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Abstract

Due to the intermittent and variable nature of wind, Wind Power Generation Forecast (WPGF) has

become an essential task for power system operators, who are looking for a reliable wind penetration

into the electric grid. Since there is a need to forecast wind power generation accurately, the main contri-

bution of this thesis is the development, implementation and comparison of WPGF methods to be used

by Distribution System Operators (DSOs). The methodology applied comprised five stages namely,

pre-processing, feature selection, forecasting models, post-processing and validation. For training and

testing the models, historical wind power generation data (measured at secondary substations) of 20

wind farms connected to the Medium Voltage (MV) distribution network was provided by the Portuguese

DSO, while meteorological data was obtained from IPMA and ISTMeteo.

After comparing the accuracy of eight different models in terms of their Relative Root Mean Square

Error (RRMSE), Extreme Gradient Boosting (XGBOOST) appeared as the best-suited forecasting method

for wind power generation. Thus, XGBOOST was chosen for further tests and improvements (tuning) in

order to reduce the error as much as possible. At the end, the best average RRMSE achieved by the

proposed XGBOOST model for 1 year training (JAN-DEC of 2020) and 6 months forecast (JAN-JUN of

2021) corresponds to 13.48%, outperforming the predictions of the Portuguese DSO by more than 20%,

which for the same period of analysis present a RRMSE of 16.88%.

Keywords

Extreme Gradient Boosting (XGBOOST), Medium Voltage Distribution Network, Short-Term Fore-

casting, Wind Power Generation Forecast
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Resumo

Devido à natureza intermitente e variável do vento, a Previsão da Geração de Energia Eólica (PGEE)

tornou-se uma tarefa essencial para os operadores dos sistemas de energia, que procuram uma penetr-

ação confiável do vento na rede elétrica. Uma vez que existe a necessidade de prever com precisão a

geração eólica, a principal contribuição desta tese é o desenvolvimento, implementação e comparação

de metodologias de PGEE a serem utilizadas pelos Operadores da Rede de Distribuição (ORD). A

metodologia desenvolvida compreende cinco etapas, nomeadamente pré-processamento, seleção das

variáveis, modelos de previsão, pós-processamento e validação. Para o treino e teste dos modelos,

foram fornecidos dados históricos de geração eólica (medidos nas subestações secundárias) de 20

parques eólicos ligados à rede de distribuição de média tensão, fornecidos pelo operador do sistema

de distribuição de Portugal, enquanto os dados meteorológicos foram obtidos do IPMA e do ISTMeteo.

Após a comparação da precisão de oito modelos em termos do erro quadrático médio relativo

(RRMSE), o Extreme Gradient Boosting (XGBOOST) foi escolhido como sendo o método mais ade-

quado para a PGEE, no dataset utilizado. Assim, XGBOOST foi escolhido para a realização de testes

mais aprofundados e melhorias na sua parametrização com o objetivo de reduzir ao máximo o erro das

previsões. O melhor desempenho alcançado pelo modelo XGBOOST proposto, considerando a análise

dos valores RRMSE, para 1 ano de treino (JAN-DEZ de 2020) e 6 meses de previsão (JAN-JUN de

2021) foi de 13.48%, superando em mais de 20% as previsões do ORD, que para o mesmo perı́odo de

análise apresentam um RRMSE de 16.88%.

Palavras Chave

Previsão de Curto Prazo, Previsão de Geração de Energia Eólica, Rede de Distribuição de Média

Tensão, Extreme Gradient Boosting (XGBOOST)
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1.1 Motivation

Nowadays, the world is going through an energy transition process from fossil fuels to renewable

energies, that aims to reduce the environmental impact of the energy sector. Since power generation

from conventional units are large contributors to the emission of greenhouse gases, using Renewable

Energy Sources (RES) instead of coal and oil-fired power plants have become a global trend during the

last decades [1].

To increase the penetration rate of RES in power systems, significant incentive schemes and policies

have been considered by governments. For example, the European Union (EU) under the 2030 climate

and energy framework1 for the period 2021-2030 is part of the ambitious European Green Deal. This

framework commits the EU to reduce greenhouse emissions by at least 40% (as compared to 1990

levels), to increase the amount of renewable energy in the energy mix by at least 32% and to improve

energy efficiency by at least 32.5% [2]. To achieve those targets, the penetration of RES such as solar

(photovoltaic and concentrated thermal), wind, hydropower, geothermal, biomass, biofuels, waves or

tidal must continue growing at an accelerated rate.

Over the last years, a rapid expansion of Solar Photovoltaic (PV) and wind has been seen mainly

because the cost of PV and wind power installations has declined sharply. Out of all available RES,

PV and wind are considered now the most abundant, developed, economically viable and commercially

accepted worldwide [3].

Without considering hydropower, wind has the higher installed capacity of the renewables. According

to the Global Wind Report 20212, year 2020 was the best year in history for the global wind industry. The

report shows a year-over-year growth of 53% considering that for 2020 more than 93 GW of wind power

were installed, with 86.9 GW allocated to the onshore market and 6.1 GW to the offshore market [4]. The

new installations brings the global cumulative wind power capacity up to 743 GW. Regarding Europe, a

steady growth was recorded with the Netherlands taking the lead and followed by Belgium and Germany

for offshore installations while Spain, France and Germany were the leaders for onshore installations [4].

In Portugal, wind energy also plays an important role. Since 2000 wind industry has seen a continu-

ous growth year by year, motivated by a political strategy at European and national levels and with the

aim of diversifying sources, improving the security on supply, decreasing the energetic dependency and

reducing the environmental footprint [5].

1 https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework en
2 https://gwec.net/global-wind-report-2021
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In 2019 for instance, renewable energy covered more than 50% of Portugal’s electricity needs and

23% of that energy came from wind energy alone, placing Portugal in the top European countries for

wind energy. The Portuguese government has also pledged to one of the most ambitious 2030 targets

in the EU: it wants renewable energy to cover 80% of the country’s electricity needs by 2030, of which

31% would come from wind [6].

That means that wind power generation will continue growing exponentially in the next years and not

only in Portugal but also worldwide. However, the uncertainty in wind power generation is very large due

to the inherent variability of wind speed [7]. Then, wind variability needs to be understood by operators

of power systems and wind farms in order to ensure that supply and demand are balanced and the

power network operates without constraints.

Since supply and demand should be equal at all times but wind power generation depends on the

availability of wind, that is a weather dependent source, the integration into the existing electrical sup-

ply system brings some challenges at the level of secondary substations that need to be addressed by

Distribution System Operators (DSOs) of power networks.

Some of the challenges include system stability and reliability, due to grid congestion or intermit-

tency of supply; system balance, that requires a strong information exchange between the DSO and

the Transmission System Operator (TSO) or flexibility services (voltage support and demand-side re-

sponse) to ensure that the network is stabilized amid the varying energy generation and consumption.

Other challenges associated to optimise the grid include technical imbalances in existing equipment and

saturations in the Medium Voltage (MV) network or in the substations [8].

Here is where Wind Power Generation Forecast (WPGF) appears as one of the most efficient ways

to overcome some of these problems and to help the power system operators to reduce the risk of un-

reliable electricity supply. Weather variables such as wind speed, wind direction, temperature, pressure

and humidity, among others, influence wind power generation. The development of new techniques

to improve understanding of these variables, through simulation, forecasting, distribution curve fitting,

filtering and modeling, allows making better decisions about expansion of the wind sector and better

management of the electricity system [9].

Additionally, accurate estimation of wind speed and wind power generation might improve the safety,

reliability and profitability not only in the operation of the wind farms but also in the secondary substations

managed by DSOs.

3



WPGF accuracy is directly connected to the need for balancing energy and hence to the cost of

wind power integration. Consequently, a large amount of research has been directed towards the devel-

opment and improvement of good and reliable wind forecasts in recent years and different forecasting

systems with different approaches have been developed [10]. A comprehensive review of the literature

about wind speed and wind power forecasting is presented in Chapter 2 ’State of Art’.

1.2 Objectives

The main objective of this thesis is to develop and implement a framework with several forecasting

models for wind power generation in wind farms connected to secondary substations of the MV distribu-

tion network of Portugal. The models are implemented and compared using Python, to determine which

method gives the lowest percentage of error between predictions and measured values. The final model

needs to be efficient, which means accurate and run in a short computation time.

Specifically Persistence, Auto-Regressive (AR), Auto-Regressive with Exogenous Variable (ARX),

Long Short-Term Memory (LSTM) neural network, Extreme Gradient Boosting (XGBOOST), Random

Forest (RF), Decision Trees (DT) and Support Vector Machine (SVM) models are developed and tested

using real data measured at the secondary substations and provided by the Portuguese DSO.

This data covers seven years of information (2015-2021) of power generated by 20 wind farms in

Portugal mainland. It also includes the DSO predictions for the years 2020 and 2021, that are used to

compared with our models results (through an error metric). The final goal of this work is to improve the

DSO performance by reducing the error as much as possible.

Different meteorological parameters that might influence the forecast results like temperature, radia-

tion, wind speed or wind direction are also considered into the models and that weather data comes from

two different sources, one is the Instituto Português do Mar e da Atmosfera (IPMA)3 and the other one

is the meteorological investigation group of IST: meteoTécnico4 (also refer as ISTMeteo throughout this

document). For IPMA two years of meteorological data are available for the analysis, specifically 2020

and 2021; while for ISTMeteo just seven months of 2021 (from June to December) are available. Both

sources of data are compared, to identify which one offers better results (meaning better data quality

and lower percentage of error) and the best option is used to run the models.

3 https://www.ipma.pt/pt/index.html
4 https://meteo.ist.utl.pt/fdata.php
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It is important to mention that performing the predictions at MV level presents several challenges

comparing with methods already proposed. In comparison with forecast methods proposed at wind

farm level, in MV, the information regarding wind farms does not exist. Additionally, only the Numerical

Weather Prediction (NWP) in areas of 14 km2 is available, which is less accurate when compared with

information available exactly at the wind farms. In comparison to the forecast at regional or national

level, the prediction at MV level is more complicated because only one wind farm is considered, which

means that the error in the forecast has a direct impact on the accuracy of the model. When the forecast

models include several wind farms, the error in the power generation forecast of a wind farm can be

minimal compared with the global system.

1.3 Organization of the Document

After this introductory chapter, the remainder of the thesis is organized as follows:

• Chapter 2: State of Art, presents a literature review related to wind power and wind speed fore-

casting. Regression, Artificial Intelligence (AI) and Machine Learning (ML) methods are explained

and a theoretical background of the concepts necessary to understand the work is detailed.

• Chapter 3: Methodology, explains systematically how the work was done, starting from data sets

used, pre-processing of the initial data, Exploratory Data Analysis (EDA) and feature selection,

implementation of the forecasting models, post-processing and validation conducted.

• Chapter 4: Results and Discussion, shows the forecast results obtained for each method and

the comparison in terms of error performance between them and also with the DSO predictions

provided. It also includes the different tests or improvements performed to the final method chosen,

in order to reduce the error as maximum as possible.

• Chapter 5: Conclusions, summarizes the main outcomes of the thesis, the limitations encountered

in the process and suggests future work related to the topic.
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Wind speed and wind power generation forecasting have been a topic of interest for many re-

searchers during the recent years, due to importance of integrating RES to the power system and all the

implications that it brings. This section presents a review of regression, AI and ML forecasting methods

and a general overview of different publications and studies related to wind power generation and wind

speed forecasting (based on time scales).

2.1 Wind Forecast Classification

A forecast system is characterized by its time horizon, which is the future time period for which

the wind generation or wind speed will be predicted. There is not a strict classification and the time

interval defined for each category varies between different authors. Based on C.Monteiro et al [11],

wind forecasting can be separated according to the prediction horizon, into the following categories:

• Very-short-term forecasting: Few seconds to 30 minutes ahead.

• Short-term forecasting: 30 minutes to 6 hours ahead. Mainly useful for operational purposes

(economic load dispatch planning, load increase/decrease decisions).

• Medium-term forecasting: 6 hours to 1 day ahead. Aim to increase operational security of day

ahead electricity markets and corroborate online/offline decisions.

• Long-term forecasting: Multiple days ahead to 1 year or more. Provide information for power

system risk assessment and also to identify potential for wind power generation in specific areas,

providing valuable data for energy planners [9].

When specifying a wind power prediction model the desired time horizon dictates the final choice.

Different models are differently suited to certain power system planning and market activities, which

occur over different time scales [12].

2.2 Wind Forecast Methods

Based on the analysis of the literature, wind forecast methods can be divided into six overall groups:

Persistence method, Physical methods, Statistical methods, Artificial Neural Networks (ANN) based

models, Hybrid methods and New models. Persistence method is normally used to benchmark other

methods. Physical methods use forecast values from a NWP model as an input to calculate the wind

power generation using the power curve, while statistical methods are based upon analysis of historical

time series of wind.
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ANN make non-linear relationships between input features and output data. Hybrid methods are a

combination of different methods and new models refer to some novel models developed in recent years.

The six groups are detailed in the next subsections.

2.2.1 Persistence Method

The simplest method to forecast wind speed or wind power is to use persistence. It is also called the

naive predictor and it is common between time series forecasting models. This method uses the simple

assumption that the value at a certain future time will be the same as it is when the forecast is made or

it can be the average of past values.

It is based on the assumption of a high correlation between present and future values and it pro-

duces accurate predictions for very-short term forecasts [13]. As expected, the accuracy of this model

degrades rapidly with the increasing prediction lead time [14], so it is normally used as a reference to

evaluate the performance of advanced methods. Any advanced forecasting is worth implementing, only

if it out performs the persistence model [15].

When looking at the literature, S.Dutta et al [16] presents a study that uses persistence method for

short-term electrical demand, PV power and wind power forecasting. In this case persistence was se-

lected because wind power varies very frequently and there is no fixed daily pattern for wind generation.

Unlike most other forecasting algorithms, persistence relies neither on weather forecast data nor on in-

built toolboxes in software for implementation. The results of the study showed that the accuracy of the

forecast using persistence depends on two factors: the look-back time and the extent of change of the

data over time. Thus, the persistence algorithm may be improved by using previous day patterns along

with more recent historic data and assigning weighting factors to account for variation of data over time.

2.2.2 Physical Methods

Physical systems use parameterizations that describes the physical relationship between atmo-

spheric condition, wind, speed, local topography and the output from the wind power plant [15]. The idea

is to refine the real resolution of the Numerical Weather Prediction (NWP) model, in order to achieve an

accurate prediction of the weather.

NWP models are the most important component in wind power prediction, they represent the first

input to any wind power prediction system and understanding the uncertainty in the NWP model will

ultimately help to understand the uncertainty in the WPGF [17].
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NWP are mathematically complex and are usually run on super computers because require a high

computation time to produce forecasts, which limits it usefulness. Hence, the performance of physical

models is often satisfactory for more than 6 hours ahead time horizons (medium to long-term forecast-

ing). They are inappropriate for short-term prediction (several minutes to a few hours) due to difficulty of

information acquisition and computation time [14].

The NWP system usually provides wind speed forecasts for a grid of surrounding points around

the wind generators and the physical approach uses a meso-scale or micro-scale model for the down-

scaling, which interpolate these wind speed forecasts to the level of the wind generator. For running

the downscaling model, it is necessary to have a detailed description of the terrain surrounding the wind

generators. However, collecting the information of terrain conditions is one of the main difficulties in the

implementation of physical models [14].

The refined wind speed data at the hub height of the wind turbines is then plugged into the corre-

sponding wind power curve to calculate the wind power generation. Predicting the wind power output

from each individual wind farm can be time consuming, so instead an approach called upscaling is used.

In upscaling, the wind power output from a sample number of wind farms forms the basis of reference

data. Upscaling can have the apparent effect of reducing forecast error because it becomes averaged

over the whole region [12]. The basic process followed by a physical method is illustrated in Figure 2.1.

Figure 2.1: Physical approach to forecast wind power [18]
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In the literature there are several papers focused on physical methods, for example J.Taylor et al [7]

developed a new type of physical method to predict the probability density function of wind power gener-

ation for 1-to-10 days ahead forecast using Weather Ensemble Predictions (WEP). WEP are generated

from atmospheric models and consist of multiple scenarios for the future value of a weather variable

(in this case wind speed). The results of the forecast were compared with the statistical time series

method Auto-Regressive Moving Average (ARMA) and it was found that WEP gave more accurate and

comfortably superior results, therefore, the author mentions that WEP have a strong potential for WPGF.

Another interesting study focused on offshore wind energy potential in the supply area of Tokyo Elec-

tric Power Company (TEPCO) was investigated by A.Yamaguchi et al [19]. It uses a Mesoscale Model

Fifth Generation (MM5) to investigate the wind climate and its spatial distribution and a Geographical

Information System (GIS) to consider the social and economic criteria. The results of this research

showed that wind climate (wind speed and wind direction) predicted by MM5 model are in good agree-

ment with the observation and the prediction error of annual mean wind speed was 4.8%. Concerning

the economical and social criteria, the available potential becomes 94 TWh/year, accounting for 32% of

the annual demand of TEPCO.

Despite the major progress made by NWP in the last decades, meteorological models are usu-

ally unable to provide reliable surface wind speed forecasts, especially in complex topography regions,

because of shortcomings in horizontal resolution, physical parameterisations and initial and boundary

conditions [20]. In order to reduce these drawbacks, F.Cassola et al [20] applies a Kalman filtering pro-

cedure to locally adjust the low-resolution numerical prediction of wind speed and wind power genration

of a NWP model at the wind farm site of Varese Ligure (Northern Italy). The Kalman filter is an algorithm

that provides an efficient computational (recursive) mean to estimate the state of a process, in a way

that minimises the mean of the square error. The procedure was tested with wind speed and wind en-

ergy output data from a wind farm located between two anemometric stations and the results obtained

showed that this methodology is capable to provide significant forecast improvements with respect to

model direct outputs, leading to the elimination of systematic errors.

2.2.3 Statistical Methods

The statistical approach is based on training with measured data (time series). This methods are

mostly used for short-term forecasting because the accuracy of the predictions drops significantly when

the time horizon is extended and since they provide timely predictions based on patterns, the errors are

minimized if the patterns are met with the historical ones.
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Typical time series models are developed based on historical values. They are easy to model and

capable to provide timely prediction [14]. According to the forecasting process, which was proposed by

Box–Jenkins, to make a mathematical model of the problem four steps, which include model identifica-

tion, model estimation, model diagnostics checking and forecasting are necessary [18].

Several types of time series models may be considered, but the most popular is Auto-Regressive

(AR) and its variants Auto-Regressive with Exogenous Variable (ARX), Auto-Regressive Moving Aver-

age (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA). Moreover, some of the papers

that can be found in the literature regarding time series wind forecast are the following:

C.Gallego et al [21] presents a study focused on modelling the influence of local wind speed and

wind direction on the dynamics of a wind power time series, using a generalized linear AR model. What

they found is their study is that local measurements of both wind speed and wind direction provide useful

information for a better comprehension of wind power time series dynamics, at least when considering

the case of very-short term forecasting. In particular, local wind direction contributes to model some fea-

tures of the prevailing winds, such as the impact on wind variability, whereas the non-linearities related

to the power transformation process can be introduced by considering local wind speed.

A study made by M.Duran et al [22] tested an ARX model for wind power prediction using wind

speed as exogenous variable. The results for a 24 hours time horizon showed a significant improvement

in accuracy, when comparing the mean error of their model with persistence and a traditional AR model.

According to [22], when compared with AR the improvement of ARX is about 14% and about 26% when

compared with persistence.

J.Torres et al [23] presents an ARMA model to predict hourly average wind speed. In this study it

was necessary to carry out a transformation and standardization of the time series in order to adjust

the ARMA model, given the non-Gaussian nature of the hourly wind speed distribution and the non-

stationary nature of its daily evolution. Regarding the results, ARMA model outperformed persistence;

in fact, the errors for ARMA are 12% to 20% smaller than for persistence for a 10 hours forecast. How-

ever, for a forecasting horizon of 1 hour, persistence model had less errors than ARMA model.

Another study made by M.Milligan et al [24] applied an ARMA model to both wind speed and wind

power output, to investigate the extent to which time series analysis can improve on simplistic persis-

tence forecasts. Results are presented for operating wind farms in Iowa and Minnesota and indicate that

a significant improvement over persistence model is sometimes possible but in some cases there is no
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improvement when changing the order of the AR and the Moving Average (MA). Thus, the performance

of the model is highly dependent on the parameters.

E.Yatiyana et al [25] mentions in their paper that wind speed has a significant influence on the power

generated, since wind power has a cubic relationship with wind speed. Also, different wind flow direction

has dynamic effects on the power flow, as related mechanical systems responses play a vital role to

recover the maximum kinetic energy. This study focuses on an ARIMA model to predict wind speed

and wind direction, with the aim of improving the accuracy of the power forecast. The results obtained

showed that the forecasting error is less than 5% for wind speed and 16% for wind direction, when com-

pared with the real values of wind speed and wind direction collected for a seven days period on a site

located in Western Australia.

One last study related with time series wind forecast was made by R.Kavasseri et al [26] and it

examines the use of fractional−ARIMA models to forecast wind speeds on the day-ahead (24h) and

two-day-ahead (48h) horizons, using records obtained from four potential wind generation sites in North

Dakota. Fractional−ARIMA or f−ARIMA model arises as a special case of ARIMA processes where the

differencing parameter d assumes fractionally continuous values in the range (−0.5, 0.5). The results

of this study suggest that significant improvements in forecast accuracy of 42% in average are obtained

with the proposed models compared to the persistence method.

2.2.4 Artificial Neural Networks (ANN)

ANN are one of the most commonly used methods for wind power forecast, since they can identify

the non-linear relationships between input features and output data. The term neural network comes

from the fact that these models were inspired by biological brains in the sense of how they process

information [27].

ANN are typically composed of nodes (or neurons) that are distributed across different layers, namely

input, hidden and output layers. Each node in a layer is linked to the ones in the next by means of a

weight parameter that measures the strength of that connection, forming a fully connected network

structure that resembles the nervous system [27]. If the desired output is known at the beginning of the

process it is called supervised; contrarily, it is called unsupervised [28].

The typical structure of an artificial neural network model for wind speed or wind power forecasting

is presented in Figure 2.2.
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Figure 2.2: Typical ANN model structure [18]

The performance of ANN is dependent on many different factors, including data pre-processing, data

structure, learning method or the connections between input and output data. Designing a neural net-

work requires dealing with two steps: first, the selection of the proper structure of the network, where the

direction of the passed information is specified and second, picking the right learning algorithm among

supervised, unsupervised or reinforcement learning [28].

There are several kinds of ANN but the most common neural networks used for wind forecasting are:

Feed Forward Neural Network (FFNN), where the data passes through the input nodes and exit on the

output nodes, Back-Propagation Neural Network (BPNN), that tunes the weights of the neural network

based on the error rate obtained in the previous iteration or Recurrent Neural Network (RNN), that takes

information from prior inputs to influence the current input and output. Regarding the last type, since

RNN suffers from short-term memory, a more advanced version of RNN called LSTM neural network

is commonly used due to its effectiveness in learning long-term dependencies between time steps of

sequence data.

Now looking in the literature, some of the papers that employ ANN for wind speed or wind power

forecasting are the following:

A study from A.More et al [29] uses ANN to forecast daily, weekly and monthly wind speeds at two

coastal locations in India. Both FFNN and RNN are tested and compared with ARIMA, since occur-

rence of the wind is highly uncertain in time and space. The forecasting results of the ANN models

were fairly close to the corresponding measurements over one month, one week and one day time step,

with average errors restricted to 4.3%, 5.4% and 6.3%, respectively. According to [29], the accuracy
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of the forecast decreased as the interval forecasting period was reduced from one month to one day.

Moreover, the superiority of one neural network over the other was not decided; but ANN definitively

produced much more accurate forecasts than the traditional stochastic time series model ARIMA.

The paper of J.Catalao [30] presents a successful application of ANN in combination with Wavelet

Transform (WT) for short-term wind power forecasting in Portugal. Historical wind power data available

at Redes Energéticas Nacionais (REN) website are the main inputs to train the model and no exogenous

variables are considered. The model proposed, called as Neural Network Wavelet Transform (NNWT),

predicts the value of wind power for 3 hours ahead and it is compared with persistence, ARIMA and

other neural network approach. The results of the study confirmed that this model is novel and effective

since the Mean Absolute Percentage Error (MAPE) has an average value of 6.97%, outperforming the

other methods analysed in [30]. Also, the introduction of the wavelet transform enables a reduction of

the error when compared with the normal neural network.

M.Mabel et al [31] developed an ANN model to forecast wind power generation of seven wind farms

in Muppandal, India. A BPNN is implemented using three input variables: wind speed, relative humidity

and generation hours. Wind speed has direct influence on power generation, relative humidity affects the

air density and this in turn affects power generation and generation hour is also an important parameter,

where maximum generation hours should be obtained during the seasonal period by reducing the down

time of the wind turbine by all possible mean. The model accuracy is evaluated then by comparing the

predicted power with the actual measured values, using two years of training and one year of forecast.

The results are satisfactory and in agreement, since the overall percentage error obtained was 4%.

2.2.5 Hybrid Methods

The combination of different forecasting methods is called hybrid approach. The main aim of this

method is to retain the merits of each technique and improve the overall accuracy [28]. Combining fore-

casting models does not always perform better than the best individual model, however, in some cases

it is viewed as less risky to combine forecasts than to select an individual forecast [18].

In a hybrid method different types of combinations can be found. Among the most popular are:

• Combination of physical and statistical methods.

• Combination of models for short-term and medium-term forecasting.

• Combination of alternative statistical methods.
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Furthermore, some of the studies that can be found in the literature about hybrid methods for wind

speed and wind power forecasting are presented in the next paragraphs:

A study from S.Khazaei [32] presents a hybrid approach for short-term wind power forecasting using

the historical data of Sotavento wind farm (located in Spain) and NWP data obtained from Meteogalicia

numerical weather forecast system. The goal of the study is to forecast the wind power for the next

24 hours, which is carried out through three stages: wind direction forecast, wind speed forecast, and

wind power forecast. In all three phases, the same hybrid method is used, and the only difference is

in the input data set. Outlier detection, decomposition of time series using WT, feature selection and

prediction of each time series decomposed using Multilayer Perceptron (MLP) neural network constitute

the main steps of the proposed method and the results obtained demonstrate it has a very high accuracy.

X.Qin et al [33] proposes an online clustering algorithm for wind speed forecasting that combines

persistence method and a Radial Basis Function Neural Network (RBFNN). The combination of both

approaches in a hybrid model is decided due to its complementary, RBFNN method is more suitable for

monotonically changes of wind speed while persistence method is more suitable for random data with

much noise. The proposed algorithm is tested in an actual wind farm in XinQing, China to predict one

hour ahead wind speed. The results demonstrate that the algorithm can accurately predict wind speed

better than each method individually.

A last study from J.Shi [34] compares two hybrid models, namely, ARIMA-ANN and ARIMA-SVM

with the single forecasting models ARIMA, ANN, and SVM. The main remarks of this study showed

that hybrid approaches are viable options for wind speed and wind power time series forecasting, but

they do not always produce superior performance for all time horizons. In this case, for wind speed,

the hybrid methods present the best performance, while ARIMA method cannot outperform ANN and

SVM methods. For wind power generation, the hybrid methodology outperforms single models only for

1-step ahead forecasting, while ANN method has the best performance for 3-step and 7-step ahead

forecasting. Hence, hybrid models cannot universally outperform the single forecasting models.

2.2.6 New Models

Some novel wind forecasting models have been developed in recent years. Between the most

interesting ones, Extreme Gradient Boosting (XGBOOST), Adaptative Neural Fuzzy Inference Sys-

tem (ANFIS), Random Forest (RF) and Support Vector Machine (SVM) models have achieved the most

accurate predictions for wind speed and wind power generation.
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A briefly description of these models is presented below:

• XGBOOST is an efficient system implementation of Gradient Boosting, applied to supervised

learning problems using training data to predict a target variable. It uses decision trees as its

base learner and by adding new base learners, the error between predictive values and target is

reduced. The final predictive values are equal to the summation of all base learners [35].

• ANFIS is a system that combines fuzzy logic technique with ANN techniques, which brings the

learning capabilities of the ANN to fuzzy inference systems. In an ANFIS, the neuro-adaptive

learning methods are used to adjust the parameters of the membership function. The structure

of the neuro-fuzzy model for wind power forecasting can be presented as a special multilayer

FFNN [36].

• RF is an ensemble method that combines the prediction of several decision trees. The basic

principle is called bagging (bootstrap aggregation), where a sample of size n taken from the training

set Sn is selected randomly and fitted to a regression tree. This sample is called bootstrap, and

it is chosen by replacement, which means that the same observation may appear several times.

A bootstrap sample is obtained by selecting randomly n observations with replacement from Sn,

where each observation has a probability of 1/n to be selected. The aggregation is performed by

averaging the outputs of all trees, which makes the final prediction more reliable [37].

• SVM is a powerful and robust methodology in statistical ML, that has been successfully applied to

regression problems, including problems of wind speed and wind power prediction. The foundation

of SVM is that it formulates the statistical learning problem as a quadratic programming model with

linear constraints. It is closely related to ANN and used effectively for nonlinear classification

problems [38].

Some of the papers found in the literature that employ these new models for wind speed and wind

power forecasting are the following:

A study from Q.Phan et al [35] focuses on a deterministic wind power generation forecast using a

XGBOOST model for short-term time horizon, specifically one hour ahead. The data used in this study

corresponds to historical wind power data recorded at Taiwan’s wind farms, and the NWP wind speed

forecasts obtained from Taiwan’s central weather bureau. The performance of the model, in terms of

training speed and accuracy, is compared with a traditional ANN, a LSTM neural network and a Temporal

Convolutional Network (TCN).
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The results presented in [35] demonstrate the superiority of the proposed XGBOOST model, since

it achieved the highest accuracy among all models. The author of the paper also mentions that the pa-

rameters of the XGBOOST model need to be modified through a tuning process, otherwise, XGBOOST

could not provide a good forecasting for wind power generation.

H.Zheng et al [39] proposes a model for short-term wind power generation forecast based on

XGBOOST, with weather similarity analysis and feature engineering. Hourly wind power generation

is predicted for the week between April 21st and 28th of 2017, using the data from January 1st of

2016 to April 20th of 2017 as training. The results of the proposed model are compared with a BPNN,

RF, Classification and Regression Tree (CART), SVM and a single XGBOOST model. Among all the

methods, XGBOOST produced the highest accuracy of prediction, while weather similarity analysis and

feature engineering significantly improved the accuracy of the forecast results when comparing with the

single XGBOOST model.

A study from F.Castellanos et al [40] explores an ANFIS approach to forecast average hourly wind

speed. To determine the characteristics of ANFIS that best suited the target wind speed forecasting

system, several ANFIS models were trained, tested and compared by changing different parameters.

Regarding the results, they proved to be in accordance with the actual data, since after a trial and error

process, four ANFIS models gave predictions with errors in the range of 25.5% to 32.5%.

Y.Kassa et al [41] presents an ANFIS based approach for one day ahead hourly wind power gener-

ation forecast. The proposed model is trained with historical wind speed and wind power data of a 2.5

MW rated wind turbine installed in Beijing, using one year of data. The performance of the ANFIS model

is therefore evaluated against persistence, a BPNN and a hybrid method. The results demonstrated that

ANFIS outperformed all other methods tested, achieving an average MAPE of 6.88%, highlighting the

accuracy and reliability of ANFIS approach.

Another paper from L.Fugon et al [42] evaluates three different models for short-term WPGF. The

models analyzed are ANN, RF and SVM, while three wind farms in France located in different terrain

complexity and climatic conditions are considered in the analysis. The data used corresponds to a time

series of hourly power production for a 18 months period, specifically from July 2004 to December 2005.

For the same period, NWP of Meteo France is used, considering two meteorological variables, wind

speed and gust wind direction. The forecast is made once a day for time horizons from 0 to 60 hours

ahead, with 3-hour resolution. The results obtained in [42] revealed that RF outperformed the rest of the

models.
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A last study from M.Moantes et al [43] presents a SVM model to forecast wind speed. Twelve years

of wind speed data available for Madina city, Saudi Arabia are used by dividing it in three parts: training

data that is used to build up the model, validation data that is used to select the parameters of the system

that best perform on the data, and testing data that is used to make the predictions of the model and to

measure its performance. Moreover, the SVM model is also compared with a MLP neural network and

the results showed that SVM obtained a lower Mean Square Error (MSE) than MLP, when comparing

actual and predicted data. In fact, SVM outperformed MLP for all systems with orders ranging between

1 and 11, where the order of the system determines the number of previous wind speed days used as

inputs to forecast the wind speed of the next day.

Finally, after reviewing all the papers mentioned in this Chapter 2, it is possible to conclude that wind

speed and wind power generation forecasting is an extend task that depends on different factors, such

as the time horizon of the forecast, the resolution and quantity of data used for training and testing or

the meteorological variables considered. Therefore, there is not a clear method that outperforms all

others for wind power generation forecasting and that is the primary reason why this thesis develops

and compares different methods. The main focus is to find the model that best fits the characteristics of

the wind farms analyzed in this case. Considering that the sample of 20 wind farms studied represent

10% of the total number of wind farms connected to the MV distribution network of Portugal, the results

might be significant for the DSO.
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As mentioned before, all the implementation is done in Python and the data used correspond to 20

wind farms of Portugal mainland. The initial data provided by the DSO is organized in 3 different folders:

Measurements, Meteorology and Predictions.

• Measurements, contains the power generation (measured every 15 minutes in the secondary sub-

stations) of each wind farm for the period 2015-2021.

• Meteorology, contains the weather data for each wind farm. In this case there are two different

files: IPMA that contains 3 hour records of temperature, radiation, wind speed and wind direction

for the period 2020-2021 and ISTMeteo that contains 15 minute records of temperature, radiation,

rain, accumulated rain, wind speed and wind direction for the period 2021-06 to 2021-12.

• Predictions, contains DSO power forecasts for the period 2020-2021. Those values are used as

benchmark to compare with the models results.

The methodology proposed in this thesis corresponds to the five stages presented in Figure 3.1 and

described in this chapter.

Figure 3.1: Methodology stages

Pre-Processing, is where the initial data is treated and cleaned by removing outliers and by dealing

with missing values. Then, EDA and feature selection gives a statistical understanding of the data and

defines the features to use in the models. In Forecasting Models the final datasets are divided into train-

ing and test sets and all the forecasting methods are implemented to make the power predictions. Then,

in the Post-Processing the forecasting results are saved after being checked and adjusted if necessary

and the plots are generated. Finally, Validation calculates and reports the error metric used to compare

the performance of the models.

Based on the error metric and after comparing the results of the different models, the best model

is chosen for further tests and improvements and the results are discussed. Important to mention that

presenting all the data and plots of the 20 wind farms would be extensive, therefore just some wind farms

are used as reference. Although, the algorithms implementation, tests, results or error calculations are

done for all of them.
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3.1 Pre-Processing

This stage intends to prepare the raw data and make it suitable for the forecasting models. The first

step is to create a complete dataset joining the power measurements with the meteorological information

for each wind farm. For IPMA data an upsampling (increasing the frequency of the samples) is required

to transform the 3 hour data into a 15 minutes resolution. To assign the values of the new points created,

a linear interpolation is done between the known data. For ISTMeteo data resample is not necessary

because the time resolution is already 15 minutes.

The next step is to identify and handle outliers, inconsistent data points and missing data. One ex-

ample is shown in Figure 3.2, where the power generation of wind farm 3 is presented. There are some

values (out of range) highlighted with a red ellipse. After verifying the installed capacity of wind farm 3,

that corresponds to 25.8 MW, it is clear that it is impossible to generate power above 25.8 MW, therefore

those values higher than the installed capacity correspond to outliers and are removed.

Figure 3.2: Power generation data of wind farm 3

In the same way, all data points in the datasets that present a value of power higher than the in-

stalled capacity of the wind farm to which they belonged, similar to the example shown in Figure 3.2,

are considered outliers and are removed from the datasets. Negative values of power, if they exist, are

considered inconsistent data points and are adjusted to zero.

Another aspect that is addressed in the data pre-processing is the missing data. An example where

missing data can be observed is presented in Figure 3.3. In this case and for unknown reasons, there

is no information of power generation of wind farm 1 for some months of 2021.
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Figure 3.3: Power generation data of wind farm 1

But not only the quality of the power data is important, also looking and cleaning the weather data

is necessary in order to create a robust model. Figure 3.4 shows plots of wind speed, wind direction

and power generation of wind farm 9 based on IPMA data, where there are also some missing values of

wind speed and wind direction around January of 2021.

Figure 3.4: IPMA wind speed, wind direction and power generation data of wind farm 9
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To deal with missing data, as it was shown in the previous examples, several strategies are applied

to fill in the gaps. All the strategies are specifically based on two factors: the position (where the data is

missing) and the quantity (number of consecutive values that are missing).

In case the missing data is located at the beginning of the dataset, instead of trying to fill the miss-

ing values, the algorithm decreases the length of the training set to the first value that is available but

respecting the minimum quantity of data defined. If in the training set 50% or more of the values are

missing, then no forecast is done and the training set becomes invalid.

On the other side, if the missing data is located at the end of the dataset, a calculation based on the

median is used to fill in the missing values.

When the missing data is not located on the extremes but it is in the middle of the dataset (having

available values before and after the gap), four different scenarios are considered:

• If the missing data correspond to one hour (4 data points) or less, the interpolation approach is

used. Since only a small number of values are missing, a straight line between both sides gives a

good approximation of the missing values.

• From one hour (4 data points) to one day (96 data points) of missing data, an approach based in

adjusting the profile of the previous day is used. It considers the time where the missing data is

found and also the previous day information for that specific moment, to make a normalization and

adapt it to the current day.

• If the missing data goes from one day (96 data points) to one week of 5 days (480 data points), the

median approach is used, but in this case the day of the week and the exact time where the data is

missing are also considered. It is relevant to mention at this point that only real values contribute to

the median, values created by the missing data algorithm are not taken into account in the median

calculation.

• For more than one week (more than 480 data points) of missing values, the gap is not filled be-

cause creating artificial values for long periods of time may have a negative effect in the forecasting

models and consequently in the results. The approach in this case, is to remove the dates that

contain the large periods of missing data from the training set, as long as the minimum length

defined for the training set is respected.
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To show an example of how the fill missing data algorithm works, Figure 3.5 shows the power gener-

ation of wind farm 6 for three days of June of 2021. On Figure 3.5(a) a gap of missing data for almost two

days can be observed, while on Figure 3.5(b) the final result after using the fill missing data algorithm is

presented.

(a) Missing data

(b) Data filled

Figure 3.5: Before and after using the fill missing data algorithm example

In this case, the median plus the day of the week and the exact time approach mentioned before was

used to create the missing values since the length of the gap is comprised between the range of one

day and one week, as shown in Figure 3.5(a).

Finally, once all the data has passed through the outliers removal and the filling missing data algo-

rithm, the clean datasets obtained after pre-processing can pass to the next stage.
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The final datasets obtained for IPMA contain the information of power, temperature, radiation, wind

speed and wind direction for the period 01-01-2020 to 12-31-2021, while for ISTMeteo the final datasets

contain the information of power, temperature, radiation, rain, rain accumulated, wind speed and wind

direction for the period 01-06-2021 to 12-31-2021.

3.2 EDA and Feature Selection

Exploratory Data Analysis (EDA) is the process where the user look at and understand the data with

statistical and visualization methods. This step helps identifying patterns and problems in the dataset,

as well as deciding which model or algorithm should be used in subsequent steps.

First of all, it is necessary to decide whether to use IPMA datasets or ISTMeteo datasets in the

forecasting models. Figure 3.6 presents a comparison between IPMA and ISTMeteo data through the

3D plot (wind speed, wind direction and power) of wind farm 11.

(a) IPMA data (b) ISTMeteo data

Figure 3.6: Wind speed, wind direction and power 3D plot of wind farm 11

Both Figure 3.6(a) and Figure 3.6(b) are similar and visually it is not possible to perceive which option

offers the best data quality. Hence, IPMA and ISTMeteo will be compared based on their performance to

forecast 1 month of 2021 (DEC), by using 6 months of 2021 for training (JUN-NOV) and the option that

offers the lower percentage of error will be selected. This time-frame of comparison is precisely chosen

due to the fact that ISTMeteo available data includes just 7 months.

25



Now to have an idea about the data contained in the datasets, Table 3.1 and Table 3.2 present some

descriptive statistics of wind farm 15 for IPMA and ISTMeteo datasets, respectively. The variables T and

R stand for temperature and radiation.

Table 3.1: Descriptive statistics of wind farm 15 - IPMA dataset

Power
(kW )

T
(K)

R
(W/m2)

Wind Speed
(m/s)

Wind Direction
(◦)

Count 70,176 70,153 70,153 70,153 70,153
Mean 7,834.07 288.58 735.84 7.01 241.51

Standard Dev 7,177.94 4.95 729.82 2.80 109.90
Min 0.00 272.94 0.00 0.14 0.02

25th Percentile 1,600.00 285.25 86.43 4.93 157.24
50th Percentile 5,610.00 288.11 524.35 6.92 284.33
75th Percentile 13,102.50 291.45 1,193.59 9.08 338.96

Max 29,705.29 310.58 2,814.88 16.32 359.98

Table 3.2: Descriptive statistics of wind farm 15 - ISTMeteo dataset

Power
(kW )

T
(K)

R
(W/m2)

Rain
(mm/h)

Rain Acc
(mm/h)

Wind Speed
(m/s)

Wind Direction
(◦)

Count 20,544 20,544 20,544 20,544 20,544 20,544 20,544
Mean 8,860.76 289.46 215.95 0.01 0.23 5.73 254.72

Standard Dev. 7,265.69 4.55 313.06 0.10 1.51 2.36 113.75
Min 0.00 277.07 0.00 0.00 0.00 0.07 0.01

25th Percentile 2,370.00 286.50 0.00 0.00 0.00 3.84 170.92
50th Percentile 7,190.00 289.25 0.00 0.00 0.00 5.60 315.11
75th Percentile 14,832.50 292.27 416.24 0.00 0.00 7.53 339.59

Max 29,705.29 305.58 1,042.16 7.47 24.85 12.75 360.00

From Table 3.1 and Table 3.2 some differences between IPMA and ISTMeteo data already appear.

For example, when comparing the radiation, the average value for IPMA is 735.84 W/m2 while for IST-

Meteo it is much lower, 215.95 W/m2. Also for wind speed, the meteorological parameter that directly

affects the wind energy generation, IPMA has an average value of 7.01 m/s while for ISTMeteo the

average is 5.73 m/s.

After the overlook of the available data, the next step is to determine which features (input variables)

are used in the forecasting models. Only a few variables in the dataset are useful for building the models

and the rest of the features are either redundant or irrelevant. If we input the dataset with all these redun-

dant or irrelevant features, it may negatively impact and reduce the overall performance and accuracy of

the models [44].

26



To select the appropriate features, a correlation matrix, which provides the relationship between

variables is used. The correlation coefficients can fall between -1 and +1, where a high and positive cor-

relation indicates that the variables measure the same characteristic. Thus, the features with the higher

correlation with the target variable (power) are chosen and the features with negative or low correlation

are discarded.

Figure 3.7 shows the correlation matrix of wind farm 15 for both IPMA data in Figure 3.7(a) and

ISTMeteo data in Figure 3.7(b). The colors represent the correlation for each combination of features,

in a scale from -1 to 1 but for clarity the exact value of the correlation coefficient is also shown.

(a) IPMA data (b) ISTMeteo data

Figure 3.7: Correlation matrix of wind farm 15

Based on the correlation matrix, only wind speed and wind direction features are selected to forecast

wind power generation. Wind speed presents the higher correlation as expected, followed by wind

direction which, despite not having a very high correlation may be relevant. The rest of the variables

are discarded because they present either negative or very low correlation. After feature selection, the

dataset is prepared for the next stage.

3.3 Forecasting Models

At this point, where the data has been cleaned, the missing values were filled or handled, the outliers

were removed and the feature selection has been done, the data is finally in place for the regression,

ML and AI based models implementation.
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In the case of time series, the forecast can be made for different time horizons (very-short, short,

medium or long term forecasting) as explained in Section 2.1. Once the forecast period is defined (can

be any amount of time: minutes, hours, days, months or even a year), the final dataset is divided into

the following two subsets:

• Training set, data used by the model to discover and learn patterns between the features and the

forecast variable, power.

• Test set, data on which the power predictions are generated. Correspond to unseen data used to

evaluate the performance of the model.

To graphically observe how the data is divided into training and test, Figure 3.8 shows an example of

6 months training and 1 month forecast using wind farm 15 IPMA dataset. The training period appears

in red and the test period (where the model predicts the power) in blue.

Figure 3.8: Training and test sets example

The training set is normally larger than the test set because the idea is to feed the model with as

much data as possible, to learn meaningful patterns and then apply the things learned to create predic-

tions on unseen data.

As mentioned before, eight different forecasting models are implemented to predict the power gen-

eration of 20 wind farms of Portugal; starting from persistence (to have a benchmark), passing trough

regressive models, a neural network and some newer models. Specifically, the following forecasting

models are tested:
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• Persistence

As mention in Section 2.2.1, this method assumes that the forecast value corresponds to the

same value of the previous time step. In our case, persistence forecast corresponds to the power

measured at the same time instant from the previous day (96 time intervals before the desired

forecast time instant), considering a data resolution of 15 minutes. It can be formulated as:

X̂(t) = X(t− 96) (3.1)

Where X̂(t) is the wind power forecast value at certain instant of time and X(t − 96) is the wind

power value measured 96 time intervals before.

• Auto-Regressive (AR)

This model uses observations from previous time steps as an input for the regression equation, to

predict the value at the next time step. In simple terms, an AR(p) model relates p past observations

to the current value Xt as [45]:

Xt = µ+

p∑
i=1

φiXt−i + εt (3.2)

Where µ is the mean value, φi is a coefficient which reflects each past observation Xt−i influence

on current value and εt is the actual stochastic perturbation.

• Auto-Regressive with Exogenous Variable (ARX)

An ARX model is an auto-regressive model with exogenous inputs. It assumes a stationary and

invertible process where the exogenous inputs come from an external system. Therefore, an

ARX(p, nx) model can described as [46]:

Xt = µ+

p∑
i=1

φiXt−i +

nx∑
i=1

ηibt−i + εt (3.3)

Where ηi is the exogenous coefficient and nx is the order of the exogenous inputs.
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• Long Short-Term Memory (LSTM) Neural Network

LSTM is one of many types of RNN. Since RNN cannot store long time memory, LSTM proved

to be very useful in forecasting cases with long time data based on ’memory line’. In a LSTM the

memorization of earlier stages is performed trough gates [47].

Every LSTM node consists of a set of cells responsible of storing passed data streams. The upper

line in each cell links the models as transport line handing over data from the past to the present

ones and the independency of cells helps the model to filter aggregate values from a cell to another.

At the end, the sigmoidal neural network layer composing the gates, drive the cell to an optimal

value by disposing or letting data pass through. Each sigmoid layer has a binary value (0 or 1),

with 0 meaning to let nothing pass through and 1 meaning to let everything pass through [47].

Figure 3.9 shows the composition of LSTM nodes.

Figure 3.9: LSTM neural network structure [47]

To develop the LSTM model in Python, the library tf.keras.layers.LSTM1 was used.

• Decision Trees (DT)

DT are a common way of representing the decision-making process through a branching, tree-like

structure. They are made up of different nodes. The root node is the start of the decision tree,

which is usually the whole dataset within ML. Leaf nodes are the endpoint of a branch, or the final

output of a series of decisions. The features of the data are internal nodes and the outcome is the

leaf node [48]. Figure 3.10 presents the basic structure of a decision tree.

To develop the DT model in Python, the library sklearn.tree.DecisionTreeRegressor2 was used.

1 https://keras.io/api/layers/recurrent layers/lstm/
2 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Figure 3.10: DT structure [49]

• Random Forest (RF)

RF is a method that combines several decision trees and uses the majority voting of the individual

trees to find the overall class. It is an ensemble learner for classification and regression that con-

siders three steps: randomly selecting training data when making trees, choosing some subsets of

features when splitting nodes and employing only a subset of all features for splitting each node in

each simple decision tree. During the training of the data, each tree learns from a random sample

of the data points [50]. Figure 3.11 shows the composition of ’n’ number of trees, which constructs

the RF algorithm.

Figure 3.11: Composition of RF [1]

To develop the RF model in Python, the library sklearn.ensemble.RandomForestRegressor3 was

used.
3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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• Extreme Gradient Boosting (XGBOOST)

XGBOOST is one of the most efficient implementation of gradient boosted decision trees, specif-

ically designed to optimize memory usage and exploit the hardware computing power. The main

idea of boosting is to sequentially build sub-trees from an original tree such that each subsequent

tree reduces the errors of the previous one. In such a way, the new sub-trees will update the pre-

vious residuals in order to reduce the error of the cost function [51].

The process of additive learning in XGBOOST as explained by N.Dhieb et al [51] is presented

below. First, consider a data set D expressed as follows:

D = {(xi, yi), where xi ∈ Rm and yi ∈ R} (3.4)

|D| = n (3.5)

Where m is the dimension of the features xi. yi is the response of the sample i and n is the number

of samples. The vertical bars in Equation 3.5 denotes the cardinality of the set.

Then, the predicted value of the entry i and denoted as ŷi, is defined as:

ŷi =

K∑
k=1

fk(xi), where fk ∈ F (3.6)

Where fk indicates an independent tree in the space of regression trees F and fk(xi) refers to the

predicted score given by the i-th sample and k-th tree. The objective function of the XGBOOST,

denoted by ζ, is given as follows:

ζ =

n∑
i=1

ℓ(yi, ŷi) +

K∑
k=1

Ω(fk) (3.7)

By minimizing the objective function ζ, the regression tree model functions fk can be learned. The

training loss function ℓ(yi, ŷi) evaluates the difference between the prediction ŷi and the actual

value yi. Herein, the term Ω is used to avoid the overfitting problem by penalizing the model

complexity as follows:

Ω(fk) = γT +
1

2
λ
∥∥w∥∥2 (3.8)

Where γ and λ are regularization parameters, T and w are respectively the numbers of leaves and

the scores on each leaf.
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A second degree Taylor series can be used to approximate the objective function. Let’s define

Ij = {i|q(xi) = j} an instance set of leaf j with q(x) a fixed structure. The optimal weights w∗
j of

leaf j and the corresponding optimal value can be obtained by the following equations:

w∗
j = − gj

hj + λ
(3.9)

ζ∗ =
1

2

T∑
j=1

(
∑

i ∈ Ij
gi)

2

(
∑

i ∈ Ij
hi + λ)

+ λT (3.10)

Where gi and hi are the first and the second gradient orders of the loss function ζ. The loss

function ζ can be used as a quality score of the tree structure q. The smaller the score is, the

better the model is.

As it is not possible to enumerate all the tree structures, a greedy algorithm can solve the problem

by starting from a single leaf and iteratively add branches to the tree. Let’s say that IR and IL are

the instance sets of right and left nodes after split. Assuming I = IR ∪ IL, the loss reduction after

the split is given as:

ζsplit =
1

2

[
(
∑

i ∈ IL
gi)

2∑
i ∈ IL

hi + λ
+

(
∑

i ∈ IR
gi)

2∑
i ∈ IR

hi + λ
−

(
∑

i ∈ I gi)
2∑

i ∈ I hi + λ

]
− γ (3.11)

This formula is usually used in practice for evaluating the split candidates. The XGBOOST model

use many simple trees and score leaf nodes during splitting. The first three terms of the equation

represent respectively the score of the left, right and original leaf. In addition, the term γ is the

regularization on the additional leaf and it will be used in the training process.

To develop the XGBOOST model in Python, the library xgboost.XGBRegressor4 was used.

• Support Vector Machine (SVM)

SVM is used for both regression and classification but commonly finds its application in classi-

fication purposes. SVM regression trains the model using a symmetrical loss function, which

penalizes for both high and low misestimates. The aim is to find a hyperplane that differentiates

the data points plotted in multi-dimensional space, where each dimension represents the different

features used.

4 https://xgboost.readthedocs.io/en/stable/python/python api.html
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The hyperplane having maximum separation distance is used to meet the request of the regression

with a higher degree of accuracy. Different coordinates on the plot are obtained by mapping of the

parameters under observation on the plot. It can be described with the help of mapping function

formulated as [49]:

f(x) =

n∑
i=1

ωϕ(Xi) + b (3.12)

Where ω is is the weighted vector and (Xi) is the mapped regressor.

To develop the SVM model in Python, the library sklearn.svm.SVR5 was used.

Those are the eight wind power generation forecasting methods developed and implemented in the

present thesis. All models excepts Persistence and AR use wind speed and wind direction as features,

as determined in the previous stage.

Once each model has been trained (using the training set) and before calculating the predictions

(over the test set), a technique called k-fold Cross Validation (CV)6 is applied to validate the effectiveness

of the models. What this technique does is to divide the training set into k smaller sets (where a value

of k = 10 is very common in the field of applied ML and then for each one of the k splits the following

procedure is performed:

1. A model is fitted using k − 1 of the folds as training data.

2. The resulting model is validated on the remaining fold (i.e., it is used as a test set to compute a

performance measure).

3. The score of the resulting model is recorded.

4. Steps 1 and 2 are repeated until every k-fold has served as test set.

Figure 3.12 shows how the procedure works. At the end the performance metric reported by k-fold

cross validation is the average of the values computed in the loop, it is called average score and the

closer it is to 1, the better.

5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
6 https://scikit-learn.org/stable/modules/cross validation.html
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Figure 3.12: K-fold cross validation procedure [52]

After k-fold cross validation, the final model is applied on the test set and the power predictions are

generated.

3.4 Post-Processing

This stage starts with the forecast results obtained for the test set in the previous stage. Its main

purpose is to check the generated power predictions and to adjust the values out of range, if they exist.

To do that, the algorithm checks two conditions:

• Power predictions >= 0. The predicted power cannot be negative. In case there are negative

values, they are adjusted to 0.

• Power predictions <= Installed capacity. The predicted power cannot be higher than the installed

capacity of the wind farm. In this case the maximum forecast value is limited to the installed

capacity.

Table 3.3 presents the installed capacity of each wind farm and the year when they were connected

to the MV distribution network of Portugal.
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Table 3.3: Wind farms installed capacity

Wind Farm Installed
Capacity (kW)

Year of
Connection

1 11,291 2003
2 20,850 2005
3 25,800 2008
4 2,150 2007
5 15,050 2008
6 43,000 2005
7 2,800 2004
8 650 2003
9 23,650 2009

10 6,450 2005
11 17,210 1997
12 14,000 2001
13 22,257 2004
14 22,687 2010
15 29,900 2008
16 6,500 2001
17 19,200 2006
18 2,800 2006
19 1,935 2006
20 45,150 2008

Once both conditions are verified or adjusted if necessary, the final wind power predictions are saved

and a plot comparing the forecast values with the real values is generated. An example of this plot is

presented in Figure 3.13, where XGBOOST method is used to forecast 1 month of 2021 (JUL) by using

6 months of training (JAN-JUN of 2021) for IPMA dataset.

Figure 3.13: Forecast vs real values plot for 6 months training, 1 month forecast using IPMA
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3.5 Validation

The accuracy is the most important factor when comparing different forecasting methods. To assess

the performance of the models, several statistical metrics, that show the deviations of forecast values

from measured values, are employed [28].

The most common error criteria used to evaluate and compare different forecasting methods are:

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE),

Root Mean Square Error (RMSE) and Standard Deviation Error (SDE).

The MAE is the most natural criterion, since it is simply the average of all found errors, through their

absolute values to avoid error offset. The RMSE does the same, with the difference that avoids the error

sign by squaring instead of using the absolute value. The MAPE divides each error by the real measured

value before averaging, in order to get a percentage. However, this has its drawbacks, especially when

the real value tends towards zero. [37]. The mathematical expressions used to compute each one of the

mentioned errors are presented in Table 3.4.

Table 3.4: Commonly used error metrics

Error Formula

MAE
1

N

N∑
i=1

∣∣P̂i − Pi

∣∣

MAPE
1

N

N∑
i=1

∣∣P̂i − Pi

∣∣
Pi

× 100

MSE
1

N

N∑
i=1

(P̂i − Pi)
2

RMSE

√√√√ 1

N

N∑
i=1

(P̂i − Pi)2

SDE

√√√√ 1

N

N∑
i=1

(P̂i − Pi − Pavg)2
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Where N is the total number of samples, P̂i is the forecast value, Pi is the measured value and Pavg

is defined as:

Pavg =
1

N

N∑
i=1

P̂i − Pi (3.13)

Now, after having the definitive wind power predictions and in order to compare them with the real values

of power, the last stage consists in calculating the error metric that is used to analyze the performance

of the models. From the different criteria mentioned in Table 3.4, the Root Mean Square (RMSE) was

chosen, but with a small difference: in this case the error is normalized by dividing by the installed ca-

pacity of the wind farm.

Thus, it is called Relative Root Mean Square Error (RRMSE) and it is calculated as:

RRMSE (%) =
RMSE
Pinstalled

× 100 =

√
1
N

∑N
i=1(P̂i − Pi)2

Pinstalled

× 100 (3.14)

Where N is the total number of samples, P̂i is the forecast value, Pi is the measured value and Pinstalled

is the installed capacity of the wind farm.

Basically, the algorithm calculates the daily RRMSE between predictions and real values of power

for the test period defined and then the average of this daily error is reported (as a percentage), to have

an idea of the accuracy of the forecast made.

This RRMSE metric is used as comparison point in all the calculations, results and improvement

tests performed in this work. It will help to determine which datasets to use: IPMA or ISTMeteo, which

forecasting model is the best option to use and to tune (the one that gives the lower percentage of error)

and it will be used to compare the results achieved with the DSO results.

Again, the main objective of this thesis is to develop and implement a framework based on a robust

wind power forecasting model that improves the performance of the forecast model that the DSO is

currently using and to reduce the RRMSE achieved as maximum as possible.
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This section presents the results obtained for the forecasting models developed, the comparison of

the RRMSE between them and with the DSO results. It also presents the different tests and the tuning

process performed to the best-suited model in order to improve the results.

4.1 Persistence and AR

The first method tested is persistence, that corresponds to the most simplest model and basically

gives a point of reference for the rest of the models. Also AR is tested at this moment because both

methods, persistence and AR, use only the past measurements of power to make the predictions, no

meteorological data is needed and that means that the results are the same independently of which

dataset, IPMA or ISTMeteo is used.

Table 4.1 presents the RRMSE of the 20 wind farms obtained for persistence and AR models, for 6

months training (JUN-NOV of 2021) and 1 month forecast (DEC of 2021). The DSO error is also pre-

sented for the same forecast period to have a point of comparison.

Table 4.1: RRMSE for Persistence and AR: 6 months training, 1 month forecast

Wind Farm Persistence
(%)

AR
(%)

DSO
(%)

1 24.594 16.886 13.482
2 37.717 35.105 16.187
3 14.895 12.396 41.013
4 35.714 32.035 19.850
5 30.814 26.713 14.874
6 32.897 27.102 18.929
7 35.403 28.947 50.877
8 38.103 32.230 21.536
9 30.248 26.306 14.372

10 34.136 30.781 45.416
11 31.939 29.759 29.586
12 24.222 19.232 15.593
13 33.787 29.940 17.470
14 38.087 30.688 21.550
15 26.191 20.947 11.954
16 37.940 36.241 21.983
17 34.902 29.912 19.541
18 34.712 33.975 26.619
19 31.060 24.680 18.242
20 29.404 26.565 18.998

Average 31.838 27.522 22.904
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The results presented in Table 4.1 show that the average error between persistence predictions and

the real values of power are higher than 30%. In the case of the AR model the performance is better

than persistence with an average RRMSE of 27.522%, but still when comparing with the DSO error, both

methods are far above the 22.904%, that is the mark to beat.

4.2 IPMA vs ISTMeteo Comparison using ARX

Since the other models involve the usage of the two meteorological parameters selected as features,

namely wind speed and wind direction, it is necessary to define which datasets IPMA or ISTMeteo will

be used to run the models.

As mentioned in Section 3.2 visually or statistically is not possible to determine which datasets, IPMA

or ISTMeteo offer better data quality. What is clear is that there are differences present in the data, as

shown in Figure 4.1, that compares the power curve of wind farm 2 obtained for IPMA in Figure 4.1(a)

and for ISTMeteo in Figure 4.1(b), respectively.

(a) IPMA data (b) ISTMeteo data

Figure 4.1: Wind farm 2 power curve

Hence, both data are compared based on their RRMSE using an ARX model with wind speed and

wind direction as exogenous variables. Both IPMA and ISTMeteo are tested under the same conditions,

at the end the datasets with the best performance (lower percentage of error) are selected as the best

option and are used to run all the forecasting methods.

Table 4.2 presents the results for ARX model comparing IPMA and ISTMeteo. The training and

test periods defined for this comparison are the same that were used for Persistence and AR methods,

training set: JUN-NOV of 2021 and test set: DEC of 2021.
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Table 4.2: IPMA vs ISTMeteo RRMSE for ARX: 6 months training, 1 month forecast

Wind Farm IPMA ARX
(%)

ISTMeteo ARX
(%)

DSO
(%)

1 15.384 14.030 13.482
2 19.248 25.155 16.187
3 12.515 12.436 41.013
4 28.131 24.914 19.850
5 20.364 17.288 14.874
6 21.185 20.149 18.929
7 19.673 23.833 50.877
8 27.287 27.379 21.536
9 20.168 20.233 14.372

10 20.690 21.337 45.416
11 23.380 20.676 29.586
12 17.073 15.283 15.593
13 18.394 19.316 17.470
14 25.111 24.070 21.550
15 13.660 14.491 11.954
16 26.028 27.347 21.983
17 23.803 24.219 19.541
18 28.478 29.769 26.619
19 19.225 22.812 18.242
20 21.114 21.995 18.998

Average 21.046 21.337 22.904

From Table 4.2 it is determined that IPMA datasets give a lower average RRMSE than ISTMeteo and

therefore is the data chosen to use as input in all the forecasting models.

Regarding the RRMSE for ARX method, it is possible to observe that the average error is already

lower than the DSO results, which is positive. However, looking deeply at the individual results for each

wind farm the perspective is different. DSO error is lower in almost all wind farms except in wind farm

3, wind farm 7 and wind farm 10, where the high percentage of error on those farms makes the average

RRMSE of the DSO (22.904%) worse than the average error for IPMA ARX (21.046%). Based on this,

the reality is that the DSO predictions are still better than the predictions obtained for the methods tested

until now (Persistence, AR and ARX).

4.3 ML and AI Based Models

AR and ARX models did not outperformed the DSO results, subsequently the rest of the ML and AI

based models listed in Section 3.3 are tested. The RRMSE of all of them is compared and the model with

the best performance is chosen as the definitive model, if it gives a lower average RRMSE than the DSO.
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Table 4.3 presents the RRMSE for Long Short-Term Memory (LSTM), Decision Trees (DT), Random

Forest (RF), Extreme Gradient Boosting (XGBOOST) and Support Vector Machine (SVM) models, re-

spectively. The training and test periods defined in all the simulations were the same as before, 6 months

training (JUN-NOV of 2021) and 1 month forecast (DEC of 2021). This with the purpose of making the

results comparable between them and with the persistence, AR and ARX methods tested previously.

Table 4.3: RRMSE for LSTM, DT, RF, XGBOOST and SVM: 6 months training, 1 month forecast

Wind Farm LSTM
(%)

DT
(%)

RF
(%)

XGBOOST
(%)

SVM
(%)

DSO
(%)

1 23.209 19.543 12.371 12.451 19.492 13.482
2 24.413 24.596 19.952 17.637 31.561 16.187
3 8.288 15.671 11.257 10.549 10.399 41.013
4 29.888 28.721 28.698 22.649 47.410 19.850
5 22.727 21.783 14.873 13.617 29.755 14.874
6 22.555 25.147 23.205 19.273 35.377 18.929
7 29.426 32.046 21.851 21.101 20.949 50.877
8 25.833 25.484 25.398 24.427 39.240 21.536
9 26.900 23.291 17.296 17.472 24.699 14.372

10 26.700 22.602 21.286 16.374 28.953 45.416
11 21.877 25.785 22.783 21.412 34.463 29.586
12 19.562 23.656 17.673 17.509 23.907 15.593
13 21.859 17.593 18.195 12.947 26.973 17.470
14 26.925 29.963 26.919 28.127 36.026 21.550
15 22.833 17.059 12.828 11.651 15.297 11.954
16 29.310 25.150 22.071 20.628 37.585 21.983
17 27.285 26.611 25.206 21.862 45.642 19.541
18 24.323 31.979 28.080 26.764 29.098 26.619
19 21.575 27.072 18.103 17.219 24.802 18.242
20 27.717 23.865 19.042 18.595 34.802 18.998

Average 24.160 24.381 20.354 18.613 29.822 22.904

From the results obtained in Table 4.3 just two methods, RF (20.354%) and XGBOOST (18.613%)

outperformed the DSO results (22.904%). Since XGBOOST has the lower RRMSE, it is chosen as the

method to be focus on and to be improved, in order to reduce the percentage of error even more.

At this point, one of the main objectives of the thesis has been achieved, considering that the de-

veloped and implemented XGBOOST model can forecast wind power generation with greater accuracy

than the DSO system. Now, some tests and improvements to the algorithm are developed and executed

with the idea of improving the results as much as possible.
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4.4 XGBOOST Adjusting Training and Test Periods

The first test consists on adjusting the training and test periods, to compare the RRMSE of the

XGBOOST model under different time horizons. Until now, just a training period of 6 months (JUN-NOV

of 2021) and a forecast of 1 month (DEC of 2021) has been tested, so the idea is to make different

combinations of training and test sets with the available data.

Since IPMA data was chosen as the datasets to use, there are two years of information that can be

divided as training and test periods in several ways. The idea is to start with the same period of time for

both training and test sets and then start increasing the training period, while decreasing the forecast

horizon; this with the purpose to observe if the model improves the results for longer training periods

and shorter test periods. In the same way, long test periods (6 months and 1 year) are tested using the

rest of the data available for training, to observe if an improvement in the accuracy can be achieved.

The following eight combinations of training and test periods, using the available 2020 and 2021 data

were defined:

• Combination 1: 6 months training (JAN-JUN of 2021) and 6 months forecast (JUL-DEC of 2021).

• Combination 2: 7 months training (JAN-JUL of 2021) and 5 months forecast (AUG-DEC of 2021).

• Combination 3: 8 months training (JAN-AUG of 2021) and 4 months forecast (SEP-DEC of 2021).

• Combination 4: 9 months training (JAN-SEP of 2021) and 3 months forecast (OCT-DEC of 2021).

• Combination 5: 10 months training (JAN-OCT of 2021) and 2 months forecast (NOV-DEC of 2021).

• Combination 6: 11 months training (JAN-NOV of 2021) and 1 month forecast (DEC of 2021).

• Combination 7: 1 year training (JAN-DEC of 2020) and 6 months forecast (JAN-JUN of 2021).

• Combination 8: 1 year training (JAN-DEC of 2020) and 1 year forecast (JAN-DEC of 2021).

Table 4.4 to Table 4.7 present the average RRMSE obtained for each combination and the respec-

tive DSO error calculated for the same forecast period. To have a fair comparison between the different

combinations, regardless of the number of months to forecast, the RRMSE of the same month (DEC of

2021) was analyzed independently of the combination and the same results were obtained.
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Table 4.4: RRMSE for XGBOOST Combination 1 and Combination 2

Wind Farm Combination 1
(%)

DSO
(%)

1 17.165 11.805
2 13.442 13.984
3 6.608 21.061
4 16.724 14.863
5 12.106 10.526
6 13.730 11.704
7 22.395 42.329
8 20.415 14.050
9 21.307 11.740

10 13.647 27.324
11 15.704 19.468
12 10.532 9.822
13 15.623 15.242
14 15.983 15.433
15 14.844 10.464
16 18.088 16.616
17 16.288 14.998
18 16.650 16.290
19 13.928 13.110
20 15.117 14.183

Average 15.515 16.251

Combination 2
(%)

DSO
(%)

12.365 11.672
13.484 13.854
6.831 22.651
19.819 15.578
11.838 10.797
15.590 12.379
19.029 40.460
23.409 14.932
18.295 11.887
13.728 27.867
17.318 20.556
11.641 10.322
15.589 15.170
17.259 15.915
10.729 10.272
18.478 16.846
16.966 15.397
18.842 16.977
13.682 12.801
17.164 14.394

15.603 16.536

Table 4.5: RRMSE for XGBOOST Combination 3 and Combination 4

Wind Farm Combination 3
(%)

DSO
(%)

1 11.738 11.602
2 14.058 14.801
3 7.478 26.038
4 20.532 17.421
5 11.569 11.783
6 15.177 13.768
7 15.109 38.924
8 24.396 17.038
9 15.434 12.035

10 13.770 30.352
11 19.153 22.338
12 13.159 11.384
13 15.555 15.845
14 20.958 17.201
15 10.616 10.341
16 18.869 17.651
17 17.670 16.707
18 18.740 18.292
19 13.458 13.131
20 16.912 15.148

Average 15.717 17.590

Combination 4
(%)

DSO
(%)

11.738 11.602
14.193 15.148
8.206 28.588
20.733 17.595
12.322 12.207
16.188 14.626
15.562 40.388
24.447 17.897
15.086 12.181
14.288 32.443
19.993 23.498
14.128 12.613
15.082 16.127
20.601 18.243
10.654 10.752
19.826 18.729
18.852 17.418
19.525 18.816
14.010 13.554
16.824 15.803

16.113 18.411
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Table 4.6: RRMSE for XGBOOST Combination 5 and Combination 6

Wind Farm Combination 5
(%)

DSO
(%)

1 12.079 12.026
2 15.766 16.847
3 9.327 32.118
4 21.093 19.319
5 14.014 13.214
6 17.915 16.396
7 17.243 43.920
8 25.475 19.438
9 16.463 13.200

10 15.418 37.894
11 23.374 25.471
12 15.975 14.656
13 15.306 17.810
14 22.438 20.670
15 11.401 11.538
16 20.756 19.458
17 20.098 17.872
18 21.479 20.925
19 15.679 15.599
20 17.812 17.038

Average 17.456 20.270

Combination 6
(%)

DSO
(%)

12.655 13.482
16.265 16.775
10.469 41.013
20.879 19.850
13.645 14.874
18.388 18.929
17.348 50.877
33.674 21.536
17.956 14.372
15.500 45.416
25.495 29.586
17.007 15.593
13.068 17.470
23.539 21.550
11.949 11.954
21.573 21.983
18.651 19.541
26.063 26.619
17.438 18.242
19.554 18.998

18.556 22.933

Table 4.7: RRMSE for XGBOOST Combination 7 and Combination 8

Wind Farm Combination 7
(%)

DSO
(%)

1 11.247 10.193
2 13.775 13.443
3 8.558 26.794
4 17.922 17.293
5 11.947 11.221
6 12.886 12.321
7 14.374 39.519
8 15.996 15.510
9 14.989 11.981

10 15.495 30.680
11 14.400 19.459
12 10.595 10.538
13 15.012 14.034
14 16.386 15.931
15 10.804 10.308
16 19.087 18.055
17 15.345 15.129
18 17.286 16.313
19 13.685 12.689
20 15.350 15.140

Average 14.257 16.827

Combination 8
(%)

DSO
(%)

11.814 10.820
13.947 13.717
8.432 23.886
17.344 16.061
11.721 10.869
12.550 12.002
15.452 40.944
15.438 14.769
15.047 11.859
14.891 28.978
15.095 19.463
10.797 10.176
15.420 14.719
16.536 15.680
11.104 10.387
18.229 17.325
15.289 15.063
17.383 16.301
14.173 12.903
15.248 14.655

14.296 16.529
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The results obtained from Table 4.4 to Table 4.7 can be summarized in a graphical way through

Figure 4.2, that presents the average RRMSE of the 20 wind farms for each combination, achieved by

the XGBOOST model and by the DSO.

Figure 4.2: Average RRMSE for each combination

Figure 4.2 shows that first, the error of the XGBOOST model developed is always lower than the

error of the actual system used by the DSO for any combination of training and test sets. Second,

the XGBOOST model more accurately forecasts long periods of time like 6 months (Combination 7)

or 1 complete year (Combination 8) instead of short periods of time like 1 month (Combination 6) or

2 months (Combination 5), that present the higher percentages of error. Third, the best combination

found corresponds to Combination number 7: 1 year training (JAN-DEC of 2020) and 6 months forecast

(JAN-JUN of 2021) with an average RRMSE of 14.257%. From now on these training and test periods

are used in all tests.

4.5 XGBOOST Hyperparameter Tuning

Hyperparameter tuning or hyperparameter optimization, is the process of determining the right com-

bination of hyperparameters that maximizes a ML or AI model performance. It works by running multiple

trials of different combinations of hyperparameters in a single training process. Once the process ends,

it gives the set of hyperparameter values that are best suited for the model to give the most optimal

result [53].
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The hyperparameters of XGBOOST that are tuned are the following [54]:

• max depth: Maximum depth per tree. A deeper tree might increase the performance, but also the

complexity and chances to overfit. The value must be an integer greater than 0. Default is 6.

• learning rate: Determines the step size at each iteration while the model optimizes toward its

objective. A low learning rate makes computation slower, and requires more rounds to achieve the

same reduction in residual error as a model with a high learning rate. The value must be between

0 and 1. Default is 0.3.

• n estimators: The number of trees in the ensemble. Equivalent to the number of boosting rounds.

The value must be an integer greater than 0. Default is 100.

• colsample bytree: Represents the fraction of columns to be randomly sampled for each tree. It

might improve overfitting. The value must be between 0 and 1. Default is 1.

• subsample: Represents the fraction of observations to be sampled for each tree. Lower values

prevent overfitting, but might lead to underfitting. The value must be between 0 and 1. Default is 1.

• min child weight: Defines the minimum sum of weights of all observations required in a child. It

is used to control overfitting. The larger it is, the more conservative the algorithm will be. The value

must be an integer greater than 0. Default is 1.

To find the best combination of hyperparameters for the XGBOOST model, Random Search opti-

mization algorithm1 is used. It consists in a large range of hyperparameters values, which are randomly

iterated a specific number of times over combinations of the values defined. The number of iterations

and the metric used to evaluate the performance of the cross-validated model are specified.

To run Random Search, the ranges of values for each hyperparameter were defined as follows:

• max depth: Integer in the range 1− 6.

• learning rate: Number in the range 0− 0.2.

• n estimators: Integer in the range 100− 1000.

• colsample bytree: Number in the range 0.5− 1.

• subsample: Number in the range 0.5− 1.

• min child weight: Integer in the range 1− 12.

1 https://scikit-learn.org/stable/modules/generated/sklearn.model selection.RandomizedSearchCV.html
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The number of iterations defined for Random Search was 50 and the Mean Square Error (MSE) is

the metric used to evaluate the performance for each combination of hyperparameters. Since Random

Search requires to run 50 times the XGBOOST model and that is done for all the 20 wind farms, the

computation time is very high and it takes a long time to get the results. Therefore, this process is done

only once.

Table 4.8 presents the best combination of hyperparameters obtained for each wind farm after run-

ning Random Search and the average values of each hyperparameter, when considering the 20 wind

farms all together.

Table 4.8: Best XGBOOST hyperparameters for each wind farm

Wind Farm max depth learning rate n estimators colsample bytree subsample min child weight

1 2 0.050 200 0.7 0.7 10
2 2 0.050 500 1.0 0.7 10
3 2 0.001 385 1.0 1.0 5
4 3 0.030 200 1.0 0.7 5
5 3 0.030 200 1.0 1.0 10
6 3 0.030 500 1.0 0.5 10
7 2 0.017 610 0.7 1.0 5
8 3 0.050 200 1.0 0.5 5
9 2 0.050 500 1.0 0.7 10
10 2 0.005 715 1.0 1.0 3
11 3 0.022 345 1.0 0.7 10
12 2 0.050 200 1.0 0.5 3
13 2 0.050 100 1.0 1.0 10
14 3 0.100 100 0.7 1.0 10
15 2 0.025 502 1.0 1.0 5
16 2 0.048 181 1.0 0.7 5
17 3 0.054 208 1.0 1.0 5
18 2 0.046 217 0.7 0.7 3
19 2 0.050 500 1.0 0.7 10
20 2 0.050 500 1.0 0.7 10

Average 2 0.04 343 0.9 0.8 7

Considering the obtained results, two tests, one using the best combination of hyperparameters for

each wind farm and the other using the same average values of hyperparameters for all wind farms are

performed. The idea is to compare the best RRMSE achieved so far, with the RRMSE obtained after the

hyperparameter optimization. The results are presented in Table 4.9, using 1 year training (JAN-DEC

of 2020) and 6 months forecast (JAN-JUN of 2021), that was the best combination found in Section 4.4

and are the training and test periods that used from now on.
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Table 4.9: RRMSE for XGBOOST after hyperparameter tuning: 1 year training, 6 months forecast

Wind Farm Best results
until now (%)

Using best combination
of hyperparameters (%)

Using average values
of hyperparameters (%)

DSO
(%)

1 11.247 10.321 10.338 10.193
2 13.775 12.835 12.860 13.443
3 8.558 7.586 11.194 26.794
4 17.922 17.070 17.497 17.293
5 11.947 11.066 11.174 11.221
6 12.886 11.770 12.125 12.321
7 14.374 13.547 13.567 39.519
8 15.996 14.452 14.756 15.510
9 14.989 14.279 14.254 11.981
10 15.495 14.246 14.404 30.680
11 14.400 13.450 13.526 19.459
12 10.595 9.838 9.909 10.538
13 15.012 14.076 14.175 14.034
14 16.386 15.358 15.459 15.931
15 10.804 9.729 9.796 10.308
16 19.087 16.147 16.237 18.055
17 15.345 14.352 14.732 15.129
18 17.286 16.302 16.335 16.313
19 13.685 12.660 12.726 12.689
20 15.350 14.525 14.555 15.140

Average 14.257 13.180 13.481 16.827

From Table 4.9 it is possible to observe that the average RRMSE was reduced from 14.257% to

13.180% after the hyperparameter tuning done specifically for each wind farm, meaning an improve-

ment of 7.55%. However, since the computation time required to run Random Search to find the best

hyperparameters is around 12 hours per wind farm, the RRMSE was also computed using the average

values of hyperparameters instead of the specific combination found for every wind farm. In this case

the average RRMSE achieved was 13.481%, that is not far from the 13.180% obtained before. In both

cases a considerable reduction of the error was achieved.

Hence, after the comparison between the two tests performed, it was decided that for future forecasts

just the average combination of hyperparameters (max depth = 2, learning rate = 0.04, n estimators =

343, colsample bytree = 0.9, subsample = 0.8, min child weight = 7) will be used to run the XGBOOST

model independently of the wind farm. This, considering that the DSO has 200 wind farms connected to

the MV distribution network of Portugal and running Random Search for each one is not worth the com-

putation time required for the little extra improvement obtained when calculating the best combination of

hyperparameters specific for every wind farm.
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4.6 XGBOOST Trying New Features

The next tests carried out with the aim of reducing the RRMSE of the model even more, consist of

creating and testing two new features. One feature is related with the wind speed of previous days, while

the other one is directly related to the error.

4.6.1 Wind Speed of Previous Days as a Feature

Creating new features from the existing data available, is sometimes a good technique used in ML

to improve results. In this case, since wind speed is the feature that better correlates wind power gen-

eration, the idea is to incorporate not only the wind speed information of the forecast period (as the

XGBOOST model normally do), but also include the wind speed information of 1 day, 2 days and even 3

days ahead the forecast period, as new features.

Table 4.10 presents the results for the wind speed of previous days features and the comparison of

the RRMSE with the best results and with the DSO, for 1 year training and 6 months forecast.

Table 4.10: RRMSE for XGBOOST trying wind speed of previous days as a feature

Wind Farm Best results
(%)

Wind speed -1
(%)

Wind speed -1
and -2 (%)

Wind speed -1,
-2 and -3 (%)

DSO
(%)

1 10.338 10.770 10.746 10.755 10.193
2 12.860 13.181 13.144 13.128 13.443
3 11.194 7.681 7.670 7.711 26.794
4 17.497 17.516 17.898 17.603 17.293
5 11.174 11.360 11.189 11.266 11.221
6 12.125 12.519 12.607 12.649 12.321
7 13.567 13.974 13.986 14.010 39.519
8 14.756 15.417 15.615 15.677 15.510
9 14.254 14.493 14.556 14.508 11.981

10 14.404 14.844 14.897 14.924 30.680
11 13.526 13.832 14.120 14.004 19.459
12 9.909 10.027 10.065 10.218 10.538
13 14.175 14.780 14.717 14.726 14.034
14 15.459 15.637 15.647 16.122 15.931
15 9.796 10.150 10.189 10.233 10.308
16 16.237 19.327 19.302 19.242 18.055
17 14.732 15.083 15.217 15.261 15.129
18 16.335 16.567 16.672 16.714 16.313
19 12.726 13.120 13.111 13.265 12.689
20 14.555 15.219 15.014 15.347 15.140

Average 13.481 13.775 13.818 13.868 16.827
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As shown in Table 4.10, three different simulations were performed by creating new wind speed fea-

tures in the data. In the first simulation just the wind speed of the previous day (wind speed -1) was

included, in the second simulation the wind speed of the previous two days (wind speed -1 and -2) were

included and in the third simulation the wind speed of the previous three days (wind speed -1, -2 and -3)

were included, before doing the forecast.

The results of this test are not as expected, because including the wind speed of previous days as

a feature did not reduce the RRMSE of the model, on the contrary the error passed from 13.481% to

13.775%, 13.818% and 13.868% when using the wind speed information of 1 day, 2 days and 3 days

ahead, respectively. Since no improvement in the XGBOOST model was achieved with this test, the

wind speed of previous days as a feature is discarded.

4.6.2 Error as a Feature

The other feature created correspond to the error between predictions and real values for the training

period. The idea is to forecast one part of the training set, then calculate the error of that forecast (using

the actual values), include that error in the data as a new feature and finally re-run the XGBOOST model

doing the normal forecast that has been used in the last sections but using the new information. The

following procedure explains step by step how the process was done :

1. XGBOOST model with 6 months of training (JAN-JUN of 2020) was run to forecast the other 6

months of the same year (JUL-DEC of 2020).

2. The error for those 6 months (JUL-DEC of 2020) was computed as the difference between predic-

tions and real values.

3. A new feature called ’Error’ was included in the training data with the values obtained in the previ-

ous step.

4. XGBOOST model was re-run using JUL-DEC of 2020 data for training, which include now the

Error feature and then the usual 6 months of 2021 (JAN-JUL) were forecast to make the results

comparable with previous tests.

Table 4.11 presents the RRMSE obtained by trying the error of the training period as a new feature

and the respective comparison with the best results and with the DSO.
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Table 4.11: RRMSE for XGBOOST trying the error as a feature

Wind Farm Best Results
(%)

Error Feature
(%)

DSO
(%)

1 10.338 10.685 10.193
2 12.860 13.906 13.443
3 11.194 7.950 26.794
4 17.497 18.222 17.293
5 11.174 11.286 11.221
6 12.125 12.116 12.321
7 13.567 17.283 39.519
8 14.756 14.699 15.510
9 14.254 19.567 11.981
10 14.404 15.120 30.680
11 13.526 14.006 19.459
12 9.909 9.731 10.538
13 14.175 15.328 14.034
14 15.459 15.476 15.931
15 9.796 10.839 10.308
16 16.237 19.207 18.055
17 14.732 14.740 15.129
18 16.335 16.729 16.313
19 12.726 13.183 12.689
20 14.555 14.991 15.140

Average 13.481 14.253 16.827

The results of this test are also not satisfactory, as shown in Table 4.11. By using the error of the

training period as a feature, the RRMSE of the XGBOOST model increased from 13.481% to 14.253%.

No improvement was achieved, therefore this new feature is also discarded.

4.7 XGBOOST Filtering the Power Curve

Since creating new features did not improve the XGBOOST model results, another approach based

on filtering the training data is tested. The idea is to apply a filter to remove data that does not adjust to

the theoretical power curves (Power vs Wind Speed) of the wind farms. By removing these ’outliers’ from

the training set, the model should have better data quality to learn from and the results might improve.

Wind farm 7 and wind farm 14 are used as example, to show what the power curve filtering algorithm

does. These two wind farms are chosen, because the first one offers a more defined power curve, while

the second one presents more dispersed data. Figure 4.3 presents the initial power curves of wind farm

7 in Figure 4.3(a) and wind farm 14 in Figure 4.3(b).
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(a) Wind Farm 7 (b) Wind Farm 14

Figure 4.3: Initial power curves

The graphs presented in Figure 4.3 were obtained by plotting the wind speed data from IPMA and

the power generation measurements of each wind farm for the period 2020− 2021. From the graphs it is

possible to observe that the power curves are not a continuous line like in the theory, but at least the set

of points follows the same shape.

Thus, this wind speed and wind power data pass trough the filtering algorithm (Open OA library) that

flags the ’outliers’ of the power curve based on two conditions:

• Values with low wind speed and high power.

• Values with high wind speed and low power.

The algorithm works by dividing the data in bins, with a start and end point and specifying a bin width.

The criteria for flagging is based on the standard deviation from the median of the bin center.

Figure 4.4 presents the power curves of wind farm 7 in Figure 4.4(a) and wind farm 14 in

Figure 4.4(b), when applying the filtering. In red appears the ’outliers’ that will be removed.

(a) Wind Farm 7 (b) Wind Farm 14

Figure 4.4: Applying the filtering to the power curves
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After removing those ’outliers’, the filtered power curves are obtained. Figure 4.5 presents the final

power curves of wind farm 7 in Figure 4.5(a) and wind farm 14 in Figure 4.5(b) after the filtering algorithm.

(a) Wind Farm 7 (b) Wind Farm 14

Figure 4.5: Final power curves after filtering

The filtered power curves in Figure 4.5 now present a more similar shape to the behavior of a wind

generator under normal operation. The next step is to run the XGBOOST model using just the data

that passed the filtering, to see if the results improve or not. Table 4.12 presents the RRMSE for 1 year

training and 6 months forecast, obtained when applying the filtering algorithm to the power curve.

Table 4.12: RRMSE for XGBOOST filtering the power curve

Wind Farm Best Results
(%)

Filtering
power curve(%)

DSO
(%)

1 10.338 10.882 10.193
2 12.860 13.578 13.443
3 11.194 7.552 26.794
4 17.497 20.594 17.293
5 11.174 12.199 11.221
6 12.125 14.648 12.321
7 13.567 14.334 39.519
8 15.756 16.522 15.510
9 14.254 15.655 11.981

10 14.404 15.502 30.680
11 13.526 14.173 19.459
12 9.909 10.513 10.538
13 14.175 15.576 14.034
14 15.459 16.718 15.931
15 9.796 10.267 10.308
16 18.237 19.620 18.055
17 14.732 16.165 15.129
18 16.335 17.350 16.313
19 12.726 13.054 12.689
20 14.555 15.205 15.140

Average 13.481 14.505 16.827
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Unfortunately, the results shown in Table 4.12 are not as expected. The RRMSE obtained after

filtering the power curve increased from 13.481% to 14.505%, when compared with the best results

achieved. One possible explanation of this situation is that the test data (forecast period) also con-

tains values that do not adjust to the power curve of the wind farm, and that are part of one of the two

conditions mentioned before, but those values cannot be removed from the test data because then the

forecasting would be incomplete.

Therefore, the model has been trained with ’good’ quality data that adjust to the theory but in reality

it has to forecast the power of the test set and its ’outliers’, showing that the available data may not

be the most optimal. Trying to further reduce the error might have reached the limit when using the

meteorological data available.

4.8 XGBOOST with Backtesting

Backtesting is a term used in modeling that refers to testing a predictive model on historical data.

It involves moving backward in time, step-by-step, in as many stages as it is necessary. Hence, it is a

special type of cross-validation applied to previous periods [55].

To have a graphical understanding of how backtesting works in time series, Figure 4.6 shows an

example of a time series backtesting diagram with an initial training size of 10 observations, a prediction

horizon of 3 steps, and retraining at each iteration.

Figure 4.6: Time series backtesting example [55]

The purpose of this test is then to apply the backtesting with refit and increasing training size strategy

inside the XGBOOST model, to see if the RRMSE can be reduced. To do that, the model is trained each

time before making a new prediction, then that prediction is included in the training set and the process

is repeated until all the predictions are made. That means that the model uses all the data available so

far, while the training set increases sequentially, maintaining the temporal order of the data.
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The initial training set in our case corresponds to 1 year of data (JAN-DEC of 2020), the prediction

horizon correspond to 1 day (meaning that the model is trained in each iteration to forecast each day

separately) and the retraining is done until the 6 months (JAN-JUN of 2021) that correspond to the fore-

cast period are predicted. Table 4.13 presents the RRMSE achieved when using backtesting strategy

implemented inside the XGBOOST model.

Table 4.13: RRMSE for XGBOOST using backtesting strategy

Wind Farm Best Results
(%)

Backtesting
(%)

DSO
(%)

1 10.338 10.053 10.193
2 12.860 12.568 13.443
3 11.194 9.212 26.794
4 17.497 16.475 17.293
5 11.174 10.683 11.221
6 12.125 - 12.321
7 13.567 13.247 39.519
8 14.756 14.109 15.510
9 14.254 13.740 11.981

10 14.404 14.031 30.680
11 13.526 12.901 19.459
12 9.909 9.355 10.538
13 14.175 13.983 14.034
14 15.459 14.809 15.931
15 9.796 9.575 10.308
16 16.237 17.668 18.055
17 14.732 14.153 15.129
18 16.335 15.899 16.313
19 12.726 12.547 12.689
20 14.555 13.832 15.140

Average 13.481 13.097 16.827

As shown in Table 4.13, the results obtained with backtesting are better than the best RRMSE

achieved until now. There is a little improvement of 2.8%, since the error was reduced from 13.481%

to 13.097%. However, when considering the computation time that backtesting requires, which is in

average 10 hours per wind farm, the small reduction of the error makes not worth to implement this

strategy into the model. For the DSO the main point is that the model is able to do the forecast in a

short computing time because they have 200 wind farms connected to the MV distribution network of

Portugal . The implemented XGBOOST model takes between 20 − 30 seconds per wind farm to run,

and with backtesting it takes 1500 times more. Since the accuracy of the forecast with backtesting does

not represent a significant improvement, the inclusion of backtesting is discarded.
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4.9 Stacking

Stacking is the process of using different ML and AI models one after another, where the predictions

from each model are added as new features. It is done in layers, and there can be arbitrarily many

layers, dependent on exactly how many models are trained, along with the best combination of these

models. At the end, the final dataset combining the initial features plus the predictions created after each

layer are feed into a last model. The last model is called a meta-learner, and its purpose is to generalize

all the features from each layer into the final predictions [56].

Figure 4.7 shows the general structure of the stacking process. It is composed by two levels, in

Level 1 M number of models are stacked in layers one by one and in Level 2 the best model is used as

meta-learner to make the final predictions.

Figure 4.7: Stacking process structure [56]

Figure 4.8 presents the diagram of the stacking process implemented in this case. In Level 1,

six layers were defined using the following models: Random Forest (RF), Light Gradient Boosting

Machine (LGBM), Extreme Gradient Boosting (XGBOOST), Ridge, Lasso and Support Vector Ma-

chine (SVM). Then, in Level 2 the XGBOOST model was used as meta-learner to obtain the final

predictions.

Figure 4.8: Stacking process implemented [56]
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Table 4.14 presents the RRMSE obtained using the stacking approach with RF, LGBM, XGBOOST,

Ridge, Lasso and SVM layers and XGBOOST meta-learner, for the same 1 year training and 6 months

forecast of the last tests.

Table 4.14: RRMSE for stacking approach

Wind Farm Best Results
(%)

Stacking
(%)

DSO
(%)

1 10.338 10.358 10.193
2 12.860 12.856 13.443
3 11.194 8.793 26.794
4 17.497 17.685 17.293
5 11.174 11.136 11.221
6 12.125 12.225 12.321
7 13.567 13.589 39.519
8 14.756 14.619 15.510
9 14.254 14.077 11.981

10 14.404 14.731 30.680
11 13.526 13.569 19.459
12 9.909 9.974 10.538
13 14.175 14.585 14.034
14 15.459 15.394 15.931
15 9.796 9.853 10.308
16 16.237 16.288 18.055
17 14.732 14.912 15.129
18 16.335 16.134 16.313
19 12.726 12.689 12.689
20 14.555 14.375 15.140

Average 13.481 13.392 16.827

In this case, by using stacking the RRMSE passed from 13.481% to 13.392%, equivalent to a 0.66%

of improvement. Regarding the computation time required by this approach, for each wind farm it takes

on average 15 minutes to run, that is 40 times more than the normal XGBOOST (that takes between

20 − 30 seconds to run). Therefore, even when the RRMSE results are better when using stacking, the

little reduction of the error is not worth the extra computation time and this approach is discarded.

4.10 Best Results and RRMSE Analysis

After all the tests performed, the best average RRMSE achieved for the implemented XGBOOST

model corresponds to 13.481%, neglecting backtesting and stacking that achieved a lower RRMSE but

were discarded due to the computation time required. The training and forecast periods of the best

results correspond to 1 year training (JAN-DEC of 2020) and 6 months forecast (JAN-JUN of 2021).
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Now a comparison analysis of the best results and the RRMSE distribution of two wind farms is pre-

sented. Wind farm 15 is chosen since it has the lower RRMSE from all wind farms: 9.796%. The other

wind farm chosen is wind farm 3 because it presents a big difference between the RRMSE of XGBOOST

and the DSO, 11.194% and 26.794% respectively.

Figure 4.9 shows the comparison between XGBOOST predictions, DSO predictions and the real

values of power for the six months forecast. Figure 4.9(a) corresponds to wind farm 3 and Figure 4.9(b)

corresponds to wind farm 15.

(a) Wind Farm 3

(b) Wind Farm 15

Figure 4.9: Forecast vs real values for JAN-JUN of 2021
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Looking into more detail, Figure 4.10 presents the same comparison between XGBOOST predic-

tions, DSO predictions and the real values of power for wind farm 3 and wind farm 15, but focusing now

in just one month of the forecast period, specifically February.

(a) Wind Farm 3

(b) Wind Farm 15

Figure 4.10: Forecast vs real values for FEB of 2021

From Figure 4.10 it is already possible to observe that some of the predicted values of power are

above the actual values but others are below, so there is no clear trend but in general the results of the

XGBOOST model present a shape and a behavior similar to the real measurements. For wind farm 3 in

Figure 4.10(a), it is possible to notice that the DSO predictions are well above the actual values, which

explains why the DSO error is so big for this wind farm.
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Finally, Figure 4.11 presents the same comparison but for a specific day of February, the 24th to be

more precise. This allows to observe the actual differences between XGBOOST predictions (in blue),

DSO predictions (in purple) and the real values of power (in red). Figure 4.11(a) corresponds to wind

farm 3 and Figure 4.11(b) corresponds to wind farm 15.

(a) Wind Farm 3

(b) Wind Farm 15

Figure 4.11: Forecast vs real values for the 24th of February of 2021

What Figure 4.11 shows is that the XGBOOST model and the forecasting system used by the DSO

cannot capture all the power fluctuations of wind for small periods of time like hours. This is normal as

consequence of the variability and volatility of wind speed, added to the fact that the meteorological data
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available may not be optimal. However, what matters is that in the big picture the XGBOOST predictions

are accurate enough and give a good approximation of the wind power generation. More importantly,

when comparing XGBOOST with the DSO, not only the results of the model outperformed the DSO

performance, also the fitting of XGBOOST seems to be more accurate.

Now looking at the error metric between predictions and real values, Figure 4.12 presents the

RRMSE distribution for the six months forecast. Figure 4.12(a) corresponds to wind farm 3 and

Figure 4.12(b) corresponds to wind farm 15.

(a) Wind Farm 3

(b) Wind Farm 15

Figure 4.12: RRMSE distribution for the 6 months forecast
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Figure 4.12 shows that the RRMSE also fluctuates a lot. There is no tendency because the error

can go up or down inside each month. For wind farm 3 in Figure 4.12(a), the DSO error is higher than

XGBOOST in almost all points; while for wind farm 15 in Figure 4.12(b) there is no big difference be-

tween XGBOOST and the DSO, both curves present a similar behavior.

Finally, Figure 4.13 presents the monthly average RRMSE for the 6 months forecast. Figure 4.13(a)

corresponds to wind farm 3 and Figure 4.13(b) corresponds to wind farm 15.

(a) Wind Farm 3

(b) Wind Farm 15

Figure 4.13: Monthly average RRMSE for the 6 months forecast
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In the case of Figure 4.13(a) corresponding to wind farm 3, it is possible to observe an important re-

duction of the error, specifically there is a 58% of improvement when comparing XGBOOST results with

the DSO results. In all 6 months the average RRMSE of XGBOOST is lower than the DSO, which means

that the forecast values obtained with our model are closer to the real values. In general, XGBOOST

results are a good approximation; the error remains lower than 15% in almost all months, with the only

exception of January, where the average RRMSE is relatively high.

In the case of Figure 4.13(b) corresponding to wind farm 15, the average RRMSE is basically the

same between XGBOOST and the DSO, with a little improvement in the months of April, May and

June when doing the forecast with the XGBOOST model. For wind farm 15 the error is stable along

all 6 months and it represents the best result obtained from all wind farms, since the average RRMSE

achieved was 9.8%, when using XGBOOST.
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5.1 Conclusions

In this work eight different forecasting models namely, Persistence, Auto-Regressive (AR), Auto-

Regressive with Exogenous Variable (ARX), Long Short-Term Memory (LSTM) neural network, Deci-

sion Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGBOOST) and Support Vector

Machine (SVM) were developed and tested to predict the power generation of 20 wind farms connected

to the secondary substations of the MV distribution network of Portugal mainland.

The historical wind power generation data used was provided by the Portuguese DSO and corre-

sponds to seven years of data, from 2015 to 2021. The DSO also included their own predictions for

the period 2020-2021 obtained through their actual forecasting system. The meteorological data was

obtained from two sources, IPMA (Instituto Português do Mar e da Atmosfera) and ISTMeteo (the me-

teorological investigation group of IST). IPMA data contains two years of information, 2020 and 2021;

while ISTMeteo data contains seven months of information, from June to December of 2021.

To define which meteorological data to use, IPMA and ISTMeteo datasets were tested under the

same forecast conditions, 6 months training (JUN-NOV of 2021) and 1 month forecast (DEC of 2021),

using ARX method. The test determined that IPMA datasets offer better data quality and higher correla-

tion with wind power generation than ISTMeteo, since IPMA presents a lower RRMSE (21.046%) than

ISTMeteo (21.337%). Consequently, IPMA datasets were chosen to run all the forecasting models.

Regarding the methodology implemented in this thesis, it consisted of a framework with five stages:

Pre-Processing, where the initial data was cleaned and the missing values were handled, EDA and

Feature Selection, where the feature selection was carried out, Forecasting Models, where the final

data was divided into training and testing and the predictions for each model were produced, Post-

Processing, where the forecast results were checked, adjusted (if necessary) and saved and Validation,

where the error metric (RRMSE) was calculated and reported to evaluate the performance of the models.

After comparing the eight models between them and with the DSO predictions, the results showed

that for 6 months training (JUN-NOV of 2021) and 1 month forecast (DEC of 2021), XGBOOST obtained

the best performance with a RRMSE of 18.613%, followed by RF with a RRMSE of 20.354% and ARX

with a RRMSE of 21.046%. The rest of the models obtained an error that is higher than the error of the

DSO predictions for the same period, which corresponds to a RRMSE of 22.904%. Specifically, LSTM

neural network, DT, AR, SVM and Persistence obtained respectively a RRMSE of 24.160%, 24.381%,

27.522%, 29.822% and 31.838%.
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With XGBOOST as the best-suited forecasting model for the wind farms analyzed, some tests and

improvements were performed to this method in order to reduce the error as much as possible. It was

found that the best combination of training and test periods based on the two years of information avail-

able for IPMA, corresponds to 1 year of training (JAN-DEC of 2020) and 6 months of forecast (JAN-JUN

of 2021). When using this specific combination the average RRMSE gets reduced to 14.257%.

A hyperparameter tuning of XGBOOST using Random Search optimization was carried out to im-

prove the previous result. The best combination of hyperparameters were found for each wind farm and

the average RRMSE got reduced to 13.180%. However, since the computation time to run Random

Search (around 12 hours) is very high, it was decided to use the average values of the hyperparameters

independently of the wind farm. Those values correspond to a max depth = 2, learning rate = 0.04,

n estimators = 343, colsample bytree = 0.9, subsample = 0.8 and min child weight = 7. With this

combination of hyperparameters the RRMSE achieved is 13.481%, that is not so far from the value ob-

tained using the best combination of hyperparameters, and therefore this approach should be used for

future forecasts or with new wind farms.

Other improvements that lowered the best RRMSE (13.481%) of the developed XGBOOST model

were achieved using backtesting and stacking approaches. In the case of backtesting the RRMSE got

reduced to 13.097%, while for stacking the RRMSE got reduced to 13.392%. Nevertheless, both pro-

cesses require a longer computation time, 10 hours per wind farm for backtesting and 15 minutes per

wind farm for stacking, than the normal XGBOOST model which takes only between 20 to 30 seconds

per wind farm to run. Since one of the most important characteristics of a forecasting model is to make

predictions in an efficient way, meaning rapidly and with accuracy, it was concluded that the small re-

duction of the error achieved with this strategies is not worth the large computation time needed and

consequently, backtesting and stacking were discarded.

After all, using the proposed XGBOOST model for 1 year training (JAN-DEC of 2020) and 6 months

forecast (JAN-JUN of 2021), the best average RRMSE achieved for the 20 wind farms studied, corre-

sponds to 13.481%; after discarding Random Search, backtesting and stacking of course. The results

successfully fulfilled the main goal of this thesis, that was to improve the performance of the actual DSO

forecasting system, which for the same period of analysis presents a RRMSE of 16.827%. With the

XGBOOST model developed an improvement of 20% is achieved. The framework is scalable, computa-

tionally efficient and can be used for future wind power forecasting, if the DSO want to obtain predictions

with higher accuracy.
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5.2 Limitations

The limitations encountered during the development and implementation of the models are mainly

related with the fluctuating nature of wind. Since wind is an intermittent source and wind speed and

wind direction change very quickly, WPGF is a challenging task. The variations on wind conditions could

explain somehow why the lowest percentage of error achieved with the XGBOOST model developed

was 13.481% and why after doing a lot of tests or trying different approaches, none or little improvement

of the error was obtained, but with a high computational cost that at the end makes it non-viable.

Another limitation may have been the data used. It was shown through the power curves of the wind

farms that the meteorological data available may not be optimal, because there is a lot of dispersion and

for some wind farms the behavior or shape of the power curve differs significantly from the theory. The

main reason of this is that we do not have exactly the weather data in each wind farm, we have just the

NWP of IPMA and ISTMeteo in an area of 14 km2, hence, it is possible that with better meteorological

data quality or with the specific weather data of the wind farms the results might improve.

Moreover, for ISTMeteo there was limited meteorological data available, just 7 months of information,

which also limited the period of training and forecast to that time. And although for IPMA there was more

data available, 2 years of information, it is still a reduced amount when compared to the 7 years of wind

power data provided by the DSO.

5.3 Future Work

After the completion of this thesis, some ideas that appear as an opportunity for future improvements

are: explore other strategies to fill the missing data or to remove the outliers during the pre-processing,

test the implemented models with other wind farms (new or in different locations) and most importantly,

try other datasets or other sources where to get the meteorological data, because that was the main

limitation in this case.

As a future research, the XGBOOST model developed should be tested to forecast the power gen-

eration of other renewable technologies connected to the distribution network, such as Solar Photo-

voltaic (PV) or hydropower, and the performance of those technologies must be compared with the

results obtained in this thesis for wind. Finally, new forecasting models for wind power generation should

be developed and tested, considering not only their performance in terms of error metrics but also bear-

ing in mind the computation time required to run those models, which is as determinant factor as the

accuracy itself.
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