
 

 

UNIVERSIDADE DE LISBOA 

INSTITUTO SUPERIOR TÉCNICO 

 

 

High-throughput Fourier-transform mid-infrared spectroscopy:  

A mechanism-based screening approach to antibiotic discovery 

 

 

Bernardo José Simões de Almeida Ribeiro da Cunha 

 

 

Supervisor: Doctor Cecília Ribeiro da Cruz Calado 

Co-Supervisor: Doctor Luís Joaquim Pina da Fonseca 

 

Thesis approved in public session to obtain the PhD Degree in Biotechnology and Biosciences 

Jury final qualification: Pass with distinction 

 

2021 



 

 

UNIVERSIDADE DE LISBOA 

INSTITUTO SUPERIOR TÉCNICO 

 

High-throughput Fourier-transform mid-infrared spectroscopy:  
A mechanism-based screening approach to antibiotic discovery 

 

Bernardo José Simões de Almeida Ribeiro da Cunha 

 

Supervisor: Doctor Cecília Ribeiro da Cruz Calado 

Co-Supervisor: Doctor Luís Joaquim Pina da Fonseca 

 

Thesis approved in public session to obtain the PhD Degree in Biotechnology and Biosciences 

Jury final qualification: Pass with distinction 

 

Jury 
 

Chairperson: Doctor Duarte Miguel de França Teixeira dos Prazeres, Instituto Superior Técnico, 
Universidade de Lisboa 
 

Members of the Committee: 
 

Doctor João Paulo Serejo Goulão Crespo, Faculdade de Ciências e Tecnologia, Universidade 
Nova de Lisboa 

Doctor Jorge Humberto Gomes Leitão, Instituto Superior Técnico, Universidade de Lisboa 
Doctor Helena Maria Rodrigues Vasconcelos Pinheiro, Instituto Superior Técnico, 

Universidade de Lisboa  
Doctor Nídia Dana Mariano Lourenço, UCIBIO, Faculdade de Ciências e Tecnologia, 

Universidade Nova de Lisboa 
Doctor Carla da Conceição Caramujo Rocha de Carvalho, Instituto Superior Técnico, 

Universidade de Lisboa  
Doctor Cecília Ribeiro da Cruz Calado, Instituto Superior de Engenharia de Lisboa – Instituto 

Politécnico de Lisboa 
 

2021 



 i 

 

 

 

 

 

 

 

 

 

Copyright© 2021 by Bernardo Ribeiro da Cunha 

All rights reserved 

Printed in Portugal 

  



 ii 

  



 iii 

Acknowledgments 

First and foremost, I would like to show my greatest appreciation to my supervisors, 
Prof. Cecília Calado and Prof. Luís Fonseca, for their open-mindedness to new ideas and their 
ability to promote critical debates. Throughout these years I always felt I was given a high level 
of freedom and independence while pursuing this very ambitious project, which I believe was 
critical towards maximizing my personal growth and scientific productivity. Also, I never lacked 
the necessary support to bring this project to fruition. 

During my stay at the R&D Laboratory in Health and Engineering of Instituto Superior 
de Engenharia de Lisboa (ISEL), I had the opportunity to share great times with great people. 
To them, a special thank you for the amazing collaborative environment and all the wonderful 
learning experiences. In particular, I would like to thank Luís Ramalhete, Paulo Zoio, Pedro 
Teixeira, Rúben Araujo and Viviana Caldeira. I had equally great times at Instituto Superior 
Técnico (IST), and within Amir Hassan, Cláudia Godinho, Marisa Silva, Pedro Pais and Rui 
Pacheco were critical for my integration into the amazing community that is IST. 

Throughout this endeavor I also had the opportunity to oversee Ana Russo, Sara 
Gomes and Ana Correia during their master thesis work. I learned a lot from teaching you, and 
there is no doubt in my mind it made me a better person and a better researcher, and I hope 
to have contributed at least as much to your growth as scientists. 

At ISEL, I was fortunate to work with Prof. Sandra Aleixo, with who I had the pleasure 
to collaborate in developing SpecAs’ biomarker toolbox and became a great companion 
through the years. Also within ISEL, I would like to leave my gratefulness to Prof. Manuel Matos, 
whose institutional support was pivotal for this Ph.D. to even begin. At IST, I had the 
opportunity to collaborate with Prof. Maria da Conceição Olveira, Gonçalo Justino and Cátia 
Marques, who introduced me to mass spectrometry and guided me through my brief but 
intense experience with this amazing technique. 

Many people also contributed to SpecA, my custom made spectra analyzer. A lot of 
work was put into building this amazing tool, which naturally required thousands of decisions. 
During this process, I always found someone to discuss and share my ideas with. Some of 
these people were Hugo Correia, Tomas Alegra, Marta Lopes, Pedro Sampaio Filipa Rosa 
and Kevin Sales. 



 iv 

Also, I would like to thank everyone that organized and participated in the 
Lab2Market@Tecnico2020 edition, it was an extraordinary experience that allowed me to see 
my scientific work from a different angle. As part of that experience, I cold-called many people, 
and I was surprised by so many who agreed to talk to me. No matter how brief, I found all of 
those conversations of extreme added value and tremendously inspirational. So, thank you 
Alastair Parkes, Alice Erwin, Glenn Tillotson, John Rex, Karen Shaw, Lynn Silver, Philippe 
Villain-Guillot and Stefan Miller. 

I would like to extend my gratitude to everyone I had the pleasure to meet at Institute 
for Bioengineering and Biosciences of IST, and at the Departamento de Engenharia Quimica 
of ISEL. I could not have felt more at home, for which I would like to leave my gratefulness to 
all the individuals who enriched my personal experience. I would also like to extend my 
gratitude to Carla Noronha, for making me believe and for her contribution to my scientific 
foundations. 

Finally, to all my loved ones: My wife and sons, for all the unconditional support and 
comprehension, for all the love every time I come back home; my Mother, such a profound life 
example; my Father, for watching out for me, even if worlds apart; my parents-in-law, who 
always made sure I had the best conditions to complete this Ph.D.; and my family and friends, 
for being there for me and making me smile. 

  



 v 

 

 

 

 

 

 

 

Aos meus filhos e à minha mulher 

 



 vi 

  



 vii 

Abstract 

Since its golden age, antibiotic discovery has been slowing to a halt. In thirty years, antibiotic 
resistant infections are expected to cause the death of more people than cancer does now. A 
solution should stem from cell-based screening, the most successful first-in-class antibiotic 
discovery platform, which allows a ‘brute force’ approach more likely to produce short-term 
results. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial 
activity, so only potent candidates are detected. One option to increase the ‘screenable’ 
chemical space is to turn the page on the activity-based paradigm and shift to one based on 
mechanism. This requires probing the MOA of low-potency antibiotic candidates, which are 
often good candidates for medicinal chemistry programs, while ensuring sufficient throughput 
to screen large libraries. However, MOA identification is either slow, low-throughput, difficult to 
scale, costly, labor-intensive, or a combination thereof. A new discovery strategy requires a 
different technological approach to MOA identification, for which Fourier-transform infrared 
spectroscopy (FTIRS) is well-suited, but its full potential was yet to be investigated. In that 
regard, we have shown that FTIRS can identify the MOA of commercial antibiotics beyond the 
biosynthetic pathway level, and often in greater detail than the antibiotic class; we have 
determined the dose-response of MOA identification, which suggested FTIRS can discover 
hits from the grey chemical matter, effectively expanding the ‘screenable’ chemical space to 
low-potency compounds; we have demonstrated that potent compounds are identified, if not 
by their mechanism then by their inhibitory effect; and validated our protocol for the rapid 
exclusion of compounds with predominant off-target effects, which is relevant both during hit 
discovery or lead optimization, with two model organisms, Escherichia coli and Staphylococcus 

aureus. Furthermore, our fast and high-throughput protocol, entirely based on 96-well 
microtiter plates, is highly scalable, which enables screening large compound libraries. As such, 
FTIRS can fuel a new generation of mechanism-based screening assays that may swing the 
war on infectious diseases back in our favor. 

 

 

Keywords: Antibiotic discovery; Chemometrics and machine learning; Fourier-Transform 
infrared spectroscopy; High-throughput screening; Mechanism of action.  
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Resumo 

Desde a sua época de ouro, a descoberta de antibióticos tem vindo a estagnar. Estima-se que 
em menos de trinta anos, as infeções resistentes a antibióticos irão causar a morte de mais 
pessoas do que o cancro atualmente. Uma solução para este problema deve basear-se em 
ensaios de varrimento com células, a plataforma de maior sucesso na descoberta de 
antibióticos de primeira linha, e que permite uma abordagem de 'força-bruta' com maior 
probabilidade de produzir resultados a curto prazo. Nos ensaios baseados em células, o 
mecanismo de ação (MOA) é identificado depois da atividade antimicrobiana, portanto apenas 
compostos potentes são detetados. Aumentar o espaço químico detetável requer evoluir do 
paradigma baseado em atividade para um baseado no mecanismo. Isso requer a capacidade 
de varrer o MOA de compostos de baixa potência, que costumam ser bons candidatos para 
programas de química medicinal, com débito suficiente para varrer grandes bibliotecas. 
Normalmente, a identificação do MOA envolve técnicas lentas, de baixo rendimento, difíceis 
de escalar, caras, trabalhosas ou uma combinação das mesmas. Uma nova estratégia de 
descoberta de antibióticos requer uma abordagem tecnológica diferente para a identificação 
do MOA, para a qual a espectroscopia de infravermelho com transformada de Fourier (FTIRS) 
tem características adequadas, mas o potencial desta técnica ainda não foi esmiuçado. A 
esse respeito, mostrámos que a FTIRS pode identificar o MOA de antibióticos comerciais em 
maior detalhe do que a via biosintética, e por vezes do que a classe do antibiótico; 
determinámos a relação dose-resposta da previsão do MOA, o que sugere que a FTIRS pode 
identificar compostos da matéria química cinzenta, expandindo efetivamente o espaço 
químico detetável até compostos de baixa potência; demonstramos que compostos potentes 
são identificados, se não pelo mecanismo, então pelo efeito inibitório; e validámos o nosso 
protocolo para a rápida exclusão de compostos com efeitos predominantemente fora do alvo, 
seja durante a descoberta ou otimização de candidatos a antibióticos, com duas bactérias-
modelo, Escherichia coli e Staphylococcus aureus. Além disso, o nosso protocolo é rápido e 
de alto débito, através de placas de placas de microcultura de 96 poços, e facilmente escalável, 
o que permite o varrimento de grandes bibliotecas de compostos. Como tal, a FTIRS pode 
estimular uma nova geração de ensaios de varrimento baseados no mecanismo que podem 
virar a guerra contra as doenças infeciosas de volta para nosso favor. 

Palavras-chave: Descoberta de antibióticos; Espectroscopia de infravermelho com 
transformada de Fourier; Mecanismo de ação; Quimiometria e aprendizagem automática; 
Varrimento de alto débito.  
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The discovery of antibiotics has been considered a miracle of modern medicine. 
However, the world is on the verge of not having effective treatments for many common 
infectious diseases. It is estimated that by 2050, antibiotic resistant bacteria will claim more 
lives than cancer does now, with an associated cumulative cost of inaction over $100 trillion. 
These grim estimates, and our inability to invert the situation, have made antibiotic resistant 
pathogens a top priority for the World Health Organization.  

The ‘war’ on infectious diseases has taken multiple fronts. This involves increasing 
public awareness, monitoring and minimizing the spread of resistant pathogens, limiting the 
use of antibiotics outside clinical practice, developing faster diagnostics to reduce the 
unnecessary use of antimicrobials, establishing novel therapeutic approaches to infectious 
diseases like vaccines, as well as increasing the arsenal of antimicrobials available. All of these 
approaches are extremely important, but the treatment of microbial infections will still require 
compounds capable of killing or halting the proliferation of pathogens, e.g., antibiotics. 
Therefore, the discovery of new antibiotics is at the very core of the ‘war’ on infectious diseases, 
and new advances are required to invert the alarmingly low rates of discovery.  

In order to understand where to go, it is important to appreciate where we come from. 
As such, Chapter II presents the discovery timeline of the major antibiotic classes, highlighting 
the underlying approaches and the context of their application. Starting at the birth of 
chemotherapy, the importance of the Waksman platform in fueling semi-synthesis and fully 
synthetic antibiotics is discussed, followed by the technological revolution brought by the 
genomics era, and the present-day efforts in the post-genomics era. Historically, the evolution 
of antibiotic resistance has been outpaced with structural modifications of antibiotic scaffolds 
found in nature, most of which were discovered with the Waksman platform.  

High-tech solutions brought by the genomics boom shifted the paradigm to target-
based screening, but this proved lackluster and cell-based screening was revived. Although 
this strategy has been extremely successful in the past, the steady decline of the antibiotic 
pipeline makes it clear that the ‘low-hanging fruit’ has been plucked. Nevertheless, various 
meta-omics studies have shown that the large majority of nature’s antibiotic repositories 
remain untapped, which suggests this strategy is not necessarily exhausted, but a different 
approach is required. One that is capable of consistently and efficiently delivering new 
scaffolds.  
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There is a growing tendency for cell-based assays to evolve from measuring 
antimicrobial activity towards probing the mechanism of action (MOA) of antibiotics. Despite 
the plethora of high-tech approaches that have been applied in the context of antibiotic 
discovery, the MOA of antibiotics remains particularly elusive. In that regard, Chapter III 
reviews technologies that have been used for high-throughput MOA identification. 
Technologies that can convey molecular information useful for mechanistic determinations, 
with sufficient throughput for screening large libraries of compounds, could enable shifting 
antibiotic discovery from an activity-based paradigm to one centered on MOA. 

A mechanism-based approach is particularly relevant because it complements 
traditional activity-based assays, where MOA identification is frequently a bottleneck, thereby 
increasing the probability of success of antibiotic discovery programs; secondly, a mechanism-
based approach can be used to rapidly exclude compounds with predominant off-target effects, 
i.e., toxic compounds, either during the early stage of hit discovery or later during lead 
optimization, where off-target liabilities resulting from medicinal chemistry programs can 
quickly be identified by monitoring MOA profiles; and thirdly, perhaps the most important 
advantage, it expands the ‘screenable’ chemical space by probing the grey chemical matter, 
which are ‘not-so-low-hanging’ compounds capable of inducing some level of phenotypic 
modulation, but without sufficient potency to induce cell death or inhibit growth.  

One promising technology amendable to a mechanism-based antibiotic discovery 
approach is Fourier-transform infrared (FTIR) spectroscopy (FTIRS), an established high-
throughput technique that reveals the biochemical composition of samples. Hence, Chapter 

IV discusses the fundamentals of FTIRS as a vibrational spectroscopy tool, including the 
advantages brought by equipment’s with Michelson interferometers combined with the Fourier-
transform, the types of samples and associated detection modes, as transmission and 
transflection, high-throughput measurements using micro-plates in transmission mode, and 
fibre optic probes coupled to attenuated total reflection detection. 

Due to the complex biochemical composition of biological samples, mid-infrared 
spectra are usually very difficult to interpret without the application of complex and 
sophisticated mathematical and statistical analysis routines, such as: spectra preprocessing, 
to minimize noise and other non-informative data that compromise subsequent pattern 
recognition or regression models; deconvolution methods to resolve overlapped spectral 
bands; dimensionality reduction and feature extraction; supervised and non-supervised pattern 
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recognition, as support vector machines and artificial neural networks. Therefore, a review of 

these routines was also presented alongside their application to different datasets.  

Another integral part of FTIRS studies is the data analysis workflow, which often has a 
determining role in the outcome of experiments. In the absence of a fully satisfactory software, 

SpecA was created. Chapter V revolves around SpecA, a graphic user interface built to handle 
the data analysis pipeline of an infrared spectroscopy experiment while maximizing the 

biological information retrieved from the data. In particular, SpecA facilitates loading and 
handling large datasets, allows for an in-depth appraisal of the data quality through quality 

control routines, enables the comparison and optimization of preprocessing combinations and 
parametrizations, performs operations such as calculating average or difference spectra, and 

allows easy visualization of intrinsic patterns by means of various chemometrics procedures 
such as Principal Component Analysis (PCA) or Hierarchical Cluster Analysis (HCA).  

Moreover, SpecA is fully compatible with MATLAB, therefore the transfer of datasets 

to other tools for more advanced machine learning algorithms is stress-free; SpecA can easily 
export the dataset at any point in the workflow to a cross-platform compatible Excel file; 

generates figures suitable for publication, as done for most of the figures in this thesis; includes 
an automated statistical workflow for univariate biomarker screening; among other essential 

tasks than can make the difference in the outcome of a scientific experiment. Ultimately, SpecA 
became the powerhouse that catalyzed the scientific productivity of this Ph.D. 

Having researched a problem, suggested a solution, and prepared the tools for its 
implementation, the next step was its execution. In other words, to validate FTIRS as a 

mechanism-centered approach for antibiotic discovery. For that, a phenotypic screening assay 
for stress and antibiotic responses was developed in Chapter VI. Here, bacterial cells were 

stressed at sub-inhibitory concentrations, which can be seen as an extreme case of the grey 

chemical matter since some level of phenotypic modulation occurred, but without sufficient 
potency to induce cell death. Because FTIRS bioassays require considerable optimizations to 

maximize the biological relevance of the molecular information, the effect of nutrient content, 
bacterial growth phase and stress agent exposure time were evaluated. SpecA was used to 

apply various preprocessing strategies, and evaluate their effect on unsupervised 
chemometrics algorithms, namely a combination of PCA-HCA. 

This simple data analysis approach was preferred for two reasons: firstly, it is of easier 
interpretation than more advanced algorithms, such as support vector machines or neural 
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networks, where the relationships within the biological samples being studied is harder to grasp, 
while still providing a quantitative comparison of the effect of bioassay parameters on both 
metabolic resolution and reproducibility; and secondly, using unsupervised algorithms ensures 
none of the observed data patterns were preferentially highlighted, which consolidated the 
notion that FTIR spectra have intrinsic patterns that reflect the phenotypic modulation bacteria 
undergo as part of stress and antibiotic responses. Moreover, using SpecA, spectra were 
partitioned into biologically relevant regions, which suggested complete spectra provide more 
informative metabolic signatures for phenotypic screening of both stress and antibiotic 
responses. Ultimately, this study served as a proof-of-concept of FTIRSs’ suitability to explore 
the grey chemical matter. 

In addition to the ability to detect the underlying biochemical alterations of bacterial 
stress responses, further steps were required towards validating FTIRS as a mechanism-
centered approach in antibiotic discovery. Therefore, Chapter VII revolved around accurately 
differentiating the MOA of antibiotics, for which a macro-cultivation protocol coupled with high-
throughput spectra acquisition was used. Firstly, a method to quantitatively evaluate the effect 
of different preprocessing combinations on the successful classification of PLSDA after Leave-
One-Out Cross-Validation (LOO-CV) was established. This method was used to objectively 
select the optimal preprocessing combination that maximized the predictive performance of a 
PLSDA model of the major biosynthetic pathway targeted by 15 antibiotics.  

SpecA enabled a detailed analysis of the score plots of both PLSDA and PCA, which 
not only revealed the similarities between metabolic fingerprints induced by antibiotics acting 
on the same biosynthetic pathway, but simultaneously divulged that antibiotics that disturb the 
same pathway via different mechanisms have sufficiently distinct fingerprints to allow their 
differentiation, which suggested FTIR’s MOA resolution extends beyond the pathway level. 
Secondly, the coherence observed between PLSDA and PCA indicated that the observed 
results were not due to the known issues of PLSDA, but rather a reflection of the intrinsic 
spectral patterns induced by the different antibiotics.  

Although the potential of FTIRS as a tool for antibiotic discovery has been unraveled, 
a deeper examination of its performance for MOA prediction was required. Similarly, it was 
vital that the bioassay be adapted to a higher throughput design, using micro-cultivation 96-
well plates, to validate its application for screening large libraries. As such, Chapter VIII firstly 
focused on the application of machine learning algorithms towards predicting the MOA at the 
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level of the biosynthetic pathway, class, and individual mechanism of different antibiotics. 
Importantly, machine learning models were used to predict MOA both in the case of known 
MOAs, where the models were trained with similar MOA profiles; and, in the case of simulated 
novel MOAs, where the profiles induced by individual antibiotics were withheld during model 
training. Prior to machine learning, the previously mentioned method based on the LOO-CV 
successful classification of a PLSDA was used for preprocessing optimization.  

Then, we further consolidated the possibility of using FTIRS for exploring the grey 
chemical matter by determining the dose-response of MOA prediction. This revealed that FTIR 
spectra have intrinsic data patterns that are relevant for predicting antibiotics MOA, even at 
very low antibiotic concentrations that only induce slight growth inhibition. Moreover, we aimed 
to determine if our assay could predict if a candidate molecule had an antibiotic effect. For that, 
we regressed microbial growth from the spectra, which revealed the possibility of 
simultaneously estimating antimicrobial activity from the same samples from which MOA was 
predicted. Importantly, because samples were normalized in regard to biomass prior to spectra 
acquisition, it seems FTIRS is not only highly accurate in predicting the MOA of antibiotics, but 
also to the degree that said MOA is affecting bacterial metabolism and inhibiting bacterial 
growth, beyond cell density. 

As the final step of validating FTIRS as a mechanism-centered approach for antibiotic 
discovery, Chapter IX gaged the possibility of identifying compounds with off-target activity, 
and the monitorization of MOA profiles. For that, we further improved our bioassay by 
minimizing the number of steps and reducing their duration, while ensuring accurate MOA 
identification. This translated to a cycle time within a one-shift timeframe (~8h), a hands-on 
time of 1h, and a highly scalable protocol. This is particularly relevant because a mechanism-
based discovery paradigm requires not only mechanistic information, but for that information 
to be achieved with sufficient throughput for screening purposes.  

We used our protocol to capture the metabolic fingerprints induced by a combination 
of antibiotics and chemical stressors on Staphylococcus aureus and Escherichia coli. Firstly, 
we applied SpecAs’ biomarker screening functionality to identify the spectral bands, with 
known biochemical associations, that more often yielded more significant biomarkers of off-
target effects. Then, we used the data analysis pipeline built thus far, consisting of spectral 
preprocessing optimization with the previously described LOO-CV of a PLSDA, followed by 
various machine learning algorithms, to derive highly discriminative models to distinguish 
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compounds with predominant off-target effects from antibiotics with well-defined MOA, and 
from the latter predict their MOA. In addition to showing that our protocol has sufficient 
sensitivity for the proposed application, we have demonstrated that it is not overly sensitive to 
subtle shifts in metabolism. For instance, our assay is not disturbed by the metabolic effect of 
DMSO, nor does it require additional steps to stabilize the bacterial metabolism. 

To close, Chapter X contextualizes the work developed in this Ph.D. in regard to the 
advances made, and future work to be addressed. 
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Abstract 

Given the increase in antibiotic-resistant bacteria, alongside the alarmingly low rate of newly 

approved antibiotics for clinical usage, we are on the verge of not having effective treatments 

for many common infectious diseases. Historically, antibiotic discovery has been crucial in 
outpacing resistance and success is closely related to systematic procedures—platforms—

that catalyzed the antibiotic golden age, namely the Waksman platform, followed by the 
platforms of semi-synthesis and fully synthetic antibiotics. Said platforms resulted in the 

discovery of the major antibiotic classes: aminoglycosides, amphenicols, ansamycins, beta-
lactams, lipopeptides, diaminopyrimidines, fosfomycins, imidazoles, macrolides, 

oxazolidinones, streptogramins, polymyxins, sulfonamides, glycopeptides, quinolones and 
tetracyclines. During the genomics era came the target-based platform, mostly considered a 

failure due to limitations in translating drugs to the clinic. Therefore, cell-based platforms were 

re-instituted, and are still of the utmost importance in the fight against infectious diseases. 
Although the antibiotic pipeline is still lackluster, especially of new classes and novel 

mechanisms of action, there is an increasingly large set of information available on microbial 
metabolism in the post-genomic era. The translation of such knowledge into novel platforms 

will hopefully result in the discovery of new and better therapeutics, which can sway the war 
on infectious diseases back in our favor. 
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II. 1   INTRODUCTION – THE DESPERATE NEED FOR NEW ANTIBIOTICS 

Infectious diseases have been a challenge throughout the ages. From 1347 to 1350, 
approximately one-third of Europe’s population perished to Bubonic plague. Advances in 
sanitary and hygienic conditions sufficed to control further plague outbreaks. However, these 
persisted as a recurrent public health issue. Likewise, infectious diseases in general remained 
the leading cause of death up to the early 1900s, e.g., accounting for 25% of England’s 
mortality. However, by the mid-1900s, the mortality of infectious diseases in England shrunk 
to under 1% after the commercialization of antibiotics [1]. Given their impact on the fate of 
mankind, these are regarded as a ‘medical miracle’. Moreover, the non-therapeutic application 
of antibiotics has also greatly affected humanity, for instance those used as livestock growth 
promoters to increase food production after World War II.  

The term ‘antibiotic’ was introduced by Selman Waksman as any small molecule, produced 
by a microbe, with antagonistic properties on the growth of other microbes [2]. An antibiotic 
interferes with bacterial survival via a specific mechanism of action (MOA) but more importantly, 
it is sufficiently potent at therapeutic concentrations to be effective against infection and 
simultaneously presents minimal toxicity. Most antibiotic classes in use today were identified 
in the 1940–1960s, a period referred to as the antibiotic golden age. During this period, it was 
common belief that, given the antibiotics discovered, and particularly their rate of discovery, 
infectious diseases would soon be a controlled public health issue [3,4]. In fact, in 1970, the 
US Surgeon General stated “It’s time to close the book on infectious diseases… and shift 
national resources to such chronic problems as cancer and heart disease” [5]. 

Currently, more than 2 million North Americans acquire antibiotic resistant infections every 
year, resulting in 23,000 deaths [6]. In Europe, nearly 700 thousand cases of antibiotic-
resistant infections directly develop into over 33,000 deaths yearly [7], with an estimated cost 
over €1.5 billion [8]. Despite a 36% increase in human use of antibiotics from 2000 to 2010 [9], 
approximately 20% of deaths worldwide are related to infectious diseases today [10]. This 
situation deteriorated further as nosocomial infections became a leading cause of morbidity 
and mortality [11], resulting in lengthier hospital stays and increased health care costs [12]. 
Furthermore, over 15% of nosocomial infections are already caused by multidrug-resistant 
pathogens [13] — for some of which, there are no effective antimicrobials [14]. Future 
perspectives are no brighter, for instance, a government-commissioned study in the United 
Kingdom estimated 10 million deaths per year from antibiotic resistant infections by 2050 [15].  
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The increase in drug-resistant pathogens is a consequence of multiple factors, including 

but not limited to high rates of antimicrobial prescriptions, antibiotic mismanagement in the 

form of self-medication or interruption of therapy, and large-scale antibiotic use as growth 
promotors in livestock farming [16]. For example, 60% of the antibiotics sold to the USA food 

industry are also used as therapeutics in humans [17]. To further complicate matters, it is 
estimated that $200 million are required for a molecule to reach commercialization [18], with 

the risk of antimicrobial resistance rapidly developing, crippling its clinical application, or on the 
opposing end, a new antibiotic might be so effective it is only used as a last-resort therapeutic, 

thus not widely commercialized. Either way, the bottom line implies similar risks with 
considerably lower returns on investment compared with other drugs [19], which renders 

antibiotic discovery as an unattractive business. In an attempt to counter this scenario, the 
European Federation of Pharmaceutical Industries and Associations consorted with the 

European Union to establish the largest worldwide life sciences public–private partnership, the 

Innovative Medicines Initiative. Through funding and a highly ambitious agenda, under the New 
Drugs for Bad Bugs program, this initiative encourages action in areas ranging from antibiotic 

discovery, clinical research, through to reshaping the use of antibiotics, in hopes of catalyzing 
the approval of novel antibiotics [20]. 

The systematic procedures—Antibiotic Discovery Platforms (ADPs)—behind the discovery 
of major antibiotic classes that fueled the antibiotic golden age, have become exhausted. 

Modern ADPs have yielded redundant discoveries and/or failed in translation to the clinic, 
which dimmed the overly optimistic expectations created with the development of novel 

technologies throughout the genomics era. From 2004–2009, the overall rate of antibacterial 
approval was a mindboggling single drug per year [21], which doubled from 2011–2014 when 

the FDA approved a still impressively scarce eight new antibiotics or combinatorial therapies 

[22]. According to the antibiotic pipeline surveillance by The Pew Charitable Trusts [23], from 
2014 onwards, the situation is slowly improving, if at all. As seen on Figure 1, the total antibiotic 

pipeline appears to be timidly increasing, although the number of drug candidates close to 
approval (phase III clinical trials and those that have filed a New Drug Application) or recently 

approved (phase IV) remains alarmingly low. Despite great efforts, most approved antibiotics 
only target either the ribosome, cell wall synthesis machinery and DNA gyrase or 

topoisomerase [24,25]. Beyond conventional antibiotics, some interesting therapeutic 
alternatives are noteworthy, including bacteriophages, antivirulence strategies, probiotics, 

vaccines, immune stimulation, antimicrobial peptides, antibiofilm therapies and antibodies, 
among others. Despite some of these alternatives having reached clinical trials, it is estimated 
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that across the next 10 years, over £1.5 billion will be needed to further test and develop them 
before their clinical impact is felt [26].  

Figure 1. Evolution of the antibiotic pipeline by stage of development, which includes: 

Clinical trials ranging from Phase I, to evaluate safety; Phase II, to access effectiveness 

and safety; Phase III, to gather statistically significant data on safety, effectiveness and 

benefits-versus-risk; submission of a New Drug Application, for marketing approval; 

and lastly, Phase IV for post-marketing surveillance. 

During 2011, the director general of the World Health Organization made the clear 
forewarning that we are “on the brink of losing these miracle cures… In the absence of urgent 
corrective and protective actions, the world is heading towards a post-antibiotic era, in which 
many common infections will no longer have a cure and, once again, kill unabated” [27]. 
Besides a more efficient management of antibiotic use, there is a pressing need for new 
platforms capable of consistently and efficiently delivering new lead substances, which should 
attend to their precursors impressively low rates of success, in today’s increasing drug 
resistance scenario. The present manuscript reviews the discovery timeline of the major 
antibiotic classes from an ADPs perspective, highlighting their underlying technological basis 
and the context of their application, beginning with the birth of chemotherapy, the 
establishment of the Waksman platform, semi-synthesis and fully synthetic antibiotics, followed 
by the technological revolution during the genomics era, and the present-day efforts in the 
post-genomics era.  
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II. 2   THE BIRTH OF ANTIMICROBIAL CHEMOTHERAPY 

Traditional behaviors and primitive rituals suggest ancient human use of antibiotics [28,29], 

although the first scientific record of the therapeutic use of antibiotics dates to 1899 when 

Emmerich and Löw explored the therapeutic potential of Pseudomonas aeruginosa extracts. 
While their investigation was discontinued due to inconsistent effects, the antimicrobial effect 

observed was later associated with quorum-sensing molecules [30]. When discussing 
antimicrobial chemotherapy, highlighting the contributions of Pasteur, Lister and Koch to the 

foundation of medical microbiology is a tribute of sorts, for which reviews are available [31–
34]. The road towards the first modern antimicrobial began in 1854, when Antoine Béchamp 

produced aniline, via the reduction of nitrobenzene with iron in the presence of hydrochloric 
acid. In 1859, Béchamp produced atoxyl, by reacting aniline with arsenic acid, in his pursuit of 

developing aniline derivatives. Simultaneously, Paul Ehrlich noticed that chemical dyes stained 

specific histological and cellular structures, which inspired his side-chain theory in 1897, where 
he hypothesized about therapy targeting structures exclusive to pathogens [35]. Ehrlich, 

together with Alfred Bertheim and Sahachiro Hata, synthetized and screened multiple arsenical 
derivatives based on Béchamp’s discovery of atoxyl and, by 1907, discovered Salvarsan [36], 

the first antimicrobial that was a more effective and safer therapeutic against syphilis, and 
became the most prescribed drug until the introduction of penicillin [37]. 

The systematic application of chemical modifications to expand a library of lead molecules, 
followed by screening its effect on a disease model, contributed to the discovery of 

Neosalvarsan, a more water-soluble derivative with reduced side effects, and laid the 
foundation of modern pharmaceutical research. Given its success, the Friedrich Bayer 

Company explored synthetic chemicals for therapeutic purposes in the 1920s [38]. The azo 

compounds, a class of synthetic dyes with antibacterial activity, were the starting point for the 
synthesis of diverse structural variants. In 1932, Gerhard Domagk recognized the curative 

potential of Prontosil, synthetized by chemists Josef Klarer and Fritz Mietzsch, from studies on 
streptococci-infected mice and later, on two dire cases of children in life-threatening situations, 

including Domagk’s daughter. Prontosil became commercially available by 1935, simultaneous 
to the discovery of its active principle, which was unrelated to the azo functional group or the 

dye fraction. In fact, Prontosil is a precursor to the active molecule, sulfanilamide, widely used 
in the dye industry, hence not patentable, and whose synthesis was readily achievable. In the 

following years, over 5000 derivatives known as the sulfa drugs were synthetized, some of 
which are still used today, e.g., sulfamethoxazole. 
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Arguably, it was Alexander’s Fleming ‘accidental’ detection of Staphylococci growth 

inhibition around mold colonies in petri dishes, forgotten at his lab throughout a holiday period, 

that mostly impacted the future of antimicrobial discovery [39]. Fleming’s observation in 1928 
motivated his studies on the mold’s product, penicillin, regarding its activity spectrum, potency, 

leukocyte interaction and toxicity. In fact, it was the first substance noted to present more 
antibacterial than antileukocytic activity [40]. Fleming’s rigorous methods, and their underlying 

rational, are still hallmarks for antibiotic discovery. Nonetheless, Fleming faced problems 
associated with the large-scale growth of the penicillin-producing mold and it was not until 1939 

that Howard Florey, Norman Heatly and Ernst Chain described a method that made penicillin 
sufficiently available for clinical testing. This bioprocess was greatly up-scaled when Florey 

and Heatly moved to the USA and Canada, given the necessity of antibiotics imposed by World 
War II [41]. Ultimately, their work on bioprocess optimization surpassed the production of 

penicillin and sparked the fermentation industry, which is highly relevant for the production of 

diverse antibiotics and other medicines such as insulin, erythropoietin, interferon, and 
antibodies, among others [42]. 

Although penicillin’s bioprocess scale-up breakthroughs enabled its widespread clinical 
use during the late period of World War II, efforts pursued an outperforming chemical synthesis 

protocol. During late 1945, penicillin antimicrobial activity was traced to the !-lactam ring [43]. 
Ernst Chain believed that fully synthetic penicillin would require new chemical techniques that 

John Sheehan achieved in 1950, and from which the first synthetic natural penicillin V was 
produced in 1957. The year after, Sheehan described the production of 6-aminopenicillanic 

acid (6-APA) via both semi- and fully synthetic methods, and 6-APA became a scaffold for 
multiple C6 sidechain modifications, further discussed ahead in the context of semi-synthesis. 

II. 3   TOWARDS THE GOLDEN ERA: THE WAKSMAN PLATFORM 

Impelled by the remarkable successes at the beginning of the 20th century, Selman 

Waksman adventured into the realm of drug discovery. In 1937, noticing that complex soil 
bacteria—actinomycetes—inhibited the growth of other bacteria, Waksman acknowledged that 

these biological mechanisms, which evolved from competitive growth [44], could become the 
conceptual basis of a screening platform for antibiotic-producing organisms [45]. From 1939 

onwards, it is estimated that his systematic agar overlay process, referred to as the Waksman 
platform, screened well over 10,000 strains of different microbes [46], which exemplifies the 

scalability of this method—a key characteristic for the coming successes. Equally important, 
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over 90% of clinical antibiotics derive from actinomycetes [10], making these microbes an 

antibiotic gold mine of sorts. 

The Waksman platform promptly revealed new antimicrobials: actinomycin, streptothricin, 
fumigacin and clavacin; but it was not until 1944 that a Streptomyces griseus strain was found 

to produce a non-toxic aminoglycoside antibiotic, named streptomycin, which inhibits protein 
synthesis by binding to the bacterial 30S ribosomal subunit. At the time, it was not possible to 

patent natural products in the USA, but together with Merck lawyers, Waksman convinced the 
authorities that purified antibiotics were sufficiently distinct, sparking a new range of business 

opportunities, a significant stride towards an economic stimulus that bolstered the antibiotic 
golden age. Merck obtained FDA approval for streptomycin [44] and began its 

commercialization by 1946 for the treatment of tuberculosis and tuberculous meningitis, and 
later for pathogens outside penicillin’s spectrum of activity [47]. The Waksman platform 

revealed various antibiotic classes, many of which are the major antibiotic classes currently in 

clinical use, as described next.  

Chloramphenicol was originally isolated in 1947 from the actinomycete Streptomyces 

venezuelae, thereby introducing the amphenicol class. Chloramphenicol’s antimicrobial 
activity derives from its reversible binding to the 50S ribosomal subunit, thereby inhibiting 

bacterial protein synthesis. It was the first FDA-approved broad-spectrum antibiotic, displaying 
excellent tissue and fluid permeability. However, in the 1960s, various toxicity issues impaired 

its administration, and it is currently rarely prescribed [48]. Chlorotetracycline marked the 
introduction of the tetracycline antibiotic class in 1948, which also disrupts protein synthesis 

by acting on the 30S subunit of the ribosome. Chlorotetracycline, a product of Streptomyces 
aureofaciens, is unstable at both ends of the pH scale, which hampers its bioavailability [49].  

Macrolides are the second most prescribed class of therapeutic antibiotics, introduced in 

1949 with erythromycin that is produced by Saccharopolyspora erythrea. Erythromycin binds 
to the 50S bacterial ribosomal subunit, but its therapeutic use was characterized by instability 

under acidic conditions and overall poor oral bioavailability [50]. Virginiamycin was the first 
identified streptogramin, originally isolated from Streptomyces virginiae in 1952. 

Streptogramins are a class of antibiotics formed by two chemically unrelated substances, a 
polyunsaturated macrolactone and a cyclic hexadepsipeptide. Either group binds to the 50S 

subunit of bacterial ribosomes, presenting mediocre activity, but their synergistic effect 
empowers its therapeutic application [51]. 
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Unlike the antibiotic classes described thus far, which target bacterial protein synthesis, 

glycopeptides disrupt cell wall synthesis. The first antibiotic of the glycopeptide class, 

vancomycin, was discovered in 1956 to be produced by Amycolatopsis orientalis and is 
currently a last-resort antibiotic. Vancomycin interferes with the transpeptidation and 

transglycosylation steps of the cell wall synthesis, thereby inhibiting cross-linking and cell wall 
maturation [52]. Similarly, ansamycins differ from protein synthesis inhibitors (e.g., 

amphenicols, tetracyclines, macrolides and streptogramins) and cell wall synthesis inhibitors 
(e.g., glycopeptides). For instance, rifamycins inhibit the DNA-dependent RNA polymerase of 

prokaryotes. Rifamycin B was first isolated in 1959 from Streptomyces mediterranei (later 
classified as Amycolatopsis mediterranei), and despite considerably low antimicrobial effect, it 

introduced a unique metabolic target in bacteria [53]. The discovery of fosfomycin came from 
the isolation of three Streptomyces strains in 1969. Its antimicrobial effect derives from the 

inhibition of the initial steps of the cell wall biosynthesis pathway, disrupting the action of 

phosphoenolpyruvate synthetase. However, fosfomycin presents a broad spectrum of activity, 
making it an appealing antimicrobial [54].  

Although the first report of a lipopeptide antibiotic dates to 1947 with the discovery of 
polymyxin E, produced by Paenibacillus polymyxa, the therapeutic use of this class was limited 

to experimentations for a mere couple of years, given multiple concerning adverse effects, but 
was eventually reconsidered [55]. The production of daptomycin by Streptomyces roseosporus 

was revealed in 1980 and although Eli Lilly and Co. attempted its commercialization, clinical 
trials were discontinued under the belief that there was a small window between therapeutic 

efficacy and toxicity. As such, this calcium-dependent cyclic lipopeptide is seen as the 
precursor of the lipopeptide class of antibiotics, with surpassing antimicrobial activity in 

comparison with polymyxin E, albeit limited to Gram positive pathogens. Interestingly, 

daptomycin was revived by Cubist Pharmaceuticals and, with dosing adjustments, reached the 
market by 2003 [56]. Moreover, daptomycin’s mode of action is still unclear: permeabilization 

and depolarization of the cell membrane being the most probable; interference in cell wall 
synthesis; and/or disruption of cellular division are other suggestions. Although more cyclic 

lipopeptides have been described, daptomycin remains the only approved therapeutic 
antibiotic of this class [57]. 



Chapter II 

 20 

II. 4   ONTO THE MEDICINAL CHEMISTRY ERA: SEMI-SYNTHESIS 

Antibacterial semi-synthesis is the modification of existing scaffolds, or molecular 

backbones, obtained by a fermentative procedure. Historically, most scaffolds originated from 

the Waksman platform. Thus, they are the evolutionary outcome of selective pressures, e.g., 
from the actinomycete-bacteria ‘fight’, and are therefore extremely well fit to reach and bind to 

their target. However, this does not translate to therapeutic effectiveness or safety, which can 
often be improved by means of semi-synthesis, alongside its chemical stability, reduction of 

undesirable side effects, among other features that are crucial in marketing antibiotics, for 
instance patenting derivatives, which increases profitability of antibiotic development programs, 

essential for this generally unattractive business. Semi-synthesis began with the catalytic 
hydrogenation of streptomycin, which resulted in dihydrostreptomycin by 1946, and was 

characterized by greater chemical stability along with similar antimicrobial activity. Although 

both streptomycin and its novel derivative quickly made their way to clinical use, eventually 
their prescription has been reevaluated due to ototoxicity concerns [58]. 

Conversely, it took over a decade before a bioproduction method made penicillin a 
therapeutic possibility. While the identification of penicillin’s antimicrobial effect preceded its 

‘discovery’, it was Fleming’s willpower that pushed penicillin beyond only being obtainable in 
small and unstable quantities. This in turn enabled its semi-synthesis, which expanded 

penicillin from a single drug to a range of semi-synthetic derivatives constituting an entire class 
of antibacterial drugs, the beta-lactams. These comprise over 60% of antibiotics for human 

use [59], with a multitude of subclasses and marketed antibiotics within, as seen in Table 1. 
The rate at which derivatives with improved properties can be synthetized kept the upper hand 

against infectious diseases, a key characteristic of semi-synthesis. Nonetheless, resistance to 

these semi-synthetic antimicrobials has been rapidly increasing, which is thought to be related 
to their high rate of prescription and highlights the importance of continuously developing novel 

semi-synthetic derivatives [60].  

Semi-synthetic penicillins are obtained by producing penicillin G, which is hydrolyzed into 

6-APA, purified, and later chemically altered, e.g., at the acyl side chain, to achieve various 
semi-synthetic penicillins [61]. Another beta-lactam example parallel to penicillins is the semi-

synthesis of cephalosporins, which have reduced incidence of both side effects and resistance, 
alongside an additional site for chemical modification [62]. Cephalosporin C was firstly 

identified as a metabolite of Cephalosporium acremonium in 1948. By 1959, its hydrolysis   
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Table 1. Beta-lactam subclasses highlighting their diversity with examples of marketed 

antibiotics. 

Subclasses Examples of Marketed Antibiotics 

Penicillins Penicillin G, Penicillin V, Ampicillin, Amoxicillin, Bacampicillin, 
Cloxacillinm, Floxacillin, Mezlocillin, Nafcillin, Oxacillin, Methicillina, 
Dicloxacillina, Carbenicillinb, Idanylb, Piperacillinb, Ticarcillinb 

Cephalosporins Cefalothinc, Cephradineac, Cefadroxylc, Cefazolinc, Cephalexinc, 
Cefuroxined, Cefaclord, Cefotetamd, Cefmetazoled, Cefonicidd, Cefiximee, 
Ceftibutene, Cefizoximee, Ceftriaxonee, Cefamandole, Cefoperazonee, 
Cefotaximee, Proxetile, Cefprozile, Ceftazidimee, Cefuroxime Axetile, 
Cefpodeximee, Cefepimef, Ceftobiproleg 

Other Minor 
Subclasses 

Flomoxefh, Latamoxefh, Cefoxitini, Loracarbefj, Imipenemj, Meropenemj, 
Panipenemj, Aztreonamk, Carumonamk 

a Penicillinase-resistant and b Anti-pseudomonal penicillins; c First, d Second, e Third, f Fourth, and g Fifth generation 
cephalosporins; h Oxycepham; I Cefam; j Carbapenem; k Monobactam. 

under acidic conditions yielded 7-aminocephalosporanic acid (7-ACA), which was the 
precursor to a multitude of semi-synthetic cephalosporins [63]. Figure 2 exemplifies the 

evolution of semi-synthetic cephalosporins, their timeline of introduction and the pros and cons 
of the succeeding generations marketed so far. 

Another key illustration of semi-synthesis comes from the catalytic hydrogenolysis of 
chlorotetracycline (discovered in 1948), which resulted in the semi-synthesis of tetracycline by 

1953, although it was later also found to be a natural product [64]. While semi-synthetic 

cephalosporins are mostly derivatives of 7-ACA, obtained via the addition of different molecular 
groups at the pair of modifiable sites, i.e., C7 and C3’, semi-synthetic tetracyclines and 

macrolides result from serial structural modifications. Each iteration requires the chemical 
manipulation of the previous semi-synthetic derivative, which may preserve its advantages, 

but proportionally increases the number of chemical modifications and their complexity across 
a series of semi-synthetic generations. Therefore, less than 10 semi-synthetic tetracyclines 

were marketed in the last 60 years, in contrast with over 50 commercialized beta-lactams. 
However, recent advances in fully synthetic routes reignited tetracycline derivative synthesis 

[49,65], which is crucial given semi-synthesis is one of the major strategies for antibiotic 
discovery and particularly important in outpacing the evolution of resistance mechanisms. 
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Figure 2. Evolution of cephalosporin characteristics over semi-synthetic generations. 

Because each generation is the result of substituting different molecular groups to 7-

ACA, characteristics are not necessarily inherited by succeeding generations. For 

instance, second-generation cephalosporins had reduced potency against Gram 

positive pathogens, despite their otherwise improved properties. 

II. 5   FROM THE GROUND UP: FULLY SYNTHETIC ANTIBIOTICS 

Fully synthetic antibiotics, beyond introducing novel molecules, enable production at a 

scale suitable for clinical application. For instance, chloramphenicol became the first fully 
synthetic antibiotic whose scaffold originated from a natural product to reach the clinic in 1949. 

Unsurprisingly, the rational of semi-synthesis, that of chemically manipulating a scaffold, 
applies to a fully synthetic antibiotic like chloramphenicol. In fact, replacing the nitro group with 

methanesulfonyl resulted in thiamphenicol in 1952, which overcame the most concerning 
toxicity issues and had greater antimicrobial effect, thereby improving its clinical application 

[66]. The discovery in 1953 of the natural product azomycin found little clinical application but 
introduced the nitroimidazole class. In 1962, the search for optimized derivatives revealed 

metronidazole, currently produced with a fully synthetic protocol, which is active against the 

trichomoniasis parasite. Curiously, its activity against anaerobic bacteria was a fortuitous 
discovery, for which it is still in use [67]. Analogously to metronidazole, the natural product 

fosfomycin only had reasonable clinical application once a racemic synthesis protocol was 

1st Generation
Ex: Cephalotin

⇥Potent activity against Gram-
positive
⇥Mediocre activity against 

Gram-negative

2nd Generation
Ex: Cefuroxine

⇥Expanded spectrum of activity
⇥Better cell penetration
⇥Increased resistance to Beta-lactamases
⇥Slightly less potent against Gram-positive
⇥Considerably more active against Gram-negative

3rd Generation
Ex: Ceftazidime

⇥Improved activity against Gram-
negative
⇥Better cell penetration
⇥Higher binding towards bacterial target

4th Generation
Ex: Cefepime

⇥Improved resistance to Beta-lactamases
⇥Wider spectrum of activity
⇥Higher activity against both Gram-positive and 

against Gram-negative

1964 1985 20131983 1994

5th Generation
Ex: Ceftobiprole

⇥Approved for treatment 
of critical infections, 
such as hospital-
acquired pneumonia



Antibiotic discovery: Where do we come from, where do we go? 

 23 

developed by Merck, and is still prescribed today [54]. While the advantages of chemically 

synthetizing natural products are straightforward, fully synthetic antibiotics also resulted in 

novel scaffolds. Given synthetic analogs of pyrimidine and purine bases inhibit bacterial growth, 
a diaminopyrimidine derivative named trimethoprim was introduced in 1962 [68], but only 

commercialized in 1969 together with sulfamethoxazole due to in vitro synergies, which are 
being questioned in light of recent in vivo observations [69]. 

Most of the fully synthetic antibiotics discussed have limited application to uncomplicated 
infections or as an economic alternative in developing countries. The quinolone class, which 

was unexpectedly discovered as a by-product of the synthesis of the antimalarial compound 
chloroquine, despite limited activity, was an important scaffold in the synthesis of nalidixic acid 

in 1962 [70]. Three more generations, the fluoroquinolones, were later obtained via chemical 
modification. Quinolones are currently the third most prescribed antibiotic to outpatients, 

behind macrolides and beta-lactams [71], and their antimicrobial effect is traced to the 

formation of a DNA gyrase-quinolone-DNA complex, which hampers replication and induces 
cellular death in both Gram positive and Gram negative pathogens. Another major antibiotic 

class, macrolides, are produced by semi-synthesis from erythromycin, which may involve 
simpler routes (e.g., four steps to derive azithromycin) up to more intricate modifications (e.g., 

16 steps for the drug candidate solithromycin). The recent report of a fully synthetic protocol 
that yielded over 300 macrolides [72] brings new hope to this class of antibiotics and portrays 

the importance of the fully synthetic platform up to this day, not only in facilitating the synthesis, 
but also increasing the diversity, of the antibiotics available. 

The case of fully synthetic beta-lactams is paramount since more intricate antibiotics were 
synthetized, eventually leading to a panoply of subclasses. Two important examples are the 

subclasses of carbapenems and monobactams. Carbapenems have a similar core structure 

to penicillins, differing at the C2–C3 double bond and the replacement of C1 sulfur for carbon, 
yielding improved potency, spectrum of activity, and better resistance to the action of beta-

lactamases. Currently, 10 carbapenems have been marketed, or are under clinical 
development, since their discovery in 1985. Given that carbapenems have the widest activity 

spectrum among beta-lactams, including resistant pathogens, they are currently a first-in-line 
option for treating multidrug-resistant infections [73]. Likewise, monobactams have higher 

stability regarding beta-lactamases and are a promising way forward. These monocyclic beta-
lactams were introduced to the clinic in 1984 with aztreonam and are currently being developed 
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towards siderophore moiety, a Trojan horse strategy that uses the bacterial iron uptake 
machinery to facilitate entry into Gram negative bacteria [74]. 

The class of oxazolidinones is divided into two groups differing in their MOA. The first acts 
on cell wall biosynthesis and was introduced with the natural product cycloserine in 1952, 
which is currently produced by synthetic means. Cycloserine is still used as a second-line 
therapeutic option for tuberculosis, especially in its multidrug-resistant form. The other group 
of oxazolidinones was found in 1984 to target protein synthesis and, despite reasonable 
antimicrobial activity, presented limiting toxicity issues [75]. From these, the DuPont group 
synthetized various derivatives from which resulted the discovery of linezolid, approved in 2000 
as the first novel antibiotic class since the discovery of nalidixic acid, with almost half a century 
discrepancy [76]. Although no major resistance to linezolid has been reported, its limited 
effectiveness against Gram positive bacteria and toxicity in prolonged treatments limits its 
therapeutic use as a last-resort alternative against complicated cases of multidrug-resistant 
pathogens. Over the last decade, there has been substantial interest in developing novel 
oxazolidinones, given its low resistance profile, thus a handful of companies have been 
developing novel analogues [77]. Semi-synthesis, along with complete chemical routes, have 
catalyzed the dawn of the medicinal chemistry era, and together with the Waksman platform, 
yielded the vast majority of clinically relevant antibiotics. These were characterized by 
increasing potency and diminishing side effects with succeeding iterations, which gave 
mankind the upper hand on infectious diseases.  

II. 6   ADVENT OF GENOMICS: TARGET-BASED SCREENING 

After the successes of the antibiotic golden age, the discovery rate of the underlying ADPs 
gradually decreased while in-class and multidrug-resistance mechanisms flourished. This 
weakened the therapeutic efficacy of the antibiotic arsenal and revived the issue of infectious 
diseases. The need for a new strategy coincided with the genomics era, which redefined the 
scientific paradigm governing antibiotic discovery and shaped new high-tech platforms. During 
the genomics era (1995–2004), the total number of sequenced microbial genomes increased 
from 3 to over 200 [78], and in the post-genomics era (2004–2014) reached a staggering 
30,000 [79]. In this context, the first platform to arise was based on comparative genomics, 
where novel targets essential for pathogen survival were identified from repositories of 
sequenced and annotated genomes. These targets can encode pathogenicity mechanisms, 
highlighted by comparing genome sequences of pathogenic and non-pathogenic strains. 
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Furthermore, comparing these genomes to those of the host dismisses targets that are not 
exclusive to the pathogen, thus minimizing drug–host interactions and therapeutic side effects. 
Figure 3 resumes the target-based ADP: after target discovery, follows target validation by 
evaluating if they are essential for bacterial survival, e.g., with knockout analysis and/or 
mutational studies. After, the target is cloned, overexpressed and incorporated in a high-
throughput screening (HTS) assay to search chemical libraries for binding agents. 

Figure 3. Schematic representation of the target-based antibiotic discovery platform: 

potential targets are identified from the genome sequence of pathogens and the host, 

the products of genes exclusive and essential for bacteria are incorporated into high-

throughput screening assays, which identify candidates lead optimization and 

preclinical development. The latter falls outside the scope of this chapter and was not 

discussed. 

Given that a manageable number of proteins are exclusive and conserved in bacteria, new 
MOAs were expected to surface, so some companies launched pioneering target-based 
screening programs. GlaxoSmithKline developed a target list of over 300 bacterial genes from 
1995 to 2001, of which approximately 160 were considered essential for survival, and deemed 
‘druggable’ in the search for broad-spectrum antibiotics [80]. Elitra pharmaceuticals, one of the 
top 10 start-up companies of 2001, submitted patents on over 4,000 targets after developing 
a proprietary strategy that identified essential genes in several pathogens [81]. Although target-
based screening is suitable for finding potent inhibitors of said targets, their inability to reach 
their target, either due to the low permeability of bacterial membranes or the action of efflux 
pumps, hinders their in vivo activity. In a physiological context, the bacterial cell wall is a very 
efficient barrier against most small molecule drugs. Moreover, said targets may present 
functional redundancy. Alongside the aforementioned difficulties, the target-based screening 
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approach also failed because not all targets could be readily cloned, purified and incorporated 

into in vitro screening assays; and in some cases, the oversimplified environment of the assay 

excludes cofactors and lacks sensitivity for off-target effects. For instance, researchers at 
Merck found that low guanine–cytosine Gram positive pathogens have increased resistance 

to fatty acid biosynthesis targets when grown on media mimicking the human host [82], which 
a target-based assay cannot consider. Also, single gene targets are prone to single point 

mutations conferring resistance, thus are more likely to select resistant mutants, a major 
disadvantage of this approach. 

Despite the massive bacterial genome sequencing, coupled with the development of 
bioinformatics tools to analyze said sequences, there are still many genes whose biological 

function has not been experimentally characterized. Moreover, genetic diversity further 
complicates target-based screening at the level of model organism selection, e.g., 

GlaxoSmithKline researchers reported an unrelated copy of genes conferring resistance in 

20% of clinical isolates [83]. Ultimately, antibiotic discovery remains a challenging affair 
unattainable with an exclusively target-based genomics approach, and many consider the 

comparative genomics platform as rather unsuccessful, since not a single new drug was 
discovered [84]. Nonetheless, it reignited the quest towards understanding bacterial physiology, 

which had unquestionable positive implications in the development of antimicrobial 
chemotherapy. The reductionist approach of target-based screening, e.g., analyzing a single 

gene/protein (target) outside its biological context, evolved towards a more holistic phenotypic 
and pathway-based analysis. Subsequent platforms stemmed from taking a step back and 

reviving whole-cell screening, which was the basis of the Waksman platform, and bears the 
intrinsic advantage that lead compounds can interact anywhere on the pathway, on multiple 

constituents of the network or even on different metabolisms, and most importantly, replicating 

in vivo conditions. 
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II. 7   REVERSE GENOMICS: REVIVAL OF CELL-BASED SCREENING 

The case of anti-tuberculosis drug discovery is a good example of this change in strategy: 
researchers moved away from target-based ADPs and returned to cell-based screening [85], 
with greater success in the discovery of novel, more diverse, lead molecules for subsequent 
optimization [86]. In general, cell-based screening results in higher variability and more 
complex data than the binary hit/no-hit of target-based screening, which is more difficult to 
relate with biologic phenomena. In cell-based assays, after a positive hit, e.g., an interaction 
of a drug with a microorganism such that its phenotype becomes altered, counter-screening 
with human cells allows for cytotoxic evaluation of drug candidates with antimicrobial activity. 
Cell-based ADPs first identify antimicrobial activity and only later endeavor to characterize 
MOA, and thus are also named reversed genomics, as represented in Figure 4. This is not 
necessarily a limitation as the FDA does not require the identification of the molecular target 
to initiate clinical trials, or to obtain marketing approval [87]. 

Figure 4. Schematic representation of the cell-based antibiotic discovery platform: drug 

candidates are identified from cell-based screening assays, a counter-screen excludes 

cytotoxic compounds, and subsequently other tools are applied to identify MOA. 

Although MOA is not a requisite, it may facilitate lead optimization and preclinical 

development, for instance, structural information on the target can enable a rational 

modification of the drug candidate. 

In a broad sense, cell-based assays include screening large libraries in a systems-based 
mentality in order to evaluate the complex network of responses that antibiotics elicit [88], and 
are often termed phenotypic screening. Typically, if said screening probes phenotypic changes 
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free of target hypothesis, the term target-agnostic may be applied. Moreover, cell-based 
screening may follow a chemocentric approach, e.g., on compounds and its derivatives 
presenting a known biological effect. The development of cell-based screening methods has 
been of paramount importance and in its simpler form, these are centered on determining the 
minimum inhibitory concentration (MIC) to quantify antimicrobial activity. MIC assays are still 
relevant given that they complement other ADPs, for instance, the initial steps of the fully 
synthetic protocol to produce macrolide derivatives developed by Seiple et al. [72], included a 
MIC assay to evaluate antimicrobial activity and prioritize further efforts. Attempts to extend 
cell-based screens beyond MIC assays, which do not provide insight on the MOA of candidate 
molecules, have been directed at developing assays that quantify either: mitochondrial activity, 
by measuring a fluorescent product of a mitochondrial reaction; cellular integrity, evaluating 
the release of intracellular enzymes or the uptake of dyes that are impermeable when the cell 
is healthy; or measuring ATP content, etc. The reporter gene technology is still prevalent, 
where the activation and expression of a gene, which yields a quantifiable signal, e.g., 
luminescence or fluorescence, ‘reports’ biomolecular interactions. For instance, Hutter et al. 
[89,90] developed a HTS assay with a panel of twelve Bacillus subtilis strains, modified with 
luciferase reporter genes, to indicate the MOA of various antibiotics with sensitivity ranging 
from generic pathways, antibiotic class and the specific MOA of some drugs. 

Alternatives to MIC-type assays require genetic manipulation and/or the use of a label, 
either in the form of a fluorescent or radioactive molecule, or a reporter gene. This is a limiting 
factor since, on the one hand, genetic manipulation implies a priori knowledge and on the other 
hand, the indication of gene transcription using a reporter gene may not always be coherent 
with alterations of enzymatic activity, thereby crippling the inherent sensitivity of these assays. 
Moreover, these signal transduction events can take considerable time to become detectable, 
thus limiting assay capacity and throughput [91]. In addition to the impact of a reporter gene, 
some of these labeled assays are limited on miniaturization. Despite said issues, cell-based 
screening still contributes greatly towards advancing antibiotic discovery, for instance, in 
neglected diseases such as malaria and human African trypanosomiasis [92]. For the latter, 
phenotypic screening lead to the discovery of fexinidazole (a nitroimidazole) which has been 
recently approved as the first oral therapy for human African trypanosomiasis and Chagas 
disease [93]. 

Eder et al. [94] reviewed the discovery platforms of first-in-class small molecule drugs, in 
particular the role of target- versus cell-based screening. First-in-class drugs act on a new 
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target or biological pathway. Between 1999 to 2008, phenotypic screening was more 
productive. However, in the period up to 2013, target-based approaches delivered most first-
in-class drugs. Given the period ranging from the burdensome process of drug discovery until 
commercialization, there is a latency between the timeline of said review and the timeline 
presented in this manuscript. Concerning antibiotics, from 2000 to 2015, only five first-in-class 
new drugs were marketed: linezolid, daptomycin, retapamulin, fidaxomicin and bedaquiline 
[95]. Retapamulin binds to the 50S ribosomal subunit, fidaxomicin acts at the “switch” region 
of the bacteria RNA polymerase and bedaquiline specifically inhibits the ATPase of 
Mycobacterium tuberculosis. From these five new drugs, three are derived from natural 
products (daptomycin, retapamulin and fidaxomicin), and two were chemically synthesized 
(linezolid and bedaquiline) [90]. 

Historically, the success of antibiotic therapy relied on the discovery of natural scaffolds 
that were chemically optimized or produced. As such, it remains a rational decision to 
continuously develop screening strategies that probe natures repositories [96], especially 
using cell-based assays [97]. In fact, the major antibiotic scaffolds currently in use are derived 
from natural products, except for fluoroquinolones, sulfonamides and trimethoprim [98]. New 
cell-based ADPs should identify molecules with antimicrobial activity without the limitations of 
a label. Moreover, these assays would ideally provide insight on MOA whilst being capable of 
screening very large libraries, as isolated projects have very low rates of success [99]. 

II. 8   POST-GENOMICS 

Biological research tends towards specialization, through increasingly focused and 
localized research; however, system-wide understanding of the biological constituents and 
their interactions is gaining importance. It is now possible to extract, handle and interpret 
information from much higher dimension and diverse origins, such as transcripts (i.e., 
transcriptomics), proteins (proteomics), and other molecules such as lipids (lipidomics), etc. 
The influence of these omics’ technologies on the field of antibiotic discovery is undisputable, 
especially in understanding antibiotics MOA, identifying novel targets, and supplying insights 
to bacterial metabolism and physiology. Given the importance of screening in the ADPs 
discussed thus far, this mindset should be the backbone of future platforms. However, neither 
transcriptomics, proteomics nor lipidomics have matured to the throughput capacity of cell-
based screening assays, and therefore are not the core technology of any ADP. These 
technologies convey insight on the biomolecules they probe, and not the holistic dynamics of 
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bacterial metabolism, thereby serving as complementary, albeit crucial, tools for the antibiotic 
discovery process.  

Initial transcriptomics technologies were hybridization-based, e.g., Northern Blotting and 
microarrays [100]. Microarrays became the reference by mid-1990s [101] until next-generation 
sequencing extended to transcriptomics, which copes better with high genetic variation and 
non-specific hybridizations, as well as being label-free, e.g., unbiased and with a greater upper 
limit of detection. RNA-seq outperforms microarrays in predicting differentially expressed 
genes (90% versus 76%), but both technologies had similar performances when estimating 
the MOA of anti-cancer drugs [102]. However, RNA-seq enables studying non-coding RNA, 
which has a regulatory role in microbial responses to antibiotics, and therefore can be an 
alternative for new antimicrobial targets and/or novel combinatorial therapies [103]. Although 
next-generation sequencing [104], unbiased transcriptomics [105] and non-coding RNA [106] 
technologies have been applied to drug discovery in general, few studies discuss their 
application to antibiotic discovery. Whole-genome expression profiling elucidates the 
molecular and cellular responses to antibiotic stresses, which is particularly helpful for MOA 
determination, still a major gap in the field of antibiotic discovery. For instance, Salvarsan’s 
MOA remained unclear over a century since its discovery, and so had its chemical structure 
[107]. In general, antimicrobials of the same class, thus with similar MOA, give rise to 
analogous transcriptional responses, which provides insight on the MOA of uncharacterized 
antibiotics [108]. For instance, the cell-based HTS assay developed by Hutter et al. [89,90] 
used transcriptomics to characterize the effect of various antibiotics, which then guided the 
genetic manipulation of a bacterial panel that ‘reports’ lead molecules MOA. Additionally, these 
signature responses are also being used to elucidate resistance mechanisms [109]. 

Genome expression technologies expand beyond the transcript level to biological events 
at the level of proteins. Not only do these occur without transcriptome alterations, but the 
instability of bacterial RNA raises both conceptual and technological limitations, which stress 
the need to complement transcriptomics with proteomics. Early proteomics studies relied on 
2D gel-based assays or on difference gel electrophoresis [110], which require high-purity 
protein samples given their little sensitivity for low-abundance proteins, co-migration of proteins, 
and different modifications on the same protein [111]. Moreover, gel-based techniques are 
laborious, poorly automatable, and therefore difficult to apply in large-scale studies, so the 
evolution of mass spectrometry (MS) coupled with chromatographic separation rapidly became 
an alternative [112]. Proteomics has contributed towards identifying novel antimicrobial targets 
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[113], understanding resistance mechanisms to therapeutic antibiotics, and to some extent 
MOA elucidation [114], although unable to fully characterize MOA [115]. Importantly, the 
application of transcriptomics and proteomics technologies sheds new light on the function of 
various genes, leading to updates on existing annotations, and to improved understanding of 
bacterial metabolism and physiology. Although not at the core of any ADP, these technologies 
complement other ADPs, revealing information that is building the way forward. Since proteins 
interact with different biomolecules, including nucleic acids and lipids, specialized techniques 
have been developed to probe said interactions [116]. Moreover, within the realm of 
proteomics, the field of phosphoproteomics has ‘spun-off’. Although this type of post-
translational modifications was thought to be exclusive to eukaryotes, it affects bacterial 
homeostasis, virulence [117], and signal transduction [118]. Virulence mechanisms are 
interesting since the machinery used by bacteria to cause disease, for instance tyrosine 
kinases and phosphatases, are structurally different from the hosts and therefore can be 
exclusively targeted. Further descriptions on phosphoproteomics for drug discovery exist, 
albeit outside the scope of infectious diseases [119]. 

Understanding the physiological role of lipids, especially at the molecular level, has been 
considerably limited due to a technological gap that is being filled with very selective and 
sensitive lipidome characterization studies using MS, and combining various targeted and non-
targeted approaches [120]. To achieve the required lipid separation, various chromatographic 
methods are routinely applied in combination with MS, for instance hydrophilic interaction liquid 
chromatography or gas chromatography [121]. Besides their structural function, lipids take part 
in a panoply of different biological events including signaling, trafficking and even metabolite 
functions. Regarding infectious diseases, an example of the application of lipidomics is the 
characterization of pathogenic microbe’s cell wall, thereby unveiling its regulation and role in 
pathogenesis. This has revealed essential enzymes involved in fatty acid synthesis that are 
conserved across many of the most clinically relevant pathogens, e.g., FabI, FabH, FabF and 
acetyl-CoA carboxylase. As such, inhibitors of said enzymes are promising targets for future 
development [122], especially for persistent mycobacteria infections that use fatty acids as a 
carbon source [123].  

II. 9   FROM METABOLOMICS TOWARDS META-OMICS 

Gene expression data from transcriptomics and proteomics faces challenges, for instance, 
increases in RNA levels might not coherently result in changes at the protein level, added to 
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conceptual and technological limitations associated with the instability of bacterial RNA, and 
differences in protein levels are often poor estimators of metabolic activity. Consequently, 
interest in small-molecule metabolites has also emerged [124]. Metabolomics provides a more 
in-depth view of the biological reality governing microbial metabolism, using complex analytical 
methods like nuclear magnetic resonance (NMR) and chromatographic techniques associated 
with MS, alongside advanced data analysis algorithms [125,126]. Since bacterial responses to 
antibiotics begins rapidly and encompasses a variety of pathways, metabolomics is well suited 
to elucidate MOA. For instance, Hoerr et al. [127] explored NMR-based metabolomics to 
differentiate the MOA of nine antibiotics on Escherichia coli. Moreover, metabolomics 
complements other omics, for instance, rhodomyrtone’s antimicrobial activity was identified via 
phenotypic screening, but its MOA was revealed with proteomics and metabolomics. 
Specifically, rhodomyrtone cripples capsule biosynthesis enzymes and metabolites of 
Streptococcus pneumoniae [128]. Additionally, it is possible to construct metabolic networks 
that aggregate catalytic activity (i.e., enzymes) alongside its coding and expression (i.e., genes, 
and their transcriptional and translational control). Over 50 networks of different organisms 
have been described, which sparked a new approach for antimicrobial target discovery [129].  

Metagenomics, and meta-omics in general, reinforced natural product discovery, which 
has had a central role in antibiotic discovery, and chemotherapy in general, ranging from 
oncological to immunologic treatments, e.g., approximately 50% of all FDA-approved 
therapeutics are natural products or their derivatives [130]. Metagenomic studies estimated 
that only 10% of natural products have been identified, so the suggestion that only 1% of the 
complete natural products repository has been investigated comes as no surprise [131]. 
Therefore, the search for new drugs from natural sources is being pursued with renewed hopes 
[132]. In this regard, sampling new natural product sources, such as plants and marine 
organisms [133], and endophytes or epiphytes [134], is expected to reveal an even wider range 
of metabolic pathways with potential therapeutic applications. Moreover, exploring 
microorganisms unculturable in traditional laboratory conditions, or certain pathways not 
activated in typical laboratory conditions, requires efforts to develop adequate protocols. Given 
the meta-omics revelation of natures ‘untapped’ repositories, these could very well be the next 
‘gold mine’ after actinomycetes, thereby justifying such efforts. 

An interesting device, the iChip, allows for the high-throughput cultivation of microbial 
species in their natural habitat, with a growth recovery of 50% versus 1% of traditional methods, 
thereby giving access to otherwise ‘uncultivable’ microorganisms [135]. The iChip was used to 



Antibiotic discovery: Where do we come from, where do we go? 

 33 

collect extracts from 10,000 isolates, from which a new species of Beta-proteobacteria thought 
to belong to a new genus related to Aquabacteria, was shown to produce an antibiotic named 
teixobactin, a peptidoglycan synthesis inhibitor. Teixobactin is mostly active against Gram 
positive pathogens, some of which are drug-resistant, and its bactericidal activity even 
surpasses that of vancomycin (a last-resort antibiotic), along with no indication of resistance 
mechanisms currently existing [136]. Metagenomics enables a different approach, instead of 
attempting to grow these ‘uncultivable’ microorganisms, sequences of interest can be identified 
from metagenomes, which can then be cloned and expressed in laboratory-friendly microbes. 
This avoids in situ cultivations, like with the iChip, or the burdensome tasks of deciphering the 
conditions required for growth or activation of unexplored pathways, and could provide novel 
molecules for antibiotic discovery [137].  

The interaction of antibiotics with the human microbiome has also been enabled by meta-
omics, which has created further opportunities for antibiotic discovery [138]. In fact, human-
associated metagenomic studies revealed gene clusters with antibiotic potential. For instance, 
in the case of Staphylococcus lugdunensis nasal colonization, these commensal bacteria 
inhibit the presence of Staphylococcus aureus strains, thereby preventing opportunistic 
infections. This effect was traced to the production of lugdunin, a novel class antibiotic 
(macrocyclic thiazolidine peptides) produced by S. lugdunensis, which has bactericidal activity 
on key pathogens and importantly, presents a reduced risk of resistance development [139]. 
Likewise, lactocillin, a novel thiopeptide antibiotic, was identified from the vaginal microbiota 
and demonstrated considerable activity against typical pathogens [140]. On a different note, 
recurrent Clostridium difficile infections have been treated with complete microbiome 
transplantation [141], which is a ‘brute-force’ alternative in comparison to pinpointing the key 
molecular agent responsible for the regulation between commensal flora and pathogenic 
agents. These studies suggest that either introducing healthy microbiota, the targeted 
manipulation of commensal microbial populations, or even the purified molecular agents that 
regulate commensal bacteria, can be the source of novel therapeutics, all of which enabled by 
meta-omics technologies.  

As seen, the technologies introduced in the post-genomics era have contributed towards 
new opportunities in antibiotic research, although these have not been at the core of any ADP 
per se. The case of teixobactin, for instance, heavily relied on the revelations brought by meta-
genomics and the technologies required to build a device such as the iChip. However, 
identifying which of the molecules recovered with the iChip have antimicrobial activity, along 
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with insights into their MOA, were revealed with cell-based assays in a reverse genomics 
platform. Since phenotypic screening has had greater success in revealing first-in-class 
molecules, it is a great starting point for ADPs. However, the drawback is the reduced 
mechanistic information derived, for which the omics technologies supply accelerated insight 
on the MOA, including the molecular target and its regulation. Then, with the required 
mechanistic information, target-based screening can be applied in order to optimize lead 
molecules into best-in-class medicines [142]. Although most new antibiotics in late clinical 
development belong to existing classes [143], the paradigm of combining target- and cell-
based screening brings renewed hope moving forward. 

To handle the massive amount of information created in the post-genomic, The Pew 
Charitable Trusts launched SPARK [144], a database focusing on all aspects of Gram negative 
bacteria permeability, in hopes to facilitate information sharing and ease collaborations among 
the research community. Similarly, Farrell et al. [145] launched AntibioticDB, a database of 
antibiotics at all stages of development, including those that were discontinued. While some 
compounds were legitimately abandoned, e.g., in light of clinical results, due to toxicity issues 
or inferior effectiveness, the majority were discontinued for unknown reasons, and some were 
discarded for circumstantial reasons. If re-evaluated with novel chemical synthesis methods, 
or with post-genomics technologies, many abandoned compounds may prove to be effective 
therapeutics. If the requirements regarding toxicity profiles of antibiotics are made more in line 
with those of anticancer drugs, then many compounds may be worth investigating [146]. The 
case of daptomycin is a good example of how a compound can be revived, nearly 20 years 
after its abandonment, and still become the most financially successful intravenous antibiotic 
in the US [56]. 

II. 10   CONCLUSIONS 

Once considered a resolved health issue, infectious diseases have resurfaced as a topic 
requiring urgent action. Antibiotic discovery has come a long way since the success of the 
Waksman platform, semi-synthesis and fully synthetic ADPs. As seen, the establishment of 
systematic procedures—platforms—was crucial for the discovery of the major antibiotic 
classes in use. Given the limitations of target-based screening, cell-based ADPs were revived 
during the genomics era. While some consider the genomics era platforms disappointing, the 
importance of the lessons learned should not be minimized. Considerable technological 
advances have given researchers unprecedented access to biological events and repositioned 
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the mind-set for antibiotic research in a systems biology context. Paradoxically, in the field of 
antibiotic discovery, the more we know the less we can discover. Although not at the core of 
any ADP, omics technologies have been proven of unquestionable value as auxiliary tools for 
antibiotic discovery. Importantly, cell-based screening requires MOA characterization, for 
which omics technologies are indispensable. Despite offering added-value information on 
biological events, their reduced throughput capacity alongside complementarity, in terms of 
resourcing to multiple omics simultaneously, implies a limited application in ADPs aiming to 
screen large libraries, for instance the reservoir of untapped natural products that is likely the 
next antibiotic ‘gold mine’. There is a void between phenotypic screening (high-throughput) 
and omics-centered assays (high-information), where some mechanistic and molecular 
information complements antimicrobial activity, without the laborious and extensive application 
of various omics assays. Given the novelty of the various omics technologies, we are yet to 
extract their full potential and it seems feasible that these technologies will mature to fulfill this 
gap. Alternatively, innovative technologies favoring high throughput may be developed, even 
by sacrificing molecular sensitivity to some extent. In any case, the increasing need for 
antibiotics drives the relentless and continuous research on the foreground of antibiotic 
discovery. This is likely to expand our knowledge on the biological events underlying infectious 
diseases and, hopefully, result in better therapeutics that can swing the war on infectious 
diseases back in our favor.  
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Abstract 

There are two main strategies for antibiotic discovery: target-based and phenotypic screening. 
The latter has been much more successful in delivering first-in-class antibiotics, despite the 
major bottleneck of delayed mechanism of action (MOA) identification. Although finding new 
antimicrobial compounds is a very challenging task, identifying MOA has proven equally 
challenging. MOA identification is important because it is a great facilitator of lead optimization 
and improves the chances of commercialization. Moreover, the ability to rapidly detect MOA 
could enable a shift from an activity-based discovery paradigm towards a mechanism-based 
approach. This would allow probing the grey chemical matter, an underexplored source of 
structural novelty. In this study we review techniques with throughput suitable to screen large 
libraries and sufficient sensitivity to distinguish MOA beyond the biosynthetic pathway. In 
particular, the techniques used in chemical genetics (e.g., based on overexpression and 
knockout/knockdown collections), promoter-reporter libraries (e.g., using fluorescence or 
luminescence detection), transcriptomics (e.g., using microarrays and RNA sequencing), 
proteomics (e.g., either gel-based or gel-free techniques), metabolomics (e.g., resourcing to 
nuclear magnetic resonance or mass spectrometry), bacterial cytological profiling, and 
vibrational spectroscopy (e.g. Fourier-transform infrared or Raman scattering spectroscopy) 
were discussed. Ultimately, the new and reinvigorated collection of phenotypic assays brings 
renewed hope in the discovery of a new generation of antibiotics. 
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III. 1   INTRODUCTION 

Antibiotics have significantly improved many aspects of society. From their application 
in medicine resulted an increase of life expectancy and well-being, without which even the 
simplest of medical interventions would pose life-threatening risks [1]. However, antibiotic 
discovery has stagnated at alarmingly low rates since its golden age, when most classes in 
use today were discovered. Infectious disease in general, and multidrug resistant pathogens 
in particular, are increasingly a worldwide concern, and many calls for action have been issued, 
especially to reiterate the desperate need for new drugs [2]. 

There are two main antibiotic discovery strategies, target-based and phenotypic 
screening. While the target-centric approach begins with a target whose inhibition should result 
in the desired therapeutic effect, phenotypic screening starts with a cell-based assay that 
monitors a phenotype, e.g. growth inhibition [3]. While phenotypic screening has a higher 
likelihood of identifying candidate drugs, along those that target poorly understood biological 
pathways, their molecular targets are not identified in the process and require subsequent 
efforts [4]. This results in higher rates of rediscovery, which is a key challenge in natural product 
antibiotic discovery [5], and an inability to detect low potency candidates, which can be later 
modified for enhanced therapeutic effect [6].  

Identifying the mechanism of action (MOA) is still very challenging [7]. For instance, 
penicillins MOA is still subject to debate, with recent studies suggesting a more complex 
mechanism than inhibition of cell wall synthesis [8]. As such, MOA determination is a major 
bottleneck when screening hundreds of thousands of compounds is a reasonable throughput 
of a drug discovery program, in part due to the ease in synthetizing bioactive compounds, and 
in part given the increasing availability of natural product libraries [9]. This is particularly 
important because knowledge on the exact molecular target, and the pathways it is involved 
in, facilitates lead optimization by rapidly excluding derivatives with increased activity due to 
off-target effects [10], thereby guiding medicinal chemistry programs towards improved 
chances of commercialization [11].  

Moreover, the ability to rapidly detect MOA could enable a shift from the activity-based 
discovery paradigm towards a mechanism-based approach. This would expand the chemical 
space towards the grey chemical matter, i.e., compounds that induce phenotypic modulation 
without sufficient potency to be detected in traditional screening assays. The grey chemical 
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space is an underexplored source of structural novelty that, after structural optimization, could 
yield much needed new antibiotics [12]. 

Conventional MOA studies are based on macromolecular synthesis assays, which 
measure radioactively labeled molecular precursors to ascertain the inhibition of DNA, RNA, 
protein, lipid or peptidoglycan synthesis. This implies that compounds which act on different 
steps of the same pathway cannot be distinguished, thereby missing out on potentially novel 
MOA. Additionally, all pathways are apparently inhibited by compounds which kill bacteria very 
rapidly, such as disinfectants, even though they affect specific pathways. To make matters 
worse, these assays are typically slow, laborious, low resolution, low accuracy and low 
throughput [13]. Alternatively, biochemical approaches, like affinity chromatography, can 
identify the exact biomolecule to which a compound binds [14,15], but only in the case of a 
high-affinity small molecule and a fairly abundant protein receptor [16]. Moreover, these require 
large quantities of test compound, which are not always attainable.  

Novel methods capable of probing this complex phenomena are urgently needed to 
ease the process of antibiotic discovery [17]. In this study, several applications of system-wide 
profiling techniques for MOA identification were reviewed. Particular attention was given to 
techniques with sufficient throughput to be employed in screening campaigns of large libraries, 
whose advantages and limitations were described in light of several examples. 

III. 2   CHEMICAL GENETICS 

At its core, chemical genetics map the effect of exogenous ligands across genetic 
variance [18]. When the exogenous ligand is an antibiotic candidate, the effect across a mutant 
library enlightens its MOA. Interestingly, querying the MOA of antibiotics with chemical 
genetics contributed to our comprehension of many microbial processes, such as the synthesis 
of nucleic acids, proteins and the cell wall [19]. 

III.2.1   OVEREXPRESSION COLLECTIONS 

Identifying MOA with overexpression collections involves screening mutants that, when 
exposed to a compound that targets the product of an overexpressed gene, display a resistant 
profile. In other words, if the target is overexpressed, a larger antibiotic dose is required 
compared with a wild-type strain. Additionally, because challenging these resistant collections 
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with antibiotics generates unique mechanistic fingerprints of the multilevel interactions induced, 
these assays reveal some, if not all, the participants in the network targeted by the antibiotic. 

The first published application of resistant libraries to ascertain antibiotics MOA in a 
high-throughput phenotypic screening assay was attempted by Li et al. [20], who screened a 
8,640 small molecule commercial collection for growth inhibitors of a 20,000 random mutant 
library of Escherichia coli MC1061. The plasmids in these clones were sequenced and two 
genes were identified, folA and acrB, which translate to dihydrofolate reductase and the 
(multidrug) acridine efflux pump. While the first was the target of two similar compounds, the 
latter surprisingly could efflux the remaining compounds. Given the nature of multicopy 
suppression assays, one hurdle is filtering out genes that code some drug-resistance 
mechanism from those that code the molecular target of compounds. Also, despite it being a 
high-throughput assay, the library size is a clear disadvantage for even higher throughput. 

Building on the previous study, the ASKA collection was constructed. ASKA is an 
ordered high-expression E. coli library containing (nearly) all ORFs from the K12 W3110 strain 
in pCA24N high copy number plasmids [21]. As such, both essential and non-essential genes 
can be queried in regard to overexpression. Using ASKA, Pathania et al. [22] screened 
~50,000 small molecules at a range of concentrations, which allowed a stringency-type 
analysis, whereby suppression of growth inhibition by a given mutation was evaluated along 
drug dose, therefore proving a more precise identification of the main molecular target at high 
drug doses, but also revealing other secondary targets at lower doses. 

At high-stringency (16xMIC), the targets of 5 known antibiotics (fosfomycin, 
fosmidomycin, trimethoprim, sulfamethoxazole and D-cycloserine) were clearly identified, but 
not of spectinomycin, whose target only became apparent at lower stringencies (8xMIC). More 
importantly, a novel compound was identified from the high-stringency analysis, MAC13243, 
whose target is the periplasmatic protein LolA, responsible for lipoprotein transport across the 
periplasmic region. MAC13243 represented a novel promising antibacterial, whose target and 
MOA belonged to a (then) novel class and thus warranted further investigation.  

Later studies into the degradation of MAC13243 revealed that the breakdown product 
S-(4-chlorobenzyl)isothiourea was responsible for its antibacterial activity, and this compound 
is in fact a structural analogue of S-(3,4-dichlorobezyl)isothiourea, whose ability to disrupt the 
actin-like cell shape-determining MreB protein had already been reported [23]. Because 
MAC13243 breaks down in aqueous medium, its use as a lead molecule was questioned. 
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However, its alternative use as a permeabilization agent, to potentiate large-scaffold antibiotics, 
has been suggested, although further structural optimization is likely required [24]. 

Despite the limitations of MAC13243 as a therapeutic agent, its target, LolA, is part of 
a five-protein system (LolABCDE) that is an attractive target of Gram negative pathogens. 
Since the outer membrane of Gram negative bacteria is a permeability barrier; confers greater 
structural integrity; and participates in a panoply of other roles, including the translocation of 
proteins and nutrients, adhesion and signal transduction; it is not only essential for survival, 
but also more easily accessible to drugs in comparison with cytoplasmatic targets [25]. 

III.2.2   KNOCKOUT AND KNOCKDOWN COLLECTIONS 

In contrast with overexpression libraries, the Keio collection is single-gene knockout 
library of E. coli K12 BW25113, where the kanamycin resistance cassette takes the place of 
the deleted gene [26]. Being a knockout library, only non-essential genes can be probed. 
Although not as useful for MOA identification as overexpression libraries, the Keio collection 
highlighted the potential of combinatorial therapies [27]; contributed towards the 
characterization of gene essentiality and chromosomal organization [28]; revealed the complex 
interplay of metabolic pathways elicited during nutrient stress, which elucidated gene function 
and unwrapped new antibiotic targets [29]; and illuminated mechanisms of resistance, 
including determinants of drug permeability, efflux, degradation as well as stress responses 
[30].  

Stokes et al. [31] used the Keio collection to comprehend how E. coli became 
susceptible to vancomycin, a narrow-spectrum antibiotic active against Gram positive bacteria, 
under cold stress. While this hydrophilic antibiotic is unable to pass the outer membrane of 
Gram negative bacteria, transient ‘cracks’ in the outer membrane caused by low temperatures 
allow its diffusion into the periplasm, allowing it to reach its target. 

While controlling essential gene dosage by knockout mutations is technically 
accessible in diploid eukaryotic organisms, for instance via genome-wide haploinsufficiency 
profiling, this is more challenging in prokaryotes, and early studies were limited to a low number 
of genes [32]. Probing essential genes requires a conditional knockdown, e.g., the use of 
mutants that only display a mutant phenotype in a given restrictive condition [33]. 
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The first hypersensitized microbial collection that allowed the modulation of essential 
genes used xylose-inducible antisense RNA expression in Staphylococcus aureus. Here, 245 
target-depleted strains could be tuned to control essential gene expression to obtain moderate 
growth suppression (~20%) through to the knockout phenotype. As such, comparison of a 
hypersensitized phenotype with that obtained after exposure to a compound reveals its target 
[34]. Using this collection, Phillips et al. [5] conducted a natural product screening program that 
revealed kibdelomycin, a novel type II topoisomerase inhibitor. Given its broad spectrum of 
activity, especially against Gram positive bacteria, along lack of cross-resistance, there was 
great expectation for kibdelomycin, which so far has not materialized into new drugs reaching 
the market. 

Gene downregulation with antisense RNA is not without limitations. In cases involving 
polycistronic mRNA, the entire strand may be degraded when the antisense RNA binds, 
resulting in the suppression of more genes than desired. In the cases where there are common 
motifs, undesirable gene suppression may also occur [35]. A more specific and efficient 
methodology for gene knockdown relies on Clustered Regularly Interspaced Short Palindromic 
Repeats/dCas9 (CRISPR) transcriptional regulation. Peters et al. [36] employed CRISPR to 
develop a knockdown library of Bacillus subtilis also modulated by xylose, but in this case the 
plasmids were integrated in the microbial chromosome. With this technique the MOA of 
MAC0170636 was identified, namely the inhibition of undecaprenyl pyrophosphate synthetase, 
which is essential for cell wall synthesis.  

Interestingly, some gene annotations are being revised with CRISPR. Liu et al. [37] 
characterized the function of previously ‘hypothetical’ genes of Streptococcus pneumoniae. 
However, only 73% of genes deemed essential with transposon sequencing were considered 
essential with CRIPSR knockdown. While this could be due to inadequate annotation using 
transposon sequencing, it could also be due to different growth conditions, or to insufficient 
suppression with CRISPR. Regardless, given CRISPR systems are found across a range of 
bacteria and can be easily transferred to other microorganisms, constructing similar 
downregulated libraries could be a promising step forward towards novel antibiotics and better 
therapeutics. 
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III. 3   PROMOTER-REPORTER LIBRARIES 

Promoter-reporter strains are used to build a map of how antibiotics affect the activation 
of a promoter, which controls the expression of one or more genes. Comparison with baseline 
transcriptional levels reveals the differential effects induced by antibiotics, and doing so across 
multiple strains in a library maps out the global response, which can be used as a MOA profile 
[9], as well as to query cellular pathways and unravel off-target effects [38]. Because a 
fluorescent or luminescent signal is produced with the transcription of the promotor-reporter, 
this technique offers adequate temporal resolution to study the effect of antibiotic exposure 
through a time course [19].  

III.3.1   FLUORESCENCE-BASED REPORTERS 

Zaslaver et al. [39] developed an E. coli K12 MG1655 library were the green fluorescent 
protein (GFP) gene was fused to ~1,820 different promoter regions, which is over 75% of 
known promoters, in low copy-number plasmids pUA66. This allowed highly accurate near- 
genome-wide measurements of promoter activity. Nonetheless, some transcriptional activity 
outside the individual promoter was occasionally detected, given other post-transcriptional 
regulation or intergenic regions with multiple promoters. This limitation of promoter-reporter 
assays is independent of the reporter chosen. Even so, this library revealed the mechanism 
ruling suppression antagonism of DNA and protein synthesis inhibitors, where DNA stress 
responses result in nonoptimal regulation of ribosomal genes, distorting the DNA-to-protein 
ratio, and suppressing protein synthesis inhibition [40].  

More recently, promoter-reporter collections have been used to characterize stress 
responses elicited by bioactive compounds. To that end, Elad et al. [38] constructed a panel 
of 15 E. coli strains with the luxCDABE plasmid, to which promoters elicited during particular 
stresses were inserted. These stresses include DNA damage, protein misfolding, inhibition of 
fatty acid synthesis, increase of reactive oxygen species and the presence of metals. Of the 
420 FDA-approved drugs tested, 89 elicited a response, even though some were not directed 
at prokaryotes. Interestingly, these responses were clustered in accordance with drug class, 
and often predicted their toxicity. In line with this, the collection produced by Zaslaver et al. 
was challenged with 9 antibiotics, which revealed the cellular pathway affected, off-target 
effects, and to some extent the MOA. However, comparing results obtained with luminescent 
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and fluorescent reporters, some discrepancies were found for one compound, which highlights 
the importance of validating these label-based assays with multiple approaches. 

III.3.2   LUMINESCENCE-BASED REPORTERS 

In comparison with fluorescence-based assays, luminescence is typically preferred for 
screening purposes given bacteria’s considerable autofluorescence, which adds background 
noise. As such, luciferase reporters as luxCDABE are preferred given their low background 
noise, capacity to screen small colonies on solid media, with high reproducibility, without the 
need for substrate addition for continuous signal. Nonetheless, luciferase synthesis requires 
ATP and is affected by the redox potential, as such some false positives occasionally occur. 

Baptist et al. [41] transformed the Keio collection with the promoter of the acs gene and 
of the sdh gene within luxCDABE plasmids, which carry the ampicillin resistance bla gene. 
Moreover, a second fluorescence-based reporter assay was used to exclude non-coherent 
mutants. A large number of mutants displayed altered transcription of acs, which is at the end 
of a well-described complex regulatory network, indicating that the genetic regulatory network 
of E. coli is densely connected, and that it is strongly linked with metabolism. Although not 
directly relevant to identifying the target of antibiotics, this study provides insight into the 
complexity of genetic interactions governing phenotype, which illustrates why the resolution of 
promoter-reporter assays often impairs their application for MOA identification. 

Engelberg et al. [42] developed a Pseudomonas aeruginosa reporter strain deprived of 
5 efflux pumps and an outer membrane protein, to which a mini-Tn7-based lux reporter was 
integrated in its genome. This strain was used to screen extracts of 529 fungal isolates, of 
which 12 inhibited bacterial growth by at least 80%, and were further investigated. Using an 
efflux-deficient strain implies that a higher compound quantity enters and remains within the 
bacterial cell, which unveils more compounds with inhibitory effect by postponing the efflux 
issue to a later stage of the drug discovery process. Second, the assay is considerably faster 
(~3h) than typical absorbance-based assays (~18-24h), which improves throughput. 

III.3.3   ALTERNATIVE ASSAYS 

Given that the !-lactamase gene of Citrobacter freundii is induced by cell wall inhibitors 
in general, and not exclusively !-lactams, Sun et al. [43] developed an indirect induction 
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system for pathway specific screening by cloning its ampR-ampC locus into E. coli. Since the 

!-lactamase concentration determines the rate of nitrocefin hydrolysis, the resulting product 

can be quantified by measuring the absorbance at 490nm, which reveals the extent of cell wall 
inhibition. Using said reporter, Nayar et al. [44] identified a sulfonyl piperazine and a pyrazole 

that target LpxH, a lipopolysaccharide anchor, as well as LolC and LolE, part of the LolCDE 
transporter.  

Another drug that targets the LolCDE transporter, compound G0507, was recently 
identified by Nickerson et al. [25] using an E. coli strain transformed with a plasmid containing 

the σ! stress response promoter rpoHP3 followed by the !-galactosidase gene, lacZ. This 
reporter is activated not only by peptidoglycan damage, but also inhibitors of the outer 
membrane, lipoprotein and lipopolysaccharide biosynthesis, along with inhibitors of transport 

mechanisms as AmpC, of cell wall biogenesis, polycationic compounds and aminoglycosides. 
Although G0507 has been used to probe lipoprotein trafficking mechanisms, it had reduced 

activity, for which structural modifications were applied to convert it into a promising anti-
infective drug. 

Lastly, bacteriophages have been used as reporters. While still in the proof-of-concept 
stage, Mido et al. [45] used the MS2 phage-MAGPIX reporter to detect the presence of live E. 

coli cells. With a burst time of 30 minutes and 5,000-10,000 phages released per infected cell, 
a sensitivity of approximately 100 cells/mL was achieved in as little as 3h. Because the 

fluorescent signal comes from the SAPE probe, which binds to the antibody that recognizes 

the phage, this sandwich type immunoassay detection is considered label-free and can be 
adapted to a variety of bacteria. 

III. 4   TRANSCRIPTOMICS 

Transcripts were initially characterized with northern blotting or polymerase chain 
reaction, but these assays were mostly limited to a few transcripts. The development of 

microarrays in the 1990s enabled the quantitative detection of most known transcripts of a 
strain in a single assay [46]. In practice, microarrays reveal the hybridization between a 

oligonucleotides of reference strain and its labeled complementary DNA obtained from an 
experimental strain, e.g., one that has been exposed to an antibiotic. As such, microarrays are 

limited to strains whose genome is known and available when developing the microarray. 
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Alternative hybridization-based techniques include high-density bead arrays, electronic 
microarrays or suspension bead arrays, which have been revised elsewhere [47].  

III.4.1   HYBRIDIZATION ASSAYS 

Boshoff et al. [48] used whole-genome microarrays to measure the effect of various 
drugs, along with growth-inhibitory conditions, on Mycobacterium tuberculosis. Transcripts with 
at least a 3-fold change were analyzed and clustered according to their known regulatory 
network. These were coherent with the known MOA of inhibitors of cell-wall synthesis, protein 
synthesis, transcription and DNA gyrase. Moreover, these clusters also suggested the MOA 
of uncharacterized compounds, including a natural product extract in either its crude or purified 
form, whose MOA was later identified by reporter strains and biochemical assays.  

Similarly, Liang et al. [49] explored the transcriptional response of M. tuberculosis to 
linezolid, which binds to the 50S ribosomal subunit and inhibits protein synthesis. In total, 729 
genes were differentially expressed, including genes involved in protein synthesis, sulfite 
metabolism, cell-wall synthesis, among others. Surprisingly, genes closely related to linezolids’ 
target were down-regulated. This reveals the complexity of transcriptional responses to 
antibiotics, as well as the challenge of pinpointing the biomolecular target of the drug. For 
example, Bonn et al. [50] identified a similar number of genes with differential expression, 
however the genes closely related to linezolids’ target were found to be up-regulated.  

Although hybridization assays provide reasonable throughput at a relatively low cost, 
issues regarding reliability and reproducibility are well known. For instance, only high copy 
transcripts are easily detected, outputs often have high background noise due to cross-
hybridization, signal saturation is common, and several issues arise given that probes are 
based on predicted open reading frames of sequenced genomes [51].  

III.4.2   THE UPRISING OF NEXT-GENERATION SEQUENCING 

Many of the disadvantages of microarrays can be overcome with sequencing strategies. 
Initially reliant on the Sanger method, and later variants thereof, sequencing techniques were 
limited by high cost, inability to map short reads, and incomplete transcript sequencing [52]. 
Next-generation sequencing allowed the analysis of larger sequence numbers, with higher 
reproducibility, from strains whose genome need not be sequenced. Moreover, RNA-seq has 
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little to no background noise and virtually no saturation [52]. Recently the cost of RNA-seq has 
been steadily decreasing into reasonable levels, which explains its increasingly widespread 
application [53]. 

Many transcriptomic studies in the RNA-seq era focus on the particular transcriptional 
response of a single compound [54]. By design, these studies were descriptive, rather than 
predictive, of MOA. Nevertheless, these have consolidated the correlation between MOA and 
transcriptional response, thereby established transcriptomics as an essential tool in antibiotic 
discovery. Because many of said studies have been revised elsewhere [55,56], the focus of 
this section shifts to RNA-seq studies that compare different MOA with a predictive approach.  

One of the advantages of RNA-seq is the ability to probe non-coding RNA. For instance, 
Howden et al. [57] explored the role of both the mRNA and sRNA of a multidrug-resistant S. 
aureus after exposure to four last-resort antibiotics. Interestingly, mRNA profiles more closely 
reflected growth conditions, and the strain analyzed, than antibiotic exposure, except for the 
linezolid-induced transcriptional response, where a clear profile emerged. On the other hand, 
39 differently expressed sRNAs confirmed with northern blotting provided better MOA profiles. 
Moreover, it is interesting to note that many antisense sRNAs associated with protein synthesis 
genes were down-regulated independently of the drug tested.  

Similarly, Molina-Santiago et al. [58] explored the transcriptional response induced by 
8 antibiotics on Pseudomonas putida, which was chosen as a model organism given its 
resistance to high concentrations of various antibiotics. In total, 5756 mRNAs, 58 tRNAs and 
154 sRNAs were identified. Two-fold changes in mRNA levels resulted in two clusters, one 
with kanamycin, ampicillin and chloramphenicol, all of which had similar profiles to the control 
samples. The second cluster presented more distinct transcriptional responses regarding the 
control. Using sRNA profiles, only ampicillin and chloramphenicol clustered together with the 
controls, suggesting sRNA profiles are better suited for MOA classification.  

Sequencing-based transcriptomics also allows to study the pathogen within the host, 
which reveals microbial gene expression during infection. For instance, the adaptation of 
Mycobacterium inside macrophages as disease progresses, but also the efficacy of treatment 
in both animal models and human patients, has been evaluated [56]. Pathogens in vivo and in 
situ present lower variation of gene expression, as well as up-regulated genes regarding SOS 
stress response, alginate biosynthesis and efflux pumps, among others [59]. In that regard, in 
vitro transcriptional profiles might not have a direct relationship to in situ and in vivo profiles, 
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thus this technique could open the door to new research that might eventually yield better 
therapeutics more suited to the in vivo biological phenomena. 

III. 5   PROTEOMICS 

The downstream products of transcripts offer an alternative view on the dynamics of 
the effect of antibiotics. In particular, there are post-transcriptional mechanisms whose role is 
often central to understanding which genes actually yield proteins. Moreover, proteins are often 
the primary targets of antibiotics, so the application of proteomics for MOA identification is well-
justified, and as a technique, proteomics is increasingly more prominent in drug discovery [60].  

III.5.1   GEL-BASED ASSAYS 

Early proteomics studies began with gel-based methods, e.g., 2D gel electrophoresis, 
which profiled the protein constituents of a sample. Comparison of these profiles with the use 
of fluorophores allowed multiplexing, and as discussed so far, this revealed differential 
expression [61]. To identify proteins within a certain spot on the gel, digestion followed by mass 
spectrometry (MS) allowed database querying. In line with this, Wang et al. [62] explored the 
MOA of juglone, a plant-derived 1,4-naphthoquinone, against S. aureus. Of the 21 differentially 
expressed spots, 13 were identified by matrix assisted laser desorption ionization-time of 
flight/time of flight MS. These included proteins that participate in the tricarboxylic acid cycle, 
DNA and RNA synthesis and protein synthesis. However, other studies into the MOA of juglone 
against other microorganisms have revealed considerably different proteomic responses, and 
juglones’ biomolecular target remains elusive.  

Likewise, Bandow et al. [63] compiled a proteomic profile database of B. subtilis 
response to 30 antibiotics, most of which have been well characterized regarding their MOA. 
While each antibiotic presented a complex proteomic profile, with some overlap across similar 
compounds, a sufficiently unique profile was obtained for each antibiotic. For example, most 
disrupters of translation accuracy resulted in up-regulation of heat shock proteins, which are 
induced by the accumulation of misfolded proteins. In the end, 122 proteins with at least a 2-
fold change in regard to the control samples provided sufficiently distinct profiles to identify the 
MOA of BAY 50-2369, a novel compound that acts at the peptidyltransferase step of protein 
synthesis. 
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The identification of the MOA of BAY 50-2369 as a translation inhibitor using 
proteomics was straightforward in the sense that its proteomic response was similar to other 
known antibiotics. However, in the case of acyldepsipeptides, their novel MOA could not be 
extrapolated. Nonetheless, its proteomic profile identified the up-regulation of ClpP and ClpC, 
two protease subunits, along with down-regulation of the GroEL chaperon and the TU 
elongation factor, which staged an initial MOA hypothesis. From here, biochemical and 
chemical genetics assays identified ClpP as the target, which was confirmed with 
crystallography. Interestingly, acyldepsipeptides don’t inhibit ClpP, but release it from ATPase 
regulation so intact proteins enter its proteolytic chamber, resulting in indiscriminate 
degradation and cell death [64].  

Similarly, Wenzel et al. [65] explored the proteomic response of B. subtilis to lantibiotics. 
More specifically, mersacidin, gallidermin and nisin were investigated given these bind to lipid 
II, thereby inhibiting cell wall synthesis. However, mersacidin does not integrate with the 
cytoplasmatic membrane, while nisin fully integrates and induces the formation of large pores, 
which impairs membrane potential and leads to nutrient and ion leakage. In between these two 
ends of the spectrum, gallidermin integrates the membrane, but only induces pore formation 
in some bacteria. These MOA correlated with proteomic profiles, and when compared with the 
profiles of other antibiotics that target the bacterial envelope compiled by Bandow et al., YtrE, 
PspA and NadE, along with, YceC were revealed as marker proteins of cell wall biosynthesis 
inhibition, membrane stress and general cell envelope stress respectively. Since these marker 
proteins correlate to the specific steps inhibited, they are indicative of a narrow range of 
possible molecular targets, and thus enlighten the MOA. 

More recently, Maaß et al. [66] used proteomic profiling of Clostridium difficile to 
characterize the MOA of metronidazole, vancomycin and fidaxomicin. Here, 425 protein 
markers constructed profiles specific to the individual response to each antibiotic, with very 
little overlap across different antibiotics. Even so, metronidazole affected proteins involved in 
protein biosynthesis and degradation, DNA replication, recombination and repair; fidaxomicin 
altered the expression of proteins with cell envelope functions, cell motility, transcription and 
amino acid synthesis; while vancomycin affected a greater diversity of pathways. Although 
these antibiotics act on different pathways, which validates proteomics as a high-value tool for 
MOA identification, a higher number of antibiotics should be studied to consolidate the 
uniqueness of these proteomic profiles. Moreover, testing antibiotics with very similar MOA 
would allow to test the sensitivity of these profiles in regard to the biomolecular target.  
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III.5.2   GEL-FREE METHODS 

Gel-based methods are limited regarding throughput and require visual comparison 
prior to peptide mass fingerprinting. This is a severe limitation when constructing large libraries 
of proteomic profiles of MOA [67]. Alternatively, one of the preferred gel-free proteomics 
assays, isobaric tags for relative and absolute quantification (iTRAQ), relies on isobaric peptide 
labelling for chromatographic separation and their quantification using MS. Other gel-free 
techniques include stable isotope labelling or selected reaction monitoring [68]. Moreover, 
enrichment techniques such as antibodies, ionic interaction or specific enzymes allow the 
evaluation of post-translational modifications relevant in the infectious process [69].  

One of the advantages of iTRAQ is its multiplexing capabilities, whereby commercially 
available reagents allows testing of 2-8 samples in a single liquid chromatography separation 
and MS analysis [70]. In that sense, Ma et al. [71] quantified the proteomic expression of S. 

aureus to daptomycin. In total, 34 proteins were found to be up-regulated, while 17 proteins 
were down-regulated, of the 872 differentially expressed proteins. Ultimately, the MOA of 
daptomycin is different from other known antibiotics, and although its exact target remains 
elusive, two proteins associated with the metabolism of nucleotide acid were validated as a 
universal response to daptomycin across S. aureus strains. Moreover, evidence is building 
towards cell membrane disruption with sufficient damage to impair its integrity, along with 
chromosomal aggregation, which results in DNA release and cell death.  

Although gel-free proteomics has not been extensively applied in the context of MOA 
characterization of large antibiotic libraries, it has elucidated protein function and cellular 
interactions. Larger-scale studies, with comparable procedures, are still required before the 
felt impact of proteomics matches that of previously discussed techniques. In addition to MOA 
characterization, proteomics has been used to investigate many different determinants of 
resistance and infection [72], as well as the formation and dynamics of biofilms [73]. Here, the 
biological processes are evaluated in vivo, as discussed for transcriptomics. One example of 
such is the iTRAQ study on the cell membrane protein expression of P. aeruginosa in cystic 
fibrosis isolates, which have revealed the host-specific microevolution of this pathogen [74]. 
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III. 6   METABOLOMICS 

The last stage of the ‘omics’ cascade focusses on the metabolites present in a 
biological system. Metabolites are small molecules that belong to different biomolecular 
classes, including organic acids, amino acids, fatty acids, sugars, sugar alcohols, steroids, 
nucleic acids, among others [61]. As such, metabolomics is closer a closer representation of 
phenotype, thus has enormous potential to enlighten the complete dynamics of bacterial 
physiology in response to antibiotic exposure [75]. Although the metabolome complements the 
transcriptome and proteome, it reflects cellular activities that are regulated by a wider range of 
mechanisms. In other words, the metabolome reflects physiological states in a amplified state 
in comparison with transcriptomics and proteomics [76]. 

There are two dominant techniques in metabolomics: Nuclear Magnetic Resonance 
(NMR) and MS coupled with a chromatographic step. While at first both had a similar scientific 
output, MS has recently become the preferred approach. Even though the last couple of years 
have seen an increase in NMR metabolomics databases, both in quantity and quality, when 
uncatalogued or unknown metabolites need identification, MS is still the go-to technique [77]. 
Nonetheless, NMR is able to quantify abundant metabolites, and does not require laborious 
sample preparation, fractioning procedures, nor derivatization, and can analyze difficult to 
ionize compounds. Moreover, stable isotope labeled NMR can probe the dynamics of 
metabolite transformation in vivo, as the technique is non-destructive [78].  

Regardless of the technique, metabolomics can be targeted or untargeted, the 
difference being that targeted metabolomics aims to quantify and identify a predetermined 
subset of metabolites. On the other hand, untargeted metabolomics describes the complete 
metabolome, then identifies the key metabolites regarding the observed phenotype. In theory, 
untargeted metabolomics is more suited for MOA identification, mostly because no a. priori 
knowledge is required. In practice, a targeted metabolomics protocol can equally predict MOA, 
as such this distinction was not discussed in the following study reviews.  

III.6.1   NUCLEAR MAGNETIC RESONANCE 

Kozlowska et al. [79] employed 1H high-resolution magic angle spinning NMR 
spectroscopy to identify the lowest concentration of antimicrobial peptides that induced a 
detectable metabolic response in E. coli. Although this study did not aim to discriminate 
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different MOA, its rational was to detect antibiotic-specific responses but also avoid large scale 
death cell and its associated non-specific response. The authors tested four structurally similar, 
and physically related, cationic amphipathic antimicrobial peptides with different degrees of 
activity. Unique metabolic responses for each compound at sub-inhibitory concentrations were 
found, and these were not coherent with the observed minimum inhibitory concentration (MIC) 
and recovery assays, which suggest some sort of phenomena related to the ratio between 
antibiotic and bacteria and goes to show the gap between observable phenotype and 
underlying biological mechanisms. 

Hoerr et al. [80] used NMR spectroscopy to study both the intracellular fingerprint and 
extracellular footprint of E. coli when exposed to 9 antibiotics from 5 classes, which inhibited 
protein synthesis, nucleic acid synthesis or cell wall biosynthesis. While antibiotics acting on 
intracellular targets consistently presented fingerprints coherent with class-action, only 
antibiotics acting on the cell wall had a distinct metabolic footprint, which has been associated 
to the loss of membrane integrity and subsequent metabolite leakage. As such, metabolic 
fingerprinting is a more relevant approach to explore antibiotic MOA, despite the fact that it is 
more laborious. More importantly, a descriptive model built from the metabolic profiling data 
was used to successfully predict the MOA of antibiotics not used in the training dataset. Even 
so, further studies with more MOA diversity, as well as larger libraries, were deemed necessary. 

Interestingly, Birkenstock et al. [7] conducted a exometabolome analysis using 1H NMR 
spectroscopy, which determined the target of triphenulbismuthdichloride as pyruvate 
dehydrogenase in S. aureus. This analysis revealed that pyruvate concentrations strongly 
increase with exposure to triphenulbismuthdichloride, along with detectable suppressive 
effects on glucose and amino acid consumption, as well as reduced accumulation of acetate. 
Additionally, acetolactate, acetoine, butanediole, lactate, formate and ethanol also 
accumulated, which indicated that accumulated pyruvate was directed to alternative pathways. 
As such, this antibiotic was suspected of interfering with pyruvate catabolism, which was the 
basis for further enzymatic analysis to pinpoint the exact target. 

III.6.2   MASS SPECTROMETRY 

Regarding MS-based metabolomics, two separation techniques are typically employed 
prior to mass spectra acquisition, Gas Chromatography (GC) and Liquid Chromatography (LC), 
although others have been described. Small molecules in general, and metabolites in particular, 
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are subject to high temperatures in the preparation and analysis with GC-MS. In the case of 
blood plasma, this alters the molecular peak pattern by up to 40%, including the formation of 
degradation and transformation products [81]. Because of this, and given LC achieves better 
separation, the focus of this section was placed on LC-MS. 

Schelli, Zhong & Zhu [82] compared the metabolic response of a methicillin-resistant 
and susceptible strain of S. aureus to sub-inhibitory concentrations of ampicillin, kanamycin 
and norfloxacin, which belong to the classes of !-lactams, aminoglycosides and quinolones, 
respectively. Interestingly, minor differences were induced in the sensitive strain by kanamycin 
and norfloxacin, but marked differences were induced by ampicillin. A similar pattern was 
observed on the resistant strain, however these differences in metabolic profile were more 
prominent across the three antibiotics with the susceptible strain. In total, 109 and 107 
metabolites were significantly altered by antibiotic exposure for the sensitive and resistant 
strains, respectively. Moreover, Principal Component Analysis (PCA) score plots of the 
metabolic response showed moderately good separation according to class. On the downside, 
dispersion of untreated samples with either strain highlighted a critical limitation of MS-based 
metabolomics, namely its high sensitivity often masks the MOA-related signal. 

Zampieri et al. [17] probed the initial response (1 minute to 1 hour) of E. coli to 9 
antibiotics and hydrogen peroxide. Here, 324 putatively annotated metabolites were significant 
altered in comparison with untreated samples, out of 784 detected. In general, antibiotic 
exposure had an extensive effect on metabolism. Not only did antibiotic exposure alter a large 
number of metabolites, but 37 of these displayed similar patterns after exposure to at least two 
compounds with considerably different MOA. Even so, because not all significantly altered 
metabolites displayed the same pattern across all antibiotics, as well as the fact that all 
samples exposed to antibiotic with similar MOA had at least one exclusive responsive 
metabolite, except for amoxicillin and ampicillin, the authors highlight the suitability of MS-
based metabolomics to unravel the MOA of antibiotics. 

One limitation of metabolomics techniques is its high sensitivity to subtle between-
sample variations. For instance, some antibiotics are better dissolved in particular solvents, 
and this often masks the MOA-related signal that is the objective of these studies [80]. Another 
limitation regards peak annotation using databases of known metabolites [83]. Also, 
metabolomics is still limited regarding throughput, although a 10-100x gain can be achieved 
regarding proteomics, which requires peptide fragmentation and more demanding acquisition 
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conditions [17]. Although chromatography-free MS-based metabolomics can achieve a 
throughput of 10,000 samples/day with a single flow injection electrospray equipment, cycle 
time was expected to be reduced to anywhere between 4-8 seconds in the near future [84].  

In that regard, Zampieri et al. [85] optimized a chromatography-free protocol for rapid 
metabolome profiling, relying on microtiter plates, thus suitable for automation and increased 
throughput. Using direct flow injection high-resolution MS, MOA profiles of 62 reference 
compounds, where gathered with Mycobacterium smegmatis. These served to extrapolate the 
MOA of 212 compounds of a GlaxoSmithKline antibacterial library, a few of which were 
experimentally validated on M. tuberculosis. Despite the scale of this study, only 8% of said 
library targeted unconventional cellular processes, e.g., those involving the trehalose and lipid 
metabolism, an indication of the challenge that is to discover novel MOA. Importantly, MS-
metabolomics identified a large range of MOA, some of which putative, even in the absence 
of growth inhibition. However, discerning drug-target effects from indirect metabolic 
adaptations is difficult and requires further investigation, for instance, with transcriptomics, 
chemical genetics, or biochemical assays.  

III. 7   BACTERIAL CYTOLOGICAL PROFILING 

The evolution of technologies such as electron and fluorescence microscopy has been 
critical towards understanding various microbial processes, including those between 
pathogens and their host. Importantly, the simultaneous acquisition of multiple parameters 
from microscopy images enabled profiling the MOA of antibiotics towards their prediction [86]. 
First introduced by Giuliano et al. [87], High-Content Screening (HCS) was proposed as a 
technique for drug discovery that combined high-throughput screening with a tabletop 
instrument capable of reading up to four channels of fluorescence at sub-cellular resolution. 
HCS was originally demonstrated with the drug-induced transport of GFP from the cytoplasm 
to the nucleus of human tumor cells. Several hurdles had to be cleared for HCS to be applied 
to prokaryotes. For instance, bacterial cells lack the organelles for which fluorescent labels 
were developed, and the high-throughput image-based screening technologies were not 
suitable at the magnifications required to analyze bacterial cells. In addition to this, because of 
their smaller size, fluorescent signals were generally weaker, which complicated subsequent 
analysis. Nonetheless, the rational was that antibiotic-induced morphological changes would 
be indicative of the MOA of antibiotics [6]. 
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One of the first attempts at HCS of bacteria was described by Peach et al. [88], who 
used epifluorescence microscopy to build cytological profiles of intertwined monolayers of 
Vibrio cholerae challenged with a set of 58 FDA-approved antibiotics with known MOA. Using 
feature segmentation and extraction, key structural metrics composed cytological profiles, from 
which the MOA of a natural product library was estimated. These profiles identified the three 
major pathways affected by antibiotics, namely protein, DNA and cell wall synthesis. Although 
cytological profiles were unsuitable to pinpoint the exact molecular target, these were 
beneficial in large-scale screening campaigns as a triage step applicable at early stages of 
discovery programs, thereby minimizing and guiding subsequent testing [89]. 

Similarly, and nearly simultaneously, Nonejuie et al. coined this technique as Bacterial 
Cytological Profiling (BCP), and used it to ascertain the MOA of 41 antibiotics, of 26 structural 
classes, on E. coli [13]. Firstly, the profiles induced by inhibitors of transcription, translation, 
DNA replication, lipid and peptidoglycan synthesis were gathered, and these presented 
considerable differences that served to distinguish among them. Then, cytological profiles 
induced by antibiotic of different classes, but inhibiting the same pathway, were clustered. 
Namely, three clusters of antibiotics were found for protein synthesis inhibitors: those that 
completely block elongation, those that promote mistranslation and alter membrane 
permeability, and those which result in premature termination. Therefore, cytological profiling 
seemed suitable to discriminate the effect of compounds beyond protein synthesis inhibition. 
A similar result was found for the remaining major pathways targeted, albeit MOA could not be 
resolved in finer detail. 

Although there had been previous studies applying fluorescence microscopy to reveal 
the biological effects of antibiotics [90], the notion of comparing cytological profiles to provide 
insight into the MOA of antibiotics was first reported by Lamsa et al. [91]. But it was the work 
of Peach et al. and Nonejuie et al. who consolidated BCP as a primary screening technique 
for antibiotic discovery from large libraries, and for tangential objectives likewise, such as 
susceptibility testing [92].  

Most importantly, BCP has been adopted by the ‘big pharma’. For instance, McLoed et 
al. [93] used BCP to further validate the suspected MOA of a promising compound identified 
after a high-throughput phenotypic screen of ~1.2 million compounds of the AstraZeneca 
compound collection against E. coli. An alternative use of BCP was described by Zoffman et 
al. [12], who aimed to identify the lowest concentration of antibiotics that induced significant 



High-throughput screening of antibiotic mechanism of action  

 65 

changes to bacterial phenotype. Because phenotypic changes were detected under the MIC, 
this approach effectively expanded the ‘screenable’ space of the compound library to include 
the grey chemical matter, which is characterized by limited activity that could be improved with 
medicinal chemistry efforts, and eventually reach the clinic.  

III. 8   VIBRATIONAL SPECTROSCOPY 

Vibrational spectroscopy (VS) is based on chemical bonds having a unique vibrational 
energy. Thus, a samples spectrum reflects the vibrational modes of major cellular 
biomolecules, such as proteins, carbohydrates, lipids or nucleic acids. This provides a 
sensitive and complete metabolic fingerprint, which can be obtained using simple, rapid, 
reagent-less and label-free procedures [94]. Within VS, two techniques hold great potential: 
Raman Scattering (RS) spectroscopy (RSS) and Fourier-Transform Infrared (FTIR) 
spectroscopy (FTIRS). FTIRS measures the vibrational modes of molecular bonds that result 
from dipole moment changes, i.e., charge differences in the electric field of atoms. RSS probes 
electric polarizability changes, so it is often complementary to FTIRS. While these are far from 
generating comprehensive metabolite-level data on the metabolome, the information provided 
is sufficiently revealing of the metabolic networks involved to be applied for metabolic 
fingerprinting [76], and ultimately MOA-centric studies. 

III.8.1   RAMAN SCATTERING SPECTROSCOPY 

López-Díez et al. [95] investigated the effect of amikacin, an aminoglycoside antibiotic, 
on P. aeruginosa using UV resonance RSS, which is particularly suitable to probe nucleic acids 
and aromatic amino acids. Qualitative and quantitative multivariate analysis on the 
concentration-dependent effect of amikacin revealed that, as the concentration increased, 
there was a shift from protein-associated bands towards nucleic acid peaks. This finding is 
coherent with the MOA of amikacin, which binds to ribosomal RNA, resulting in the 
misincorporation of amino acids and therefore inhibition of translation. As protein synthesis is 
repressed, there is an accumulation of nucleic acids and reduction of proteins in the cell. 

Similarly, Athamneh et al. [96] employed RSS to evaluate the antibiotic response of E. 
coli to 15 antibiotics of 5 classes. Firstly, the objective was to discriminate each antibiotics’ 
effect using a PCA followed by a linear discriminant analysis, which achieved an accuracy of 
83.6%. Then, some antibiotics were held out from the model building and the analysis was 
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repeated, yielding a less impressive accuracy of 48%. While this study is a more robust proof-
of-concept than the previous, given a more comprehensive set of antibiotics and their MOA 
were considered, the question whether a truly novel MOA could be predicted remains. 

On a slightly different note, Liu et al. [97] explored surface-enhanced RSS, which is 
particularly adequate to study low-abundance molecules, towards the susceptibility testing of 
both E. coli and S. aureus. While this study was not aimed at ascertaining the MOA, several 
RS spectra alterations were coherent with the MOA of antibiotics. Although this issue was not 
fully considered, it suggested the possibility of MOA identification with this technique.  

A similar conclusion was reached by Teng et al. [98], who explored single-cell RSS to 
differentiate the E. coli stress response to ethanol, ampicillin, kanamycin, n-butanol and heavy 
metals. Here, RS bands were related with distinct stress responses, and more importantly with 
the mechanism of the stressor. Using a combination of RSS and transcriptomics, Germond et 
al. [99] predicted the acquired resistance mechanisms of 10 laboratory-evolved strains E. coli, 
even in the absence of antibiotics. Interestingly, a linear relationship was found between 
resistance mechanism-associated bands and the expression levels of the genes known to 
grant resistance to the action of antibiotics.  

III.8.2   FOURIER-TRANSFORM INFRARED SPECTROSCOPY 

Nguyen et al. [100] explored FTIRS in combination with RSS to individually compare 
E. coli control samples with those exposed to ampicillin, cefotaxime, tetracycline and 
ciprofloxacin. Interestingly, both FTIRS and RSS distinguished the control samples at different 
time-points (3, 6, 8 and 24h), with RSS revealing more bands indicative of growth phase. 
Regarding the antibiotic-exposed samples, altered bands detected with FTIRS include those 
associated with carbohydrates and proteins, while those detected with RSS were associated 
with nucleic acids and phenylalanine. Unfortunately, a simultaneous comparison of all 
antibiotics was not presented, so evaluating the ability of either FTIRS or RSS to ascertain 
MOA is challenging. Even so, it is interesting to note that the standard deviation of technical 
replicates was higher with RSS than with FTIRS.  

Huleihel, Pavlov & Erukhimovitch [101] used FTIRS to differentiate the effect of caffeic 
acid phenethyl ester, a natural honeybee product with potent antimicrobial activity, and 
ampicillin, on 9 Gram negative and 8 Gram positive bacteria. The effect of this compound was 
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remarkably different on Gram negative and Gram positive bacteria, which could be due to its 
biological effect. An increase of the bands associated with proteins and sugars, along with a 
major reduction of the band associated with nucleic acids, was observed in Gram positive 
bacteria. Similarly, an increase of the band associated with sugar content, along a decrease 
of the protein-associated band, was detected in Gram negative microbes. 

FTIRS has been underexplored for MOA classification, but a few examples with 
tangential objectives can be brought to the discussion. Moen et al. [102] compared the global 
transcriptomic profile and FTIR spectra of E. coli when challenged with 10 adverse conditions. 
Although 40% of the 4279 genes investigated had differential expression, no correlation 
between the transcriptional profile and the biomolecular profile obtained with FTIRS was found. 
Nonetheless, a PCA on the spectral regions associated with fatty acids, proteins and 
carbohydrates revealed stress induced sample separation. Similarly, Corte et al. [103] 
developed a FTIRS toxicity assay with Saccharomyces cerevisiae, for which various spectral 
stress indexes were developed. While their study had an ecotoxicology focus, the stress 
response to ethanol, sodium hypochlorite, sodium chloride and sulfur dioxide at low 
concentrations and after a short exposure was clearly captured on the FTIR spectra. 

Given FTIR spectroscopy has been underexplored but holds great potential, we 
dwelled into its application towards MOA identification. Firstly, we applied a macro-cultivation 
assay, from which it became clear that metabolic fingerprints reflect the MOA of antibiotics 
[104]. We then refined our assay into a high-throughput micro-cultivation protocol, from which 
we successfully predicted the MOA of antibiotics at the level of the major biosynthetic pathway, 
class and individual antibiotics. Moreover, MOA was accurately predicted, at all levels, when 
models were trained with similar samples, to simulate cases of rediscovery, and when models 
were trained without similar samples, to simulate novelty. Our assay seems to be suitable to 
probe the grey chemical matter, as when the dose-response of MOA prediction was 
determined, an average growth inhibition of 15% yielded 70% accuracy at MOA prediction. 
Lastly, using spectra that were obtained from normalized samples regarding biomass, we were 
able to predict growth inhibition, which suggested that metabolic fingerprints obtained with 
FTIR spectra have intrinsic patterns that reflect growth inhibition beyond cell density, and 
opened the door to a single-step assay that simultaneously predicts MOA and potency [105]. 
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III. 9   CONCLUDING REMARKS 

Throughout this review, the application of various techniques to MOA identification and 
characterization have been described. Given MOA identification is a major bottleneck of the 
phenotypic screening approach, and that phenotypic screening has been the most successful 
in delivering first-in-class antibiotics, techniques for MOA identification are increasingly 
important. The focus of this review was on techniques capable of both sufficient throughput to 
be employed in screening campaigns of large libraries, and sufficient sensitivity to accurately 
distinguish antibiotics MOA. Additionally, given an increasing appreciation that antibiotics elicit 
system-wide responses, emphasis was put on techniques that output a holistic MOA profile. 

While mutants of overexpression or knockdown/knockout libraries evaluate a gene at 
a time, a single reporter strain probes the genes under the regulation of a promoter. Promoter-
reporter systems share some advantages with mutant libraries, but also some disadvantages. 
While the readout is also simple and can be associated with a cluster of genes, collections 
comprise a large number of reporter strains (e.g., >1,500), crippling the throughput of this 
technique. Some strategies attempted to reduce the number of strains to a minimum while 
obtaining relevant profiles. However, additional disadvantages include the background noise 
of fluorescent labels, or an inability to probe post-transcriptional events, which results in a 
biological gap between gene transcription and phenotype that this technique does not cover. 

An alternative to reporters of gene transcription is to probe the transcriptome. The 
advantage is that transcriptional profiles provide a system-level readout, but this made the 
biological interpretation of the results more challenging. Regarding hybridization-based 
transcriptomics, these are generally lower-cost and their multiplex capabilities imply a good 
degree of throughput. However, only the genes used to build the microarray can be detected, 
and issues arise due to cross-hybridization, as well as with low-abundance transcripts. Beyond 
hybridization techniques, those based on sequencing have seen their cost steadily decrease 
into reasonable levels, which enables a more commonplace usage. In addition to detecting all 
transcripts of a sample, RNA-seq allows querying post-transcriptional events, which is a step 
forward towards closing the gap between gene transcription and phenotype.  

Most antibiotics target proteins. As such, proteomics is well-suited to investigate MOA. 
Additionally, because proteins are the end-product of genes, the effect of post-transcriptional 
and post-translational regulatory mechanisms can be queried, which is a step closer to 
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understanding the biological mechanisms ruling antibiotic-induced phenotype. While 
proteomics does not require manipulated strains, it is generally a laborious, low-throughput 
and challenging technique. Despite their critical role in understanding bacterial physiology, and 
the MOA of antibiotics, proteomic profiles are less distinctive of MOA than transcriptomics. 
Also, the throughput of proteomics has not reached that of metabolomics. As such, there have 
been fewer studies applying proteomics to illuminate the MOA of large antibiotic libraries. 

The last component of the Omics cascade are metabolites, which have higher 
variability in terms of structure and biological function, but are a closer reflection of phenotype 
than proteins, transcripts and genes. As such, metabolomics can not only pinpoint an 
antibiotics’ target, but also identify the MOA of antibiotics that don’t target the metabolism. 
Despite a few promising protocols having 10-100x the throughput of proteomics, high-
throughput metabolomics-based MOA identification is still in its infancy. For NMR, low 
metabolome coverage and fewer annotation resources are common issues. Regarding MS, 
the optimization of chromatographic separation, peak annotation, and masking of MOA-related 
signal by subtle undesirable sample variations are still major bottlenecks. Nonetheless, MS 
has been successfully applied to large compound libraries, which validates its use for 
screening of large antibiotic libraries. 

An alternative to the techniques discussed thus far lies in BCP, which was originally 
developed as HCS for eukaryotic cells. Although its application to prokaryotes only recently 
gained traction, the ultrastructural and morphological alterations induced by antibiotics yield a 
cytological profile with good predictive ability of the MOA of antibiotics. The issue with this 
approach, which has a different perspective on the issue of MOA, is one of sensitivity. While 
the aptitude to detect the major pathway affected has been well established, contradictory 
findings have been reported regarding the ability to separate profiles induced by drugs that act 
on the same pathway, and it is still unclear if BCP can be used as a standalone technique or 
requires complementation with biomolecular techniques. Nonetheless, its high- to very high-
throughput has made BCP an attractive technique, rightfully justifying further efforts towards 
its consolidation in the discovery pipeline. 

Another alternative is VS, which has also been increasingly gaining traction for 
metabolic fingerprinting. Similarly to BCP, this technique is promising because it enables 
adequate throughput for screening purposes with sufficient biological information for MOA 
identification. However, because it reflects the biochemical composition of the sample, it has 
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the potential to be more informative than BCP, without requiring complementary assays. Also, 
because these techniques are high-throughput, reagent-less, label-free and involve reduced 
or no sample preparation, they hold tremendous potential. Even so, few studies have explored 
large antibiotic libraries, which by itself justifies a deeper evaluation on the application of VS 
towards antibiotic discovery.  

Due to the lack of novelty in the antibiotic pipeline, and the desperate need for new 
antibiotics, it has become increasingly evident that a new approach is needed. The ability of 
the various Omics techniques discussed, as well as BCP and VS, to rapidly and robustly detect 
MOA could enable a shift from the activity-based antibiotic discovery paradigm towards a 
mechanism-based approach. In turn, a mechanism-based discovery approach increases the 
‘screenable’ space by probing the grey chemical matter, an underexplored source that is 
extremely promising because medicinal chemistry can improve the properties of these 
compounds, in particular their potency. Moreover, a low-cost high-throughput technique for 
MOA identification can also aid during this process by rapidly excluding off-target liabilities. 
With a higher number of hits, and their better guided structural optimization, it is expected that 
new compounds can eventually reach the clinic and spark a new generation of antibiotics. 

III. 10   REFERENCES 
1.  De Mol, M.L.; Snoeck, N.; De Maeseneire, S.L.; Soetaert, W.K. Hidden antibiotics: Where to 

uncover? Biotechnol. Adv. 2018, 36, 2201–2218. 
2.  Ribeiro da Cunha; Fonseca; Calado Antibiotic Discovery: Where Have We Come from, Where 

Do We Go? Antibiotics 2019, 8, 45. 
3.  Kubota, K.; Funabashi, M.; Ogura, Y. Target deconvolution from phenotype-based drug discovery 

by using chemical proteomics approaches. Biochim. Biophys. Acta - Proteins Proteomics 2019, 
1867, 22–27. 

4.  Ohki, Y.; Sakurai, H.; Hoshino, M.; Terashima, H.; Shimizu, H.; Ishikawa, T.; Ogiyama, T.; 
Muramatsu, Y.; Nakanishi, T.; Miyazaki, S.; et al. Perturbation-Based Proteomic Correlation 
Profiling as a Target Deconvolution Methodology. Cell Chem. Biol. 2019, 26, 137–143. 

5.  Phillips, J.W.; Goetz, M.A.; Smith, S.K.; Zink, D.L.; Polishook, J.; Onishi, R.; Salowe, S.; Wiltsie, 
J.; Allocco, J.; Sigmund, J.; et al. Discovery of kibdelomycin, a potent new class of bacterial type 
II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem. Biol. 
2011, 18, 955–965. 

6.  Kurita, K.L.; Glassey, E.; Linington, R.G. Integration of high-content screening and untargeted 
metabolomics for comprehensive functional annotation of natural product libraries. Proc. Natl. 
Acad. Sci. 2015, 112, 11999–12004. 

7.  Birkenstock, T.; Liebeke, M.; Winstel, V.; Krismer, B.; Gekeler, C.; Niemiec, M.J.; Bisswanger, H.; 
Lalk, M.; Peschel, A. Exometabolome analysis identifies pyruvate dehydrogenase as a target for 
the antibiotic triphenylbismuthdichloride in multiresistant bacterial pathogens. J. Biol. Chem. 2012, 
287, 2887–2895. 

8.  Cho, H.; Uehara, T.; Bernhardt, T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the 



High-throughput screening of antibiotic mechanism of action  

 71 

bacterial cell wall synthesis machinery. Cell 2014, 159, 1300–1311. 
9.  French, S.; Ellis, M.J.; Coutts, B.E.; Brown, E.D. Chemical genomics reveals mechanistic 

hypotheses for uncharacterized bioactive molecules in bacteria. Curr. Opin. Microbiol. 2017, 39, 
42–47. 

10.  Cunningham, M.L.; Kwan, B.P.; Nelson, K.J.; Bensen, D.C.; Shaw, K.J. Distinguishing on-target 
versus off-target activity in early antibacterial drug discovery using a macromolecular synthesis 
assay. J. Biomol. Screen. 2013, 18, 1018–1026. 

11.  Bantscheff, M.; Drewes, G. Chemoproteomic approaches to drug target identification and drug 
profiling. Bioorganic Med. Chem. 2012, 20, 1973–1978. 

12.  Zoffmann, S.; Vercruysse, M.; Benmansour, F.; Maunz, A.; Wolf, L.; Blum Marti, R.; Heckel, T.; 
Ding, H.; Truong, H.H.; Prummer, M.; et al. Machine learning-powered antibiotics phenotypic drug 
discovery. Sci. Rep. 2019, 9, 1–14. 

13.  Nonejuie, P.; Burkart, M.; Pogliano, K.; Pogliano, J. Bacterial cytological profiling rapidly identifies 
the cellular pathways targeted by antibacterial molecules. Proc. Natl. Acad. Sci. 2013, 110, 
16169–16174. 

14.  Sato, S. ichi; Murata, A.; Shirakawa, T.; Uesugi, M. Biochemical Target Isolation for Novices: 
Affinity-Based Strategies. Chem. Biol. 2010, 17, 616–623. 

15.  Nishiya, Y.; Hamada, T.; Abe, M.; Takashima, M.; Tsutsumi, K.; Okawa, K. A new efficient method 
of generating photoaffinity beads for drug target identification. Bioorganic Med. Chem. Lett. 2017, 
27, 834–840. 

16.  Burdine, L.; Thomas, K. Target Identification in Chemical Genetics: The (Often) Missing Link. 
Chem. Biol. 2004, 11, 593–597. 

17.  Zampieri, M.; Sekar, K.; Zamboni, N.; Sauer, U. Frontiers of high-throughput metabolomics. Curr. 
Opin. Chem. Biol. 2017, 36, 15–23. 

18.  Cacace, E.; Kritikos, G.; Typas, A. Chemical genetics in drug discovery. Curr. Opin. Syst. Biol. 
2017, 4, 35–42. 

19.  Barker, C.A.; Farha, M.A.; Brown, E.D. Chemical Genomic Approaches to Study Model Microbes. 
Chem. Biol. 2010, 17, 624–632. 

20.  Li, X.; Zolli-Juran, M.; Cechetto, J.D.; Daigle, D.M.; Wright, G.D.; Brown, E.D. Multicopy 
Suppressors for Novel Antibacterial Compounds Reveal Targets and Drug Efflux Susceptibility. 
Chem. Biol. 2004, 11, 1423–1430. 

21.  Kitagawa, M.; Ara, T.; Arifuzzaman, M.; Ioka-Nakamichi, T.; Inamoto, E.; Toyonaga, H.; Mori, H. 
Complete set of ORF clones of Escherichia coli ASKA library (A complete set of E. coli K-12 ORF 
archive): unique resources for biological research. DNA Res. 2005, 12, 291–299. 

22.  Pathania, R.; Zlitni, S.; Barker, C.; Das, R.; Gerritsma, D.A.; Lebert, J.; Awuah, E.; Melacini, G.; 
Capretta, F.A.; Brown, E.D. Chemical genomics in Escherichia coli identifies an inhibitor of 
bacterial lipoprotein targeting. Nat. Chem. Biol. 2009, 5, 849. 

23.  Barker, C.A.; Allison, S.E.; Zlitni, S.; Nguyen, N.D.; Das, R.; Melacini, G.; Capretta, A.A.; Brown, 
E.D. Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds 
with the lipoprotein targeting chaperone LolA. Bioorganic Med. Chem. Lett. 2013, 23, 2426–2431. 

24.  Muheim, C.; Götzke, H.; Eriksson, A.U.; Lindberg, S.; Lauritsen, I.; Nørholm, M.H.H.; Daley, D.O. 
Increasing the permeability of Escherichia coli using MAC13243. Sci. Rep. 2017, 7, 1–11. 

25.  Nickerson, N.N.; Jao, C.C.; Xu, Y.; Quinn, J.; Skippington, E.; Alexander, M.K.; Miu, A.; Skelton, 
N.; Hankins, J. V.; Lopez, M.S.; et al. A Novel Inhibitor of the LolCDE ABC Transporter Essential 
for Lipoprotein Trafficking in Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2018, 62, 
1–16. 

26.  Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; 
Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout 
mutants: the Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. 



Chapter III 

 72 

27.  Liu, A.; Tran, L.; Becket, E.; Lee, K.; Chinn, L.; Park, E.; Tran, K.; Miller, J.H. Antibiotic sensitivity 
profiles determined with an Escherichia coli gene knockout collection: Generating an antibiotic 
bar code. Antimicrob. Agents Chemother. 2010, 54, 1393–1403. 

28.  Nichols, R.J.; Sen, S.; Choo, Y.J.; Beltrao, P.; Zietek, M.; Chaba, R.; Lee, S.; Kazmierczak, K.M.; 
Lee, K.J.; Wong, A.; et al. Phenotypic landscape of a bacterial cell. Cell 2011, 144, 143–156. 

29.  Côté, J.-P.; French, S.; Gehrke, S.S.; MacNair, C.R.; Mangat, C.S.; Bharat, A.; Brown, E.D.  The 
Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli . MBio 2016, 7, 
1–12. 

30.  Shiver, A.L.; Osadnik, H.; Kritikos, G.; Li, B.; Krogan, N.; Typas, A.; Gross, C.A. A Chemical-
Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin 
S. PLoS Genet. 2016, 12, 1–19. 

31.  Stokes, J.M.; French, S.; Ovchinnikova, O.G.; Bouwman, C.; Whitfield, C.; Brown, E.D. Cold 
Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer 
Membrane Integrity. Cell Chem. Biol. 2016, 23, 267–277. 

32.  DeVito, J.A.; Mills, J.A.; Liu, V.G.; Agarwal, A.; Sizemore, C.F.; Yao, Z.; Stoughton, D.M.; 
Cappiello, M.G.; Barbosa, M.D.F.S.; Foster, L.A.; et al. An array of target-specific screening 
strains for antibacterial discovery. Nat. Biotechnol. 2002, 20, 478–483. 

33.  Griffiths, A.J.; Miller, J.H.; Suzuki, D.T.; Lewontin, R.C.; Gelbart, W.M. An Introduction to Genetic 
Analysis; 7th Edition.; W. H. Freeman: New York, 2000; 

34.  Donald, R.G.K.; Skwish, S.; Forsyth, R.A.; Anderson, J.W.; Zhong, T.; Burns, C.; Lee, S.; Meng, 
X.; LoCastro, L.; Jarantow, L.W.; et al. A Staphylococcus aureus Fitness Test Platform for 
Mechanism-Based Profiling of Antibacterial Compounds. Chem. Biol. 2009, 16, 826–836. 

35.  Forsyth, R.A.; Haselbeck, R.J.; Ohlsen, K.L.; Yamamoto, R.T.; Xu, H.; Trawick, J.D.; Wall, D.; 
Wang, L.; Brown-driver, V.; Froelich, J.M.; et al. A genome-wide strategy for the identification of 
S. aureus essential genes.pdf. 2002, 43, 1387–1400. 

36.  Peters, J.M.; Colavin, A.; Shi, H.; Czarny, T.L.; Larson, M.H.; Wong, S.; Hawkins, J.S.; Lu, C.H.S.; 
Koo, B.M.; Marta, E.; et al. A comprehensive, CRISPR-based functional analysis of essential 
genes in bacteria. Cell 2016, 165, 1493–1506. 

37.  Liu, X.; Gallay, C.; Kjos, M.; Domenech, A.; Slager, J.; van Kessel, S.P.; Knoops, K.; Sorg, R.A.; 
Zhang, J.; Veening, J. High‐throughput CRISPRi phenotyping identifies new essential genes in 
Streptococcus pneumoniae. Mol. Syst. Biol. 2017, 13, 931. 

38.  Elad, T.; Seo, H. Bin; Belkin, S.; Gu, M.B. High-throughput prescreening of pharmaceuticals using 
a genome-wide bacterial bioreporter array. Biosens. Bioelectron. 2015, 68, 699–704. 

39.  Zaslaver, A.; Bren, A.; Ronen, M.; Itzkovitz, S.; Kikoin, I.; Shavit, S.; Liebermeister, W.; Surette, 
M.G.; Alon, U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. 
Nat. Methods 2006, 3, 623–628. 

40.  Bollenbach, T.; Quan, S.; Chait, R.; Kishony, R. Nonoptimal Microbial Response to Antibiotics 
Underlies Suppressive Drug Interactions. Cell 2009, 139, 707–718. 

41.  Baptist, G.; Pinel, C.; Ranquet, C.; Izard, J.; Ropers, D.; De Jong, H.; Geiselmann, J. A genome-
wide screen for identifying all regulators of a target gene. Nucleic Acids Res. 2013, 41. 

42.  Engelberg, R.; Danielson, A.; Wang, S.; Singh, M.; Wai, A.; Sorensen, J.; Duan, K.; Hausner, G.; 
Kumar, A. Creation of a drug-sensitive reporter strain of Pseudomonas aeruginosa as a tool for 
the rapid screening of antimicrobial products. J. Microbiol. Methods 2018, 152, 1–6. 

43.  Sun, D.; Cohen, S.; Mani, N.; Murphy, C.; Rothstein, D.M. A Pathway-specific Cell Based 
Screening System to Detect Bacterial Cell Wall Inhibitors. J. Antibiot. (Tokyo). 2002, 55, 279–287. 

44.  Nayar, A.S.; Dougherty, T.J.; Ferguson, K.E.; Granger, B.A.; McWilliams, L.; Stacey, C.; Leach, 
L.J.; Narita, S.; Tokuda, H.; Miller, A.A.; et al. Novel Antibacterial Targets and Compounds 
Revealed by a High-Throughput Cell Wall Reporter Assay. J. Bacteriol. 2015, 197, 1726–1734. 

45.  Mido, T.; Schaffer, E.M.; Dorsey, R.W.; Sozhamannan, S.; Hofmann, E.R. Sensitive detection of 



High-throughput screening of antibiotic mechanism of action  

 73 

live Escherichia coli by bacteriophage amplification-coupled immunoassay on the Luminex® 
MAGPIX instrument. J. Microbiol. Methods 2018, 152, 143–147. 

46.  Nagaraj, N.S.; Singh, O. V. Using genomics to develop novel antibacterial therapeutics. Crit. Rev. 
Microbiol. 2010, 36, 340–348. 

47.  Miller, M.B.; Tang, Y.W. Basic concepts of microarrays and potential applications in clinical 
microbiology. Clin. Microbiol. Rev. 2009, 22, 611–633. 

48.  Boshoff, H.I.M.; Myers, T.G.; Copp, B.R.; McNeil, M.R.; Wilson, M.A.; Barry, C.E.  The 
Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism . J. Biol. 
Chem. 2004, 279, 40174–40184. 

49.  Liang, J.; Tang, X.; Guo, N.; Zhang, K.; Guo, A.; Wu, X.; Wang, X.; Guan, Z.; Liu, L.; Shen, F.; et 
al. Genome-wide expression profiling of the response to linezolid in mycobacterium tuberculosis. 
Curr. Microbiol. 2012, 64, 530–538. 

50.  Bonn, F.; Pané-Farré, J.; Schlüter, R.; Schaffer, M.; Fuchs, S.; Bernhardt, J.; Riedel, K.; Otto, A.; 
Völker, U.; van Dijl, J.M.; et al. Global analysis of the impact of linezolid onto virulence factor 
production in S. aureus USA300. Int. J. Med. Microbiol. 2016, 306, 131–140. 

51.  Draghici, S.; Khatri, P.; Eklund, A.C.; Szallasi, Z. Reliability and reproducibility issues in DNA 
microarray measurements. Trends Genet. 2006, 22, 101–109. 

52.  Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. 
Genet. 2009, 10, 57–63. 

53.  Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: ten years of next-generation 
sequencing technologies. Nat. Rev. Genet. 2016, 17, 333. 

54.  Hua, X.; Chen, Q.; Li, X.; Yu, Y. Global transcriptional response of Acinetobacter baumannii to a 
subinhibitory concentration of tigecycline. Int. J. Antimicrob. Agents 2014, 44, 337–344. 

55.  Wecke, T.; Mascher, T. Antibiotic research in the age of omics: From expression profiles to 
interspecies communication. J. Antimicrob. Chemother. 2011, 66, 2689–2704. 

56.  Briffotaux, J.; Liu, S.; Gicquel, B. Genome-wide transcriptional responses of Mycobacterium to 
antibiotics. Front. Microbiol. 2019, 10, 1–14. 

57.  Howden, B.P.; Beaume, M.; Harrison, P.F.; Hernandez, D.; Schrenzel, J.; Seemann, T.; Francois, 
P.; Stinear, T.P. Analysis of the Small RNA Transcriptional Response in Multidrug-Resistant 
Staphylococcus aureus after Antimicrobial Exposure. Antimicrob. Agents Chemother. 2013, 57, 
3864–3874. 

58.  Molina-Santiago, C.; Daddaoua, A.; Gómez-Lozano, M.; Udaondo, Z.; Molin, S.; Ramos, J.L. 
Differential transcriptional response to antibiotics by Pseudomonas putidaDOT-T1E. Environ. 
Microbiol. 2015, 17, 3251–3262. 

59.  Hébert, F.O.; Boyle, B.; Levesque, R.C. Direct In Vivo Microbial Transcriptomics During Infection. 
Trends Microbiol. 2018, 26, 732–735. 

60.  Frantzi, M.; Latosinska, A.; Mischak, H. Proteomics in Drug Development: The Dawn of a New 
Era? Proteomics - Clin. Appl. 2019, 13, 1–13. 

61.  dos Santos, B.S.; da Silva, L.C.N.; da Silva, T.D.; Rodrigues, J.F.S.; Grisotto, M.A.G.; Correia, 
M.T. do. S.; Napoleão, T.H.; da Silva, M. V.; Paiva, P.M.G. Application of omics technologies for 
evaluation of antibacterial mechanisms of action of plant-derived products. Front. Microbiol. 2016, 
7, 1–13. 

62.  Wang, J.; Wang, Z.; Wu, R.; Jiang, D.; Bai, B.; Tan, D.; Yan, T.; Sun, X.; Zhang, Q.; Wu, Z. 
Proteomic Analysis of the Antibacterial Mechanism of Action of Juglone against Staphylococcus 
aureus. Nat. Prod. Commun. 2016, 11, 825–827. 

63.  Bandow, J.E.; Brötz, H.; Leichert, L.I.O.; Labischinski, H.; Hecker, M. Proteomic approach to 
understanding antibiotic action. Antimicrob. Agents Chemother. 2003, 47, 948–955. 

64.  Kim, W.; Hendricks, G.L.; Tori, K.; Fuchs, B.B.; Mylonakis, E. Strategies against methicillin-



Chapter III 

 74 

resistant Staphylococcus aureus persisters. Future Med. Chem. 2018, 10, 779–794. 
65.  Wenzel, M.; Kohl, B.; Münch, D.; Raatschen, N.; Albada, H.B.; Hamoen, L.; Metzler-Nolte, N.; 

Sahl, H.-G.; Bandow, J.E. Proteomic Response of Bacillus subtilis to Lantibiotics Reflects 
Differences in Interaction with the Cytoplasmic Membrane. Antimicrob. Agents Chemother. 2012, 
56, 5749–5757. 

66.  Maaß, S.; Otto, A.; Albrecht, D.; Riedel, K.; Trautwein-Schult, A.; Becher, D. Proteomic Signatures 
of Clostridium difficile Stressed with Metronidazole, Vancomycin, or Fidaxomicin. Cells 2018, 7, 
213. 

67.  Brötz-Oesterhelt, H.; Bandow, J.E.; Labischinski, H. Bacterial proteomics and its role in 
antibacterial drug discovery. Mass Spectrom. Rev. 2005, 24, 549–565. 

68.  Evans, C.; Noirel, J.; Ow, S.Y.; Salim, M.; Pereira-Medrano, A.G.; Couto, N.; Pandhal, J.; Smith, 
D.; Pham, T.K.; Karunakaran, E.; et al. An insight into iTRAQ: Where do we stand now? Anal. 
Bioanal. Chem. 2012, 404, 1011–1027. 

69.  Olsen, J. V; Mann, M. Status of large-scale analysis of post-translational modifications by mass 
spectrometry. Mol. Cell. Proteomics 2013, 12, 3444–52. 

70.  Chen, B.; Zhang, D.; Wang, X.; Ma, W.; Deng, S.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Proteomics 
progresses in microbial physiology and clinical antimicrobial therapy. Eur. J. Clin. Microbiol. Infect. 
Dis. 2017, 36, 403–413. 

71.  Ma, W.; Zhang, D.; Li, G.; Liu, J.; He, G.; Zhang, P.; Yang, L.; Zhu, H.; Xu, N.; Liang, S. 
Antibacterial mechanism of daptomycin antibiotic against Staphylococcus aureus based on a 
quantitative bacterial proteome analysis. J. Proteomics 2017, 150, 242–251. 

72.  Fields, F.R.; Lee, S.W.; McConnell, M.J. Using bacterial genomes and essential genes for the 
development of new antibiotics. Biochem. Pharmacol. 2017, 134, 74–86. 

73.  Sun, L.; Chen, H.; Lin, W.; Lin, X. Quantitative proteomic analysis of Edwardsiella tarda in 
response to oxytetracycline stress in biofilm. J. Proteomics 2017, 150, 141–148. 

74.  Kamath, K.S.; Pascovici, D.; Penesyan, A.; Goel, A.; Venkatakrishnan, V.; Paulsen, I.T.; Packer, 
N.H.; Molloy, M.P. Pseudomonas aeruginosa Cell Membrane Protein Expression from 
Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations. J. 
Proteome Res. 2016, 15, 2152–2163. 

75.  Pulido, M.R.; García-Quintanilla, M.; Gil-Marqués, M.L.; McConnell, M.J. Identifying targets for 
antibiotic development using omics technologies. Drug Discov. Today 2016, 21, 465–472. 

76.  Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by 
numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 2004, 22, 245–
252. 

77.  Bingol, K. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR 
Methods. High-Throughput 2018, 7, 9. 

78.  Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, 
D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. 

79.  Kozlowska, J.; Vermeer, L.S.; Rogers, G.B.; Rehnnuma, N.; Amos, S.B.T.A.; Koller, G.; McArthur, 
M.; Bruce, K.D.; Mason, A.J. Combined Systems Approaches Reveal Highly Plastic Responses 
to Antimicrobial Peptide Challenge in Escherichia coli. PLoS Pathog. 2014, 10. 

80.  Hoerr, V.; Duggan, G.E.; Zbytnuik, L.; Poon, K.K.H.; Große, C.; Neugebauer, U.; Methling, K.; 
Löffler, B.; Vogel, H.J. Characterization and prediction of the mechanism of action of antibiotics 
through NMR metabolomics. BMC Microbiol. 2016, 16, 1–14. 

81.  Fang, M.; Ivanisevic, J.; Benton, H.P.; Johnson, C.H.; Patti, G.J.; Hoang, L.T.; Uritboonthai, W.; 
Kurczy, M.E.; Siuzdak, G. Thermal Degradation of Small Molecules: A Global Metabolomic 
Investigation. Anal. Chem. 2015, 87, 10935–10941. 

82.  Schelli, K.; Zhong, F.; Zhu, J. Comparative metabolomics revealing Staphylococcus aureus 
metabolic response to different antibiotics. Microb. Biotechnol. 2017, 10, 1764–1774. 



High-throughput screening of antibiotic mechanism of action  

 75 

83.  Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of 
metabolite annotation for LC–MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. 

84.  Fuhrer, T.; Zamboni, N. High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 2015, 
31, 73–78. 

85.  Zampieri, M.; Szappanos, B.; Buchieri, M.V.; Trauner, A.; Piazza, I.; Picotti, P.; Gagneux, S.; 
Borrell, S.; Gicquel, B.; Lelievre, J.; et al. High-throughput metabolomic analysis predicts mode 
of action of uncharacterized antimicrobial compounds. Sci. Transl. Med. 2018, 10, 1–12. 

86.  Ang, M.L.T.; Pethe, K. Contribution of high-content imaging technologies to the development of 
anti-infective drugs. Cytom. Part A 2016, 89, 755–760. 

87.  Giuliano, K.A.; DeBiasio, R.L.; Dunlay, R.T.; Gough, A.; Volosky, J.M.; Zock, J.; Pavlakis, G.N.; 
Taylor, D.L. High-Content Screening: A New Approach to Easing Key Bottlenecks in the Drug 
Discovery Process. J. Biomol. Screen. 1997, 2, 249–259. 

88.  Peach, K.C.; Bray, W.M.; Winslow, D.; Linington, P.F.; Linington, R.G. Mechanism of action-
based classification of antibiotics using high-content bacterial image analysis. Mol. Biosyst. 2013, 
9, 1837–1848. 

89.  Schulze, C.J.; Bray, W.M.; Woerhmann, M.H.; Stuart, J.; Lokey, R.S.; Linington, R.G. “function-
first” lead discovery: Mode of action profiling of natural product libraries using image-based 
screening. Chem. Biol. 2013, 20, 285–295. 

90.  Liu, W.T.; Yang, Y.L.; Xu, Y.; Lamsa, A.; Haste, N.M.; Yang, J.Y.; Ng, J.; Gonzalez, D.; Ellermeier, 
C.D.; Straight, P.D.; et al. Imaging mass spectrometry of intraspecies metabolic exchange 
revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 
16286–16290. 

91.  Lamsa, A.; Liu, W.T.; Dorrestein, P.C.; Pogliano, K. The Bacillus subtilis cannibalism toxin SDP 
collapses the proton motive force and induces autolysis. Mol. Microbiol. 2012, 84, 486–500. 

92.  Quach, D.T.; Sakoulas, G.; Nizet, V.; Pogliano, J.; Pogliano, K. Bacterial Cytological Profiling 
(BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus 
aureus. EBioMedicine 2016, 4, 95–103. 

93.  McLeod, S.M.; Fleming, P.R.; MacCormack, K.; McLaughlin, R.E.; Whiteaker, J.D.; Narita, S.; 
Mori, M.; Tokuda, H.; Miller, A.A. Small-Molecule Inhibitors of Gram-Negative Lipoprotein 
Trafficking Discovered by Phenotypic Screening. J. Bacteriol. 2015, 197, 1075–1082. 

94.  Marques, V.; Cunha, B.; Couto, A.; Sampaio, P.; Fonseca, L.P.; Aleixo, S.; Calado, C.R.C. 
Characterization of gastric cells infection by diverse Helicobacter pylori strains through Fourier-
transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 210, 
193–202. 

95.  López-Díez, E.C.; Winder, C.L.; Ashton, L.; Currie, F.; Goodacre, R. Monitoring the mode of action 
of antibiotics using raman spectroscopy: Investigating subinhibitory effects of amikacin on 
Pseudomonas aeruginosa. Anal. Chem. 2005, 77, 2901–2906. 

96.  Athamneh, A.I.M.; Alajlouni, R.A.; Wallace, R.S.; Seleem, M.N.; Sengera, R.S. Phenotypic 
profiling of antibiotic response signatures in Escherichia coli using raman spectroscopy. 
Antimicrob. Agents Chemother. 2014, 58, 1302–1314. 

97.  Liu, C.Y.; Han, Y.Y.; Shih, P.H.; Lian, W.N.; Wang, H.H.; Lin, C.H.; Hsueh, P.R.; Wang, J.K.; 
Wang, Y.L. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced 
Raman spectroscopic biomarkers. Sci. Rep. 2016, 6, 1–15. 

98.  Teng, L.; Wang, X.; Wang, X.; Gou, H.; Ren, L.; Wang, T.; Wang, Y.; Ji, Y.; Huang, W.E.; Xu, J. 
Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Sci. 
Rep. 2016, 6. 

99.  Germond, A.; Ichimura, T.; Horinouchi, T.; Fujita, H.; Furusawa, C.; Watanabe, T.M. Raman 
spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. 
Commun. Biol. 2018, 1. 



Chapter III 

 76 

100.  Xuan Nguyen, N.T.; Sarter, S.; Hai Nguyen, N.; Daniel, P. Detection of molecular changes 
induced by antibiotics in Escherichia coli using vibrational spectroscopy. Spectrochim. Acta - Part 
A Mol. Biomol. Spectrosc. 2017, 183, 395–401. 

101.  Huleihel, M.; Pavlov, V.; Erukhimovitch, V. The use of FTIR microscopy for the evaluation of anti-
bacterial agents activity. J. Photochem. Photobiol. B. 2009, 96, 17–23. 

102.  Moen, B.; Janbu, A.O.; Langsrud, S.; Langsrud, Ø.; Hobman, J.L.; Constantinidou, C.; Kohler, A.; 
Rudi, K. Global responses of Escherichia coli to adverse conditions determined by microarrays 
and FT-IR spectroscopy. Can. J. Microbiol. 2009, 55, 714–728. 

103.  Corte, L.; Rellini, P.; Roscini, L.; Fatichenti, F.; Cardinali, G. Development of a novel, FTIR 
(Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress 
response study. Anal. Chim. Acta 2010, 659, 258–265. 

104.  Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Metabolic fingerprinting with fourier-
transform infrared (FTIR) spectroscopy: Towards a high-throughput screening assay for antibiotic 
discovery and mechanism-of-action elucidation. Metabolites 2020, 10. 

105.  Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Simultaneous elucidation of antibiotic 
mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) 
spectroscopy and machine learning. Appl. Microbiol. Biotechnol. 2021, 1–18. 

 
 



Fundamentals of Fourier-transform mid-infrared spectroscopy 

 77 

 

 

 

Chapter IV 
 

 

Fundamentals of Fourier-transform  

mid-infrared spectroscopy 

 

 

 

  



Chapter IV 

 78 

 

 

 

 

 

 

 

This chapter is adapted from the book chapter: 

Ribeiro da Cunha, B., Ramalhete, L., Fonseca, L. P., & Calado, C. R. C. (2020). Fourier-

Transform Mid-Infrared (FT-MIR) Spectroscopy in Biomedicine. In Y. Tutar (Ed.), Essential 
Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current 

Applications- Part II (pp. 1–39). doi: 10.2174/9789811464867120010004. 

 

 

Author contribution 

Bernardo Ribeiro da Cunha contributed to the literature review, to the preparation of the original 
draft, reviewed, and edited its final version.  



Fundamentals of Fourier-transform mid-infrared spectroscopy 

 79 

Abstract 

Fourier-transform infrared (FTIR) spectroscopy (FTIRS) is a powerful technique that probes 

the intramolecular vibrations of most molecules, thereby enabling the acquisition of metabolic 

fingerprint of cells, tissues and biofluids (e.g., serum, urine and saliva, etc.), in a rapid (minutes), 
simple (without or with minimal sample processing), economic (without reagents consumption), 

label-free and highly sensitive and specific mode. FTIRS is an analytically flexible technique 
with diverse sampling techniques and detection modes. These include classical transmission 

and transflection, high-throughput measurements using micro-plates in transmission mode, 
and fiber optic probes coupled to attenuated total reflection detection. As such, its applications 

range from in situ analysis trough to micro-spectroscopy with spatial resolution at the sub-
cellular level. Due to the complex biochemical composition of biological samples, mid-infrared 

spectra are usually very difficult to interpret without the application of complex and 

sophisticated mathematical and statistical analysis routines, such as: spectra preprocessing, 
to minimize noise and other non-informative data that compromise subsequent pattern 

recognition models; deconvolution methods to resolve overlapped spectral bands; 
dimensionality reduction and feature extraction; along with supervised and non-supervised 

pattern recognition strategies, as support vector machines and artificial neural networks. The 
present work revises the fundamentals of FTIRS, its main acquisition modes, preprocessing 

and the most common multivariate spectral analysis. 
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IV.1   INTRODUCTION 

Spectroscopy is the study of the interaction between matter and radiated energy. In the 
case said energy is within the infrared (IR) region of the electromagnetic spectrum, the term 
IR spectroscopy applies. When dealing with solid and liquid samples, IR spectroscopy 
measures the vibrational modes of molecular bonds that result from dipole moment changes, 
i.e., charge differences in the electric field of atoms. With exception of monoatomic (e.g., He, 
Ne) or homopolar diatomic molecules (e.g., H2, N2, O2), almost all molecules present a unique 
IR spectrum. Given the complex molecular composition of cells, biofluids (e.g., serum, blood, 
saliva, urine, spinal fluid), and other materials (e.g., tissue, calculi, feces, cartilage, bone), IR 
spectra of complex biological samples are also distinctive. As such, IR spectroscopy, 
especially at the mid-infrared (MIR) region of the electromagnetic spectrum, acquires a holistic 
molecular fingerprint that can be associated with the metabolic state in a highly sensitive and 
specific mode.  

IR spectrometers are either based on dispersive equipment, which yields a continuous 
wavelength, or interferometers, which result in a time domain signal called an interferogram. 
Dispersive spectrometers rely on a prism, or a more sophisticated grating, that separates the 
individual frequencies of energy emitted by the infrared source. On the other hand, most 
interferometric spectrometers use a Michelson interferometer, which includes a beam splitter, 
a fixed and a moving mirror. The split IR beam is brought out of phase by increasing the length 
of one beam path using the moving mirror, and then recombined by carrying the interference 
pattern. Thus, interferometric spectroscopy is a multiplex technology as all frequencies are 
observed simultaneously over the scanning period. By applying a Fourier transform, it is 
possible to switch the signal from the time domain to the frequency domain, thereby producing 
a single beam spectrum. 

 Fourier-transform infrared (FTIR) spectroscopy (FTIRS), or interferometric 
spectroscopy, has intrinsic properties in relation to dispersive spectroscopy [1,2], in particular: 

- All frequencies are measured simultaneously, and the same environment is used to 
acquire all frequencies. So, noise is reduced along with the time required for spectra 
acquisition, which is in the range of seconds rather than minutes. This is known as the 
multiplex or Felgett advantage;  
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- Fast scanning enables the co-addition of several scans, further reducing noise. Thus, 
FTIR spectra are more sensitive, which is known as Jacquinot advantage. 

- An internal HeNe laser is used to calibrate the interference information, which results in 
high wavenumber accuracy, high reproducibility, and high precision. This is known as the 
Connes advantage. 

 Since the first Michelson interferometer was assembled in 1881, various key events 
took place which consolidated FTIRS as a mature analytical technique. Namely the ability to 
digitalize the interferogram, the capacity to rapidly apply the Fourier-transform, along with 
various computational tools required to interpret the data, are just a few examples.  

IV.2   GENERAL CHARACTERISTICS OF MID-INFRARED SPECTROSCOPY 

Biological samples present a highly complex molecular composition, ranging from small 
inorganic and organic molecules, through to macromolecules, as nucleic acids, 
polysaccharides, and lipids. Since the MIR region of the electromagnetic spectrum (2.5-25 μm 
or 400-4000 cm-1) reflects fundamental vibrations, and the near-infrared (NIR) region (780-
2500 nm or 4000-12821 cm-1) reflects overtones and combinations of vibrations, acquisition in 
the MIR region gives rise to stronger and better-defined absorbance bands compared to the 
NIR region, which typically results in weaker and wider spectra. Furthermore, MIR spectra of 
biological samples are sensitive to biomolecules with functional groups such as C-C, C=C, C-
O, C-N, C- H, O-O, O-P, N-H and O-H bonds, while NIR covers groups exclusively containing 
the hydrogen atom as C-H, N-H, O-H, and S-H bonds.  

Consequently, MIR spectra are more informative about biomolecular composition, 
particularly in the following spectral regions: 3600-2000 cm-1, reflecting mainly stretching 
vibrations between X-H (where X is C, O or N) present in amide A and amide B (~3300 and 
3100 cm-1, respectively), and CH3 (~2960 and ~2872 cm-1) and CH2 (~2920 and 2850 cm-1) 
groups of lipids; 1800–1500 cm-1, reflecting mainly stretching vibrations of double bonds (e.g. 
C=O, C=C and C=N), present in amide I (~1655 cm-1) and amide II (~1545 cm-1) of proteins 
and some secondary structure of proteins, and COOR in phospholipids esters (~1740 cm-1); 
and 1500-400 cm-1, reflecting overlapped vibrations due to proteins, lipids, and nucleic acids, 
designated as fingerprint region [3,4]. Figure 1 exemplifies MIR spectra obtained from human 
serum and gastric cells, and Table 1 points out the biochemical assignment of major spectral 
bands.  
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Figure 1. Mid-infrared spectrum of human serum and adenocarcinoma gastric (AGS) 

cells. 

IV.2.1   SENSITIVITY BEYOND MOLECULAR COMPOSITION  

MIR spectra, in addition to being informative about molecular composition, also reflect 

conformation changes of biomolecules, as protein folding, via vibrational resonance originating 
from polypeptide backbones or side chains that depend on the protein structure and local 

interactions such as hydrogen bridges [5,6]. In addition, MIR spectra are also informative on 

the conformation of nucleic acids [7–9], biomembrane organization, fluidity and even other 
biomolecular interactions [10–12]. Therefore, MIR spectra provide metabolic fingerprints of 

biological samples with high sensitivity and specificity. 

Since MIR spectroscopy (MIRS) is sensitive to a variety of biological features, it has 

been used to monitor biological processes as cell division, differentiation, apoptosis, necrosis, 
disease progression, prognosis, diagnosis, and even treatment follow-up. An example of the 

versatility of this spectroscopic technique is illustrated by its ability to not only distinguish 
adenocarcinoma gastric cells infected with Helicobacter pylori from non-infected cells (Figure 

2 – A), but also cluster infected cells according to the specific strains that infect them (Figure 
2 – B). These H. pylori strains are major etiological agents of different gastric diseases, such 

as ulcers and cancer.  
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Table 1. Vibrational frequencies of some functional groups commonly assigned to 

biomolecules (adapted from Bellisola et al. [13] and Sales et al. [4]).  

Wavenumber 
(cm-1) 

Vibrational mode on the 
functional group 

Commonly assigned biochemical 
component 

3300 u(N-H) Amide A: peptide, proteins 

3100 u(N-H) Amide B: peptide, proteins 

2960 uas(CH3) Lipids 

2920 uas(CH2) Lipids 

2870 us(CH3) Lipids 

2850 us(CH2) Lipids 

1740 u(C=O)) Phospholipid esters 

1655 [80% u(CO) and 20% u(CN)] in 
O=C-NH 

Amide I in peptides and proteins 

1550 u(C-C) in O=C-NH Amide II in peptides and proteins 

1450 uas(CH3) Lipid, proteins 

1395 us(CH3) Lipid, proteins 

1380 us(CH3) Phospholipid, fatty acid, triglyceride 

1240 us(PO2-) Phosphodiesters in nucleic acids, 
phospholipids and phosphorylated proteins 

1160 and 1111 us(C-O) Ribose in RNA 

1078 us(PO2-) Phosphodiesters in phosphate energetic 
level 

1055 us(C-O-P) Phosphate esters 

1032 def(C-OH) Glycogen 

965 u(PO32-) DNA and RNA  

950 u(PO32-) Phosphorylated proteins 

920 u(COP) Phosphorylated proteins 

*, vibrations type: υs, symmetric stretching; υas, asymmetric stretching; def, deformations.  

IV.2.2   TYPES OF SAMPLES AND ACQUISITION MODES 

A great advantage of MIRS is its high versatility. MIRS allows to investigate samples in 
either solid, liquid, or gaseous phase, therefore samples can take a diversity of forms such as: 

biofluids, solutions, cells, fixed cells or tissues, biopolymers, pastes, powders, tablets, films, 
fibers, coatings and surfaces. Accordingly, there are numerous acquisition modes of FTIR 

spectra, including but not limited to: transflectance, a combination between transmission and  
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Figure 2. Second derivative of mid-infrared (MIR) spectra of adenocarcinoma gastric 

human (AGS) cells infected, or not, with Helicobacter pylori (A). A spectral region that 

highlights the differences between infected and non-infected gastric cells was chosen 

for demonstrative purposes. A principal component analysis of MIR spectra of AGS cells 

infected with different strains of H. pylori distinguished not only non-infected cells 

(represented inside the doted square) from infected cells, but also separated those 

infected by more virulent bacterial strains (represented by different symbols), which 

are associated with more severe gastric pathologies (B).  
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reflectance, using e.g., calcium or barium fluoride slides; transmission, using e.g., microplates 
of zinc selenium that enable high-throughput readings; attenuated total reflectance (ATR), 
which can be coupled to fiber optic probes for in situ analysis; and microscopic analysis, using 
focal plane array (FPA) detectors, which yield 2D spectra in a defined localization of the sample. 
Independently of the detection mode, it is possible to acquire FTIR spectra in the MIR or NIR 
region in a rapid (minutes), economic (without reagents), label-free, with minimal or no sample 
handling, and in the case of MIR, in a highly specific and sensitive mode. 

Transmission spectroscopy is the oldest and most straightforward method [14]. To 
obtain high-quality spectra of biological specimens, samples need to be dehydrated e.g., 
directly on a multi-well micro-plate as implemented by Sales et al. [4], Rosa et al. [15], and 
throughout this Ph.D. thesis. To enhance sensitivity, signal amplification can be achieved with 
the surface enhanced infrared absorption technique, which is analogous to surface enhanced 
Raman scattering in Raman scattering spectroscopy (RSS). Plasmonic chip-based technology 
allows in situ analysis of aqueous media (reviewed by Baker et al. [16]). An alternative 
detection mode involves placing the sample on a reflective surface, such as a substrate coated 
with aluminum/Teflon or on a glass slide coated with reflective tin oxide-based silver. In these 
cases, a transflectance mode is obtained as the MIR beam passes through the sample: it is 
reflected off the slide and passes again through the sample (reviewed by Ataka et al. [17]). 

ATR is another detection mode noteworthy for biological samples. Here, the MIR beam 
is propagated through a high refractive index crystal surface, which produces an evanescent 
wave that penetrates a few microns into the sample. The MIR light is transmitted through the 
sample, reflects on the top layer, and passes again through the sample, increasing path length 
and consequently increasing sensitivity. The ATR detection mode can also be coupled to fiber 
optic cables, thereby enabling in situ analysis [18]. An important disadvantage of this system 
stems from the characteristics of MIR light, which limits the fiber optic cable length to a few 
meters, whereas NIR light can propagate fiber optic cables across larger distances [11].  

The use of micro-spectroscopy facilitates analysis of micro samples and low 
concentration compounds (e.g., residual substances). Microscopic analysis in transmission 
mode is usually conducted on 4-10 μm thick dehydrated histological samples, which are placed 
on an IR transparent material such as barium or calcium fluoride slides. Another method of 
detection in transflectance mode uses e.g., slides based on Ag/SnO2. An alternative ATR 
detection mode can also be applied to analyze aqueous biological samples. 
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It is also possible to conduct MIRS imaging based on micro-spectroscopy. In this case, 

the high spatial resolution obtained enables analysis at a sub-cellular level, which is highly 

relevant in histopathological diagnosis, as represented on Figure 3. MIR micro-spectroscopy 
imaging can be achieved in transmission or transflectance mode and is based on scanning 

with either a single element detector, linear arrays, or FPA detectors. Linear and 2D FPA 
detectors (e.g., arrays of 64x64 or 128x128 detectors) enable a faster analysis, yielding tens 

to thousands of spectra in just a few minutes. In any case, a few areas within a sample, e.g., 
tissue slides from biopsies, are usually selected for analysis, as one analysis results in 16,384 

spectra. FPA technology is currently the state-of-the-art for MIR micro-spectroscopy imaging, 
and these enable the analysis of complete histological samples, thus minimizing sampling bias 

and therefore minimizing the issue of missing diagnostically important areas. Bassan et al. [18] 
acquired 66 million spectra in 14 hours, each representing 5.5x5.5μm2, of a prostate cross 

section using an FPA with 128x128 detectors. 

Figure 3. Histological analysis of a prostate sample tissue by optical microscopy (A) and 

by Fourier-transform micro-spectroscopy using a 15x objective and a 64x64 FPA 

detector (B), which reveals the chemical composition upon integration of the spectral 

region between 3000 to 3600cm-1 (C). 

A conceivable disadvantage of transflectance over transmission mode in FTIR micro-
spectroscopy imaging is the so-called electric field standing wave effect. Pilling et al. [19] 

observed non-linear variations in absorption band strength across spectra of prostate samples, 

obtained with a 15x objective and a 128x128 FPA in transflectance mode. This resulted in 
lower discrimination power between benign and cancerous tissue, when compared with a 

transmission detection mode. Therefore, when performing medical diagnosis with MIR micro-
spectroscopy of histologic samples, it is advisable to use a transmission rather than a 

transflectance detection mode. This translates to using more expensive and fragile IR 
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transparent slides, as barium fluoride, instead of cheaper transflection substrates such as 
Ag/SnO2. 

More information concerning the recent technological evolutions of MIR spectra 
acquisition can be found in the following articles: Ataka et al. [17], Bunaciu et al. [20,21], Baker 
et al. [22], Tiwari et al. [23] and Mitchell et al. [24]. For example, it is now possible to achieve 
lateral resolutions of 50 nm, temporal monitoring of biological reactions at the femtosecond 
scale, and even evaluate the effect of membrane potential on a single proton transfer [17]. 

Considering the characteristics of MIRS described so far, some of which are especially 
advantageous in the context of this Ph.D. thesis, this section focused on IR spectroscopy in 
the MIR region. Even so, a brief discussion of other vibrational spectroscopy techniques is 
presented given these are not only relevant for many biomedical applications, but often 
complementary to MIRS. 

IV.2.3   NEAR-INFRARED SPECTROSCOPY 

Since NIR spectra are characterized by overtones and combinations of fundamental 
vibrations, they are usually less intense and have broader bands in relation to MIR spectra. 
Furthermore, only bonds with hydrogen are detected, but this does not imply that NIR 
spectroscopy (NIRS) lacks specific advantages regarding MIRS. For example, support 
materials used in NIRS, such as glass and quartz, are much cheaper than those used in MIRS. 
Water is also mostly transparent in the NIR region, whereas MIRS requires sample dehydration 
in transmission mode or ATR detection mode.  

Due to the high energetic frequencies of NIR radiation, and its water-like transparency, 
it can penetrate several millimeters into human tissue, while MIR light can only penetrate 
around 100 μm. Moreover, NIRS is sensitive to the differences that arise in defined 
biomolecules, such as hemoglobin and lipids, between normal and pathogenic tissues, which 
enables its application as a non-invasive or minimally invasive monitoring technique. For 
instance, given its sensitivity to the oxygenation state of hemoglobin, NIRS has been 
investigated for the non-invasive monitoring of tissue oxygenation. Similarly, using fiber optic 
probes, NIRS can be used on body surfaces, or other minimally invasive examinations, for 
real-time diagnosis of diverse pathologies like breast, skin, prostate, pancreas and colorectal 
cancer, metabolic myopathy, valvular heart diseases, peripheral artery diseases, 
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neuromuscular diseases, chronic obstructive pulmonary disease and type 1 or type 2 diabetes, 
among others (reviewed by Kondepati et al. [25] and Sakudo [26]). NIRS has also been used 
during surgeries to identify cancerous tissue in real-time [27]. 

Molecular probes have been developed for NIRS, to serve as enhancing agents in 
contrast imaging applications. This further enables the use of non-invasive NIR imaging, i.e., 
using an acquisition mode external to the organism, to acquire internal signals (reviewed by 
Frangioni [28] and Hilderbrand et al. [29]). For example, Frangioni [30] developed NIR 
fluorescent quantum dots to localize sentinel lymph nodes during cancer surgery. Other recent 
advances of NIRS probes guiding imaging have been reviewed by Namikawa et al. [31].  

Similarly, NIRS has been developed for non-invasive and functional neuroimaging 
studies since the 1990s. In this case, dynamic changes in cerebral blood flow are monitored, 
which increase at sites with activated neural function. The NIR radiation detected at the surface 
of the head results from scattered radiation of an incident NIR beam, which passes through 
skin and bone, reaching a depth of approximately 20 mm, thereby probing the activity of the 
cerebral cortex. This technique not only enables high temporal resolution (less than 1s), but 
also allows patients to move during measurements using portable and wireless equipment 
(reviewed by Hoshi [32] and Sakudo [33]).  

In addition, NIRS is relatively inexpensive compared to other functional imaging 
techniques such as positron emission tomography, single-photon emission computerized 
tomography or magnetic resonance imaging. Similarly, functional NIR neuroimaging provides 
insight into the neurobiological factors of hearing that are relevant after cochlear implantation, 
with clear advantages over traditional methods as it is non-invasive and not subject to electrical 
artifacts [34]. 

The non-invasive analysis of clinically relevant analytes in diabetes with NIRS still 
presents considerable constraints, e.g., measuring glucose depends on a calibration that is 
specific to the patient’s tissue characteristics. Therefore, for this application, most studies could 
only measure relative analyte variations, but that is not enough when quantitative analysis are 
needed for clinical purposes (reviewed by Sakudo [33]). Indeed, despite intensive research, a 
reliable non-invasive glucose sensor does not exist in clinical practice [35]. Kottmann et al. [36] 
proposed a method for the non-invasive detection of glucose, which applies MIRS to the 
interstitial fluid of epidermis, which had a detection limit within the physiological range. 
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NIR analysis of defined metabolites can be conducted directly from body biofluids like 

urine and serum. In these cases, a multivariate regression method, e.g., Partial Least Squares 

Regression (PLSR), is usually applied and good predictive models are achieved with low errors 
and high correlation coefficients (as reviewed by Sakudo [33]). However, it is also possible to 

conduct MIRS in real-time, which presents the advantage of having more informative spectra 
in terms of molecular composition. This does not mean specific analytes, e.g., glucose in serum, 

cannot be adequately predicted with NIRS. For example, NIR analysis of urine samples 
resulted in predictive models of urea and protein with an equivalent accuracy in relation to the 

conventional assays, in contrast creatinine presented a lower accuracy [37].  

Nevertheless, there are situations where NIRS cannot achieve good predictive models 

or simply MIRS produces more robust models. For example, Liu et al. [38] developed NIR 
models from serum samples that were only capable of predicting low-density lipoprotein 

cholesterol. In turn, Liu et al. [39] developed similar MIR models that could predict both low-

density and high-density lipoprotein cholesterol. Likewise, Sandor et al. [40] observed a 50% 
error reduction of PLSR models to predict glucose, lactate, glutamine, glutamate and ammonia 

in animal cell cultures, when these were derived from MIRS in comparison to those derived 
from NIRS.  

Even in cases where a NIR set-up resulted in slightly better predictive models of 
analytes in cell cultures, MIR spectra conveyed further biochemical and metabolic information, 

thus promoting cumulative knowledge of the biological process towards improved prognostics, 
diagnostics and follow-up treatments. As an example, Sales et al. [3,4] developed similar 

models to predict extracellular glucose and intracellular plasmid quantities both with NIR and 
MIR spectra, but obtained supplemental information that enabled the characterization of the 

cell’s biochemical and metabolic activity with MIRS.  

Therefore, if the main goal is to build predictive models for a defined metabolite using 
biofluids (as urine, saliva, serum, blood, sputum, semen, etc.), the method of choice should be 

MIRS over NIRS, as MIR spectra yield more robust models that are typically not achievable 
with a NIR setup. Additionally, MIRS simultaneously and concomitantly provides a metabolic 

fingerprint of the cell, tissue or organism, which reveals supplemental information that of could 
be of added value. Furthermore, the high diversity of MIRS set-ups overcomes, to some extent, 

the advantages of NIRS. For instance, there are alternatives regarding sample preparation that 
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require no or minimal processing, as well as detection modes that include real-time spectral 
acquisition, high-throughput assays, and microscopic analysis. 

IV.2.4   RAMAN SCATTERING SPECTROSCOPY 

RSS is a vibrational spectroscopy technique complementary to FTIRS, since it probes 
electric polarizability changes. In other words, it probes changes in the electron density 
distribution of a molecule. Because of minimal interference by water, RSS has great potential 
in biomedical sciences. RS corresponds to the inelastic light scattering process of photons 
following interaction with a monochromatic radiation source. A high proportion of photons that 
interact with matter are elastically scattered with no change in their energy. A minor percentage 
of the photons, however, transfer their energy as vibrational energy, resulting in scattered 
photons with lower energy levels – known as Raman-Stokes scattering. Anti-Stokes scattering 
occurs when incident photons receive energy from vibrating molecules, therefore presenting 
higher energetic levels.  

Given the low probability of a molecule undergoing Raman state transition, a higher 
concentration of the analyte is required to produce a detectable RS signal in relation to a MIR 
band. Furthermore, many biological samples undergo fluorescence when submitted to 
wavelengths used in RSS, which decreases the intensity and sensitivity of the RS signal [41]. 
For example, prediction models of glucose, lactate and urea mixtures from human cell cultures 
based on NIR spectra outperformed equivalent regression models derived from RS spectra 
[42]. There are diverse techniques to overcome these limitations, which work by enhancing the 
RS signal, such as surface enhanced Raman scattering [43], which enable the detection of 
residual molecules. Similar work has been conducted to enhance MIR signals [44].  

Both RSS and MIRS can be applied in a microscopy detection set-up. This enables not 
only the detection of residual compounds, but also spectral acquisition in a defined space that 
can be used for sub-cellular and tissue imaging. The advantage of RS over MIR micro-
spectroscopy is its low water interference, along its high spatial resolution, which is because 
the excitation wavelengths fall in the visible and near-infrared range. On the other hand, the 
use of an intense laser results in local thermal decomposition of the sample [45]. Examples of 
RSS reviews for biomedical sciences were carried out by Bunaciu et al. [20], Butler et al. [46], 
Eberhardt et al. [47], Kong et al. [48] and, Baker et al. [22]. 
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Another key limitation of RSS is its poor repeatability, which hinders reliable 

quantitative analysis [49]. Although efforts are ongoing to overcome said limitations, as well as 

to increase the throughput of this technique [50,51], FTIRS is a more mature technique, 
considered by most the gold standard of molecular spectroscopy, for which high-throughput 

detections protocols are well-established, well-understood, and considerably cheaper. For 
these reasons, the focus of this chapter, and this Ph.D. in general, has been on MIRS 

specifically. From herein, the data analysis discussion is directed at the MIRS subset, although 
overlaps with NIRS are commonplace. Although the great potential of RSS spectroscopy, and 

its complementary nature to FTIRS justified its discussion, it did not warrant its application in 
the context of this research. Even so, it is noteworthy that reviews of preprocessing and 

analysis algorithms commonly applied in RSS have been discussed elsewhere [52].  

IV.3   CHEMOMETRICS AND DATA ANALYSIS 

A FTIR spectra of a single sample, acquired at a 2 cm-1 resolution, from 400 to 4000 
cm-1, includes over 1800 absorbance values. Due to the relatively high dimension of FTIR 

spectra, alongside the intrinsic variability of biological systems, multivariate analysis is a key 
aspect of FTIRS. There are also various studies based on univariate analysis, i.e., looking at 

spectral bands or ratios to retrieve information concerning biomolecules such as lipids, proteins, 
DNA, glycogen, phosphate levels. In these cases, the deconvolution of overlapped spectral 

bands along spectral derivatives plays a key role. Also, the metabolic status, such as apparent 
translational levels or turn-over metabolism, have also been probed with univariate analysis. 

However, most studies, due to the complexity of FTIR spectra, apply sophisticated multivariate 
processing methods. 

Most of the techniques to be discussed originated from chemometrics, a field that 

‘spun-off’ from the branch of analytical chemistry in the mid-1970s greatly due to work of 
Kowalski and Wold [53]. More recently, machine learning techniques have been increasingly 

applied in order to tackle more complex biological phenomena; as such, these advanced 
algorithms are now an integral component of infrared spectroscopy. In conjunction with 

increasing computational power, these techniques enable the extraction of information from 
much larger volumes of denser data, i.e., data with more samples and more variables [54]. In 

order to achieve robust models, a FTIRS workflow should include: quality control routines, to 
ensure high-quality spectral libraries; preprocessing procedures, to highlight sample-specific 
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spectral components; dimensionality reduction methods, to facilitate data visualization and 

improve subsequent analysis; and, chemometrics and/or machine learning algorithms. 

IV.3.1   QUALITY TESTS AND SPECTRAL PREPROCESSING 

An important first step in FTIRS is to appreciate the quality of the raw spectra, for which 
three parameters are typically referred: sample thickness, in transmission mode the integrated 

absorption values can be considered as an estimate for sample thickness that should be within 
a given range; signal-to-noise ratio, which measures both the signal at Amide I region (1620-

1690 cm-1) and the noise in the signal-free region (1800-1900 cm-1), further excluding spectra 
below a minimum value; and, water content, which is detrimental in FTIRS, and can be probed 

at the atmospheric water vapor region (1750-1900 cm-1) of the second derivative spectra [55]. 

To maximize data extraction from the FTIR spectra, preprocessing methods should be 
explored with the goal of e.g., removing baseline offsets and minimizing physical effects as 

light scattering scatter. Examples of preprocessing methods are baseline-correction, 
normalization, multiplicative scatter correction, derivative filtering and combinations thereof. 

For better understanding and visualization of the workflow, the following discussion is 
accompanied by examples of an actual FTIRS dataset, obtained from a study based on 

Escherichia coli exposed to rifampicin and nanoencapsulated rifampicin. 

The objective behind spectral preprocessing is to achieve numerically what could not 

be accomplished physically during data acquisition, in other words to ‘enforce’ intra-replica 
homogeneity and reduce the non-discriminatory sample-specific component of the spectral 

signal (for simplicity named noise), and simultaneously highlight inter-replica variation, which 

contains information related to biological variations under study [56]. 

The most commonly used preprocessing methods include: Baseline correction, which 

aims to reduce baseline and slope distortions inherent to complex spectra acquisition; 
Multiplicative scattering correction, which minimizes scatter effects due to particles of different 

sizes and shapes obtained during the dehydration process; Normalization procedures, to scale 
spectra within a similar range to compensate differences in the sample’s total biomass and 

varying optical pathlengths, and so reduce differences in spectral intensity while highlighting 
differences in spectral patterns; Derivatives, so to enhance the informative component of the 

data by increasing the resolution of overlapping bands, while minimizing physical interferences. 
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Determining spectral derivatives has the downside of reducing signal scale and amplifying the 
noise, however the latter can be minimized if the Savitzky-Golay filter is used [15]. The effects 
of some of these preprocessing techniques with raw spectra are compared in Figure 4. Other 
commonly used preprocessing algorithms have been described elsewhere [56]. 

IV.3.2   UNIVARIATE ANALYSIS OF FTIR SPECTRA 

An alternative to multivariate analysis of FTIR spectra is univariate analysis of specific 
spectral bands and/or ratios. In this type of analysis, one approach is to apply various tests to 
evaluate the statistical relationship of spectral bands, or ratios, to a given metabolic or 
phenotypic characteristic, which may reveal that the former can be used as biomarkers of the 
latter. Independently from the statistical test applied, and the type of spectral feature, it is 
desirable to apply preprocessing techniques beforehand.  

An example of a statistical workflow for biomarker screening has by described by 
Marques et al. [57], and more recently we have developed an automated workflow that applies 
the most suitable hypothesis tests to distinguish two or more populations, in mean terms [58]. 
This enables an extremely efficient investigation of a large number of putative biomarkers; 
ensures the most powerful test is always applied, if its assumptions are not violated; and, 
accepts a range of samples and number of observations within. 

Alternatively, univariate analysis can be used to associate spectral features with 
biochemical or metabolic characteristics, such as the levels of RNA, glycogen, phosphate level, 
CH3/CH2 ratios, amide I β-sheet and α-helix turnover metabolism ratios. In these cases, as 
described by Sales et al. [4], it is often possible and beneficial to deconvolute overlapped 
spectral bands. Here, overlapping bands composing a single spectral band can be identified 
with the peaks revealed by the second derivative spectrum, and these can then be resolved 
into their underlying biochemical contributions. 

For example, the second derivative of the spectral band between 1000 and 1150 cm-1 
reveals five different peaks (Figure 5 – A), which in turn suggests that this apparent single 
band of the original spectrum (Figure 5 – B, highlighted in bold), is actually composed of five 
overlapping bands. After spectral deconvolution using Lorentzian shape curve fitting, 
considering the number of subjacent peaks identified on the second derivative, five bands 
whose peak is at the location identified on the second derivative, were fitted to the original   
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Figure 4. Fourier-transform infrared spectra acquired from Escherichia coli cells prior to 

exposure ( ), and after exposure to rifampicin ( ) and nanoencapsulated rifampicin 

( ) without preprocessing (A), after baseline correction followed by normalization at 

the Amide I band (B), and after the Savitzky-Golay filter was used to determine the 

second derivative spectra (C).   
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spectral region (Figure 5 – B). These bands, with peaks at 1032 cm-1, 1055 cm-1, 1078 cm-1 
and 1111cm-1 correspond to C-OH in glycogen molecules, to C-O-P in phosphate esters, to 
PO- in phosphodiesters, and to C-O in RNA molecules, respectively. As such, if the objective 
was to monitor RNA levels, the resolved band at 1111cm-1 would be better suited than the 
original band, whose peak was around 1080cm-1, and its intensity influenced by various 
biomolecules. 

Figure 5. Second derivative of Fourier-transform infrared spectra of Escherichia coli 

cells, obtained in transmission mode in the region between 1000 to 1150 cm-1, where 

arrows highlight spectral peaks (A). Deconvolution of the original band, highlighted in 

bold, with Lorentzian shape curve fitting into its five underlying bands whose peak align 

with those identified on the second derivative spectra (B).  

IV.3.3   PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) is the swiss army knife of chemometrics. One of 
its most common applications is to reduce a set of multivariate measurements to a smaller set 
of components with less redundancy, which are expected to maintain the original data structure 
[59]. PCA converts a set of observations and (possibly) correlated variables from the original 
dataset into a new set of ‘projected’ observations (scores), on new uncorrelated variables 
called Principal Components (PCs). Because the number of PCs is less than or equal to the 
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number of original variables, and few PCs can be used to reconstruct the original signal, PCA 

reduces data dimension.  

By definition, the first PC models as much data variability as possible and succeeding 
PCs are ranked by decreasing variance, given the constraint that they are orthogonal (i.e., 

uncorrelated) to preceding PCs. PCs are linear combinations of the original variables, thus the 
various scores on the PCs space can be analyzed as would the original spectra [60]. PCA 

interpretation commonly relies on score plots, exemplified on Figure 6, which serves to 
visualize the relationship between the projected samples on a reduced dimensionality plot. 

Projected samples, or PCA scores, can be used as a precursor of further analyses. A 
straightforward example of which is performing an unsupervised Hierarchical Cluster Analysis 

(HCA) on PCA scores to identify intrinsic clusters and relate these to a biological phenomenon. 
Alternatively, it is possible to perform a Linear or Quadratic Discriminant Analysis (LDA and 

QDA, respectively). Either method determines linear expressions that model descriptors 

against variables, while maximizing between-class variability in relation to the pooled within-
group variability [59]. In other words, these are parametric methods that select directions which 

maximize class separation using a distance metric [60]. To do so, it is necessary to ‘introduce’ 
external data on original dataset, thus the term ‘supervised’. In practice, either LDA or QDA 

quantitatively describe ‘boundaries’ between classes, as seen in Figure 7. 

Therefore, it is possible to predict class-membership for unknown samples and 

inclusively determine the robustness of the predictive model with a multitude of statistical 
validation tools, which is an integral part of the multivariate model building workflow. It is 

important to note, however, that PCA must be applied to the complete dataset, and new 
predictions require a re-calibration of the projected samples on new set of PCs. 

In a broader scope of dimensionality reduction, PCA belongs to a class of methods 

named feature construction. Within these methods, examples include Partial Least Squares 
(PLS), band fitting or peak picking, among others. In addition to building new features of 

reduced dimension, it is also possible to select the most relevant features of the original dataset. 
In this case, PCA can also be applied, but other methods include forward feature selection, 

genetic algorithm or random forests [61].  
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Figure 6. Score plots of the first 3 principal components of a PCA, which was applied to 

second derivative Fourier-transform infrared spectra preprocessed with the Savitzky-

Golay algorithm. FTIR spectra were acquired from E. coli cells prior to exposure (+), and 

after exposure to both rifampicin (o) and nanoencapsulated rifampicin (x). Individual 

replicates are shown to evaluate reproducibility. 

A different output of a PCA are its coefficients, or loadings, which show the correlation 

between PCs and the variables, e.g., wavenumbers. Loading plots are a visual representation 
of the correlation between each variable to each PC, which is denoted by a vector pinned at 

the origin. As such, their length reflects the relative weight of the variable on the PC, while the   
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Figure 7. Quadratic discriminant analysis boundaries superimposed on the score plot 

of second and third principal components of a PCA, which was applied to second 

derivative Fourier-transform infrared spectra after the Savitzky-Golay algorithm. FTIR 

spectra were acquired from E. coli cells prior to exposure (+), and after exposure to 

both rifampicin (o) and nanoencapsulated rifampicin (x). Individual replicates are 

shown to evaluate reproducibility. 

angle between vectors reveals the correlation between variables. Given the loading matrix 
normalization constrain, where the sum of squared elements for a variable is set to one, a 

correlation circle can be plotted. The variables close to the center of the circle have a smaller 
contribution to the PCs and are therefore generally less informative [62]. However, the high 

dimension, and band overlap, of FTIR spectra makes loading plots impractical. 

As an alternative, it is possible to directly identify the variables with greater contribution 

to the sample distribution pattern observed on the score plots, which is a more common 
approach when dealing with FTIR spectra. In this case, the loading of every variable is plotted 

for each PC used to build the final projection. Alternatively, for a more holistic perspective, the 
sum of the variables used to build the final projection can also be used. This results in a plot 

with identical abscissa to the original spectra, however the ordinate corresponds to the 

component loading [60]. Here, the presence of signal-rich regions can be directly traced back 
to the original spectra, in particular certain spectral bands that have been associated with 

biomolecules. 
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As seen, choosing the number of PCs to build the final projection of the original data 
onto the newly created space is a critical step in PCA. For this the scree plot is typically used, 
which shows the successive, and decreasing, eigenvalues of PCs. This reveals how much 
variability of the original data is being retained in the projected space and facilitates the 
definition of a cut-off point. Even so, there is no assurance that the data variability being 
discarded is not a direct consequence of the biological phenomena being studied, so this 
approach requires great care in its implementation. On a slightly different note, PCA can be 
used for outlier detection by plotting the Q residuals along the Hotelling T2 [63]. 

As stated, a PCA can be applied to a multitude of problems, and the case of multivariate 
regression is equally relevant. Principal Components Regression (PCR) applies a multi-linear 
regression to estimate the outcome (i.e., the response or dependent variable) on a set of 
covariates (i.e., predictors, explanatory variables, or independent variables) based on a 
standard linear regression model. In PCR, instead of regressing dependent variable on 
explanatory variables directly, the PCs of the explanatory variables are used as regressors 
[60]. In other words, samples are represented on a new space – the score plots – which 
maintains the original data structure, and those are used for calibration purposes. As before, 
this application of PCA can always be related back to the original spectra for biological 
interpretation. 

IV.3.4   PARTIAL LEAST SQUARES 

The PLS method was first introduced with the non-linear iterative partial least squares’ 
algorithm, aimed at deriving linear models from nonlinear parameters. Later this was adapted 
for overdetermined regression problems, which were typically solved with PCR, and the 
method named PLS. Once a method per se, alternative implementations of PLS were 
determined, particularly regarding the necessary constrains, to avoid trivial solutions, of the 
successive PLS directions. These are traditionally either orthogonal or uncorrelated scores 
constrains [64]. 

Currently, PLSR is one of the most commonly used chemometric methods for 
calibration. PLSR is particularly suitable when facing a dataset with more variables than 
observations, and there is multicollinearity across variables [65]. This is precisely the case of 
FTIR spectra, so it is not surprising that a PLSR model outperforms an equivalent model (i.e., 
same number of PCs and Latent Variables (LVs)) obtained with PCR, as seen on Figure 8.  
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Figure 8. Comparison of observed versus predicted response (A), estimated R2 (B) and 

cross-validation root mean squares prediction error (ERMSPE) (C) of a PCR and PLSR. 

Second derivative spectra of E. coli cells exposed to both rifampicin and 

nanoencapsulated rifampicin were regressed against the log2 transformed twofold 

antibiotic concentrations that E. coli was exposed to. 

Although not originally intended for pattern recognition, Partial Least Squares 

Discriminant Analysis (PLSDA) has become increasingly applied in a heuristic context. In this 

case, PLSDA works by fitting a linear PLS regression model to a set of dummy variables that 
reflect class membership. Thereby, PLSDA enables the projection of observed samples to a 

new space defined by LVs. In comparison with PCA, PLSDA is advantageous since it not only 
attempts to maximize the explained variance of the original data, but LVs are constructed so 

to maximize the correlation between the original data and the dummy variables [66].  

In theory, PLSDA is preferred to PCA when the goal is sample separation, which is due 

to the relationship between PLSDA and canonical correlation analysis, and the subsequent 
link between the latter and LDA. In fact, PLSDA can be seen as a penalized canonical 

correlation analysis, with PCAs to determine such penalizations [67]. In practice, the projected 
samples can be visualized on the newly defined LVs space, which produces a graphical 

presentation identical to the score plots obtained with a PCA.  

However, because PLS maximizes the correlation between the original variables and 
the classifier, falsely positive predictions occur in a few situations, which is more frequent when 

the number of variables greatly exceeds the number of samples. Despite this controversial 
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behavior that contrasts with the original objective of the PLS algorithm, PLSDA is still widely 
applied, but care should be taken [68] . 

Another application of the PLS algorithm is for dimensionality reduction. Similarly to 
PCA, the loading weights of PLS reflect the importance of the original variables on the LVs 
and are an easily accessible output. Moreover, because the PLS model can be cross validated, 
the number of LVs in the fitted model can be optimized. Likewise, the regression coefficients 
are also typical PLS outputs, and these reflect the weight that each variable has on the fitted 
response, i.e., the predicted class membership. In either case, setting a minimum threshold 
above which variables are deemed ‘informative’ serves to exclude non-informative variables.  

However, these thresholds rely on absolute values that may be challenging to define. 
As such, the variable importance in projection method was developed, which provides a 
relative measure, and can therefore be expressed as a percentage. In essence, this method 
tallies the contribution of each original variable to the variance modelled by each LV, which is 
weighted by the covariance between the original variables and the predicted class membership 
[66]. Other dimensionality reduction techniques based on the PLS algorithm have been 
developed and have been reviewed elsewhere [69]. 

IV.3.5   UNSUPERVISED CLUSTERING METHODS 

Unsupervised pattern recognition has been a main objective of chemometrics since it’s 
early days, when researchers faced questions as what intrinsic patterns does the data have? 
How do these relate with known variables? To answer these, different types of cluster analysis 
are typically applied, most of which have been adapted from numerical taxonomy towards their 
application in chemometrics [70].  

HCA is an unsupervised pattern recognition algorithm, which assumes that the 
dissimilarity between samples is directly reflected by the samples distance in the descriptor-
defined space (the original dataset or after dimensionality reduction) [59]. After the proximity 
between samples has been determined, the distances between groups of samples, or linkages, 
are determined to create a multi-level hierarchy, or tree, that is represented on a dendrogram 
[65], as shown in Figure 9A.  
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Figure 9. Hierarchical cluster analysis A) dendrogram and B) k-means silhouette plot. 

Fourier-transform infrared spectra have been acquired from E. coli cells prior to 

exposure (R0 and NR0), and after exposure to both rifampicin (R512 and R256) and 

nanoencapsulated rifampicin (NR512 and NR256), and individual replicates are shown 

to evaluate reproducibility and possible misclassifications. 

To partition the data into clusters, it is necessary to ‘cut’ the tree, which can be done 
arbitrarily or given the natural divisions of the data. In the former, a vertical cut-off is applied 

on the dendrogram so that a specified number of clusters are formed, despite the fact that 
these clusters may bear no relationship with the biological phenomenon being studied. In the 

latter, a cut-off is applied to the inconsistency coefficients of the linkages, which allows to 
cluster the data regarding how abruptly the samples similarities change among groups of 

samples.  

Unlike HCA, k-means operates on observations, rather than their dissimilarity, which 

results in a single level of clusters. As such, k-means is considered a partitioning or non-

hierarchical clustering method. The mechanics behind k-means are rather simple, which 
translates to an efficient implementation. In essence, k-means assigns class membership of a 

samples to the cluster whose centroid is closer, and the number of clusters (k) is defined by 
the user [71]. Per definition, various distance metrics can be used, as in HCA. 
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The resulting clusters are then observed via a silhouette plot, as shown in Figure 9 – 

B. Here, the value associated with each sample reveals to how close that sample is grouped 

within its cluster, in relation to the samples in other clusters. Note that silhouette values are 
contained between -1 and +1. Therefore, smaller negative values suggest that a given sample 

was poorly clustered, while larger positive values reveal better clustering. Moreover, silhouette 
values close to zero imply that a given sample is very close to the decision border for a different 

cluster [72]. 

IV.3.6   ADVANCED ALGORITHMS 

Despite the similar name, k-nearest neighbor (KNN) is not related to k-means. While 

the latter is a clustering method, KNN is a supervised classification algorithm that can also be 

used for regression. As such, KNN is capable of classifying new, unlabeled samples by probing 
its k nearest neighbors. Firstly, the distances within known classes are determined for values 

of k between 1 and the number of samples, which identifies the value of k that produces the 
lowest error. Then, the distance of new samples to those use in training is determined, and the 

new samples are classified as the majority of its k neighbors, which is why typically k is an odd 
number [73]. 

Soft independent modelling of class analogy is a particularly interesting, supervised 
pattern recognition method. For each class, a separate PCA is built. For that, either a cross-

validation method is used to determine the number of components that must be retained so 
that sufficient variability of the original data is modelled by the PCA of a given class, or each 

class is delimited by a region in space that ensures a given samples belongs to its known class, 

usually within a confidence level [59]. New samples are classified to the class whose PCA 
model produces the smallest residual. As such, intra-class similarity is favored rather than 

inter-class dissimilarity [60]. 

Support Vector Machines (SVM) is considered a generalized linear method that can be 

applied in both regression and supervised pattern recognition [74]. Typically, SVM is used to 
build binary classifiers, which work in a similar fashion to the LDA/QDA example previously 

discussed. In other words, SVM establishes pair-wise boundaries between samples of different 
classes. However, SVM outperforms LDA and QDA since the support vectors, i.e., the samples 

at the edge of each class, are used to determine a hyperplane that maximizes inter-class 
distance [75]. Although SVM is labelled as a linear method, if samples are not linearly 
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separable on the original space, a kernel transformation can be applied to transform the 

original samples and represent them on a higher-dimension space where separation can be 

achieved linearly [75]. Therefore, SVM tends to present better generalization capacity and 
performs better with higher-dimension data, and in particular, noisy data [76]. 

A non-parametric alternative are classification and regression trees. Irrespectively of 
the end goal, this type of analysis is based on a decision tree that starts with an observations’ 

descriptors (root) and evolves towards a response (leaves). Building said tree is typically a 
three step process where a maximal (overfitted) tree is grown, then pruned into sub-trees, and 

lastly the optimal tree size is selected [77]. In addition, it is possible to use ensemble methods 
to combine more than one decision tree in a single classifier. The rational is that, even if the 

decision tree is just above chance level, i.e., barely outperforms random choices, a 
combination of several tress of equally poor performances yields a classifier with better 

performance that a single learner that is theoretically stronger. Examples of these are 

AdaBoost, bagged trees, or random forests. Moreover, ensemble methods are not exclusive 
to decision trees. In fact, these can be applied to more than decision trees, for instance to KNN, 

LDA, QDA or SVM [78]. 

Artificial Neural Networks (ANNs) can generalize and cope well with nonlinear 

problems. As such, ANNs are suited for pattern recognition and multivariate regression in 
degraded, missing or noisy data. In general, large numbers of processing units (neurons) are 

organized in layers, interconnected by synapses with variable strengths, and an activation 
function (usually a nonlinear sigmoid function) determines the output, given the weighted sum 

of inputs [79]. Two widely applied algorithms are probabilistic neural networks and self-
organizing maps. While the former are great at rapid supervised classification with relatively 

low computational requirements [80], the latter are very reliable at unsupervised categorization 

[81]. The extensive range of existing variations of ANN and SVM implies that their revision, 
and subsequent application, with the rigor and detail needed to present meaningful examples 

would require an unreasonably extensive document. Ultimately, as the complexity of 
algorithms increases, not only does parameterization and optimization become more 

demanding, but also interpreting their results becomes increasingly challenging.  
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IV.4   FINAL REMARKS 

Advances in the field of FTIRS regarding instrumentation, sampling and detection 

modes currently permit the analysis of a large variety of samples, including biological fluids, 

isolated cells, whole tissues and tissue sections. In addition, the multitude of chemometrics 
methods available, and the informatic tools for their application, maximize the data that can be 

retrieved from FTIR spectra, which in turn facilitates their interpretation into biologically 
relevant information. As such, FTIRS is a simple, rapid, economic and mature technology 

capable of capturing highly sensitive and specific biochemical and metabolic information, 
whose application potentiates knowledge concerning various biological phenomena. Therefore, 

the application of FTIRS to mechanism-based high-throughput screening antibiotic discovery 
is well-justified and holds great potential. 
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Abstract 

What started as a simple graphical user interface with a few buttons to automate the application 

of preprocessing routines eventually became SpecA. SpecA is a custom-made spectra 

analyzer to streamline most of the data analysis pipeline of an infrared spectroscopy 
experiment. This includes loading and handling large datasets, quality control routines, 

preprocessing, dimensionality reduction, quantitative and qualitative analyses, output 
generation, among others. Importantly, SpecA makes any of these tasks effortless, and allows 

the comparison of different parameters with objective performance indicators. In turn, this 
allows researchers to swiftly evaluate their data and ensures an easier identification of data 

patterns related with the biological phenomena being investigated. Throughout this chapter, 
several figures of SpecA ‘in action’ are accompanied by brief descriptions of how SpecA works 

from a user perspective. As such, this chapter provides a clear picture of SpecAs’ 

functionalities and showcases how SpecA can be used, thus highlighting the advantages of 
using SpecA, which in turn validates the reasoning behind creating SpecA. Without SpecA, 

many of the experiments conducted throughout this Ph.D. would not have been as successful, 
if at all. SpecA became the powerhouse that catalyzed the scientific productivity of this Ph.D.   
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V. 1   INTRODUCTION  

 SpecA is a custom-made spectra analyzer that streamlines the typical data analysis 
pipeline of an infrared spectroscopy experiment. SpecA was built using MATLABs’ graphics 
user interface (GUI) design environment, which is a hybrid platform for designing GUIs or apps 
that combines a drag and drop approach with an integrated editor, so that the behavior of 
visual components can be programmed.  

 At its essence, SpecA is a GUI that gives access to a series of algorithms without the 
need to implement any code. Importantly, SpecA ensures that each analysis can be swiftly 
executed without sacrificing the functionality or granular control over the algorithms available. 
Typically, resourcing to code, either in the form of a command line or a script, allows the user 
to fine-tune several parameters, but the downsides of this approach are that a higher level of 
expertise is required, the data analysis pipeline becomes considerably less fluid and is more 
error prone. SpecA was constructed while aiming for an equilibrium between functionality and 
simplicity, between control and ease of use. 

 Before dwelling into the data analysis pipeline enabled by SpecA, a few concepts 
regarding the data structure and nomenclature are worth visiting. Figure 1 shows the data 
structure employed when working with a SpecA experiment. At its essence, a dataset is a 
matrix. If nothing else is done, then a dataset is simply a matrix whose entries are the 
absorbance registered on different samples (rows) over a range of wavenumbers (columns). 
Within a dataset there are lower hierarchical levels, but these only serve to organize the 
preprocessing combinations applied by the user. Each dataset has parameters that describe 
what it is, e.g., a spectra matrix, a principal component analysis (PCA) model, etc., and how it 
was obtained, e.g., number of principal components (PCs), PCA algorithm, etc. Often, these 
parameters were named ‘Internal variables’, since they are part of the dataset, in contrast with 
the ‘external variables’ that complement and describe the dataset. 

 A dataset can be analyzed, in which case a new dataset is generated. For instance, a 
new dataset is generated if a PCA is applied to a spectral matrix, which shares the same 
variables, or a subset thereof, with the original dataset. As such, an assay is a group of 
datasets that share the same variables, or a subset thereof, with the original dataset. An assay 
can be created by loading a new dataset, by concatenating other assays, or applying a set of 
rules, which will be discussed ahead.  



Chapter V 

 116 

Figure 1. Representation of a SpecA experiment data structure. Major levels are 

represented in bold and their properties are outlined. Minor levels are merely for 

organizational purposes. 

A collection of assays is called an experiment. This choice of data structure was 
paramount in creating the listbox selection layout that is characteristic of using SpecA, which 
allows to swiftly scroll through various levels of preprocessing, datasets and assays.  

Rather than describing how SpecA works from a programming or algorithmic 
perspective, this chapter aims to showcase how SpecA can be used, thus provides a clear 
notion of its functionalities and highlights the advantages of using SpecA, which in turn 
validates the reasoning behind creating SpecA. As such, the remainder of this chapter 
resources to several figures, accompanied by brief descriptions, which capture the user 
interaction that can be expected when using SpecA.  

Two thigs are noteworthy: firstly, the previous chapter has covered many of the 
fundamentals of the data analysis algorithms that are showcased in the following sections; 
secondly, the application of these algorithms was described in the context of the research 
conducted throughout this Ph.D. thesis. Therefore, this chapter is mostly focused on the data 
analysis workflow with a brief mention to its implementation. Whenever available, MATLABs’ 
built-in functions were preferably used. Otherwise, these were downloaded from File Exchange, 
a MathWorks community repository, and explicitly mentioned.  

Assay

Dataset

Pre-processing (level 1)

Pre-processing (level 2)

Pre-processing (level 3)

ØDescribe each sample 
of the assay

ØCan be categorical or 
numerical

Variables

Ø Describe what each 
dataset is and how it 
was obtained

Ø Saves visualization 
options

Parameters
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V. 2   HOME SCREEN 

SpecA is divided into two panels. A smaller control panel on the left, and a larger 
visualization panel on the right (Figure 2). SpecAs’ home page shows the control panel 
contents on the visualization panel overlaid by brief explanations that remind the user of its 
functionalities and operation. Importantly, SpecAs’ control panel is where nearly all user 
interactions occur. SpecA takes advantage of the tabbed panel feature, which allows to 
organize the available functionalities according to their role, namely those regarding the 
Dataset, Variable, Visualization, or Others, such as exporting. From herein, whenever a word 
directly refers to a SpecA button or component, it has been highlighted in bold, this way the 
user knowns what to look for on the respective figures. Moreover, many of SpecAs’ 
functionalities are accessible by clicking on a popup-menu, so whenever relevant, available 
functionalities were highlighted with an open popup-menu. 

Figure 2. SpecAs’ home page. SpecA is composed of a control and a visualization panel. 

On the latter a brief description of how to use the control panel is presented.  
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V. 3   CREATING AN EXPERIMENT 

To start an experiment, click on the respective popup-menu and choose Create new 

experiment (Figure 3). A sub-GUI is shown with various fields that need to be filled in order to 

load a dataset within a new assay under the new experiment. This method of overlaying sub-
GUIs over the visualization panel will be coherently used herein to showcase the required 

inputs for each action. SpecA accepts manually selecting data point table (DPT) files (DPT 
Manual), introducing the name of serially numbered DPT files that were placed in SpecAs’ 

input folder (DPT Series), or a range within an Excel file (Microsoft Excel). 

Figure 3. Starting a new SpecA experiment. Highlighted are the required fields when 

the file type is a DPT file series or an Excel document.  
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V.3.1   LOADING A NEW DATASET 

An assay can be loaded to an existing experiment by choosing Load new assay from 
the same popup-menu shown in Figure 3. In this case, the sub-GUI that is shown lacks the 

field to enter the experiment name, but other than that is the same.  

V.3.2   MANIPULATING EXISTING ASSAYS 

Assays can be concatenated (Group into new assay), divided (Create assay from 

variable rule set), deleted (Delete assay), renamed (Rename assay), or duplicated 

(Duplicate assay) (Figure 4). While most of these functionalities are self-explanatory, the 
ability to divide an assay works by creating an assay whose samples adhere to user-defined 

rules and discarding the remainder. SpecA allows cumulative rules to be applied and can also 
carry-over existing preprocessing to the newly created assay. 

Figure 4. Functionalities available to manipulate assays. The sub-GUI shown allows the 

user to divide an assay using user-defined rules.  
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V. 4   ADDING VARIABLES 

Before analyzing a dataset, SpecA requires the user to introduce at least one variable 

(i.e., a numeric response for regression or a label). There are four ways to achieve this.  

V.4.1   REPETITIVE VARIABLES 

The first is by navigating to the Variable tab in the control panel, clicking on the 
External Variable popup-menu, and choosing Create variable dataset (Figure 5). Then a 

sub-GUI is shown where the user can enter the values assumed by the variable, and the 
number of replicas of each value, given these occur in succession. This is most often useful 

when variables follow a repetitive pattern, as is the case if replicas are acquired. If other 
variables exist, and some of which are constant among replicas, choosing Create replica 

variable set automatically creates a new variable with a unique identifier for each replica. For 

that, the user only needs to identify which variables are constant among replicas. 

Figure 5. Adding a variable to a dataset using SpecAs’ easy variable insertion sub-GUI.  
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V.4.2   FROM AN EXCEL FILE 

Often, it is the case that the variables don’t have the replicas in succession, don’t 
follow a clear pattern, or are already recorded on an Excel file. In that case, SpecA enables a 
smooth importation of data from a spreadsheet, so long as the file is in MATLABs’ directory. 
For that, choose Load variable dataset from Excel and fill in the fields of the dialog box that 
is shown (Figure 6). 

Figure 6. Importing a variable from an Excel file. The process is as simple as inserting 

the file and spreadsheet name, the cell range to be imported, a name for the new 

variable, and defining it as numeric or categorical.  
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V.4.3   USING TEMPLATES 

It could also be the case that another assay has an identical variable that the user 
wishes to import. In this case, variables can be copied to a new assay by first selecting the 

original variable in the list box under External variable, for which the user must navigate to 
the Variable tab of the control panel. Then choose the Save variable has template from the 

popup-menu. SpecA saves that variable, under its original name, as a new template. When 
creating a new variable from a template, so long as the dimensions of the datasets match, the 

user only has to choose a name for the variable (Figure 7). As a fourth option, SpecA has pre-
recorded templates that either have been useful in previous work (e.g., Concentrations and 

Replicas), or can be used to manually enter the data. For the latter, choose either the Zeros, 

Ones, or Name template and create a new variable. Then use the table on the visualization 
panel, under External Variable Set(s), to edit the new variable. After, choose Save variable 
table from the variable popup-menu. When using this option, ensure that the template matches 
the variable type, e.g., Name for categorical, and Zeros or Ones for numeric variables. 

Figure 7. Importing a variable from a template. The user only needs to select the 

template and a name for the new variable.  
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V. 5   VISUALIZING SPECTRA 

Although SpecA allows visualization of spectra immediately after an experiment has 

been created, a variable is required for the data to be plotted in a meaningful fashion. When 

visualizing spectra, it is possible to select (or alter) the coloring variable, in other words the 
samples assigned to each color, by navigating to the Viewing tab, under Temporary 

Parameters, Coloring variable (Figure 8). Moreover, informative feedback is presented to 
the user upon selecting a given point on the plot, which can be navigated using the mouse or 

the keyboard arrows. 

Figure 8. Visualization of second derivative spectra colored with a dummy variable. Blue 

box shows the visualization panel should the user select to zoom-in on that spectral 

region. A data point was chosen to demonstrate the information displayed.  
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V. 6   SPECTRA PREPROCESSING  

The last step before analyzing a dataset is to preprocess the spectra. For that, navigate 

to the Dataset tab and open the Preprocessing popup-menu (Figure 9). The resulting sub-

GUI allows the user to choose the Type of Pre-processing Combination to be loaded, either 
the Default, Template, or User-defined. For the latter, click on the Allow customization of 

default preprocessing parameters tick box, which reveals the Customized preprocessing 
combination panel. Here, after selecting one preprocessing strategy for each level using the 

popup-menus available, and entering any parameters required for a specific preprocessing 
algorithm, click Add custom combination. This adds the preprocessing combination to those 

under Detailed preprocessing combinations to apply. Note that below the popup-menus to 
select the type of preprocessing, other popup-menu shown reveal the list of available 

preprocessing algorithms.  

Figure 9. Preprocessing a spectra dataset using a template and complementing it with 

a customized combination. There are no limits to how many preprocessing 

combinations, and their parametrization, can be included.  
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Additionally, a combination of preprocessing algorithms can be loaded from memory 

by choosing Template from the popup-menu below Type of Pre-processing Combination, 

then choosing the desired template from the popup-menu below that one. Clicking Save 
combination as template opens a dialog to record a name for the chosen preprocessing 

combination, while Manage combinations templates allows editing or deleting templates. 

V. 7   GENERAL CHARACTERISTICS OF DATASET ANALYSIS 

For an equilibrium to be reached between control and ease of use, considerable effort 

was put into the ability to parametrize the analysis algorithms, while keeping the workflow 
intuitive, and limiting error prone behavior. In the dataset analysis sub-GUI (Figure 10) the user 

can select the Input dataset to analyze, which defines which Analysis Algorithm can be 
applied for that particular input dataset. Although the user is given lots of freedom to choose 

successive analysis algorithms, some combinations are not possible. Also, each analysis 

requires a Model Name. A nifty feature is that clicking on the Suggestion below the model 
name actually adds the current suggestion as the model name.  

If the user ticks the Customize Model box, then not only does the option to load 
customization from a template is presented, but also the Preprocessing, Dataset 

Restriction and Notes tabs are created (Figure 10). All the selections made across the 
different tabs can be saved to a template by clicking on Save as template. Close to this button, 

there are other self-explanatory buttons that expedite the burdensome parametrization of a 
dataset, in addition to reducing error prone repetitive tasks. 

Regardless of the type of analysis the user might want to conduct, there are a few 
parameters that are constant, namely those presented by the Preprocessing, Dataset 

Restriction and Notes tabs.  

In the Preprocessing tab the user can quickly choose to include All the preprocessing 
combinations, just the raw spectra (None), or a Custom selection. In the latter, three listboxes 

appear below Confirmed Preprocessing Combination, which describe the combinations 
currently selected for analysis. 

In the Dataset Restriction tab, the user can Restrict Samples to choose which values 
assumed by a given variable are included for analysis. Likewise, the dataset matrix can be 
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restricted regarding its columns (e.g., Limit wavenumbers numbers as depicted on Figure 

10, or the number of PCs if the input dataset is a PCA, for instance), in which case the process 

is equally simple, just fill the required fields. 

Moreover, the user can record some metadata along with the model. For example, the 

Author Name can be added to the model, as well as a timestamp (Include creation date) 
and any descriptive notes the user finds helpful to record along with the dataset. If the user 

elects to publish an automatic report, as discussed ahead, this information is then presented 
alongside the model results within the report. 

Figure 10. General dataset analysis inputs that are available for all analysis algorithms.  
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V. 8   QUALITY CONTROL ROUTINES 

Within SpecA there are three quality indicators, namely the signal-to-noise ratio, 

sample thickness and water content [1] (Figure 11), for which three visualization options are 

available on the visualization panel. These are Grouping, which allows the visualization of 
each indicator per each value assumed by a variable. This is useful for instance when 

analyzing spectra of different bacteria, where visualizing possible differences in sample 
thickness that might be associated with that particular grouping could be useful. Alternatively, 

if a variable is created with the layout of a 96-well plate, then it is also easy to visualize if any 
particular wells have higher water content, e.g., wells in the middle of the plate tend to require 

longer for complete dehydration prior to spectra acquisition. Also, the user can choose to view 
box-and-whisker plots, as shown, or the same data represented in histograms. Lastly, the 

compact view is shown on Figure 11, while an extended view mode expands each quality 

control indicator over the entire visualization panel and is useful when there are many grouping 
variables. As for spectra visualization, choosing a datapoint highlights certain information. 

Figure 11. Signal-to-noise ratio, sample thickness and water content estimated with a 

quality control analysis. Also shown are the available visualization options.  
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V. 9   DIFFERENCE, AVERAGE AND MEDIAN SPECTRA 

The simplest dataset analysis operations that SpecA can apply are determining the 

average spectra and median spectra. For that, a supervision variable is required to identify 

which samples are to be considered (Figure 12). This type of analysis is particularly valuable 
when the acquisition protocol includes mechanical replicates, and the user wants to average 

these to reduce operator variability. Additionally, SpecA can also determine the difference 
spectra, in which case further selections are required to identify which samples are to be 

subtracted. Following the traditional application of difference spectra, where the control 
samples are subtracted from experimental samples, SpecA presents a popup-menu to quickly 

select control samples. When the same sample is selected as experimental and control, it is 
effectively removed from the dataset. 

Figure 12. SpecAs’ inputs for difference spectra. Average and median spectra have a 

similar layout regarding the supervision variable but lack the selection table for 

experimental and control samples.   
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V. 10   BIOMARKER SCREENING 

Biomarker screening with SpecA works by first choosing spectral features, then 

analyzing them with a custom-made statistical workflow that applies a series of hypothesis 

tests to determine if samples come from different populations, in mean terms (Figure 13). The 
rationale behind this decision tree is provided in the supplementary materials. 

Figure 13. Decision tree of SpecAs’ statistical workflow to identify spectral biomarkers.  

For that, the user must navigate to the Core Parameters tab and select a supervision 
variable, which identifies samples according to their grouping; a significance level, to reject 

or not reject the hypothesis tested; a band width, for SpecA to search the datasets’ closest 
wavenumber to the suggested band localization; and a Monte-Carlo tolerance for the 

computation of statistical tests (Figure 14). It is important to highlight that biomarkers can be 

spectral bands or ratios. Under the Biomarker Management tab, a series of known spectral 
bands with biological assignment are included in SpecA by default, and the user can quickly 
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select them for analysis, for which the available notes shown below the list boxes, are often 

helpful. In addition, the user can manually enter a new band for analysis. SpecA also includes 

known spectral ratios that are of biological interest, which the user can confirm for analysis 
as done with spectral bands. In addition to manual entry of spectral bands for analysis, SpecA 

also computes all combinations of confirmed spectral bands into ratios and adds these for 
analysis by clicking Add ratios from bands.  

Figure 14. SpecAs’ inputs for biomarker analysis.  

In terms of results, at the center of a biomarker analysis is a table that briefly 

summarizes the p-values of the statistical tests applied (Figure 15). SpecA labels each putative 
biomarker (rows) as: red, if the hypothesis that samples come from different populations, in 

mean terms, is rejected; yellow, in the case of at least one hypothesis not being rejected in a 
multiple comparison test; or green, if the hypothesis is not rejected, in which case the band or 
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ratio is considered a biomarker, within the significance level chosen by the user. Below the 

table there is a tabbed panel that shows: the ratio or band value for each value of the 

supervision variable with a box-and-whisker plot, and a bar plot. Follows the usual 
descriptive statistics, decomposed into the constituents of the supervision variable; detailed 

information on the hypothesis tests applied, in particular the test statistic is often useful to 
scrutinize; and the Biomarker Location, where the original dataset reveals the patterns of the 

original dataset around the suggested location of the band or ratio. 

Figure 15. Set of outputs of a biomarker analysis.   
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V. 11   PRINCIPAL COMPONENT ANALYSIS  

SpecA has three PCA algorithms (Figure 16), according to MATLABs’ built-in function. 

In addition, the user is also queried for the maximum number of principal components 

(PCs) of the model, as well as a grouping variable set and coloring variable set. These 
variable sets are used to plot the data with different markers and colors, respectively. 

Figure 16. SpecAs’ inputs for principal component analysis.  
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Typically, 3-D score plots are difficult to visualize. However, because SpecA takes full 

advantage of MATLABs’ figure handling functions, it allows the user to rotate and pan the axis 

to better visualize any underlying patterns (Figure 17). In addition, the more traditional 2D 
score plots are also available, which can be configurable to show pair of PCs the user deems 

necessary (Figure 18). The model coefficients are an easy way to visualize the contribution 
of spectral regions to the sample separation on the PCA-defined space, which can be further 

decomposed for individual coefficients as shown. Both the variance explained and the 
eigenvalues grant the user with an easy appreciation of how increasing the number of 

components also increases how much variability in the original data is captured by the PCA 
model. Moreover, the average eigenvalue criterion (AEC) and corrected average eigenvalue 

criterion (CAEC) are non-arbitrary cutoffs to objectively select the optimal number of PCs to 
retain for a given dataset. For that, only PCs above said cutoffs should be included [2]. Lastly, 

the influence plot identifies outliers according to the Hotelling T2 statistic and Q residuals, 

which in this case are shown for a 99% confidence interval. These parameters are often 
relevant for outlier detection [3]. 

Figure 17. Set of outputs of a principal component analysis highlighting 3D score plots.  
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Figure 18. Set of outputs of a principal component analysis highlighting 2D score plots, 

model coefficients, variance explained, eigenvalues and influence plot.  
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V. 12   PRINCIPAL COMPONENT REGRESSION  

Regarding principal component regression (PCR), SpecAs’ inputs include the PCA 
algorithm, the maximum number of PCs and the regression variable, which is the numeric 

response variable to be modelled from the dataset. Because of its resemblance with PCA, no 
figure was shown exemplifying the available inputs for PCR. In terms of outputs, the Observed 
Vs. Fitted tab provides an easy overview of the PCR performance, for instance the goodness 
of fit is indicated by how close the samples are in relation to the ! = #  diagonal, and 

heteroskedasticity is made evident by samples diverging more from the diagonal on one region 
of the plot more than others (Figure 19). The regression vector and the variance explained 

are identical to the model coefficients and variance explained of a PCA. The prediction 
error and R2 presented are calculated after a leave-one-out cross-validation and are presented 

over a range of PCs (Figure 20), which helps in choosing an adequate number of PCs to avoid 

overfitting but ensure an adequate modelling of the data. 

Figure 19. Set of outputs of a principal component regression highlighting the observed 

versus fitted response plot.  
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Figure 20. Set of outputs of a principal component regression highlighting the 

regression vector, which is equivalent to the model coefficients of a principal 

component analysis, cross-validated prediction error and R2, along variance explained. 
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V. 13   PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS AND REGRESSION 

To calculate a partial least squares (PLS) discriminant analysis (PLSDA), SpecA uses 

a community file uploaded to File Exchange by Cleiton A. Nunes from UFLA, Brazil. 

Unfortunately, this particular function is no longer publicly available, but it was kept in SpecA 
given it is still fully functional, and more importantly integrates cross-validation both in PLSDA 

and PLS regression (PLSR). Eventually, the work by Nunes et al. evolved into a standalone 
GUI called Chemoface [4], which is publicly available.  

PLSDA has the same input requirements as PCA, except PLSDA requires a 
supervision variable that reflects class membership for prediction. This input appears where 

the algorithm selection was available for PCA. Additionally, in PLS the PCs are called latent 
variables (LVs), which is another required input for PLSDA.  

In terms of outputs, PLSDA has the same number of outputs and these are mostly 

identical to PCA. Figure 21 highlights PLSDA that are different from those of a PCA. 
Particularly, PLSDA does not have an eigenvalue plot, but includes a variable importance 

projection plot; PLSDA substitutes the influence plot with one of leverages versus 
residuals; importantly, while the former can be used to remove uninformative spectral regions, 

the latter is helpful for outlier detection [5,6].  

Regarding PLSR, SpecAs’ inputs include the maximum number of LVs and the 

regression variable, which are identical to those of PCA; as are the outputs, so these were 
not presented nor discussed. 
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Figure 21. SpecAs’ inputs and outputs exclusive of partial least squares discriminant 

analysis.   
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V. 14   HIERARCHICAL CLUSTER ANALYSIS 

Hierarchical cluster analysis (HCA) requires a different set of inputs (Figure 22). Firstly, 
a label variable is required to identify individual samples on both the dendrogram and the 
silhouette plots. HCA also involves a distance algorithm and a linkage algorithm. These 
can be singular, e.g., Average; or Multiple, e.g., all available. The user is also asked for the 
maximum number of clusters, which is useful to limit the maximum number of clusters from 
which the optimal number of clusters is identified. Choosing a number of clusters forces a 
horizontal slice on the dendrogram that prunes the tree into a user-defined number of clusters, 
which may or may not be related to the natural divisions of the data. Opposingly, to consider 
the natural divisions of the data, the user can specify cluster boundaries that are not a 
horizontal slice on the dendrogram. For that, the user chooses an inconsistency cut-off, 
where higher cutoff values effectively allow clusters to contain more dissimilar samples within, 
resulting in a smaller number of clusters. The dendrogram color threshold controls the 
linkage below which groups of nodes are colored in unique colors and can help in visualization. 

Figure 22. SpecAs’ inputs for hierarchical cluster analysis.   
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If multiple distances and/or linkages are chosen, it is possible to scroll through those 

selected for analysis as can be done with preprocessing combinations, datasets or assays. 

For that, the user should navigate to the Variable tab of the control panel, and under External 
Variables, choose either distance or linkage under the list box named Variable loaded, and 

the particular metric desired for visualization on the list box below under Details.  

Regarding the outputs of a HCA, the most common is a Dendrogram (Figure 23). Here, 

sample label font size is adjusted according to the number of samples being plotted and can 
be interactively zoomed in with the mouse. It is also possible to select a data point to rapidly 

view the height of a given node. The Cophenet tab (Figure 24) provides the user with a quick 
comparison of the cophenetic correlation coefficient, which is higher when the correlation 

between the linking of objects in the tree is strongly correlated with the distances between 
objects. Because this parameter is calculated for all combinations of linkage and distance 

chosen for analysis, this translates to an objective method to choose the optimal combination 

of these parameters.  

Figure 23. Set of outputs of a hierarchical cluster analysis highlighting a dendrogram.  
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The Sum of Squares tab shows how the within-cluster sum-of-squares performs over 

a range of clusters, broken down into the combinations of linkage and distance. When this 

value is lower, there is lower variability of the samples within each cluster, so the clusters are 
more ‘compact’, and the underlying linkage and distance is seen as ‘better’.  

To evaluate the number of clusters obtained by pruning the tree with a user-defined 
number of clusters, or those resulting from an inconsistency cut-off, SpecA presenta a 

Silhouette (Max Cluster) and a Silhouette (Inconsistency) respectively.  

Figure 24. Set of outputs of a hierarchical cluster analysis highlighting the cophenetic 

correlation coefficient, the within-cluster sum-of-squares, and silhouette plots 

calculated with a user-defined number of clusters and an inconsistency cut-off.  
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V. 15   K-MEANS CLUSTERING 

K-means cluster analysis, referred to as KCA within SpecA, requires the user to define 

a label variable, to identify individual samples on the silhouette plot; a maximum number of 

clusters, which is used to not only build the K-means model, but up to which the performance 
indicators are calculated; and a distance metric (Figure 25). Additionally, KCA asks for a 

number of iterations, which is typically the highest that can be computationally afforded so the 
algorithm converges; and a number of replicates, which is the number of times the calculations 

are repeated with different initial positions, to avoid local minima. SpecA presents the KCA 
model with lowest within-cluster sums of point-to-centroid distances. 

Figure 25. SpecAs’ inputs for a K-means cluster analysis.  
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KCA has two outputs, a silhouette plot and performance indicators (Figure 26). By 

default, the silhouette is plotted with the maximum number of clusters, but this is customizable 

in the Variable tab, under External Variables, similarly to the distance metric. The 
performance indicators presented are the Silhouette width values, the Davies-Bouldin 

index, and the Calinski-Harabasz index, which have been labeled as to whether these should 
be maximized or minimized for those who are less familiar. Moreover, these performance 

indicators are shown for all the distance metrics, and for up to the maximum number of clusters, 
chosen by the user. As such, these performance indicators reveal not only the optimal distance 

metric, but also the number of clusters that most likely reflects the natural divisions of the data 

Figure 26. SpecAs outputs for a K-means cluster analysis.  
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V. 16   GENERATING OUTPUTS 

Upon completion of an analysis, further actions are often necessary to finalize an 

experiment, for which SpecA has implemented a series of outputs generation actions that can 

be conveniently accessed under the Others tab of the control panel (Figure 26).  

Figure 27. SpecAs’ output tab of the control panel and sub-GUI for generating reports.   
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Firstly, SpecA generates high-resolution images, which researchers often require for 

publication, by clicking on Print display. This calls upon a File Exchange submission by Yair 

Altman [7], which can be highly customized to achieve the desired specifications. Additionally, 
it could be the case that a set, or sub-set, of an experiment is to be compiled into a single 

report. This might be useful to keep a record of what analyses have been done, or to share 
your findings with a colleague, for instance. For that, SpecA has a sub-GUI that appears by 

clicking on Publish Report, which automates this process (Figure 27). Here the user can 
identify the report by adding a Report Name, an Author Name and an Institution. Then, the 

report can be customized by choosing the View Mode, which controls if the images appear in 
an extended or compact format. The user can choose to keep the image files after the report 

is published or delete them. The user can include author comments on the report, which can 
be a description of the experiment conducted, for instance. It is noteworthy that any comments 

added when a dataset is analyzed also appear on the report. Lastly, several list boxes, popup-

menus and buttons were included so the user can select which assays are to be published, 
and within the datasets and preprocessing combinations. The report is generated as a word 

file using a template that can be easily customized by the user. 

V. 17   CONCLUSION 

What started as a simple graphical user interface, with a few buttons that automated 

the application of preprocessing routines, eventually became a tool for most of the data 
analysis pipeline of an infrared spectroscopy experiment. Since early in the development of 

SpecA, the goal was to facilitate the data analysis component of the research being conducted, 
and more specifically, to automate the most repetitive tasks so that what seemed impossible 

became standard practice. For example, applying different combinations of preprocessing was 

challenging at first; evaluating their effect on a model more so; and currently this is a mundane 
occurrence. In fact, it is now normal to apply a multitude of preprocessing combinations and 

parametrizations and immediately gauge their effect on the following datasets: PCA of 
preprocessed spectra; PCA of difference preprocessed spectra; HCA after PCA of 

preprocessed spectra; HCA after PCA of difference preprocessed spectra; and for the last two 
datasets multiple distance and linkage metrics are compared. What initially was simply 

inconceivable given the sheer volume of data, it is now standard practice just to evaluate the 
quality of an experiment, and sometimes of a day’s work. This not only provides near real-time 

feedback on the quality of the laboratory work, but also ensures the data analysis component 
of the research is thoroughly optimized. 
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An extremely positive side-effect of developing SpecA was that my proficiency with 
MATLAB, and coding in general, greatly improved, which very strongly reflected on all the data 
analysis that has been conducted and is presented on the following chapters of this thesis. 
There is no doubt that without SpecA, many of the experiments conducted throughout this 
Ph.D. would not have been as successful, if at all. SpecA has not been a secondary objective 
of this Ph.D., but rather it has been the powerhouse that catalyzed the scientific quality of this 
Ph.D.  
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V. 19   SUPPLEMENTARY MATERIAL 

There is a general agreement among most researchers that quantitative data should 
be evaluated with the appropriate parametric tests when the respective assumptions are 
verified, because generally these tests are more powerful than its nonparametric counterparts. 
This means that they are more likely to detect true differences or relationships. However, if at 
least one of the assumptions are violated, this power advantage may be negated [8,9]. 

Some researchers argue that the necessary transformation of quantitative data into an 
ordinal rank order or categorical or nominal format, in order to use a nonparametric test, leads 
to a loss of information of the data. Because of this, they still think that is more prudent to 
employ the appropriate parametric test even one or more of its assumption have been violated, 
arguing that most parametric tests are robust. Others researchers claim that many times, 
parametric and nonparametric tests employed to evaluate the same set of data lead to identical 
or similar conclusions [8]. Several researchers of different areas have revealed their concerns 
about the incorrect use of parametric tests, claiming that if the assumptions are not met 
properly then the parametric tests may provide results that are not statistically valid and 
consequently they can lead to inaccurate conclusions [10–14]. We believe that a correct use 
of suitable tests will provide more accurate conclusions. Thus, automatic workflow to 
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distinguish two or more populations, in mean terms, by applying suitable hypothesis tests to 
the corresponding independent groups of observations was created for biomarker screening. 
The differences between populations are considered statistically significant if the p-value is 
less than or equal to the significant level of 5%.  

In order to construct a credible and feasible automatic workflow, we first had to make 
two decisions: first, the minimum sample size to be used for normality tests had to be defined 
so that they have an acceptable reasonable power, to actually make sense to use them to 
assess whether the sample comes from a population with a normal distribution; and, which 
normality test should be used, in order to be more powerful considering different alternative 
distributions.  

The literature is not consensual nor for the choice of the minimum sample size to be 
used for normality tests so that they can be effective, nor which test to use. Some argue that 
for small samples ($ < 20) the normality tests are unlikely to detect non-normality. Also, 
several simulations studies had been carried out to compare different normality tests for some 
sample sizes and considering different types of alternative symmetric and asymmetric 
distributions, where test powers were very low for small samples, and even for $ = 20, but this 
was the turning point where tests start to be reasonable for several situations. The Shapiro 
Wilk normality test performs well in many cases, having a good power in several situations and 
becoming the most powerful in some situations [15–17].  

Ghamesi and Zahediasl [13] refer some normality tests, and discuss their importance 
to the validity of parametric tests. In their view, one of the most common normality tests, the 
Kolmogorov-Smirnov after Lilliefors correction, should no longer be used owing to it low power. 
They further argue that to assess normality both visually and through a normality test are 
preferable. For the latter, a Shapiro-Wilk test is highly recommended for several researchers 
[18]. Originally this test was restricted to $ < 50, but after Roystons’ modifications, an improved 
approximation to the weights result in an algorithm which can be used for 3 < $ < 5000 [19].  

Of course, checking normality visually using graphics like histograms or steam-and-
leaf plot (for large samples), boxplot, probability-probability plot and quantile-quantile plot (the 
last two more so for small samples), would be helpful to aid to take the right conclusion about 
the distribution of a variable [10,13,17] but this is not compatible with an automatic scheme. 
Attending to the mentioned studies, we opted to apply the Shapiro-Wilk test (adjusted by 
Royston) to evaluate normality for samples where $ ≥ 20, considering that at this size, the 
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powers obtained by simulation, although weak became reasonable. Indeed, for small samples 
($ < 20 ) the normality tests are unlikely to detect non-normality, and consequently this 
assumption for parametric tests cannot be verified, so, in these cases, nonparametric tests will 
be preferable. 

Regarding the automated workflow for biomarker screening: all parametric and non-
parametric tests involved in this workflow have been described elsewhere [8]. First, we are 
going to explain the statistical methodology applied to distinguish two independent samples, 
in mean terms. Here, f at least one sample is small ($ < 20), the non-parametric Mann-
Whitney-Wilcoxon test was applied. Otherwise, the Shapiro-Wilk normality test was used to 
verify if each one of the two samples came from a population with normal distribution. Then 
several situations may occur: 

If both samples come from populations with normal distribution, parametric T tests were 
used. In order to choose the suitable T test to compare the two populational mean values, a F 
test was first applied to evaluate the populational equality of variances, which determines the 
subsequent type of T-test to use: a two sample T-test if the population variances are equal; or 
the Welsh T test otherwise. 

If both samples do not come from populations with normal distribution, but both have 
size at least 30, then the parametric Z test was applied, because according to the Central Limit 
Theorem (CLT) the distribution of each of the sample mean estimator is approximately normal 
and consequently the difference between the two sample means estimators is a random 
variable which follows an approximately normal distribution. 

If both samples do not come from populations with normal distribution, but both have 
size less than 30, then we should apply the non-parametric Mann-Whitney-Wilcoxon test.  

If one of the samples comes from a population with normal distribution (sample +) and 
the other does not come from a population with normal distribution (sample ,), two situations 
may occur, depending on the dimension of the sample that does not come from a population 
with normal distribution ($!): If $! < 30, the non-parametric Mann-Whitney-Wilcoxon test was 

used; otherwise, according to the CLT we can apply the parametric Z test. 

In relation to the statistical methodology applied to distinguish more than two 
independent samples, in mean terms, if at least one of the samples is a small sample ($ < 20) 
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then the non-parametric Kruskal-Wallis test was applied because normality tests may not 
properly assess the assumption of normality in this case. Then, if all the samples have size at 
least equal to 20 the Shapiro-Wilk test was used to evaluate if each sample came from a 
population with normal distribution. Two situations may occur: 

If at least one of the samples did not come from a population with normal distribution, 
the non-parametric Kruskal-Wallis test was used; or if all samples came from populations with 
normal distributions, the normality assumption of the parametric one-way ANOVA test is 
satisfied. In this case, a Levene’s test was used to evaluate the other assumption of the one-
way ANOVA called homoscedasticity, where two situations may happen: 

If the assumption of equality of population variances is satisfied, then we can apply the 
parametric one-way ANOVA test to evaluate equality of the population means values. If the 
homoscedasticity assumption is violated, then the non-parametric Kruskal-Wallis test was 
applied to evaluate the equality of the population central locations.  

As a side note, some parametric procedures were developed to deal with heterogeneity 
of variance and could be applied instead of the non-parametric Kruskal-Wallis test, for instance 
the Welch One-way ANOVA. However, Keppel in 1991 noted the Welch One-way ANOVA is 
not acceptable for more than four samples (- > 4). Similarly, Moder [20] argued for the 
unsuitability of this test for more than two or three samples. These observations render this 
test incompatible with our workflow, given it was built to be as generalist as possible. 

In any of the parametric or non-parametric tests used to assess the equality of more 
than two populations in mean terms, if this hypothesis is rejected, multiple comparison tests 
were applied to evaluate which populations differ from the others. 
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Abstract 

We aimed to develop and optimize a Fourier-transform infrared spectroscopy (FTIRS) 
phenotypic screening bioassay for stress responses, regarding the effect of nutrient content, 
bacterial growth phase and stress agent exposure time. For that, a high-throughput FTIRS 
bioassay was developed to distinguish the Escherichia coli stress responses to sodium 
hydroxide, hydrochloric acid, sodium chloride, sodium hypochlorite, and ethanol. Principal 
component analysis and hierarchical clustering were used to quantify the effect of each 
parameter on bioassay performance, namely its reproducibility and metabolic resolution. 
Bioassay performance varied greatly, ranging from poor to very good. Spectra were partitioned 
into biologically relevant regions to evaluate their contributions to bioassay performance, but 
further improvements were not observed. Bioassay optimization was validated against 
empirical parameters, which confirmed a closer representation of known mechanisms on the 
antibiotic-induced stress responses. The optimized bioassay used standard nutrient content, 
cells in the late-stationary growth phase, and an 8h exposure. Only the optimized bioassay 
adequately and reproducibly distinguished the E. coli stress and antibiotic responses. The 
absence of performance improvements using partitioned spectra indicated that stress 
responses are imprinted on the whole-spectra metabolic signature. Ultimately, highly optimized 
FTIRS bioassay parameters are vital in capturing whole-spectra metabolic signatures that can 
be used for satisfactory and reproducible phenotypic screening of stress and antibiotic 
responses. 
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VI. 1   INTRODUCTION  

The aptitude of bacteria to thrive in challenging environments depends on their 
adaptation to a panoply of stimuli, especially stress‐inducing ones [1]. In the case of foodborne 
pathogens, these stimuli include industry procedures to neutralize biological contaminants, 
along with those encountered inside the host. Stress responses to such stimuli play a vital role 
on host–pathogen interactions and consequently on pathogenesis [2]. Given the panoply of 
stimuli that bacteria face, mechanisms that are non‐specifically activated, e.g., the sigma 
factors RpoS and SigB in Escherichia coli [3], evolved alongside very precise responses whose 
stimuli may differ in a single unpaired electron [4].  

Beyond single‐cell responses, there are dynamic behaviors granted by population‐wise 
stress responses, as in the case of altering nutrient sources or sublethal exposure to a 
stressing agent [5]. These play a key role in antibiotic resistant pathogens, where the loss of 
fitness due to resistance‐conferring mutations is balanced by other mutants and/or the human 
microbiota [6,7]. Parallel to antibiotic resistance, stress response mechanisms are important 
in antibiotic tolerance [8], namely the increase of efflux pumps [9], reduction of membrane 
fluidity and permeability [10], alteration of antibiotic targets, induction of a general state of 
dormancy, increased rate of mutations, and the formation of biofilms [11]. 

Antibiotic‐induced stresses also contribute to increased protection against 
environmental stressing factors, for example when E. coli is exposed to sublethal doses of 
trimethoprim, its tolerance to acidic environments increases [12], or when exposed to sublethal 
concentrations of ampicillin, its survivability in later exposure to other stressing factors and to 
lethal ampicillin doses is improved [13]. Understanding cross‐protection mechanisms provides 
further insight into the nonspecific mechanisms elicited by bacteria upon antibiotic challenges, 
alongside illuminating the relationship between metabolome alterations and the mechanism of 
action (MOA) of antimicrobials [14]. Interestingly, many bactericidal antibiotics elicited similar 
metabolic alterations in E. coli, which contrasts with the traditional premise of target‐specific 
inhibition resulting in the antibiotic effect [15]. 

In the paradigm of systems biology, the advent of genomics, transcriptomics and 
proteomics has contributed to undisputable advances. However, researchers often have 
limited insight on phenotype, given the complexity of biological systems, e.g. at the metabolite 
level [16]. For example, stress agents alter gene expression, however, many differentially 
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expressed genes are only occasionally relevant at the phenotype level [17–24]. Often, simpler 
indicators of stress surpass transcriptomics in probing stress responses [25]. The 
incoordination between transcriptional responses and phenotypic observations has been 
proposed as a survival mechanism, in cases where a stress response has not been 
evolutionarily imprinted on the micro‐organism, thus preventing unreliable adaptations.  

On the other hand, metabolic stresses, such as nutrient depletion, are a common 
challenge to which micro‐organisms have a well‐defined and coordinated response [26]. 
Therefore there are intrinsic advantages in metabolomics, given it is a closer representation of 
phenotype, as it relies on downstream cellular products [27]. Metabolomics techniques have 
very high sensitivity for individual metabolites, and protocols are well established [28]. However, 
in a context of phenotypic screening, focus is put on distinguishing different phenotypes, rather 
than on characterizing a given phenotype, thus features such as throughput, automation and 
cost of analysis are highly important [29].  

In that regard, Fourier‐transform infrared (FTIR) spectroscopy (FTIRS) acquires 
phenotypic profiles in a high‐throughput, rapid, label‐free, automatable, considerably 
inexpensive and reasonably simple mode [30]. FTIRS may be applied to discriminate and 
quantify diverse molecules, from proteins, nucleic acids, lipids through to diverse metabolites 
[31–33], with the advantage of representing the whole omics of a cell [34]. However, this 
implies a priori laborious calibration procedures for molecule identification and quantification.  

In untargeted analysis, whole FTIR spectra have been associated with specific 
phenotypes, e.g., to elucidate the antimicrobial effect of novel extracts [35], to distinguish the 
effect of various surfactants on E. coli cells [36], to compare the global responses of E. coli to 
diverse stress conditions with transcriptomics and FTIRS [37], to develop a bioassay for toxicity 
testing in yeasts [38], among others. In comparison with the various omics techniques, FTIRS 
is not as data‐intensive and provides valuable information without considerable detriment of 
metabolic sensitivity, as seen by previous examples. 

In the present work, we have optimized a bioassay coupled with high‐throughput FTIR 
spectra acquisition to discriminate highly diverse E. coli stress responses and began to pave 
the way for its applicability for antibiotic‐related studies. Given its similarity in key metabolic 
pathways with other micro‐organisms, E. coli is a preferred bacterial model [39,40]. Since 
FTIRS bioassays require considerable optimizations to maximize the biological relevance of 
the molecular information, most importantly regarding reproducibility and metabolic resolution 
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(e.g., specificity towards individual stress responses), the growth phase of the E. coli cells, 
nutrient media content and the duration of exposure to stress agents were optimized. The 
described approach aimed to identify the impact of each parameter on the ability of the 
bioassay to distinguish between the metabolic impact of a diverse set of stress agents. 
Additionally, partitioning FTIR spectra into key regions served to provide insight into their 
contribution towards the stress response clusters obtained. Lastly, the bioassay optimization 
was validated in the context of its application in antibiotic studies, by comparing the optimized 
parameters against our empirical experimental conditions, regarding the performance in 
distinguishing stress responses induced by antibiotics with known MOA. 

VI. 2   MATERIALS AND METHODS 

VI.2.1   BACTERIAL CULTURES 

The model organism E. coli strain JM 101 (ATCC 33876) was used as it is a biosafety 
class 1 organism along with no described resistance mechanisms in its genome: supE thi‐1 
Δ(lac‐proAB) [F´ traD36 proAB lacIqZΔM15]. Bacterial growth was performed by adding 1 ml 
aliquots, from a working cell bank at −80°C, to 60 ml of 1% yeast extract (Difco Laboratories, 
Inc. Detroit, MI) and 2% Bacto‐Tryptone (BD Biosciences, San Jose, CA) with PBS at 0·02 mol 
l−1, pH 7·0, in a 250 ml Erlenmeyer.  

The bacteria were grown at 37°C, in an orbital incubator (TH30 and SM30; Edmund 
Buhler GmbH, Bodelshausen, Germany), at 250 rev min−1 until one of the following growth 
phases: mid‐exponential, early‐ and late‐stationary, which corresponded approximately to an 
OD600 of 7, 14 and 13 after 8, 16 and 24 h, respectively. To ensure consistency, the growth 
curve was estimated from three independent cultures, from which the approximate time and 
corresponding OD600 of each growth phase were defined. The resulting bacterial biomass was 
centrifuged at 4000 rev min−1 (3935 g) for 15 min (Rotanta 460R; Hettich Zentrifugen, 
Tuttlingen, Germany) and resuspended in 0·9% sodium chloride (NaCl) (Merck KGaA, 
Darmstadt, Germany) to obtain an OD600 of 50 for subsequent exposure to stressing agents. 

VI.2.2   STRESS AGENT EXPOSURE 

Exposure to stress‐inducing agents was based on an incubation mixture of: 500 µl of a 
stock solution containing the stress agent at twice the final concentration, 100 µl of bacterial 
suspension at OD600 of 50 and 400 µl of nutrient media at a concentration to obtain the final 
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concentrations of half, standard or double that used for the bacterial cultures. Exposure to 
stress agents occurred at 37°C on an incubator (TH30 and SM30; Edmund Buhler GmbH) for 
either 1 h (immediate), 8 h (one‐shift) or 24 h (overnight). 

The following stress agents were evaluated, since these challenge bacteria with a wide 
range of stresses, thereby providing a broad variety of responses: 10% (v/v) ethanol (Sigma‐
Aldrich, St. Louis, MO); 8% (w/v) NaCl (Merck); 80 ppm sodium hypochlorite (VWR, Lisboa, 
Portugal); 2 mol l−1 hydrochloric acid solution (Sigma‐Aldrich) corresponding to a final pH of 
2·00; and a 0·5 mol l−1 sodium hydroxide solution (Fluka, Diegem, Belgium) corresponding to 
a final pH of 10·66. These concentrations are adequate to study E. coli stress responses since 
they are insufficient to induce extensive cell death [41–45]. Moreover, each stress agent had 
a paired control sample, where the stress agent was replaced with distilled sterile water. 

To minimize the number of experiments, the following parameter combinations were 
evaluated: the effect of the nutrient content was studied using cells grown until the late‐
exponential phase and exposed to stress‐inducing agents for 1 h; the effect of the E. coli 
growth phase was studied using a standard nutrient content and exposed to stress‐inducing 
agents for 1 h; the effect of the exposure time was studied using the standard nutrients content 
and cells cultured until a late‐exponential growth phase. These parameter combinations were 
selected since, in previous exploratory work, the cells grown until the late‐stationary phase 
resulted in more reproducible assays, a low exposure period provided faster bioassays and 
the standard nutrient content is generally recommended. Triplicate cultures, for each defined 
study, were conducted over different days. 

VI.2.3   ANTIBIOTIC EXPOSURE 

Escherichia coli cells were exposed to six antibiotics: amoxicillin (Sigma‐Aldrich), 
ampicillin (Sigma‐Aldrich), ciprofloxacin (Bayer Healthcare, Leverkusen, Germany), 
metronidazole (Sigma‐Aldrich), neomycin (Sigma‐Aldrich) and erythromycin (Sigma‐Aldrich). 
Amoxicillin and ampicillin target cell wall synthesis, ciprofloxacin and metronidazole disrupt 
nucleic acid synthesis, while neomycin and erythromycin cripple protein synthesis. Choosing 
antibiotics that act via different MOA allowed for an evaluation of the metabolic resolution of 
the bioassay, both at the MOA level and for the response to specific antibiotics.  
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Antibiotic stock solutions were prepared at twice the final concentration of 125 mg l−1, 
in the recommended solvent, and adjusted to the respective potency. Moreover, antibiotic 
exposure also evaluated our empirical experimental conditions, namely standard nutrient 
content with immediate exposure (i.e., 1 h) and using cells grown until late‐stationary phase; 
versus the optimized conditions, namely the same as above but using 8 h exposure. 

VI.2.4   DATA ACQUISITION 

Following exposure to stress‐inducing agents, 1 ml of the incubation mixture was 
centrifuged for 3 min at 13 000 rev min−1 (13 793 g) (Z160M; Hermle Labortechnik, Wehingen, 
Germany), and the pellet was resuspended in 200 µl of 0·9% NaCl to obtain an OD600 of 25 for 
FTIR readings. Quintuplicates of 20 µl of these cell suspensions were plated on a ZnSe 96‐
well micro‐plate, which was dehydrated for 3 h in a vacuum desiccator with silica. Spectra were 
acquired in high‐throughput transmission mode using a HTS‐XT module coupled to a Vertex‐
70 spectrometer (Bruker Optics, Ettlingen, Germany), and consisted of 64 co‐added scans at 
a resolution of 4 cm−1. Spectra were exported from the opus software (OPUS; Bruker) to Data 
Point Table files and analyzed with Matlab R2012b (MathWorks, Natick, MA). 

VI.2.5   SPECTRAL PRE-PROCESSING 

The following spectral pre-processing combinations were employed: normalization at 
the Amide I band (1690–1620 cm−1), to compensate for intensity variations due to differences 
in sample biomass by forcing spectra maximum to one on that region; multiplicative scatter 
correction, to counteract phenomena with additive effects; and the Savitzky‐Golay algorithm 
was applied to calculate the first derivative of spectra, using a 2nd degree polynomial and a 15‐
point window. 

To reduce spectra heterogeneity originating from operator handling, the spectra of 
quintuplicate mechanical replicates were averaged. Difference spectra were then calculated 
by subtracting the averaged control spectra from these averaged exposure spectra (i.e., both 
exposure and control quintuplicates were averaged, then each pair was subtracted). Difference 
spectra have the advantage of minimizing the signal component that is not associated to the 
specific stress agent response, e.g., slight variations between independent cultures. 
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Principal component analysis (PCA) was applied on preprocessed, averaged, 

difference spectra, which adds the advantage of reducing data dimensionality and 

subsequently facilitate its visualization, thereby helping to identify major trends. 

Hierarchical cluster analysis (HCA) was used to evaluate intrinsic data patterns and to 

determine pairwise distances that were visualized in hierarchical trees (i.e., dendrograms). 
These served to evaluate the bioassay reproducibility regarding the independent cultures (by 

determining the maximum distance within a cluster containing three independent cultures 
exposed to a specific stress‐inducing agent), and metabolic resolution, in terms of the ability 

to distinguish between the effect of different stress agents (by determining the distance 
between a cluster of independent cultures exposed to a given stress‐inducing agents and the 

remaining clusters). This approach was also used to evaluate the effect of partitioning spectra 
in order to identify specific spectral regions associated with the specific phenotypic response. 

VI. 3   RESULTS 

Under the premise that the specific E. coli responses to stress agents were imprinted 

on FTIR spectra, these were used as metabolic signatures of the individual stress responses. 
In order to optimize the bioassay performance in distinguishing diverse stress responses, 

especially considering reproducibility (e.g., coherence between three independent culture 
replicates), and metabolic resolution (e.g., specificity towards varying stress responses), the 

following bioassay parameters were evaluated: the growth phase from which E. coli cells were 
obtained (from mid‐exponential, early‐ and late-stationary phase), the nutrient media 

concentration used (half, standard and double), and the duration of exposure to the stress 
agent (1, 8 and 24 h). 

VI.3.1   NUTRIENT CONTENT 

Rather than using different media for the exposure mixture, which would imply different 

nutrient compositions, we focused strictly on the nutrient content. As expected, the 
concentration of nutrients had a clear effect on the cellular metabolism, which affected the 

bioassay sensitivity towards the stress responses (Figure 1). The following nutrient 
concentrations were evaluated: standard, double and half concentration in relation to that used 

for the bacterial cultures. In general, optimized conditions ensured lower intra‐culture variability,  
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Figure 1. Effect of the nutrient content using A) Half, B) Standard, and C) Double media 

concentrations on bioassay performance for E. coli cells exposed to Ethanol (A1), 

Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric acid (A4) and Sodium 

Hydroxide (A5). 

thus a more coherent bioassay, as well as increased the difference between the metabolic 

signature of different stress agents, which suggested greater bioassay sensitivity.  

Another critical parameter for evaluating the said bioassay’s performance was the 

number of misclassifications. As such, the high nutrient content negatively affected the 

performance of the proposed bioassay, given that only the sodium hydroxide samples were 
adequately grouped. Consequently, the high nutrient content condition was not further 

discussed. Additionally, the ethanol and sodium hypochlorite metabolic signatures were not 
adequately classified in any of the parameters investigated, thus were also not subject to 

further discussion. 

Increasing nutrient content from half to standard resulted in smaller intra‐culture 

variability of samples stressed with sodium hydroxide (−25·88%), in other words the maximum 
distance that separated the three independent cultures exposed to sodium hydroxide 

decreased by 25·88% when the nutrient content increased, likewise for hydrochloric acid 
(−32·28%). In contrast, this also led to a higher variability of the sodium chloride metabolic 

signature (+35·92%). Regarding the bioassay sensitivity, the variability between the sodium 

hydroxide, hydrochloric acid and sodium chloride stress‐induced cultures and the remaining 
decreased (−11·85%), slightly increased (+4·17%) and considerably increased (+61·96%), 

respectively. In other words, the distance between the cluster of cultures exposed to each of 
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the stress agents from the remaining, decreased, slightly increased and considerably 

increased, which indicated poorer, slightly better and considerably better performance, since 

a greater distance between different clusters implied greater bioassay sensitivity.  

In resume, the increase of nutrient content from half to standard concentration resulted 

in more coherent metabolic signatures of the sodium hydroxide and hydrochloric acid stress 
agents among the three independent cultures, although the opposite was observed for the 

sodium chloride exposed samples. Moreover, a more noticeable metabolic signature of 
hydrochloric acid assay was obtained, although at the cost of a less prominent sodium 

hydroxide and sodium chloride stress signatures in comparison with the other stress responses. 

VI.3.2   ESCHERICHIA COLI GROWTH PHASE 

Another key parameter of the suggested bioassay was the starting metabolic state of 
the E. coli cells, which influenced the sensitivity towards the spectral signature induced by the 

stress agents, as seen by the effect of the E. coli cells growth phase in the fermentation 
industry [46]. As such, the metabolic state of the E. coli cells, obtained at different growth 

phases prior to stress agent exposure, clearly affected the bioassay performance (Figure 2). 
Three key points of the E. coli growth curve were investigated: mid‐exponential, early‐

stationary and late‐exponential. 

Figure 2. Effect of the E. coli metabolic state on the bioassay performance. E. coli cells 

grown until A) Mid-exponential, B) Early-stationary, and C) Late-stationary growth 

phases were exposed to Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), 

Hydrochloric acid (A4) and Sodium Hydroxide (A5). 
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Interestingly, as the growth phase of the cells used changed, so did the ability of the 

bioassay to effectively distinguish stress response signatures. While a mid‐exponential growth 

phase suitably classified both sodium hydroxide‐ and sodium chloride‐exposed samples, the 
remaining stress agents were all misclassified. Using cells from the early‐stationary growth 

phase no longer adequately classified samples exposed to sodium chloride, however, bacteria 
stressed with hydrochloric acid and sodium hydroxide became well classified. Lastly, using 

cells in the late‐stationary phase, the highest number of adequate classifications of stress 
responses was observed, where only the sodium hypochlorite and ethanol stress response 

signatures were not adequately classified. These misclassifications were consistent with those 
observed under the tested nutrient concentrations. 

Regardless, using cells from a later growth phase, e.g., from mid‐exponential to early‐
stationary, the intra‐culture variability for sodium hydroxide was reduced (−52·20%). However, 

using cells from the late‐stationary phase increased the intra‐culture variability (+26·69%). A 

similar pattern was observed for the difference between the sodium hydroxide signature and 
the other stress responses, namely cells from later growth phases decreased (−42·78%) but 

subsequently increased (+18·31%) the intra‐culture variability.  

The remaining stress‐inducing agents were not consistently classified across the range 

of growth phases tested, however, hydrochloric acid’s intra‐culture variability increased 
(+87·77%) from the early‐stationary to late‐stationary, while its difference from the remaining 

stress agents also increased (+10·21%). Moreover, sodium hydroxide’s intra‐culture variability 
decreased (−84·28%) from mid‐exponential to late‐stationary, and its distinguishability from 

other stress responses also diminished (−68·58%). 

VI.3.3   STRESS AGENT EXPOSURE TIME 

The third bioassay parameter evaluated was the duration that the E. coli cells were 
exposed to the various stress agents. The trade‐off revolved between a short exposure, which 

resulted in a more rapid assay, and issues with reproducibility and/or sensitivity associated 
with a longer exposure. In fact, of the bioassay parameters discussed thus far, the stress agent 

exposure duration had the most notorious impact on the performance of the bioassay. A 
maximum of two misclassifications were observed (Figure 3 – A and C), which is on a par with 

the best performances observed thus far.  
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Figure 3. Effect of the stress agent exposure time on bioassay performance, using A) 

Immediate, B) One-shift, and C) Overnight timeframes for E. coli cells exposed to 

Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric acid (A4) 

and Sodium Hydroxide (A5). 

More importantly, the one‐shift exposure (Figure 3 – B) adequately classified all five 
stress agents, although one culture of ethanol was deemed as an outlier. This was because it 
was clustered as considerably different from the other ethanol‐exposed cultures, but also those 
exposed to sodium hypochlorite and sodium chloride, which suggested a marked difference in 
that culture alone. Actually, the one‐shift exposure duration was the only one in which proper 
classification of the five stress agents tested was observed. 

Regarding the intra‐culture variability, longer exposure times resulted in a decrease 
from immediate to one‐shift for sodium hydroxide (−25·06%) but an increase for hydrochloric 
acid (+6·25%) and sodium chloride (+51·66%). Longer exposures, from one‐shift to overnight, 
had the opposite effect for the cultures exposed to sodium hydroxide, hydrochloric acid and 
sodium chloride, where intra‐culture variability increased by 66·06, 135·81 and 222·52% 
respectively. On the other hand, the difference between stress response signatures of either 
sodium hydroxide or hydrochloric acid in regard to the other stress agents increased from 
immediate to one‐shift (+33·70 and +4·80%), while it decreased for sodium chloride (−18·94%).  

Regarding metabolic sensitivity, the effect of a longer exposure time, from one‐shift to 
overnight, had a similar effect where the stress response became less prominent for sodium 
hydroxide (−9·95%), hydrochloric acid (−43·18%) and ethanol (−58·00%). Therefore, the 
bioassay performance was superior with a one‐shift exposure (i.e., 8 h) to stress agents, where 
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fewer misclassifications were observed, and accurate classifications were largely more 

coherent and more accurate. 

VI.3.4   SPECTRA PARTITIONING TOWARDS PHENOTYPIC RESPONSE-INTERPRETATION 

This section aimed to evaluate the spectral regions that most affected the PCA‐HCA 
clustering. Using the bioassay parameters that granted the best performance when optimizing 

the exposure duration, i.e. the spectra obtained with an exposure duration of one‐shift (i.e. 8 
h), four key spectral regions (as described by other authors [37,47]) were investigated: region 

1 (3400–3200 cm−1), region 2 (3010–2800 cm−1), region 3 (1800–1200 cm−1) and region 4 
(1200–700 cm−1).  

The differences observed at the level of preprocessed and averaged difference spectra, 

with the corresponding HCA after PCA metric system previously described, are highlighted in 
Figure 4. Although the same analysis was conducted for all parameters tested, i.e., exposure 

duration, growth phase and nutrient content (Figs S1–S6), there was no clear benefit of 
partitioning the spectra into regions for the PCA‐HCA models that originally had weak to 

moderate performances. 

From spectral region 1 (Figure 4 – A) a satisfactory classification was obtained for 

sodium hydroxide, hydrochloric acid and sodium hypochlorite. Sodium chloride and ethanol 
were adequately classified considering the whole spectra (Figure 3 – B) but became 

misclassified resourcing only to region 1, which suggested that the metabolic effect of these 
stress agents is not sufficiently imprinted at this region for adequate classification.  

Moreover, spectral region 2 (Figure 4 – B) resulted in a noticeably poorer classification 

of stress responses, as only the hydrochloric acid exposed samples, and to some extent those 
exposed to sodium hydroxide, presented adequate clustering. It was also observed that 

resourcing to either region 1 (Supplementary Figure 2 – A) or to region 2 (Supplementary 
Figure 2 – B), the PCA‐HCA presented worse results when using immediate and overnight 

exposure. As such, the various stress responses could not be distinguished with the proposed 
bioassay resourcing exclusively to these regions. 

Unlike the formerly described examples, the use of spectral region 3 apparently 
resulted in better clustering than observed when based on the whole spectra (Figs 3b and 4c, 

respectively), as the distances between the stress responses of different stress agents   
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Figure 4. Stress response signatures of first derivative spectra normalized at the Amide 

I and with MSC (left column) and corresponding PCA-HCA metric system (right column) 

for the regions between A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and 

D) 1200-700 cm-1 obtained with standard nutrient content for E. coli cultures exposed 

to Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride(A3), Hydrochloric acid (A4) 

and Sodium Hydroxide (A5). 

increased, which indicated a higher resolution towards different stress responses. Likewise for 

whole spectra, a single ethanol‐exposed culture was misclassified, and the difference between 
cells exposed to sodium hydroxide, hydrochloric acid, sodium chloride, sodium hypochlorite 

and ethanol diminished by 22·85, 5·42, 18·19, 10·84 and 10·84% in regard to the other stress 
response signatures, respectively. However, this higher resolution came at the cost of 

increased intra‐culture variability, namely of 87·98, 11·68, 9·69, 66·81 and 39·97% for sodium 
hydroxide, hydrochloric acid, sodium chloride, sodium hypochlorite and ethanol, respectively.  

Ultimately, region 3 seemed to provide comparable results to whole spectra, however, 
the increase in intra‐culture variability, and therefore reduced reproducibility of the bioassay, 

was not sufficiently beneficial to metabolic resolution. Moreover, with an exposure duration of 

1 h, sodium hypochlorite exposed cultures were no longer clustered appropriately, which was 
a clear downgrade of the bioassay performance; and after 24 h exposure, the three ethanol‐

exposed cultures were grouped, however, a sodium chloride‐exposed culture became 
misclassified along with the sodium hypochlorite‐exposed cultures (Supplementary Figure 2 – 

C).  

Comparable results were obtained when the PCA‐HCA metric was applied to region 4 

(Figure 4 – D). In this case, noticeable differences at the spectra level resulted in a clustering 
pattern analogous to that obtained exclusively with region 2 or with the whole spectra. However, 

an additional misclassification of a hydrochloric acid exposed culture suggested a weaker 
performance. Interestingly, the hydrochloric acid exposed samples were clustered closer to 

sodium chloride exposed samples, unlike for the complete spectra and region 3.  

Additionally, the immediate response PCA‐HCA presented better clustering for this 
particular region when compared with a one‐shift exposure (Supplementary Figure 2 – D), 

although ethanol and sodium hypochlorite‐exposed cultures were still misclassified. This 
revealed that this particular region did not outperform the classification obtained with the whole 
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spectra, which was also observed with an overnight exposure, where only hydrochloric acid 
and sodium hydroxide stress responses were accurately clustered. 

VI.3.5   EXPOSURE TO ANTIBIOTIC AGENTS 

The applicability of the developed bioassay in distinguishing the response to various 
antibiotics was evaluated, albeit to a more modest degree. In that sense, the bioassay 
parametrization that resulted in optimal stress response classification was validated by 
comparing it with our empirical parametrization, e.g., which we typically applied prior to this 
study. Figure 5 - A shows the clustering obtained with the bioassay parameters before 
optimization, and Figure 5 – B shows the clustering obtained with the optimized parameters.  

Figure 5. Comparison of bioassay performance with A) not optimized and B) optimized 

parameters for E. coli exposed to Neomycin (Neo), Erythromycin (Eri), Amoxicillin (Amo), 

Ciprofloxacin (Cip), Metronidazole (Met) and Ampicillin (Amp). 

The optimized bioassay provided a closer representation of the known metabolic 
alterations induced by the antibiotics. In other words, the E. coli response to antibiotics was 
considerably dissimilar, except for amoxicillin and ciprofloxacin, which were grouped as very 
similar although these have different MOA, at the cell wall biosynthesis and DNA level, 
respectively. The clustering of metronidazole with ciprofloxacin was a positive indication, given 
both target nucleic acid synthesis, which suggested a good ability of the bioassay to classify 
antibiotic stress responses, despite the amoxicillin misclassification. Moreover, neomycin and 



Phenotypic screening of stress and antibiotic responses 

 169 

erythromycin were grouped closely, which was another promising indication, given that both 
act at the protein synthesis level.  

Additionally, the difference between the neomycin‐ and erythromycin‐exposed samples 
could be due to the fact that, while the first binds to the 30S‐ribosomal subunit, the later inhibits 
the 50S‐ribosomal subunit. This said difference between similar MOA seems within the scale 
of the difference between the comparable case of ciprofloxacin and metronidazole, which both 
act on nucleic acid synthesis. Lastly, the ampicillin stress response was not clustered with the 
amoxicillin stress response, although these act at the cell wall biosynthesis level. Ultimately, 
this was a more realistic clustering than without optimizing the bioassay, since a more 
reasonable correspondence with the antibiotics MOA was observed.  

Moreover, models built with specific spectral regions, as previously conducted, lead to 
marginal local improvements, if at all, at the cost of overall weaker performances (data not 
shown), which indicated that the bioassay more closely captured the unique metabolic 
signature of antibiotic responses when the whole FTIR spectra was considered. 

VI. 4   DISCUSSION 

Bacterial responses to stressful events encompass a wide variety of adaptations, many 
of which have been described for E. coli, including those following exposure to: sodium 
hypochlorite, a strong oxidizer that up‐regulates over 380 genes and induces faster post‐
exposure recovery cell growth [43,48]; ethanol, which disrupts the membrane and cell wall 
integrity, reducing O2 levels and ATP production, as well as fostering DNA damage and a six 
orders of magnitude increase of protein expression [45,49]; sodium chloride, which increases 
water efflux, thereby affecting morphology and reducing maximum growth, ultimately resulting 
in extensive cell damage and loss of integrity [44,50–53] and acidic environments that activate 
mechanisms to counteract the pH imbalance [41,54–56].  

Fewer studies have discussed alkaline stress responses in E. coli, nonetheless two 
heat shock proteins and the rpoS gene have been shown to take part in the alkaline stress 
response [42,57], and other propositions have been put forward for other lactic acid bacteria 
[58]. Ultimately, exposure to these particular stressing agents elicits a variety of responses, 
which validates their use to estimate the proposed bioassay’s metabolic resolution to different 
stress responses. Moreover, to the best of our knowledge, this is the first time such bioassay 
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optimization was undertaken with a systematic quantitative approach resulting in considerably 

more adequate stress response discrimination. 

The type and availability of nutrients effect on the growth behavior has been reported 
for yeast cells [59], however this is an issue with little to no discussion for prokaryotes. Said 

FTIR study established that higher levels of glucose reduce the bioassay variability, thus 
improve its reproducibility, however the same concentration of glucose complementing 

different nutrient sources does not affect bioassay variability to the same extent. This suggests 
that bioassay reproducibility is mostly affected by the availability of the major energy source, 

but given differences in study design and model organism, a straightforward comparison 
cannot be pursued.  

However, our study suggests that the effect of nutrient availability has a limit to 
improving bioassay reproducibility, as indicated by the maximum number of classifications 

obtained with the high nutrient content, as well as the higher distance between clusters of 

different stress-inducing agents, compared to the standard and half nutrient concentration. 
Even so, the study with yeast cells is somewhat on the same level with that reported herein, 

since the proposed bioassay has increased coherence (or homogeneity) and increased 
specificity when the nutrient content is increased to the standard concentration, despite not 

being advantageous across the different stress agents tested.  

In general, using bacterial cells obtained at a late growth‐phase increases the 

performance of the bioassay, and ensures a more coherent bioassay, to a scale that outweighs 
the reduced differences between different stress response signatures. Actually, mass 

spectrometry analysis of E. coli during various points of its growth pattern revealed an 
increased expression of multiple stress response proteins during the stationary phase [49]. 

These observations seem coherent with the present study, where more advanced growth 

phases seem to positively affect the ability of the bioassay to identify spectral signatures unique 
to each stressing agent, possibly because some of the general stress response mechanisms 

are also present in the control (not exposed) samples, simply because they are elicited during 
later growth phases. These can therefore be easily ‘removed’ from the spectral signatures, as 

part of the pre-processing and multivariate analysis workflow. 

Remarkably, metabolome profiling of bacterial responses to antibiotics has revealed 

that the immediate responses are identical, likely given the activation of general stress 
response mechanisms, however, these responses then become characteristic of the particular 
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stress induced [15]. As such, it appears that the longer‐than‐immediate response becomes 

more representative of the unique stress response, however, after too long an exposure, such 

a response is no longer characteristic of the specific effect of the stress agent, possibly 
because the stress agent becomes depleted and therefore the spectral signature no longer 

reflects a stress response, but rather the metabolic composition of the culture after recovery, 
which likewise to the identical initial responses, is not necessarily unique to a given stress. 

Several FTIR spectral regions have been associated with different biomolecules [37,47]. 
However, the locations of these spectral regions are not always coherent across different 

studies. Therefore, the spectral regions investigated in this study were defined to be as 
inclusive as possible regarding those found in the literature, i.e., for region 2, Maity et al. 

suggested 3000–2800 cm−1 and Moen et al. suggested 3010–2800 cm−1, so region 2 was 
defined as 3010–2800 cm−1. Additionally, the association of these regions with underlying 

predominant biomolecular bonds contributing to the spectra are also not always consistent. 

For instance, what Maity et al. define as a wider fingerprint region, is actually regarded by 
Moen et al. as two regions, one fingerprint region and one with predominant contributions from 

carbohydrates.  

Moreover, we deliberately omitted the associations between spectral windows and 

predominant biomolecules to keep the discussion focused on the performance of the bioassay. 
Regarding spectra partitioning, although region 3 and 4 seem to provide similar stress 

response signatures towards the optimal bioassay performance observed for the one‐shift 
analysis, it appears that said optimal clustering cannot be obtained exclusively from a particular 

region, and therefore the distinctive stress responses are not completely imprinted at the level 
of the associated spectral regions. This indicates that the successful classification of the five 

stress‐inducing agents results from the whole FTIR spectra, which therefore constitutes a 

complex metabolic profile of each stress response. 

Studies on the effect of sodium hypochlorite on E. coli suggest a minor effect compared 

with other bacteria [60], which is coherent with the observed results. Alongside ethanol, and to 
some extent, sodium chloride, these were the stress response signatures more sensitive to 

the bioassay parameters, and therefore for which the optimizations had greater impact. 
Interestingly, in a study on the antimicrobial activity of disinfectants against Staphylococcus 

aureus, the FTIRS signature of ethanol and sodium hypochlorite were markedly different [61]. 
Although this said study investigated maximum bacterial inactivation rather than stress 
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response, their results differ from our findings, where these two stress responses were 
consistently un‐distinguishable, which suggests a similar stress response to these two agents. 

However, given that the ethanol and sodium hypochlorite spectra signatures clearly 
separate into two different stress responses with optimized bioassay parameters, this indicates 
that there is a narrow window that maximizes the bioassay ability to distinguish stress 
responses, which ultimately justifies the need to strictly optimize bioassay parameters in stress 
response studies. Additionally, sodium hydroxide had the most distinct stress response 
signature, followed by hydrochloric acid stressed samples, across the various optimized 
parameters, as they were most often clustered very differently from the others and therefore 
were less affected by the bioassay optimization. 

Thus far, the stress agent exposure bioassay optimization not only further validated 
FTIRS as an adequate tool for phenotypic screening, but also shed light on its application in 
stress response studies. Beyond said application, some studies have dwelt on the applicability 
of FTIRS towards antibiotic‐related studies, namely the early evaluation of anti‐bacterial effect 
of known and novel molecules, in terms of MOA and activity [35,62–64]. However, to the best 
of our knowledge, no studies focus on the importance of bioassay optimization towards more 
sensitive and robust classification and predictive models. Since the antibiotic‐induced stress 
responses were analyzed to a lesser scale than other stress agents, it becomes difficult to 
evaluate if the patterns described are coherent when considering a greater biological variability. 
In other words, the amoxicillin response cannot be deemed an outlier, as an ethanol‐exposed 
sample was in the stress exposure duration optimization of one‐shift.  

Nonetheless, this reiterates the importance of optimizing FTIRS‐based bioassays in 
order to ensure that spectral data accurately and coherently distinguish between different 
stress responses, including those induced by antibiotics. Moreover, spectra partitioning 
indicates that the metabolic signature derives from the whole FTIR spectra. Nonetheless, 
considering more antibiotics acting with similar MOA, for instance several protein synthesis 
inhibitors, a PCA‐HCA analysis of a specific region might be of added‐value in discriminating 
very similar stress responses. 

In this study, we proposed a bioassay to discriminate between the spectral signatures 
of the different E. coli stress responses to sodium hydroxide, hydrochloric acid, sodium chloride, 
sodium hypochlorite and ethanol. More importantly, the pre-processing and multivariate 
analysis applied, namely PCA‐HCA, provided a quantitative evaluation of the effect of three 
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key parameters on the performance of the proposed bioassay regarding its reproducibility and 
specificity.  

From the parameters tested: the highest nutrient content led to more misclassifications, 
while the lower nutrient content had a slightly poorer metabolic resolution; the use of E. coli 
cells grown until later growth phases reduced the number of misclassifications and improved 
overall performance; and lastly for the duration of the stress agent exposure, a one-shift 
exposure duration resulted in an almost complete correct classification of the three replicated 
assays for each of the stress agents. Moreover, four specific spectral regions were explored 
regarding their contribution towards the optimal classification, where importantly, the overall 
performance of the bioassay did not surpass that of using the whole spectra.  

Ultimately, the bioassay optimization ensured a closer representation between the 
spectral signatures and the MOA of clinical antibiotics. As such, the optimal classification of 
stress response signatures, including those imposed by exposure to antibiotics, requires highly 
optimized bioassay parameters and seems to be consequence of the metabolic profile 
imprinted on the whole FTIR spectra, which reinforces the application of FTIRS to acquire a 
metabolic signature of general stress responses and antibiotic‐related responses. 
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Supplementary Figure 1. Stress response spectral signatures for the regions between 

A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-700 cm-1 

obtained after immediate, one-shift and overnight exposure to Ethanol (A1), Sodium 

hypochlorite (A2), Sodium chloride (A3), Hydrochloric acid (A4) and Sodium Hydroxide 

(A5).  
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Supplementary Figure 2. Stress response signatures after PCA-HCA analysis for the 

regions between A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-

700 cm-1 obtained after immediate, one-shift and overnight exposure to Ethanol (A1), 

Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric acid (A4) and Sodium 

Hydroxide (A5).  
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Supplementary Figure 3. Stress response spectral signatures for the regions between 

A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-700 cm-1 

obtained after mid-exponential, early- and late-stationary E. coli growth phase 

exposure to Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric 

acid (A4) and Sodium Hydroxide (A5).   
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Supplementary Figure 4. Stress response signatures after PCA-HCA analysis for the 

regions between A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-

700 cm-1 obtained after mid-exponential, early- and late-stationary E. coli growth phase 

exposure to Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric 

acid (A4) and Sodium Hydroxide (A5).   



Chapter VI 

 178 

Supplementary Figure 5. Stress response spectral signatures for the regions between 

A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-700 cm-1 

obtained using half, standard and double nutrient concentration during exposure to 

Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric acid (A4) 

and Sodium Hydroxide (A5).   
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Supplementary Figure 6. Stress response signatures after PCA-HCA analysis for the 

regions between A) 3400-3200 cm-1, B) 3010-2800 cm-1, C) 1800-1200 cm-1 and D) 1200-

700 cm-1 obtained using half, standard and double nutrient concentration during 

exposure to Ethanol (A1), Sodium hypochlorite (A2), Sodium chloride (A3), Hydrochloric 

acid (A4) and Sodium Hydroxide (A5). 
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Abstract 

The discovery of antibiotics has been slowing to a halt. Phenotypic screening is once again at 
the forefront of antibiotic discovery, yet mechanism of action (MOA) identification is still a major 
bottleneck. As such, methods capable of MOA elucidation are required now more than ever, 
for which Fourier-Transform Infrared (FTIR) spectroscopy (FTIRS) is a promising metabolic 
fingerprinting technique. A whole-cell FTIRS-based bioassay was developed to reveal the 
metabolic fingerprint induced by 15 antibiotics on the Escherichia coli metabolism. Cells were 
briefly exposed to four times the minimum inhibitory concentration and spectra were quickly 
acquired using 96-well plates. After preprocessing optimization, a partial least squares 
discriminant analysis and principal component analysis were conducted. The metabolic 
fingerprints obtained with FTIRS were sufficiently specific to allow a clear distinction between 
different antibiotics, across three independent cultures, with either analysis algorithm. These 
fingerprints were coherent with the known MOA of all the antibiotics tested, which include 
examples that target the protein, DNA, RNA, and cell wall biosynthesis. Because FTIRS 
acquires a holistic fingerprint of the effect of antibiotics on the cellular metabolism, it holds 
great potential to be used for high-throughput screening in antibiotic discovery and possibly 
towards a better understanding of the MOA of current antibiotics.  
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VII. 1   INTRODUCTION  

The discovery of antibiotics has been considered a miracle of modern medicine, but 
since the golden age of antibiotic discovery, when most classes were introduced, innovation 
has been slowing to a halt [1]. The genomics era inspired target-based screening but hits 
generally proved ineffective at reaching their target within the cell and not a single new drug 
reached the market from target-based screening programs [2]. Nowadays, phenotypic 
screening is a preferred strategy for antibiotic discovery, mostly because compounds that are 
effective against whole cells have a higher likelihood of becoming candidate molecules and 
can target poorly understood metabolic pathways [3].  

However, these assays do not reveal the mechanism of action (MOA) of candidate 
compounds, which requires considerable efforts at a later stage of the discovery process [4]. 
This results in higher rates of rediscovery, low probabilities of finding compounds with unique 
biological and/or chemical properties, and limited insight in the pharmacological target. 
Additionally, phenotypic screening does not explore the chemical grey matter, i.e., compounds 
capable of inducing some level of phenotypic modulation, but without sufficient potency to 
induce cell death or growth inhibition, which can be a source of compounds suitable for lead 
optimization with medicinal chemistry techniques [5,6].  

Antibiotic discovery has proven to be a tremendous challenge, but identifying the MOA 
has proven equally challenging [7]. In fact, determining the MOA of antibiotics is still a 
bottleneck of the phenotypic screening discovery process, for which metabolomics holds great 
potential. As such, the ability to rapidly infer MOA and, if possible, the biomolecular target of 
antibiotics is increasingly important given the pressing need for new antibiotics. An antibiotic 
discovery program can require screening  hundreds of thousands of compounds, in part due 
to the ease in synthetizing bioactive compounds, and in part given the increasing availability 
of natural product libraries [8].  

Two concepts are relevant when discussing MOA identification. One is determining the 
molecular pathways affected by a given compound: the drug effects. The second is the specific 
compound—substrate interactions: the drug target [9]. Although both concepts are very 
important in antibiotic discovery, given the exploratory purpose of this study, a less stringent 
definition of MOA identification was used. Herein, we refer to MOA elucidation as an 
approximation using a mechanism-specific fingerprint, rather than the identification of the 
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specific targets of a given molecule, and the pathways affected, which formally constitute MOA 
identification. 

Conventional MOA studies are based on macromolecular synthesis assays; however, 
these assays are typically slow, laborious, low resolution, low accuracy, and low throughput 
[10]. An equally limited alternative lies in biochemical approaches, for instance the use of 
affinity chromatography to identify the exact biomolecule to which a candidate molecule binds 
[11,12]. However, this is somewhat a fishing expedition in the sense that it requires the happy 
combination of a high-affinity small molecule with a fairly abundant protein receptor [13]. 
Another important issue of conventional MOA assays is that a large quantity of the test 
compound is required, which is not always attainable.  

Recently, genome-wide transcriptional or translational profiles have been used to 
reveal the target of candidate molecules, but, more often than not, these profiles 
overwhelmingly reflect indirect stress responses rather than the specific sequence of events 
that results in the inhibitory effect [14]. Since the metabolome is at the lower end of the Omics 
cascade, it reflects the substrates and products of various metabolic enzymes, and thereby 
can be used to pinpoint drug-induced inhibition. As such, early metabolomics studies into the 
MOA of antibiotics looked at shifts of metabolite concentrations, induced by a single molecule, 
to identify its specific target(s) [7,15].  

As the understanding of MOA grew more complex, from targets to networks, 
metabolomics has been increasingly used to build comprehensive multi-parametric profiles of 
the MOA [16]. These profiles provide a genome-scale characterization of the drug-induced 
effects, which extends beyond non-metabolic targets [17]. One advantage of metabolic 
profiling is that it considers both on-target and off-target effects, which together produce the 
antibiotic effect, via an underlying MOA, of a molecule. Therefore, metabolomics studies on 
MOA focused on obtaining metabolic profiles. The comparative metabolic profiling of a pair of 
isogenic methicillin-susceptible and -resistant Staphylococcus aureus has emphasized the 
metabolic alterations that are specific to the MOA of three antibiotics acting on the major 
biosynthetic pathways, i.e., cell wall, DNA, and protein biosynthesis [18].  

Additionally, the metabolic profiling of drug exposure has also been used, together with 
metabolic and chemogenomic profiles of single-deletion strains, to predict epistatic drug 
interactions. This enables the rational design of drug combinations by identifying nonantibiotic 
compounds that, when combined, have antimicrobial activity [19]. Metabolic profiling also plays 
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a role in the dereplication and guided fractioning of novel natural products with antimicrobial 
properties [20]. 

Regarding studies dedicated towards high-throughput MOA elucidation, nuclear 
magnetic resonance has the advantage of being faster and less expensive, albeit only capable 
of identifying highly abundant metabolites. One approach to tackle this has been to analyze 
both the intracellular fingerprints and extracellular footprints, which resulted in more 
comprehensive and specific metabolic profiles [21]. Another approach relies on Mass 
Spectrometry (MS), which can be used to identify a wider range of metabolites with higher 
sensitivity, especially when combined with chromatographic separation techniques. Until 
recently, MS-based metabolomics could only be applied to study the MOA of individual 
molecules, but sufficient throughput can be attained with an untargeted approach, where 
thousands of ion peaks are detected from individual samples, although annotation is still the 
bottleneck, i.e., identifying metabolites from said peaks [22].  

In fact, untargeted metabolomics can achieve the required throughput to systematically 
ascertain the MOA of moderately large collections of antibiotics [23]. However, to reach the 
10–100x increase in throughput required for large-scale studies, there has to be a compromise 
of either coverage and/or separation, which currently requires dismissing the chromatographic 
step [24]. As such, by sacrificing resolution, high-throughput untargeted metabolomics using 
flow injection electrospray has predicted the MOA of uncharacterized antimycobacterial 
compounds from an industry-scale chemical library [25]. Within said compromise of resolution 
in favor of throughput, other analytical techniques could be better suited for the rapid handling 
of a large number of samples, with minimal preparation and manipulation, though they 
inherently yield less informative data. 

Fourier-Transform Infrared (FTIR) spectroscopy (FTIRS) is an established metabolic 
fingerprinting technique particularly well suited for high throughput, which requires minimal 
sample handling, and is reagent-free and label-free [26]. Moreover, FTIRS is a metabolic 
fingerprinting technique that provides relevant chemical information to rapidly and reproducibly 
discern prominent changes in the metabolome [27], particularly those imposed by stress 
agents and antibiotics [28]. Additionally, FTIR microscopy has been successfully used to 
identify antibiotic resistance from clinical isolates [29]. FTIRS is especially promising because 
its characteristics bridge the gap between the low-throughput/high-information metabolomic 
assays and the high-throughput/low-information nature of phenotypic screening assays.  
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While FTIRS does not result in comprehensive data on the metabolite level, the volume 
of biological information it yields allows for an enhanced assessment of the biomolecular 
phenomena underlying the antibiotic effect, which has been shown to be suitable in MOA-
centric studies. In fact, some studies have dwelled into the ability of FTIRS in detecting 
antibiotic-specific fingerprints [29–32]. However, these studies either did not explore the full 
potential of high-throughput or were limited to a small number of antibiotics with considerably 
distinct MOA. Thus, it remains unclear whether FTIRS can be used to rapidly obtain metabolic 
profiles with sufficient sensitivity to distinguish very similar MOA, e.g., antibiotics acting on the 
same major biosynthetic pathway, and within, antibiotics of the same class. 

The aim of this study was to explore FTIRS as a metabolic fingerprinting technique for 
the determination of antibiotics’ MOA and pave the way towards a high-throughput protocol. 
The fingerprint induced by 15 antibiotics on the Escherichia coli metabolism was sufficiently 
specific to allow for a clear distinction between the different antibiotics across three 
independent cultures, conducted on different days. The range of antibiotics tested includes 
nine classes acting on key biosynthetic pathways: protein, DNA, RNA, and cell wall synthesis. 
E. coli cells were exposed to the antibiotics at four times the minimum inhibitory concentration 
for three hours, which ensured an inactivation of at least 90% across all samples. Spectra were 
preprocessed with the Savitzky–Golay (SG) derivative filter followed by Loopy Multiplicative 
Scatter Correction (LMSC). After both SG and LMSC parameters were optimized, the dataset 
was analyzed with Partial Least Squares Discriminant Analysis (PLSDA) and Principal 
Component Analysis (PCA) so as to consolidate the PLSDA predictions with an unsupervised 
algorithm. Adequate separation between the MOA at the level of major biosynthetic pathway 
affected was obtained independently of the analysis algorithm, and this separation extended 
to the level of antibiotic-specific fingerprints, which is a positive indication that FTIRS is suited 
to the elucidation of antibiotics MOA. Moreover, all samples exposed to an antibiotic were 
clearly plotted separately from the controls, which is important to identify novel molecules with 
an antibiotic effect in the context of a screening assay towards antibiotic discovery. 

VII. 2   MATERIALS AND METHODS 

VII.2.1   ANTIBIOTIC STOCK SOLUTIONS AND SUSCEPTIBILITY TESTING 

Antibiotic stock solutions of 15 antibiotics, belonging to 9 classes acting on 4 key 
biosynthetic pathways (Table 1), were prepared at a concentration of 4096 µg/mL, adjusted 
for potency, and kept at −20 °C or 4 °C, per recommendation. For in vitro susceptibility testing, 



Elucidating the mechanism of action of antibiotics 

 193 

both the CLSI [33] as well as the EUCAST [34] guidelines were considered . In detail, 100 µL 
of antibiotic solution was serially diluted in flatbottom 96-well plates, to which 100 µL of fresh 
cation-adjusted Mueller-Hinton broth (MHB) (VWR, Portugal) was added, along with 5 µL of 
cell suspension to obtain a concentration of 5 × 105 Colony Forming Units per mL (CFU/mL). 
The bacteria were incubated at 37 °C for 24 h, after which growth inhibition was observed. 
Minimum inhibitory concentrations (MICs) were determined as the lowest concentration at 
which no bacterial growth was observed for three independent cultures, and the inoculum size 
was confirmed by plating on cation-adjusted Mueller-Hinton agar and determining the CFU/mL. 

VII.2.2   BACTERIAL CULTURES AND ANTIBIOTIC EXPOSURE 

The bacterium E. coli strain JM 101 (ATCC33876) was chosen as a model organism 
for its ease of manipulation, non-pathogenic nature (biosafety class 1), as well as lack of 
resistance mechanisms in its genome: supE thi-1 Δ(lac-proAB) [F´ traD36 proAB lacIqZΔM15]. 
The bacteria were grown in 1 L erlenmeyers, with 400 mL of MHB, in an orbital incubator (TH30 
and SM30, Edmund Buhler GmbH) at 37 °C and 250 rpm. The cells were incubated until OD590 
reached 0.270 ± 0.03, thereby ensuring cells were in the exponential growth phase. For 
exposure to each antibiotic, 18 mL of culture broth was transferred to a conical centrifugal tube 
with 7 mL of antibiotic stock solution to obtain a final concentration of four times the MIC. Cells 
were perturbed for 3-h in an orbital incubator at 250 rpm, 37 °C. The complete procedure was 
repeated for three independent cultures over different days. After antibiotic exposure, bacterial 
inactivation was confirmed by counting CFU/mL, as described elsewhere [35]. 

VII.2.3   SPECTRAL DATA ACQUISITION, PREPROCESSING, AND MULTIVARIATE ANALYSIS 

After incubation with the antibiotics, samples were quickly centrifuged at 3000 relative 
centrifugal force for 10 min at 4 °C (Rotanta 460R, Hettich Zentrifugen, Germany), the 
supernatant was discarded, and the cell pellet was resuspended in 25 mL of cold 0.9% NaCl 
(Merck, Germany) to quench the metabolism. Subsequently, the OD590 was taken and bacterial 
inactivation was determined. The cells were, again, pelleted and resuspended in cold 0.9% 
NaCl to obtain an OD590 of 1, from which 2 mL aliquots were further centrifuged for three 
minutes at 13,000 rpm (13,793 g) (Z160M, Hermle Labortechnik, Germany) and resuspended 
in 100 µL of cold 0.9% NaCl to obtain an OD590 of 20 for FTIR readings. The samples were 
then plated on an infrared-transparent ZnSe 96 well plate (Bruker, Germany) in quintuplicates. 
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ZnSe plates were dehydrated for 3 h in a vacuum desiccator with silica, and inserted in a HTS-
XT module coupled to a Vertex-70 spectrometer (Bruker Optics, Germany).  

Spectra were acquired in transmission mode and consisted of 40 coadded scans at a 
4-cm−1 resolution. These were then exported as data point table files, which were imported into 
MATLAB (MathWorks, USA) for subsequent analysis. To reduce spectra heterogeneity 
originating from operator handling and other undesirable sources of variability, the spectra of 
mechanical replicates (quintuplicates) were averaged. Subsequently, averaged spectra were 
preprocessed with the SG filter and then with LMSC. A range of parameters were used for 
either algorithm, and those that produced the highest successful classification of an LOO-CV 
PLSDA model were used to build the final PLSDA predictive model and the PCA model. 

VII. 3   RESULTS AND DISCUSSION 

VII.3.1   MINIMUM INHIBITORY CONCENTRATIONS AND BACTERIAL INACTIVATION FOR FTIR READINGS 

To evaluate FTIRS as a metabolic fingerprinting technique suitable for distinguishing 
the MOA of different antibiotics, E. coli was exposed to 15 compounds belonging to different 
classes and acting on different key biosynthetic pathways. The MIC of each compound was 
determined using standard methods, and these have been reported (Table 1). Additionally, the 
average inactivation of independent cultures exposed to antibiotics prior to FTIR readings was 
calculated (Table 1).  

This was done to verify that four times the MIC was sufficient to obtain a cellular 
inactivation of over 90% for FTIR measurements. This was particularly important because 
antibiotic exposure for FTIR measurements was conducted at a cell density three orders of 
magnitude higher than MIC testing, which was required to obtain sufficient biomass for spectra 
acquisition. Although the relationship between inoculum size and antimicrobial activity is not 
linear [36,37], previous studies have shown that four times the MIC is a suitable concentration 
for metabolomics analysis of antibiotics MOA [23].  

Moreover, determining the average inactivation also attested that using a relative 
antibiotic concentration, e.g., four times the MIC, over an absolute concentration, e.g., 500 
µg/mL, resulted in an equivalent antibiotic effect (i.e., equivalent inactivation) between different 
metabolic fingerprints. For instance, in the case of antibiotics that have both a bacteriostatic 
and bactericidal action, a rule of thumb is that bacteriostatic activity is determined by a ratio of  
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Table 1. Classification of the antibiotics tested, the biosynthetic pathway targeted and 

their Minimum Inhibitory Concentration (MIC). The average bacterial inactivation after 

exposure to 4 X MIC for 3 h was determined, by plate counting colony forming units, 

and shown as the percentage variation in regard to the control. 

Antibiotic MIC 
(µg/mL) 

Average 
Inactivation (%) 

Class Biosynthetic 
Pathway Targeted 

Amoxicillin 8 99.8 Beta-lactam Cell Wall 

Ampicillin 8 100 Beta-lactam Cell Wall 

Cephradine 8 99.7 Beta-lactam Cell Wall 

Chloramphenicol 4 94.3 Amphenicol Protein 

Ciprofloxacin 0.5 100 Fluoroquinolone DNA 

Erythromycin 32 93.2 Macrolide Protein 

Isoniazid 256 93 Other Other 

Kanamycin 8 100 Aminoglycoside Protein 

Levofloxacin 0.125 100 Fluoroquinolone DNA 

Metronidazole 128 96.3 Nitroimidazole DNA 

Neomycin 2 100 Aminoglycoside Protein 

Rifampicin 32 100 Rifamycin RNA 

Sulfamethazine 8 99.8 Sulfonamide DNA 

Sulfamethoxazole 32 98.9 Sulfonamide DNA 

Tobramycin 2 100 Aminoglycoside Protein 

the minimum bactericidal concentration to MIC above four [38]. Exposing E. coli to four times 

the MIC should therefore favor bactericidal activity, which is confirmed by the large inactivation 
reported. Importantly, this consolidates the notion that any spectral differences observed are 

most likely due to the specificity of the metabolic adaptations induced by each antibiotic, rather 
than dose-dependent variations. 

Furthermore, a 3-h time point was chosen to avoid unspecific stress responses 

generically triggered by antibiotic exposure and to ensure the absence of growth recovery after 
antibiotic exposure, as suggested [23]. Unspecific responses are elicited almost immediately, 

and antibiotic-specific fingerprints typically become more evident as the exposure duration 
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increases. In fact, a 30-min exposure at a concentration that minimizes cell death and lysis 
revealed a common metabolic response among bactericidal antibiotics, which evolved to 
antibiotic-specific metabolic responses at 60 min and more so at 90 min [39]. Increasing the 
antibiotic concentration well above the MIC seemingly accelerates antibiotic-specific metabolic 
adaptations, and fingerprints obtained after 30 min of exposure more accurately reflect the 
MOA [21]. Other approaches combine the data from multiple timepoints [25], but this reduces 
the overall throughput, hence it is preferably avoided. 

Typically, dimethyl sulfoxide (DMSO) is used as a universal solvent for antibiotic 
screening, given its ability to dissolve both organic and inorganic compounds. However, DMSO 
inhibits the rapid killing of diverse classes of antibiotics, even at concentrations as low as 1%. 
In fact, DMSO has been suggested to interfere with antibiotic lethality that is mediated by 
Reactive Oxygen Species (ROS), in a concentration and exposure duration dependent manner. 
As such, this protective effect is not constant across antibiotic classes, which complicates MOA 
elucidation.  

Furthermore, this protective effect is not reflected on MIC values, as there are 
mechanistic differences between transient ROS-mediated killing and MICs. On the other hand, 
DMSO can alter cell membrane permeability, which is speculated to explain its inhibitory effect, 
and can result in an apparent increase in potency, as the entry into the cell by certain antibiotics 
is facilitated. Ultimately, these findings discourage the use of DMSO as a solvent for 
antimicrobials, especially in rapid-killing assays [40]. Therefore, in this study we only 
considered antibiotics that are soluble in aqueous solvents, as conducted by others [21].  

VII.3.2   FTIR PREPROCESSING OPTIMIZATION 

FTIR spectra are composed of a sample-specific component, which ideally is closely 
related to the biological information of interest, and an unspecific and undesirable component, 
which is due to variability induced by environmental, experimental, and technical conditions. 
The objective of spectral preprocessing is to reduce the latter and highlight the biological 
relevance of the data [41].  

Two commonly used preprocessing strategies are derivative filtering, typically with the 
SG filter, followed by scattering correction, for instance the LMSC algorithm [42]. Importantly, 
the performance of these preprocessing strategies depends on their parametrization, and this 
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in turn differs with the system being studied [43]. To identify parameters that yield optimal 
predictive performance of the PLSDA model, the successful classification after Leave-One-
Out Cross-Validation (LOO-CV) was used (Figure 1).  

Figure 1. Effect of Savitzky–Golay (SG) and Loopy Multiplicative Scatter Correction 

(LMSC) parameters on Partial Least Squares Discriminant Analysis (PLSDA) predictive 

models. For SG filtering, each derivative order (columns) was queried across a constant 

(black triangle), quadratic (red square), and quartic (blue circle) order polynomial, 

followed by zero, one, two, and three iterations of LMSC (rows A–D, respectively). The 

highest successful classification (%) was highlighted (arrow). 

A single iteration of LMSC preceded by SG filtering with a window size of 17 datapoints, 
to which a quadratic polynomial was fitted to determine the first derivative, resulted in the 
PLSDA model with optimal performance that was discussed over the following sections. The 
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effect of the optimal preprocessing strategy on the raw spectra has been shown for three 
antibiotics acting on the major biosynthetic pathways (Figure 2).  

Figure 2. Average spectra of independent cultures exposed to Ciprofloxacin (DNA), 

Control (Cont), Kanamycin (Prot), and Amoxicillin (Wall) before any manipulation (A) 

and after the application of the optimal preprocessing strategy (B). These antibiotics 

were chosen as representatives of the major affected biosynthetic pathways. 

VII.3.3   PREDICTING THE MAJOR BIOSYNTHETIC PATHWAY TARGETED 

Pinpointing the MOA of a candidate molecule requires identifying its molecular target; 
however, this is a dauting task that must often be decomposed into smaller elements, the first 
of which is predicting the major biosynthetic pathway targeted. For that, a PLSDA model was 
built with the optimized preprocessing parameters (Figure 3). Note that, with these parameters, 
a successful classification of 87.5% was obtained after LOO-CV (Figure 1).  

Importantly, the control samples, i.e., those exposed to the solvent but not the antibiotic, 
were predicted as different from all the other samples. This is particularly important as it allows 
one to differentiate the cases where no biosynthetic pathway was affected; therefore, the lack 
of drug effect can be predicted for candidate molecules that have no metabolic effect. 
Additionally, the metabolic fingerprints induced by antibiotics targeting each of the major 
biosynthetic pathways were separated with as little as two latent variables, as a very simple 
model was sufficient to explain over 99% of the spectral variability. To ensure that the observed 
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Figure 3. Representation of the metabolic fingerprints induced by antibiotics acting on 

the major biosynthetic pathways after Partial Least Squares Discriminant Analysis 

(PLSDA), preceded by an optimized combination of preprocessing algorithms. The 

variability explained by each Latent Variable (LV) is reported on each corresponding axis. 

Antibiotics acting on the same major biosynthesis pathway are represented using the 

same color, and individual antibiotics are represented with a unique symbol. 

clusters are indeed intrinsic to the spectra, since PLSDA score plots can often be misleading 
and misinterpreted [44], a PCA was conducted on the same dataset, preceded by the exact 

same optimal preprocessing (Figure 4). 

The objective of this analysis was to reinforce the PLSDA conclusions, rather than 

derive new ones. Unlike the predictive model built with PLSDA, PCA is an unsupervised 
technique that directly reflects the inherent structure of the data. As such, a slightly higher   
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Figure 4. Representation of the metabolic fingerprints induced by 15 antibiotics acting 

on the major biosynthetic pathways after Principal Component Analysis (PCA), 

preceded by an optimized combination of preprocessing algorithms. The variability 

explained by each Principal Component (PC) is reported on each corresponding axis. 

Antibiotics acting on the same major biosynthesis pathway are represented using the 

same color, and individual antibiotics are represented with a unique symbol. 

intra-replica variability is observed, i.e., biological replicas are slightly more disperse. 
Ultimately, the similarity between the PLSDA and PCA is a good indicator that the observed 

results are not the results of a fortunate combination of preprocessing and PLSDA or an artifact 
of using the PLS algorithm for classification instead of calibration, for which it was originally 

implemented. As such, these results suggest that the observed results are a direct 
consequence of the capability of the proposed screening bioassay coupled with high-
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throughput FTIR spectra acquisition in detecting metabolic fingerprints, particularly those 
induced by the exposure to different antibiotics acting on the major biosynthetic pathways. 

VII.3.4   DISCRIMINATING THE METABOLIC FINGERPRINT OF PROTEIN SYNTHESIS INHIBITORS 

The next logical step in pinpointing the MOA of a candidate molecule is to discriminate 
between molecules that act with a similar MOA, e.g., on the same biosynthetic pathway but on 
a different point of the pathway. Within the clusters of metabolic fingerprints representing the 
major biosynthetic pathways targeted, there are sub-clusters coherent with the antibiotic 
classes tested (Figure 3 and Figure 4).  

For instance, for antibiotics that act on protein biosynthesis, those belonging to the 
aminoglycoside class (kanamycin, neomycin and tobramycin) have a metabolic fingerprint that 
is more similar among them than those belonging to the amphenicol (chloramphenicol) and 
the macrolide (erythromycin) classes. Interestingly, antibiotics of the aminoglycoside class bind 
to the 30S ribosomal unit, more specifically at the A-site, where they mimic the stabilization 
induced by cognate tRNA, thereby allowing noncognate tRNA to bind to the A-site, resulting in 
mRNA misreading and faulty protein synthesis. Additionally, allosteric binding sites affect 
ribosomal subunit mobility, which reduces translational activity and impairs ribosomal recycling. 
However, the specific relationship of these effects and cell death are not fully understood [45].  

On the other hand, chloramphenicol, which belongs to the amphenicol class of 
antibiotics, has been considered a ‘general’ translation elongation inhibitor. Chloramphenicol 
was assumed to be a competitive inhibitor of aminoacyl-tRNA binding in the peptidyl 
transferase center of the 50S subunit A site, but recent studies suggest an MOA closer to that 
of macrolides, namely a sequence-specific inhibition of translation elongation [46].  

Similarly, macrolides where thought to indiscriminately block protein elongation via a 
‘plug-in-the-bottle’ mechanism, where binding to the tunnel close to the peptidyl transferase 
center physically obstructs nascent chain progression, but recent studies indicate that several 
proteins can bypass this blockage, thereby suggesting a sequence-specific mechanism [47].  

Regardless of the specific MOA of each class, the antibiotics tested that target protein 
biosynthesis act at the elongation step; therefore, the fact that these were reproducibly plotted 
separately for three independent cultures suggests FTIRS is not only capable of detecting 
metabolic fingerprints with sufficient sensitivity to elucidate MOA beyond targeting protein 
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biosynthesis, but can conceivably be used to elucidate different mechanisms that disrupt 
protein elongation. 

VII.3.5   DISCERNING THE METABOLIC FINGERPRINTS OF DNA SYNTHESIS INHIBITORS 

Regarding the antibiotics that inhibit DNA biosynthesis, the fluoroquinolones 
(levofloxacin and ciprofloxacin) were clustered together with the sulfonamides (sulfamethazine 
and sulfamethoxazole), but these were clearly distinct from metronidazole (Figure 3 and Figure 
4). Fluoroquinolones block the progression of the enzyme–DNA complex formed during 
replication, which ultimately impairs DNA synthesis and induces rapid bacterial death. 
Specifically, fluoroquinolones MOA is based on the disruption of two enzymes: DNA gyrase, 
which introduces negative superhelical twists that facilitate the separation of daughter 
chromosomes and allows for the binding of initiation proteins; and topoisomerase IV, which is 
responsible for removing the interlinking of daughter chromosomes, therefore allowing their 
segregation into the daughter cells at the end of a replication round [48]. 

On the other hand, sulfonamides (sulfamethoxazole and sulfamethazine) are known as 
non-classical antifolates. This class of molecules are competitive inhibitors with p-
aminobenzoic acid, preventing its entrance to the reaction site of dihydropteroate synthase 
and forming an analogue that cannot be used in the subsequent reactions, thereby greatly 
reducing folate levels. Because bacteria cannot absorb exogenous folate, thymine depletion 
occurs, and ultimately DNA biosynthesis errors, which result in the observed antibiotic effect 
[49]. Thymine depletion induces thymineless death, for which a consensual mechanism has 
not been proposed. One possible mechanism revolves around stalled replication forks [50], 
which, if confirmed, implies that the MOA of fluoroquinolones and sulfonamides could be more 
similar than traditionally acknowledged, which is in accordance with the obtained results. 
Alternatively, it could be that, despite having dissimilar MOAs, the metabolic fingerprint 
captured by FTIRS is not sufficiently specific to distinguish between said MOAs.  

Lastly, although the MOA of metronidazole is still unclear, it is believed that 
metronidazole is intracellularly reduced to a short-lived nitroso free radical, which is not only 
cytotoxic, but also inhibits DNA synthesis and causes DNA damage by oxidation, which results 
in DNA degradation and eventually cell death [51]. This, in turn, is a considerably different 
MOA from both fluoroquinolones and sulfonamides, which is coherent with the results obtained. 
As a note, metronidazole is only intracellularly reduced in the presence of a sufficiently 
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negative redox potential, and it could therefore be that the experimental setup utilized induced 
sufficient anaerobic conditions to obtain an antibiotic effect reflected on the metabolic 
fingerprint, since the facultative anaerobe model organism utilized, i.e., E. coli, can be 
susceptible to metronidazole [52] and apparently was (Table 1), but could also justify the 
proximity between samples exposed to metronidazole and the control samples.  

In sum, while the proposed FTIRS bioassay is apparently not the most adequate tool 
to reach conclusions regarding the MOA of sulfonamides, it is possible that FTIRS captures 
the metabolic fingerprint induced by antibiotics with sufficient sensitivity to distinguish those 
targeting DNA biosynthesis via different mechanisms. 

VII.3.6   DIFFERENTIATING THE METABOLIC FINGERPRINTS OF CELL WALL BIOSYNTHESIS INHIBITORS 

Unlike the antibiotics described so far, those targeting cell wall biosynthesis had to be 
analyzed differently. Specifically, the standard concentration of four times the MIC resulted in 
extensive cell lysis, which in turn implied a considerable loss of intensity of the FTIR spectra. 
As such, cells were exposed to ampicillin at the MIC and to amoxicillin at 25% of the MIC. Cells 
were exposed to cephradine at the standard concentration, i.e., four times the MIC. Although 
this might explain the higher dispersion obtained for these antibiotics, in comparison with those 
targeting either DNA or protein biosynthesis, it was necessary to obtain spectra with a sufficient 
signal-to-noise ratio for analysis.  

Regardless of the distance between clusters of independent cultures exposed to the 
same antibiotic, there was coherence in the within-cluster distance, i.e., independent cultures 
were grouped together (Figure 3 and Figure 4), which is a positive indication. Briefly, amoxicillin, 
ampicillin, and cephradine are beta-lactam antibiotics and only differ in their affinities and/or 
molecular target. Beta-lactams inhibit transpeptidases and prevent cross-linking, thereby 
inducing structural deficiencies in the cell wall that results in cell lysis [53]. However, the 
mechanism of cell death induced by beta-lactams has been shown to extend beyond cell lysis. 
In fact, it seems that the cell wall synthesis machinery is recruited to a futile cycle of 
synthesis/degradation that depletes cellular resources and bolsters the bactericidal activity of 
beta-lactams [54].  

Although the issue of the antibiotic concentration is a question that still lingers, and 
must be attended for the industrial application of FTIRS as a viable screening technology for 
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antibiotic discovery, it is interesting to note that cephradine, which belongs to the 
cephalosporins sub-class of antibiotics, is clustered further away from the aminopenicillins 
(amoxicillin and ampicillin). If further validated, this could be another positive indication of the 
metabolic sensitivity of fingerprints obtained with FTIRS. 

VII.3.7   DIFFERENTIATING OTHER METABOLIC FINGERPRINTS 

Interestingly, the samples exposed to isoniazid were clustered closely to those exposed 
to DNA synthesis inhibitors (Figure 3 and Figure 4). Isoniazid enters the cell as a pro-drug and 
exerts its antibiotic effect by disturbing various macromolecular syntheses, of which the most 
frequently discussed is mycolic acid synthesis; therefore, isoniazid is the preferred therapeutic 
for tuberculosis [55]. Although the MOA is still unclear, the peroxidative activation of isoniazid 
by the mycobacterial enzyme KatG forms potent inhibitors of lipid and nucleic acid biosynthesis, 
as well as inducing oxidative stress [56].  

Regardless, its inhibitory effect on E. coli has long been reported as being dependent 
on the initial cell concentration, antibiotic concentration, and medium composition [57], and 
experimentally confirmed (Table 1). Apparently, the metabolic fingerprint detected with FTIRS 
more closely reflects the inhibition of DNA biosynthesis; however, further validation of this 
observation is required. On the other hand, rifampicin samples were clustered together with 
protein synthesis inhibitors. Since rifampicin binds with high affinity to the bacterial DNA-
dependent RNA polymerase, this results in its inhibition, ultimately causing a lethal disruption 
of RNA biosynthesis at the elongation step [58]. This suggests that the clustering observed is 
coherent given this type of inhibition. In other words, inhibition at the level of transcription 
should provide a metabolic effect that is closer to protein synthesis inhibition, which is at the 
level of translation, in comparison with DNA biosynthesis inhibition that occurs at the level of 
replication. Moreover, this is particularly distinct from cell wall biosynthesis inhibition, which is 
at a distant end of the spectrum of cellular metabolic responsibilities. 

VII. 4   CONCLUSIONS 

Given the importance of MOA identification in phenotypic screening, and the role of the 
latter for the success of antibiotic discovery, methods capable of combining MOA elucidation 
with high-throughput screening of whole cells are required now more than ever. Here, we 
explored FTIRS as a metabolic fingerprinting technique regarding its sensitivity towards 
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elucidating MOA, ranging from its looser definition of drug effects, e.g., the major biosynthetic 
pathway affected, through to the stricter drug target that individual antibiotics inhibit. Because 
FTIRS requires extensive data analysis, a combination of parameters of commonly applied 
preprocessing algorithms were optimized. This ensured that the performance of predictive 
models was maximized.  

In general, the metabolic fingerprints obtained with FTIRS were closely related to the 
MOA of all the antibiotics tested, which include examples that target protein, DNA, and cell 
wall biosynthesis. Additionally, the metabolic fingerprints induced by exposure to an RNA 
biosynthesis inhibitor was similar with those of protein synthesis inhibitors, which is coherent 
with the metabolic effect expected. Pending further validation, these fingerprints could help to 
elucidate the MOA of known drugs, for instance isoniazid, which was clustered close to DNA 
synthesis inhibitors, and also the thymineless death induced by sulfonamides.  

Ultimately, these results demonstrate that there is great potential in using FTIRS as a 
tool to acquire a holistic picture of the effect of different antibiotics on the cellular metabolism, 
which can be used not only for antibiotic discovery but also towards a better understanding of 
the MOA of current antibiotics. 
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Abstract 

The low rate of discovery and rapid spread of resistant pathogens have made antibiotic 
discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is 
identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate 
detection, and does not guide lead optimization. In this study, high-throughput Fourier-
transform infrared (FTIR) spectroscopy (FTIRS) was used to discriminate the MOA of 14 
antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations 
and parametrizations of spectral preprocessing were selected with cross-validated partial least 
squares discriminant analysis, to which various machine learning algorithms were applied. This 
coherently resulted in very good accuracies, independently of the algorithms, and at all levels 
of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway 
(98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional 
accuracy, and similar results were obtained for simulated novel MOA. Even at very low 
concentrations (1 μg/mL) and growth inhibition (15%), over 70% pathway and class accuracy 
were achieved, suggesting FTIRS can probe the grey chemical matter. Prediction of inhibitory 
effect was also examined, for which a squared exponential Gaussian process regression 
yielded a root mean square error of 0.33 and a R2 of 0.92, indicating that metabolic alterations 
leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density. 
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VIII. 1   INTRODUCTION  

The rise in deaths and disabilities caused by antimicrobial-resistant pathogens has 
made infectious diseases in general, and multidrug resistant pathogens in particular, a 
worldwide priority [1–3]. Many factors contributed to the upsurge and proliferation of 
antimicrobial resistance [4,5]. Importantly, the rate at which novel antimicrobials enter the 
market has been stagnated at alarmingly low rates since the antibiotic golden age [6], when 
most classes in use today were discovered [7]. The success of the antibiotic golden age was 
fueled by the Waksman platform, but it eventually yielded redundant discoveries [8]. Semi-
synthesis filled the pipeline with iterative generations of antibiotics [9], but the number of 
iterations is limited [10]. While fully-synthetic routes have extended the modifiable chemical 
space, very few novel structures have been chemically synthetized [11], and mechanism of 
action (MOA) diversity is essential to outpace the rise of resistance mechanisms and to avoid 
cross-resistance [12].  

During the genomics era, the industry turned to a target-based screening approach in 
search of novel MOA. However, fewer-than-expected molecules were identified, and those 
were incapable of entering the bacterial cell and reaching their target [13,14]. Additionally, 
resistance mechanisms have a higher probability of arising in single-protein targets [15]. 
Therefore, target-based screening was abandoned in favor of cell-based screening. In the 
latter, a characteristic is monitored to identify compounds that alleviate the disease phenotype, 
e.g., killing bacteria or halting their proliferation [16], thus the term phenotypic screening. 
Because compounds are screened against whole cells, there’s a higher likelihood of identifying 
suitable candidates, as well as those targeting poorly understood pathways and multiple 
targets. In the cell-based approach, positive hits from phenotypic screening assays advance 
to MOA identification, after which known or similar compounds are excluded, thus increasing 
rediscovery rates [17]. Above all, late MOA identification postpones the exclusion of 
undesirable toxic compounds with unspecific MOA [18], cannot guide lead optimization where 
medicinal chemistry programs are paramount to improve the chances of commercialization, 
and limits the detection of low potency candidates that are underexplored but suitable for 
chemical optimization [19]. Finding new antibiotics is very challenging and identifying MOA has 
proven equally defiant. 

Macromolecular synthesis assays have been used for MOA identification for nearly half 
a century [20]. Higher throughput formats have been proposed [18], but these are still laborious, 
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have low resolution and low throughput. Biochemical approaches increase resolution but 
require a high-affinity small molecule and an abundant protein receptor, and are also laborious, 
slow and low-throughput [21,22]. Alternatives are bacterial accumulation assays [23], 
visualizing morphological alterations and leakage of intracellular material [24], or kinetic dose 
response [25]. Interestingly, many microbial processes were understood with chemical 
genetics methods applied to MOA identification [26], but these are limited by large mutant 
libraries [27,28] and few experimentally characterized genes [29]. Promoter-reporter assays 
are better suited to probe cellular pathways and off-target effects [30] and offer better temporal 
resolution [26], but are laborious to setup, have low-throughput and have limited MOA 
resolution [31]. More recently, transcriptomics [32], proteomics [33] and metabolomics [34] 
have been explored. However, these are still costly, laborious, generally low-throughput, and 
methodically complex. This impairs screening hundreds of thousands of compounds, which is 
a reasonable throughput of a drug discovery program [31]. An alternative is high-content 
screening, an image-based approach where morphological changes reveal the MOA. However, 
not all MOA are reflected on cell morphology and not all morphological changes trace back to 
a molecular phenotype [35], so another approach to MOA identification is vital. 

Fourier-transform infrared (FTIR) spectroscopy (FTIRS) is an established high-
throughput technique that requires minimal sample preparation and is reagent-less, easy to 
operate and label free [36]. In addition to these operational advantages, at its core, FTIRS 
measures the vibrational energy of molecular bonds after their interaction with infrared 
radiation at specific wavelengths. Thus, FTIRS directly reveals the molecular composition of a 
given sample. More importantly, a single FTIR spectrum can provide molecular insight into 
most biologically relevant molecules, e.g., nucleic acids, proteins, carbohydrates, lipids, 
phospholipids, etc. [37]; therefore, most if not all molecular phenotypes are detected with this 
technique. Although other techniques provide more detailed data at a given step of the “omics” 
cascade, FTIRS provides comprehensive chemical information to rapidly and reproducibly 
classify samples based on their biological origin, i.e., metabolic fingerprinting [38]. Therefore, 
FTIRS can fill the void between high-throughput/low-information phenotypic screening assays 
(e.g., cell viability) and low-throughput/high-information MOA characterization assays. It has 
been shown that FTIRS detects antibiotic-specific fingerprints [39–42], but an extensive 
assessment of FTIRS as a high-throughput tool to accurately predict MOA is lacking. More 
importantly, an in-depth evaluation of accuracy, sensitivity, specificity, and precision is required, 
as well as an evaluation of resolution towards known and novel MOA. Also, the effect of 
antibiotic concentration on MOA resolution has not been addressed and is particularly relevant 
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to explore the grey chemical matter, i.e., compounds that modulate metabolism without clear 
growth inhibition and are promising candidates for medicinal chemistry programs. The 
possibility of estimating growth inhibition from FTIR spectra has also not been explored and 
could allow for the prediction of antimicrobial activity and MOA in a single assay. 

As such, Escherichia coli was exposed to twofold dilutions of 14 antibiotics, belonging 
to 7 classes and acting on 4 major biosynthetic pathways, using a high-throughput microplate-
based assay suitable for automation. Firstly, two spectral preprocessing techniques were 
evaluated, scatter correction and derivative filtering. In particular, multiplicative scatter 
correction (MSC), its improved version called extended-MSC (EMSC), or EMSC with replicate 
correction (EMSCrep), were applied alone or in combination with the Savitzky-Golay (SG) 
derivative filtering. Although both SG and either type of MSC aim to reduce the non-
discriminatory signal component and highlight the sample-specific spectral component, 
because they do so differently, they are typically applied in combination, which results in some 
level of synergetic improvements [43]. Moreover, the parametrization of these algorithms was 
optimized using leave-one-out cross-validation (LOO-CV) of partial least squares discriminant 
analysis (PLSDA). This ensured an unbiased and quantitative evaluation of the effect of 
preprocessing and revealed “optimal” preprocessing conditions. PLSDA models created with 
optimally preprocessed spectra were validated, e.g., with principal component analysis (PCA), 
to ensure spectra contained intrinsic patterns that reflected the biological phenomena being 
studied. After removal of uninformative spectral regions, various machine learning algorithms 
were applied to the “optimally” preprocessed and “cleaned” spectra to predict either the major 
biosynthetic pathway, antibiotic class, or individual antibiotic each sample was exposed to. 
Considering different algorithms not only enabled further improvements to MOA prediction, but 
also validated FTIRS for MOA identification beyond the limitations of any given algorithm. The 
top-performing machine learning algorithm was used to evaluate MOA resolution across 
antibiotic concentrations, especially at sub-inhibitory concentrations. Lastly, growth inhibition 
was regressed from FTIR spectra in order to evaluate the simultaneous determination of MOA 
and potency. 

VIII. 2   MATERIALS AND METHODS 

VIII.2.1   CHEMICALS AND MATERIAL 

Amoxicillin, ampicillin, cephradine, chloramphenicol, clarithromycin, erythromycin, 
gentamicin, levofloxacin, metronidazole, neomycin, rifampicin, kanamycin and tobramycin 
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were purchased from Sigma-Aldrich, and ciprofloxacin from Bayer. The major biosynthetic 
pathway targeted, class, MOA, the minimum inhibitory concentration that inhibited at least 50% 
of bacterial growth (MIC50), maximum growth inhibition, and recommended solvent of each 
antibiotic were presented (Table 1). Stock solutions were prepared at 2000 µg/mL, filtered with 
a 0.2-µm cellulose filter, and stored at -20ºC, unless specified otherwise by the supplier.  

VIII.2.2   BACTERIAL GROWTH CONDITIONS AND ANTIBIOTIC EXPOSURE 

Escherichia coli (ATCC 33876) cultures were grown in Bacto Tryptic Soy Broth (BD) at 
37ºC, 200rpm, until mid-exponential phase. Then, 500 µL was transferred to each well of a 2-
mL 96-deep-well microtiter plate (Nunc), to which 800 µL of fresh growth media were 
previously added, along with 500 µL of antibiotic solution to obtain twofold dilutions ranging 
from 512 µg/mL through to 0.03 µg/mL. A growth control exposed only to the solvent, and a 
sterility control without any bacteria, were also analyzed. Antibiotic exposure lasted 16h, at 
37ºC, 200 rpm, on at least three independent cultures on different days. Immediately after 
exposure, 100 µL of the contents of each well was transferred to a flat-bottomed 96-well 
microtiter plate (Nunc) to read the absorbance at 600nm (ABS600) (SPECTRAmax, Molecular 
Devices). The percentage of growth inhibition was determined as the difference in ABS600 

between control and exposed samples [44] and were used to estimate the MIC50. 

VIII.2.3   SPECTRAL DATA ACQUISITION 

The contents of each well were centrifuged for 3 minutes at 13,000 rpm (13,793g) 
(Z160M, Hermle Labortechnik, Germany). The supernatant was discarded, and the pellet was 
resuspended in sterile water to obtain an ABS600 of 36 and plated on a ZnSe 96-well plate 
(Bruker, Germany) in at least duplicates, which were averaged to reduce operator-induced 
variability. Samples were dehydrated for 1h in a vacuum desiccator with silica, and spectra 
were acquired in a HTS-XT module coupled to a Vertex-70 spectrometer (Bruker Optics, 
Germany) in transmission mode, and consisted of 40 coadded scans at a 4 cm-1 resolution. 
Raw spectra were exported with the OPUS software (Bruker, Germany), as data point table 
files and imported into MATLAB (MathWorks, USA).  
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Table 1. M
echanism

-of-action of 14 antibiotics belonging to 7 classes and acting on 4 m
ajor biosynthetic pathw

ays. The m
inim

um
 inhibitory 

concentration (M
IC50), m

axim
um

 grow
th inhibition (M

GI), and recom
m

ended solvent are also reported. 

Biosynthetic 
pathw

ay 
Antibiotic 
class 

M
echanism

 of action 
Antibiotic 

M
IC50 

(µg/m
L) M

G
I  

(%
) 

Solvent 

Cell W
all 

Beta-lactam
 

Bind to penicillin binding proteins and prevent cross-linking during 
peptidoglycan biogenesis. This induces structural deficiencies in the 
cell wall, crippling its integrity and leads to lysis. However, it has 
been suggested that the cell wall synthesis m

achinery is recruited to 
a futile cycle of synthesis and degradation, which depletes cellular 
resources, and explains or bolsters bactericidal activity [45]. 

Am
oxicillin 

8 
82,8 

H
2 0 

Am
picillin 

16 
77,3 

H
2 0 

Cephradine 
> 512 

48,7 
H
2 0 

DNA 
Fluoroquinolone 

Block replication fork progression by binding to either the enzym
e-

DNA com
plex form

ed by DNA gyrase or topoisom
erase IV, inducing 

rapid bacterial death [46]. 

Ciprofloxacin 
> 512 

42,6 
Hydrochloric 
acid (0.01M

) 

Levofloxacin 
16 

48,6 
H
2 0 

Nitroim
idazole 

M
etronidazole is intracellularly reduced to a short-lived nitroso free 

radical that is cytotoxic and causes oxidative dam
age to DNA, 

resulting in breaks that lead to DNA degradation and eventually cell 
death [47]. 

M
etronidazole 

> 512 
66,9 

Acetic acid 
(0.01M

) 

RNA 
Rifam

ycin 
Binds to bacterial DNA-dependent RNA polym

erase with high 
affinity, deep within the DNA/RNA channel but away from

 the active 
site, sterically blocking nascent transcripts at the 5’ end, leading to a 
lethal disruption of RNA biosynthesis [48]. 

Rifam
picin 

> 512 
48,6 

H
2 0 
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Table 1 (Continued). M
echanism

-of-action of 14 antibiotics belonging to 7 classes and acting on 4 m
ajor biosynthetic pathw

ays. The m
inim

um
 

inhibitory concentration (M
IC50), m

axim
um

 grow
th inhibition (M

GI), and recom
m

ended solvent are also reported. 

Biosynthetic 
pathw

ay 
Antibiotic 
Class 

M
echanism

-O
f-Action 

Antibiotic 
M

IC50 
(µg/m

L) M
G

I 
(%

) 
Solvent 

Protein 
Am

inoglycoside 
Am

inoglycosides bind to the A-site of the 30S ribosom
al subunit and 

stabilize the internal loop, as would a cognate tRNA, which allows 
the binding of noncognate tRNA and therefore results in m

RNA 
m

isreading and faulty protein synthesis. Allosteric binding sites 
reduce ribosom

al subunits’ m
obility, im

pairing translation factor 
binding and activity, and lim

iting ribosom
e recycling. Different 

m
echanism

s have been proposed for reduced translation fidelity and 
cell death [49].  

G
entam

ycin 
128 

55,6 
H
2 0 

Kanam
ycin 

16 
55,0 

H
2 0 

Neom
ycin 

128 
68,0 

H
2 0 

Tobram
ycin 

8 
39,7 

H
2 0 

Am
phenicol 

Com
petitive inhibitor of am

inoacyl-tRNA in the peptidyl transferase 
center of the 50S ribosom

al subunit A site. Recent studies suggest 
the m

echanism
 is dependent on nascent peptide sequence and the 

A-site acceptor am
ino acid [50]. 

Chloram
phenicol > 512 

50,6 
Ethanol 
(7%

 v/v) 

M
acrolide 

Physically obstruct the ribosom
e tunnel close to the 50S subunit 

peptidyl transferase center, blocking nascent chain progression. 
Som

e proteins bypass this blockage, thus a sequence-specific 
m

echanism
 is m

ore likely: either som
e proteins can thread through 

the tunnel, despite m
acrolide binding; or som

e proteins cause the 
dissociation of the antibiotic [51]. 

Clarithrom
ycin 

256 
45,2 

Acetone 
(7%

 v/v) 

Erythrom
ycin 

> 512 
58,3 

Ethanol 
(7%

 v/v) 
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VIII.2.4   DATA ANALYSIS 

Firstly, spectra were submitted to quality control routines [52] and a few spectra were 
discarded accordingly. On the remaining samples, MSC, EMSC and EMSCrep were applied 
using the Afseth and Kohler toolbox [53]. Machine learning was employed with MATLAB’s 
Classification Learner App. Briefly for prediction, one-vs-all Support Vector Machines (SVM) 
was applied on standardized data. For fine, medium and coarse Gaussian, the kernel scale 
was 11, 43, and 170 respectively, and set to automatic for other kernel functions. All SVM 
models considered a box constrain of 1. K-Nearest Neighbor (KNN) considered standardized 
data using Euclidean distance with equal weight for 1, 10 and 100 neighbors for the fine, 
medium and KNN respectively. Both Cosine and Cubic KNN considered 10 neighbors, with 
Cosine and Minkowski distances, respectively. Weighted KNN applied squared inverse 
weights to a Euclidean distance considering 10 neighbors. Ensemble of decision trees used 
either Bag or RSUBoost with 30 learners at 0.1 rate and 20 splits. Subspace ensembles were 
determined for discriminant analysis and KNN used 934 subspaces and 30 learners. Accuracy 
was determined as the ratio between the predicted true positives plus the true negatives over 
the total number of observations. Precision was calculated as the true positive rate over the 
true positive rate plus the false positive rate. Recall, or sensitivity, was determined as the true 
positive rate over the sum of the true positive rate plus the false negative rate. Specificity was 
calculated as the true negative rate over the sum of true negative plus false positives. 
Accuracy, precision, recall and specificity were determined for one-vs-all prediction.  

For regression, MATLAB’s Regression Learner App was used. Fine, medium and 
coarse trees were applied without surrogate decision splits and a minimum leaf size of 4, 12 
and 36, respectively. Linear, quadratic, and cubic kernel SVM were applied on standardized 
data, considering an automatic box constrain, automatic kernel scale and automatic Epsilon. 
Fine, medium or coarse Gaussian used a kernel scale of 11, 43 and 170, respectively. An 
ensemble of boosted and bagged trees used a minimum leaf size of 8 and 30 learners, 
respectively, with a learning rate of 0.1. Gaussian Process Regression (GPR) applied 
exponential, squared exponential, matern 5/2 or rational quadratic isotropic kernel on 
standardized data, with a constant basis function, and automatic kernel scale. 
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VIII. 3   RESULTS 

VIII.3.1   ANTIBIOTIC EXPOSURE AND FTIR SPECTRA ACQUISITION 

Antibiotic exposure was designed to allow FTIR spectra acquisition from a microtiter 
susceptibility methodology. Thus, a high-throughput assay based on microtiter plates, along 
with a serial dilutions format, was conducted with a considerably higher cell density to ensure 
an adequate FTIR signal-to-noise ratio. Given the inhibitory effect of antibiotics is dependent 
on the inoculum size, the simultaneous acquisition of FTIR spectra and growth inhibition 
measurement was preferred so the metabolic effects that resulted in antibiotic-induced growth 
inhibition, across the range of concentrations tested, were directly reflected on the spectra. 
Also, this compromise allowed probing the dose-response of MOA identification, and from that 
to estimate the potency. The maximum observed growth inhibition, and the minimum 
concentrations to inhibit at least 50% of bacterial growth of unexposed samples (MIC50), were 
determined (Table 1). Although these are not comparable with the literature, given the 
mentioned compromise, it is important to note that the maximum concentration of some 
antibiotics inhibited just over 50% of bacterial growth. As such, using spectra from these 
samples avoided discrepancies between the expected growth inhibition, based on MIC values 
obtained with industry-accepted protocols, and the observed inhibitory effect of the tested 
antibiotics at the reported cell density. Moreover, this average inhibition was deemed adequate 
for the purpose of MOA identification, as drastic growth inhibition could have resulted in 
catastrophic cellular responses unspecific to the individual antibiotic-induced stress.  

VIII.3.2   SPECTRAL PREPROCESSING OPTIMIZATION 

Spectral preprocessing is the first step of the data analysis workflow. It has been shown 
that preprocessed spectra outperform raw spectra in both classification and quantitative 
analysis [54]. Typically, the first preprocessing method to be applied is spectral differentiation. 
Here, the SG filter is most often used given its band-pass properties, which reduces both high-
frequency signal components, e.g., homoscedastic noise, and broader signal components, 
e.g., curving baselines. Another commonly used spectral preprocessing routine is MSC, which 
separates physical and chemical information by modeling the physical “interferants”, thereby 
counteracting additive effects resulting from signal acquisition and unfavorable sample 
properties. Its improved version, EMSC, also accounts for multiplicative effects. Further 
improvements to EMSC include replicate correction, EMSCrep, which minimizes between-
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replicate variation. An example of the effect of preprocessing is presented on Figure 1. 
However, the performance of these preprocessing methods is affected by their 
parametrization, which varies for the system under investigation, and requires objective 
optimization [43].  

To that end, the successful classification with PLSDA after LOO-CV was used to 
evaluate the effect of various combinations of SG parameters alone and coupled with MSC, 
EMSC, or EMSCrep, on MOA identification. For each combination, a model was constructed 
from the data subset containing samples exposed to the maximum antibiotic concentration, 
i.e., 512 µg/mL, and all control samples, i.e., 0 µg/mL. This minimized the number of models 
required for optimization and reduced computation time. Additionally, a higher concentration 
ensured antibiotic-induced metabolic fingerprints were imprinted on the spectra, given this 
corresponded to an average growth inhibition around 50%. This data subset was then 
matched with an external variable categorizing samples according to either the major 
biosynthetic pathway (Supplementary Figure 1), the antibiotic class (Supplementary Figure 2), 
or each antibiotic (Supplementary Figure 3) that E. coli cells were exposed to, along with a 
control group. Independently of the external variable used to build the PLSDA models, i.e., 
pathway, class or antibiotic, a second derivative SG coupled with EMSCrep always 
outperformed the other preprocessing algorithms. So, these models were closely examined 
across a range of SG parameters for the three external variables (Figure 2). Note that window 
size 0 implies that the SG filter was not used. In short, preprocessing optimization resulted in 
a 10% improvement at the pathway level, 14% improvement of class prediction, and 21% 
better prediction of the specific metabolic fingerprint of antibiotics. 

It’s noteworthy that EMSC alone actually yielded a PLSDA model with poorer 
performance than MSC and raw spectra, albeit it being more typically used. In regard to the 
SG parameter optimization, there was considerable performance variability among polynomial 
orders, and also window size, even within those typically employed (9-25). These results 
highlight the importance of preprocessing optimization, which varies among different datasets, 
but more importantly varies according to the variable being predicted from the same dataset, 
as was the case. Also, preprocessing had a more vigorous effect when the sample-specific 
component of the spectra was likely more nuanced. In other words, when less prominent 
spectral differences are expected, e.g., between individual antibiotics, preprocessing had a 
greater effect than when more prominent differences among spectra exist, e.g., between 
groups of antibiotics that affect a biosynthetic pathway. Since the latter were more prominent   
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Figure 1. Average of raw spectra of independent E. coli cultures exposed to 14 

antibiotics (a), and the effect of Savitzky-Golay filtering followed by extended 

multiplicative scatter correction with replicate correction (b). The variable importance 

in projection of partial least squares discriminant analysis (c) revealed the spectral 

regions with higher discrimination potential towards the fingerprints induced by 

specific antibiotics, which were identified (inverted triangles) and, where available, 

annotated with their biomolecular origin [55–58].  
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Figure 2. Successful classification of the major biosynthetic pathway (a), antibiotic class 

(b), and antibiotic-specific metabolic fingerprints (c) induced on E. coli cells after 

exposure to 14 antibiotics. Successful classification was evaluated with leave-one-out 

cross-validation of partial least squares discriminant analysis of FTIR spectra 

preprocessed with Savitzky-Golay second derivative filtering followed by extended 

multiplicative scatter correction with replicate correction. 

even in raw spectra, preprocessing optimization had less of an effect. In all cases, the 
performance gains justify the extent of optimization put in place, as optimal performance 

wouldn’t be fortuitously achieved with “standard” parameters. Even within “standard” 

parameters there was substantial performance variability, especially for prediction of individual 
antibiotics. 
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VIII.3.3   MODEL VALIDATION 

Validation is essential to determine the merit of predictive models. For that, a LOO-CV 
was used since it has the smallest asymptotic bias and variance of the k-fold CV strategies 
[59], and is therefore suitable for an unbiased comparison of the performance of similar models. 
Another important issue in model validation is overfitting, especially when a large number of 
Latent Variables (LVs) are considered. To avoid this phenomenon, the previously described 
models used a generally accepted 10 LVs. Although the models were not used directly for 
prediction, but rather for preprocessing optimization, it was important to ensure that the data 
was not being grossly overfitted. To confirm this, the successful classification of either the 
biosynthetic pathway, antibiotic class or individual antibiotics over a larger range of LVs was 
determined for the optimal preprocessing combinations (Supplementary Figure 4). 

It was also important to validate MOA identification beyond PLSDA by using a different 
algorithm prior to the application of machine learning strategies. So, PCA was performed on 
the spectra after preprocessing with the optimal parameters for the prediction of the effect of 
individual antibiotics (Figure 3). Unlike PLSDA, the objective of an unsupervised PCA is to 
reveal intrinsic data patterns, therefore it avoids the common pitfalls of PLSDA [60]. However, 
PCA results are not quantitative, e.g., the successful classification after LOO-CV, but rather 
qualitative, e.g., visually interpreted from score plots. PCA revealed an acceptable grouping 
of samples exposed to antibiotics, and these were mostly consistent with the major 
biosynthetic pathway targeted, which is coherent with PLSDA. Additionally, complementary 
PCA were conducted considering the preprocessing combinations that yielded optimal 
classification of antibiotic classes and the major biosynthetic pathway targeted by the 
antibiotics (Supplementary Figure 5 and 6, respectively). Intriguingly, these were very similar, 
indicating that PCA was not as sensitive to preprocessing as PLSDA. In general, these results 
suggest that PLSDA was suitable for preprocessing optimization, and more importantly FTIRS 
detected specific metabolic alterations after exposure to different antibiotics, independently of 
the algorithm used.  

PCA was also used to address the premise of grouping all controls. Although most 
antibiotics were dissolved in water, a few required a different solvent (Table 1). To ensure that 
PCA score plots are not reflecting the metabolic effect of the different antibiotic solvents used, 
particular attention was given to erythromycin and chloramphenicol, dissolved in ethanol, as 
well as to ciprofloxacin and metronidazole, both dissolved in an acidic solvent. There is no   
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Figure 3. Score plots and explained variability of FTIR spectra of E. coli cells exposed to 

14 antibiotics, highlighted in different colors, acting on 4 biosynthetic pathways, 

highlighted with different symbols. Spectra were evaluated with Principal Component 

Analysis after preprocessing with optimal parameters for antibiotic prediction using a 

Savitzky-Golay second derivative filter, followed by extended multiplicative scatter 

correction with replicate correction. 

evident grouping according to the antibiotic solvent, which indicates that FTIR spectra of 
bacteria exposed to different antibiotics more closely reflects their MOA than the effect of their 
solvent. Moreover, another PCA was done exclusively on the control samples (Supplementary 
Figure 7), and again a clear pattern of solvent-induced sample separation in the absence of 
antibiotics was not observed, i.e., the control samples were not grouped together according to 
the antibiotic solvent. 
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VIII.3.4   PREDICTION OF KNOWN MECHANISMS OF ACTION 

Prior to prediction of known MOA, a few issues were addressed. Firstly, one advantage 
of using PLS models is the possibility of calculating the variable importance in projection (VIP) 
scores. These reflect the importance of each variable, i.e., wavenumber, for the outcome of a 
given PLS model. As such, the VIP scores were overlapped with the spectra to highlight the 
spectral regions that most contribute to MOA prediction, as exemplified on Figure 1. Here, it 
became clear that the spectral region associated with atmospheric carbon dioxide (e.g. 
2362cm-1) was contributing to MOA classification, so this region was removed from the 
subsequent analysis, as conducted by others [61]. Secondly, it is reassuring to see that of the 
spectral bands that most contributed to PLSDA classification, many are typically associated 
with known biomolecules, e.g., lipids, proteins, carbohydrates, DNA, RNA, phospholipids and 
phosphorylated proteins (Figure 1 – C). Even so, when using machine learning algorithms, 
better predictions of individual antibiotics were obtained by removing the least informative 
spectral regions, i.e., keeping the regions that contributed to the top 2/3 of the VIP scores. The 
effect of these variable reduction methods is discussed regarding the dose-response of MOA 
identification, but it is important to note that machine learning after removal of uninformative 
spectral regions further improved MOA prediction at the antibiotic level by 17%, which coupled 
to a 21% improvement with preprocessing optimization, amount to an overall improvement of 
38% in regard to raw spectra. 

Regarding known MOA identification, even though PLSDA proved to be a robust 
algorithm for the elucidation of antibiotics MOA, better performance was achieved using 
alternative, and more advanced, predictive algorithms. Additionally, using different predictive 
algorithms for the same biological query provides higher confidence in the fact that FTIR 
spectra strongly reflect the antibiotics MOA. As such, optimally preprocessed spectra of E. coli 
cells exposed to the highest concentration of antibiotics were analyzed with a multitude of 
algorithms (Table 2). In general, MOA resolution was higher at the pathway and class level 
than at the antibiotic level, independently of the predictive algorithms. Interestingly, the 
difference in accuracy between pathway and class was mostly smaller than that of class and 
specific antibiotic effect. The observed coherence among different algorithms, validated with 
a stringent CV strategy, and substantially distinctive underlying mathematical methods, 
suggests that there are intrinsic data patterns in the FTIR spectra, and that these have been 
properly highlighted with an optimized parametrization of preprocessing.   
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Table 2. Prediction accuracy for the major biosynthetic pathway, antibiotic class, and 

individual effect of each antibiotic on spectra of E. coli cells preprocessed with the 

optimal parameters of second derivative Savitzky-Golay filtering followed by extended 

multiplicative scatter correction with replicate correction. Accuracy was evaluated 

with leave-one-out cross-validation. 

In the case where a known compound is being tested, the models would have already 
seen the metabolic fingerprint induced by said compound. This scenario was simulated 
perfectly with LOO-CV since it maximized the number of training samples for all models and 
allowed an unbiased comparison of different models. In this scenario, prediction of the 
pathway affected by antibiotics was perfect with an ensemble of a subspace KNN classifiers. 
At the class level, an ensemble of subspace discriminant classified MOA perfectly. It is 
interesting to note that the same classifier at the pathway level only failed for a sample 

Model Type Pathway 
accuracy (%) 

Class 
accuracy (%) 

Antibiotic 
accuracy (%) 

SVM 

Linear 91.4 96.4 74.1 

Quadratic 97.1 98.6 79.9 

Cubic 99.3 98.6 83.5 

Fine Gaussian 61.9 61.9 63.3 

Medium Gaussian 97.1 98.6 72.7 

Coarse Gaussian 81.3 84.2 61.9 

KNN 

Fine 99.3 97.8 91.4 

Medium 86.3 87.8 67.6 

Coarse 60.4 60.4 60.4 

Cosine 92.1 87.8 68.3 

Cubic 85.6 87.1 67.6 

Weighted 95.7 97.8 88.5 

Ensemble 

Bagged trees 97.8 97.1 89.9 

RUSBoosted trees 87.1 81.3 67.6 

Subspace discriminant 98.6 100 97.8 

Subspace KNN 100.0 99.3 88.5 
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exposed to a protein synthesis inhibitor, which was predicted as a DNA synthesis inhibitor, 
and an RNA synthesis inhibitor that was predicted as a cell wall synthesis inhibitor. Regarding 
MOA prediction at the antibiotic level, an ensemble of subspace discriminant achieved 
excellent accuracy, precision, recall and specificity for each antibiotic (Figure 4). Interestingly, 
the misclassified RNA inhibitor at the pathway level with an ensemble of subspace 
discriminant was no longer misclassified at the class or antibiotic level, although the protein 
synthesis inhibitor chloramphenicol was still classified as a DNA inhibitor, which reinforces the 
effect of preprocessing on the outcome of predictive algorithms, and therefore the importance 
of its optimization. Additionally, a sample exposed to tobramycin was predicted as exposed to 
neomycin and another sample in reverse. Since both tobramycin and neomycin are 
aminoglycosides, thus target the 30S ribosomal subunit in a similar fashion, it could be the 
case that MOA resolution becomes limited at the level of individual antibiotics that target the 
same biomolecule. Ultimately, the classification of known MOA at the level of individual 
antibiotics was generally very good regarding accuracy, precision, sensitivity and specificity, 
and despite the few misclassifications discussed, these results clearly encourage the 
application of FTIR-based MOA identification in antibiotic discovery. 

VIII.3.5   PREDICTION OF NOVEL MECHANISMS OF ACTION 

Equally important is the scenario where a compound with a novel MOA, either similar 
or considerably different from known MOA, would be tested. To simulate this, all samples 
exposed to a given antibiotic were withheld from model training and subsequently MOA was 
predicted at the antibiotic level with the top performing model for known MOA identification 
(Figure 5). Notice that four random control samples were selected to simulate a compound 
with no discernable metabolic effect. Because samples exposed to any given antibiotic were 
not used to train the model, the objective was for the antibiotic with closest MOA to be identified 
by the model. For instance, when predicting the MOA of ampicillin, the model should return 
that of amoxicillin and vice-versa, and likewise for e.g., erythromycin and clarithromycin, etc. 
In that regard, the most common independent predictions were considered as a consensus 
prediction, from which the final model prediction was determined. Considering that some 
MOAs had few fingerprints, this scenario was expected to be more challenging. For instance, 
samples exposed to rifampicin, an RNA synthesis inhibitor, would always be misclassified as 
the model would have never seen the metabolic fingerprint of RNA synthesis inhibition. To 
some extent, this simulates the event of having a compound that disrupts a metabolic pathway 
that no other compound targets. On the other hand, the model always returned a prediction,   
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Figure 4. Confusion matrix after leave-one-out cross-validation of the one-versus-all 

classifications of an Ensemble of discriminant analysis used to predict the effect of 

individual antibiotics on E. coli. Accuracy, precision, sensitivity and specificity are 

highlighted for each antibiotic. FTIR spectra were preprocessed with optimal 

parameters of a Savitzky-Golay second derivative filter, followed by Extended 

Multiplicative Scatter Correction with replicate correction. 

e.g., rifampicin-exposed samples were predicted as being exposed to cephradine, which 
impaired an evaluation of MOA identification with the previously discussed performance 
indicators. Moreover, even in cases that MOA cannot be comparatively identified, if a 
metabolic effect or growth inhibition is detected, then follow-up methodologies with higher 
resolution and lower throughput can be used to pinpoint the MOA. 

Identification of novel MOA was surprisingly positive as all consensus predictions 
obtained matched those expected, excluding samples exposed to cephradine, metronidazole 
and rifampicin. While the case of rifampicin has been discussed, metronidazole is interesting 
because it was consistently predicted as a protein synthesis inhibitor, even with PCA (Figure 
3). Indeed, the MOA of metronidazole is still not fully understood, and some suggestions have 
been made that its MOA might be more complex than simply DNA synthesis inhibition [62],   
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Figure 5. Predicted MOA of independent cultures withheld from training of a one-

versus-all ensemble of discriminant analysis. The consensus prediction, i.e., the most 

frequently predicted MOA, was used as the overall prediction. FTIR spectra were 

preprocessed with optimal parameters of a Savitzky-Golay second derivative filter, 

followed by extended multiplicative scatter correction with replicate correction. 

which could justify its poor predictions in this study. As such, it is reasonable to assume that 
the poorer prediction obtained for either rifampicin or metronidazole could be unrelated to the 
suitability of FTIRS for MOA identification. For instance, two ciprofloxacin-exposed samples 
were predicted as being exposed to metronidazole, which suggests that the metabolic 
fingerprint induced by metronidazole has large resemblances with that of other DNA synthesis 
inhibitors, which is coherent with the expected MOA. On the other hand, this could be due to 
both ciprofloxacin and metronidazole being dissolved in an acidic solvent, which is more 
unlikely given that the solvent did not seem to be reflected on the metabolic fingerprints. Either 
way, a larger set of DNA synthesis inhibitors, other than fluoroquinolones, could shed some 
light on this issue, as well as the use of a universal solvent. The case of cephradine is more 
challenging to interpret. Because of the PCA results, along with the LOO-CV PLSDA and 
machine learning models for similar MOA identification, it seems that cephradine induced a 
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consistent metabolic fingerprint across independent cultures. Moreover, said fingerprint 
resulted in coherent predictions across different algorithms when the cephradine-exposed 
samples were included in the training data set, which suggests that this fingerprint was 
reproducibly captured with FTIRS, but if excluded from training, this fingerprint was not 
predicted as similar to the other beta-lactams. Although unlikely, it could be the case that the 
MOA of cephradine is sufficiently distinct from that of amoxicillin and ampicillin to induce 
considerably different metabolic fingerprints. Training the models with more fingerprints of 
cephalosporins and other cell wall inhibitors could shed some light on the nature of this 
misclassification. On a different note, the fact that chloramphenicol, the single representative 
of the amphenicol class of antibiotics, was predicted as erythromycin is a positive indication, 
given both target the 50S ribosomal subunit. In the end, the classification of novel MOA at the 
level of individual antibiotics was largely very good, particularly when the model was presented 
with similar metabolic fingerprints. To tackle the cases with poorer performances, holistic and 
extensive databases of metabolic profiles for FTIR-based MOA identification will be required. 

VIII.3.6   DOSE-RESPONSE OF MOA IDENTIFICATION 

So far, the analysis has considered spectra obtained from bacteria exposed to the 
highest concentration of antibiotics tested. This was done to reduce the prohibitively large 
computation time of testing the extensive preprocessing parameter combinations for the wide 
range of antibiotic concentrations to which bacteria were exposed to, as well as to maximize 
the antibiotic-induced metabolic fingerprint component of the spectra. After determining the 
optimal preprocessing parameters, addressing the possibility of overfitting, validating the 
supervised classification obtained with unsupervised PCA, removal of uninformative spectral 
regions, and the application of several machine learning strategies, the top-performing 
algorithm was used to query if the highest concentration was the most adequate for elucidating 
the MOA of antibiotics. As such, the effect of antibiotic concentration on MOA identification 
was evaluated for each twofold dilution of antibiotic concentration, which ranged from 512 
µg/mL through to 0.03 µg/mL, in addition to the grouped control samples (Figure 6). Clearly, 
higher antibiotic concentrations lead to improved MOA identification at either the pathway, 
class or antibiotic level. Therefore, the premise of considering spectra obtained from bacteria 
exposed to the highest concentration of antibiotics tested seems to hold true and supports the 
fact that these spectra were used for preprocessing optimization and to build more advanced 
predictive models.   
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Figure 6. Effect of the antibiotic concentration on the successful classification of the 

major biosynthetic pathway, antibiotic class and antibiotic-specific metabolic 

fingerprints induced on E. coli cells after exposure to 14 antibiotics. Successful 

classification was evaluated with leave-one-out cross-validation of an ensemble of 

discriminant analysis of FTIR spectra preprocessed with the respective optimal 

parameters of Savitzky-Golay second derivative filtering followed by extended 

multiplicative scatter correction with replicate correction.  

It is interesting to note that the successful classifications of pathway, class and 
individual antibiotics differ very slightly. Prior to the removal of uninformative spectral regions, 
and using PLSDA, MOA identification at the antibiotic level was clearly poorer than at either 
the class or pathway level (Supplementary Figure 8). This suggests that the workflow 
employed was particularly important to improve MOA resolution at the antibiotic level, 
irrespectively of the antibiotic concentration. Additionally, this dose-response consolidates the 
notion that FTIR spectra have intrinsic data patterns that are relevant for elucidating antibiotics 
MOA, and these patterns appear even at very low antibiotic concentrations that only induce a 
slight growth inhibition. For instance, over 70% accurate MOA prediction at the pathway and 
class level was achieved with an antibiotic concentration of just 1 µg/mL, which only induced 
slightly over 15% growth inhibition. This is particularly relevant if the high cell density is 
considered, which would correspond to an even lower antibiotic concentration in a typical 
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susceptibility assay. In the end, these results are a positive indicator that FTIRS can be used 
to explore the grey chemical matter, although it is important to stress that lower concentrations 
of antibiotics might not be an accurate interpretation of compounds from the grey chemical 
matter. Remembering that these compounds induce some phenotypic modulation but only 
present low activity in typical screening conditions, their low activity is most likely due to other 
factors beyond concentration, e.g., binding affinity, which can be improved with medicinal 
chemistry.  

VIII.3.7   ESTIMATION OF ANTIMICROBIAL POTENCY 

After dwelling into MOA prediction, the ability of the proposed method in determining if 
a candidate molecule has an antibiotic effect was examined. In the simplest terms, a molecule 
with an antibiotic effect has antagonistic properties on the growth of microbes [63]; therefore, 
a good estimator of the antibiotic effect should probe microbial growth, which was achieved 
by measuring the ABS600 simultaneously with FTIR spectra (Supplementary Table 1). Note 
that after measuring ABS600, but prior to FTIR spectra readings, the biomass of each sample 
was normalized, therefore all spectra had approximately the same cellular density. The 
optimized preprocessing parameters discussed thus far were used for regression, but instead 
of EMSCrep, EMSC was used given that EMSCrep suppressed some of the spectral variability 
related to growth inhibition, since replicates more closely reflect a similar MOA, than growth 
inhibition, given the latter is subject to higher variability. As such, a second-degree polynomial, 
fitted over a window size of 9 points, was used to determine the second derivative spectra 
with the SG filter, followed by EMSC.  

In regard to model validation, a PLS regression (PLSR) model was used to estimate 
the optical density of each sample, which decreased after exposure to any of the drugs tested 
(Table 1), from which overfitting was ruled out using the coefficient of determination (R2) and 
the Root-Mean-Square Error (RMSE) (Supplementary Figure 9). The RMSE can be thought 
of as a normalized distance between predicted and observed values; thus, it is a good 
estimator of the standard deviation of the prediction error. Since a PLSR with 10 LVs produced 
an R2 of 0.84 and a RMSE of 0.46, and that control samples had an average ABS600 of 4.00, 
while those exposed to the maximum tested concentration had an average ABS600 of 1.86, 
even at two standard deviations away from said means there was virtually no overlap between 
these two sample groups, assuming a normal distribution. This roughly means a correct 
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prediction of growth inhibition above 95% for samples exposed to the highest tested antibiotic 
concentration. 

The optimized and validated dataset was explored with more advanced algorithms 
(Table 3) towards better performance, and to consolidate that FTIR spectra strongly reflected 
the antagonistic effect of antibiotics on microbial growth. This was especially important to 
validate because the biomass of each sample was set to a predefined value prior to spectral 
acquisition, thus all spectra had approximately the same cellular density. So, if growth 
inhibition was intrinsically reflected on the FTIR metabolic fingerprints, it was not just a function 
of cellular concentration. A squared exponential Gaussian process regression yielded a RMSE 
of 0.33 and a R2 of 0.92, which was the best performance of all algorithms considered and 
whose predicted values variability were visualized as a function of the observed data (Figure 
7). Here, the variability of the predicted data was not clearly larger for a particular range of 
ABS600; in other words, it seems randomly distributed. This suggests there was little or no bias 
of the model for over- or under-estimation. This does not mean that the model did not over- or 
under-estimate the actual value; rather, this occurred in a random fashion. In fact, it is possible 
that some of this random noise was introduced with the biomass normalization step of the 
bioassay and could therefore be reduced. Ultimately, these results suggest FTIR spectra 
reflected the ABS600, and so these could be used to identify bacterial growth inhibition, which 
in turn can be used to estimate the potency of antibiotics similarly to a spectrophotometric 
susceptibility testing method. Importantly, potency could be estimated despite the 
normalization of biomass prior to spectral acquisition, which is most likely due to the metabolic 
fingerprints detected with FTIRS reflecting the alterations induced by antibiotics, which lead to 
the growth inhibition detected when measuring the ABS600. As growth inhibition can be 
detected, promising compounds can be revealed even in cases where MOA identification was 
not as successful, for which follow-up methodologies can be used to pinpoint the MOA. As 
such, this opens the door on a single step assay capable of simultaneously determining the 
MOA of antibiotic candidates and their potency.  

VIII. 4   DISCUSSION 

Antibiotic discovery has plummeted to frightening rates. High-throughput methods 
capable of probing the complex MOA of antibiotics are urgently needed [64]. Metabolomics is 
an especially promising technique for MOA identification because it reflects the downstream 
products of biomolecular processes; hence, it is a closer reflection of phenotype than, for   
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Table 3. Performance of regression algorithms regarding the coefficient of 

determination (R2), the Root-Mean-Square Error (RMSE), the Mean Square Error (MSE) 

and the Mean Absolute Error (MAE). Regression was performed with spectra of E. coli 

cells preprocessed with the optimal parameters of second derivative Savitzky-Golay 

filtering followed by extended multiplicative scatter correction against the absorbance 

at 600nm after a 16h exposure to twofold dilutions of antibiotics. All models were 

evaluated with 50-fold cross-validation. 

instance, transcriptomics. Often, transcriptomic profiles reflect indirect responses overlaid with 
the specific antibiotic responses, thus are noisier and more challenging to use when 
pinpointing the MOA [65]. As such, Halouska et al. used Nuclear Magnetic Resonance (NMR) 
metabolomics to obtain biochemical signatures that reflect antibiotic efficacy, selectivity and 
toxicity and used PLSDA to predict the MOA of 3 known drugs, with unknown mechanism, by 
comparing said signatures to those obtained from 12 known drugs with known mechanisms 
[66]. Similarly, Vincent et al. suggested the use of Liquid Chromatography Mass Spectrometry   

Model Type RMSE R2 MSE MAE 

Tree 

Fine 0.54 0.78 0.29 0.36 

Medium 0.55 0.77 0.30 0.37 

Coarse 0.60 0.73 0.36 0.43 

SVM 

Linear 0.85 0.46 0.72 0.46 

Quadratic 0.40 0.88 0.16 0.31 

Cubic 0.40 0.88 0.16 0.29 

Fine Gaussian 1.14 0.02 1.29 0.94 

Medium Gaussian 0.39 0.89 0.15 0.29 

Coarse Gaussian 0.80 0.52 0.64 0.52 

Ensemble 
Boosted trees 0.42 0.87 0.18 0.31 

Bagged trees 0.37 0.89 0.14 0.27 

Gaussian 
Process 

Regression 

Squared 
exponential 1.15 -0.00 1.32 0.95 

Matern 5/2 1.15 0.00 1.32 0.95 

Exponential 0.78 0.54 0.60 0.55 

Rational quadratic 0.33 0.92 0.11 0.25 
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Figure 7. Observed versus fitted response of a rational quadratic Gaussian process 

regression performed over spectra of E. coli cells preprocessed with the optimal 

parameters of second derivative Savitzky-Golay filtering followed by extended 

multiplicative scatter correction against the absorbance at 600nm after a 16h exposure 

to twofold dilutions of 14 antibiotics. 

(LC-MS) to overcome the constraint of NMR to highly abundant metabolites [67]. Although the 
exact target of 4 compounds were identified, 2 other drugs presented metabolic profiles with 
predominant off-target effects that impaired MOA identification, and a compound that did not 
affect any metabolic pathway did not present a distinguishable profile, despite inhibiting 
bacterial growth. Moreover, considerable variation of metabolic profiles was observed in the 
control samples, which reinforces the need for stringent controls and prudent analysis with 
MS, and also exposes a limitation of metabolomics-based MOA identification. Often, MS-
based metabolomics with extremely high sensitivity renders it difficult to operate and 
challenging to interpret.  

Recently, there has been an effort towards high-throughput metabolomics. One such 
method has been suggested by Zampieri et al., who applied MS to predict the MOA of 
uncharacterized antimycobacterial compounds [68]. In said study, a reference of metabolic 
responses was built and then used to query the MOA of over 200 compounds of a 
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GlaxoSmithKline library. To achieve high throughput, metabolites were extracted directly from 
the whole culture broth, without cell separation, and then were directly injected into a time-of-
flight mass spectrometer. Omission of chromatography and direct sample injection into the 
electrospray interface had been shown to reduce cycle time to 1 minute per sample [69]. In 
the study by Zampieri et al., the large drug-metabolome collection of profiles enabled the 
authors to identify the MOA of compounds that did not target metabolic pathways. However, 
given the sensitivity of MS, divergent metabolic profiles after drug exposure were detected. As 
such, decoupling metabolic changes that are drug-specific from those that are indirect 
adaptations remained challenging, and required time-resolved metabolic profiles that imply 
lower-throughput. In addition, the effect of compounds that interact with low expression or 
inactive targets might be below the limit of detection, but this is a transversal issue to the field 
of antibiotic discovery. 

An alternative to metabolomics is Bacterial Cytological Profiling (BCP), a method 
based on microscopic observations of drug-induced effects. For instance, O’Driscoll et al. 
visualized the effect of colistin with scanning electron microscopy, namely cellular aggregation, 
from which DNA synthesis was excluded as the likely target, since DNA damage induces 
filamentation, which was not observed [70]. However, in the context of high throughput, other 
microscopy techniques are more relevant. Nonejuie et al. used fluorescence microscopy to 
capture the cytological profile of 41 antibiotics [71]. From these, inhibitors of different pathways, 
as well as those acting on the same pathway, were distinguished visually on PCA score plots 
and statistically with Spearman’s rank correlation. Yet, the authors reinforced that their 
methodology did not identify the precise molecular target and therefore would require a follow-
up study to pinpoint the MOA, for instance with a panel of resistant mutants or of sensitized 
strains.  

Similarly, Zoffman et al. also used fluorescence microscopy to screen 1.5 million 
compounds from the Roche library, after it had been reduced down to 750 compounds with 
dose-response screens [72]. The authors captured over 100 imaging features per sample, 
which were fed to machine learning algorithms that yielded a similarity score in regard to a set 
of MOA of reference compounds. Even with careful calibration, and an extremely large set of 
reference features, the authors reported a large intrinsic variability of the microscopic 
parameters. Additionally, because phenotypic differences become evident below the MIC, the 
authors suggest that their method can be used to identify low potency hits. However, the 
authors also recognized that morphology is not affected by all antibacterial compounds, thus 
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complemented their methodology with sequencing-derived molecular information. This proved 
to be useful as some compounds only led to molecular or morphological differences but 
highlights a key limitation of BCP. 

FTIRS has been suggested as an innovative technique suitable for the detection of 
metabolic fingerprints induced by antibiotics. In comparison with BCP, FTIRS presents the 
advantage of not requiring reagents beyond growth media and the compounds, e.g., no need 
for fluorescent dyes. Also, FTIRS is less laborious, especially regarding the hands-on time. 
For instance, the proposed method only requires one washing step (e.g., centrifugation and 
resuspension) after incubation with the antibiotics and prior to FTIR spectra acquisition. On 
the other hand, the method suggested by Zoffman et al. requires addition of fluorescent dyes 
before the end of incubation with the compounds. After incubation, PBS had to be added to 
each sample and samples needed to be washed. Followed another incubation step, another 
washing step, sample dilution and transfer of a small volume to a multi-well plate for imaging.  

Moreover, FTIRS provides a better reflection of the biomolecular phenomena 
underlying the antibiotic effect, since spectra derive from vibrations of different biomolecular 
bonds present in the sample, rather than the higher-level morphological alterations that BCP 
detects. As seen, not all antibiotics had a clear effect on morphology, so BCP will be inherently 
biased towards those that do. Metabolomics-based MOA identification is another key 
technique. Although MS is generally accepted as a more sensitive technique than FTIRS, this 
does not make it necessarily more suitable for any given purpose. In the case of bacterial 
typing at the species level, MS has been shown to be a superior technique, however for 
subspecies discrimination FTIRS is preferable. This is because it includes information 
regarding several types of biomolecules, such as lipids, nucleic acids, carbohydrates and 
proteins [73]. In other words, although FTIRS’s sensitivity is not comparable to that of MS, its 
ability to detect a wider range of molecules deems FTIRS more suitable for certain applications, 
as could be the case for MOA identification. Also, as previously discussed, the high sensitivity 
of MS-based techniques often results in data with high variability that is challenging to interpret.  

In this study we aimed to consolidate FTIRS as a metabolic fingerprinting technique 
that is highly suitable for MOA identification. In particular, MOA resolution was evaluated at 
the level of individual antibiotics, different antibiotic classes, as well as antibiotics acting on 
different biosynthetic pathways. Also, preprocessing optimization was shown to be a center 
stone of FTIRS studies in general, and those that focus on MOA in particular, given up to 20% 
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improvements were obtained in PLSDA accuracy. Moreover, a plethora of predictive 
algorithms were employed in an attempt to improve PLSDA performance, and also to ascertain 
that the results were not dependent on the mathematical formulations of the different 
algorithms. In that regard, various algorithms consistently matched or exceed the predictive 
performance obtained with PLSDA for the three levels of metabolic sensitivity queried.  

In the end, using the optimal preprocessing combination and an ensemble of 
discriminant analysis yielded a near-perfect MOA prediction at the pathway (98.6%), class 
(100%), and individual antibiotics (97.8%) level. This corresponds to an additional 17% 
improvement of antibiotic prediction on top of those obtained with preprocessing optimization. 
Looking deeper at the very few samples that were misclassified reveals that MOA resolution 
might only be slightly limited when predicting the effect of compounds of the same class with 
very similar MOA. Additionally, by looking at the dose-response of MOA prediction, we have 
shown that for low antibiotic concentrations, MOA can still be accurately detected at all MOA 
levels, which opens the door for FTIRS-based explorations into the grey chemical matter. For 
that, it is of paramount importance to validate these results with compounds from the grey 
chemical matter, as these might induce a very different metabolic response in comparison to 
low concentrations of antibiotics. Ultimately, FTIRS is a very promising technique to identify 
MOA and has possible applications to probe the grey chemical matter, which warrants further 
efforts. 

In addition to MOA identification, we have shown that FTIRS can quickly estimate 
antibiotic potency. Besides resulting in a substantial improvement of PLSR performance, using 
various machine learning algorithms, with different mathematical formulations, was again 
crucial to consolidate the fact that the metabolic fingerprints detected with FTIRS reflect the 
alterations induced by antibiotics, which eventually lead to the growth inhibition that was 
detected when measuring the ABS600. This is particularly important because it allows the 
combination of two steps of the phenotypic screening workflow in a single assay, namely the 
identification of compounds that inhibit cell growth along with the underlying mechanism of 
said inhibition. In combination with the reported ability to identify MOA at sub-inhibitory 
concentration, our results indicate that FTIRS is highly accurate towards the MOA of antibiotics, 
as well as to the degree that said MOA is affecting the cellular metabolism and inhibiting 
bacterial growth, beyond cell density. 

VIII. 5   SUPPLEMENTARY DATA  
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Supplementary Figure 1. Successful classification of the major biosynthetic pathway 

disrupted on E. coli cells after exposure to 14 antibiotics. Successful classification was 

evaluated with leave-one-out cross-validation of partial least squares discriminant 

analysis of FTIR spectra preprocessed with Savitzky-Golay filtering (A), followed by 

Multiplicative Scatter Correction (B), or Extended Multiplicative Scatter Correction (C), 

or Extended Multiplicative Scatter Correction with replicate correction (D).  
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Supplementary Figure 2. Successful classification of the antibiotic class from spectra 

of E. coli cells exposed to 14 antibiotics. Successful classification was evaluated with 

leave-one-out cross-validation of partial least squares discriminant analysis of FTIR 

spectra preprocessed with Savitzky-Golay filtering (A), followed by Multiplicative 

Scatter Correction (B), or Extended Multiplicative Scatter Correction (C), or Extended 

Multiplicative Scatter Correction with replicate correction (D).  
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Supplementary Figure 3. Successful classification of the antibiotic-specific metabolic 

fingerprint imposed by 14 antibiotics on E. coli cells. Successful classification was 

evaluated with leave-one-out cross-validation of partial least squares discriminant 

analysis of FTIR spectra preprocessed with Savitzky-Golay filtering (A), followed by 

Multiplicative Scatter Correction (B), or Extended Multiplicative Scatter Correction (C), 

or Extended Multiplicative Scatter Correction with replicate correction (D).  
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Supplementary Figure 4. Effect of the number of latent variables on the successful 

classification of the pathway affected, antibiotic class and antibiotic-specific metabolic 

fingerprints induced on E. coli cells. Successful classification was evaluated with leave-

one-out cross-validation of partial least squares discriminant analysis of Fourier-

transform infrared spectra preprocessed with optimized Savitzky-Golay second 

derivative filtering followed by extended multiplicative scatter correction with 

replicate correction. Vertical dashed line indicates the number of latent variables used 

for preprocessing optimization. 
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Supplementary Figure 5. Score plots and explained variability of Fourier-transform 

infrared spectra of E. coli cells exposed to 14 antibiotics, highlighted in different colors, 

acting on 4 biosynthetic pathways, highlighted with different symbols. Spectra were 

evaluated with principal component analysis after preprocessing with optimal 

parameters for antibiotic class prediction for Savitzky-Golay second derivative filtering, 

followed by extended multiplicative scatter correction with replicate correction. 
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Supplementary Figure 6. Score plots and explained variability of Fourier-transform 

infrared spectra of E. coli cells exposed to 14 antibiotics, highlighted in different colors, 

acting on 4 biosynthetic pathways, highlighted with different symbols. Spectra were 

evaluated with principal component analysis after preprocessing with optimal 

parameters for the prediction of the major pathway affected using a Savitzky-Golay 

second derivative filtering, followed by extended multiplicative scatter correction with 

replicate correction. 
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Supplementary Figure 7. Score plots and explained variability of Fourier-transform 

infrared spectra of E. coli cells not exposed to antibiotics, i.e., the control samples, 

dissolved in different solvents, highlighted with different symbols. Spectra were 

evaluated with principal component analysis after preprocessing with optimal 

parameters for antibiotic prediction for Savitzky-Golay second derivative filtering, 

followed by extended multiplicative scatter correction with replicate correction. 
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Supplementary Figure 8. Effect of the antibiotic concentration on the successful 

classification of the major biosynthetic pathway, antibiotic class and antibiotic-specific 

metabolic fingerprints induced on E. coli cells after exposure to 14 antibiotics. 

Successful classification was evaluated with leave-one-out cross-validation of partial 

least squares discriminant analysis of Fourier-transform infrared spectra preprocessed 

with the respective optimal parameters of Savitzky-Golay second derivative filtering 

followed by extended multiplicative scatter correction with replicate correction. 
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Supplementary Figure 9. Effect of the number of latent variables on the coefficient of 

determination (R2) and the root-mean-square error of a partial-least-squares 

regression evaluated with leave-one-out cross-validation. FTIR spectra of E. coli cells 

were preprocessed with optimized Savitzky-Golay second derivative filtering followed 

by extended multiplicative scatter correction.  
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Supplem
entary Table 1. Adjusted absorbance at 600nm

 of E.coli after 16h of exposure to serial dilutions of 14 antibiotics. Results w
ere averaged 

over biological replicates. 

Antibiotic 
Concentration (µg/m

L) 

0 
0,03 

0,06 
0,125 

0,25 
0,5 

1 
2 

4 
8 

16 
32 

64 
128 

256 
512 

Am
oxicillin 

4,69 
4,76 

4,71 
4,57 

4,66 
4,28 

4,34 
3,59 

2,56 
2,01 

1,52 
1,21 

0,93 
0,91 

0,83 
0,84 

Am
picillin 

4,97 
4,92 

4,64 
4,71 

5,10 
4,60 

4,88 
4,20 

3,40 
2,77 

2,10 
1,75 

1,52 
1,35 

1,24 
1,19 

Cephradine 
5,39 

5,49 
5,32 

5,58 
5,11 

5,56 
5,51 

5,06 
5,19 

4,97 
4,47 

4,68 
4,33 

4,17 
3,55 

2,92 

Chloram
phenicol 

4,37 
3,81 

3,52 
3,45 

3,19 
3,40 

3,47 
2,85 

2,62 
2,36 

2,33 
2,39 

2,38 
2,33 

2,68 
2,81 

Ciprofloxacin 
3,86 

3,39 
3,43 

3,22 
2,96 

3,03 
2,99 

2,93 
2,68 

2,46 
2,31 

2,19 
2,21 

2,22 
2,03 

2,08 

Clarithrom
ycin 

2,80 
2,37 

2,23 
2,32 

2,22 
2,28 

2,44 
2,30 

2,42 
2,19 

1,92 
1,86 

1,75 
1,48 

1,24 
1,14 

Erythrom
ycin 

3,86 
3,39 

3,43 
3,22 

2,96 
3,03 

2,99 
2,93 

2,68 
2,46 

2,31 
2,19 

2,21 
2,22 

2,03 
2,08 

G
entam

icin 
2,80 

2,63 
2,91 

3,03 
2,79 

2,77 
2,45 

2,20 
2,07 

1,84 
1,84 

1,70 
1,48 

1,40 
1,31 

1,36 

Kanam
ycin 

2,89 
2,79 

2,93 
2,69 

2,32 
1,98 

2,00 
1,94 

1,73 
1,51 

1,17 
1,33 

1,28 
1,28 

1,26 
1,36 

Levofloxacin 
2,92 

2,71 
2,46 

2,23 
2,18 

1,93 
2,04 

1,98 
1,94 

1,57 
1,39 

1,12 
0,97 

0,99 
0,95 

0,98 

M
etronidazole 

4,26 
4,12 

4,38 
4,51 

4,24 
4,39 

3,72 
3,48 

3,57 
3,21 

3,34 
3,17 

3,19 
2,82 

2,62 
2,73 

Neom
ycin 

3,81 
3,73 

3,98 
3,62 

3,48 
3,66 

3,46 
3,50 

3,16 
2,46 

2,31 
2,16 

1,97 
1,86 

2,00 
1,97 

Rifam
picin 

4,81 
4,41 

4,45 
4,36 

3,97 
4,21 

4,68 
4,26 

4,11 
4,04 

3,77 
3,15 

3,53 
2,82 

2,63 
2,65 

Tobram
ycin 

4,58 
5,06 

4,88 
3,97 

3,83 
3,70 

3,11 
2,61 

2,46 
2,19 

2,06 
1,95 

1,63 
1,71 

1,94 
2,00 

Average 
4,00 

3,83 
3,80 

3,68 
3,50 

3,49 
3,43 

3,13 
2,90 

2,57 
2,34 

2,20 
2,10 

1,97 
1,88 

1,86 
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Abstract 

Structural modifications of known antibiotic scaffolds have kept the upper hand on resistance, 
but we’re on the verge of not having antibiotics for many common infections. Mechanism-
based discovery assays reveal novelty, exclude off-target liabilities, and guide lead 
optimization. For that, we developed a fast and automatable protocol using high-throughput 
Fourier-transform infrared (FTIR) spectroscopy (FTIRS). Metabolic fingerprints of 
Staphylococcus aureus and Escherichia coli exposed to 35 compounds, dissolved in DMSO 
or water, were acquired. Our data analysis pipeline identified biomarkers of off-target effects, 
optimized spectral preprocessing, and identified the top performing machine learning 
algorithms for off-target liabilities and mechanism of action (MOA) identification. Spectral 
bands with known biochemical associations more often yielded more significant biomarkers of 
off-target liabilities when bacteria were exposed to compounds dissolved in water than DMSO. 
Highly discriminative models distinguished compounds with predominant off-target effects 
from antibiotics with well-defined MOA (AUROC > 0.87, AUPR > 0.79, F1 > 0.81), and from 
the latter predicted their MOA (AUROC > 0.88, AUPR > 0.70, F1 > 0.70). The compound 
solvent did not noticeably affect predictive models. FTIRS is fast, simple, inexpensive, 
automatable, and highly effective at predicting MOA and off-target liabilities. As such, FTIRS 
mechanism-based screening assays can be applied for hit discovery and to guide lead 
optimization during the early stages of antibiotic discovery. 
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IX. 1   INTRODUCTION  

Thirty years from now, antibiotic resistant infections will cause the death of more people 
than cancer does now, and carry a cumulative cost of inaction in excess of $100 trillion [1]. 
Structural modifications of major antibiotic classes, mostly discovered with the Waksman 
platform, filled the pipeline and temporarily outpaced resistance [2], but a discovery void since 
the late 1980s [3] has put humanity on the verge of not having therapeutic options for many 
common infections. 

The challenge is finding novelty with the characteristics that make an ideal antibiotic 
[4], namely high antimicrobial activity and very low toxicity [5]. In fact, nearly one-third of drug 
discovery attrition is due to toxicity [6]. Antibiotics are toxic due to structural homology between 
prokaryotes and the host, or other undesirable off-target activity [7]. Even candidates with 
sufficient antimicrobial activity and acceptable cytotoxic profiles might not be suitable for 
therapeutic use, as in vitro activity often does not correlate with in vivo efficacy. The latter is 
better understood by elucidating a compounds mechanism of action (MOA) [8]. Also, shifting 
to a mechanism-based discovery approach opens the door to the grey chemical matter [9], 
which could provide good candidates for medicinal chemistry programs [10]. MOA 
identification can also guide lead optimization by identifying structural modification that induce 
predominant off-target activity, i.e., toxic compounds [11]. Although MOA identification is not 
necessary [12], it increases the probability of success of drug discovery programs [13].  

Typically, MOA identification involves techniques that are either slow, low-throughput, 
difficult to scale, costly, labor-intensive, or a combination thereof [10,11,14–21]. Similarly, off-
target screening panels are inefficient, and often unpracticable, to monitor safety profiles 
across successive generations of structural derivatives. Also, these panels are biased towards 
known mechanisms of toxicity; only probe one off-target interaction; and evaluate the 
compound itself, not secondary metabolites [22]. As such, the quest for a fast, cheap, and 
automatable technique that can be used for the systematic identification of MOA and exclusion 
of toxic compounds continues.  

Fourier-transform infrared (FTIR) spectroscopy (FTIRS) is a technique with such 
characteristics that is suitable for metabolic fingerprinting in general [23], and identifying 
antibiotic-induced profiles [24–27]. In this study, a FTIRS assay was developed to capture the 
metabolic fingerprints induced by antibiotics and chemical stressors on Staphylococcus aureus 
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and Escherichia coli. The effect of the antibiotic solvent was evaluated by exposing each 
bacterium to the compounds dissolved in water or dimethyl sulfoxide (DMSO). A data analysis 
pipeline was implemented to identify biomarkers of off-target effects, to optimize spectral 
preprocessing, and to select the top performing machine learning algorithms for the 
identification of off-target liabilities and MOA prediction. 

IX. 2   MATERIALS AND METHODS 

IX.2.1   ANTIBIOTICS, CHEMICAL STRESSORS AND MATERIALS 

Amoxicillin, bacitracin, blasticidin, cephradine, chloramphenicol, clarithromycin, 
enrofloxacin, erythromycin, gentamicin, levofloxacin, metronidazole, rifampicin, rifapentine, 
sulfamethazine, sulfanilamide and tetracycline were purchased from Sigma-Aldrich (USA), 
whereas ciprofloxacin was acquired from Bayer healthcare (Germany) and bleomycin from 
Cayman Chemical (Germany). Isoniazid, kanamycin, sulfamethoxazole and tobramycin were 
purchased from Fluka (Belgium), and ampicillin plus neomycin from NZYtech (Portugal). 
Copper chloride, DMSO, ethanol, sodium chloride, sodium dodecyl sulfate, sodium hydroxide 
and sodium hypochlorite were acquired from Sigma-Aldrich (USA). Hydrogen peroxide was 
purchased from Alvita (UK), hydrochloric acid from VWR (Portugal), and 
ethylenediaminetetraacetic acid from Jose M. Vaz Pereira (Portugal). Stock solutions of all 
compounds were prepared at 6 mM either in water or DMSO (6% v/v) and vigorously stirred 
prior to usage. 

IX.2.2   HIGH-THROUGHPUT SPECTRA ACQUISITION 

Stock solutions of all compounds (Supplementary Table 1) were prepared at 6 mM 
either in water or DMSO (6% v/v). Five independent cultures of E. coli (ATCC 33876) and S. 

aureus (ATCC 6538P) were grown on 90 mL of cation-adjusted Mueller-Hinton broth (VWR, 
Portugal) at 37ºC, 250rpm until early-exponential phase (~3h). Bacteria were centrifuged at 
3,000 RCF for 10 minutes and resuspended in 6 mL of NaCl 0.9% to obtain an ABS600 of 0.75 
or 1.5 for E. coli and S. aureus, respectively. After, cells were dispensed on 96-well microtiter 
flat-bottomed polystyrene plate (60 µL/well), previously prepared with 60 µL of 3x concentrated 
growth media and 60 µL of stock solution.  

After a 2h incubation at 37ºC, 30 µL were transferred to an infrared transparent ZnSe 
96-well plate (Bruker, Germany) in triplicate, which corresponded to mechanical replicates. 
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ZnSe plates were dehydrated for 1h in a vacuum desiccator with abundant silica, and inserted 
in a HTS-XT module coupled to a Vertex-70 spectrometer (Bruker Optics, Germany). Spectra 
were acquired in transmission mode and consisted of 40 coadded scans at a 4 cm-1 resolution. 
Raw spectra were exported from OPUS (Bruker, Germany) as data point tables into MATLAB 
(MathWorks, USA) for subsequent analysis.  

IX.2.3   QUALITY CONTROL ROUTINE 

Mechanical replicates consistently deemed outliers, across different quality control 
criteria, were excluded from the dataset. For that, the biofilm thickness, signal-to-noise ratio, 
and water vapor content were used as quality control criteria [28]. Samples scoring above !! +
# × (!! − !")  or below !" +# × (!! − !") , where #  is the whisker length (approximately 
±2.7,) and !" and !! are the 25th and 75th percentiles, for these three quality control criteria, 
were deemed suspected outliers. If suspected outliers also scored above the 99% confidence 
limit of a principal component analysis Hoteling’s T2, they were considered outliers and 
removed from the dataset. No more than two mechanical replicates were considered outliers 
for any given sample. Mechanical replicates that passed the quality control routines were 
averaged, so a single spectrum for each of the five biological replicates was used in 
subsequent analysis. 

IX.2.4   STATISTICAL ANALYSIS FOR BIOMARKER IDENTIFICATION 

An automated script was developed from a previously described workflow [29] to 
identify biomarkers that distinguish, in mean terms, two populations by applying the most 
suitable hypothesis tests to the corresponding independent groups of observations. We herein 
describe the broadest scope of the automated script. Parametric tests were preferred since 
they’re more powerful and are more likely to detect true differences. However, if their 
assumptions are not met, their results are not statistically valid and may lead to inaccurate 
conclusions, so non-parametric tests should be used [30–35].  

The first step of the automated workflow was the Shapiro-Wilk test, adjusted by 
Royston, to evaluate normality for samples with at least 20 observations. For smaller samples 
the goodness-of-fit tests are unlikely to detect non-normality [36–39], in which case 
nonparametric test were also used. Then, if both samples came from populations with normal 
distribution, a F test evaluated populational equality of variances. If the population variances 



Chapter IX 

 262 

were equal, equality of mean population values was evaluated with a two sample T-test; 

otherwise, a Welsh T-test was applied. If both samples did not come from populations with 

normal distribution, two situations may have occurred: either both had size at least 30, in which 
case the parametric Z test was used to assess the equality of the mean population values, 

given the central limit theorem; otherwise, both had size less than 30 and the equality of the 
population medians was evaluated with a non-parametric Mann-Whitney-Wilcoxon test. Lastly, 

if one of the samples came from a population with normal distribution and the other didn’t, then 
either the sample from the non—normal population had less than thirty observations, in which 

case the non-parametric Mann-Whitney-Wilcoxon test was used, or if the sample from the non-
normal population had more than 30 observations, again using the central limit theorem, the 

parametric Z test was used to evaluate the equality of the mean population values.  

Irrespectively of the test used to evaluate the equality of mean or median population 

values, if the null hypothesis is rejected, in mean terms, then there are significant differences 

between the groups of observations, and the ratio is considered a biomarker. All tests were 
applied for a significance level of 5%. The automated workflow was implemented using Matlab. 

IX.2.5   PREPROCESSING OPTIMIZATION AND PREDICTIVE ALGORITHMS 

Preprocessing aims to reduce the non-discriminatory sample-specific component of the 
spectra while highlighting inter-replica variability [40]. The most frequently used preprocessing 

algorithms are the Savitzky-Golay (SG) filter and MSC, either in its extended version (EMSC) 
or its extended version with replicate correction (EMSCrep) [41]. EMSCrep was applied using 

the toolbox provided by Afseth and Kohler [42].The performance of these algorithms depends 

on their parametrization, which requires extensive optimization [43]. For that, a previously 
described method was used to optimize preprocessing parameters [44].  

Machine learning models were created with MATLAB’s Classification Learner App 
using standard parameters, and then developed with stand-alone scripts. In detail, Support 

Vector Machines (SVM) was used for one-vs-all multiclass classification with either the linear, 
quadratic, cubic, fine Gaussian, medium Gaussian or coarse Gaussian kernel function applied 

on standardized data. For fine, medium and coarse Gaussian, the kernel scale was 11, 43, 
and 170 respectively, while for the other kernel functions this was set to automatic. All SVM 

models considered a box constrain of level 1. K-Nearest Neighbor (KNN) was applied on 
standardized data using the Euclidean distance with equal weight, considering 1, 10 and 100 
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neighbors for the fine, medium and KNN respectively. Both the Cosine and Cubic KNN 
considered 10 neighbors, while the distance metrics were the Cosine and Minkowski, 
respectively. Weighted KNN applied squared inverse weights to a Euclidean distance 
considering 10 neighbors. Additionally, ensemble models of decision trees were determined 
using both the AdaBoost and RSUBoost method with 30 learners at a rate of 0.1 and 20 splits, 
and the Bag method, which uses random predictor selections at each split (i.e., random forests) 
with 30 learners. Subspace ensemble were determined for discriminant analysis and KNN 
considering a dimension of 14 subspaces and 30 or 1 learner, respectively. Discriminant 
analysis considered the diagonal covariance matrix.  

Accuracy was determined has the ratio between the predicted true positives plus the 
true negatives over the total number of observations. Precision was calculated as the true 
positive rate over the true positive rate plus the false positive rate. Recall, or sensitivity, was 
determined as the true positive rate over the sum of the true positive rate plus the false 
negative rate. Specificity was calculated as the true negative rate over the sum of true negative 
plus false positives. The Receiver Operating Characteristic (ROC) and Precision-Recall (PR) 
curves were calculated using MATLAB’s perfcurve function. 

IX. 3   RESULTS 

IX.3.1   COMPOUND CONCENTRATION, EXPOSURE DURATION, LIBRARY SOLVENT AND OTHER 

CONSIDERATIONS 

In addition to expanding the “screenable” chemical space to compounds with lower 
antimicrobial activity, the transition to mechanism-based antibiotic discovery has other 
advantages. Firstly, it dismisses the burden of testing a range of concentrations for each 
compound, since a large spectrum of MOA can be detected with FTIRS by exposing bacteria 
to a single concentration [44]. This implies faster and simpler workflows, requiring less 
compound quantity and other consumables. In addition, because the endpoint is no longer 
growth inhibition typically observed after 16-24h, shorter time-frames can be considered. 
Typically, metabolic profiles of antibiotic exposure are mostly generic during the initial 30 
minutes, and become more specific 60 minutes after exposure, and even more so 90 minutes 
after exposure [45]. These profiles become specific faster if the antibiotic concentration is 
considerably higher than the minimum inhibitory concentration (MIC) [46].  
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Figure 1. Effect of compound concentration and exposure duration on mechanism of 

action prediction. Each data point corresponds to the successful classification of a 

leave-one-out cross-validated partial least squares discriminant analysis of Fourier-

transform infrared spectra of Escherichia coli (A) and Staphylococcus aureus (B), after 

preprocessing with optimized parameters. Bacteria were exposed to antibiotics at 

1,000 µM (grey squares), 100 µM (orange circles) and 10 µM (blue triangles).  

Thus, the effect of compound concentration (10 µM, 100 µM and 1 mM) and exposure 
duration (1, 2, 3, and 4h) on MOA prediction was evaluated (Figure 1). For that, FTIR spectra 
of E. coli and S. aureus exposed to amoxicillin and ampicillin, kanamycin and neomycin, as 
well as sulfamethazine and sulfamethoxazole, were acquired. Spectral preprocessing was 
optimized for each datapoint (data not shown), and MOA was predicted with a Partial Least 
Squares discriminant analysis (PLS-DA) after Leave-One-Out Cross-Validation (LOO-CV). To 
ensure bacteria were exposed to the same number of molecules, molar concentrations were 
used, which are more pharmacologically representative of their relative potency. In fact, these 
should arguably become the standard dose system [47]. 

A 2h exposure at the highest concentration was chosen as this ensured perfect MOA 
prediction for both strains. FTIR spectra of both bacteria were acquired after exposure to 35 
compounds (Supplementary Table 1), 24 of which were antibiotics of 13 classes that act on 6 
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biosynthetic pathways. Importantly, most major classes used in systemic therapy were 
included, which are highly desirable by the pharmaceutical industry. Of the remaining 
compounds, 8 were chemical stressors, as examples of compounds with predominantly off-
target effects, and two were controls (the distribution of mechanistic categories of the 
compounds tested is available on Supplementary Figure 1).  

The most commonly used solvent for large compound libraries, DMSO, is known for 
altering permeability and interfering with reactive oxygen species, which inhibits the rapid 
killing of some antibiotic classes and increases the potency of others, even at concentrations 
as low as 1% [48]. Alternatively, we explored water as a solvent. However, many molecules 
are not water-soluble in their early stages of development, and although medicinal chemistry 
programs often improve this [49], it could strongly bias the assay. While a single universal 
solvent would be preferable for assay simplicity and throughput, all experiments were 
conducted with both solvents. Interestingly, spectral differences were more noticeable between 
different solvents than between different bacteria (Figure 2). 

In a typical FTIRS protocol, samples are washed, to remove the growth media, and 
resuspended to a predetermined cell concentration, which yields cleaner FTIR spectra with 
normalized biochemical constituents. To increase throughput, we opted to skip the washing 
step. For that, bacteria were grown to exponential phase, centrifuged and concentrated to 
obtain adequate biomass density for spectra acquisition. These were distributed on a 96 well 
plate previously prepared with the compound library dissolved in both solvents, incubated and 
transferred to an infrared transparent plate. Because of its simplicity, and given the sample 
layout was kept the same, our assay is fast and well-suited for automation.  

IX.3.2   BIOMARKERS OF OFF-TARGET EFFECTS 

Spectral band ratios were built from all combinations of FTIR spectra bands with well-
established biochemical assignment [50,51] (Table 1). Prior to calculating spectral ratios, raw 
spectra were preprocessed with offset correction and EMSCrep. A total of 870 spectral ratios 
were analyzed. Of these, spectra of S. aureus exposed to compounds dissolved in water 
yielded 639 biomarkers, and 60 biomarkers when compounds were dissolved in DMSO. 
Similarly, spectra of E. coli exposed to compounds dissolved in water yielded 602 biomarkers 
and 44 when dissolved in DMSO. Despite the drastic effect of the solvent on the number of 
ratios that are deemed biomarkers, this alone is not very informative. Therefore, for a given  
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Figure 2. Fourier-transform infrared spectra of S. aureus (black and blue) and E. coli (red 

and green) after exposure to enrofloxacin dissolved in water (black and red) or DMSO 

(blue and green). Spectra are averages of five biological replicates after preprocessing 

with baseline correction, normalization and extended multiplicative scatter correction 

with replicate correction.  

band present in at least one biomarker, the inverse of the p-value of all biomarkers to which 

said band contributed was summed. As such, this band importance in biomarker (BIB) score 
reflects the frequency and weight of a given band across all biomarkers. Bands that more 

frequently yielded more significant biomarkers presented a higher BIB score. In turn, this 
allows mapping the spectral origin of the biomarkers for either of the four datasets (Figure 3).   
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Table 1. Common biochemical assignments of the vibrational modes detected with 

Fourier-transform infrared spectroscopy. 

Vibrational modes: - – stretching; . – wagging, twisting and rocking; / – bending; and 012 – 
deformation. Where 34 – asymmetrical and 4 – symmetrical.  

Wavenumber 
(cm-1) 

Vibrational mode Biochemical assignment 

3500 !(O − H)  

3300 !(N − H) Amide A 

3100 !(N − H) Amide B 

2960 !!"(CH#) Lipids 

2920 !!"(CH$) Lipids 

2870 !"(CH#) Lipids 

2850 !"(CH$) Lipids 

1740 !(C = O) Phospholipid esters 

1680  Amide I 
(antiparallel pleated sheets and *-turns) 

1655  Amide I (*-helical structures) 

1650 80%	!(CO); 	20%	!(C − N) Amide I 

1637 - Amide I 
(1-pleated -sheet structures) 

1550 60%	3(N − H); 	30%	!(C − N); 
10%	!(C − C) 

Amide II 

1515  Tyrosine 

1466 6!"(CH#) Lipids and proteins 

1455 6!"(CH$) Lipids and proteins 

1380 !(CH#) Phospholipids, fatty acids, triglycerides 
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Table 1 (Continued). Common biochemical assignments of the vibrational modes 

detected with Fourier-transform infrared spectroscopy. 

Vibrational modes: - – stretching; . – wagging, twisting and rocking; / – bending; and 012 – 
deformation. Where 34 – asymmetrical and 4 – symmetrical. 

Greater differences in the BIB score were found depending on the compound library 
solvent than the bacterial model. When water was the solvent, the three most relevant bands 
were 1380 cm-1, 1466 cm-1, and 1455 cm-1, which correspond to the stretching of methyl groups 
habitually found in lipids; to the asymmetric bending of methyl groups commonly found in lipids 
and proteins; and the asymmetric bending of methylene groups typically found in lipids and 
proteins, respectively. However, these bands had a neglectable or zero BIB score when DMSO   

Wavenumber 
(cm-1) 

Vibrational mode Biochemical assignment 

1240 !!"(PO$%) DNA, RNA, phospholipid,  
phosphorylated protein 

1150 !(CO), 3(COH) Carbohydrates 

1120 !(C − O) RNA ribose 

1111 !(C − O) RNA ribose 

1080 !"(PO$%) DNA, RNA, phospholipid,  
phosphorylated proteins 

1050 !(COP) Phosphate ester 

1030 9:;(CHO) Carbohydrates 

1012 !(CO) DNA and RNA ribose 

965 !(PO#$%) DNA and RNA 

950 !(PO#$%) Phosphorylated proteins 

920 !(COP) Phosphorylated proteins 

841  Fingerprint region 

620  Fingerprint region 
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Figure 3. Band importance in biomarker (BIB) scores revealing the contribution of 

biochemically relevant spectral bands to all identified biomarkers of off-target effects, 

i.e., spectral ratios with statistically significant differences in mean terms, for Fourier-

transform infrared spectra of S. aureus (black and blue) and E. coli (red and green) 

exposed to compounds dissolved in water (black and red) or DMSO (blue and green). 

was the solvent. In this case, the most significant bands were less coherent across both 
bacterial models. Here, the three most relevant bands were 1680 cm-1, 3100 cm-1, and 2920 
cm-1 for S. aureus or 1120 cm-1 for E. coli. These bands are typically associated with antiparallel 
pleated sheets and α-turns of Amide I; the stretching of the N-H bond of Amide B; the 
asymmetric stretching of methylene groups associated with lipids or the stretching of the C-O 
bond typically found in RNA ribose, respectively. Moreover, for the same solvent, S. aureus 
spectral ratios yielded more biomarkers than those of E. coli. In theory, an experimental 
protocol that is sensitive to a wider range of metabolic alterations, which in this case translates 
to higher BIB scores, should be better suited for the fast exclusion of compounds with off-target 
effects. However, in a practical sense this proposition is only useful if it can be validated in a 
predictive scenario.  

IX.3.3   DISTINGUISHING ON- AND OFF-TARGET EFFECTS 

To evaluate the ability of the proposed assay in predicting off-target effects, various 
machine learning algorithms were applied to spectra preprocessed with optimized parameters. 
Because EMSCrep combined with second derivative filtering revealed consistently superior to 
other forms of MSC and derivative orders, other combinations were not considered during 
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preprocessing optimization. The optimized preprocessing parametrization was identified 
(Supplementary Figure 2) for each dataset, i.e., spectra of S. aureus exposed to compounds 
dissolved in water, spectra of S. aureus exposed to compounds dissolved in DMSO, and 
likewise for E. coli. Moreover, the PLS-DA models built for preprocessing optimization revealed 
uninformative spectral regions (i.e., VIP score < 1), which were removed to obtain more robust 
models and further reduce computation time.  

Then, various parametrizations of different machine learning algorithms were applied 
to each dataset, whose accuracy of LOO-CV samples was generally coherent within each 
dataset (Supplementary Table 2). Minimizing computation time was important as this allowed 
to increase the number of folds for subsequent cross-validation, which is advantageous since 
it translates to more training samples that better reflect the underlying sample distribution. 
While external validation is widely regarded as a more suitable method to estimate the 
predictive capability of a given model, it is highly dependent on the random data splits, often 
yielding unstable estimates. In addition, LOO-CV has been shown to perform better than other 
k-fold and external validation algorithms when dealing with small-sample high-dimensional 
chemometric data [52].  

As such, each sample was predicted exactly once using the most accurate algorithm 
for its dataset, and the posterior probability that it belongs to the positive class, i.e., 
predominant off-target effects, was used to construct the receiver operator characteristic 
(ROC) and precision-recall (PR) curves shown on Figure 4 – A and B, from which the F1-score 
was determined across a range of decision cut-offs (Figure 4 – C). Although ROC curves are 
typically used to evaluate a classifiers’ performance across decision thresholds, PR curves are 
often more informative when the data is skewed [53] or when there are few positive cases [54]. 
Similarly, the F1-score was determined since it provides an estimation of accuracy in a way 
that is less sensitive to class imbalances, and because it penalizes extreme values.  

These indicators revealed that, using the same solvent, slightly better predictions were 
obtained with the E. coli datasets than with the S. aureus datasets. Moreover, for the E. coli 
dataset, using water as a solvent for the compound library yielded marginally better 
performance, although the opposite occurred with the S. aureus dataset. It is also interesting 
to note that the F1-scores follow a similar trend as FTIR spectra, i.e., higher similarities were 
found between different bacteria exposed to the same solvent than between the same bacteria 
exposed to different solvents. Most importantly, neither the compound library solvent, nor the   
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Figure 4. Ability to distinguish antibiotics with well-defined mechanism of action from 

compounds with predominant off-target effect. The precision-recall curve (A), along 

the receiver operating characteristic curve (B), and the F1-score across different 

decision cut-offs (C) were determined after leave-one-out cross-validation. Machine 

learning was applied to Fourier-transform infrared spectra of S. aureus (black and blue) 

and E. coli (red and green) exposed to the compound library dissolved in water (black 

and red) or DMSO (blue and green) after preprocessing with optimized parameters (D).   
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bacterial model, had a drastic effect on the ability to distinguish on-and off-target effects, as 
would be expected considering the observed BIB scores. In the end, the coherent performance 
indicators suggest that FTIR spectra provide a sufficiently unique phenotypic fingerprint that 
enables the fast distinction between bacteria exposed to compounds with predominant off-
target effects from those exposed to antibiotics with a well-defined MOA.  

IX.3.4   GUIDING MEDICINAL CHEMISTRY PROGRAMS: FAST CLASSIFICATION OF ANTIBIOTICS MOA 

In addition to distinguishing on- versus off-target activity, the fast identification of off-
target liabilities can also be achieved by probing the mechanistic category of antibiotics. For 
that, the optimized preprocessing parameters, followed by removing uninformative spectral 
regions, used for distinguishing on- and off-target effects, was used. The most accurate 
machine learning algorithm, and its parameters, was identified for each dataset after LOO-CV 
(Supplementary Table 3), which in this case were ensembles of subspace discriminant 
classifiers across the four datasets.  

Because the fast classification of antibiotics MOA is a multiclass prediction problem, a 
one-versus-all approach was used. As such, ROC and PR curves, as well as F1-scores, were 
determined for each MOA (Supplementary Figure 3). Figure 5 presents the area under each 
curve, as well as the maximum F1-score obtained for each MOA category, and for each dataset. 
Here, it seems that the MOA involving the inhibition of folic acid, mycolic acid and RNA were 
more challenging to predict. Although this mechanism-specific underperformance was evident 
in the area under the ROC curve (Figure 4 – A), it was not as notorious in the area under the 
PR curve and maximum F-score (Figure 5 – B and C). One possible reason for this is that the 
latter are less sensitive to class imbalances and skewed datasets, and therefore provided a 
more accurate description of the models’ performance, which were overestimated by the ROC 
curves. Alternatively, since these were the mechanistic categories with fewer representative 
antibiotics, it could be that this mechanism-specific underperformance was due to class under-
representation. However, the fact that there were as many representatives of the control 
category as those of the RNA category suggests otherwise. 

Moreover, it could also be that these MOA are in fact more challenging to predict. For 
instance, the inhibition of folic acid by sulfonamides induces a thymineless death, whose 
mechanism could be similar to a stalled replication fork [55], in which case it would resemble 
the MOA of other DNA synthesis inhibitors such as fluoroquinolones. Similarly, the MOA of  



Fast identification of off-target liabilities 

 273 

Figure 5. Ability to predict antibiotic mechanistic categories, namely those that target 

the cell wall (CW), DNA, folic acid (FoA), mycolic acid (MyA), protein (Pro), RNA and 

control (Ctr). The area under the precision-recall (PR) curve (A), as well as under the 

receiver operating characteristic (ROC) curve (B), along the maximum F1-score (C) were 

determined with leave-one-out cross-validation of ensembles of subspace discriminant 

classifiers applied to Fourier-transform infrared spectra of S. aureus (black and blue) 

and E. coli (red and green) exposed to the compound library dissolved in water (black 

and red) or DMSO (blue and green) after preprocessing with optimized parameters.  
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isoniazid, which is assumed to be related to the inhibition of mycolic acid synthesis, also 
impairs the electron transport chain via the accumulation of reactive oxygen species [56]. 
These have been shown to be correlated with the bactericidal activity of various antibiotics [45], 
and could therefore yield fingerprints where unspecific response mechanisms overshadow 
antibiotic-specific events, which could result in poorer MOA prediction. 

In general, the models constructed were well suited for the fast classification of 
antibiotics MOA. Because no single dataset outperformed the remainder, neither the model 
bacteria nor solvent had a substantial effect on the global predictive performance, as observed 
for the distinction of on- versus off-target effects. Ultimately, this suggests that phenotypic 
fingerprints acquired with FTIRS capture the complex biological response when bacteria are 
exposed to antibiotics of different mechanistic categories and can be used to accurately predict 
their MOA beyond a given bacterial model or compound library solvent. 

IX. 4   DISCUSSION 

FTIRS has been shown to detect antibiotic-induced profiles that elucidate their MOA 
[24–27]. In addition to the prediction of both known and simulated novel MOA, we have shown 
that FTIRS can be used to estimate potency and to probe the grey chemical matter [44]. In this 
study we developed and streamlined a protocol for the fast exclusion of off-target liabilities. 
This involved minimizing the number of steps, and reducing their duration, while ensuring 
accurate MOA identification. As such, our assay required a short cultivation, exposure, sample 
dehydration and FTIR spectra acquisition. This means that from frozen bacterial stocks all the 
way through to exported spectra files took less than 12h, with a hands-on time around 1h. In 
comparison, a streamlined high-throughput metabolomics protocol took at least 2 full days [57].  

Firstly, we developed an automated workflow comprised of a series of hypothesis tests 
to determine the BIB score of the spectral bands with common biochemical associations. This 
confirmed that FTIR spectra had intrinsic patterns that reflect the different biological 
phenomena occurring when bacteria are exposed to antibiotics versus those that occur upon 
exposure to chemical stressors. Importantly, this was a good starting point prior to machine 
learning techniques, whose interpretation becomes increasingly complex as algorithms rely on 
abstract mathematical relationships to extract patterns that are ‘suggested’ by the user, 
thereby blurring the relationship between data and biological events.  
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Then, optimally preprocessed FTIR spectra were analyzed with different machine 
learning classifiers to predict on- and off-target effects. Our data analysis pipeline ensured that 
the sample-specific spectral component was highlighted for each dataset, and the most 
accurate machine learning algorithm was applied. As such, robust performance indicators of 
different nature, i.e., the area under the ROC and PR curves, along the F1-score were 
achieved for each dataset. The same data analysis pipeline was applied to predict the MOA of 
the previously identified antibiotics, and notwithstanding a slight performance hit, the resulting 
models were successful in predicting MOA across the mechanistic categories tested. Although 
larger compound libraries need to be considered, FTIRS seems to be well suited to rapidly 
distinguish metabolic profiles induced by chemical stressors from the profiles induced by 
antibiotics with well-defined MOA, and from the latter predict their mechanistic category. 

It is interesting to note that visual inspection of the spectra revealed greater similarities 
between E. coli and S. aureus exposed to enrofloxacin dissolved in each of the solvents, than 
between spectra of either bacteria exposed to the antibiotic dissolved in different solvents. This 
suggests that the solvent affected the specific antibiotic-induced metabolic alterations. This 
observation was coherent with the spectral bands that most often, and with greater significance, 
contributed to biomarkers of off-target effects from which we hypothesized that the 
experimental setup that reveals a wider range of statistically significant biochemical alterations 
should be better suited for the fast exclusion of compound with off-target effects. However, 
neither the compound library solvent, nor the bacterial model, had a drastic effect on the ability 
to distinguish on-and off-target effects, or to predict the MOA of the antibiotics tested. This is 
particularly relevant because other techniques suggested for antibiotic discovery are sensitive 
to the metabolic effect of DMSO, which impairs their application [46]. Moreover, these 
techniques require additional steps to stabilize the metabolism, which are often are not enough 
to avoid divergent metabolic profiles across similar samples, which degrades the quality of 
MOA profiles and thus of subsequent predictive models.  

This suggests that FTIRS is a robust technique that could be used for the rapid 
exclusion of compounds with predominant off-target activity, and simultaneously provides 
valuable insight into the MOA of compounds, even if only at the level of the major biosynthetic 
pathway. This level of sensitivity has proven to be sufficient to guide lead optimization [11]; for 
example, it is equivalent to macromolecular accumulation assays, whose utility is not to 
pinpoint MOA, but rather as a simple and fast assay for preliminary screening or MOA 
confirmation. Because our protocol is fast, simple, inexpensive, and highly automatable, it can 
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be used to monitor MOA profiles and thereby rapidly exclude off-target liabilities, which 
typically arise during medicinal chemistry efforts, before considerable efforts are put into their 
development and optimization. As such, FTIRS can fuel a new generation of mechanism-
based screening assays that could be an invaluable tool for the early stages of antibiotic 
discovery. 

IX. 5   SUPPLEMENTARY DATA 

Supplementary Table 1. List of compounds used to stress Escherichia coli and 

Staphylococcus aureus. Category reflects the major type of stress or biosynthetic 

pathway targeted, while class reflects the structural classification of compounds. 

Category Class Compound 

Acid stress Other Hydrochloric acid 

Alcohol Alcohol Ethanol 

Base stress Other Sodium hydroxide 

Cell wall AMP Bacitracin 

Beta-lactams Amoxicillin 

Ampicillin 

Cephalosporin Cephradine 

Chelating agent Other Ethylenediaminetetraacetic acid 

Control - Water 

Sodium chloride 

Detergent stress Other Sodium dodecyl sulfate 

DNA synthesis Antineoplastics Bleomycin 

Fluoroquinolones Enrofloxacin 

Ciprofloxacin 

Levofloxacin 

Nitroimidazoles Metronidazole 
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Supplementary Table 1 (Continued). List of compounds used to stress Escherichia coli 

and Staphylococcus aureus. Category reflects the major type of stress or biosynthetic 

pathway targeted, while class reflects the structural classification of compounds. 

  

Category Class Compound 

Folic acid biosynthesis Sulfonamide’s Sulfanilamide 

Sulfamethazine 

Sulfamethoxazole 

Heavy metal stress Other Copper chloride 

Mycolic acid biosynthesis Pyridine Derivatives Isoniazid 

Oxidative stress Other Hydrogen peroxide 

Sodium hypochlorite 

Protein synthesis Aminoacylnucleoside Blasticidin 

Aminoglycosides Gentamicin 

Kanamycin 

Neomycin 

Tobramycin 

Amphetamines Chloramphenicol 

Macrolides Clarithromycin 

Erythromycin 

Tetracyclines Tetracycline 

Radical scavenger Other DMSO 

RNA synthesis Rifamycins Rifampicin 

Rifapentine 
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Supplementary Figure 1. Distribution of the mechanistic category of a 35-compound 

library to which Escherichia coli and Staphylococcus aureus were exposed to. Categories 

reflect the major type of stress or biosynthetic pathway targeted by the compounds.  
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Supplementary Figure 2. Successful classification of on- versus off-target effects with 

FTIR spectra of Staphylococcus aureus (A and B) or Escherichia coli (C and D) cells 

exposed to 35 compounds dissolved in water (A and C) or DMSO (B and D). Successful 

classification was evaluated with leave-one-out cross-validation of partial least squares 

discriminant analysis of spectra preprocessed with a second derivative Savitzky-Golay 

filter followed by extended multiplicative scatter correction with replicate correction.  
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Supplementary Table 2. Accuracy of machine learning algorithms in distinguishing 

antibiotics with well-defined MOA from compounds with predominant off-target 

effects, i.e., toxic compounds. Four datasets were evaluated, which were comprised of 

two bacterial models and two compound library solvents. Preprocessing was applied 

with optimized parameters for each dataset. The highest accuracy for each dataset was 

highlighted in bold to identify the top performing algorithm. 

Algorithm S. aureus 

(H2O) 

S. aureus 

(DMSO) 

E. coli  

(H2O) 

E. coli  

(DMSO) 

SVM linear 84.71% 84.12% 83.33% 79.88% 

SVM quadratic 83.53% 91.76% 83.33% 90.53% 

SVM cubic 82.35% 89.41% 78.57% 89.35% 

SVM fine gaussian 76.47% 76.47% 73.81% 73.96% 

SVM medium gaussian 78.24% 75.88% 74.40% 78.11% 

SVM coarse gaussian 80.59% 81.18% 80.36% 76.33% 

KNN fine 85.29% 84.71% 76.19% 79.29% 

KNN medium 85.29% 78.82% 82.74% 77.51% 

KNN coarse 76.47% 76.47% 73.81% 73.96% 

KNN cosine 84.71% 80.59% 86.90% 81.07% 

KNN cubic 84.71% 79.41% 83.33% 75.74% 

KNN weighted 85.29% 82.35% 80.36% 79.88% 

Ensemble boosted trees 75.29% 76.47% 73.21% 73.96% 

Ensemble bagged trees 81.76% 85.88% 80.36% 82.84% 

Ensemble RSUboosted trees 75.88% 85.88% 74.40% 79.88% 

Ensemble discriminant 85.88% 83.53% 87.50% 84.62% 

Ensemble KNN 80.59% 84.71% 75.60% 79.88% 

Linear discriminant 69.41% 70.59% 67.26% 63.91% 

Quadratic discriminant 72.35% 62.94% 66.67% 53.85% 
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Supplementary Table 3. Accuracy of machine learning algorithms in classifying the 

mechanistic category of antibiotics. Four datasets were evaluated, comprised of two 

bacterial models and two compound library solvents. Preprocessing was applied with 

optimized parameters for each dataset. The highest accuracy for each dataset was 

highlighted in bold to identify the top performing algorithm. 

Algorithm S. aureus 

(H2O) 

S. aureus 

(DMSO) 

E. coli  

(H2O) 

E. coli  

(DMSO) 

SVM linear 64.62% 63.85% 61.24% 63.08% 

SVM quadratic 69.23% 75.38% 64.34% 74.62% 

SVM cubic 65.38% 63.08% 57.36% 73.85% 

SVM fine gaussian 34.62% 34.62% 34.88% 34.62% 

SVM medium gaussian 14.62% 20.00% 28.68% 16.92% 

SVM coarse gaussian 53.85% 50.00% 53.49% 55.38% 

KNN fine 70.77% 73.08% 59.69% 73.85% 

KNN medium 74.62% 69.23% 65.12% 73.08% 

KNN coarse 34.62% 34.62% 34.88% 34.62% 

KNN cosine 70.00% 69.23% 65.89% 66.92% 

KNN cubic 70.77% 65.38% 66.67% 73.08% 

KNN weighted 73.85% 76.15% 61.24% 74.62% 

Ensemble boosted trees 59.23% 21.54% 51.94% 66.15% 

Ensemble bagged trees 67.69% 73.85% 63.57% 72.31% 

Ensemble RSUboosted trees 52.31% 54.62% 46.51% 53.08% 

Ensemble discriminant 79.23% 82.31% 75.97% 80.00% 

Ensemble KNN 70.00% 73.85% 60.47% 76.15% 
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Supplementary Figure 3. Detailed performance of machine learning algorithms used to 

distinguish the effect of a 35-compound library, dissolved in either water (black and 

red) or DMSO (blue and green), on Staphylococcus aureus (black and blue) and 

Escherichia coli (red and green). Performance is presented per compound category, 

namely controls (A), inhibitors of cell wall synthesis (B), DNA (C), folic acid (D), mycolic 

acid (E), protein (F), and RNA (G).  
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Supplementary Figure 3 (Continued). Detailed performance of machine learning 

algorithms used to distinguish the effect of a 35-compound library, dissolved in either 

water (black and red) or DMSO (blue and green), on Staphylococcus aureus (black and 

blue) and Escherichia coli (red and green). Performance is presented per compound 

category, namely controls (A), inhibitors of cell wall synthesis (B), DNA (C), folic acid (D), 

mycolic acid (E), protein (F), and RNA (G). 
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Recent advances in the field of antibiotic discovery, brought by the high-tech 
approaches introduced during and after the genomics era, have indisputably brought us closer 
to a new era of antibiotic discovery. New light has been shed on the function of various genes, 
their products, and their regulatory networks. With that, our understanding of bacterial 
metabolism and physiology, and the effect that many molecules exert on these, has increased 
manyfold. Paradoxically, antibiotic discovery has slowed to a halt, and it seems that the more 
we know the less we can discover. Despite the technical limitations of the high-tech 
approaches described, the preoccupying state of the antibiotic pipeline cannot be associated 
with any particular limitation, nor is it due to a lack of effort nor of perseverance.  

It seems that a solution for this issue is more likely to stem from a different discovery 
strategy. In essence, it’s not about where to look for antibiotics, but rather how we look for 
them. Over 90% of clinical antibiotics are the evolutionary outcome of an ongoing tug-of-war 
between actinomycetes and bacteria. In this struggle for survival, antibiotics have evolved to 
reach and bind to their target. These, and other natural products have been perfected by nature, 
and it would be either naïve or condescending to think that we can artificially achieve the same 
results without tremendous effort. Naturally, designer-drugs, despite all their potential, are 
extremely laborious and have very low success rates.  

Meta-omics studies have shown that we are far from exhausting the complete natural 
product repository: there are underexplored opportunities, e.g., unexpressed antibiotic gene 
clusters in known microorganisms, as well as unexplored prospects, e.g., in plants or marine 
organisms, or even from commensal bacteria. Therefore, it seems logical to continue our 
pursuit of novel antibiotics from natures’ repositories. For instance, a ‘smart’ synthetic biology 
approach should allow the usage of heterologous hosts to reach thousands or millions of 
biosynthetic gene clusters. These could then be screened to identify new compounds that can 
impair clinically relevant microbes, without having to understand and manipulate the conditions 
required for the cultivation of ‘unculturable’ bacteria, or those regarding silenced gene clusters.  

Then the question is how to go about a different screening strategy. It is reasonable to 
pursue a new strategy that capitalizes on our most successful experiences, given our urgent 
need for new antibiotics. Reviving the cell-based approach was a step forward from the 
reductionist approach that dominated the genomics-era, where it quickly became evident that 
considering the biological context was crucial when analyzing single targets. Cell-based 
screening has historically been the most effective approach for discovering first-in-class 
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antibiotics, and also allows a ‘brute force’ approach that is more likely to produce results in the 
short-term. However, the cell-based screening approach typically begins by probing the 
antimicrobial activity of candidate molecules, so it has been mostly successful at identifying 
the ‘low-hanging-fruit’. 

We argue that a new screening strategy should turn the page on the activity-based 
paradigm and shift to one based on mechanism. This is not a new idea. In fact, this is a 
paradigm shift that has been proposed by other researchers. At the core of this paradigm shift 
lies the concept of grey chemical matter, i.e., compounds capable of inducing some level of 
phenotypic modulation, but without sufficient potency to induce measurable cell death or inhibit 
growth. Since it is likely that most compounds with detectable potency have been discovered, 
or can be identified with the traditional approach, technologies sensitive to phenotypic 
alterations at sub-inhibitory concentrations are required to probe this ‘not-so-low-hanging fruit’. 

In theory, all of the technologies currently in use to probe the mechanism of action 
(MOA) of antibiotics could be used to probe the grey chemical matter. In practice, the reality is 
not so linear. Conventional assays are mostly limited by the use of a label, sensitivity, and most 
importantly, throughput. Novel omics-centered assays hold great potential, but despite offering 
added-value information on biological events, their reduced throughput and the fact that a 
single step of the omics cascade is probed with a given technique, limits their application for 
screening purposes. Additionally, some of these techniques are overly sensitive or noisy, 
which hinders the interpretation of the data they output. Other techniques, such has bacterial 
cytological profiling that focus on the end product of the omics cascade, the phenotype, 
overcome some of these limitations, but because their readouts are not a direct reflection of 
the biochemical composition of the sample, they’re limited in regard to their biological 
sensitivity and often require complementary information.  

Throughout this Ph.D., the case has been made that Fourier-transform infrared 
spectroscopy (FTIRS) is an excellent tool that can fill this particular technological gap. FTIRS 
is a mature technique that can provide highly sensitive biochemical profiles and is amendable 
to high throughput. Although FTIRS had been explored for antibiotic-related studies, this Ph.D. 
was the first deep-dive into the key components that are required of a mechanism-based 
discovery platform. In particular, we have shown that FTIRS can acquire metabolic fingerprints 
that reflect both stress and antibiotic responses. We then shown that these metabolic 
fingerprints can be used as profiles of MOA, and that said profiles are sufficiently distinct to 
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elucidate the MOA of antibiotics at greater detail than the level of the major biosynthetic 
pathway targeted, given antibiotics of the same class had similar MOA profiles. 

We further explored how our FTIRS mechanism-based protocol performed when 
predicting antibiotics MOA in two scenarios: firstly, when a known compound was being tested, 
here the predictive models had already ‘seen’ the metabolic fingerprint induced by said 
compound; and secondly, when a compound with a simulated novel MOA, either similar or 
considerably different from known MOA, was blind tested. The exceptional predictive 
performance of known MOAs, alongside the mechanistically coherent prediction of simulated 
novel MOA, validated the suitability of FTIRS for MOA identification, which was only slightly 
limited when distinguishing MOA profiles of compounds that belonged the same class, for 
which other techniques are better tailored than FTIRS. 

Beyond MOA identification, a mechanism-based screening platform should effectively 
expand the ‘screenable’ chemical space. Thus, we established the dose-response of our 
FTIRS bioassay, which served as proxy for the grey chemical matter. While higher antibiotic 
concentrations improved MOA identification, as expected, it also became apparent that even 
very low antibiotic concentrations, which only induced a slight growth inhibition, also yielded 
MOA profiles with sufficient quality for their prediction at the biosynthetic pathway and class 
level. Moreover, our FTIRS bioassay revealed the degree to which any given MOA affected 
bacterial metabolism and inhibited bacterial growth, which opened the door to a single step 
assay capable of simultaneously determining the MOA of antibiotic candidates and their 
potency. However, there is another critical advantage to transitioning to a mechanism-based 
screening approach, namely the rapid exclusion of compounds with predominant off-target 
activity, which tend to be toxic. 

The work pursued throughout this ambitious venture had the ultimate goal of finding an 
innovative solution to a serious world-wide issue affecting society. For that innovation to come 
to life, it was important to first validate it within the scientific community, and then attempt to 
bring it to market. As such, participating in the innovation accelerator 
Lab2Market@Tecnico2020, as team ‘ASPIR’, was an amazing opportunity to further develop 
the work not only from a business perspective, but also from an out-of-academia scientific 
standpoint. In fact, many of the interviews conducted with industry experts throughout this 
accelerator shaped what this Ph.D. covered, and its future directions. For instance, one key 
issue that we are yet to tackle is identifying the MOA of different compounds in a mixture, which 
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would be of tremendous value in the context of natural product discovery. Another impending 
task is to network our platform into collaborations with research groups, either in the academia 
or industry, that can supply compound libraries from which we hope to find novel antibiotics. 
Another area for future action is SpecA. Throughout this scientific endeavor, we went to great 
efforts to develop a comprehensive and strict data analysis pipeline, which resulted in the 
creation of SpecA. So far, SpecA has not yet been distributed but it was originally created with 
that intent, which we still wish to fulfill. 

In the end, this Ph.D. thesis established that FTIRS can identify the MOA of 
compounds; can discover hits from the grey chemical matter, effectively expanding the 
‘screenable’ chemical space; ensures that potent compounds are identified, if not by their 
mechanism then by their inhibitory effect; and rapidly excludes compounds with predominant 
off-target effects, either during hit discovery or lead optimization. In its latest iteration, our 
protocol was made considerably faster and more scalable, which further consolidated its 
applicability to screening large compound libraries in an industrial setting. As such, we are 
confident that FTIRS can fuel a new generation of mechanism-based screening assays, which 
can be both more efficient and efficacious, and may swing the war on infectious diseases back 
in our favor. 


