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Abstract

This Thesis explains how to implement a Computational Fluid Dynamics (CFD)

code on the unstructured grid framework, covering different topics from: computa-

tional geometry, numerical analysis, Finite-Volume (FV) discretization, least squares

methods, parallel computing and other important topics.

The majority of the applications presented in this work concerns a substantial

review of FV schemes for unstructured grids, the development of a new Total Variation

Diminishing (TVD) convective scheme on unstructured grids and the creation of two

automatic h-adaptive refinement algorithms, which use the information provided by an

error estimator in order to increase the number of computational points at the zones

of higher numerical error, creating more efficient grids without user intervention.

The developed relative error estimator dR allowed to capture the sequence of dif-

ferent sharp corner vortices introduced analytically by Moffatt (1963), in the square

lid cavity flow problem. The smallest corner vortex detected is O(10−16) smaller in

velocity magnitude compared with the cavity primary vortex.

The Residual Least Squares (RLS) error estimator is also implemented with an

adaptive refinement procedure that allows the application to different cases without

requiring the change of a constant that drives the adaptive algorithm, unlike other

methods presented in the literature. The adaptive algorithm is applied to a series of

test cases with a known analytical solution in order to evaluate its performance and

efficiency.

Keywords

incompressible flows, finite volume method, unstructured grids, adaptive grids, er-

ror estimators, least squares method, TVD schemes, coupling algorithms, code verifi-

cation, computational geometry
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Resumo

Esta Tese explica como implementar um código CFD no contexto de malha não-

estruturada, cobrindo diversos tópicos: como geometria computacional, análise numérica,

discretização em volume finito, métodos de mı́nimos quadrados, cálculo paralelo e out-

ros tópicos importantes.

As principais aplicações desenvolvidas no código dizem respeito: à revisão de di-

versos esquemas de volume finito para malha não-estruturada, à proposta dum novo

esquema convectivo TVD para malha não-estruturada e à criação de dois algoritmos

de refinamento adaptivo-h, que usam a informação fornecida por um estimador de

erro de modo a aumentar o número de pontos computacionais em zonas de maior erro

numérico, criando malhas mais eficientes e sem intervenção do utilizador.

O estimador de erro relativo dR permitiu capturar em detalhe uma sequência de

pequenos vórtices localizados nos cantos inferiores duma cavidade quadrada, cujo o

resultado anaĺıtico foi introduzido por Moffatt (1963). O vórtice mais pequeno tem

uma velocidade O(10−16) mais pequena em relação ao vórtice principal da cavidade.

Um estimador de erro absoluto RLS é também implementado com um procedimento

de refinamento adaptativo que permitiu a sua aplicação a diferentes casos. Não neces-

sitando a intervenção do utilizador, visto não ser necessário mudar valores emṕıricos

ao contrário de outros algoritmos presentes na literatura. O procedimento adaptativo

é aplicado para uma série de casos testes de modo a avaliar o seu desempenho.

Palavras-chave

escoamentos incompresśıveis, métodos de volume finito, malhas não-estruturadas,

malhas adaptativas, estimadores de erro, método de mı́nimos quadrados, esquemas

TVD, algoritmos de acoplamento, verificação de código, geometria computacional
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que sempre me ajudaram e apoiaram: Rodrigo Taveira, Jorge Navalho, Pedro Neto,

Joaquim Simas, Rita Ervilha, Flávio Sousa, Rafael Vicente, João Miranda e António
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λc limit for the convective stability criterion

λd limit for the diffusive stability criterion

φ transported variable or computational variable

ρ density

µ dynamic viscosity

ν kinematic viscosity

Γ diffusion coefficient

σ(f) skewness of face f

Operators

∇φ gradient

∇ · u divergence

∇2φ Laplacian

u⊗ v dyadic product
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Chapter 1

Introduction

1.1 Theme

This Thesis documents the improvements of an in-house Computational Fluid Dy-

namics (CFD) code developed at the laboratory of fluid simulation in energy and fluids

(LASEF), that was coined or named SOL, as an abbreviation of the word solver. Dur-

ing this Thesis, several numerical techniques to solve the Navier-Stokes equations are

implemented, using the Finite Volume (FV) method on adaptive and unstructured

grids with arbitrary topology. This last part means that 3D polyhedral grids can be

imported from the different software packages into the SOL code for several objectives

like computing a laminar flow in a complex geometry or checking the implemented

numerical schemes or even comparing and verifying the obtained results of other CFD

codes.

The majority of the applications of this Thesis are done in the framework of the

automatic adaptive refinement algorithms driven by a posteriori error estimator, which

tries to estimate the different error scales in the computational grid, providing which

cells have higher numerical error than others. These cells are refined1 in order to

reduce the local error and improve the solution accuracy. The adaptive algorithm

makes this cell selection without user intervention and, if an universal rule is possible,

the algorithm will save time to the CFD engineer at the meshing process which is the

bottleneck in an industrial CFD simulation.

In the SOL code, the FV discretization of the adaptive grids is done in the same way

as for the unstructured ones. So, as a consequence, non specific methods are required

in the discretization of the governing equations near the interfaces created by the cells

1Refining a cell, means dividing it in smaller cells and consequently decreasing the local mesh size.

1
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with different levels of refinement. This requires that the author has knowledge of

the different procedures on unstructured grids, which have several difficulties when

compared to a structured grid code. The main differences are the arbitrary number

of neighbors that a cell can have and that the grid does not have any preferential

direction: due to this, several numerical techniques have to rearranged in a different

way in an unstructured grid code.

In the framework of unstructured grids a wide range of topics must be covered

during this Thesis from computational geometry, numerical analysis, differential equa-

tions discretization techniques, code programming, parallel computing, optimization

algorithms and non-linear analysis. This framework is also important because CFD ap-

plications require complex geometry capability, which in order to obtain an acceptable

accuracy is important to use an unstructured grid approach.

The unstructured grid capability is highly presented in commercial CFD code pack-

ages where Computer-Aided Design (CAD) models can be imported to create a grid

of the intended geometry as realistic as possible. The problem with these packages is

that they tend to be treated as black boxes to the common user and questions like

numerical accuracy and stability are not easily answered. On the other hand, academic

codes do not have the same resources as some companies, due to financial constrains,

but specially by the different number of code developers in their team.

In the context of unstructured grids with the Finite Volume Method (FVM) there

is a need in the scientific community for the development of new numerical techniques,

like new diffusive and convective schemes, to improve the accuracy of the existing

methods, stabilization algorithms like TVD techniques, high order2 schemes which are

growing faster in the finite element framework with a high number of CFD applications,

moving grid algorithms and immersed boundary techniques. This last two are used for

fluid-structure problems. Also, the majority of the Large Eddy Simulation (LES) and

other turbulence modeling methods are developed for a structured grid basis and are

not easily applicable to a unstructured grid one.

1.2 Motivation

The commercial CFD packages are nowadays used on a wide range of cases, which

can include complex geometries and turbulence modeling, requiring a high number of

2High order means forth, sixth and eighth order accurate schemes. Some authors use this termi-
nology for schemes that include correction terms due to grid quality or TVD schemes, which is not a
fully correct terminology.
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grid points in order to obtained an accurate solution. On the other hand, the numerical

techniques used by these packages have a high robustness due to the requirement to

obtain a numerical solution in a wide range of cases.

To understand the possible characteristics of a CFD code, a triangle can be con-

sulted, which is presented in figure 1.1. The basic idea is that there exist three im-

portant characteristics in a CFD code: robustness, accuracy and efficiency. Normally

these three characteristics cannot be achieved easily in the same code, so a compromise

must be established.

Figure 1.1: CFD code triangle.

For example, commercial codes will try to be efficient in order to obtain the results

in a small time interval and have robustness, as explained previously. Another case

are the codes that use spectral methods which have a high accuracy since they are a

high order method, but they are very restrict since they can be only used in uniform

and non-uniform grids and need periodic boundary condition in some directions of the

domain: as consequence their efficiency and robustness are lower than the commercial

codes.

One important goal of this Thesis is to understand ways to know and control the

numerical error (specially in the context of unstructured grids), determinate if the

automatic grid refinement is important for the CFD codes and, if it is possible, to

improve the present FV discretization schemes.

In the case of fluid-structure interaction problems it may be required to couple

different codes, one to solve the structure equations and another to solve the flow

equations. However, there are some problems with this approach concerning the re-

strictions that can come from this coupling, not giving the user a satisfied control.

This happened in a previous work of Albuquerque et al. (2011), where the coupling

between equations could only be done explicitly, as presented by the example in figure

1.2. Other fluid-structure problems may have high degrees of grid deformation leading
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to restrictions that require the use of immersed boundary in order to be simulated.

Figure 1.2: Example of the author previous work in the context of fluid-structure
interaction problems - from Albuquerque et al. (2011).

Also, there is some demand from the industry to use multi-physics software pack-

ages, which couple different types of differential equations in an unique code. Once

again the user may do not have the necessary control of the solution and require the

programming of his own code to solve its specific problem.

1.3 Literature Survey

1.3.1 Error Estimators and Adaptive Refinement Algorithms

CFD applications on complex geometries require too much consuming efforts al-

located to the mesh generation process and also the computing time. Adaptive tech-

niques reduce the time of the unstructured mesh generation and potentially decrease

the computing time because the adaptive mesh has a smaller number of cells than

the equivalent uniform mesh. The adaptive refinement algorithm requires an error

estimator to provide information of the local error. With this quantity, the adaptive

algorithms can select which grid cells will be selected for refinement and which will

not.

There is a significant number of adaptive grid methods in the CFD literature with

the goal to reduce and control the numerical error. These algorithms can be separated

into different categories:

• The local reference length can be decreased by splinting certain cells into smaller

ones, in order to reduce the local error. This type of method falls into the cate-
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gory of h-adaptivity and is the most popular adaptive method in the literature,

therefore implemented in this Thesis.

• The number of computational points can be maintained but its location is changed

in order to lower the numerical error of the solution and obtain an uniform distri-

bution of the error field. These methods belong to the category of r-adaptivity.

• The local error can be reduced by increasing the order of the discretization

method, which is applied in the context of Finite Element Methods (FEM).

This type of algorithms falls into the category of p-adaptivity. A problem can

take place if the solution is not smooth, due to the formations of wiggles or oscil-

lations resultant of instabilities that occur at high order methods, so generally it

is required some mechanism to lower the method order near these discontinuities.

There is a lack of this type of methods in the context of FVM.

Also it is possible to create adaptive algorithms by combining two or more of these

categories. For example, there exists applications that use hp-adaptive methods in the

literature. Some authors refer in their works that the ideal adaptive algorithm will be

the combination of an error estimator with a grid generator. There is a small number

of applications of triangle grid generators in this way, to the author’s knowledge.

From the point of view of Finite Element Methods (FEM), the error estimators are

well established: gradient recovery methods, explicit and implicit residual error estima-

tors. A summary of different error estimators in this framework has been reviewed, see

e.g. Babuska and Rheinbolt (1978); Peraire et al. (1987); Berger and Colella (1989);

Ainsworth and Oden (1997); Aimsworth and Oden (2000); Gratsch and Bathe (2005);

Plewa et al. (2005); Segeth (2008). FEM are based in the classic Galerkin approach

and this tends the flux estimation to not be consistent between elements, and conse-

quently the numerical method lacks of local conservation properties, but not globally.

Nevertheless, the FEM has been successfully applied to fluid flow problems, although

with less success in turbulent flows.

For the computation of higher Reynolds flows in the FEM context it is required

to add different stabilizing methods in the formulation, due to the numerical errors

in this flow regime. On the other hand, it is known that the incorrect choice of

interpolation functions for the velocity and pressure fields could originate instabilities in

the numerical solution, see e.g. Franca and Nesliturk (2001). In the literature, different

numerical techniques have been developed to solve these numerical instabilities from

turbulent flows, like the unusual stabilized finite element method Franca and Farhat

(1995), the variational multiscale method Gravemeier (2006) and Hachem et al. (2010)
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and the residual based stabilized finite method Calhoun (2001). Also worth mentioning,

adaptive grid refinement with the FEM has been already presented in several works,

see for example Lacasse et al. (2004); Pelletier et al. (2004); Pelletier and Camareo

(2005).

In the case of FVM there is a lower number of error estimators and automatic

adaptive algorithms, when compared with the FEM framework. Also the FVM is

more popular in flow problems due to their conservative proprieties for coarse grids

and there is a better convergence when using turbulent models. This happens because

the diffusive and convective terms are face integrals, (these methods are face-based).

The FVM can be simply applied to cells with arbitrary topology, which cannot be

easily done with the FEM since it requires the computation of the respective form

functions and the integration with known Gauss points.

The arbitrary topology featured in the computational grid, permits the use of 3D

polyhedral grids, which have the required versatility to be used on complex geometries

and have the efficiency in terms of the computation time. This kind of characteristics

are not possible to obtain with the tetrahedral based grid, see Juretic and Gosman

(2008) for details. Also the majority of CFD applications use the FVM, this fact

increases the need for the development of new error estimators and automatic adaptive

refinement algorithms in this specific framework.

The Richardson Extrapolation Berger and Oliger (1984), Thompson and Ferziger

(1989) is one the first developed error estimators in the FVM context and requires

the solutions on two meshes with different spacings, which can be difficult to obtain

in 3D industrial flow configurations. There are some attempts of single-mesh error

estimators, based on energy conservation and angular moment conservation equations,

see Haworth et al. (1993). An error estimator based on high order face interpolation was

proposed by Muzaferija and Gosman (1997) and later, Jasak and Gosman (2000a,b,c)

proposed an error estimator based in the Taylor series truncation error and another

one based in the conservation of the second moment of the transported variable. Ait-

Ali-Yahia et al. (2002) has applied the Taylor series truncation error to edges integral

in the framework of r-adaptivity. An error estimator based on the residual error from

the governing equations was investigated by Jasak and Gosman (2001) and afterwards

Juretic (2004) extended it to a face based error estimator. Also some techniques were

created to extend error estimators from FEM framework to a cell centered FVM, one

with the concept of the Morley interpolation by Nicaise (2006) and another with the

approach of self-equilibrium fluxes by Jasak and Gosman (2003).

Most of these methods still cannot be applied to all cases, since they are driven
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by empirical values dependent of the numerical error distribution. As a consequence,

previous knowledge of the solution by the user is required. This is not suitable, when

building an automatic refinement procedure.

Very often a second order scheme for adaptive grids is achieved by applying spe-

cific projection methods in the grids interfaces3 for Euler equations by Martin and

Colella (2000) or incompressible Navier-Stokes equations by Martin et al. (2008). These

schemes cannot be used on triangular, tetrahedral, prismatic adaptive and polyhedral

grids, which are used in problems where the geometric complexity is relevant and

important.

1.3.2 Cavity Flows

In this Thesis, the classic cavity flow will be used as a benchmark to the numerical

solutions. The standard lid-driven cavity flow for Reynolds number Re = 1000 is

well studied and documented in the following works: Burggraf (1966); Bozemann and

Dalton (1973); Shankar and Deshpande (2000); Cheng and Hung (2006); Gustafson

and Halasi (1986, 1987). Also, a number of well documented benchmark solutions for

this cavity flow are available (e.g. Ghia et al. (1982); Botella and Peyret (1998); Erturk

et al. (2005)).

Ham et al. (2002) has considered the same case for Re = 400 for Cartesian grid

method with anisotropic adaptation driven by an error estimator based on the second

derivative of the fluid velocities and mesh size, which could be considered one of the

first cavity flow studies with an adaptive grid.

The lid-driven cavity flow on the vicinity of the lower corners displays multiple

eddies in creeping flow regime. Moffatt (1963) has shown that under the assumption of

2D Stokes flow, the sharp corner flows are formed by the intersection of two boundaries,

where either the velocity or the tangential stress vanishes on each boundary with a

critical angle opening, which contains a sequence of vortices descending into the corner.

These corner eddies are very small compared to the cavity scale and tend to have

little impact on the nature of the bulk flow. However, their description is relevant

to understand the flow topology in increasingly slender cavities, see Heaton (2008).

Other theoretical implications are related with 3D corner flows, see Collins and Dennis

(1976); Shankar (2005).

The numerical resolution of corner flows has been pursued and constitutes a chal-

lenging task in terms of numerical resolution, efficiency, robustness, adaptive mesh

3Where interfaces are the zones between cells with different levels of refinement.
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refinement and error estimation. One of the first attempts, and maybe the most im-

pressive, was conducted by Gustafson and Leben (1988) that computed the Stokes

flow solution in an uniform grid in the whole domain and then projected it on finer

local grids near the corner. A sequence of smaller domains allowed to predict up to 21

corner vortices with the local maximum stream function intensity of 10−92. The lack of

global interaction prevents their solution to be a benchmark test case for Navier-Stokes

solvers. Several other authors combined the solutions of the Navier-Stokes equations

with exponential mesh refinement of the cavity corners flow regions and asymptotic of

the flow near corners to predict the series of vortices, see Shapeev and Lin (2009).

1.3.3 TVD Schemes

The convective term discretization is of great importance in a CFD code but

presents several challenges. The convective schemes described in this Thesis can achieve

results with high accuracy even for unstructured grids with low quality in smooth re-

gions. Near discontinuities, that occur for example near shocks of compressible fluid

flows, unphysical and undesirable oscillations (overshoots and undershoots), are pre-

sented in the numerical solution. Also, this behaviour affects severally the convergence

of the solution, which is critical in the case of the non-linear Navier-Stokes equations.

This happens because the second order convective schemes cannot guarantee bound-

edness of the numerical solution in these regions.

One way to avoid this problems is to use a monotone convective scheme like the

UDS, which guarantees a bounded solution even near these discontinuities and cleared

of numerical oscillations. The UDS has a low accuracy due to its first order character-

istic and suffers from numerical diffusion which disperses the solution in the computa-

tional domain. As a consequence, the converged field has a false diffusive distribution,

even if the governing equation does not have a diffusive term.

A way to solve this problem is by creating a blended convective scheme that com-

bines the boundedness and stability properties of the UDS scheme and the high accu-

racy of a second order method. Several methods based in this principle are available in

the literature, such as: the total variation diminishing (TVD) based schemes Warming

and Beam (1976), normalised variable diagram (NVD) based schemes Leonard (1991),

flux spliting Steger and Warming (1981), Goudunov schemes Sweby (1984) and ap-

proximated Riemann solvers Godunov (1959).

Also a very important review work on the design of convective bounded schemes

in the cell centered FV framework is done by Waterson and Deconinck (2007), which
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includes a comparison of a high number of bounded convective schemes for two test

cases.

From the literature, several authors proposed algorithms to implement TVD schemes

on unstructured grids, as for example: Bruner and Walters (1995), Darwish and

Moukalled (2003),Casulli and Zanolli (2005), Li et al. (2008) and Kong et al. (2013).

Also Jasak et al. (1999) suggested an extension of the NVD to the unstructured grids

framework guarantying boundedness of the numerical solution. In his work the gamma

convective scheme is presented and it is used to solve compressible fluid flow problems

on Cartesian and adaptive grids.

In this Thesis the concept of TVD schemes is explained, focusing in the issue of

how this type of convective schemes can be applied on unstructured grids. Also, a

new TVD method is proposed, which is showed to converge in an inferior number of

iterations and to have more bounded results than other approaches. The values of the

overshoots and undershoots are lower when compared to other alternative methods,

specially if the grid quality is not high.

1.4 SOL Code

The SOL code was created by the LASEF group around 2003, which main goal was

to create a common platform for CFD code developing. In order to the research group

benefit from the different synergies by working in the same numerical code, instead of

each researcher working in their individual code separately.

The code was developed for the computation of 3D flows on unstructured and

adaptive grids. Since its creation, a Master Thesis was concluded by Reis (2005)

which is focused in parallel computation of the Euler equations with a free-matrix

method. Magalhães (2011), which was the coordinator of the SOL project, concluded

his PhD thesis and his work is focused in the creation and development of this tool for

the computation of numerical problems on adaptive grids.

The present coordinator, which is the author of this Thesis, created an importing

grid system and reviewed almost all aspects of the previous works. From the compu-

tation of grid geometric properties, implicitly governing equations assembly, review of

several numerical schemes, code verification with analytical solutions and other differ-

ent aspects.

The code is written in C language, it has a git repository for code transmission

between different developers and it uses the doxygen library to create a code docu-

mentation which facilitates the understanding of the several lines of code. Also all of
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this tools are integrated in an editable wiki website which have tutorial examples for

new developers. Only recently, the OpenFOAM added to the general public some of

these tools, which makes the author believe that the SOL project is going well in its

own path.

The code can import unstructured grids, including 3D polyhedral grids, from several

CFD packages like STAR and OpenFOAM. Also the author created a database with

different grids to study the accuracy of the FV schemes implemented in the code and

some of these grids have imposed grid quality parameters4. Examples of these grids

are showed in the figure 1.3.

(a) Grid composed by polyhedral
cells.

(b) Grid created by random displaca-
ment of its vertices.

(c) Grid with imposed skewness. (d) Grid with imposed warp angle.

Figure 1.3: Examples of the computational grids in the SOL repository.

The code has, at this time, 160 thousand code lines and 60 files. It also uses different

libraries packages like: AZTEC, METIS, LAPACK, BLAS, ATLAS and TECIO; which

are packages that are also included in other academic CFD codes. The code is also

4The different grid quality parameters are explained in Chapter 2.
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parallelized with the MPI package and the several aspects like grid division, creation

of hallo cells and communication during the velocity-coupling algorithms is working at

the present time.

1.5 Present Contributions

The main contributions of the author, presented in this Thesis are:

• A full polyhedral and unstructured grids treatment is reviewed and verified for

several FV schemes.

• Verification of a new second order diffusive and convective scheme based in the

weighted least squares WLS method by creating a linear regression centered at

the face centroid.

• A procedure to apply TVD schemes on unstructured grids which considers the

grid quality and has better behaviour than other approaches presented in the

literature.

• The results verification and exhaustive analysis of an adaptive procedure with a

relative error estimator, which is suitable for multiscale problems. The adaptive

method predicted analytical results from the corner vortices without forcing the

local refinement.

• An adaptive procedure driven by an absolute error estimator which is suitable

for unstructured grids. The results are verified by solving different cases with a

known analytical solution. The automatic adaptive algorithm does not require

an external input unlike other methods from the literature.

1.6 Thesis Outline

The remaining contents of the Thesis are organized as follows:

• Chapter 2 presents the mathematical formulation of the FVM and it covers al-

most every aspect of the discretization method. Explains the governing equa-

tions, the unstructured grids nomenclature and their characterization. An ex-

tensive list of the implemented FV schemes is presented, including the boundary

conditions and pressure-velocity coupling algorithms. The chapter concludes with

an exposition of the different TVD approaches on unstructured grids.
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• Chapter 3 contains the results obtained in the unstructured grids framework and

is divided into two parts: the first part is a verification process of the unstructured

grid methodology by using two important benchmarks from the literature; the

second part has a comparison study between two TVD approaches from the

literature; and a third method proposed by the author. These methods are

tested for four cases with a known analytical solution.

• Chapter 4 presents all the mathematical aspects from both relative and absolute

error estimators used in this Thesis. Also the different adaptive algorithm for

these two types of error estimators are explained and discussed.

• Chapter 5 contains the obtained results in the adaptive grids framework and it is

divided into three parts: the first part has main results obtained with a relative

error estimator and its associated adaptive algorithm; the second part contains

the first results with an absolute error estimator and using an adaptive algorithm

from the literature to study the different aspects of it; and the third part contains

the obtained results using the same error estimator but with a proposed adaptive

algorithm.

• Chapter 6 summarizes the Thesis with their major conclusions and suggestions

for future research in the covered topics.



Chapter 2

Finite Volume Method on

Unstructured Grids

2.1 Governing Equations

The objective of this section is to show the different governing equations solved in

the SOL code. These equations will be introduced in a form without considering any

discretization approximation.

The governing equations of the Fluid Mechanics or the so-called Navier-Stokes are a

set of a partial differential equations that express the mass and momentum conservation

in the domain. They are defined by the following continuity and momentum equations,

respectively:
∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = ρg −∇

(
p+

2

3
µ∇ · u

)
+∇ ·

[
µ∇u + µ∇Tu

]
(2.2)

where ρ is the fluid density, u is the velocity vector, t is the time, g is the gravity

acceleration vector, p is the flow pressure and µ is the dynamic viscosity. In the case of

compressible fluid flows, an extra partial differential equation is required to close the

system, which represents the energy conservation:

∂(ρCvT )

∂t
+∇ · (ρCvTu) =ρg.u−∇ · (pu)−∇ ·

(
2

3
µ(∇ · u)u

)
+

+∇ ·
[
µ(∇u +∇Tu).u

]
+∇ · (λ∇T ) + ρQ (2.3)

13
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where Cv is the heat capacity at constant volume, T is the fluid temperature, λ is the

heat conduction coefficient and Q is the volumetric heat source. To close the system

of equations the equation of state for the ideal gas p = ρRT is required, where R is

the universal gas constant.

In this Thesis, the flow will be considered to be isothermal and incompressible,

which means that T and ρ are constant. Due to the incompressible constraint, the

continuity equation (2.1) becomes, after simplification:

∇ · u = 0 (2.4)

where the time derivative vanishes and the density is not affected by the divergence

operator. By applying the continuity constraint and neglecting the gravity force term,

the momentum equation (2.2) becomes:

∂u

∂t
+∇ · (u⊗ u) = ∇ · (ν∇u)− 1

ρ
∇p (2.5)

For convenience, the pressure term includes the density. Source terms can be added

to the right-hand side of the momentum equation (2.5), this approach will be important

in the verification process of the SOL code in order to cancel certain terms of the Navier-

Stokes equations with the method of manufactured solutions (MMS), please see Eça

et al. (2007) for an detailed explanation on this method.

With equations (2.4) and (2.5), the fluid variables u and p can be determined by us-

ing a pressure-velocity coupling algorithm. Three of these algorithms were programmed

in this Thesis, the explicit fractional-step, the SIMPLE and the PISO algorithms. Each

of these algorithms will be explained in the section 2.4.

The above equations can be written in a generalized transport equation which is

defined by:
∂(ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γφ∇φ) + Sφ (2.6)

where φ may stand for one of the u components or different scalars, Γφ is the scalar

diffusivity and Sφ is the transport equation source term. The equation (2.6) can be

written in an integral form, which is required for the application of the Finite-Volume

method (FVM). This consists in the volume integration of the equation in the three

dimensional (3D) control volume or computational cell Ω:∫
Ω

∂(ρφ)

∂t
dV︸ ︷︷ ︸

temporal term

+

∫
Ω

∇ · (ρφu)dV︸ ︷︷ ︸
convective term

=

∫
Ω

∇ · (Γφ∇φ)dV︸ ︷︷ ︸
diffusive term

+

∫
Ω

SφdV︸ ︷︷ ︸
source term

(2.7)
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which is followed by the application of the Gauss or Divergence theorem (that is part

of the fundamental Stokes theorem for the vectorial calculus) to the convective and

diffusive terms: ∫
Ω

∂(ρφ)

∂t
dV︸ ︷︷ ︸

temporal term

+

∫
∂Ω

ρφu.dS︸ ︷︷ ︸
convective term

=

∫
∂Ω

ρΓφ∇φ.dS︸ ︷︷ ︸
diffusive term

+

∫
Ω

SφdV︸ ︷︷ ︸
source term

(2.8)

where ∂Ω is a closed boundary of the control volume Ω and dS represents an infinites-

imal surface element vector aligned with the outward normal of ∂Ω. Please note that

from the Gauss or Divergence theorem the following identities are known:∫
Ω

∇ · udV =

∫
∂Ω

u.dS (2.9)

∫
Ω

∇φdV =

∫
∂Ω

φdS (2.10)

This treatment is still an exact mathematical operation and it is required for the

FVM discretization. Typically the surface fluxes from the convective and diffusive

terms are computed for specified FV schemes, which will be explained in the subsection

2.3.

In the case of the momentum equation (2.5), the application of the volume inte-

gration and the Stokes Theorem results in the following expression:∫
Ω

∂u

∂t
dV︸ ︷︷ ︸

temporal term

+

∫
∂Ω

uu.dS︸ ︷︷ ︸
convective term

=

∫
∂Ω

ν∇u.dS︸ ︷︷ ︸
diffusive term

+

∫
Ω

−1

ρ
∇p dV︸ ︷︷ ︸

pressure term

(2.11)

where the pressure term requires the computation of the cell centered pressure gradient,

which can be considered as a third FV scheme in a CFD code. Since several approaches

are available in the literature to compute this quantity and they will be covered in

subsection 2.3.5.

The Poisson and advection equations may be often considered for verification of

the programmed FV schemes. In the case of diffusive schemes, a Poisson equation can

be used with the following form:∫
∂Ω

∇φ.dS =

∫
Ω

SφdV (2.12)

where Sφ is the source term and it is equal to the Laplacian of the analytic solution φ.

This is required for some analytical solutions where ∇2φ is not null.
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In the case of the convective scheme, this type of verification is done with a scalar

transport equation with a fixed constant velocity U:∫
∂Ω

φU.dS−
∫
∂Ω

Γφ∇φ.dS =

∫
Ω

SφdV (2.13)

where the source term Sφ, once again, is required when the convective and diffusive

terms do not cancel each other.

2.2 Unstructured Grids

The spatial discretization of the computational domain requires a grid or mesh

formed by 3D control volumes or cells, that do not intersect with each other and fill

completely the domain. In this Thesis, the unstructured grid approach was chosen for

the two main reasons:

Nowadays, CFD codes deal with 3D curved geometries, since it is a demand of the

industrial applications where regular geometries are not a valid approximation. As a

consequence of this, the unstructured grids approach is adopted. The majority of the

codes uses tetrahedral cells when constructing the grid, which is simplest cell type that

can be used in complex geometries. The boundary surfaces can be well represented by

a set of connected triangles and a tetrahedral grid can be created from these surfaces.

Some of these codes can have polyhedral cells with arbitrary topology and with a

variable number of faces and vertices. The advantage of these type of cells is that the

higher number of neighbor cells, increases the convergence speed of numerical solution

when compared to the case of tetrahedral grids, see Juretic and Gosman (2008) for

details.

The second reason is related with the successive adaptive grid refinements which will

create interfaces between the cells with different refinement levels will create inaccuracy

issues due to the lower grid quality. As a consequence, these interfaces require a special

treatment when computing the face’s fluxes with the FVM in order to maintain a second

order accuracy. To avoid projection methods, the adaptive grid will be treated as an

unstructured grid with arbitrary topology by considering multiple planar faces in the

adaptive grid interfaces. By using suitable FV schemes for unstructured grid, high

accuracy in the numerical solution can be achieved, as it will be seen in Chapter 4.

In the case of unstructured grids with arbitrary topology, each cell P is a quasi-

convex1 polyhedral, delimited by a closed boundary ∂P which consists in a set of faces

1Polyhedral grid generators cannot guarantee that all the cells are complete convex.
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F (P ) or {S1, S2, ..., SF}. The number of faces of each cell P is arbitrary and variable

within the grid. A face f is a quasi-planar2 polygon with arbitrary orientation and

delimited by the consecutive line segments or edges connecting a set of vertices in a

well defined order. Finally, a vertex is a point in the 3D physical space and it is defined

by its coordinates.

An example of a polyhedral cell P and a set of vertices from the cell’s face f are

represented in the figure 2.1.

Figure 2.1: Example of a 3D polyhedral cell and a set of vertices from the cell’s face f
- edited from Tukovik and Jasak (2012).

The cell faces in a grid can be classified as internal faces, which are between two cells

or as boundary faces that coincide with the boundaries of the computational domain.

The internal faces establish the connectives between cells and, as a consequence, the

surface intersection of any two neighbor cells is a single face and each internal face

belongs to only two cells. The internal face normal n points outwards from the cell

with the lower label or number. In the case of boundary faces, they belong to only one

cell. The boundary face normal points outwards from its cell and consequently, from

the computational domain.

The computational points are located at the geometric center of each cell. This

corresponds to the so-called “collocated” or “non-staggered” arrangement. Figure 2.2

2Polyhedral cells are obtained by agglomeration of different tetrahedral cells and sometimes is not
possible to obtain complete planar faces.
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provides a sketch of the storage scheme and a example of a 2D unstructured grid. To

increase the stability of the pressure-velocity coupling, the convective fluxes Uf are

also stored at each face’s centroid; this issue is of great import to the overall stability

of the numerical method and it will be further developed in section 2.4.

Figure 2.2: Example of a 2D polyhedral cell and computational variables location -
Magalhães (2011).

The SOL code has the capability of importing polyhedral grids from both Open-

FOAM and STAR-CCM+r. This is done by reading two ASCII files: a vertex file

which has all the vertices coordinates in the 3D space with the respective number or

label, and a cell file that contains the number of faces and a list of vertices for each

face. This list of vertices must be in such order that makes possible to create a regular

polygon and to define the edges of the face.

Different routines were programmed to detect the cells neighbors, to enumerate the

grid faces and classify them as internal or boundary faces, since this information is not

available from the two ASCII files. These routines are based in the following principles:

two neighbor cells have at least three common vertices that will form a internal face, the

other remaining faces, that belong to only one cell, will be classified as boundary faces.

Figure 2.3 shows examples of grids generated by the author, which were imported with

these routines: subfigure 2.3(a) shows a tetrahedral grid used to solve the environment

flow in the Madeira island and subfigure 2.3(b) shows the polyhedral grid used to solve

the flow around a sphere for Re = 200.

After reading the ASCII files of the unstructured grid or creating it with a pro-
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grammed routine3, it is required for the FV discretization the computation of different

geometrical properties of the mesh elements: the face area S, normal n and centroid

f ; the cell volume VP and centroid P.

(a) Imported tethaedral grid example. (b) Imported polyhedral grid example.

Figure 2.3: Two examples of 3D imported grids.

Certain quantities in the unstructured grids nomenclature share some parallelism

with the other quantities from the uniform grids, for example the reference length or

cell dimension. One simple way to do this is to compute the cubic root of the cell

volume:

∆ = (VP )1/3 (2.14)

where ∆ is normally used as the spatial filter size for LES models on unstructured grids,

which makes a parallel with the one used for non-uniform grids ∆ = max(∆x,∆y,∆z).

Although, a more suitable indicator is used to compute the reference length of a 3D

cell, the hydraulic diameter h:

hP =
6VP∑

f∈F(P ) ||Sf ||
(2.15)

where it is required the summation of all the faces areas. It can be deduced that

the hydraulic diameter h (equation (2.15)) reverts to the length size if a uniform

hexahedron is used in the formula. For the case of a 2D cell, the hydraulic diameter h

3Cartesian and non-uniform grids are created this way in the code.
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formula must be modified to:

hP =
4VP∑

f∈F(P ) ||Sf ||
(2.16)

It is quite often used in the unstructured grid framework as the cell reference length,

specially when studying the numerical error decay with the grid refinement. For this

reason, it will be used in this Thesis.

2.3 Finite Volume Discretization

2.3.1 Main Assumptions

The majority of the numerical schemes used in this Thesis have second order accu-

racy. This means that the truncation error decays with the squared value of the grid

size or hydraulic diameter h. In these cases, the profile of the computational variable

φ inside a cell P will be linear and each cell can have a different linear profile. The

value φ of a point with coordinates x, which is inside of a cell P , can be computed

with the following formula:

φ(x) = φP + (x−P).(∇φ)P (2.17)

where φ is the value of the computational variable in the cell geometric center, P is

the coordinates vector of the cell geometric center and ∇φ is the cell centered gradient.

The only term in the equation (2.17) that is not easily available is the vectorial quantity

(∇φ)P , that is computed with a gradient scheme, which will be developed in subsection

2.3.5. This vector is an important quantity in the unstructured grids framework and

it will be required by the convective and diffusive schemes. It is assumed that (∇φ)P

is already computed and available in other subsections.

The second order assumption in the FVM is a consequence from the application

of the Gauss-Legendre quadrature to the different terms of the governing equations in

the integral form. For example, the source term of the transport equation (2.7) can be

approximated by using only one Gauss point, which is a second-order quadrature:∫
P

SφdV = Sφ(P)VP (2.18)

With this formula it is only required to compute the source value at the cell centroid

and the correspondent cell volume. This will be the way that the source terms are
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treated by the SOL code.4

In the case of the terms with surface integrals, since the cell surface ∂P is a set of

its own faces, the surface integral can become a sum of faces integrals. Afterwards,

the Gauss-Legendre quadrature can be applied by using one Gauss point at the face

centroid f . In the case of the convective term, these considerations results in:∫
∂P

ρφu.dS =
∑

f∈F(P )

∫
f

ρφu.dS =
∑

f∈F(P )

ρφfuf .Sf =
∑

f∈F(P )

ρφfUf (2.19)

where F(P ) is a set that contains all the cell faces, Sf is a vector that has magnitude

equal to the face area A(f), is normal to the face and points outside of the region

defined by the cell. The convective flux or conservative velocity Uf is defined as the dot

product between the velocity vector uf and the surface face vector Sf . The convective

scheme consists in a formula to compute the computational variable φf value at the

face centroid from the adjacent cells, the different types of convective schemes will be

explained in the subsection 2.3.2.

For the case of the diffusive term, the decomposition of the surface integral and the

application of the second-order quadrature results in:∫
∂P

Γφ∇φ.dS =
∑

f∈F(P )

∫
f

Γφ∇φ.dS =
∑

f∈F(P )

(Γφ)f (∇φ)f .Sf (2.20)

where the diffusive scheme is an algorithm to compute the gradient of the dependent

variable from the available information of the surrounding cells (the different diffusive

schemes will be explained in the subsection 2.3.3). The quantity (Γφ)f is computed

with one of the convective schemes.

2.3.2 Convective Schemes

As it was seen previously, the convective schemes are used to interpolate the de-

pendent variable φ at the face centroid from the surrounding cells. The first family of

convective schemes can be defined by the following equation:

φf = (1− η)φP0 + ηφP1 (2.21)

where η is a blending factor that will be used to estimate φf ; the pair φP0 and φP1 are

the values of the dependent variable at the cells P0 and P1, respectively.

4Except when high-order numerical schemes are being used.
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The simplest method to compute the φf value is the upwind differencing scheme

(UDS) (the name comes from its origin in the finite differences method). A interpo-

lation can also be made rather than a differentiation, due to the fact that the FVM

uses the integral form of the governing equations. The concept of the UDS is based

on the principle that the dependent value φ is being transported by the conservative

velocity Uf and this is done by choosing between the φP0 or φP1 values according to

the Uf signal. The UDS is defined by the following expression:

φf =

{
φP0 ⇐ Uf ≥ 0

φP1 ⇐ Uf < 0
(2.22)

and this corresponds to use the following formula to the blending factor:

η
UDS

=

{
0 ⇐ Uf ≥ 0

1 ⇐ Uf < 0
(2.23)

Because the UDS forces φ to be constant in the upstream cell, the convective

scheme is first-order accurate and guarantees boundedness of the solution. However,

this scheme suffers from a false diffusion problem, which results in a general numerical

inaccuracy.

Another significant factor is that the UDS is the only convective scheme that can

be used implicitly in the transport matrix, it is the only convective scheme that can

guarantee that the main diagonal of the transport matrix is always dominant. In the

case of other convective schemes, a deferred correction algorithm is required which will

be explained in the subsection 2.4.

The next convective schemes do not suffer from this accuracy problem, since they

use the values of φ from both cells. One simple approach is to use an arithmetic average

(AVG):

φf =
φP0 + φP1

2
(2.24)

which results in a blending factor of η
AV G

= 0.5. The following scheme does not use

any geometrical information, so the interpolation point location is different from the

face centroid f , which is the intended location. As a consequence, the AVG convective

scheme will not show second-order accuracy on non-uniform grids. The advantage of

this scheme is that it conserves the kinetic energy, making it a robust method in the

computation of LES models on unstructured grids as it has been shown by Mahesh

et al. (2004). To solve the accuracy problem on non-uniform meshes, it is required to

make a linear interpolation (the LIN convective scheme). This is done by computing
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the intersection point zf between the surface plane that contains the cell face f with

the following equation:

zf = P0 + η
LIN

(P1 −P0) = P0 + η
LIN

d (2.25)

where d is the distance vector between the cells P0 and P1 centroids and the blending

factor η
LIN

is computed with the projection of the (f −P0) and d vectors to the face

normal space and these projections results in the following formula:

η
LIN

=

(f −P0).Sf
Sf .Sf

(P1 −P0).Sf
Sf .Sf

=
(f −P0).Sf

(P1 −P0).Sf
(2.26)

The location of the different interpolation points from the convective schemes can

be seen in the figure 2.4, for the case of an adaptive grid. From the observation of this

figure, it can been concluded that on adaptive grids, the interpolation points can be

located far from the face centroid f , where it is required the computation of the φf

value.

Figure 2.4: Location of the interpolation points for different convective schemes - edited
from Magalhães (2011).

It is possible to use a triangular like interpolation (TRI) by using the closest point

to the face centroid f from the line segment defined by the d vector. This is achieved

by projecting the (f − P0) to the 1D space defined by the d vector, resulting in the

following formula to the blending factor:

η
TRI

=
(f −P0).d

d.d
(2.27)
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This concludes the presentation of the first family of FV schemes that do not use

any information of the grid quality.

One of the first grid quality parameters that can be derived is the skewness or

eccentricity factor5. It basically, measures the deviation between the distance d vector

and the face centroid, which was already seen that will provoke an accuracy error in

the convective scheme. An example of how is the skewness factor computed can be

seen in figure 2.5, where σ(f) is non-dimensional factor proposed by Magalhães (2011)

to compute the skewness or eccentricity factor and is defined by:

σ(f) =
1

2

‖f − zf‖√
‖Sf‖

(2.28)

where the
1

2
value is used to limit the σ(f) in a closed interval [0, 1]. To increase

the accuracy of the convective scheme when σ(f) is different from zero on unstruc-

tured grids, several approaches can be used which will be explained in the following

paragraphs.

Figure 2.5: Skewness or eccentricity factor representative example - Magalhães (2011).

A different group of convective schemes can be created by adding a correction factor

that uses the information provided by the cell centered gradient ∇φ. This group is

constructed by applying the following equation:

φf = (1− η)φP0 + ηφP1 + (1− η)(f −P0).(∇φ)P0 + η(f −P1).(∇φ)P1︸ ︷︷ ︸
correction factor

(2.29)

by applying the blending factor η
UDS

and η
AV G

in the previous equation (2.29), the

convective schemes UDS2 and AVG2 can be obtained, respectively.

5Authors use one of these terminologies.
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The UDS2 convective scheme corresponds to the second-order upwind scheme for

unstructured grids which is available in commercial CFD codes and has been studied

previously by Kobayashi et al. (1998). This scheme is basically a second-order inter-

polation from the upstream cell and the second-order accuracy can be achieved for the

majority of the unstructured grids. Also it has better stability properties than other

convective schemes when using the deffered correction approach.

The AVG2 convective scheme is used to solve problems where the conservation of

the kinetic energy is important since it is an upgrade from the AVG scheme.

Magalhães (2011) also applied the equation (2.29) to create a LIN2 and TRI2. The

problem with this extension is that it does not solve the skewness grid quality issue

since the interpolation point still lies in line segment defined by distance vector d.

Some authors (for example Juretic (2004) and de Villers (2006)) applied a correction

term to the LIN convective scheme which is directly proportional to the skewness or

eccentricity factor. By adding this correction term to equation (2.21) it will result in

the following equation:

φf = (1− η)φP0 + ηφP1 + (f −P0 − ηd).(∇φ)f︸ ︷︷ ︸
skewness correction

(2.30)

where the skewness vector is written in the form (f − P0 − ηd). By making use of

both η
LIN

and η
TRI

blending factors will result in the LIN-SK and TRI-SK convection

schemes, respectively. The (∇φ)f vector is the interpolated cell centered gradient from

the cells P0 and P1 available values.

The overline operator is used in quantities that are considered to be constant inside

of each cell like the gradient variables or the cell integrated variables, meaning that

the interpolation scheme cannot use correction factors. Typically, the AVG is used in

these cases since it gives more robustness to the overall numerical algorithm. Some

authors use the LIN or a weighted volume interpolation for these types of quantities,

but since in this Thesis adaptive grids are used, the AVG was selected for numerical

stability.6

There are other two types of convective schemes groups the projection or ghost

points ones and the reconstruction ones. The explanation of these type of schemes will

be done in the subsections 2.3.4 and 2.3.7.

6In the SOL code, it is possible to select other types of interpolation schemes for the overlined
quantities.
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2.3.3 Diffusive Schemes

As it was seen previously, the diffusive scheme consists in the computation of the

dependent variable gradient ∇φ at the face centroid f , from the available information

of the adjacent cells.

To construct a two points diffusive scheme a finite central differences like formula

is applied:

(∇φ)f = (φP1 − φP0)
d

d.d
(2.31)

where information about the face normal is not used in this equation. Normally, in

the unstructured grids framework this diffusive scheme is not used in the literature7.

It is more common to use a two point diffusive scheme that contains information of

the face normal represented by the following equation:

(∇φ)f = (φP1 − φP0)
Sf

Sf .d
(2.32)

which has second-order accuracy for unstructured grids with small deviations. This

diffusive scheme is called central differences scheme (CDS) and it is part of the first

family of FVM already presented in the convective scheme subsection 2.3.2, which do

not use any type of correction related with the grid quality.

The angle formed between the distance vector d and the face normal Sf is used as

a grid quality parameter. The warp angle measures the orthogonal departure of the

diffusive scheme, which it is directly proportional to an inaccuracy problem and it can

be computed by the following formula:

α(f) = arccos

(
d.Sf
‖d‖‖Sf‖

)
(2.33)

also a representative example of the warp angle can be seen in the figure 2.6.

Jasak (1996) in his work proposed a family of diffusive schemes that have an extra

non-orthogonal correction term that depends of the warp angle and of the cell centered

gradient from both cells. This family of schemes is defined by the following equation:

(∇φ)f = (φP1 − φP0)p−
[
(∇φ)f − (d.(∇φ)f )p

]︸ ︷︷ ︸
warp angle correction

(2.34)

where the vector p is obtained by decomposition of the face surface vector Sf and the

7The diffusive scheme suffers severally from accuracy problems when small deviations exist in the
unstructured grid, as concluded by Magalhães (2011).
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Figure 2.6: Warp angle representative example - Magalhães (2011).

(∇φ)f is interpolated from the cell centered gradient from the cells P0 and P1. As it

was discussed in the previous subsection 2.3.2, the overlined quantities in this Thesis

are interpolated with the AVG scheme.

With the equation (2.34), Jasak (1996) studies three diffusive schemes with non-

orthogonal or warp angle correction by using three different values for p: the minimum

correction, the orthogonal correction and the over relaxed or tangential correction. The

expressions for vector p for each of the presented correction schemes are, respectively,

in the equations (2.35), (2.36) and (2.37).

p
MC

=
d

d.d
(2.35)

p
OC

=
Sf

‖Sf‖‖d‖
(2.36)

p
TC

=
Sf

Sf .d
(2.37)

Jasak (1996) compares the convergence history of the three diffusive schemes with

the deferred correction method where he concluded that the over-relaxed or tangential

correction had the better convergence properties. Magalhães (2011) shows in his work

that the tangential correction (TC) scheme is more accurate than the other two non-

orthogonal correction schemes. The FV commercial codes and the majority of works

in the unstructured grids framework also use this scheme to deal with the accuracy

problem caused by the warp angle.

The TC diffusive scheme in association with the UDS2, AVG2, LIN-SK and TRI-SK

convective schemes form a family of FV schemes that have a correction terms directly

proportional to grid quality parameters.

An example of the face surface vector Sf decomposition for the TC scheme is shown

in figure 2.7. Where the vector ∆ is parallel to the distance vector d, the vector t is
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parallel to the plane defined by the face f and the following equations are valid:

t = Sf −∆ (2.38)

∆ =
Sf .Sf
Sf .d

d = (p
TC
.Sf )d (2.39)

Figure 2.7: Example of the face surface vector Sf decomposition for the TC scheme -
edited from Magalhães (2011).

2.3.4 Ghost Points - Convective and Diffusive Schemes

A problem with the previous diffusive schemes is that they only considered the

warp angle of the face when computing the face gradient disregarding the skewness

deviation. As a consequence, the face gradient is not computed at the face center with

these schemes.

A third family of diffusive and convective schemes can be created by taking into

account both warp angle and skewness grid quality parameters, proposed initially by

Ferziger and Peric (1999) to to be used as a diffusive scheme and extended for the

convective one on adaptive grids by Ham et al. (2002).

First to apply these FV schemes, it is necessary to project the cell centroids P0 and

P1 to a line which is parallel to the face normal Sf and that passes through the face

centroid f . These two projected points P ′0 and P ′1 are called ghost points. The figure

2.8 shows a geometrical example of this projection scheme and the points location.

The computation of the ghost points can be done by projecting the distance vector

between the cell centroid and the face centroid to a one dimensional space defined

by the face normal. As a result of these projections, the distance betyween the cell

centroid and the respective ghost point is as small as possible. The location of the
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ghost points can be computed with the following equations:

P′0 = f − [(f −P0).Sf ] Sf
Sf .Sf

(2.40)

P′1 = f − [(f −P1).Sf ] Sf
Sf .Sf

(2.41)

Figure 2.8: Example of the ghost points schemes and respective points location.

To compute the computational values in the ghost points, the cell centered gradient

is required, which assumes a linear variation of the computational variable inside the

cell. These values can be computed by:

φP ′0 = φP0 + (P′0 −P0).(∇φ)P0 (2.42)

φP ′1 = φP1 + (P′1 −P1).(∇φ)P1 (2.43)

From the interpolated values is possible to apply the convective and diffusive

schemes of this family or category. In the case of the convective scheme, the approach

is to apply a formula similar to the LIN scheme:

φf = ηφP ′0 + (1− η)φP ′1 , η =
(f −P′0).Sf

(P′1 −P′0).Sf
(2.44)
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and in the case of the diffusive scheme, a formula similar to the CDS scheme is used:

(∇φ)f = (φP ′1 − φP ′0)
Sf

Sf .d′
(2.45)

where d′ is the distance vector between the two ghost points P ′0 and P ′1, which is defined

by the following equation:

d′ = P′1 −P′0 (2.46)

The ghost points family of schemes seems to be more accurate than the previous

family or set of schemes that depend on the grid quality, for small non-orthogonal grids.

In the case of severe grids with high warp angles, it is possible that the ghost points

will lie outside of its own cell. When this happens, it is necessary to use of a search

algorithm to check in each cell the ghost points are inside. On another hand, using

linear interpolation to compute the ghost points values may not be accurate enough

for this degree of grid quality.

For these reasons, the second family of FV schemes is more robust than this one

and can be applied to a larger range of different unstructured grids. As a consequence,

schemes like the LIN-SK and TC are more popular in different CFD codes and in the

literature of the unstructured grids FV schemes.

2.3.5 Cell Centered Gradient Schemes

The cell centered gradient of the computational variable is a required quantity to

improve the accuracy of some FV schemes or to compute the gradient terms of the gov-

erning equations, like the pressure gradient. It can be computed with either the Gauss

or the Weighted Least Squares (WLS) method, which have different characteristics and

will be explained in this subsection.

In the literature, it is also possible to apply a combination of both methods in

order to obtain bounded gradients. To achieve this, different approaches have been

proposed by Barth and Frederickson (1990); Venkatakrishnan (1994, 1995) and Park

et al. (2010).

Gauss Method

The Gauss method consists in applying the Gauss or Divergence theorem to the

variable gradient ∇φ and transform it into a summation of each cell faces fluxes φf Sf .
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The derivation of the Gauss method can be obtained by the following sequence:∫
P

∇φdV =

∫
∂P

φdS⇒ (∇φ)P =
1

VP

∑
f∈F(P )

φf Sf (2.47)

where the second order assumption inside the cell and the Gauss-Legendre quadrature

were considered.

For the computation of the quantity φf , the already presented convective schemes

can be used, except for the Upwind based schemes. If the convective schemes have

terms that depends on the cell centered gradient, a deferred correction approach can

be used by considering an initial guess. This process converges in the maximum of four

or five iterations for skewed meshes as was reported in the work of Ni et al. (2007).

One advantage of the Gauss method in the computation of the cell centered gradient

is that it depends on information about the computational grid, like the cell volume,

the faces area and the faces centroids distribution. As disadvantage, since the variable

gradient consist in two or three values8 from the available of the cell neighbors, it can

be considered an unweighted average and cause an underestimation of the gradient.

As a consequence, it can lead to an inaccuracy problems when compared with WLS

method.

Weighted Least Squares Method

The Weighted Least Squares (WLS) method is an alternative approach to compute

the cell centered gradient. It consists in a polynomial fit with the discrete values of

the surroundings cells, considering the arbitrary centroids location. Other geometric

data from the computational grid like the cell volume, face centroids and normals are

ignored with this method.

The polynomial to be fit in this case will be a linear profile with the constant equal

to the value of the cell centroid φP and centered at the cell centroid P, which can be

written with the following formulation for a 3D case:

φ(x, y, z) = φP + (x− xP )

(
∂φ

∂x

)
P

+ (y − yP )

(
∂φ

∂y

)
P

+ (z − zP )

(
∂φ

∂z

)
P

(2.48)

where for a 2D case the z component is not considered, each derivative is one component

of cell gradient (∇φ)P vector to be computed.

The application of the WLS on unstructured grids is well documented in the works

8It depends if you are considering a two or three dimensional case.
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of Muzaferija and Gosman (1997) and Kobayashi et al. (1999). The generalized WLS

method for any type of polynomial will be explained in the next subsection 2.3.6.

The application of the polynomial (equation (2.48)) fit in the cell neighbors φ values

with the WLS method, results in the solving of the linear system Ag = h, where g is

the gradient vector to be computed. The matrix A and the vector h components are

defined by:

amn =
∑

f∈F(P )

wfdf,mdf,n (2.49)

hm =
∑

f∈F(P )

(φPk
− φP )wfdf,m (2.50)

where m and n denote the Cartesian components, df,m the component m of the dis-

tance vector between the cell P and the neighbor cell Pf and wf is the weight of cell Pf ,

obtained as the inverse of the square of the distance vector module between the cells P

and Pf second order approximation is being considered. The weighted function is im-

portant to give a higher contribution to the closest cells in the polynomial fit procedure

and avoid inaccuracy issues caused by using a too much cells in the regression.

With this method, the computation of the cell centered gradient requires the inver-

sion of the matrix square A, which can be done analytically with the Cramer’s rule.

The matrix A has size 2× 2 for 2D cases and 3× 3 for 3D cases.

2.3.6 Generalized Weighted Least Squares Method

In this subsection, the generalized WLS method is presented, which is used to

compute the polynomial fit of an arbitrary set of points with different values φ. This

algorithm has the versatility required to deal with different sets of point data which

are assembled with either the first or second cell neighbors by face or by vertex. Also,

polynomial with different orders can be used with this algorithm depending on the final

goal. The only requirement to build the minimization algorithm is that the number of

polynomial coefficients to be computed is lower or equal to the number of available

cell values from the established computational stencil9.

This method is very important in the context of this Thesis since it is applied

in different cases. It is applied in the computation of the cell centered gradient (al-

ready presented in subsection 2.3.5), in the computation of the face WLS second order

9A computational stencil is a set of cells that contributes in the computation of a certain scheme
or quantity.
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schemes which will be presented in the next subsection 2.3.7. Finally, these regres-

sions technique are also applied in the computation of the relative and absolute error

estimators that are explained in chapter 4.

By considering a base polynomial for the computational variable φ centered in the

cell P :

φ(x, y, z ;P ) = φP +
∂φ

∂x
(x− xP ) +

∂φ

∂y
(y − yP ) +

∂φ

∂z
(z − zP ) + ... (2.51)

where the previous equation has a similar form to a Taylor series expansion. It can be

generalized in the following form:

Y = b0 +
n∑
k=1

bkXk (2.52)

where yi is a linear combination of n variables Xk plus a constant and the parameters

b are polynomial coefficients to be computed. Using the polynomial approach of the

Taylor series, the b parameters would be related to the gradient, Hessian, third and

higher derivatives of the φ variable. A component yi of the observation vector y is

defined by:

yi = (b0 + b1X1,i + b2X2,i + . . .+ bnXn,i) + ei (2.53)

Considering all cell values from the stencil, an overdetermined system of equations

is formed, given by yW = XbW + eW, where y is a vector with dimension m × 1

containing the observations of y, W is a diagonal matrix with dimension m × m

containing the square root of the weight function for each observation, X is a matrix

m×(n+1) containing the values of the several explaining variables for each observation,

b is a vector with dimension n + 1 with the polynomial coefficients to be computed

and e is the vector with the correlation error for each of the observations:

y =


y1

y2

...

ym

 X =


1 X1,1 X2,1 ... Xn,1

1 X1,2 X2,2 ... Xn,2

...
...

...
. . .

...

1 X1,m X2,m ... Xn,m

 b =



b0

b1

b2

...

bn


(2.54)
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e =


e1

e2

...

em

 W =


√
w1,1 ... 0

0
. . . 0

0 ...
√
wm,m

 (2.55)

The correlation error is defined as the difference between the observed y and the

estimated value ŷ = Xb:

ei = yi − ŷi (2.56)

where the solution vector b is obtained by the WLS method, which corresponds to the

minimum of the following sum:

min
b

m∑
i=0

(wi,i)e
2
i ⇔ min

b
(WTeT )(We) (2.57)

The least squares solution of this system is obtained by forming the normal system:

X′WWy = X′WWXb + X′WWe (2.58)

or (by neglecting the residuals):

b = (X′W2X)−1X′W︸ ︷︷ ︸
(XW)−1

left

Wy (2.59)

where (XW)−1
left is the left inverse of the rectangular matrix XW. If no weight function

is being used, the previous equation (2.59) becomes:

b = (X′X)−1X′︸ ︷︷ ︸
X−1

left

y (2.60)

where X−1
left is the left inverse of the rectangular matrix X.

Essentially, the application of the WLS method consists in the computation of the

matrix (XW)−1
left. This is done by applying the Cramer’s rule when the polynomial is

linear. In the case of higher order polynomials or a higher number of cells are being

used, this computation is done with the single value decomposition (SVD) method,

due to bad conditioning problems of the matrix.

Since the left inverse matrix only dependents of geometric data from the compu-

tational grid, this result can be saved for the future iterations. It is only necessary to

perform the matrix vector product (XW)−1
leftWy to obtain the polynomial coefficients
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in each iteration.

2.3.7 Face WLS - Convective and Diffusive Schemes

A fourth family or category of convective and diffusive schemes for arbitrary un-

structured grids can be created with the WLS method. This consists in building the

following linear polynomial centered in the face centroid coordinates, with the discrete

information of the surrounding cells:

φ(x) = φf + (∇φ)f .(x− f) (2.61)

where both convective and diffusive values (φf and (∇φ)f ) are available in the same

regression. This way, it allows to deal with the several orthogonality and skewness

deviations that can exist on the unstructured grids. For this type of regressions,

the cells that have one of the face vertices are included. Figure 2.9 shows examples

of different computational stencils used in these regressions. In each example, the

regression k is centered in the face Sk and each cell of the stencil is marked with the

respective number k.

Figure 2.9: Possible Stencils used in the WLS Schemes.

The computational cost of solving the WLS problem for each face is significant but

it is only required to be solved once. The matrix values can be saved and used in

future iterations. All the least squares regressions use a weight function wP , given by

the inverse square of the distance:

wPk
=

1

||Pk − f ||2
(2.62)
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where Pk is the cell P centroid and f is the face centroid, which are the coordinates

of the regression reference.

To the author knowledge, there are not present in the literature many applications

with this type of reconstruction schemes centered at the face centroid. In subsection

5.3.1, it will be shown that this type of schemes can have better a accuracy than the

other ones when applied to adaptive grids.

2.3.8 Time Scheme - Temporal Term

The computation of the temporal term in the governing equations requires the

selection of a suitable of time scheme. For the application of the time scheme, it is

convenient to write the governing equations in the following formula:

∂φ

∂t
= F (φ, t) (2.63)

where the term F (φ, t) is the summation of the all terms of the governing equation

except for the temporal term, for the designated φ values and time value t:

F (φ, t) = C(φ, t) +D(φ, t) + PG(φ, t) + S(φ, t) (2.64)

and it is also necessary to define an initial condition for the first time level t0, when

using the temporal schemes:

φ(t0) = φ0 (2.65)

From the combination of the equations (2.63) and (2.64), different time schemes

can be obtained that were implemented in the SOL code. The simplest one is the

explicit Euler scheme, which is a first order time accurate scheme:

φn+1 − φn

∆t
= F (φn, tn) (2.66)

that uses the fractional-step algorithm to solve the pressure-velocity coupling, which

is explained in subsection 2.4.1. The first order Euler implicit version is written with

the following formula:
φn+1 − φn

∆t
= F (φn+1, tn+1) (2.67)

where the right term is now computed in the future time level n + 1, and due to

this it is necessary to solve the pressure-velocity coupling with the SIMPLE or PISO

algorithms, which are explained in subsection 2.4.2 and 2.4.3.
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Due to the non linearity of the momentum equations it is necessary to use space

iterations in each time step. This requirement comes from the convective term de-

pendency of the face velocity Uf that initially is only available at the time level n.

In each space iteration, the matrix of the momentum equations will change and the

face velocity Uf will converge to an approximated value at time level n + 1. Also the

pressure gradient term will change from the time level n to n + 1 during these space

iterations.

A second order time accurate implicit method can be obtained by considering the

correspondent regressive finite difference formula:

3φn+1 − 4φn + φn−1

2∆t
= F (φn+1, tn+1) (2.68)

This scheme requires the additional storage for the variable φ at the time level

n− 1.

Another implicit second order time scheme can be obtained by separating the right

side term in a explicit and implicit contribution:

φn+1 − φn

∆t
=

1

2
[F (φn, tn) + F (φn+1, tn+1)] (2.69)

where this time scheme is known as the Crank-Nicolson scheme. There is also other

explicit time schemes implemented in the SOL code like the second order Runge-Kutta

scheme:

φ
n+ 1

2
∗ = φn +

∆t

2
F (φn, tn) (2.70)

φn+1 = φn +
∆t

2
F (φ

n+ 1
2

∗ , tn+ 1
2 ) (2.71)

where this temporal term is computed by using an auxiliary stage level. Also the fourth

order Runge-Kutta explicit scheme was implemented:

φ
n+ 1

2
∗ = φn +

∆t

2
F (φn, tn) (2.72)

φ
n+ 1

2
∗∗ = φn +

∆t

2
F (φ

n+ 1
2

∗ , tn+ 1
2 ) (2.73)

φn+1
∗ = φn + ∆tF (φ

n+ 1
2

∗∗ , tn+ 1
2 ) (2.74)

φn+1 = φn +
∆t

6
[F (φn, tn) + 2F (φ

n+ 1
2

∗ , tn+ 1
2 )+

+2F (φ
n+ 1

2
∗∗ , tn+ 1

2 ) + F (φn+1
∗ , tn+1)]

(2.75)
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where for this scheme three auxiliary stage levels are required. As explained previously,

the governing equations are solved with the fractional-step method when using explicit

time schemes. When using explicit methods to solve the momentum equations, the time

step value should be limited due to two numerical stability constrains: the Courant-

Friedrichs-Lewy condition and the diffusive stability criterion.

The Courant-Friedrichs-Lewy condition or Courant number is a limit imposed when

the convective term is discretized explicitly, which is defined by:

||u||∆t
h

< λc (2.76)

where ∆t is the time step, h is the hydraulic diameter and λc is the Courant number,

that should be lower than 1 for the case of the explicit Euler time scheme. Equation

(2.76) results in the following time step constraint:

∆t <
hλc
||u||

(2.77)

that must be satisfied to avoid numerical instability. The diffusive stability criterion is

required when using a explicit method to compute the diffusive term, which is defined

by:
ν∆t

h2
< λd (2.78)

where λd is the diffusive stability criterion, that must be lower than 1/2 for the explicit

Euler time scheme. This results in the following time step constraint:

∆t <
h2λd
ν

(2.79)

The limit value of the Courant number and of the diffusive stability criterion de-

pends of the time scheme, the spatial discretization used and other characteristics from

the governing equation. These limits are necessary but not sufficient to guarantee the

numerical solution convergence. In Pereira and Pereira (2001) several time schemes

are studied for a range of different values of λc and λd and limits for theses values are

established for one dimensional and linear equations. In the case of this Thesis, these

values should be lower since the Navier-Stokes equations are non linear and the grid is

unstructured.

For the case of implicit temporal schemes they are unconditionally stable10, which

means that they are not constrained by stability . This means that implicit methods

10This is proven for linear problems.
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do not have these stability limits. For transient problems there is a restriction for the

time step size that comes from the truncation error of the finite difference formula of

the time scheme. If the time step is too large there will be an accuracy problem in the

solution, so there is a restriction in the time step for implicit methods.

Due to the formulation of the fractional-step method (for details read subsection

2.4.1), it is possible to use a specific time scheme for the convective term and a different

one for the diffusive term. So, the diffusive term can be treated implicitly, eliminating

the time step restriction from the diffusive stability criterion. Since this term is linear,

the system of equations needs to be solved only one time, at each time step.

The assembly of this hybrid temporal schemes has the advantage of eliminating the

time step restriction from the λd, which depends of the quadratic degree of h (the grid

reference length), unlike the Courant number λc that depends linearly of h. For these

reasons the diffusive stability criterion can be very restrict for high refined grids and

adaptive grids that have high intervals of length scales (multi-scale problems), like the

ones showed in this Thesis.

In the SOL code, the hybrid time scheme is implemented by using the second or

the fourth Runge-Kutta scheme to compute explicitly the convective term and the

Crank-Nicolson scheme to compute implicitly the diffusive term.

2.4 Pressure-Velocity Coupling

The pressure-velocity coupling algorithm and the compatibility between the differ-

ent numerical schemes affect the overall accuracy of the results, stability and energy

conservation proprieties, see Verstappen and Veldman (2003) for details. It is well

known that the collocated grid arrangement may induce unphysical oscillatory pres-

sure profiles, when computing incompressible fluid flows.

In this section the different algorithms used for the pressure-velocity coupling are

explained. In explicit cases the fractional-step algorithm is used to solve the Navier-

Stokes equations and for steady or implicit cases the SIMPLE or the PISO algorithms

are used.

Other segregated algorithms are available in the literature like the SIMPLEC and

SIMPLER. A full coupled approach is also well documented in the Thesis of Darwish

et al. (2009), the idea being to put all the momentum and continuity equations in

the same matrix. Some of the terms have to be put in the right hand size of the

linear system with deferred correction due to numerical instability issues. The main

advantage of this approach is that the number of iterations to solve the system is
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independent of the grid size, as it is showed by Darwish et al. (2009).

2.4.1 Fractional-Step

A fractional-step algorithm can be used to solve numerically the continuity (2.4)

and the momentum (2.5) equations. The method consists in dividing each of the

momentum terms in different stages in each time step. For example, if the explicit

Euler temporal scheme is being used, equation (2.5) can be written in the following

form:

un+1
P = unP + (CP +DP + PGP )∆t (2.80)

where CP , DP and PGP
11 are the convective, diffusive and pressure gradient terms,

respectively, at cell P . It is possible to split the previous equation in two stages in the

following form:

u∗P = unP + (CP +DP )∆t (2.81)

un+1
P = unP + (PGP )∆t (2.82)

It will be seen later why is important to have a last stage where is only added the

pressure term. Some authors split the first stage (equation (2.81)) into two stages,

where each one has a different time scheme but with the same accuracy order. The

diffusion term is solved with a Crank-Nicholson implicit scheme and the convection

term is solve with a explicit second-order Runge-Kutta. This type of hybrid time

schemes was implemented in the SOL code and brings numerical stability to the overall

coupling algorithm by freeing the need for a diffusive stability criterion. That is a

constraint when explicit schemes are being used to treat the diffusive terms, specially

for high refined meshes since it depends on the inverse square of the hydraulic diameter

h.

In each time step, the method starts by computing from the previous velocity field

un a velocity field that satisfies the momentum equations without considering the

pressure gradient contribution:

u∗ − un

∆t
= −∇ · (un ⊗ un) +∇ · (ν∇un) (2.83)

where in this example the explicit Euler time scheme is being considered. Afterwards,

the predicted u∗ is projected to a space where the continuity is satisfied by adding

11In the FD framework the pressure term is represented by Pi but since the letter P is already used
for definition of cell, it was choose PG for definition of the pressure term.
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implicitly the gradient pressure term:

un+1 − u∗

∆t
= −∇pn+1 (2.84)

By applying the divergence operator in equation (2.84) and recalling that from the

continuity equation (2.4), the term ∇ · un+1 should be forced to zero. The previous

equation results in the Poisson equation for the pressure field:

∆t

ρ
(∇2pn+1) = ∇ · u∗ (2.85)

Since the computational variables are located at the cells centroids, the convective

fluxes Uf at each face must be also stored to provide the pressure-velocity coupling. By

applying to equations (2.83) and (2.85) the volume integral, the Gauss or Divergence

theorem and the second-order Gauss-Legendre quadrature will result in the following

expressions:

u∗P = unP −
∆t

VP

∑
f∈F(P )

unfU
n
f +

∆t

VP

∑
f∈F(P )

νf (∇un)f .Sf (2.86)

∆t

ρ

∑
f∈F(P )

(∇pn+1)f .Sf =
∑

f∈F(P )

u∗f .Sf =
∑

f∈F(P )

U∗f (2.87)

where in the Poisson equation (2.87) the left term is treated implicitly with a diffusive

scheme and the right term is computed explicitly from the computed values of u∗ by

equation (2.86).

From the pressure field at the time level n+ 1, the velocities at the face center Uf

and at the cell center u can be updated in order to satisfy the continuity constraint:

Un+1
f = U∗f −

∆t

ρ
(∇pn+1)f .Sf (2.88)

un+1
P = u∗P −

∆t

ρ
(∇pn+1)P (2.89)

and from this point the time can advance an extra level and the fractional-step process

starts again from the momentum equation (2.86).

The fractional-step algorithm is mainly used with time explicit schemes, small time

steps and in cases where the coupling between these pressure and velocity fields is not

required to be strong. The SIMPLE and PISO methods are more robust and exhibit a

more stable coupling between these two fields. This method has the advantages to be

less demanding in terms of the computational cost required and the Poisson equation
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to correct the velocities fields can be assembled only one time, since it only depends

on geometric factors from the computational grid.

When using diffusive schemes different from the CDS, a deferred correction may be

used here and the values from the pressure field of the previous iteration are used to

compute the explicit part. The deferred correction approach will be better explained

in subsection 2.4.2.

To increase the robustness of the overall coupling algorithm a stabilization proce-

dure proposed by Mahesh et al. (2004) was implemented in the SOL code and will be

explained in the next paragraphs.

Pressure-velocity stabilization procedure

When solving the Poisson equation (2.87) to satisfy the continuity constraint at

the time level n + 1, the face velocity Uf is solved to the machine precision but the

same does not happen to the cell velocities u. This is driven by the fact that only the

face pressure gradient (∇p)f is considered in the Poisson equation. So, it is possible

that cell velocities u do not satisfy completely the continuity equation, since the cell

centered pressure gradient (∇p)P is computed from the resultant pressure field.

In their work, Mahesh et al. (2004), computed the contribution of the pressure gra-

dient to the kinetic energy equation for staggered and collocated grid arrangement and

concluded that, in the case of collocated grids, the relation between pressure gradient

could be as energy conserving as possible by minimizing the following expression:∑
f∈F(P )

[(∇p)P .Sf − (∇p)f .Sf ] (2.90)

where the least squares method should be used to compute the vector (∇p)P from the

already computed values (∇p)f at each cell faces. This scheme is more robust but it

requires additional computational work. This procedure was also presented earlier by

Benhamadouche et al. (2002). The stabilization contribution to the overall algorithm

increases when skewed cells are being used, which can happen in the unstructured

grids framework. Mahesh et al. (2004) used this procedure to compute LES flows in

complex geometries like a gas-turbine combustor and showed that this procedure was

necessary to solve the Taylor problem for Re = 109 without any kinetic energy build

up.

From this approach, Magalhães (2011) proposed a simplified equation to reduce the

computational work from the least squares method when the grid quality is sufficient.
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The idea is to compute a weighted average of the cell centered pressure gradient (∇p)P
from the values of the cell faces:

(∇p)P =

∑
f∈F(P ) [(∇p)f .Sf (Sf/‖Sf‖)]∑

f∈F(P ) ‖Sf‖
(2.91)

which is a good approximation when the computational grid has high quality and does

not require the solving of a local WLS problem for each cell.

Fractional-step algorithm summary

The fractional-step algorithm can be summarized by these following steps:

1. Define the pressure p, velocity field u and the face velocity Uf at the time level

n. The face velocity Uf is important for the definition of the convective term.

2. Compute a prediction of the velocity field u∗ from the momentum equation (2.86).

3. Interpolate the predicted velocity field u∗ to the faces center and compute the

continuity of each cell (last term of the equation (2.87)).

4. Solve implicitly the Poisson equation (2.87) to obtain the pressure p at the time

level n + 1. This matrix only needs to be assembled one time since the matrix

values just depend of geometric factors from the computational grid.

5. Correct the face velocity Uf at the time level n+ 1 with equation (2.88).

6. If the stabilization option is not being used, compute the cell centered pressure

gradient (∇p)P from the pressure field p. If the stabilization option is being used

compute (∇p)P from the LS minimization of equation (2.90) or directly from the

equation (2.91).

7. The velocity field u is corrected with equation (2.89). Increase time t = t + ∆t

and n = n+ 1, go back to point 1.

2.4.2 SIMPLE

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm, pre-

sented by Patankar and Spalding (1972), is used for the pressure velocity coupling of

steady cases and of unsteady cases that require a implicit discretization of the tempo-

ral term. For simplification proposes, the SIMPLE algorithm will be presented for the

steady state equations.
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The algorithm starts by computing an approximate velocity field u∗, which satisfies

the momentum equations using the values from the previous iteration n. The steady

equation is solved implicitly and linearization of the convection contribution is required:

F∑
f=1

Un
f u∗f − ν

F∑
f=1

(∇u∗)f .Sf = −VP
ρ

(∇pn)P (2.92)

where Un
f is the face velocity defined by unf .Sf , Sf is the face surface vector defined by

Sfnf and nf is the normal unit vector of the face f . A system of linear equations is

assembled in this form:

1

αu
apu

∗
P +

F∑
l=1

alu
∗
l = −VP

ρ
(∇pn)P +

1− αu
αu

apu
n
P (2.93)

being αu the under relaxation factor for the momentum equations, ap are the main

diagonal matrix values from the momentum system and al are the other non-zero values

of the momentum matrix, which represent the contribution of the cell P neighbors to

the momentum system. The under relaxation factor αu is required when solving a

non-linear system to bring stability to the overall algorithm by improving the main

diagonal dominance. It consists in dividing the first term with ap by αu and by adding

an explicit term at the right hand side of the equation (2.93), which is the last term

of this equation.

With the predicted velocity values u∗, interpolation to the face is required to com-

pute the face velocity U∗f . Because a collocated grid system is being used, the pressure

field can have a checkboard like distribution that is caused by the incompatibility be-

tween the pressure gradients at the face centers and at the cell centers. To achieve

the required compatibility, a Rhie-Chow interpolation (Rhie and Chow (1983)) is used

when computing the face velocity U∗f . This interpolation requires the values of cell

centered pressure gradient used in the momentum equations and is defined by the

following equation:

U∗f = u∗f .Sf −
[
αuVP
ρ ap

]
f

[
(∇pn)f − (∇pn)f

]
.Sf (2.94)

where u∗f is a prediction of the face centered velocity12 which is computed with a

convective scheme and using the velocities from the adjcent cells. This convective

12The velocity field at the face centroid u∗f is only conservative, after the continuity equation being
satisfied, which occurs in the end of the SIMPLE iteration.
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scheme cannot be of the family of the Upwind schemes since it will cause divergence of

the algorithm. The over-lined values are obtained by a special interpolation from the

cells P0 and P1 values and this type of interpolations was already discussed previously

in subsection 2.3.3.

The
αuVP
ρ ap

is a factor that relates the pressure gradient with the velocity field,

which results from the momentum equation. The pressure gradient at the face (∇p)f
is obtained with the diffusive scheme from the pressure values of the adjacent cells and

the (∇pn)f quantity is obtained by interpolation of the cell centered pressure gradients

(∇p)P0 and (∇p)P1 . The computation of these terms is required in the Rhie-Chow

interpolation to bring numerical stability to the SIMPLE algorithm when a collocated

grid arrangement is used.

Afterwards, the velocity field must be changed in order to the continuity equation

be satisfied. To do this, the objective is to compute a pressure correction p′ which

projects the velocity field to a conservative one. The assembly of the pressure correction

equation, which relates the pressure field with the velocity field, results in the following

equation:
F∑
f=1

[
αuVP
ρ ap

]
f

(∇p′)f .Sf =
F∑
f=1

U∗f (2.95)

after solving the Poisson equation (2.95). The velocity values are corrected with the

new p′ values, therefore satisfying the continuity equation (2.4). The conservative face

velocities are computed by:

Un+1
f = U∗f −

[
αuVP
ρ ap

]
f

(∇p′)f .Sf (2.96)

and the cell centered velocities are corrected by:

un+1
P = u∗P −

αuVP
ρ ap

(∇p′)P (2.97)

where the compatibility between the (∇p′)f and (∇p′)P quantities is ensured by the

Rhie-Chow interpolation. And the pressure is updated by:

pn+1 = pn + αpp
′ (2.98)

where in the case of the SIMPLE algorithm an under relaxation factor αp for the

pressure update is required since the coupling is semi-implicit. Typically, the values

for the under relaxation are αu = 0.8 and αp = 0.2 but some authors use the values
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αu = 0.7 and αp = 0.3, for example Darwish et al. (2009).

From this point, the momentum residuals RM are computed by the following equa-

tion:

RM =

apu
n+1
P +

∑F
l=1 alu

n+1
l +

VP
ρ
∇p

ap max(u)
(2.99)

where it is important to use a residual adimensionalization, due to the different cell

volumes that occur during the adaptive algorithm, giving them the same residual

contribution for each cell. The continuity residual RC for each cell is defined by:

RC =
F∑
f=1

U∗f (2.100)

If all residuals 2nd norm are lower than a prescribed value the cycle ends, if not the

computation advances to the next iteration, back to equation (2.92). For the majority

of the computed cases, this tolerance is equal to 10−10.

Deferred correction

The convective and diffusive schemes used in this work, that correct the grid quality

issue, may originate a non positive definite matrices if assembled in a fully implicit

manner. Thus, the deferred correction approach Ferziger and Peric (1999) was used

to avoid divergence when solving the linear system of equations with these type of

schemes.

This consists in computing the contribution of a stable lower order scheme both

implicitly and explicitly and the contribution of the required high order scheme explic-

itly. The idea is to assemble these contributions in the following form when assembling

the linear system of equations:

Clow(φn+1) = Clow(φn)− Chigh(φn) (2.101)

where C is the contribution of the low or high order scheme, respectively. When the

method is converging, the difference of the values between the level n + 1 and n are

negligible, and the contributions Clow(φn+1) and Clow(φn) will cancel with each other.

At this stage, only the high order scheme is contributing to the FV discretization.

The application of the deferred correction algorithm in the discretized momentum
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equation (2.93) results in:

1

αu
apu

∗
P +

F∑
l=1

alu
∗
l = −VP

ρ
∇pn +

1− αu
αu

apu
n
P + [Clow(un)− Chigh(un)] (2.102)

where the matrix values ap and al are computed from the contribution of the stable

low order schemes. As stable schemes, the central differences scheme CDS (equation

(2.32)) is used for the diffusion terms, while the convective fluxes are approximated by

the first order upwind scheme UDS (equation (2.22)).

Non-orthogonal correction steps

In the SIMPLE and PISO algorithms, when solving the pressure correction equa-

tion (2.95) for a diffusive scheme different of the CDS, the application of the deferred

correction13 is required for this Poisson equation. Since the solving the pressure cor-

rection equation is the most demanding part of the SIMPLE algorithm, it is required

to solve the pressure equation in several correction steps.

For the first correction step, the explicit terms are computed with the pressure

correction p′ from the previous outer iteration. And for the next correction steps,

the values of p′ from the previous step are used in the explicit part. Normally, each

correction step needs less 25% − 50% iterations to solve the linear system than from

the previous one.

The use of non-orthogonal correction steps in the SIMPLE algorithm is a common

practice in commercial codes and in the literature of unstructured grids discretization.

SIMPLE algorithm summary

Here it is summarized the SIMPLE algorithm step-by-step:

1. Define the pressure p, the velocity field u and the face velocity Uf for the outer

iteration n.

2. Assemble the matrix system14 of the momentum equations (2.93). Since the face

velocity Uf can change in each outer iteration, the matrix values can also change.

Store the main diagonal values of the matrix ap and the cell centered gradient

pressure (∇p)P in an auxiliary vector.

13In the case of the diffusive schemes, the deferred correction can be simplified by decomposing the
high order scheme into an implicit and an explicit part. The explicit part is the one that depends in
the cell centered gradient.

14One, two or three equations if a 1D, 2D or 3D problem is being considered.
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3. Solve the momentum linear system of equations and obtain the predicted velocity

field u∗.

4. Compute the predicted face velocity U∗f by applying the Rhie-Chow interpolation

equation (2.94). Which depends of the values from the velocity field at the cell

center u∗, the pressure p, the cell centered pressure gradient (∇p)P and the

matrix main diagonal values ap.

5. Compute the continuity quantity for each cell and assemble the matrix for the

pressure correction (equation (2.95)). The matrix must be assembled in each

outer iteration.

6. Solve the pressure correction system and obtain p′. Apply the number of pre-

scribed non-orthogonal correction steps if a diffusive scheme different from the

CDS is being used.

7. Correct the face velocity Uf and the cell velocities u, for the outer iteration n+1,

by applying equations (2.96) and (2.97), respectively.

8. Update the pressure, for the outer iteration n+ 1, with equation (2.98).

9. Compute the momentum residuals RM and the continuity residual RC with equa-

tions (2.99) and (2.100), respectively. If they are higher than a prescribed value,

advance to the next outer iteration n = n + 1 and back to step 1. If not, the

computation is finished in the case of a steady problem; advance to the next time

step t = t+ ∆t and go back to step 1 in the case of a unsteady problem.

2.4.3 PISO

The pressure implicit with split operator (PISO), proposed by Issa (1986), is an

algorithm that improves the SIMPLE algorithm by increasing the coupling between

the pressure and the velocity fields, in each outer iteration. This is achieved by adding

correction steps after solving the pressure correction equation. Due to simplification,

only the second correction step will be shown in this subsection.

The face velocity correction U
′

f and the cell velocity correction u
′

can be computed

from the last term of the equations (2.96) and (2.97) of the SIMPLE algorithm.

U
′

f = −
[
αuVP
ρ ap

]
f

(∇p′)f .Sf (2.103)

u
′

P = −αuVP
ρ ap

(∇p′)P (2.104)
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The problem with the velocity correction field is that it does not satisfy the momen-

tum equations. This can be forced by computing a second prediction of the velocity

field u∗∗:

u∗∗P =
1

ap

[
−

F∑
l=1

alu
′

l + Clow(u
′
)− Chigh(u

′
)

]
(2.105)

where the values of the matrix come from the momentum matrix used in the first

velocity prediction. Afterwards, a face interpolation is required:

U∗∗f = (u∗∗)f .Sf (2.106)

and the second pressure correction p′′ equation is assembled:

F∑
f=1

[
αuVP
ρ ap

]
f

(∇p′′)f .Sf =
F∑
f=1

U∗∗f (2.107)

where the matrix of this pressure correction is the same as the one from the previous

correction step, so it is not necessary to recompute the matrix values. The right hand

side of the system is the continuity of the second predicted velocity field.

Finally, with the second pressure correction p′′. The velocity fields at the faces and

the cells centers can be updated by:

Un+1
f = U∗f + U∗∗f −

[
αuVP
ρ ap

]
f

(∇p′)f .Sf −
[
αuVP
ρ ap

]
f

(∇p′′)f .Sf (2.108)

un+1
P = u∗P + u∗∗P −

αuVP
ρ ap

(∇p′)P −
αuVP
ρ ap

(∇p′′)P (2.109)

and the pressure can be computed by:

pn+1 = pn + p′ + p′′ (2.110)

where, in the case of the PISO algorithm, it is not necessary to use a pressure under

relaxation factor αp due to the strong pressure-velocity coupling, even if only two

corrections steps are being used. For the case of the velocity under relaxation factor

αu is only required for steady cases to create a matrix with a main diagonal dominant.

For unsteady cases, the additional temporal term is sufficient to create this effect.
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PISO algorithm summary

In the case of the PISO algorithm, the first six steps are the same of the SIMPLE

algorithm (subsection 2.4.2). Due to simplification reasons, these steps will be not

listed here and the summary will start from step 7.

7. With the pressure correction p′ compute the corresponding cell and face velocities

corrections (U
′

f and u
′
) by using the equations (2.103) and (2.104), respectively.

8. Compute explicitly a second prediction for the velocity field u∗∗ with equation

(2.105). Interpolate this quantity to the face centroid to obtain U∗∗f .

9. Compute the cell continuity with U∗∗f and solve the second pressure correction

equation (2.107) to obtain p′′. The matrix is the same as the one used in the

first pressure correction stage. Once again, apply the number of prescribed non-

orthogonal correction steps if a diffusive scheme different from the CDS is being

used.

10. Correct the face and cell velocities fields for the outer iteration n+ 1 by applying

equations (2.108) and (2.109), respectively.

11. Update the pressure, for the outer iteration n+ 1, with equation (2.110).

12. Compute the momentum residuals RM and the continuity residual RC with equa-

tions (2.99) and (2.100), respectively. If they are higher than a prescribed value,

advance to the next outer iteration n = n + 1 and back to step 1. If not, the

computation is finished in the case of a steady problem; advance to the next time

step t = t+ ∆t and go back to step 1 in the case of a unsteady problem.

2.5 Boundary Conditions

When solving a computational problem in a closed domain, it is necessary to pre-

scribe boundary conditions in all the boundary faces, which are the faces that belong

to only one cell. The boundary conditions can have two meanings: one mathematical

and another physical. This section is divided in four subsection:

• First, an explanation of the different mathematical boundary conditions (BCs)

is done.

• Afterwards, the mathematical BCs treatment for both convective and diffusive

terms are shown, where each term is explained in its own subsection.
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• Finally, the meaning of physical boundary condition is presented and each of the

implemented physical BC are explained in detail.

2.5.1 Mathematical Boundary Condition

The mathematical BC must always be imposed and it is defined by a mathematical

formula. The most basic one is the Dirichlet BC, which corresponds to impose a fixed

value φb of the computational variable at the boundary face15. Another one is the

Neumann BC, that corresponds to impose the gradient along the boundary normal of

the computational variable

(
∂φ

∂n

)
b

= gb. A third type of mathematical BC can also

be imposed, that is called the Robin BC. It consists in imposing a linear combination

between the computational variable value and its gradient, which is translated by the

following equation:

φb + c

(
∂φ

∂n

)
b

= d (2.111)

where c and d are known constants. The Robin BC was not implemented in the SOL

since it is not presented in any of the physical boundary condition for incompressible

fluid flow. It was mentioned because it takes part of the mathematical BC for second

order differential equations.

2.5.2 Convective Term - Boundary Treatment

As it was explained in the subsection 2.3.2, the convective term consists in comput-

ing a face value φf . In the case of the Dirichlet boundary condition, this corresponds

to match the face value φf to the boundary value φb:

φf = φb (2.112)

In the case of the Neumann BC, it is necessary to linearly interpolate the face value

by using the following equation:

φf = φP +

(
∂φ

∂n

)
b

(fb −P).
Sf
||Sf ||

(2.113)

where fb is the centroid coordinates of the boundary face fb and the index P corresponds

to the cell that contains the respective boundary face. In the case of a implicit method,

15A function can be a Dirichlet boundary condition. This results that each face centroid has a fixed
value that comes from the function value at the face centroid coordinates.
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the contribution of φP term must be added to the matrix and the last term contribution

must be added to the right hand side of the system of equations.

The face velocity Uf must be computed from the dot product between the boundary

velocity vector and the face area vector Sf .

To compute the cell centered gradient with the Gauss method, the treatment of

the boundary condition is the same as for the convective term. In the case of WLS

method, the face centroid value φb is included in the regression and the distance vector

d is computed as the difference between the face center f and the cell centroid P.

2.5.3 Diffusive Term - Boundary Treatment

For the diffusive term, the boundary treatment requires the knowledge of the fol-

lowing equality:

(∇φ)f .Sf =

(
∂φ

∂n

)
||Sf || (2.114)

where for the case of a Neumann BC it is only required to replace the

(
∂φ

∂n

)
b

by the

imposed value gb. For the case of Dirichlet BC it is required to use a finite difference

formula for the normal gradient: (
∂φ

∂n

)
b

=
φb − φP
dn

(2.115)

where dn is the distance value between the cell centroid P and the face centroid P

projected to the space defined by the face normal. This quantity can be computed by

the following formula:

dn = (f −P).
Sf
||Sf ||

(2.116)

2.5.4 Physical Boundary Conditions

The physical boundary conditions are related with physical aspects of the fluid

flow. For each physical BC, a set of mathematical BC are prescribed for the velocity

field and the pressure, in order to a certain physical meaning be satisfied by the flow

solution. In the case of the SIMPLE and PISO algorithms, the same pressure BC

is applied for both the pressure and the pressure correction, except for the pressure

outlet BC. In this subsection, the physical boundary conditions implemented in the

SOL code are explained.
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Wall

The velocity field near the wall corresponds to the wall’s velocity due to the no-slip

condition, as a consequence a Dirichlet BC is imposed for the velocity field. The wall

does not have velocity in its normal direction16 so this BC does not contribute to the

face velocity Uf . In the case of the pressure, a Neumann BC is imposed with a null

gradient.

Inlet

Essentially, the inlet BC consists in imposing a fixed velocity value (Dirichlet BC).

In the case of the pressure, a Neumann BC is imposed with a null gradient at domain’s

boundaries.

Outlet - Outflow

In the case of a outlet or outflow, a Neumann BC with a null gradient is imposed

in the velocity field. At each time step or outer iteration, after solving the momentum

equations it is required to extrapolated the velocity at the outlet boundary ub. This

can be done by considering the velocity at cell that contains the boundary face:

ub = uP (2.117)

which is a first order approximation. It is also possible to extrapolate linearly by

considering the cell centered gradient of each velocity component. The face velocity

Uf at the outlet boundary face is simply updated by:

Uf = ub.Sf (2.118)

Afterwards, it is necessary to compute the total mass flux at the inlet and out-

let boundary faces, since mass conservation in the computational domain cannot be

guarantee by any extrapolation:

Qin =
∑

f∈∂Ωinlet

Uf (2.119)

Qout =
∑

f∈∂Ωoutlet

Uf (2.120)

16Except for moving grid problems, which are not covered in this Thesis.
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where, due to the face normal convection, Qin is negative and Qout is positive. These

values should cancel each other when the numerical solution converges, this can be

forced by either computing a mass flux correction Qcorr or a ratio between the inlet

and outlet fluxes Rflux:

Qcorr = −(Qin +Qout) (2.121)

Rflux =
−Qin

Qout

(2.122)

and the face velocity at the outlet boundary is updated to ensure mass conservation

at the domain. This can be done by considering the mass flux correction Qcorr:

U∗f = Uf +Qcorr
||Sf ||
Soutlet

(2.123)

where Soutlet is the total area of the outlet boundary and it is computed by:

Soutlet =
∑

f∈∂Ωoutlet

||Sf || (2.124)

Alternately, the face velocity can be updated with the ratio between the inlet and

outlet fluxes Rflux, by scaling the outlet face velocity:

U∗f = UfRflux (2.125)

both methods work and have similar convergence rates. Since the face velocity at the

outlet faces is corrected with the explained procedure, a Neumann BC with null flux

for the pressure is imposed at the outlet.

Pressure Outlet

An alternative way to create an open BC is done by prescribing a pressure outlet.

This means that the pressure will now have a prescribed value as a Dirichlet BC, which

is different from the other physical boundaries. A Neumann BC with null gradient is

prescribed for the velocity field.

For the case of the SIMPLE and PISO algorithms, the prescribed pressure correc-

tion value is zero since the pressure has a fixed value. In the other physical BC, it

is not required to compute a velocity correction since the pressure correction gradient

is null. In the case of the pressure outlet BC it is required to compute a pressure

gradient17 with the equation (2.115), in order to correct the face velocity Uf at these

17In the case of SIMPLE and PISO algorithms, it is a pressure correction gradient.
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boundary faces. No additional treatment is required and the mass conservation in the

domain is guaranteed by the pressure equation.

A difference between the pressure outlet and the outlet BC is that at the pressure

outlet the pressure is forced to have a constant distribution along the boundary. In

the case of the outlet or outflow BC the pressure can have a free distribution along the

boundary.

Symmetry

The symmetry BC can be done by imposing Neumann BC with a null gradient to

all the quantities. In the case of vectorial quantities it is necessary to imposed a null

value to its normal component, since a vector can only have tangential components at

the symmetry plane. This treatment is required because the velocity field is a vectorial

quantity.

In the SOL code, only boundary planes align with one of the reference axis can be

selected for symmetry BC. The process is to check which component of the reference

axis is normal to the boundary and impose a Dirichlet BC with a null value for that

velocity component. The other ones have a Neumann BC with a null gradient value.

2.6 Solution of the Linear Equations System

When solving the momentum equations and the pressure equation, a linear system

of the type Ax = b is assembled, where the matrix A is sparse and only the non-zero

values are stored due to the big size of matrix system. Due to its size, iterative methods

must be used. In this Thesis, these systems are solved with the biconjugated gradient

stabilized method (BIGSTAB) and the Incomplete LU decomposition ILU(0) is used

as preconditioner. The SOL code uses the AZTEC library which has these methods

already programmed for both single and multi core computations.

There is an option in the code to incorporate all the terms of the TC diffusive

scheme in the matrix when building the pressure equation system. As a consequence,

it is not required to use the non-ortogonal correction steps for in this case. When the

unstructured grid has some degree of deviations, the system can only be solved with

the generalized minimal residual method (GMRES), also the number of iterations and

computational time is increased with this method. The method proved to be useful in

the computation of laminar flows on adaptive grids and the obtained results are pre-

sented in the section 5.1 with the fractional-step algorithm. Although, it is not robust

enough to be used in all cases of unstructured grids. For example with the SIMPLE
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algorithm on a tetrahedral grid, the solver GMRES does not converge the pressure

equation of some outer iterations, increasing significantly the computation time. For

this reason, the non-orthogonal correction steps were implemented (a common practice

in other CFD codes).

For the computation of the WLS regressions, dense matrices must be used. For

the cases that require the inversion of a square matrix with size between 2 × 2 and

4 × 4, the Cramer’s rule is used due to its simplicity and being a direct algorithm.

The number of components of this square matrix is equal to the number of coefficients

to be determined of the polynomial used in the regression. For other dimensions,

the singular value decomposition (SVD) method was chosen because of two reasons:

firstly, the Cramer’s rule can have inaccuracy issues due to the truncation error when

computing each component of the inverse matrix; secondly, these square matrices can

have conditioning problems due to the higher order polynomials and the weighted

function can create a matrix. Pina (2001) presents different iterative methods to solve

WLS problems and concludes that the SVD method is the most robust for a range of

different problems.

2.7 TVD on Unstructured Grids

The following section is divided into two parts: firstly, an exposition of the total

variation diminishing (TVD) concept and application on structured grids is presented;

and secondly, its extension to the unstructured grids framework is explained, including

a new method based on the ghost points schemes, that is proposed by the author.

2.7.1 TVD principle on structured grids

The goal of a TVD scheme is to create a second order accurate convective scheme

that is free or slightly free of the boundness issue, so a desirable property is monotonic-

ity preserving. In order to achieve this, a numerical discretization must not create new

local extremes and the existent ones cannot be accentuated. This latter means that

a local maximum cannot increase during each outer iteration or time step and a local

minimum cannot decrease.

These properties have an implication in the total variation TV (φ) of the numerical

solution, which can be measured by the following equation:

TV (φ) =
∑
f

|φP0 − φP1| (2.126)
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where in the summation all the interior faces of the computational grid are being

considered and the cells P0 and P1 are the two cells that contain the common face f .

The monotonicity principle is respected if the global quantity total variation decreases

in each outer iteration or time steps TV (φn+1) ≤ TV (φn), therefore the classification

of total variation diminishing or TVD.

The assembly of a TVD scheme is similar to the UDS, it requires the identification

of three points in the computational grid where the variable φ are located. Two of

these points are from the cells P0 and P1 that contain the face f . One of this points is

identified as downwind point D which is located in the side where the flow direction

is pointing and the other point is identified as point C. Finally, the third point is

identified with a U and is the other neighbor of the cell C that is located at the

opposite side of the cell D. Figure 2.10 shows two graphical examples of the points

identification in a TVD scheme is done.

Figure 2.10: Examples of the point identification for the TVD schemes.

A TVD scheme is a combination between a diffusive UDS and an anti-diffusive one,

which results in the following form:

φf = φC︸︷︷︸
UDS

+
1

2
ψ(r)(φD − φC)︸ ︷︷ ︸

anti-diffusive

(2.127)

where ψ(r) is a selected flux limiter and r is a factor that measures the ratio between

successive gradients and it is defined by:

r =
φC − φU
φD − φC

(2.128)

By observing the equation (2.127), it can be concluded that:

• If ψ = 0, it reverts to the UD convective scheme.

• If ψ = 1, it reverts to the LIN convective scheme.
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• If ψ = r, it reverts to the second order UD convective scheme (UDS2).

In his work, Sweby (1984) proves that in order to a second order scheme be TVD,

it must be bounded by the UDS2 and the LIN schemes for certain values of r. To

help the definition of these limits, a Sweby diagram can be used, which is presented

in figure 2.11, where the gray regions represents the valid ψ values in function of r in

order to a second-order convective scheme have TVD properties. From the observation

of this diagram, is possible to conclude that for each values of r, a scheme is TVD.

For example, the UDS2 is TVD if |r| < 2 and the LIN scheme is TVD if |r| > 0.5.

The UDS is always TVD for any value of r but this fact cannot be observable from

the Sweby diagram since it is a first order scheme.

Figure 2.11: Sweby diagram example with the respective TVD regions - from Versteeg
and Malalasekera (2007).

The principle of the flux limiter is to construct a function for ψ(r) that appears in

the anti-diffusive part of the equation (2.127) and it is bounded by the grey region of

the Sweby diagram.

In table 2.1, a list of the programmed and tested flux limiters is shown with the

respective references. To compare the different properties of the flux limiters they are

plotted in the same Sweby or r − ψ diagram presented in figure 2.12.

It can be observed that all the limiter functions are inside the grey region, passing

through point (1, 1) of the Sweby diagram, so they all can be classified as second-order

TVD schemes. The SUPERBEE and MINMOD functions trace the upper and lower

boundaries of the TVD regions, respectively. The OSHER is a piecewise combination

between the MINMOD and the SUPERBEE functions. The MUSCL and Van Albada

are continuous functions and more old flux limiters. The UMIST was design to be a

symmetrical version of the QUICK limiter, which is not studied in the context of this
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Name Flux Limiter function ψ(r) Reference
SUPERBEE max[0,min(2r, 1),min(r, 2)] Roe (1985)
MINMOD max(min(1, r), 0) Harten (1983)
Osher max[0,min(2, r)] Osher (1983)

MUSCL
r + |r|
1 + |r|

Leer (1979)

Van Albada
r + r2

1 + r2
Albada et al. (1982)

UMIST max[0,min(2r, (1 + 3r)/4, (3 + r)/4, 2)] Lien (1993)

Table 2.1: Flux limiter functions list.

Figure 2.12: Flux limiter functions at the Sweby diagram - from Versteeg and
Malalasekera (2007).
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Thesis. A flux limiter is a symmetric one if the following condition is verified:

ψ(r)

r
= ψ(1/r) (2.129)

The symmetric property is important to ensure that both forward and backward

gradients are treated in the same way, without the need of special programming.

2.7.2 TVD Extension to Unstructured Grids

The extension of the TVD and flux limiters concept on unstructured grids is not

evident because it is possible that the regressive point U is not coincident with or even

close to a centroid of another neighbor cell. Also, the line formed by the points C and

D can be too far from any computational point. Figure 2.13 shows an example of this

problem on unstructured grids.

Figure 2.13: TVD point identification on unstructured grids problem example.

Implemented Methods

In the SOL code, the algorithms of Darwish and Moukalled (2003) and Li et al.

(2008) were implemented in order to compare them with the proposed one in this

Thesis. These methods were chosen because they showed the most accurate results

from the literature survey and, for text simplification, they will be called Darwish and

Li method, respectively.

The Darwish method consists at writing the r factor equation (2.128) in a form
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that does not require the computational value of the point U :

r =
φC − φU
φD − φC

=
(φD − φU)− (φD − φC)

φD − φC
=

2(D−C).(∇φ)C
φD − φC

− 1︸ ︷︷ ︸
Darwish r factor

(2.130)

where D and C are the centroid of the cells D and C, respectively. In the previous

equation (2.130), it was assumed that:

(φD − φU) = (D−U).(∇φ)C = 2(D−C).(∇φ)C (2.131)

One advantage of the Darwish method is that the cell centered gradient is an already

available quantity on unstructured grid based code. So, its implementation is quite

straightforward for the application of the different TVD flux limiters.

Li et al. (2008) discusses in their work the limitations of the Darwish method,

showing that, if the field has a parabolic distribution, it will result in an accurate

computation of the r factor. However, if the distribution is exponential, there will

exist an inaccuracy issue, even on a Cartesian grid, due to the extrapolation effect of

the cell centered gradient.

Another issue comes from the fact that the quantity (∇φ)C can filter information

for a specific direction. For example, in a 2D polyhedral grid each cell can have six

neighbors and the gradient vector has only two values. This means that the use of the

cell centered gradient should be restricted for small corrections.

Li method consists in computing an approximation of the φU value at the point U ,

when computing the r factor. To achieve this, a search algorithm of the closest cell to

the point U is required. In this search, the neighbors by vertex N 1
v (C) of the cell C are

included (the cells that contain at least one vertex of the cell C). Figure 2.14 shows

examples of the Li method, where the closest cell in the search is marked with an Ur.

In the Li method, the r factor equation (2.128) is modified to the following expression:

r =
φC − φUr − (U−Ur).(∇φ)Ur

φD − φC
(2.132)

Li et al. (2008) verified that in his method there was a reduction of the wiggles

effect in the numerical solution when comparing with the Darwish method, although

both methods converged for a similar number of iterations.

After analyzing these two methods, some issues already discussed in the Thesis can

be raised, which will cause an inaccuracy problem when computing the r factor:
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Figure 2.14: Examples of the Li method - from Li et al. (2008).

• These methods do not depend of the face centroid f , so a numerical error is

committed by not considering the skewness or eccentricity factor σ(f) from the

grid, which was explained previously in subsection 2.3.2. This is important since

the convective schemes that consider the skewness factor recover the expected

second-order accuracy when the grid quality of the unstructured grid is not the

ideal one.

• It is showed in previous subsections that both convective and diffusive schemes

can be improved by considering additional correction terms, which depend on

the cell centered gradient ∇φ. Since this quantity results in an averaging process

from the surrounding values, its use should be as small as possible.

Proposed Projection Method

With the ghost points schemes (equation (2.3.4)) it is possible to project the com-

putational points to a line parallel to the face normal that passes through the face

centroid f . Bear in mind, that the minimum distance between the computational

point and the projection line is the same distance between the computational point

and the ghost point. The proposed method to compute the r factor of the TVD scheme

is based in this concept and will be named projection method, which is represented in

the figure 2.15.

The ghost point C ′ is computed by projecting the vector (f −C) into the 1D space

defined by the face normal:

C′ = f − [(f −C).Sf ]Sf
Sf .Sf

(2.133)

and the distance vector between the cell centroid C and the ghost point C′ is given

by:

dCC′ = C′ −C = f −C− [(f −C).Sf ]Sf
Sf .Sf

(2.134)
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Figure 2.15: Projection method for TVD schemes.

Afterwards, the equations (2.133) and (2.134) are also applied to the points D and

U . To determine cell U , a search algorithm is required to find the cell with the lowest

distance dUU ′ and that makes the point C ′ being located between the points U ′ and D′.

In the search algorithm, all cells that have vertices of the cell C are included N 1
v (C).

Additionally, if the cell C has boundary faces, their centroids are also included in the

search. After computing the location of the three projection points, the respective

ghost point values are computed by using linear interpolation:

φC′ = φC + dCC′ .(∇φ)C (2.135)

The r factor from equation (2.128) must be modified to account for the values of

the ghost points. Also a correction is added in order to consider the different distances

between the ghost points, resulting in the following equation:

r =
(φC′ − φU ′)||D′ −C′||
(φD′ − φC′)||C′ −U′||

(2.136)

and finally, the equation (2.127) that is used to compute the face centroid value φf ,

must be modified to use the ghost points, resulting in the following equation:

φf = φC′ +
1

2
ψ(r)(φD′ − φC′) (2.137)

this concludes the exposition of the projection method for application TVD schemes

on unstructured grids.
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Chapter 3

Results on Unstructured Grids

This chapter comprises the results obtained on unstructured grids, without consid-

ering any kind of adaptive grid refinement. It is divided in two sections:

• In the first one, the FVM verification is done by solving two different cases.

One with an analytical solution to study the numerical error decay with the grid

refinement and a second one with benchmark data to compare this data with the

numerical results obtained by the code.

• The second section has a comparison of three methods to apply TVD schemes

on unstructured grids. Two of them come from the literature and the other one

is proposed by the author to correct the r factor computation by considering the

skewness of the grid.

3.1 Finite Volume Verification

3.1.1 Analytic Cavity - Second Order Verification

To study the numerical error decay during the grid refinement, the analytic 2D

cavity problem was selected. This benchmark appeared, previously, in Shih et al.

(1989), Kobayashi et al. (1999) and Pereira and Pereira (2001), where details of this

analytical solution can be found. In this example ν = 1.0 was used, which corresponds

to a Reynolds number of Re = UL/ν = 1.0. These values are selected to give the

convective and diffusive terms the same weight in the Navier-Stokes equations.

The 2D momentum equations of the flow are considered with an additional source

term given by:

65
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B(x, y) =
8

Re

[
24

∫
ζ1(x)dx+ 2ζ ′1(x)ζ ′′2 (y) + ζ ′′′1 (x)ζ2(y)

]
−64 [Φ2(x)Ψ(y)− ζ2(y)ζ ′2(y)Φ1(x)]

(3.1)

where ′ is the differential operator and the functions ζ1(x), ζ2(y), Φ1(x), Φ2(x) and

Ψ(y) are defined by:

ζ1(x) = x4 − 2x3 + x2 (3.2)

ζ2(y) = y4 − y2 (3.3)

Φ1(x) = ζ1(x)ζ ′′1 (x)− ζ ′1(x)ζ ′1(x) (3.4)

Φ2(x) =

∫
ζ1(x)ζ ′1(x)dx (3.5)

Ψ(y) = ζ2(y)ζ ′′′2 (y)− ζ ′2(y)ζ ′′2 (y) (3.6)

The problem is solved in a square domain [0; 1]2 and a Dirichlet boundary condition is

imposed in all boundaries with zero velocity, except for the upper boundary (y = 1.0)

where the function (3.7) is imposed:

u(x, 1) = 16ζ1(x) (3.7)

Finally, the analytical velocity field, which is independent of the Reynolds number,

is given by:

u(x, y) = 8ζ1(x)ζ ′2(y) (3.8)

v(x, y) = −8ζ ′1(x)ζ2(y) (3.9)

and the pressure field is given by:

p(x, y) =
8

Re

[
24

∫
ζ1(x)dxζ ′′′2 (y) + 2ζ ′1(x)ζ ′2(y)

]
+64Φ2(x) [ζ2(y)ζ ′′2 (y)− ζ2(y)ζ2(y)]

(3.10)

The numerical solution is computed for a sequence of four Cartesian grids, the first

grid has 20× 20 = 400 cells and the other ones are obtained by successive refinement.

Since it is solved in a Cartesian grid the CDS, the LIN and the Gauss method are used

respectively as the diffusive, convective and gradient schemes of the FV discretization.

The local error EP of the cell P can be obtained by computing the absolute devia-

tion between the cell value and the analytical solution at the cell centroid. To evaluate
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globally the error field of the grid, the mean and maximum error can be computed1.

The mean error is computed as the volume average of the error and the maximum

error is the highest error value in the all grid. The volume average is important due

to the different cell volumes that occur in both unstructured and adaptive grids.

Figure 3.1 shows both the mean and maximum velocity error evolution with the

hydraulic diameter h, the velocity components are considered separately. It is common

in the literature to show these curves using a logarithmic scale. Both u and v error

have similar tendencies, the only differences is a slightly lower slope in the curve of u

maximum error.

(a) Mean error. (b) Maximum error.

Figure 3.1: Mean and maximum error evolution with the hydraulic diameter.

To compute the slope p of the error curve a formula can be deduced by assuming

that the error varies with the hydraulic diameter E ∼ hp:

p =
ln(Ei+1/Ei)

ln(hi+1/hi)
(3.11)

The slope error decay for each of the global quantities are listed in table (3.1). Since

the values are close to 2 for the mean errors, this means that the FV discretization has

second order accuracy.

The second order verification for unstructured grids is done in the adaptive results

chapter 5 to different cases with an analytic solution. Please note that the discretization

on an adaptive grid is the same as on an unstructured grid.

1Some authors in the literature use the terminologies Norm1 and Norm∞.
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Quantity Order value p

Mean error u 1.97
Maximum error u 1.625

Mean error v 2.037
Maximum error v 1.945

Table 3.1: Order values p for the analytical cavity case.

3.1.2 Cavity Flow - 2D Cartesian Grid Verification

In this case, the flow under consideration is the driven square cavity flow. The

boundary conditions consist of the no-slip condition in all boundaries, but the top

boundary moves at a given constant velocity U . The Reynolds number is given by

Re = UL/ν where L is the cavity length. For this case U = 1, L = 1 and ν = 0.001,

which results in a Reynolds number of 1000.

The first results were obtained with a Cartesian grid of 160× 160 = 25600 hexahe-

drons using the same FV schemes from the previous case. Figure 3.2 shows that the

results agree very well with the benchmark data of the finite-difference predictions of

Ghia et al. (1982) or the spectral solutions by Botella and Peyret (1998). This means

that the code implementation is verified for the particular case of Cartesian grid, from

the FV discretization until the assembly of the Navier-Stokes equations and respective

coupling.

Figure 3.2: Cartesian grid: comparison of the velocity profiles with benchmark results
from Ghia et al. (1982); Botella and Peyret (1998).
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3.1.3 Cavity Flow - 2D Unstructured Grids Verification

In this subsection, the cavity flow case is solved using 3 different types of 2D

unstructured grids: a triangular one, a hybrid one and a polyhedral one.

The triangular grid is a mesh2 composed by triangles cells or 3D prisms3, the hybrid

grid is a mesh composed by both quadrilaterals and triangles, this grid is obtained by

agglomeration of a random set two of neighbor triangles, so a initial triangle grid is

required to generate this type of mesh. Finally, the polyhedral grid is obtained by

using the Voronoi diagram in a triangle grid.

The three grids at study have approximately the same reference length h = 1/160 =

0.00625 from the Cartesian grid case and each grid has respectively 58030, 47525 and

29336 cells. Figure 3.3 shows a comparison between the velocity profiles of the three

unstructured grids with benchmark data. Once again a very good agreement between

the results can be observed and the differences between the unstructured grids are

almost non-existent. This means that the code is verified for this kind of unstructured

grids for the computation of laminar flows with this type of boundary conditions.

Figure 3.3: Unstructured grids: comparison of the velocity profiles with benchmark
results from Ghia et al. (1982); Botella and Peyret (1998).

Figure 3.4 shows the v-velocity and continuity residual for the Cartesian and un-

structured grids, where a comparison of these curves can be done. The bottleneck in

the convergence process is the v-velocity. which is the last residual to reach the defined

2Grid and mesh are synonyms in the context of this thesis.
3Some CFD codes use always a 3D geometry data of the grid even for 1D and 2D cases and this

is the case of the SOL code.
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tolerance of 10−10 for the four cases.

(a) V-velocity residual. (b) Continuity residual.

Figure 3.4: V-velocity and continuity residual evolution of the four grids at study.

From the comparison of the residuals it can be observed that the residual between

the Cartesian and polyhedral grids are very similar in both cases. The hybrid grid

converges with almost the double number of iterations and the triangle grids is the

case that takes more iterations to converge.

From the study performed by Darwish et al. (2009) it is concluded that the incre-

ment of the grid number of cells increases the number of iterations required to converge

the solution. This conclusion is consistent with the v-velocity curve, see figure 3.4(a).

In the case of the continuity residual, it suffers more the influence from the grid ge-

ometric topology, since the curves of the hybrid and triangle grids are more close to

each other.

Finally, the two corner vortices located at the cavity bottom are showed for a

streamline plot in the figure 3.5. This proves that the code has the ability to obtain

the same geometric form of these structures on grids with different topologies.
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(a) Triangle grid: Left vortex. (b) Triangle grid: Right vortex.

(c) Hybrid grid: Left vortex. (d) Hybrid grid: Right vortex.

(e) Polyhedral grid: Left vortex. (f) Polyhedral grid: Right vortex.

Figure 3.5: Vortices structures at the cavity bottom for different unstructured grids.
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3.2 TVD schemes on Unstructured Grids

3.2.1 Introduction

In this section, the results obtained with the implemented TVD convective schemes

are showed and discussed. The numerical simulations will be done on different types

of unstructured grids for cases with a known analytical solution, in order to make a

comparison study. Thus, a discussion between the advantages and disadvantages of

the two methods from the literature (Darwish and Moukalled (2003); Li et al. (2008))

and the proposed projection method can be performed.

To compute these numerical solutions, the generalized transport equation without

diffusive and source terms is considered:

∇.(Uφ) = 0 (3.12)

where the convective velocity U is fixed. The equation is solved implicitly with the

deferred correction method, for several iterations until the second norm of the iterative

residual is lower than 10−6 or the maximum number of 10000 iterations is reached.

The iterative residual is computed as the absolute difference of the solution between

iteration n+ 1 and n. The cell centered gradient used for these results was the WLS.

3.2.2 Cartesian Grid

For the first case of this study, the problem of the diagonal convection is considered

with a function that has a singularity in the gradient to cause numerical instabilities

in the convective schemes. This problem is solved using a 20×20 cartesian grid with a

reference squared domain L = 1. Dirichlet BC are imposed with the indicated values of

the figure 3.6(a), and the remaining boundaries have a Neumann BC prescribed with

a null gradient. A convective velocity is imposed with the value 1 in both components

of the reference axis.

Figure 3.6(b) shows the results obtained for 4 convective schemes (UDS, UDS2,

LIN and FLS), which do not use any flux limiter, in line section located for y = 0.5.

From the four schemes, the UDS is the only that presents bounded results between the

imposed values at the boundaries, although it suffers from false diffusion as it can be

seen in the UDS curve. The second order Upwind scheme has only one overshoot and

undershoot in the results. Considering the LIN and FLS schemes, they are severely

affected by the instabilities: which is observable due to the several oscillations that
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(a) Analytical case geometric description. (b) Results with convective schemes y = 0.5.

Figure 3.6: Cartesian grid: analytical case geometric description and results with
convective schemes.

occur before and after the transition zone x = 0.54.

These results show that the second order schemes developed for unstructured grids

are not suitable to solve problems with discontinuous fields, even for cases with carte-

sian grids which do not have skewness or warp angles quality problems.

For the same case, the TVD schemes for the Darwish and Li methods are studied.

Due to simplifications reasons not all results from the simulated cases will be showed.

Since a cartesian grid has null skewness factor σ(f), the Li and the project methods

produce the same results. Therefore, the curves obtained with projection method will

not be showed for this case.

Figure 3.7(a) shows the obtained results for the Darwish and Li methods using the

MINMOD and Van Albada flux limiters for the same line section y = 0.5 and figure

3.7(b) shows a zoom near the point x = 0.35.

For the same flux limiters, both methods show similar results and this fact is

observable even in the zoom (figure 3.7(b)). Thus, the differences between the Darwish

and Li method could be observed for this case: the TVD results show are more accurate

than the UDS ones and are bounded between the imposed boundary values, showing

that the implemented TVD approach is being applied.

4Although these schemes also have the most accentuated gradient in this zone.
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(a) Results for the line section y = 0.5. (b) Results zoom near x = 0.35.

Figure 3.7: Cartesian grid: results for two TVD methods with the flux limiters MIN-
MOD and Van Albada.

3.2.3 Triangular Grid

In this subsection, the results obtained for a triangular grid, with a hydraulic

diameter h = 0.05 and 892 cells (see figure 3.8(a)), are presented. For this case,

the analytic solution consists on the diagonal convection of a step function (see figure

3.8(b)), which is created by imposing the following Dirichlet BC at the left boundary

x = 0:

φ =

{
0 ⇐ y ≥ 0.3

1 ⇐ y < 0.3
(3.13)

and for the other boundaries the imposed conditions are the same as in the previous

case.

Figure 3.9 shows the results obtained for the three TVD methods at study, for two

flux limiters the MINMOD and the Van Albada. The results are extracted from a line

probe located at y = 0.8.

From the analysis of figure 3.9, it can be observed that the Darwish and Li meth-

ods have results closer to the analytical solution than the projection method since

it presents more numerical dissipation. Although the Darwish method has superior

results than the Li method, it was found that it did not have good convergence prop-

erties, since this method never converged to the iterative residual tolerance of 10−6 for

all flux limiters.

Afterwards, a convergence study is carried out for these results with the Li and

projection methods. Figure 3.10(a) shows the iterative residual evolution for the two
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(a) Triangular mesh. (b) Analytical case geometric description.

Figure 3.8: Triangular grid: triangular mesh and analytical case geometric description.

(a) Results for the line section y = 0.8. (b) Results zoom near x = 0.65.

Figure 3.9: Triangle grid: results for three TVD methods with the flux limiters MIN-
MOD and Van Albada.
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method with three different flux limiters, where it is observable that the project method

converges for a lower number of iterations (approximately half) than the Li method.

That happens because the computation of the r factor is taken into account in the

projection method, so its computation is more accurate and the flux limiters effect is

more evident in the computation. It was also noted that the UMIST flux limiter takes

more iterations to converge than the other ones. To understand better this behavior a

quantity based in the total variation (TV) definitional (equation (2.126)) is introduced,

which is the TV ratio (TVratio) and is defined by the following equation:

TVratio =
TV (φn+1)

TV (φn)
(3.14)

and if the TVD condition is satisfied the TV ratio is lower or equal to 1.

(a) Convergence evolution for the TVD methods. (b) TV ratio evolution for the TVD methods.

Figure 3.10: Triangle grid: convergence and TV ratio evolution for the TVD methods.

Figure 3.10(b) shows the TV ratio evolution for the three TVD methods with the

MINMOD flux limiter. The Darwish method has a constant oscillation between the

unitary value TVratio = 1.0 value in each iteration and with a fixed amplitude. Due to

this, the numerical results do not converge to the designated residual tolerance. In the

case of the Li method, the oscillations between the unitary value in each iteration are

also presented but their amplitude decays, resulting in the convergence of the solution.

The TVD principle is not globally respected, despite this method having a residual

decay free of oscillations (figure 3.10(a)).

In the case of the projection method, when the TV ratio is lower than 1, it stays

this way until the solution converges. For this particular case, the iterative residual



3.2. TVD schemes on Unstructured Grids 77

tolerance was decreased to show the full TV ratio curve tendency, as it can be seen in

the figure 3.10(b). These results show that the projection method is the only one that

respects the total variation reduction, which is expected for these types of schemes.

The TV ratio can be computed locally for each cell, by just taking into account the cell

faces contribution. This quantity could be used in the future to improve the desirable

effect of flux limiters if the TVD principle is not being fulfilled.

The better convergence properties of the projection method result in a significant

reduction of the overshoot and undershoots values. These values are listed in the

table 3.2 for all the simulated cases and are computed considering all the points of the

computational domain.

Flux Limiter TVD Method
Triangle Grid

Overshoot Undershoot

SUPERBEE
Darwish 7.470714E − 02 2.630533E − 02

Li 1.041570E − 01 9.088535E − 02
Projection 3.043870E − 02 1.598411E − 04

MINMOD
Darwish 4.506625E − 02 2.484922E − 03

Li 0.000000E + 00 6.113121E − 03
Projection 0.000000E + 00 0.000000E + 00

OSHER
Darwish 4.368892E − 02 4.368892E − 02

Li 0.000000E + 00 8.410396E − 03
Projection 0.000000E + 00 1.030365E − 02

MUSCL
Darwish 6.636838E − 02 8.069478E − 03

Li 2.595976E − 03 5.669911E − 02
Projection 7.163560E − 05 1.763501E − 06

Van Albada
Darwish 5.179832E − 02 4.083330E − 03

Li 3.960993E − 04 1.495524E − 02
Projection 0.000000E + 00 0.000000E + 00

Van Albada - 0
Darwish 5.229272E − 02 4.075890E − 03

Li 3.997572E − 04 1.503622E − 02
Projection 1.978424E − 04 4.217010E − 10

UMIST
Darwish 7.350687E − 02 1.076967E − 02

Li 1.033364E − 02 3.136989E − 02
Projection 2.346119E − 03 5.436182E − 05

Table 3.2: Triangle grid: obtained overshoot and undershoot values.

Figure 3.11 shows the obtained results for the projection method with all of the

flux limiters at study. Like it is concluded by Li et al. (2008), the flux limiters that

have higher maximum values are the SUPERBEE and OSHER. In figure 3.11 the

SUPERBEE flux limiter clearly passes the φ = 1.0 upper limit. On the other hand,

the MINMOD and Van Albada flux limiters show lower results since they have higher
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false diffusion and additionally these limiters are free of overshoots and undershoots in

the numerical solution (as it can be seen at the table 3.2).

(a) Results for the all section y = 0.8. (b) Results zoom near x = 0.65.

Figure 3.11: Triangle grid: results for projection method with all flux limiters at study.

3.2.4 Hybrid Grid

In this subsection, the same analytical solution from the previous case is used to

solve the convection equation on a hybrid grid, composed by 731 cells. This grid is

obtained by aleatory agglomeration of some cells from a triangle grid and afterwards

it passes to an orthogonalization process with an elliptic generator. This kind of grids

are used as a challenge to the TVD schemes, due to the significant volume variations

between the cells.

Figures 3.12(a) and 3.12(b) show the contour plot of the numerical solution obtained

with the Li and projection method, respectively, for the flux limiter OSHER. Although

the contour plots are similar, the different scales and the negative contours (dark blue)

in figure 3.12(a) show that the numerical solution of Li method is not bounded or not

completely inside of the imposed limits by the analytical solution, unlike the projection

method.

For other flux limiters, the projection method has lower values of undershoot and

overshoot when compared with the other methods. For example, the flux limiters

MINMOD, Van Albada and UMIST have a null overshoot value with the projection

method. In the other cases, the overshoot and undershoot values are one or more

orders of magnitude lower than with the Darwish and the Li methods (see table 3.3).
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(a) Contour plot for the Li method. (b) Contour plot for the projection method.

Figure 3.12: Hybrid grid: contour plot for the Li and projection method with the
OSHER flux limiter.

Flux Limiter TVD Method
Hybrid Grid

Overshoot Undershoot

SUPERBEE
Darwish 1.882454E − 02 1.915379E − 02

Li 8.058661E − 02 6.949808E − 02
Projection 3.468411E − 03 1.235839E − 02

MINMOD
Darwish 4.210421E − 03 9.404591E − 04

Li 3.213569E − 03 7.222680E − 03
Projection 0.000000E + 00 4.901668E − 03

OSHER
Darwish 1.303373E − 02 1.860756E − 02

Li 3.715890E − 02 2.184242E − 02
Projection 7.594598E − 04 7.897562E − 04

MUSCL
Darwish 1.289964E − 02 7.652252E − 03

Li 9.788584E − 03 6.831873E − 03
Projection 5.486960E − 04 5.586190E − 03

Van Albada
Darwish 8.950148E − 04 1.415682E − 03

Li 7.383857E − 03 8.049898E − 03
Projection 0.000000E + 00 2.491915E − 04

Van Albada - 0
Darwish 5.783595E − 03 1.030591E − 03

Li 6.551860E − 03 8.343659E − 03
Projection 0.000000E + 00 7.117527E − 04

UMIST
Darwish 1.467938E − 02 1.028316E − 02

Li 9.479815E − 03 6.198651E − 03
Projection 0.000000E + 00 5.750208E − 03

Table 3.3: Hybrid grid: obtained overshoot and undershoot values.



80 Chapter 3. Results on Unstructured Grids

Figure 3.13 shows the obtained results for a line section at y = 0.8 for the three

methods at study with the three different flux limiters. The goal is to make a compar-

ison study between the numerical results.

(a) Results for the all section y = 0.8. (b) Results zoom near x = 0.65.

Figure 3.13: Hybrid grid: results for the three methods at study with the OSHER,
Van Albada and UMIST flux limiters.

As it was observed previously, the projection method shows lower results than the

other methods since it is more dissipative. The differences between the methods vary

between 0.01 and 0.02. Also the numerical results are lower than compared to the case

of the triangle grid due to the higher numerical dissipation.

3.2.5 Tetrahedral Grid

A three dimensional (3D) case is built by considering the diagonal convection of a

square with l = 0.3 of side and located at the x = 0 plane. The problem is computed

on a cubic computational domain with side of L = 1 and each component of the fixed

convective velocity U and equal to 1. This problem is an 3D extension of the analytical

solution used in the previous subsections 3.2.3 and 3.2.4.

For this test case, a tetrahedral grid with 49636 cells is used, for the three methods

at study. Figure 3.14(a) shows the imposed boundary condition at the plane x = 0

and figure 3.14(b) shows a perspective of the tetrahedral grid used.

The 3D tetrahedral grid is an important test for the TVD schemes, since the interior

faces can have different geometric displays along the computational domain, affecting

the convection of the imposed square and increasing the numerical diffusion.
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(a) Imposed boundary condition at x = 0. (b) Perspective of the tetrahedral mesh.

Figure 3.14: Tetrahedral grid: imposed boundary condition at the plane x = 0 and
perspective of the tetrahedral mesh.

For a first interpretation of the results, the contour plots for a section plane at

z = 0.8 is obtained. The analytical solution at this plane is a parallelogram with an

inclination of 45 degrees, centered at the point with coordinates (0.65, 0.8, 0.8) and

with 0.3 of height. Figure 3.15 shows two examples of these contour plots, one of

them obtained with the UDS and the other one with the MUSCL flux limiter for the

projection method. It is noticeable a higher numerical diffusion with the UDS case,

because of the curvilinear distribution solution and a lower scale of values. In the

case of the figure 3.15(b), the numerical diffusion is lower and the solution distribution

has less curvature (although it has still considerable differences from the analytical

solution).

After obtaining these results, a line section defined by y = z = 0.8 is used to

compare the different numerical results. In figure 3.16, the results obtained for the

three TVD methods with selected flux limiters are showed. From a general point of

view, the results have some degree of numerical diffusion, since the curves from the

TVD schemes are closer to the UDS result than the analytic solution.

By analyzing table 3.4 with the obtained overshoot and undershoot values, it is

concluded once again that the projection method has values one or two order magnitude

lower than the other methods. The overshoot and undershoot values obtained with

this grid are much higher than with the previous grids, specially with the Darwish

method. This demonstrates that the TVD schemes are not completely applicable to

tetrahedral grids and in the resolution of 3D problems with complex geometries. Bear
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(a) UDS. (b) Projection method with MUSCL flux limiter.

Figure 3.15: Tetrahedral grid: contour plot at a plane section z = 0.8 for the UDS and
the projection method with MUSCL flux limiter.

(a) Results for the all section y = 0.8, z = 0.8. (b) Results zoom near x = 0.65.

Figure 3.16: Tetrahedral grid: results for projection method with all flux limiters at
study.
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in mind that the number of studies focusing on TVD schemes for this kind of grids is

very low.

Flux Limiter TVD Method
Tetrahedral Grid

Overshoot Undershoot

SUPERBEE
Darwish − −

Li 1.227445E − 01 1.179273E − 01
Projection 6.936989E − 02 4.608841E − 03

MINMOD
Darwish 1.889054E − 01 5.882758E − 02

Li 4.077224E − 02 5.137406E − 02
Projection 2.928273E − 03 4.459196E − 04

OSHER
Darwish − −

Li 7.966723E − 02 9.622075E − 02
Projection 6.720500E − 02 3.904223E − 03

MUSCL
Darwish 1.790426E − 01 1.172419E − 01

Li 6.467824E − 02 5.904153E − 02
Projection 1.306035E − 02 8.104952E − 04

Van Albada
Darwish 1.907406E − 01 1.066235E − 01

Li 5.607558E − 02 6.005168E − 02
Projection 9.822187E − 03 5.266756E − 03

Van Albada - 0
Darwish 1.936765E − 01 1.058539E − 01

Li 5.696992E − 02 5.731571E − 02
Projection 3.594216E − 03 8.858051E − 04

UMIST
Darwish 1.814518E − 01 1.023068E − 01

Li 6.321429E − 02 5.654292E − 02
Projection 1.568378E − 02 1.183650E − 03

Table 3.4: Tetrahedral grid: obtained overshoot and undershoot values.

3.2.6 Final Remarks

In this section, a comparative study of different TVD schemes response on unstruc-

tured grids is done. For this study, the methods from Darwish and Moukalled (2003),

Li et al. (2008) and a proposed one by the author were considered. The last one is

based on the projection of the computational points to a line define by the face normal.

This way, the skewness effect from the grid is considered in the computation of the

solution.

For all the tested cases, the projection method had better convergence properties

and a reduction of the overshoot and undershoot values. For the case of the triangle

grid, it was possible to obtain solutions free of overshoots with the projection method

for certain flux limiter (this was not possible with the other methods). This perfor-
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mance is justified by the better estimation of the r factor improving the usage of the

flux limiter effect in the solution.

As possible future work, the concept of flux limiter for the cell centered gradient

could be added to improve the computation of the TVD schemes. A good work that

explains this concept is presented by Park et al. (2010). Also, a projection method for

the NVD principle could be created to be applied in the computation of compressible

fluid flows on unstructured and adaptive grids.



Chapter 4

Error Estimators and Adaptivity

This chapter explains the error estimators used in this Thesis. They are divided

into relative and absolute error estimators and they are presented in distinct sections.

Also for each type of error estimator, the adaptive algorithm is explained.

4.1 Numerical Error in CFD codes

The error to be minimized by the adaptive process is the local truncation error.

Since there is no possible way to accurately evaluate this error, we can observe the

final error defined as the difference between the computed and the exact profile. The

average total error of cell P for a generic function Φ is given by

E =
1

VP

∫
P

|Φ(x)− φ(x)| dV (4.1)

where φ(x) is the resolved profile. The discretization error is a parcel of this error; other

parcels include nonlinear error sources, modeling errors and others. Consequently, the

discretization error is an approximation of the total error.

It should be noted that due to the nonlinear nature of the governing equations of

fluid flow, it does not follow that the cells to be refined are those with the largest error,

because the error may be a symptom rather than a cause of inaccuracy. In other words,

it is possible that cells with low error level become responsible for the appearance of

high errors in other regions of the flow (downstream or even upstream, depending on

the nature of the flow)1.

1Jasak (1996) proved this mathematically by considering a transport equation for the numerical
error.
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4.2 Relative Error Estimators

4.2.1 Taylor-series truncation error (TSTE)

The Taylor series expansion theorem states that any smooth function φ ∈ C∞ in

the vicinity of a point P can be approximated as a sum of its derivatives at P . In

multidimensional form:

φ(xi ;xi,P ) = φP +

(
∂φ

∂xi

)
P

(x− xi,P )+

+
1

2

(
∂2φ

∂xi∂xj

)
P

(xi − xi,P )(xj − xj,P ) + · · · (4.2)

Einstein summation is implied above. Since the present FV method implementation

uses a linear profile, the truncation error is dominated by the second-order term. Using

the definition of the average error :

ET =
1

2VP

∫
P

(
∂2φ

∂xi∂xj

)
P

(xi − xi,P )(xj − xj,P )dV (4.3)

and assuming that the Hessian matrix is constant inside the cell P , the integration of

equation (4.3) results in:

ET =
1

2VP

∣∣∣∣( ∂2φ

∂xi∂xj

)
P

∣∣∣∣ (Mij)P (4.4)

where (Mij)P is the inertia tensor of the cell P , computed using the methodology of

Mirtich (1996). When computing the ET absolute error estimator, the Hessian matrix

values are computed from a regression made with a quadratic polynomial from the cell

first and second neighbors by vertex. Due to the assumption of linear variation inside

the computational cells, zones with lower errors will have lower values of the Hessian

matrix. The error can be nondimensionalized by using the lower order terms Tl from

the Taylor series:

Tl = φP + lPi

∣∣∣∣( ∂φ∂xi
)
P

∣∣∣∣ (4.5)

where lPi is the length of cell P in the direction i. The isotropic version of the TSTE

criterion is thus:

εP =

∣∣∣( ∂2φ
∂xi∂xj

)
P

∣∣∣ (Mij)P

2VPTl
, (4.6)
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and the anisotropic version of εP is obtained by retaining only the relevant Hessian

terms:

εT,i = δij

∣∣∣( ∂2φ
∂xj∂xk

)
P

∣∣∣ (Mjk)P

2VPTl
. (4.7)

4.2.2 Coefficient of multiple determination

Since the numerical method uses a least-squares regression to reconstruct the de-

pendent variable profile for each cell, it is natural to determine the coefficient of de-

termination from the regression. For clarity, we will use in this section the standard

notation for regression analysis. With this notation, the profile in equation (4.2) is

written as:

Y = β0 +
n∑
k=1

βkXk, (4.8)

where Y is a variable explained by a linear combination of n explaining variables Xk

(in our case the coordinate moments). The parameters β are the ones which we want

to compute and consist in the intercept and in spatial derivatives of φ. For example,

β0 = φP , β1 = (∂φ/∂y)P , β2 = (∂φ/∂x)P and so on. Clearly, the profile can be easily

expanded to accommodate higher-order derivatives.

Considering all the observations, an overdetermined system of equations is formed,

given by y = Xb + e, where y is a vector with dimension m × 1 containing the

observations of Y , X is a matrix m × (n + 1) containing the values of the several

explaining variables for each observation, b is a vector with dimension n+ 1 with the

parameters to be determined and e is the vector with the estimation residual for each

of the observations.

The estimation residual is defined as the difference between the observed y and the

estimated value ŷ = Xb̂:

ei = Yi − Ŷi (4.9)

The estimate b̂ of b obtained by least squares is the one that minimizes the error sum

of squares (with zero mean error implied):

min
b̂

m∑
i=0

e2
i ⇔ min

b̂
eTe (4.10)

The coefficient of multiple determination of the regression, R2, expresses the extent

to which the variance in the original data is explained by the variance of the predicted

data. This is obtained by relating the sum of squares for the original data, SSy and
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the sum of squares for the fitted data from the regression, SSr. R
2 is then given by:

R2 =
SSr
SSy

. (4.11)

The quantity R2 is limited between 0 and 1. Low values indicate a poor correlation

whereas high values a good correlation. Since we want the criterion to behave in the

opposite way, the criterion is formed by the one’s complement of R2:

c = 1−R2 (4.12)

R2 always increases as the number of explaining variables n increases, even if it

introduces no improvement in the regression. To account for this, the adjusted multiple

determination coefficient (adjusted for the number of variables) can be used:

R2
adj = 1− m− 1

m− n
(1−R2) (4.13)

An alternative to the adjusted R2, which penalizes more the loss in degrees of freedom

when the number of regressors increases is called the alternative R2:

R2
alt = 1− m+ n

m− n
(1−R2) (4.14)

The first comparisons of these three coefficients quickly revealed that the behavior of

the criterion obtained by use of the adjusted and alternative varieties were less smooth,

which created non-smooth grids, with less quality. This is explained by the fact that

the number of neighbors used in the moving least squares approach is not high, and the

correction in the number of degrees of freedom becomes important. For that reason,

we only use the unmodified R2.

4.2.3 Least-Squares Fit and Anisotropy

The refinement criteria extracted from R2 is isotropic because it contains informa-

tion from all spatial directions. For an anisotropic version, these diagnostics are not

useful since they refer to the basic profile without particular spatial direction. Other

aggregate diagnostics, including detection diagnostics in parameter space, do not dis-

tinguish the spatial directions as well. To obtain this information, we pose this problem

as a specification problem that tries to identify the best set of explaining variables.

This is done by comparing the diagnostics of different models. Namely, we consider the
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model of the base linear profile and compare it with the model of a cubic profile which

contains high order terms only in a given direction. For example, the R2 criterion for

the x direction is given by:

cx = R2(φx(x, P0))−R2(φ(x, P0)) (4.15)

where φ(x, P0) is the base linear profile and φx(x, P0) is a profile which contains

high order terms, but only those where the powers of x dominate:

φx(x, y, z;P0) = β0 + β1x+ β2y + β3z︸ ︷︷ ︸
linear profile

+

β4x
2 + β5xy + β6xz + β7x

3 + β8x
2y + β9x

2z︸ ︷︷ ︸
high order x profile

(4.16)

If the difference in R2 (dR2) of these two profiles is significant, then we have reasons to

suspect that the inclusion of the high order terms in the x direction would improve the

data fit. This highlights that the profile in the x direction is not linear, and induces

the conclusion that cell P0 does not possess sufficient resolution in the x direction and,

consequently, should be refined in that direction. If this is performed for the remaining

space directions, an anisotropic criterion is obtained.

4.2.4 Criterion filtering

Since any a posteriori refinement criterion is, by definition, applied to coarse grids,

the results can be stiff and rapidly varying. This in turn has the effect of making

the cell distribution also stiff, which in extreme situations causes numerical instabil-

ity and ultimately divergence. This situation is avoided by employing the following

concomitant procedures:

• The criterion is smoothed with a truncated arithmetic kernel;

• The selection of cells to be refined is expanded by a buffer layer (of one cell);

• The refinement directions are cross-checked in the vicinity, so that conflicting

preferential directions are preemptively ruled out;

• As anisotropic cells become progressively stretched, it is more difficult to refine

them in counter directions, so that the degree of non-orthogonality does not

become severe.
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This is a multi-objective procedure which requires some fine-tuning, so that the conflict-

ing requirements of less cells vs. quality grids are both respected to some satisfactory

degree. Of particular note is the impact that the last procedure has in the limit of

high resolution: the anisotropy of the grid is diminished.

4.3 Absolute Error Estimators

4.3.1 Adaptive Algorithm

Error estimators are required for the adaptive mesh refinement procedure and they

try to give a good approximation of the numerical error and its distribution in the

computational domain. In the framework of absolute error estimators, two adaptive

algorithms are tested and explained in this section:

• One proposed by Jasak and Gosman (2000b) which requires an user defined

constant λ.

• Another one created by the author which is free of this constant.

Jasak Adaptive Algorithm

For the initial tests with the absolute error estimators, the adaptive algorithm

proposed by Jasak and Gosman (2000a) is use, which consists of computing the mean

error mean(|E|) or the first norm of the error. The cells that have an error higher than

λ mean(|E|) are selected for refinement, where the λ is an user-defined constant that

depends on the numerical error distribution in the computational domain.

The problem with this method is that λ is less than one if the error distribution

is uniform and a higher value is required if the maximum error is localized and the

range of error scales is wide. This means that when assigned the λ value some previous

knowledge of the problem is required and as a consequence, it cannot be used easily

in different cases and some tuning is required to achieve satisfactory results.

Proposed Adaptive Algorithm

With the information from the error estimator, it is possible to compute an esti-

mation of the ideal hydraulic diameter hi distribution for a desired local error E0. For

a second order method in space, the following equations are valid:

|E| ∼ Kh2 (4.17)
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|E0| ∼ Kh2
i (4.18)

where E is the error estimation and K is an unknown constant. After some algebraic

manipulation:

hi ∼ h
√
E0/E (4.19)

Ideally, formula (4.19), can be used to create adaptive grids with approximately con-

stant error if the adaptive algorithm is combined with an automatic grid generator.

The adaptive procedure used in this Thesis is based on the maximum value of

the error estimator. The cells with an error higher than β max(|E|) are selected for

h-refinement, where β is a factor that depends of the method’s order. In the case

of a second order method this value β is equal to 0.25, which is the reduction factor

(hL/hL+1)2 of the local error, in each grid refinement. The value is used in all tested

cases with this algorithm.

4.3.2 Regressions of High Order Polynomial

The author’s own code SOL has the capability to make different types of regressions

from the discrete cell values by solving a Weighted Least Squares (WLS) problem.

Different types of polynomials and cell sets can be used in these regressions. Figures

4.1(a) and 4.1(b) show examples of different cell sets: figure 4.1(a) shows a cell set

defined by the first and second cell neighbors by face in a cartesian grid and figure

4.1(b) shows another cell set defined by the first and second cell neighbors by vertex

in a grid with triangles.

These high order regressions are required in the computation of the error estimators

values and the WLS method has the versatility required in the context of the unstruc-

tured grids. The computational stencil defined by the first and second cell neighbors

by vertex is used in these regressions, because this type of stencil provides a more

reliable information around the reference cell. The weighted function wp (equation

(2.62)) is required to guarantee that the closest points to the reference have a higher

contribution than the other points. The computational value from the reference cell is

used to constrain the polynomial regression.

4.3.3 Residual Least Squares

A regression is done with a cubic order polynomial and considering the cell first and

second neighbors by vertex. New face values and gradients are computed and compared

with the values from the convection and diffusion schemes. One way to do this is by
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(a) Cell sets by face. (b) Cell sets by vertex.

Figure 4.1: Different examples of cell sets.

recomputing new residual values, which indicate if the values satisfy the governing

equations. The Residual Least Squares (RLS) vector for each cell is computed by the

following formula:

ER =

∑F
f=1 U

n
f uf −

∑F
f=1 νf (∇u)f .Sf +

VP
ρ
∇pn

ap
(4.20)

where the values uf and (∇u)f are computed with the cubic regression, ap is the

matrix value used for the momentum equations, which is required to give the RLS

error estimator the same dimensions of the velocity or the transported variable. This

error estimator gives an indication of the local error, if the differences between the

cubic profile and the numerical discretization will affect the governing equations.

4.3.4 Grid Interface Correction

It is known from the literature that the interface between cells with different levels

of refinement causes a degradation in the grid quality and consequently in the local

numerical solution. The main problem is that, prior to cell refinement, the estimation

of the error augmentation is not possible. To solve this problem, a grid interface

correction was used in the adaptive algorithm.

The selected cells for refinement are added to the same group if they are neighbors

of each other. Each of these groups has an extended layer of two cells since there is

always an increase of the numerical error near the grid interface. If in one of these
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groups, there exist cells with different levels of refinement, so only the cells with the

lowest level of refinement are selected. This procedure increases the number of the

required refinement steps but prevents the accumulation of the grid interface in the

same location, resulting in grids with a lower number of cells for the same error level.
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Chapter 5

Results on Adaptive Grids

The following chapter comprises the obtained results on adaptive grids. It is divided

in three sections: the first one has the adaptive grids driven by the relative error

estimators which are suitable for multi-scale problems; the second one shows a small

number of test cases with the Jasak adaptive algorithm for absolute error estimators;

and finally the third one shows the results obtained with the proposed adaptive by the

author algorithm that uses information provided by the error estimators without user

defined constants.

5.1 Relative Error Estimators

5.1.1 Benchmarking Results with the adaptive method

To study the dR2 criterion capabilities, an adaptive grid computation was done

for the case of the cavity flow, it starts with a 10 × 10 grid and refines the cells with

values higher than 0.1. After four refinement levels, we compare the results obtained

for the isotropic and anisotropic criteria with the benchmark results of Botella and

Peyret (1998) which were obtained with an uniform mesh of 160× 160 (note that the

equivalent uniform mesh for the adaptive grids has the same grid size). Figures 5.1(a)

and 5.1(b) show the isotropic and anisotropic grid obtained, respectively.

The isotropic grid has 6910 cells and the anisotropic grid has 4407 cells. Figure

5.2 compares the results obtained with both meshes and the benchmark solution. The

differences between the curves of both grids are due to the anisotropic grid and has

lower quality than the isotropic one, although both results are close to the benchmark

solution. The isotropic and anisotropic have approximately less 73% and 82.8% cells

than the grid used by Botella and Peyret (1998).

95
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(a) Isotropically refined mesh: 6910 cells. (b) Anisotropically refined mesh: 4407 cells.

Figure 5.1: Lid-driven cavity flow: isotropic and anisotropic mesh examples dR2.

Figure 5.2: Comparison of the velocity profiles between benchmark values with adap-
tive refinement dR2.
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5.1.2 Results for the adaptive mesh with lid-cavity

The dR2 criterion is sensitive to local maximums and minimums because of the low

correlation at these points. In flows such as the cavity flow, this is a useful feature.

We have applied this criterion with a threshold of 0.01, starting from a grid of 10× 10

and figure 5.3(a) shows the grid after 15 refinement levels. It is evident that large

savings are achieved with the refinement. Figure 5.3(b) shows the flow streamlines for

Re = 1000. The grid is aligned with the flow, the boundary layers are well resolved, as

well as the vortex core, the separation and attachment points. Out of the core of the

secondary vortex, a belt of refined grid accompanies the inflexion of the streamlines,

right where they have more pronounced curvature.

(a) Mesh. (b) Streamlines.

Figure 5.3: Lid-driven cavity flow: final field and mesh after 15 refinement levels.

The adaptive computation of the lid-driven cavity flow allows the corner vortices

to appear with successively refinement levels. The dR2 criterion is a logical choice for

this application, as it is totally invariant in relation to scale.

For nomenclature purposes, we will refer to the main cavity vortex as vortex number

1 and corner vortices number 2, 3, 4, 5, right or left vortices, e.g. vortex 3R denoting

3rd vortex on right corner.

Figures 5.4(a) to 5.4(h) show 4 sequential zooms of the mesh and streamlines on

the right corner vortices chain. The exponential decay in vortex size and strength

can be qualitatively reduced from the figure zooms and obviously attention should be

given to the coordinates values. Figures 5.5(a) to 5.5(h) show 4 zooms of the mesh

and streamlines on the left corner vortices chain.

Table 5.1 lists the vortices center locations, the attachment and separation points



98 Chapter 5. Results on Adaptive Grids

(a) Cavity right corner mesh
zoom 1.

(b) Cavity vortex 2R.

(c) Cavity right corner mesh
zoom 2.

(d) Cavity vortex 3R.

(e) Cavity right corner mesh
zoom 3.

(f) Cavity vortex 4R.

(g) Cavity right corner mesh
zoom 4.

(h) Cavity vortex 5R.

Figure 5.4: Right corner vortices mesh and streamlines, sequence of vortices.
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(a) Cavity left corner mesh
zoom 1.

(b) Cavity vortex 2L.

(c) Cavity left corner mesh
zoom 2.

(d) Cavity vortex 3L.

(e) Cavity left corner mesh
zoom 3.

(f) Cavity vortex 4L.

(g) Cavity left corner mesh
zoom 4.

(h) Cavity vortex 5L.

Figure 5.5: Left corner vortices mesh and streamlines, sequence of vortices.
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and also the vorticity magnitude. Figure 5.6 explains the vortices nomenclature used.

Vortex Cx, Cy Vorticity X,Y Separation Figure
1 0.53051,0.56531 -2.02727 — 5.3(b)

2R 0.86576,0.11364 0.822856 0.69495,0.36817 5.4(b)
3R 0.99323,0.00727 -0.00484733 0.98339,0.01759 5.4(d)
4R 0.99958,0.00042 3.50858E-5 0.99895,0.00107 5.4(f)
5R 0.99997,2.68E-5 -3.71581E-7 0.99991,8.25E-5 5.4(h)
2L 0.08317,0.07708 0.386846 0.22335,0.16800 5.5(b)
3L 0.00441,0.00424 -0.00198701 0.01068,0.01038 5.5(d)
4L 0.0025,0.0025 1.2416E-5 0.00065,0.00064 5.5(f)
5L 1.69E-5,1.69E-5 -1.42392E-7 5.530E-5,5.573E-5 5.5(h)

Table 5.1: Cavity vortices parameters.

Figure 5.6: Lid-driven cavity: general layout, nomenclature.

The main cavity vortex is not exactly at the center of the cavity but slightly above

this point, at (0.530, 0.565), but the corner vortices are virtually centered at the cav-

ity diagonals, see Table 5.1. The predicted vorticity decay is very strong with each

consecutive vortex having less than one percent of the vorticity of the previous one.

The vortices detachment length on the bottom and side walls decreases approximately

with a contraction ratio of 5.0× 10−2.

Figures 5.7 and 5.8 show the absolute velocity along the cavity diagonal (1,1) to

(0,0) and diagonal (1,0) to (0,1) as a function of the distance along the diagonal and the

log scale used can distinguish the eddies sequence that spread over 16 orders of velocity
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magnitude. The main vortex is displayed approximately from 1 to 0.1 and between 0.1

to 0.0 the sequence of vortices is shown. The length ratio between the secondary vortex

and the main vortex is 0.1, and the velocity ratio is 4×10−2; for the quaternary vortex,

the length ratio is approximately 6 × 10−4 and the velocity ratio is 5 × 10−4. These

results are demanding from the numerical point of view and indeed are on the limit

of machine precision. The spectral radius of the coefficient matrix is extreme because

of the range of cell sizes, making this a difficult case to converge. Nevertheless, it can

be seen that the signature of the 5th vortex on the left and right corner is present in

the results, despite off O[10−16]. The last fifth vortex is not completely resolved. Any

further refinement was not presented because the velocity magnitude is of the order of

10−16 and the truncation error saturates the solution. The proposed error criterion is

able to detect phenomena over a wide range of scales without being overwhelmed by

dynamically dominant phenomena.

Figure 5.7: Lid-driven cavity: log plot of absolute velocity in the diagonal (0,0) to
(1,1). The distance is measured along the diagonal starting from (0,0) and marked as
the power of 10.

According to Moffatt (1963), for a Reynolds number less than one based on the

distance from the corner the inertia forces are negligible and the Stokes flow solution

displays multiple eddies of decreasing size and rapidly decreasing intensity. All eddies

(for a given corner angle) are geometrically and dynamically similar but with successive

changes of length and velocity scales given by the factors present by Moffatt (1963).

For sharp corners with 90 degrees, the factors are 0.0614 and 4.8566 × 10−4. The
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Figure 5.8: Lid-driven cavity: log plot of absolute velocity in the diagonal (1,0) to
(0,1). The distance is measured along the diagonal starting from (1,0) and marked as
the power of 10.

present prediction obtained with a general error estimation procedure and without

any particular adaptation to capture very small eddies in the flow, gave the length and

velocity factors of 0.06001 and 4.5× 10−4.

The prediction display a ratio of the dimensions of third and fourth successive

eddies, 0.065 and 0.054. The sixth right vortex center will be at a distance from the

corner 3.0226 × 10−6 and will require a minimum mesh spacing of 1.907 × 10−7 for a

similar accuracy of the present results.

Table 5.2 lists other parameters to study the successive vortices in the cavity cor-

ners, where Rt is the lowest distance between the vortex center and boundary, Vt is

the tangential velocity, “Ratio” stands for the geometric ratio of the separation points

of the vortex X/Y , the Reynolds number Revortex =
VtRt

ν
and the Vt decay factor is

the ratio of Vt between successive corners vortices. The predicted tangential velocity

decay 4.3× 10−4 is not far from the analytical value 4.8566× 10−4 of Moffatt (1963).

The vortices Reynolds number are very small O(10−14), meaning that it will be very

difficult to visualize them with experimental techniques.

When the calculations at the last refinement level comprised 2 × 105 cells, the

smallest mesh size is equal to 3.05 × 10−6, meaning that the uniform mesh with the

smallest mesh size would have 1.1 × 1011 cells and consequently, the adaptive mesh

contains 0.00018% of the uniform mesh.
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Vortex Rt Vt Revortex Ratio Vt decay
2R 5.2316E-2 6.85E-2 3.58371 0.82856 -
3R 4.09408E-3 2.88338E-5 1.18048E-4 0.94429 4.2093E-4
4R 2.45427E-4 1.22629E-8 3.00965E-9 0.98131 4.25296E-4
5R 1.0457E-5 5.44273E-12 5.69146E-14 1.09091 4.438371E-4
2L 4.23247E-2 2.22562E-2 9.41986E-1 1.32946 -
3L 3.45196E-3 1.15166E-5 3.97548E-5 1.0289 5.174558E-4
4L 2.25305E-4 5.19926E-9 1.17142E-9 1.01563 4.514579E-4
5L 1.2315E-5 2.74822E-12 3.38443E-14 0.95101 5.285791E-4

Table 5.2: Cavity vortices aditional parameters.

5.1.3 Relative Error Estimator - Final Remarks

A Finite-Volume 2D Navier-Stokes solver was developed for unstructured poly-

hedral hybrid adaptive meshes with second order accurate spatial discretization. A

new error estimation criterion was developed for adaptive space discretization (h-

refinement).

The algorithm was applied to the lid-driven cavity flow at Re = 1000 and apart

from the main cavity vortex the corner vortices chain was fully resolved up to the fourth

cavity corner eddy and the fifth vortex was partially resolved. The mesh adaptation

was fully driven by the mesh refinement criterion that allocated meshes on the cavity

corners without any external prescription.

The main cavity eddies were well resolved and the velocity predictions are virtual

identical to the benchmark data, Ghia et al. (1982) and Botella and Peyret (1998).

The small eddies in the creep flow sharp corner region were also quantitatively very

well captured in agreement with Moffatt (1963). The new error estimation criterion

and the second order developed Navier-Stokes solver have allowed to calculate in detail

the cavity eddies whose characteristic length scales are five order of magnitude lower

and sixteen order in tangential velocity intensity. On a macroscopic inspection of the

grid, the criterion did not present preferences for large scale in detriment of small-scale

phenomena.

The author is not aware of any benchmark results about these corner vortices and

this may constitute the first time these vortices were resolved from the full solution of

the Navier-Stokes equations without additional theoretical assumptions or forced the

location of meshes on the corner regions.
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5.2 Absolute Error Estimators - Jasak Method

5.2.1 Poisson Equation - Manufactured Analytical Solution

For this test case, the Poisson equation ∇2φ = Sφ was solved in a square com-

putational domain [0, 1] × [0, 1]. Dirichlet boundary conditions are prescribed in all

boundaries, the Laplacian of the analytic solution is prescribed as the source term and

it is given by:

φ(x, y) = exp

(
−(x− 0.5)2 + (y − 0.5)2

0.12

)
(5.1)

The computations start with a cartesian grid of 20× 20 and λ is equal to 0.1 in the

adaptive grids. Figure 5.9 shows the mean and maximum analytic error for an uniform

and an adaptive quadrilateral grids for this solution.

(a) Mean error over number of cells. (b) Maximum error over number of cells.

Figure 5.9: Poisson equation: mean and maximum error over number of cells for
uniform and adaptive grids.

Both the mean and maximum errors have second order decay for the uniform grid

and the adaptive grids present second order decay after three levels of refinement. The

adaptive grids keep 51% of the number of cells with a uniform grid.

The same study is done for the case of a hybrid grid composed by quadrilateral

and triangles, and figure 5.10(a) shows the initially grid used which has a hydraulic

diameter h = 0.05. Figure 5.10(b) shows a zoom from the adaptive grid after 5 levels

of refinement using the Residual Least Squares criteria (λ = 0.5), with the refined cells

located at the domain center.

The figure 5.11 shows the mean and maximum errors obtained with uniform and
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(a) Initial grid and solution distribution. (b) Grid after 5 levels of refinement RLS zoom.

Figure 5.10: Hybrid mesh: poisson solution for initial grid and adaptive grid.

adaptive grids for each level of refinement, and the results of the uniform grid show

the expected second-order convergence. Initially, the mean error of the adaptive grids

decreases faster than for the uniform grid, but after the second level of refinement the

reductions slows down and the mean error starts to be higher than the uniform grid,

see figure 5.11(a).

This happens because the adaptive grids have worst grid quality, due to mesh

skewness, cell non-orthogonality and cell distortion than the uniform grids. The char-

acteristics of the initial grid are conserved during h-refinement as could be observed in

the figure 5.10(b), which is the cause of the mesh induced errors and the higher mean

error in the adaptive grids.

5.2.2 Convective-Diffusive Equation - Scalar Transport

The solution of the scalar transport equation for a imposed temperature profile is

computed in a rectangle computational domain of [0.1, 1.0] × [0.0, 1.0]. This problem

has been used previously by Volker (2000) and Juretic (2004). A Dirichlet boundary

condition is applied in all boundaries, except for x = 1.0 where a Neumann condition

with null gradient is imposed. The analytic solution is given by:

T (x, y) = A

∞∑
k=1

(αkφ1k(x) + βkφ2k(x))ψk(y) (5.2)
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(a) Mean error over number of cells. (b) Maximum error over number of cells.

Figure 5.11: Hybrid mesh: mean and maximum error over number of cells uniform
and adaptive grids.

where φ1k, φ2k and ψk(y) are functions:

φ1k =
sinh(bk(1− x)) e0.5xPe

sinh(bk)
(5.3)

φ2k =
sinh(bkx) e0.5(1−x)Pe

sinh(bk)
(5.4)

ψk(y) = sin(kπy) (5.5)

and αk, βk and bk are constants:

αk =
2

kπ
(cos(0.45kπ)− cos(0.55kπ)) (5.6)

βk = αk
bk e

0.5Pe

0.5Pe sinh(bk) + bk cosh(bk)
(5.7)

bk =
√

(0.5Pe)2 + (kπ)2 (5.8)

ν is set to 0.001 [m2/s], the reference length L is set to 1.0 [m], the velocity u is equal

to 1.0 [m/s] and the Peclet number Pe = U |L/ν = 1000. Different simulations are

done with uniform and adaptive grids to compare the error estimators performance.

A grid with 36× 40 cells is used as an initial grid.

Figure 5.12(a) shows the grid obtained after 5 levels of refinement using the Residual

criteria and figure 5.12(b) shows the analytic error distribution. The higher error values



5.3. Absolute Error Estimators - Proposed Method 107

are located in the most refined cells.

(a) Adaptive grid after 5 levels of refinement
Scalar.

(b) Error distribution in an adaptive grid.

Figure 5.12: Convective-diffusive equation: adaptive grid and error distribution after
5 levels of refinement with RLS.

Figure 5.13 shows the mean and maximum error reduction with the number of cells

for the three types of grids. In both, mean and maximum error the reduction rate

is higher in the adaptive grids than in the uniform grids, after the first two levels of

refinement the error curves have a second order reduction. The Residual criteria curve

is located bellow the Taylor criteria in both figures 5.13(a) and 5.13(b). For the same

error value, the Residual adaptive grid has less 10% cells than the uniform grid.

5.3 Absolute Error Estimators - Proposed Method

5.3.1 Analytic 2D Cavity

To study the numerical error from the FVM discretization at the adaptive grid

interface, the analytic 2D cavity problem was selected. The second-order accuracy

of the overall numerical scheme is verified for a prescribed mesh, which is shown in

figure 5.14(a). From this starting grid, all cells are refined three times for each pair

of numerical schemes: central difference diffusive and linear interpolation convective

schemes which are typically used in cartesian grids (D-CDS,C-LIN)1; tangential cor-

rection diffusive and linear interpolation with gradient correction convective schemes

1The first D or C means that the respective scheme is a diffusive or a convective one.
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(a) Mean error over number of cells. (b) Maximum error over number of cells.

Figure 5.13: Convective-diffusive equation: mean and maximum error over number of
cells for uniform and adaptive grids.

(D-TC,C-LIN2); and the face least squares diffusive and convective schemes (D-FLS,C-

FLS).

Figure 5.14(b) shows the maximum error for the three pairs of schemes used in

this interface study. The mean error has second order reduction for the three schemes

sets, being D-FLS,C-FLS the one with the lowest error. The maximum error has also

second order reduction except for the D-NRML,C-LIN schemes which is close to first

order. From these results the lowest numerical error was obtained for the D-FLS,C-FLS

schemes. These are the selected schemes in the future subsections of this work.

5.3.2 Laplace Equation in a L-Shaped Domain

For this test case, the Laplace equation ∇2φ = 0.0 was solved in a L-shaped domain

[−1, 1]2\([0, 1]× [−1, 0]) Dirichlet boundary conditions are prescribed in all boundaries

and the analytic solution is given by the following equation:

φ(x, y) = r2/3sin(2ϕ/3) with (x, y) = r(cos ϕ, sinϕ) (5.9)

The computations started with a cartesian grid of 12 cells and three types of re-

finement are applied to this grid: one with uniform refinement and other two with the

adaptive algorithm using the classic Taylor series and the RLS as error estimators. The

goal is to study the main differences between the two error estimators and evaluate

their effectiveness. Figure 5.15 shows the mean and maximum error for the three types
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(a) Initial grid used in the interface study. (b) Maximum error over number of cells.

Figure 5.14: Analytical cavity: initial grid and maximum error over number of cells
for three pairs of diffusive and convective schemes.

of grids, after 15 levels of refinement for the Taylor series and 22 levels of refinement

for the RLS errors estimators.

For the uniform grid case, the mean and maximum error slope have an order of 4/3

and 2/3, respectively. Although, at the singularity point (x, y) = (0, 0) the analytic

solution is zero and the analytic gradient is infinite which causes the method to have

an order accuracy lower than 2 for the uniform grids.

For both error estimators, the mean error of the adaptive grids has second order

error decay. The different error slopes of the adaptive and uniform grids explain why

the mean error for the two adaptive grids is much lower than the mean error for the

uniform grid (more than 10 times).

Figure 5.15(b) shows the maximum error for the three cases studied. The adaptive

grid with the TS estimator has a maximum error 100 times lower than the error of

the uniform grid and the adaptive grid with the RLS estimator shows an improvement

when compared with TS estimator by having a maximum error 1000 times lower. The

ratio between the maximum and mean error, which is a measure of the adaptivity

efficiency, is 0.053 for the TS estimator and 0.2336 for the RLS estimator.

Figure 5.16 shows the two final adaptive grids obtained with the TS and RLS error

estimators. The adaptive grid with TS has more refined cells and the refined region

has a circular pattern. This happens due to the loss of accuracy, after some adaptive

levels, of the TS error estimator. The adaptive grid with RLS has a lower number of

cells and a rectangular pattern is observed with an over estimation of the numerical
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(a) Mean error. (b) Maximum error.

Figure 5.15: Poisson equation: mean and maximum error over number of cells for
uniform and adaptive grids (quadrilateral grid example).

error in the boundaries of the computational domain, see figure 5.16(b).

The same example is done with triangles with an initial grid with 12 cells. The

mean and maximum error for the three types of grids are shown in figure 5.17. For

the same number of cells, the error in the triangle based grids are slightly higher than

the quadrilateral based grids. From the comparison between the adaptive and uniform

grids, the same conclusions from the previous case can be drawn.

5.3.3 Convective-Diffusive Equation - Point Source in Cross-

Flow

The convective-diffusive equation U∂φ/∂x = Γφ∇2φ is frequently used for bench-

marking, see for example Jasak and Gosman (2000b). The used analytical solution is

given by:

φ(x, y) =
S

2πΓ
K0(

U
√
x2 + y2

2Γ
)e(0.5xU/Γ) (5.10)

where S = 16.67 [φ/s] is the source magnitude, Γ = 0.05 [m2/s] is the diffusive coeffi-

cient, U = 1.0 [m/s] is the imposed velocity in the x axis and K0 is the modified Bessel

function of second kind and zero order. This problem is solved in a rectangular do-

main [0.0, 4.0]× [−0.5, 0.5] and the line-source origin is located at 0.05m from the left

boundary to avoid numerical problems from the singularity point. Dirichlet boundary

conditions are prescribed in all boundaries, except for the right boundary (x = 4.0),



5.3. Absolute Error Estimators - Proposed Method 111

(a) Adaptive grid using the Taylor estimator. (b) Adaptive grid using the RLS estimator.

Figure 5.16: Poisson equation: adaptive grids with square cells with the Taylor and
RLS estimators.

(a) Mean error. (b) Maximum error.

Figure 5.17: Poisson equation: mean and maximum error over number of cells for
uniform and adaptive grids (triangle grid example).
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(a) Adaptive grid using the Taylor estimator. (b) Adaptive grid using the RLS estimator.

Figure 5.18: Poisson equation: adaptive grids with triangle cells after 15 levels of
refinement with the Taylor and RLS estimators.

where a null gradient is imposed.

The same refinement test was done for this solution. The starting grid contains

16 × 4 cells and 20 levels of refinement are considered. Figure 5.19 shows the mean

and maximum error for the uniform and adaptive grids.

The mean error (figure 5.19(a)) displays the same slope for the three grids and the

adaptive grids do not show improvements in the mean error when compared with the

uniform grid. The case with TS has a mean error curve in an upper position relatively

to the RLS and uniform cases.

However, the adaptive grids have a lower maximum error than the uniform grid

case. The final adaptive grid has a maximum error 10 times lower than the uniform

grid. The RLS has a better efficiency than the TS, but the differences are smaller than

in the previous case.

The error slope is not always constant due to the grid interface correction, which

prevents the accumulation of the grid interfaces between different levels of refinement

and avoids the loss of the grid quality and the solution overall accuracy. Figure 5.20

shows two different zooms of the grid obtained with the RLS estimator after 20 refine-

ment steps. The cell zones with different refinement levels are well defined due the grid

interface algorithm which prevents the accumulation of refined cells from the previous

refinement steps. The present results are a significant improvement over Jasak and

Gosman (2000b) because of the grid interface correction and the different refinement

decision algorithm that creates much smoother adaptive grids with high quality.
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(a) Mean error. (b) Maximum error.

Figure 5.19: Line source: mean and maximum error over number of cells for uniform
and adaptive grids.

(a) Zoom 1. (b) Zoom 2.

Figure 5.20: Line source: adaptive grid obtained for the RLS estimator after 20 refine-
ment steps.
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5.3.4 Point Jet

The Point Jet analytic solution is obtained by freeing a point flow with a fixed mo-

mentum Mj in a large domain. This solution has a singularity point at the origin and

consequently the computational domain was located 0.005m downstream of the jet

origin to avoid accuracy problems from the singularity point. The computational do-

main [0.0, 2.5]× [0.0, 0.1] is used for these computations, and the domain is extended in

the x direction to avoid numerical errors near the outlet boundary. Dirichlet boundary

conditions are applied in all boundaries, except for x = 2.5 where an outlet boundary

condition is applied. The initial grid is covered with 100× 4 cells.

The velocity field of this solution is defined by equations (5.11) and (5.12):

u(x, y) =
A

B
x−1/3sech2(

y

B
x−2/3) (5.11)

v(x, y) = −A
3
x−2/3tanh(

y

B
x−2/3) +

2A

3B
yx−4/3sech2(

y

B
x−2/3) (5.12)

where A, B and Mj are constants defined by:

A = (
9

2
νMj)

1/3 B = (
48ν2

Mj

)1/3 Mj = U2
0h = 0.1

[
m3/s2

]
(5.13)

and ν is set to 0.0012 [m2/s].

Figure 5.21 shows the analytic error distribution and the grid after 14 levels of

refinement using the Residual criteria. The error is distributed along the cells with

different levels of refinement and the cells with higher error are located near the sin-

gularity of the problem, which is the zone with higher numerical error for an uniform

mesh.

Figure 5.22 shows the mean and maximum error as a function of the number of cells.

For each level of refinement, the three grids have approximately the same maximum

error. Since the adaptive grid has less cells than the correspondent uniform grid, the

curves from the adaptive grids are bellow the curve of the uniform grid, see figure

5.22(b).

5.3.5 Flow over a 2D Cylinder

The Navier-Stokes equations were solved for the steady flow over a 2D cylinder for a

Reynolds number of 40. The Reynolds number for this flow is defined by Re = UD/ν,

where D is the cylinder diameter. The computational domain has an extension of 43
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Figure 5.21: Point jet: grid obtained after 14 levels of refinement RLS.

(a) Mean error. (b) Maximum error.

Figure 5.22: Point jet: mean and maximum error over number of cells for uniform and
adaptive grids.
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diameter in the longitudinal direction with the cylinder located 13 diameters from the

inlet. The domain extends up to 13 diameters in the vertical direction.

Figures 5.23(a) and 5.23(b) show respectively the v-velocity contour plot and the

streamlines for the adaptive mesh obtained after 6 levels of refinement using the RLS

error estimator. Different level sets of error distribution can be observed in this flow

due to the different cell refinement levels. The refinement zone is located in a circle

above the cylinder where the v velocity is maximum. This detail can be observed in

the grid zoom (figure 5.23(b)). The flow rettachment length is equal to 2.21 D which

is consistent with the value 2.18 D from Calhoun (2002).

(a) V-velocity contour plot. (b) Flow streamlines and adaptive grid zoom.

Figure 5.23: Cylinder flow: contour plot of the v-velocity and streamlines in the cylin-
der wake after 6 levels of refinement.

5.3.6 Confined 3D flow around a Squared Cylinder

The 3D Navier-Stokes equations were solved for the confined flow in a channel with

a squared cylinder for a Reynolds number of 20. For this subcritical Reynolds number,

the flow remains steady without the onset of the Karman sheet. This problem was

previously studied by Schafer and Turek (1996); Braack and Richter (2006), where

details of the computational domain and boundary conditions can be found.

The starting grid has 2912 cells and figure 5.24 shows the adaptive mesh obtained

after 7 refinement levels with 83706 cells, where the solution streamlines and pressure

contour plot can be observed. The adaptive grid divided the domain in four zones where

the cells have different levels of refinement. The zone with the highest one includes

the four squared corners which are considered singularities points of the problem.



5.3. Absolute Error Estimators - Proposed Method 117

(a) 3D view. (b) Pressure contour plot.

Figure 5.24: Squared cylinder: adaptive mesh after 6 levels of refinement - 3D view
and pressure contour plot.

Figure 5.25: Squared cylinder: adaptive mesh after 6 levels of refinement - 2D plot.
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5.3.7 Flow over a Sphere

The three dimension flow over a sphere at Re = 200 is computed as the last test

of the RLS error estimator and the adaptive code. Two initial meshes were made one

with hexahedrons and the other with tetrahedrons. The initial hexahedron grid has

46800 cells and its domain has a cylindrical form, and the computational domain of

the initial tetrahedral grid is a squared prism with 39× 13× 13 diameters comprising

126182 cells.

Figure 5.26 shows the adaptive grids for two levels of refinement, with both the

hexahedral and tetrahedral grids. The final hexahedrical and tetrahedrical meshes have

1331216 and 2707026 cells, respectively, which corresponds to meshes with less 55.5%

and 66.5% than the uniform refinement case. Both adaptive grids are refined near the

sphere wall and in the flow’s wake, which are the primary features of this problem.

The cone formed by the refined cells in the flow’s wake is bigger in the tetrahedral

grid, since the cells far away of the sphere have a higher hydraulic diameter than in

the hexahedral grid.

Figure 5.26: Sphere flow: example of adaptive refinement with hexahedral and tetra-
hedral grids.
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5.3.8 Absolute Error Estimators - Final Remarks

The Residual Least Squares (RLS) error estimator has shown to be suitable for

adaptive refinement of Finite-Volume methods on unstructured grids. The RLS error

estimator is applicable to arbitrary unstructured grids and its calculation is strongly

coupled to the governing equations and the grid quality.

The second-order FV discretization on adaptive meshes is obtained by treating the

adaptive grid like an unstructured mesh and using a face centered WLS diffusive and

convective schemes. These schemes deal with non-orthogonal and skewness deviations

that occur in the grid interface between cells of different levels of refinement.

The defined adaptive algorithm for FVM is independent of user defined parameters

and can deal with the problem of the grid quality loss in the cell interface. It pro-

duces much smoother adaptive grids having high quality, making it an alternative to

other algorithms existing in the literature like the one purposed by Jasak and Gosman

(2000b).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A finite volume method for the solution of the 3D Navier-Stokes equations for

incompressible fluid flows is presented for unstructured meshes that may include au-

tomatic grid refinement . The different FV schemes for the numerical computation of

incompressible fluid flows on unstructured grids are discussed and their implementa-

tion in the SOL code is verified for selected benchmark cases. Several aspects like grid

quality, numerical accuracy and efficiency are discussed.

A novel convective TVD scheme on unstructured grids is proposed in this Thesis.

The main features of this new method is that it considers the location of the face cen-

troid, correcting the accuracy issue that comes from the grid skewness. By increasing

the accuracy of the r factor, the flux limiters have a more proper use and the overshoot

and undershoot values are reduced when compared with other methods. Additionally,

the number of iterations required to converge the solution is reduced with this new

method.

An automatic adaptive grid procedure is constructed based on a relative error

estimator dR. This algorithm can produce numerical solutions on adaptive grids with

the same accuracy as on a fine uniform grid but with a less number of cells. Extensive

simulations of the lid square cavity flow for Re = 1000 showed that a sequence of

corner vortices could be obtained without any external or user intervention by using

an automatic grid refinement algorithm and a relative error estimator.

This error estimator is capable of local refinement on vortical structures with dif-

ferent geometric and velocity scales, up to sixteen orders of magnitude. Also the small

eddies are well captured and in agreement with the analytical results deduced by Mof-

fatt (1963). The new error estimator detects local extremes independently of the scale

121
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of the computational variables, being a suitable method to be applied at multi-scale

problems.

Second order diffusive and convective schemes based on the WLS method are ver-

ified for several cases with adaptive grids that are known to have a certain degree of

low quality near the interfaces between the cells with different levels of refinement.

The FWLS schemes have several advantages over other ones from the literature since

they are free from the cell centered gradient quantity and can have higher accuracy on

adaptive grids. This type of FV schemes are innovative to the author’s knowledge.

The proposed Residual Least Squares (RLS) is an absolute error estimator that

has been shown to be suitable for adaptive refinement on unstructured grids when

using FVMs. The RLS error estimator is applicable to arbitrary unstructured grids

and its computation is strongly dependent on the governing equations and on the local

grid quality. The error estimator combined with the proposed adaptive algorithm is

independent of user defined parameters. The grid interface correction improves the

overall adaptive algorithm efficiency by considering the impact of these interfaces in

the grid quality. It produces much smoother adaptive grids, making it an alternative

to other algorithms in the literature.

6.2 Future Work

A natural extension of the work presented in this Thesis is the development of a h-p

adaptive algorithm combined with an immersed boundary method (IBM). The author

has implemented, in the SOL code, an IBM based on the WLS method that can be

applied on both Cartesian and unstructured grids. It has been verified that the overall

method has second order accuracy for both the mean and maximum errors unlike some

of other IBMs. The developed method consists of computing a parabolic polynomial

with information from the computational points near the solid boundary to correct the

local velocities.

In the future, to study h-p adaptive refinement, it is necessary to develop high

order schemes on unstructured grids. A fourth order accurate version of the face

WLS diffusive scheme has been developed and tested for different analytic cases of the

Poisson equation. The method consists in using a cubic polynomial with 10 or more

cell values from the proximity of the face. Also since it is a forth order method it is

required to use more that one Gauss point when computing the face integrals, in order

to maintain the fourth order discretization.

Due to synergies of working in the same code, it is possible to create a fourth, sixth
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and eighth order with IBM correction by using the same principle as of the second

order version. The idea is to use regression polynomial with the same order as of

the FV discretization. These new forth, sixth and eighth order versions of the FWLS

schemes should be tested in analytical cases of the Poisson, convection-diffusion and

the Navier-Stokes equations.

The FV schemes and the error estimators used in this Thesis can be applied in

arbitrary polyhedral grids. By adding to the SOL code, a polyhedral grid generator

with the option to prescribe a hydraulic diameter h or element size distribution over

the computational domain. It is possible to have a grid optimizer that obtains a

polyhedral grid with the lowest number of cells for a prescribed error level. The ideal

hydraulic diameter distribution is obtained by using equation 4.19 and an absolute error

estimator. The demonstration of this concept for different problems with analytical

solutions could be an important contribution to the literature.

The developed grid refinement algorithms and error estimators can be applied to

turbulent flows, and the addition of turbulence models to the SOL code will be impor-

tant in the future. Large-Eddy simulations (LES) models are gaining popularity both

in the literature and in commercial codes, although questions like accuracy issues from

the discretization and modeling error on unstructured and adaptive grids are no well

addressed, since the majority of the LES models are developed in the structured grid

framework. The SOL code has been used to compute LES simulations of the round jet

problem using parallel computing for both structured and unstructured grids to study

this issue.

The proposed TVD approach should also be applied on adaptive grids since it is

expected to have better boundedness properties than the other TVD approaches from

the literature, due to the skewness issue at the grid interfaces. Plus, the addition of a

compressible flow solver to the SOL code will be important, allowing the application

of adaptive refinement in problems where discontinuities and shocks occur.
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