both real and

imaginary parts and eq. (3.33) for the real part along with eq. (3.41) for the imaginary part— yielded

the same results and we obtained an isotropic conductivity, σregxx = σregyy , σ
reg
xy = 0. The visible peak

for ~ω = 2t ' 6eV in fig. 3.2(a) corresponds to electronic transitions from the van Hove singularity of

the valence band to the van Hove singularity in the conduction band, as we depict in fig. 3.3(a). These

transitions are enhanced because there is a peak in the number of electrons that can occupy the initial

and final energy states. Regarding fig. 3.2(b), we also infer that transitions with ~ω < 2µ are forbidden,

which has been observed experimentally [59]. The explanation is sketched in fig. 3.3(b). When we

increase the Fermi level up to µ > µ0, states with E < µ become occupied. Therefore, transitions for

those states are blocked due to the Pauli exclusion principle. Since we have particle-hole symmetry, we

conclude that we can only have transistions when ~ω > 2µ. The increase in temperature smooths out

this behavior.

μ = 0meV, T = 300K
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Figure 3.2: (a) and (b) show the regular conductivity results for SLG. In (b), the dotted line corresponds
to T = 100K, the dashed line to T = 200K and the solid lines to T = 300K.
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Figure 3.3: Interband transitions in SLG.

3.1.3 Results for twisted bilayer graphene

Drude weight

Some of the results obtained for the Drude weight in tBLG systems are summarized in fig. 3.4. We

stress that only the 2nd method worked well for these computations. We believe it happened because we

are working with an effective Hamiltonian, as discussed before. We also point out that the 1st method

depends explicitly on second derivatives of the Hamiltonian and, since we used the Dirac approximation

for the diagonal entries and the hopping terms were modeled as constant, these second derivatives are

identically null for the tBLG. Similarly to what we saw for the SLG, we observe symmetric results for

electron or hole dopping; this reflects the apparent symmetry in positive and negative bands discussed in

section 2.3.7. By looking at fig. 3.4(a), along with fig. 2.13(a), we conclude that the Drude weight curve

changes drastically (compared with SLG or decoupled BLG) when we cross the van Hove singularities.

This tendency coincides with what was found in ref. [34]. The effect of increasing the temperature is

again the smoothening of this behavior (fig. 3.4(b)).

In fig. 3.5(a), we show recent experimental results for the Drude conductivity in tBLG, obtained in ref.

[31]. We observe the expected symmetry for doping with electrons and holes. Moreover, since for ω = 0

the conductivity is dominated by the Drude contribution, we may compare the experimental results with

the theoretical calculations from fig. 3.4(b). We note the need of including the disorder broadening Γ in

order to obtain a quantitative agreement on the order of magnitude with the experiment. In addition,

we see that the experimental drop in the conductivity, at n ∼ 7.5× 1012cm−2, is in agreement with what

our model predicts. These insulating states are interpreted as the gaps occuring at the point Γm in the

electronic spectrum (fig. 3.5(b)). However, we immediately verify that the insulating behavior is much
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Figure 3.4: Drude weight results for tBLG (2nd method): (a) as a function of the Fermi level, for
different angles; (b) as a function of the carrier density, for different temperatures. The outcomes were
again isotropic. In (b), the black dashed line is for decoupled BLG at T = 300K. The results for decoupled
BLG (tBLG continuum model with t⊥ = 0) were verified to match the results for the SLG, multiplied
by 2.
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Figure 3.5: tBLG with θ = 1.8◦ : (a) experimental results for the Drude conductivity, source: ref. [31];
(b) band structure.

more pronnounced in the experimental results. In the work done in ref. [31], the authors estimated a

band gap of 50 − 60meV, which is much larger than what we observe in the electronic spectrum. This

motivates some of the work that will be done in chapter 4. In particular, the goal is to compute the band

renormalization due to electron-electron interactions and check if it is responsible, to some extent, for

the enhanced gaps around ±125meV in this system. Finally, we also note the disagreement between the

experimental results and the theory near the Dirac point (which corresponds to n = 0), in particular the

fact that the conductivity is not very much sensitive to T below some value Tmax (see fig. 3.5(a)). This

is an expected result observed in graphene and the explanation is that it occurs due to inhomogeneities

in the system (extrinsic disorder, ripples, etc...), which basically make the Dirac point inacessible [60].

Regular conductivity

In figs. 3.6 and 3.7, we show representative results that allow us to analyze the regular conductivity

in tBLG systems. All conductivity results obtained were isotropic. Before discussing these results, we
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Figure 3.6: tBLG with θ = 9◦ : (a) real part of the regular conductivity; (b) electronic spectrum. In (a),
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Figure 3.7: Regular conductivity results for tBLG. In (a) and (b), the dashed lines are for decoupled
BLG or 2×SLG.

give a word about the numerical implementation of the real part (the imaginary part is straightforwardly

computed from the real part by using the regularized KK relation). In contrast with the other calculations,

where we only needed to consider bands with |E| . 1eV (which are well described by the model), in this

case we see that, for a given µ and for a given ω, all bands with energy respecting |E − µ| . ~ω

contribute. Therefore, depending on the Fermi level µ and, most importantly, on the energy ~ω of the

interband transition that we want to capture, we may need to consider higher energy bands that are not

well described by the model. Still, this does not constitute a big concern because these bands lead to the

well established constant value 2σ0, typical of the Dirac cone approximation.

Looking at fig. 3.6(a), we first notice the already discussed dependency on both the Fermi level and

temperature. In addition, we observe a low-energy peak (marked with a green arrow), which we interpret

as the dominant transitions shown in fig. 3.6(b). Notice that there are other transitions (red and orange

arrows) which we would expect to be dominant, since they connect different van Hove singularies; however,

these transitions are optically inactive, in agreement with what was found in refs. [32, 33]. This optical

selection rule occurs due to a symmetry in the effective Hamiltonian which makes the matrix elements

from eq. (3.33) null for bands with symmetric energies and in the Mm points only [33]. From fig. 3.7(a),

51



we highlight the fact that the results obtained for the decoupled tBLG —tBLG with a null interlayer

hopping parameter, t⊥ = 0— match perfectly the results for 2×SLG (results for SLG, multiplied by

2). Although this was trivially expected, it was only achieved when we used the second method for

computing the imaginary part of the regular conductivity; therefore, this served as a benchmark test

for the validity of the computational methods. Moreover, we remark that we now have a region with a

big deep on Im {σreg(ω)} occuring at lower frequencies, which will be an important feature in the next

section. Regarding the last figure, fig. 3.7(b), we emphasize that, for small angles, we start to lose the

“signature” behavior of the curves because of the presence of multiple low-energy van Hove singularities.

3.2 Spectrum of graphene surface plasmon-polaritons

3.2.1 Dispersion relation — transverse magnetic modes

For this derivation, we will closely follow Gonçalves and Peres [19]. We consider a system consisting

of a single graphene sheet cladded between two semi-infinite dielectric media, characterized by the real

dielectric constants (relative permittivities) εr1 and εr2, as depicted in fig. 3.8. We stress that, although

the tBLG is not truly a 2D surface, its thickness is still negligible and we can view it as a monolayer for

these purposes 2.

Let us assume a solution of Maxwell’s equations in the form of a TM wave. We use the following

ansatz for the electric and magnetic fields in the medium j = 1, 2:

EEEj = (Ej,xx̂̂x̂x+ Ej,zẑ̂ẑz)e
iqxe−κj |z|, BBBj = Bj,ye

iqxe−κj |z|ŷ̂ŷy. (3.43)

This ansatz describes an electromagnetic wave (TM mode) which is confined to the neighborhood of the

graphene sheet (with damping parameter κj ,Re {κj} > 0) and propagates along the x̂̂x̂x-direction. Due

to translational invariance symmetry, the linear momentum along the propagation direction must be

conserved, enabling us to write q ≡ q1 = q2, where q1/2 is the momentum of the electromagnetic wave

propagating in medium 1/2. Moreover, we note that we are just writting the spatial components of the

fields; the time dependency, in what follows, is assumed to be of the typical harmonic form, i.e., e−iωt.

We now make use of Maxwell’s equations. For each one of the media, Faraday’s law of induction and

Ampère’s law read, respectively,

∇∇∇×EEEj = −∂B
BBj
∂t

, (3.44)

∇∇∇×HHHj = JJJfj +
∂DDDj

∂t
. (3.45)

Considering isotropic linear dielectric media, we can write the electric displacement as DDDj = ε0ε
r
jEEEj ,

where ε0 is the vacuum permittivity. Assuming isotropic linear magnetic media with unitary relative

permeability, we may also write the magnetic field strength as HHHj =
BBBj
µ0µrj

=
BBBj
µ0

where µ0 is the vacuum

2Typically, the 2D nature is still predominant for less than 10 layers [61].
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Figure 3.8: Illustration of a single graphene sheet sandwiched between two semi-infinite insulators with
relative permittivities εi ≡ εri (in our notation). Medium 1 occupies the z < 0 half-space and medium 2
the z > 0; the graphene sheet is located at the z = 0 plane. Source: ref. [19].

permeability. Finally, if the free current density is zero, JJJfj = 000, we rewrite Ampère’s law as

∇∇∇×BBBj =
εrj
c2
∂EEEj
∂t

, (3.46)

where c = 1/
√
µ0ε0 is the speed of light. Introducing the fields (3.43) into (3.44) and (3.46), we obtain

the following useful relations:

− sgn (z)κjEj,x − iqEj,z = iωBj,y, (3.47)

sgn (z)κjBj,y = −iω
εrj
c2
Ej,x, (3.48)

iqBj,y = −iω
εrj
c2
Ej,z. (3.49)

From these, we can deduce

Ej,x = i sgn (z)
κjc

2

ωεrj
Bj,y, (3.50)

Ej,z = − qc
2

ωεrj
Bj,y, (3.51)

κ2
j = q2 −

ω2εrj
c2

. (3.52)

Within the linear response regime, the boundary conditions linking the electromagnetic fields at z = 0

read

E1,x(x, z = 0) = E2,x(x, z = 0), (3.53)

B1,y(x, z = 0)−B2,y(x, z = 0) = µ0Jx(x) = µ0σxxE2,x(x, z = 0), (3.54)

which assure the continuity of the tangential component of the electric field and the discontinuity of the

tangential component of the magnetic field across the interface. We emphasize that the conductivity of
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graphene is taken into account in the boundary condition only. For unstrained graphene (and particularly

for the systems in focus), graphene’s conductivity is isotropic and frequency-dependent, so we write

σ(ω) ≡ σxx = σyy. From (3.53) and (3.50), we get

B1,y = −κ2

κ1

εr1
εr2
B2,y, (3.55)

which we insert in (3.54) to obtain

εr1
κ1(q, ω)

+
εr2

κ2(q, ω)
+ i

σ(ω)

ωε0
= 0. (3.56)

This last equation describes the dispersion relation, ω(q), of graphene TM surface plasmon-polaritons.

Notice that this is an implicit equation, so it needs to be solved numerically. Nonetheless, just by looking

at it, we can see that it is only solvable when Im {σ(ω)} > 0.

3.2.2 Results for single layer graphene

In fig. 3.9, we present our results for the total conductivity (Drude plus regular terms) in SLG, as a

function of the frequency, f = ω/(2π), across the spectral region where we are interested to study the

spectrum of GSPPs —from the THz up to the mid-infrared. We recall that we have set Γ = 16meV;

moreover, in the following results, we will always be considering room temperature, T = 300K 3. We also

stress that we avoided exceeding frequencies of 30THz because of the surface polar phonons that arise

from the SiO2 —the typical substrate used as medium 2—, according to the work done by Eduardo Dias

in his master’s thesis (fig. 3.10).
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Figure 3.9: Total conductivity in SLG: (a) real part; (b) imaginary part.

3It should already be clear, from the results for µ = 0meV, that we are not considering zero temperature.
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Figure 3.10: Evidence of surface optical phonons arising from the SiO2 substrate. In this plot, the
quantity in focus is the optical transmittance, T , with TCNP being the optical transmittance in the
charge neutrality point. This quantity was obtained within a theoretical calculation, which takes into
account the full dielectric function of the SiO2. The parameters W and G correspond to a and d − a,
repectively, in the scheme of fig. 1.6. The peak that starts at f ∼ 30THz was interpreted as a contribution
from the SiO2 optical phonons. Image kindly provided by Eduardo Dias (private communication).

Given the total conductivity at a given Fermi level, we can obtain the dispersion curve by solving eq.

(3.56) numerically. Notice that, if we consider only the Drude contribution with Γ = 0, we have a pure

imaginary conductivity and we can solve this equation with real q. If not, we have to consider a complex-

valued wave vector, whose imaginary part characterizes the attenuation of the SPPs [19, 62]. In fig. 3.11,

we present the spectrum of the GSPPs for µ = 450meV, which we obtained by taking into account the

total conductiviy. This curve is in agreement with the results obtained in ref. [19], namely with fig. 4.2

(of this reference), where the authors considered only the Drude contribution (which is the dominant

term in this case) with no absorption (Γ = 0), and fig. 4.3, where they verified that the consideration of

absorption (Γ 6= 0) only affects the spectrum in the region of low wave vectors. Analyzing the spectrum,

we see that the dispersion curve lies to the right of the light line, which indicates, as we have mentioned

earlier, that we cannot excite GSPPs simply by directly shining electromagnetic radiation 4. It is now

clear why we need to use a setup with a periodic grid, like the one described in section 1.2.3 (see fig. 1.6).

4In fact, if we look closely, we see that the dispersion curve crosses the light line at some point (this happens only because
we are considering a non-zero Γ, which is the more realistic situation). However, this point falls within the overdamped
regime, ωSPP /γ < 1, in which SPPs cannot be sustained [19].
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Figure 3.11: Dispersion relation of TM GSPPs in SLG. The dashed line corresponds to the light dispersion,
ω = cq, where c is the speed of the light in the medium (in this case we considered air).

At last, we can fix a wave vector —physically, if we take the light line as roughly vertical, this

corresponds to fixing a gap in the periodic grid— and study the dependency of the dispersion curves on

the Fermi level (or the carrier density). The results are shown in fig. 3.12. We stress that we do not

obtain f(n = 0) = 0 in fig. 3.12(b) because of the finite temperature.
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Figure 3.12: Spectrum of TM GSPPs in SLG: dependency on the Fermi level/carrier density. Figure (a)
schematically shows the procedure used to obtain figure (b).

3.2.3 Results for twisted bilayer graphene

For the tBLG, we repeated the previous analysis —namely the last 2 plots from fig. 3.12, which we

considered as sufficiently representative— for two different twist angles.
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Figure 3.13: Spectrum of TM GSPPs in tBLG with θ = 9◦ : dependency on the Fermi level/carrier
density. The black dots in (a) mark the fixed parameter in (b).

For this angle, we see that the “signatures” of the curves do not differ a lot from those of the SLG.

This happens due to two main reasons:

• Within this range of frequency, f . 30THz ⇔ ~ω . 124meV, the regular conductivity is basically

twice the value obtained for the SLG (fig. 3.6(a) indicates that). Moreover, for µ . 250meV, the

Drude weight is also twice the value obtained for the SLG (see fig. 3.4(a)). Therefore, we do not

capture any hybridization effect and we just recover the total conductivity of a decoupled BLG.

• As we can see in fig. 2.13(b), the curves n(µ) for θ = 9◦ and for decoupled BLG are also very close

within the range in focus, µ . 250meV ⇔ n . 1× 1013cm−2.
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Figure 3.14: Spectrum of TM GSPPs in tBLG with θ = 1.8◦ : dependency on the Fermi level/carrier
density. The black dots in (a) mark the fixed parameter in (b).

In this case, not only the total conductivity is different but also the relation n(µ) changes drastically.

This leads to the plot of fig. 3.14(b), which we highlight since it is totally different from all the results
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obtained before. As an immediate application, we can think of using these results as an alternative

method for determining the twist angle. Nevertheless, a more extensive study on the behavior of these

curves with the variation of θ remains to be done, in order to investigate more promising applications.
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Chapter 4

Electron-electron interactions

The effects of electron-electron interactions are the subject matter of this chapter. We start by

including an additional term in the Hamiltonian, which takes into account the long range Coulomb

repulsion between electrons; Thomas-Fermi (TF) screening is considered later. Within a mean field (MF)

analysis, we derive expressions for the Hartree-Fock (HF) corrections due to these interactions. Band

renormalization is computed for the SLG and compared to the literature. Bearing in mind the explanation

of the enhanced gaps discussed in section 3.1.3, we also calculate the bandgap renormalization for a system

described by the SLG Hamiltonian with a gap. The analysis of the tBLG has been initiated but results

were not yet obtained; here, we discuss the difficulties we have encountered and strategies to solve them

in future works.

4.1 Long range Coulomb interaction

In the next sections, our goal is to derive the expressions for the band renormalization due to electron-

electron Coulomb interactions. This deduction has in mind further implementations for both SLG and

tBLG systems. Yet, it becomes hard to maintain a general notation and proceed with a derivation that

can be applied to both systems. Therefore, we will stick to the SLG, for which the notation is lighter

and the deduction simpler. In the end of each section, we will highlight the differences that appear in the

tBLG treatment, and present just the final expressions, which can be obtained in the exact same manner.

We start by writing the electron-electron interaction in the usual form (2-particle operator),

Vee =
1

2

∑
σ,σ′

∫
drrrdrrr′ Ψ̂†σ(rrr)Ψ̂†σ′(rrr

′)v(|rrr − rrr′|)Ψ̂σ′(rrr
′)Ψ̂σ(rrr), (4.1)

where Ψ̂†σ(rrr)/Ψ̂σ(rrr) are the creation/destruction fermionic field operators for spin σ and position rrr and

v(|rrr − rrr′|) is the Coulomb potential between 2 electrons,

v(|rrr − rrr′|) =
e2

4πεrε0|rrr − rrr′|
. (4.2)

We want to write eq. (4.1) in terms of band operators. In order to do so, we expand the field operators
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in a complete basis set, the Bloch basis {ψkkk,σ,λ(rrr)} (which diagonalizes the Hamiltonian), such that

Ψ̂σ(rrr) =
∑
kkk,λ

ψkkk,σ,λ(rrr)ĉkkk,σ,λ, (4.3)

where we recall that ĉkkk,σ,λ is the fermionic operator that annihilates an electron with crystal momentum

kkk ∈ BZ and spin σ in band λ. The Bloch basis is spin independent and we can write

|ψkkk,σ,λ〉 = |ψkkk,λ〉 =
∑
α

cα,λ(kkk) |ψkkk,α〉 , (4.4)

where α is the label for the sublattice. We clarify that the cα,λ(kkk) are the same that appear in the column

vectors, (2.16), after diagonalizing the Hamiltonian (notice that there is a set of column vectors for each

λ). Within the tight-binding approximation (recall (2.8)), we have

ψkkk,λ(rrr) ≡ 〈rrr|ψkkk,λ〉 =
∑
α

cα,λ(kkk) 〈rrr|ψkkk,α〉

=
1√
N

∑
α

∑
n1,n2

cα,λ(kkk)eikkk.(RRRn1,n2+δδδα) 〈rrr|RRRn1,n2
+ δδδα, α〉

=
1√
N

∑
α

∑
RRR

cα,λ(kkk)eikkk.RRR
α

φα(rrr −RRRα), (4.5)

where RRRα ≡ RRRn1,n2 + δδδα. In the new basis, the interaction term reads

Vee =
1

2

∑
σ,σ′

∑
1,2,3,4

V1,2,3,4 ĉ
†
1,σ ĉ

†
2,σ′ ĉ3,σ′ ĉ4,σ, (4.6)

where the numbers 1 − 4 are used for a composed index, 1 ≡ {kkk1, λ1} for example, and V1,2,3,4 is given

by

V1,2,3,4 =
1

N2

∑
α1,α2,
α3,α4

∑
RRR1,RRR2,
RRR3,RRR4

[cα1,λ1
(kkk1)]

∗
[cα2,λ2

(kkk2)]
∗
cα3,λ3

(kkk3)cα4,λ4
(kkk4)×

× e−ikkk1.RRR
α1
1 e−ikkk2.RRR

α2
2 eikkk3.RRR

α3
3 eikkk4.RRR

α4
4 ×

×
∫
drrrdrrr′ [φα1(rrr −RRRα1

1 )]
∗

[φα2(rrr′ −RRRα2
2 )]

∗
v(|rrr − r′r′r′|)φα3(rrr′ −RRRα3

3 )φα4(rrr −RRRα4
4 ). (4.7)

In the spirit of the tight-binding approximation (localized atomic orbitals), it is reasonable to assume

that the most important terms in the integral occur when {RRR1, α1} = {RRR4, α4} and {RRR2, α2} = {RRR3, α3}.

This yields

V1,2,3,4 =
1

N2

∑
α1,α2

∑
RRR1,RRR2

[cα1,λ1
(kkk1)]

∗
[cα2,λ2

(kkk2)]
∗
cα2,λ3

(kkk3)cα1,λ4
(kkk4)×

× e−i(kkk1−kkk4).RRR
α1
1 e−i(kkk2−kkk3).RRR

α2
2

∫
drrrdrrr′ |φα1

(rrr −RRRα1
1 )|2 e2

4πεrε0|rrr − rrr′|
|φα2

(rrr′ −RRRα2
2 )|2. (4.8)
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We now work the following term:

∑
RRR1,RRR2

e−i(kkk1−kkk4).RRR
α1
1 e−i(kkk2−kkk3).RRR

α2
2

∫
drrrdrrr′ |φα1(rrr −RRRα1

1 )|2 e2

4πεrε0|rrr − rrr′|
|φα2(rrr′ −RRRα2

2 )|2

=
∑
RRR1,RRR2

e−i(kkk1−kkk4).RRR
α1
1 e−i(kkk2−kkk3).RRR

α2
2

∫
drrrdrrr′ |φα1(rrr)|2 e2

4πεrε0|rrr − rrr′ − (RRRα2
2 −RRR

α1
1 ) |
|φα2(rrr′)|2

=
∑
RRR1,RRR2

e−i(kkk1−kkk4).RRR
α1
1 e−i(kkk2−kkk3).RRR

α2
2

∫
drrrdrrr′ |φα1(rrr′)|2 e2

4πεrε0|rrr − rrr′ − (RRRα1
1 −RRR

α2
2 ) |
|φα2(rrr)|2

=
∑
RRR1,RRR′

e−i(kkk1−kkk4+kkk2−kkk3).RRR
α1
1 ei(kkk2−kkk3).RRR′α1,α2

∫
drrrdrrr′ |φα1

(rrr′)|2 e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|
|φα2

(rrr)|2, (4.9)

where RRR′α1,α2
= RRR1 −RRR2 + δδδα1

− δδδα2
= RRR′ + δδδα1,α2

, with RRR′ = RRR1 −RRR2 defining a lattice centered in

a different point for each RRR1. In the limit of an infinite system, the origin does not matter and we can

treat RRR′ as an independent lattice. Using the orthogonality relation,

∑
RRR1

e−i(kkk1−kkk4+kkk2−kkk3).RRR
α1
1 = N δkkk1−kkk4,−kkk2+kkk3 , kkki ∈ BZ, (4.10)

and the identity, δkkk1−kkk4,−kkk2+kkk3 =
∑
qqq δkkk2−kkk3,qqq δkkk1−kkk4,−qqq, we obtain

V1,2,3,4 =
1

N

∑
α1,α2

∑
RRR′

∑
qqq

[cα1,λ1(kkk4 − qqq)]∗ [cα2,λ2(kkk3 + qqq)]
∗
cα2,λ3(kkk3)cα1,λ4(kkk4)×

× eiqqq.RRR
′
α1,α2 δkkk2−kkk3,qqq δkkk1−kkk4,−qqq

∫
drrrdrrr′ |φα1(rrr′)|2 e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|
|φα2(rrr)|2. (4.11)

Let us isolate and manipulate the following term:

∑
RRR′

eiqqq.RRR
′
α1,α2

∫
drrrdrrr′ |φα1

(rrr′)|2 e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|
|φα2

(rrr)|2

=

∫
drrrdrrr′ |φα1

(rrr′)|2eiqqq.(rrr−rrr
′)
∑
RRR′

e−iqqq.(rrr−rrr
′−RRR′α1,α2

) e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|
|φα2

(rrr)|2

=

∫
drrrdrrr′ |φα1

(rrr′)|2eiqqq.(rrr−rrr
′) 1

Au.c.

∫
dRRR′ e−iqqq.(rrr−rrr

′−RRR′α1,α2
) e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|
|φα2

(rrr)|2, (4.12)

where we converted the sum into an integral in the limit of an infinite system,
∑
RRR′ →

1
Au.c.

∫
dRRR′. At

this moment, we recognize the FT of the Coulomb potential,

∫
dRRR′ e−iqqq.(rrr−rrr

′−RRR′α1,α2
) e2

4πεrε0|rrr − rrr′ −RRR′α1,α2
|

=

∫
dRRR′ e−iqqq.RRR

′ e2

4πεrε0|RRR′|
= v(qqq), (4.13)

which is computed in appendix D and yields

v(qqq) =
e2

2εrε0q
. (4.14)
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Collecting all terms, we rewrite V1,2,3,4,

V1,2,3,4 =
1

NAu.c.

∑
α1,α2

∑
RRR′

∑
qqq

[cα1,λ1(kkk4 − qqq)]∗ [cα2,λ2(kkk3 + qqq)]
∗
cα2,λ3(kkk3)cα1,λ4(kkk4)×

× δkkk2−kkk3,qqq δkkk1−kkk4,−qqq Iα1(qqq)Iα2(−qqq) e2

2εrε0q
, (4.15)

where

Iαi(qqq) =

∫
drrr e−qqq.rrr|φαi(rrr)|2. (4.16)

The integrals in the last equation can be approximated to the unity, as done in ref. [63]. Qualitatively,

we may argue that the atomic orbitals are only significant (deep) inside the unit cell, rrr ∈ u.c.. Since

qqq ∈ BZ (due to the Dirac deltas), we have qqq.rrr � 1 for most qqq and, therefore, Iαi(qqq) ' 1.

At last, we retain all these results to write the interaction term as

Vee =
1

2NAu.c.

∑
σ,σ′

∑
λ1,λ2,
λ3,λ4

∑
kkk3,kkk4

∑
α1,α2

∑
qqq

[cα1,λ1(kkk4 − qqq)]∗ [cα2,λ2(kkk3 + qqq)]
∗
cα2,λ3(kkk3)cα1,λ4(kkk4)×

× e2

2εrε0q
ĉ†kkk4−qqq,λ1,σ

ĉ†kkk3+qqq,λ2,σ′
ĉkkk3,λ3,σ′ ĉkkk4,λ4,σ. (4.17)

The tBLG treatment

For this system, the Coulomb potential is given by (4.2) when the electrons are in the same layer,

and by

v(|rrr − rrr′|) =
e2

4πεrε0

√
r2 − (r′)2 + d2

⊥
(4.18)

when they are not. The FT of this potential is also done in appendix D and yields

v(qqq) = v(q) =
e2

2εrε0q
e−qd⊥ , (4.19)

which we may approximate to the same result as before since e−qd⊥ ∼ 1 for qqq ∈ mBZ.

The expansion of the field operators in the Bloch basis is done in the following manner:

Ψ̂σ(rrr) =
∑
qqq,λ

ψqqq,λ(rrr)ĉqqq,σ,λ, (4.20)

with

ψqqq,λ(rrr) =
1√
N

∑
γ(ν)

∑
RRR

cγ(ν),λ(qqq)eiq̃qq.RRR
ν

φν(rrr −RRRν), (4.21)

where qqq ∈ mBZ, q̃qq = K +qqq (recalling that the momentum qqq which diagonalizes the Hamiltonian is being

measured from the Dirac point K), ν labels both sublattice and layer, ν = {α, i}, and γ is the index

associated with all the components of the column vectors, like the one shown in (2.119); the notation

γ(ν) is used to express that γ also encodes information about the sublattice and the layer. Notice that

we are not taking into consideration the valley degeneracy. However, we do not expect the Coulomb

interactions between electrons in the opposite valeys to be significant due to the difference in momentum.
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We are therefore separating the treatment of K and K ′ bands.

The final expression for the interaction term is

Vee =
1

2NAg.u.c.

∑
σ,σ′

∑
λ1,λ2,
λ3,λ4

∑
qqq3,qqq4

∑
γ1(ν1),γ2(ν2),
γ3(ν2),γ4(ν1)

∑
qqq

[
cγ1(ν1),λ1

(qqq4 − qqq)
]∗ [

cγ2(ν2),λ2
(qqq3 + qqq)

]∗×
× cγ3(ν2),λ3

(qqq3)cγ4(ν1),λ4
(qqq4)

e2

2εrε0q
ĉ†qqq4−qqq,λ1,σ

ĉ†qqq3+qqq,λ2,σ′
ĉqqq3,λ3,σ′ ĉqqq4,λ4,σ, (4.22)

where we stress that Ag.u.c. is the area of a graphene unit cell (and not the area of a moiré unit cell). We

also point out that, for the tBLG, the approximation Iνi(qqq) ' 1 is comparatively better to the one done

in the SLG case, because qqq ∈ mBZ.

4.2 Thomas-Fermi screening

Within a TF approximation, the screened Coulomb interaction reads

vs(q) =
e2

2εrε0(q + qTF )
, (4.23)

where qTF stands for the TF wave vector. This result can be obtained as a static low-energy limit of

random phase approximation (RPA) [64], which is equivalent to writing the Coulomb potential screened

by the static dielectric function ε(q),

v(q)→ vs(q) =
v(q)

ε(q)
, (4.24)

where

ε(q) = 1 + U(q)N(µ), (4.25)

with U(q) = e2

2εrε0q
standing for the FT of the 2D Coulomb potential and N(µ) for the DOS (per total

area) at Fermi level µ. This implies

qTF =
e2

2εrε0
N(µ). (4.26)

We notice that, for systems like graphene, we have poor screening for µ ∼ µ0 since the DOS vanishes

at this point. Nonetheless, we may still include some residual phenomenological screening due to disorder

effects or to the fact that the sp2 orbitals are not taken into account in the models.

4.3 Mean field treatment

We introduce the HF approximation to treat the interaction term in eq. (4.17). This MF approach can

be done by using the Gibbs-Bogoliubov inequality as a variational principle (see deduction in appendix

E),

F ≤ FMF + 〈H −HMF 〉MF ≡ F̃ . (4.27)

Given the Hamiltonian H = H0 + V , what we do is to replace the interaction V = Vee + Vei + Vii by a

one-body potential, VMF , which is chosen in order to minimize the right hand side of (4.27). The ion-ion
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term, Vii, can be discarded since it does not depend on fermionic field operators and therefore drops out

when doing the functional derivative (it just redefines the zero energy). Regarding the remaining terms,

we will only keep Vee for now. As we shall see, we will get VMF = VH + Vexc, where VH and Vexc are

the Hartree and Fock/exchange terms, respectively. Later, we will show that the consideration of the

electron-ion term, Vei, cancels out the Hartree term.

We perform this MF treatment in real space. Recalling that our system’s Hamiltonian is written as

H = H0 + Vee, where H0 is the non-interacting Hamiltonian and Vee is given by (4.1), we introduce a

MF Hamiltonian, HMF = H0 + VMF , with

VMF =
∑
σ,σ′

∫
drrrdrrr′ f(rrr,rrr′)Ψ̂†σ(rrr)Ψ̂σ′(rrr

′) (4.28)

being the most general one-body interaction. Imposing an hermitian Hamiltonian, we obtain the relation

f(rrr,rrr′) = f∗(rrr′, rrr). Now, we introduce a variation in HMF , HMF → HMF + δHMF , which corresponds

to a variation f → f + δf , and impose the extremum condition which minimizes F̃ ,

δF̃ = 0⇔ δ (FMF + 〈H −HMF 〉MF ) = 0

⇔ δFMF + δ 〈Vee〉MF − δ 〈VMF 〉MF = 0. (4.29)

The computation of each term yields:

• δ 〈Vee〉MF

δ 〈Vee〉 =
1

2

∑
σ,σ′

∫
drrrdrrr′ v(|rrr − rrr′|)δ

(
〈Ψ̂†σ(rrr)Ψ̂†σ′(rrr

′)Ψ̂σ′(rrr
′)Ψ̂σ(rrr)〉

)

=
∑
σ,σ′

∫
drrrdrrr′ v(|rrr − rrr′|)

[(
δ 〈n̂σ(rrr)〉

)
〈n̂σ′(rrr′)〉 −

(
δ 〈Ψ̂†σ(rrr)Ψ̂σ′(rrr

′)〉
)
〈Ψ̂†σ′(rrr

′)Ψ̂σ(rrr)〉

]
,

(4.30)

where we have dropped the label of MF and introduced the number operator, n̂σ(rrr) ≡ Ψ̂†σ(rrr)Ψ̂σ(rrr).

We also used Wick’s Theorem, in the form

〈Ψ̂†1Ψ̂†2Ψ̂3Ψ̂4〉 = 〈Ψ̂†1Ψ̂4〉 〈Ψ̂†2Ψ̂3〉 − 〈Ψ̂†1Ψ̂3〉 〈Ψ̂†2Ψ̂4〉+��*
0..., (4.31)

where the last terms are 0 because the averages do not conserve the number of particles (supercon-

ducting phases are not expected, therefore we do not allow them as a possible MF solution).

• δ 〈VMF 〉MF

δ 〈VMF 〉 =
∑
σ,σ′

∫
drrrdrrr′ δ

(
f(rrr,rrr′) 〈Ψ̂†σ(rrr)Ψ̂σ′(rrr

′)〉
)

=
∑
σ,σ′

∫
drrrdrrr′

[(
δf(rrr,rrr′)

)
〈Ψ̂†σ(rrr)Ψ̂σ′(rrr

′)〉+ f(rrr,rrr′)
(
δ 〈Ψ̂†σ(rrr)Ψ̂σ′(rrr

′)〉
)]
. (4.32)
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• δFMF

δFMF = δ

(
−kBT Tr

{
e−β(ĤMF−��>µN̂)

})

= −kBT
δ
(

Tr
{
e−βĤMF

})
Tr
{
e−βĤMF

} = −kBT
Tr
{
e−β(ĤMF+δĤMF )

}
− Tr

{
e−βĤMF

}
Tr
{
e−βĤMF

} , (4.33)

where we absorved the term µN̂ (which arises from the free energy in the grand canonical ensemble)

in ĤMF to lighten the notation. We now work the term Tr
{
e−β(Ĥ+δĤ)

}
to the first order in δĤ:

Tr
{
e−β(Ĥ+δĤ)

}
= Tr

{
+∞∑
n=0

(−β)n

n!

(
Ĥ + δĤ

)n}
= 1 + Tr

{
+∞∑
n=1

(−β)n

n!
Ĥn

}
+

+ Tr

{
+∞∑
n=1

(−β)n

n!

(
δĤĤn−1 + ĤδĤĤn−2 + ...+ Ĥn−1δĤ

)}
+���

��:O(δĤ2)

= Tr
{
e−βĤ

}
+ Tr

{
nδĤ

+∞∑
n=1

(−β)n

n(n− 1)!
Ĥn−1

}
= Tr

{
e−βĤ

}
− β Tr

{
δĤe−βĤ

}
, (4.34)

where we made use of the cyclic propertie of the trace. Using this result, (4.33) becomes

δFMF =
Tr
{
δĤMF e−βĤMF

}
Tr
{
e−βĤMF

} = 〈δĤMF 〉MF

=
∑
σ,σ′

∫
drrrdrrr′

(
δf(rrr,rrr′)

)
〈Ψ̂†σ(rrr)Ψ̂σ′(rrr

′)〉MF . (4.35)

Collecting these 3 terms and inserting them in eq. (4.29), we obtain

δF̃ =
∑
σ,σ′

∫
drrrdrrr′

{
v(|rrr − rrr′|)

[
〈n̂σ′(rrr′)〉 δ 〈n̂σ(rrr)〉 − 〈Ψ̂†σ′(rrr

′)Ψ̂σ(rrr)〉 δ 〈Ψ̂†σ(rrr)Ψ̂σ′(rrr
′)〉
]
−

− f(rrr,rrr′) δ 〈Ψ̂†σ(rrr)Ψ̂σ′(rrr
′)〉

}
= 0. (4.36)

Little manipulation on the last equation gives

f(rrr,rrr′) = −v(|rrr − rrr′|) 〈Ψ̂†σ′(rrr
′)Ψ̂σ(rrr)〉+

∑
σ′′

∫
drrr′′ v(|rrr − rrr′′|) 〈n̂σ′′(rrr′′)〉 δσ,σ′δ(rrr′ − rrr) (4.37)

Inserting (4.37) in (4.28), we obtain VMF = VH + Vexc, where

VH =
∑
σ,σ′

∫
drrrdrrr′ v(|rrr − rrr′|) 〈n̂σ′(rrr′)〉MF n̂σ(rrr), (4.38)

Vexc = −
∑
σ,σ′

∫
drrrdrrr′ v(|rrr − rrr′|) 〈Ψ̂†σ′(rrr

′)Ψ̂σ(rrr)〉MF Ψ̂†σ(rrr)Ψ̂σ′(rrr
′). (4.39)
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At this point, we emphasize that this MF treatment was completely general and independent of the

system we are considering. Moreover, it is clear that we can move to the reciprocal space using the exact

same procedure that we have described in section 4.1. Besides the prefactors, we only have to keep track

of the order of the operators and which ones are averaged. For SLG, we obtain

VH =
1

NAu.c.

∑
σ,σ′

∑
α,α′

∑
λ1,λ2,
λ3,λ4

∑
kkk,kkk′,
kkk′′

[cα,λ1
(kkk − kkk′′)]∗ [cα′,λ2

(kkk′ + kkk′′)]
∗
cα′,λ3

(kkk′)cα,λ4
(kkk)×

× v(|kkk′′|) 〈ĉ†kkk′+kkk′′,λ2,σ′
ĉkkk′,λ3,σ′〉MF

ĉ†kkk−kkk′′,λ1,σ
ĉkkk,λ4,σ, (4.40)

Vexc = − 1

NAu.c.

∑
σ,σ′

∑
α,α′

∑
λ1,λ2,
λ3,λ4

∑
kkk,kkk′,
kkk′′

[cα,λ1
(kkk − kkk′′)]∗ [cα′,λ2

(kkk′ + kkk′′)]
∗
cα′,λ3

(kkk′)cα,λ4
(kkk)×

× v(|kkk′′|) 〈ĉ†kkk′+kkk′′,λ2,σ′
ĉkkk,λ4,σ〉MF

ĉ†kkk−kkk′′,λ1,σ
ĉkkk′,λ3,σ′ . (4.41)

For the tBLG, we have

VH =
1

NAu.c.

∑
σ,σ′

∑
γ1(ν),γ2(ν′),
γ3(ν′),γ4(ν)

∑
λ1,λ2,
λ3,λ4

∑
qqq,qqq′,
qqq′′

[
cγ1(ν),λ1

(qqq − qqq′′)
]∗ [

cγ2(ν′),λ2
(qqq′ + qqq′′)

]∗
cγ3(ν′),λ3

(qqq′)cγ4(ν),λ4
(qqq)×

× v(|qqq′′|) 〈ĉ†qqq′+qqq′′,λ2,σ′
ĉqqq′,λ3,σ′〉MF

ĉ†qqq−qqq′′,λ1,σ
ĉqqq,λ4,σ, (4.42)

Vexc = − 1

NAu.c.

∑
σ,σ′

∑
γ1(ν),γ2(ν′),
γ3(ν′),γ4(ν)

∑
λ1,λ2,
λ3,λ4

∑
qqq,qqq′,
qqq′′

[
cγ1(ν),λ1

(qqq − qqq′′)
]∗ [

cγ2(ν′),λ2
(qqq′ + qqq′′)

]∗
cγ3(ν′),λ3

(qqq′)cγ4(ν),λ4
(qqq)×

× v(|qqq′′|) 〈ĉ†qqq′+qqq′′,λ2,σ′
ĉqqq,λ4,σ〉MF

ĉ†qqq−qqq′′,λ1,σ
ĉqqq′,λ3,σ′ . (4.43)

4.4 Cancellation between electron-ion and Hartree electron-electron

terms

In graphene systems, the “ions” are the effective charges, from the carbon atoms, seen by the electrons.

As we have seen, there is an effective charge of +e in every carbon atom. Considering the complete

Hamiltonian, we have H = H0 + Vee + Vei + Vii with

Vei =
∑
i

Vei(R̃RRi), Vei(R̃RRi) = −
∑
σ

∫
drrr

e2

4πεrε0|rrr − R̃RRi|
n̂σ(rrr), (4.44)

Vii =
∑
i 6=j

e2

4πεrε0|R̃RRi − R̃RRj |
, (4.45)

where R̃RRi is the position of the ith ion. As already stated, we see that, when we apply the variational

principle, the presence of Vii does not change anything since δ 〈Vii〉MF = 0. We thus discard this term.
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The presence of Vei introduces a new term, δ 〈Vei〉MF , given by

δ 〈Vei〉MF = −
∑
i

∑
σ

∫
drrr v(|rrr − R̃RRi|) δ 〈n̂σ(rrr)〉MF . (4.46)

We now recover the term in δ 〈Vee〉MF (eq. (4.30)) which led to the Hartree term,

δ 〈Vee〉HMF =
∑
σ,σ′

∫
drrrdrrr′ v(|rrr − rrr′|) 〈n̂σ′(rrr′)〉MF δ 〈n̂σ(rrr)〉MF . (4.47)

For homogeneous neutral graphene, the density of electrons is uniformly distributed and we may ar-

gue that, on average, we have one electron (out of 2, due to spin degeneracy) for each ion position.

Mathematically, we write ∑
σ′

〈n̂σ′(rrr′)〉MF =
∑
i

δ(rrr′ − R̃RRi), (4.48)

and we verify the cancellation of (4.46) and (4.47). This is the lattice analogue of the well-known

continuum long wavelength cancellation used in the Jellium model [64].

At last, we warn that, when we vary the Fermi level, we are in pratice doping graphene with electrons

or holes. Therefore, we do not have neutral graphene in this situation. Nevertheless, we may argue that,

taking into account the whole physical system (graphene + capacitor), this cancellation still holds. From

the point of view of graphene alone, the Hartree correction in this case implies just a constant energy

shift of the bands, which corresponds to the classical energy due to the other parallel capacitor plate.

4.5 Band renormalization — self-energy

Let us briefly summarize what we have accomplished so far. We introduced the effects of electron-

electron interactions by writing an Hamiltonian H = H0 + Vee + Vei + Vii. Within a MF approximation,

we obtained a simplified 1-particle description of H, HMF = H0 +VMF where VMF was shown to be the

exchange term in the HF approximation, VMF = Vexc. In particular, for SLG, we obtained

Vexc = − 1

NAu.c.

∑
σ,σ′

∑
α,α′

∑
λ1,λ2,
λ3,λ4

∑
kkk,kkk′,
kkk′′

[cα,λ1
(kkk − kkk′′)]∗ [cα′,λ2

(kkk′ + kkk′′)]
∗
cα′,λ3

(kkk′)cα,λ4
(kkk)×

× v(|kkk′′|) 〈ĉ†kkk′+kkk′′,λ2,σ′
ĉkkk,λ4,σ〉MF

ĉ†kkk−kkk′′,λ1,σ
ĉkkk′,λ3,σ′ . (4.49)

Assuming that {kkk, λ, σ} are still good quantum numbers even when using the MF approximation

—meaning that the ground state is assumed to preserve the translational invariance of the lattice and

that the description in a set of bands λ is still valid—, we see that

kkk′ + kkk′′ = kkk +GGG⇔ kkk′′ = kkk − kkk′ +GGG, λ1 = λ3, λ2 = λ4, σ = σ′, (4.50)

where GGG is a graphene reciprocal basis vector. Eq. (4.49) can be further simplified if we keep only the

67



GGG = 000 term, which should be the leading correction to the non-interacing theory. We get

Vexc = − 1

NAu.c.

∑
σ

∑
α,α′

∑
λ1,λ2,
λ3

∑
kkk,kkk′

[cα,λ1(kkk′)]
∗

[cα′,λ2(kkk)]
∗
cα′,λ3(kkk′)cα,λ2(kkk)×

× v(|kkk − kkk′|) 〈ĉ†kkk,λ2,σ
ĉkkk,λ2,σ〉MF

ĉ†kkk′,λ1,σ
ĉkkk′,λ1,σ. (4.51)

Notice that the average 〈...〉MF must be done with respect to the new one-body Hamiltonian; this is

the socalled self-consistent HF approximation. In the non self-consistent approach, the first correction is

obtained by doing the average 〈...〉MF with respect to the bare Hamiltonian, H0. This leads to

Vexc =
∑
σ

∑
kkk,λ

Σλ(kkk)ĉ†kkk,λ,σ ĉkkk,λ,σ, (4.52)

with

Σλ(kkk) = − 1

NAu.c.

∑
α,α′

∑
kkk′,λ′

[cα,λ(kkk)]
∗

[cα′,λ′(kkk
′)]
∗
cα′,λ(kkk)cα,λ′(kkk

′)v(|kkk − kkk′|) 〈ĉ†kkk′,λ′,σ ĉkkk′,λ′,σ〉0

= − 1

NAu.c.

∑
α,α′

∑
kkk′,λ′

[cα,λ(kkk)]
∗

[cα′,λ′(kkk
′)]
∗
cα′,λ(kkk)cα,λ′(kkk

′)v(|kkk − kkk′|) nF
(
ε0λ′(kkk

′)
)
, (4.53)

where nF is the Fermi-Dirac function and ε0λ′(kkk
′) are the eigenvalues for the bare Hamiltonian. Looking at

(4.52), we recognize Σλ(kkk) as a self-energy term. Band renormalization is thus obtained in the following

manner: for a given kkk-state in band λ, the renormalized band energy is given by

ελ(kkk) = ε0λ(kkk) + Σλ(kkk). (4.54)

We stress that, since we have retained the GGG = 000 term, the sum over kkk′ in (4.53) should be done in a

BZ centered close to the kkk-point we intend to describe. Otherwise, we may miss important contributions

arising from small values of |kkk − kkk′|.

We now compare our expression (4.53) to eq. (13) from Roldán et al. [63], obtained through a

diagrammatic technique,

Σλ(kkk) = −
∑
λ′

∫
BZ

dqqq

(2π)2
v(|qqq|) Fλ,λ′(kkk,kkk + qqq) Θ(µ− ε0λ′(kkk + qqq)). (4.55)

Apart from the fact that we are considering different Coulomb interactions (they combine long and short

range Coulomb potentials), if we take T → 0 (which implies our Fermi-Dirac function to become a

step function) and if we write kkk′ = kkk + qqq and alternate from the sum over qqq ∈ BZ to an integral, the

expressions start looking very similar. Using the analytical expressions for the SLG eigenvectors (which

can be trivially derived), uλ1 (kkk)

uλ2 (kkk)

 =
1√
2

 1

−λ |f(kkk)|
f(kkk)

 ≡
cA,λ(kkk)

cB,λ(kkk)

 , (4.56)
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where f(kkk) is given by (2.17), we compute the sum

∑
α,α′

[cα,λ(kkk)]
∗

[cα′,λ′(kkk + qqq)]
∗
cα′,λ(kkk)cα,λ′(kkk + qqq) =

1

4

∣∣∣∣1 + λλ′
f(kkk)f∗(kkk + qqq)

|f(kkk)f(kkk + qqq)|

∣∣∣∣2 ≡ Fλ,λ′(kkk,kkk + qqq) (4.57)

and we verify that the expressions match precisely. Moreover, we see that the problem of centering the

sum/integral is already addressed when we changed from summing in kkk′ to a sum over qqq with kkk′ = kkk+qqq.

The tBLG treatment

In this case, we retain the term GGGm = 000, which also implies that our sum over qqq′ should be done in a

mBZ centered around qqq. The remaining steps are completely identical and we obtain

Σλ(qqq) = − 1

NAg.u.c.

∑
γ1(ν),γ2(ν′),
γ3(ν′),γ4(ν)

∑
qqq′,λ′

[
cγ1(ν),λ(qqq)

]∗ [
cγ2(ν′),λ′(qqq

′)
]∗
cγ3(ν′),λ(qqq)cγ4(ν),λ′(qqq

′)×

× v(|qqq − qqq′|) nF
(
ε0λ′(qqq

′)
)
. (4.58)

Here, it is worth to recall that we are splitting the treatment of K and K ′ bands. This separation is

implicit when we write the wave vectors.

4.6 Self-energy results for single layer graphene

Here, we focus on studying the band renormalization near the Dirac point K at T = 0K 1. We

stress that, after computing the self-energy, the zero energy must be redefined because we are now taking

into consideration the Coulomb repulsion between the electrons and, therefore, the bands are shifted

to negative energies. In order to do so, we matched all the spectra by defining the zero energy as the

situation of half-filling. We also note that, when we do not consider screening, the terms k′k′k′ = kkk in the

sum (4.53) must be eliminated.

In fig. 4.1(a), we present results for the SLG. When screening is not taken into account, we observe

points with infinite slope (black dots marked in the figure) that appear at the Fermi surface of the

renormalized spectrum. This is in agreement with ref. [64] (see fig. 5.1 in the page 383). When we

consider TF screening, we conclude that the electronic structure is basically maintained, with just a

slight renormalization —in particular, an increase— of the Fermi velocity; qualitatively, this behavior

was also verified in Roldán et al. [63].

Let us now illustrate the physics that led us to consider the effect of electron-electron interactions as

a possible source for the gap renormalization observed experimentally in ref. [31] (see section 3.1.3 and

fig. 3.5(a)). To that purpose, we took the SLG Hamiltonian (2.18) and introduced a gap ∆ between the

1The dependency on the temperature was actually verified to be unimportant.
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Figure 4.1: Renormalized bands near the K point for: (a) SLG; (b) SLG with a gap ∆ = 250meV. In
both graphics, the dashed black line corresponds to the bare/noninteracting spectrum; moreover, we have
kx = 4π

3
√

3 d
' 1.703Å−1.

valence and the conduction bands by writting

H∆
SLG(kkk) =

 ∆/2 −tf(kkk)

−tf∗(kkk) −∆/2

 . (4.59)

Then, we computed the band renormalization for this Hamiltonian, obtaining the results from fig. 4.1(b).

We first stress that, for µ = 0meV, although the TF screening is null, we considered a small value for

qTF which we may interpret as a disorder effect or as residual screening coming from the sp2 orbitals;

nevertheless, the results were not substantially altered by this. From the figure, we conclude that the gaps

are enhanced and that this enhacement is larger when the Fermi level is placed at the gap. Although we

cannot conclude anything for the tBLG, in particular the desired explanation for the experimental results

discussed before, the results obtained here for the SLG with gap may indicate that the consideration of

electron-electron effects could be a key to explain, to some extent, this pronounced insulator behavior.

4.7 A word on the implementation for the twisted bilayer graphene

We tried to apply the same method to compute the self-energy for the tBLG system with θ = 1.8◦

near the Γm point. Since the self-energy computation is numerically heavy (even for the SLG), we used

the smallest effective Hamiltonian that still captures the first bands and, in particular, the band gap

observed at the Γm point (fig. 3.5(b)). The Hamiltonian used was 38× 38 (NN = 3) and we considered

the first 4 bands closer to the zero energy, which are the ones that are still reasonably described. Notice

that, even with this simplification, the complexity of the diagonalization is much greater. In addition,

looking at (4.58), we also see that this numerical implementation has two more sums/cycles, comparing

with the SLG (4.53). With all this in mind, we still performed the numerical computation using a good

precision in the discretization of the sum over momentum 2, but the results obtained were senseless. We

believe this happened because we only considered the first 4 bands: if we think in the folded picture,

2We set roughly the same number of kkk-points per unit cell in reciprocal space, comparing to the SLG calculation.
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when we unfold the spectrum, the first 4 bands may not cover a sufficiently wide area of the (unfolded)

BZ to make the results valid. However, we cannot increase the number of (well described) bands without

increasing the dimension of the Hamiltonian, and therefore, the time of calculation. Moreover, we are

using a Dirac cone approximation so, even if we wanted to perform a very long calculation with all the

bands, we would never be able to define a finite Hamiltonian (not even for the commensurate case). In

conclusion, the numerical implementation of (4.58) for effective Hamiltonians is something that we still

could not establish. Yet, we settled that, as benchmark, we should first try to make these calculations for

the Km point, since we do not expect major modifications in the renormalized spectrum near this point

(similarly to what we saw for the SLG). In this context, one strategy that we will follow in the future is to

incorporate a cutoff (in the bands) and compute the self-energy for the tBLG at the Km point, without

interlayer coupling 3, comparing it with the results for the SLG. With this, we hope to understand how

the cutoff afects the computation and how to calibrate this cutoff properly.

3We believe that the interlayer coupling will not change considerably the results if the energy scale of the cutoff is
sufficiently higher than the coupling.
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Chapter 5

Conclusions and future work

In chapter 2 of this dissertation, we derived a semi-analytical model for the tBLG, which was the

foundation for the whole work. We mainly followed ref. [26] but we also kept on track with the differences

and similarities of the treatments made in other relevant papers within this subject. From our derivation,

we highlight section 2.3.4, where we provided more detail (specially when compared to our main reference)

on the computation of the FT for the interlayer hopping. With the spectrum reconstruction established,

we also computed the profiles of the DOS and the carrier density, wherefore we consider the objectives

1-3 to be fully accomplished. The principal conclusion of this chapter is that the electronic spectrum is

strongly modified by varying the twist angle, namely by bringing van Hove singularities to lower energies

and thus making them easily accessible to the electrons.

The calculation of the optical conductivity —objective 4— was addressed in section 3.1. Using linear

response theory, we derived general expressions for computing the homogeneous dynamical conductiv-

ity from a spin-independent tight-binding Hamiltonian of a periodic system. A discussion of the best

implementation methods for effective low-energy Hamiltonians was also provided. Here, as our own con-

tribution, we highlight the 2nd method that we introduced to compute the Drude weight, which can easily

be applied. We also emphasize the work that we reproduced from ref. [34], which enables us to compute

the imaginary part of the regular conductivity by using regularized KK relations; despite the lack of

physical meaning of the imaginary part, it is important to compute it in order to study the plasmonic

response. The results obtained for the tBLG were verified to be in agreement with the (few) existent

references related to this topic. As major conclusions, we retain the forbidden optical transitions between

symmetric bands in the Mm point (firstly explained in ref. [33]) and the fact that the conductivity

profiles can be drastically modified —even for low frequencies and/or little doping levels— by varying

the twist angle. At this moment, we have a collaboration with an investigation group from Brazil and we

are waiting for experimental measurements of the optical conductivity in the tBLG to publish our results

together; we stress that the results obtained in this thesis are consistent with the results obtained from

DFT calculations by this group.

The computation of reflectance, transmittance and absorption (objective 5) was left for future work.

With the calculation of the optical conductivity established (both the real and imaginary parts), we
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Figure 5.1: Imaginary part of the total conductivity for tBLG with θ = 1.8◦ . We extended the frequency
range to show that the region where TE modes appear is close, and can eventually be reached by tuning
the twist angle.

finally dived into the 6th objective —the study of the plasmonic response, in particular the spectrum of

GSPPs, which, for tBLG systems, is an absent topic in literature (as far as we know). In section 3.2, we

derived the equation for the TM modes and then computed the results for the tBLG. As key achievement,

we underscore the results from fig. 3.14(b), which may be used, for example, as an alternative method for

determining the twist angle. Although we already have original results in this section, a more extensive

study on the behavior of these curves with the variation of θ still remains to be done. In addition, we also

leave for future work the study of the transverse electric (TE) modes, which are the ones that, in contrast

to the TM modes, exist only when Im {σ(ω)} < 0 [19]. In the low frequency range (in which we are

interested), the Drude contribution —which yields a positive imaginary conductivity— is typically the

dominant term; however, as we can see in fig. 5.1, we may tune the parameters so that we have negative

terms in some low-frequency region, and therefore these TE modes can become worthy of investigation.

Finally, in chapter 4, we tackled the last objective of studying the effects of electron-electron interac-

tions in the tBLG. Within a MF/HF approach, we derived an expression for the self-energy correction to

the band spectrum, which was confirmed to be in agreement with the literature for the simpler case of a

SLG. Although we could not obtain the results for the tBLG (a discussion on the problems concerning

the numerical implementation was given in section 4.7), we believed to have taken a step in the right

direction on a topic which we expect to cover in future works, specially since it is completely unexplored

yet. Nevertheless, from the results obtained for the SLG, we were still able to infer that, when in the

presence of a gap, the bandgap renormalization should open it, which may explain, to some extent, the

experimental measurements from ref. [31] that indicated a pronounced insulator behavior (see discussion

in section 3.1.3). At last, the investigation of magnetic instabilities was not addressed at all and was

also left for future work. In short, the idea here is that the divergent DOS on the low-energy van Hove

singularities that occur in the tBLG should result in some sort of magnetic instability.
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[42] J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović,
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[48] J. González. Kohn-Luttinger superconductivity in graphene. Phys. Rev. B, 78(20):205431, 2008.
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Appendix A

Density of states and carrier density:

numerical implementation

A.1 Density of states

We start by introducing the general definition,

DOS(E) =
∑

kkk∈BZ,λ,σ

δ (E − Eσλ (kkk)) , (A.1)

where Eσλ (kkk) are the eigenvalues for momentum kkk, band λ and spin σ and δ stands for the Dirac delta

function. When our spectrum does not depend explicitly on the spin, we simplify (A.1) into

DOS(E) = 2
∑

kkk∈BZ,λ

δ (E − Eλ(kkk)) . (A.2)

We now give insight to this expression. The easiest way to understand it is by integrating the DOS in

some energy interval, let us say between E1 and E2. We obtain

∫ E2

E1

dE DOS(E) = 2
∑

kkk∈BZ,λ

∫ E2

E1

dE δ (E − Eλ(kkk)) . (A.3)

Looking at the right hand side, we observe that the integral equals 1 whenever E1 ≤ Eλ(kkk) ≤ E2 and 0

otherwise. Therefore, we are basically counting all states (with a multiplicity of 2 due to spin degeneracy)

within the energy range, which is exactly what we expect from definition. With this in mind, we can now

establish a general numerical method to compute the DOS from an arbitrary electronic spectrum. We

first notice that, when we have a finite system, we typically apply periodic boundary conditions (PBC)

which imply that our (in principle infinite) sum in kkk ∈ BZ becomes constrained to N1N2 terms. For

general reciprocal basis vectors bbb1 and bbb2, the trivial discretization is

kkk =
m1

N1
bbb1 +

m2

N2
bbb2 , mi = 0, 1, ..., Ni − 1. (A.4)

81



Then, we take the limit E2 = E1 + ∆E, for small ∆E, and write

∫ E1+∆E

E1

dE DOS(E) ∼ ∆E DOS(E1)

= 2
∑

kkk∈BZ,λ

∫ E1+∆E

E1

dE δ (E − Eλ(kkk))

⇔DOS(E1)

N1N2
=

2

N1N2∆E

∑
kkk∈BZ,λ

∫ E1+∆E

E1

dE δ (E − Eλ(kkk)) . (A.5)

On the left hand side, we recognize the DOS per unit cell. The right hand side clarifies the numerical

computation in order. We observe that it is normalized: the dimension we set for our physical system

is arbitrary and only defines the precision we want in our momentum discretization. Ultimately, we just

need to choose the range of energies we are interested in and a step ∆E to cover it; this will yield an

histogram-like type of graphics.

A.2 Carrier density

Typically, we are interested in testing physical properties varying the Fermi level1. Experimentally,

this is achieved by doping the material with electrons or holes. The parameter that is well defined in

experimental results is the carrier density, n, which we define as positive for electrons and negative for

holes. It is therefore useful to find a systematic way to relate the Fermi level, µ, with the carrier density,

n, from an arbitrary electronic spectrum.

We stick to graphene-composed materials, for which we define the reference Fermi level, µ0, as the

energy corresponding to the half-filling situation. We now explain the numerical method. Let us start,

without loss of generality, by the case where the system is doped with electrons. If we want to reach some

Fermi level µ > µ0, we have to count the number of states than can be occupied by electrons with energy

smaller than µ. Given the electronic spectrum Eλ(kkk), and taking into account the spin degeneracy, we

have

Ne(µ) = 2
∑

kkk∈BZ,λ

Θ(µ− Eλ(kkk)), (A.6)

where Θ is the Heaviside step function. We now subtract the number of electrons in the half-filling

situation, obtaining the effective number of electrons that we need for the doping:

Ne(µ)−Nh.f.
e = 2

∑
kkk∈BZ,λ

Θ(µ− Eλ(kkk))− 2
∑

kkk∈BZ,λ

Θ(µ0 − Eλ(kkk))

= 2
∑
kkk∈BZ,
λ≥dim/2

Θ(µ− Eλ(kkk)). (A.7)

Here, dim is the dimension of our system’s Hamiltonian (which corresponds to the number of bands) and

1In a band structure picture, Fermi level is the term used to describe the top of the collection of electron energy levels
at absolute zero temperature. Due to Pauli’s exclusion principle, we cannot have two electrons in the same state, so we
pack them into the lowest available energy states and build up a Fermi sea. The Fermi level is its surface and this concept
is very important because the electrons near it are the major contributors for most physical properties.
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the restriction λ ≥ dim/2 implies that we sum over bands that are empty in the half-filling situation (we

are labeling the bands as λ = 0, 1, ..., dim− 1, by increasing order of energy). Finally, for finite systems,

we use again PBC and obtain

n(µ > µ0) =
Ne(µ)−Nh.f.

e

Atotal
=
Ne(µ)−Nh.f.

e

N1N2Au.c.

=
2

N1N2Au.c.

∑
kkk∈BZ,
λ≥dim/2

Θ(µ− Eλ(kkk)), (A.8)

where

Atotal = N1N2Au.c. (A.9)

is the total area of the system and Au.c. the area of a unit cell. The deduction for systems doped with

holes is straigthforward and leads to

n(µ < µ0) = − 2

N1N2Au.c.

∑
kkk∈BZ,
λ<dim/2

Θ(Eλ(kkk)− µ). (A.10)

Again, we notice that these expressions are normalized.
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Appendix B

Method to derive effective

Hamiltonians

We start by deriving the Dyson equation for the Green’s functions of a quantum system. Let us

consider a general Hamiltonian H, which we split into two parts,

H = H0 + V. (B.1)

We define g(E) and G(E) as Green’s functions for H0 and H, respectively:

(E −H0)g(E) = 1⇔ g(E) = (E −H0)−1, (B.2)

(E −H)G(E) = 1⇔ G(E) = (E −H)−1. (B.3)

Here, we stress that g(E) and G(E) are matrices with the same dimension of H0 and H, and not column

vectors. Then, we use the identity E −H0 = (E −H0 − V ) + V and apply g(E) to the left and G(E) to

the right, obtaining the Dyson equation,

G(E) = g(E) + g(E)V G(E). (B.4)

We now write

H =

HAA HAB

HBA HBB

 , (B.5)

and split it such that

H0 =

HAA 0

0 HBB

 , V =

 0 HAB

HBA 0

 . (B.6)

The Dyson equation thus readsGAA GAB

GBA GBB

 =

gAA 0

0 gBB

+

gAA 0

0 gBB

 0 HAB

HBA 0

GAA GBB

GBA GBB

 , (B.7)
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where

G(E) =

GAA GBB

GBA GBB

 , (B.8)

and

g(E) =

gAA gBB

gBA gBB

 =

gAA 0

0 gBB

 =

(E −HAA)−1 0

0 (E −HBB)−1

 , (B.9)

given that H0 is diagonal. From (B.7), we get

GAA = gAA + gAAHABGBA, (B.10)

GBA = gBBHBAGAA, (B.11)

and, therefore,

GAA = gAA + gAAHABgBBHBAGAA

⇔ (1− gAAHABgBBHBA)GAA = gAA

⇔ GAA = (1− gAAHABgBBHBA)−1gAA

=
[
g−1
AA(1− gAAHABgBBHBA)

]−1

=
[
E −HAA −HAB(E −HBB)−1HBA

]−1
. (B.12)

Finally, we interpret (B.12) by saying that GAA is determined by an effective Hamiltonian in its subspace,

Heff
AA = HAA +HAB(E −HBB)−1HBA. (B.13)
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Appendix C

Perturbation theory in the

interaction picture

C.1 Time evolution in the Schrödinger representation

Let us consider a Hamiltonian HS(t) = H0,S + VS(t) (written in the Schrödinger representation)

where all the time dependency is put into the potential VS(t). In the Schrödinger representation, all the

dynamics is contained in the wave functions and is determined by the Schrödinger equation,

i~
∂

∂t
|ψ(t)〉S = HS(t) |ψ(t)〉S . (C.1)

The solution for the time evolution can be written as

|ψ(t)〉S = U(t, t0) |ψ(t0)〉S , (C.2)

where U is a unitary operator satisfying

i~
∂U(t)

∂t
= HS(t)U(t). (C.3)

If our Hamiltonian is time independent, HS(t) = H0,S , we trivially obtain

U(t, t0) = e−
i
~H0,S(t−t0). (C.4)

When it is not, we obtain a self-consistent solution,

U(t, t0) = 1− i

~

∫ t

t0

dt′HS(t′)U(t′, t0), (C.5)
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which we can iterate to obtain

U(t, t0) = 1 +

+∞∑
n=1

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 ...

∫ tn−1

t0

dtnHS(t1)HS(t2)...HS(tn) (C.6)

= T
{
e
−i
~
∫ t
t0
dt′HS(t′)

}
, (C.7)

where T is the time-ordering operator. Looking at the right hand side of eq. (C.6), we observe that,

even if we argue that our perturbation VS(t) is small, we cannot truncate the infinite sum. This is the

motivation to introduce the interaction picture.

C.2 Time evolution in the interaction representation

In the interaction picture, we define

|ψ(t)〉I = e
i
~H0,S(t−t0) |ψ(t)〉S , (C.8)

which, according to Schrödinger’s equation (C.1), satisfies

i~
∂

∂t
|ψ(t)〉I = VI(t) |ψ(t)〉I , (C.9)

where the potential in the interaction representation is introduced as

VI(t) = e
i
~H0,S(t−t0)VS(t)e−

i
~H0,S(t−t0). (C.10)

Similarly to what we did before, we write the solution for the time evolution as

|ψ(t)〉I = UI(t, t0) |ψ(t0)〉I , (C.11)

where UI is a unitary operator that satisfies

i~
∂UI(t)

∂t
= VI(t)UI(t). (C.12)

Solving recursively, we obtain

UI(t, t0) = 1 +

+∞∑
n=1

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 ...

∫ tn−1

t0

dtnVI(t1)VI(t2)...VI(tn) (C.13)

= T
{
e
−i
~
∫ t
t0
dt′VI(t′)

}
, (C.14)

which we can now truncate if VI(t) is small.
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C.3 Average values in the interaction picture

By definition, the average value of an operator O must not depend on the representation. This can

be trivially confirmed for the previous representations:

〈ψS(t)|OS |ψS(t)〉 = 〈ψI(t)|OI |ψI(t)〉 . (C.15)

Taking use of the Dyson equation (C.13), we can show that the average values in the interaction picture

read

〈ψI(t)|OI |ψI(t)〉 = 〈ψI(t0)|OI |ψI(t0)〉+

+

(
− i
~

)∫ t

t0

dt1 〈ψI(t0)| [OI , VI(t1)] |ψI(t0)〉+

+

(
− i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 〈ψI(t0)| [[OI , VI(t1)] , VI(t2)] |ψI(t0)〉+

+

(
− i
~

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 〈ψI(t0)| [[[OI , VI(t1)] , VI(t2)] , VI(t3)] |ψI(t0)〉+

+ ... , (C.16)

where [A,B] = AB −BA are commutators.
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Appendix D

Fourier transform of the Coulomb

potential

D.1 In 2 dimensions

Given the Coulomb potential in 2 dimensions,

v(rrr) =
e2

4πεrε0|rrr|
, rrr ∈ R2, (D.1)

we want to determine its FT, v(qqq), which is given by

v(qqq) =

∫
R2

drrr v(rrr)e−iqqq.rrr. (D.2)

We obtain

v(qqq) =
e2

4πεrε0

∫
R2

drrr
e−iqqq.rrr

|rrr|

=
e2

4πεrε0

∫ +∞

0

dr r

∫ 2π

0

dθ
e−iqr cos (θ)

r

=
e2

2πεrε0q

∫ +∞

0

dx

∫ π

0

dθ e−ix cos (θ) = v(q). (D.3)

Using the Jacobi-Anger expansion,

eix cos (θ) = J0(x) + 2

+∞∑
n=1

inJn(x) cos (nθ), (D.4)

where Jn(x) (n ∈ N0) is a Bessel function of the first kind, we can trivially compute the integration in θ,

∫ π

0

dθ e−ix cos (θ) =

∫ π

0

dθ eix cos (θ) = πJ0(x), (D.5)
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where we used that
∫ π

0
dθ cos (nθ) = 0. Since Bessel functions are normalized,

∫ +∞
0

dx Jn(x) = 1, we

obtain the final result

v(qqq) = v(q) =
e2

2εrε0q
. (D.6)

D.2 Between two parallel planes

Let us now consider the Coulomb potential between two electrons in two different parallel planes

separated by d⊥. In this case, it is written as

v(rrr) =
e2

4πεrε0

√
r2 + d2

⊥
, rrr ∈ R2. (D.7)

The FT reads

v(qqq) =
e2

4πεrε0

∫ +∞

0

dr r

∫ 2π

0

dθ
e−iqr cos (θ)√
r2 + d2

⊥

=
e2

2πεrε0q

∫ +∞

0

dx x

∫ π

0

dθ
e−ix cos (θ)√
x2 + (qd⊥)2

=
e2

2εrε0q

∫ +∞

0

dx
xJ0(x)√

r2 + (qd⊥)2
. (D.8)

Using the property
∫ +∞

0
dx xJ0(x)√

x2+a2
= e−|a|, we get

v(qqq) = v(q) =
e2

2εrε0q
e−qd⊥ . (D.9)
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Appendix E

Gibbs-Bogoliubov inequality

In this appendix, we prove the Gibbs-Bogoliubov inequality,

F ≤ FMF + 〈H −HMF 〉MF , (E.1)

in which F represents the free energy of the system (described by the Hamiltonian H = HMF + ∆H)

and FMF the free energy of the system in MF (described by HMF ). The proof of this inequality can be

accomplished by first proving the following theorem, from which (E.1) is obtained as a corollary.

Theorem

The generalized free energy functional, defined as [65]

Ω[ρ̂] = Tr
{
ρ̂
[
Ĥ − µN̂ + kBT log (ρ̂)

]}
, (E.2)

(i) has an absolute minimum for the grand canonical distribution, i.e., when ρ̂ = ρ̂G = e−β(Ĥ−µN̂)

Θ(T,µ) ,

where 1/β = kBT and Θ(T, µ) = Tr {e−β(Ĥ−µN̂)}.

(ii) the minimum coincides with the grand potential of the system, ΩS(T, µ) = −kBT log[Θ(T, µ)].

Proof

We define ω̂ and ω̂G such that

ρ̂ = e−ω̂, ρ̂G = e−ω̂G ⇒ ω̂G = β(Ĥ − µN̂) + log(Θ) = β(Ĥ − µN̂ − ΩS). (E.3)

Then, using that Tr {ρ̂} = Tr {e−ω̂} = 1, we can write

βΩ[ρ̂] = Tr
{
e−ω̂ (ω̂G + βΩS − ω̂)

}
⇔βΩ[ρ̂]− βΩS(T, µ) = Tr

{
e−ω̂ (ω̂G − ω̂)

}
, (E.4)
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from which the part (ii) of the theorem immediately follows:

ρ̂ = ρ̂G ⇒ ω̂ = ω̂G ⇒ Ω[ρ̂G] = ΩS(T, µ). (E.5)

In order to prove part (i), we define two Hilbert spaces, {|ψj〉} and {|φk〉} such that

ω̂ |ψj〉 = ωj |ψj〉 , ω̂G |φk〉 = ω
(G)
k |φk〉 . (E.6)

We also define the positive quantity, ckj = | 〈φk|ψj〉 |2 ≥ 0. From eq. (E.4), and making use of the closure

relation,
∑
k |φk〉 〈φk| = 1, we can write

βΩ[ρ̂]− βΩS(T, µ) =
∑
j

〈ψj |e−ω̂(ω̂G − ω̂)|ψj〉

=
∑
j

e−ωj (〈ψj |ω̂G|ψj〉 − ωj)

=
∑
j

e−ωj

(∑
k

ckjω
(G)
k − ωj

)

=
∑
j,k

ckje
−ωj

(
ω

(G)
k − ωj

)
, (E.7)

where, in the last step, we have used the propriety
∑
k ckj = 1. Now, we rewrite the (trivial) indentity,

Tr {ρ̂} = Tr {ρ̂G} = 1, in the following convenient manner:

Tr {ρ̂G} − Tr {ρ̂} = 0 = Tr
{
e−ω̂G

}
− Tr

{
e−ω̂

}
=
∑
j

〈ψj |e−ω̂G |ψj〉 −
∑
j

〈ψj |e−ω̂|ψj〉

=
∑
j,k

ckje
−ω(G)

k −
∑
j

e−ωj

=
∑
j,k

ckj

(
e−ω

(G)
k − e−ωj

)
=
∑
j,k

ckje
−ωj

(
eωj−ω

(G)
k − 1

)
. (E.8)

Adding this last zero quantity to (E.7), we get

βΩ[ρ̂]− βΩS(T, µ) =
∑
j,k

ckje
−ωj

(
eωj−ω

(G)
k − 1 + ω

(G)
k − ωj

)
. (E.9)

Since ckj ≥ 0 and e−ωj > 0, it remains to show that eωj−ω
(G)
k − 1 + ω

(G)
k − ωj ≥ 0 to prove the part (i)

of the theorem. This last task is trivial. We define

f(x) = ex − (x+ 1), (E.10)

with x = ωj − ω(G)
k and show that f(x) ≥ 0. Since f ′(x) = ex − 1, for which the only zero is at x = 0

(where f(0) = 0), and f ′′(x) = ex > 0, we readily see that f(x) ≥ 0,∀x ∈ R. We have therefore proved
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that

Ω[ρ̂] ≥ ΩS(T, µ), (E.11)

being equal only when ρ̂ = ρ̂G.

Corollary

Let HMF be a simplified version of the Hamiltonian H, characterized by the distribution

ρ̂MF =
e−β(ĤMF−µN̂)

ΘMF (T, µ)
, ΘMF (T, µ) = Tr {e−β(ĤMF−µN̂)}. (E.12)

Using the theorem, we may write

ΩS(T, µ) ≤ Ω[ρ̂MF ] = Tr
{
ρ̂MF

[
Ĥ − µN̂ + kBT log (ρ̂MF )

]}
= Tr

{
ρ̂MF

[
Ĥ − ĤMF − kBT log (ΘMF )

]}
= ΩS,MF (T, µ) + 〈Ĥ − ĤMF 〉MF , (E.13)

where ΩS,MF (T, µ) = −kBT log (ΘMF ) is the grand potential of the system in MF.

95



96


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Framework and motivation
	1.2 State of the art
	1.2.1 The rise of graphene and other 2D crystals
	1.2.2 Van der Waals heterostructures — a new trending research field
	1.2.3 Overview on twisted bilayer graphene breakthroughs

	1.3 Objectives
	1.4 Thesis Outline

	2 Low-energy continuum model
	2.1 Single layer graphene basics
	2.1.1 Geometry
	2.1.2 Tight-binding model
	2.1.3 Reciprocal space
	2.1.4 Dirac Hamiltonian
	2.1.5 Folded Hamiltonian
	2.1.6 Density of states and carrier density

	2.2 Introduction to bilayers: Bernal-stacked bilayer graphene
	2.2.1 Geometry
	2.2.2 Tight-binding model
	2.2.3 Low-energy Hamiltonian

	2.3 Twisted bilayer graphene
	2.3.1 Geometry and moiré pattern
	2.3.2 Rotated Dirac Hamiltonian
	2.3.3 Interlayer hopping term
	2.3.4 Fourier transform for the two-center interlayer hopping
	2.3.5 Interlayer hopping term: simplifications and picture
	2.3.6 Hamiltonian matrix construction
	2.3.7 Electronic spectrum — K and K' bands


	3 Optical response
	3.1 Conductivity
	3.1.1 Linear response theory
	3.1.2 Results for single layer graphene
	3.1.3 Results for twisted bilayer graphene

	3.2 Spectrum of graphene surface plasmon-polaritons
	3.2.1 Dispersion relation — transverse magnetic modes
	3.2.2 Results for single layer graphene
	3.2.3 Results for twisted bilayer graphene


	4 Electron-electron interactions
	4.1 Long range Coulomb interaction
	4.2 Thomas-Fermi screening
	4.3 Mean field treatment
	4.4 Cancellation between electron-ion and Hartree electron-electron terms
	4.5 Band renormalization — self-energy
	4.6 Self-energy results for single layer graphene
	4.7 A word on the implementation for the twisted bilayer graphene

	5 Conclusions and future work
	Bibliography
	A Density of states and carrier density: numerical implementation
	A.1 Density of states
	A.2 Carrier density

	B Method to derive effective Hamiltonians
	C Perturbation theory in the interaction picture
	C.1 Time evolution in the Schrödinger representation
	C.2 Time evolution in the interaction representation
	C.3 Average values in the interaction picture

	D Fourier transform of the Coulomb potential
	D.1 In 2 dimensions
	D.2 Between two parallel planes

	E Gibbs-Bogoliubov inequality

