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esforçaram para passar os seus conhecimentos. Em especial, agradeço aos meus orientadores nesta
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Resumo

Nesta tese, vamos analisar uma forma especı́fica de baralhar um número finito de cartas. O baral-

hamento consiste em retirar a primeira carta e lançar ao ar uma moeda: se sair cara, coloca-se a carta

na última posição do baralho, mas se sair coroa, coloca-se a carta na penúltima posição do baralho.

Este baralhamento foi introduzido por Arunas Rudvalis (cf. [4], página 90), pelo que o denominamos

por baralhamento de Rudvalis.

A dissertação encontra-se dividida em dois capı́tulos. Na primeiro capı́tulo, começamos por definir

propriedades básicas de cadeias de Markov. De seguida, fazemos um estudo do baralhamento de

Rudvalis, usando cadeias de Markov e as propriedades vistas anteriormente, tais como o tempo de

mistura. O principal objetivo deste capı́tulo é estudar o problema resolvido por Wilson em [15], i.e.,

estimar uma cota inferior (em função do número de cartas do baralho) para o número mı́nimo de vezes

que temos de baralhar as cartas se quisermos que o baralho fique bem baralhado.

Na segundo capı́tulo, aplicamos sucessivamente o baralhamento de Rudvalis e vamos olhando para

a configuração das cartas como um sistema de partı́culas (identificando as cartas vermelhas como

sı́tios vazios e as cartas pretas como sı́tios ocupados), fazendo uso de cadeias de Markov em tempo

contı́nuo. O resultado principal é o Limite Hidrodinâmico, que caracteriza a evolução da densidade de

partı́culas. Em particular, provamos a existência da solução fraca de uma equação diferencial parcial,

a equação do transporte no toro.

Palavras-chave: Cadeias de Markov, equações diferenciais parciais, limite hidrodinâmico,

sistema de partı́culas, tempo de mistura, equação do transporte.
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Abstract

In this thesis, we analyze a specific way to shuffle a finite number of cards. The shuffle consists of

drawing the first card and flipping a coin: if it lands heads, we place the card at the last position of the

deck, while if tails come out, the card is placed at the second-to-last position of the deck. This shuffle

was introduced by Arunas Rudvalis (cf. [4], page 90), so we call it the Rudvalis shuffle.

The dissertation is divided into two chapters. In the first chapter, we start by defining basic properties

of Markov chains. Next, we study the Rudvalis shuffle, using Markov chains and the properties previously

seen, such as the mixing time. The main goal of this chapter is to study the problem solved by Wilson in

[15], i.e., to estimate a lower bound (as a function of the number of cards in the deck) for the minimum

number of times we have to shuffle the cards if we want the deck to be well shuffled.

In the second chapter, we successively apply the Rudvalis shuffle and look at the configuration of

the cards as a particle system (identifying the red cards as empty sites and the black cards as occupied

sites), making use of continuous time Markov chains. The main result is the Hydrodynamic Limit, which

characterizes the evolution of the particle density. In particular, we prove the existence of the weak

solution of a partial differential equation, the transport equation on the torus.

Keywords: Markov chains, partial differential equations, hydrodynamic limit, particle system,

mixing time, transport equation.
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Nomenclature

‖ · ‖TV Given two probability measures µ and ν, we denote by ‖µ− ν‖TV the total variation distance

between these measures.

d(t) We denote by d(t) the total variation distance between the distribution of a Markov chain at

time t to its stationary distribution.

tmix We denote by tmix the mixing time of a Markov chain.

‖ · ‖∞ Given f : X → R, we denote by ‖f‖∞ = sup
x∈X
|f(x)| the L∞(X)-norm.

DX [0, T ] Given T > 0 and a metric space X, we denote by DX [0, T ] the space of right continuous

functions x : [0, T ]→ X which have left-hand limits.

Eµ[ · ] Given a probability measure µ defined on Ω and a random variable, Z : Ω→ R, we denote by

Eµ[Z] =
∫

Ω
Z(ω) µ(dω) the expectation of Z with respect µ. Likewise, we denote by V arµ(Z)

the variance of Z with respect to µ.

Eµ[ · ] Given a measure µ on Ω, a measure Pµ on DΩ[0, T ] starting from µ, we denote by Eµ[Z] =∫
DΩ[0,T ]

Z(x)Pµ(dx) the expectation of Z with respect to Pµ. When referring to a Markov pro-

cess, Eµ indicates the expectation given that the initial measure is µ.

O(g(n)) Given a complex valued function f and a real valued function g defined in N, we write that

f(n) = O(g(n)) if there are M,n0 ∈ N such that |f(n)| ≤Mg(n) for all n ≥ n0.

o(g(n)) Given a complex valued function f and a real valued function g defined in N, we write that

f(n) = o(g(n)) if lim
n→∞

f(n)
g(n) = 0.

<( · ) Given a complex number λ = a+ bi (with a, b ∈ R), we denote by <(λ) = a its real part.

=( · ) Given a complex number λ = a+ bi (with a, b ∈ R), we denote by =(λ) = b its imaginary part.

λ Given a complex number λ = a+ bi (with a, b ∈ R), we denote by λ = a− bi its conjugate.

T We denote by T := R/Z = [0, 1) the one-dimensional continuous torus.

Tn We denote by Tn := Z/nZ = {0, 1, . . . , n−1} the one-dimensional discrete torus with n points.

Ωn We denote by Ωn := {0, 1}Tn = {η : Tn → {0, 1} | η is a function} the space of configurations

of particles on the torus.
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Z ∼ µ Given a random variable Z and a probability distribution µ, we write that Z ∼ µ if Z has

distribution µ.

M We denote byM the space of positive measures on T with total mass bounded by 1 endowed

with the weak topology.

〈·, f〉 We use this notation for two different operations: if ρ is a function, then we denote by 〈ρ, f〉 =∫
ρ(u)f(u) du the inner product in L2(T), while if π is a measure, then we denote by 〈π, f〉 =∫
f(u) π(du) the integral of f with respect to π.

Cn We denote by Cn the space of functions whose the jth derivative for j ∈ {0, 1, ..., n} exists and

it is continuous. In particular, C0 := C is the space of continuous functions.

Cn,m Given T > 0, we denote by Cn,m([0, T ]×T) the space of functions f : [0, T ]×T→ R such that

f is Cn[0, T ] in the first component and Cm(T) in the second component.

∂t Given f : R+ × T→ R , we denote by ∂t the first derivative on the first component (time).

∇ Given a function f : R+ × T → R , we denote by ∇f(t, u) the first derivative on the second

component (space).

ft(u) Given a function f := f(t, u) that depends on two variables, we write ft(u) instead of f(t, u) in

order to simplify the notation.

· . · Given two sequences {fn}n∈N and {gn}n∈N, we write that fn . gn if there exists a positive

constant C, independent of n, such that fn ≤ C gn for all n ∈ N.

· � · Given two measures µ and λ, we write that µ� λ if µ is absolutely continuous with respect to

λ.

(X,B) We denote by X a generic metric space and by B the σ-algebra generated by the open sets,

the Borel σ-algebra on X.
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Introduction

Markov chains, named after Andrey Markov, are widely used in several fields, e.g., statistics, eco-

nomics, machine learning. A Markov chain is a stochastic process, i.e., a collection of random variables

indexed on time, which has the property (Markov property) that the future of the process depends only

on its present and it is conditionally independent of its past.

There are many real life occurrences of Markov chains but our focus in this dissertation will be a

Markov chain generated by a card shuffle, more precisely, a random walk followed by the permutations

of the cards when the deck is shuffled. Here the state space is the symmetric group Sn (whose elements

are called permutations) and the transitions are given by the specific chosen way to shuffle the cards.

We are interested on the number of shuffles it takes for a deck to be well shuffled. But what does

it mean for the deck to be well shuffled? Well, it means that after a certain number of shuffles, all the

possible n! permutations are equally likely. In a standard deck of 52 cards, the number of possible states

of the deck (52!) is already very large, and it might seem that we need several shuffles to mix the deck.

Of course, the number of shuffles we need depends on the shuffle. For example, if we use the classical

riffle shuffle (in which half of the deck is held in each hand and then cards are released so that they

fall to the table interleaved), after only 7 shuffles, the deck is close to random [2]. We are going to

consider instead another shuffle, which was introduced by Arunas Rudvalis [4] and it is very simple to

understand. We take the first card of the deck and we insert it in the last position with probability 1/2 or

in the second-to-last position with probability 1/2. Note that the Markov property is verified because the

next permutation of the deck depends only on the previous one and it is conditionally independent of the

others.

We shall look for the number of shuffles needed for the deck to be well shuffled after successively

applying the previous shuffle. But how can we do this? We will start by defining some basic concepts

of discrete time Markov chains, namely, the mixing time, which gives the time it takes for the chain to be

arbitrarily close to its stationary distribution. If the deck reaches the stationary state, which is the uniform

distribution, this means that at that moment any permutation is equally likely. In other words, when the

state of the deck reaches stationarity, the deck is well shuffled. Thus, finding the number of shuffles

it takes for the deck to be well shuffled boils down to estimating the mixing time of the Markov chain

described by the Rudvalis shuffle. Having realized that, we will use some properties of eigenvectors to

estimate the mixing time of the Rudvalis shuffle. The upper bound of the mixing time Rudvalis shuffle is

O(n3 log (n)) [10] (after that number of shuffles the deck is well shuffled). Here we explain the method
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used by Wilson in [15], which shows that the lower bound for the shuffle is also O(n3 log (n)) (we need

at least that number of shuffles for the deck to be well shuffled). Therefore we can conclude that the

mixing time for the Rudvalis shuffle is O(n3 log (n)).

For the second part of the dissertation, we will interpret the Rudvalis shuffle as an interacting particle

system on n sites, associating black cards with particles and red cards with vacant sites (in a standard

52-card deck of French-suited playing cards, this would correspond to having a system of 52 sites with

26 particles). We want instead to find what happens to the system when n goes to infinity, i.e., we want

to know how the particles behave when the number of sites goes to infinity.

This scenario is motivated by the interaction between particles (microscopic) in a real system, such

as a gas or a fluid (macroscopic). In this kind of systems, the number of particles is very large and thus

it is impossible to study the behaviour of each particle individually in order to understand the collective

behaviour of the system, i.e., it is not easy to study the macroscopic space (for example the gas) using

the microscopic space (looking at the motion of all individual particles). To overcome this problem, what

it is done instead is to consider that the particles move randomly according to some probability law (this

is shown to model well real macroscopic systems) and use the results obtained for the microscopic case

to draw conclusions for the macroscopic space.

The last strategy is done by considering an initial density of particles at the macroscopic level and

a probabilistic law for the microscopic particles (this will be determined by the Rudvalis shuffle). Then

we associate the density of the macroscopic system with an initial distribution of particles in the micro-

scopic system, to which we associate a continuous Markov chain, modelling the microscopic system.

This system conserves one or more quantities (in our case, the number of red and black cards is the

preserved quantity) but the distribution of this quantity changes through time. The question we ask is

how can we approximate the distribution of particles through time, and the hydrodynamic limit tells us

that the density of particles is described by a solution of a partial differential equation (PDE). In other

words, the hydrodynamic limit allows finding a macroscopic law (in general a solution of a PDE) through

a microscopic underlying random dynamic.

The hydrodynamic limit is really interesting in the sense that it allows us to relate concepts of proba-

bility theory with partial differential equations. This is because the density of particles in the macroscopic

space is usually described by a weak solution of a PDE. So if we take a random process (the card shuf-

fle), this random process gives rise, in the limit, to a deterministic process. Furthermore, if we prove the

uniqueness of the weak solution of that PDE, the hydrodynamic limit allows concluding the existence of

a weak solution to a PDE which a priori we did not know it existed. In other words, we use a random

process to prove the existence of a (weak) solution of a PDE. This is exactly what we aim to do in the

second part of this dissertation: explore the Rudvalis shuffle (which is a random process) and use it to

find the (weak) solution of a PDE, in our case, the transport equation.

2



Chapter 1

Discrete time Rudvalis shuffle

In this chapter, we start by studying discrete time Markov chains. We define a Markov chain, present

basic properties such as stationarity and irreducibility and we also have a brief look at eigenfunctions

associated with Markov chains. Then, we define the Rudvalis shuffle and estimate a lower bound for its

mixing time by using properties of discrete time Markov chains.

1.1 Discrete time Markov chains

Among the properties of a Markov chain, the irreducibility and the stationarity are of special interest,

since, for example, if a Markov chain is irreducible and its state space is finite, then the stationary

distribution is unique [13]. For these chains, we can define the mixing time, which is the time the chain

takes to be close (to be rigorously specified later on) to its stationary distribution.

1.1.1 Basic properties

Let (Ω̃,F ,P) be a probability space. Recall the definition of a (homogeneous) discrete time Markov

chain [8]:

Definition 1.1.1 (Discrete time Markov chain). Let P be a k × k matrix with elements {P (i, j) : i, j ∈

{1, · · · , k}}. A random process {Xt}t∈N0 with finite state space Ω = {s1, · · · , sk} is said to be a (ho-

mogeneous) Markov chain with transition matrix P , if for all n, all i, j ∈ {1, · · · , k} and all i0, · · · , in−1 ∈

{1, · · · , k} we have

P(Xn+1 = sj |X0 = si0 , X1 = si1 , · · · , Xn−1 = sin−1
, Xn = si) = P(Xn+1 = sj |Xn = si)

= P (i, j).

The elements of the transition matrix P are called transition probabilities: P (i, j) = P(Xn+1 =

sj |Xn = si) is the probability of transitioning from state si to state sj in one time step.

The stationary distribution of a Markov chain is a probability distribution such that if the chain starts

from that distribution, then it will always have that distribution at any time t ∈ N0.

3



Definition 1.1.2 (Stationary distribution). Consider a (homogeneous) Markov chain {Xt}t∈N0
with tran-

sition matrix P and state space Ω = {s1, . . . , sk}. A probability distribution π = (π1, . . . , πk) is said to be

a stationary distribution (or stationary measure or invariant measure) if πP = π, that is, for j = 1, . . . , k

(πP )(j) =

k∑
i=1

π(i)P (i, j) = π(j).

Remark 1.1.3. In order to avoid an enumeration of the state space, sometimes we might denote P (i, j)

by P (si, sj) and π(i) by π(si).

Another concept related to Markov chains is the one of irreducibility. A chain is said to be irreducible

if all states can be reached from every state. More precisely:

Definition 1.1.4 (Irreducibility). A Markov chain {Xt}t∈N0 with state space Ω = {s1, · · · , sk} and transi-

tion matrix P is said to be irreducible if for all si, sj ∈ Ω there is a positive probability of ever reaching sj

starting from si and ever reaching sj starting from si. In other words, there exist n, k ∈ N0 such that

P(Xm+n = sj |Xm = si) > 0,

P(Xm+k = si|Xm = sj) > 0.

Otherwise the chain is said to be reducible.

It is well known that every Markov chain with finite state space has at least one stationary distribution

and that if the Markov chain is irreducible, the stationary distribution is unique.

Throughout the rest of this section, we shall denote by {Xt}t∈N0
an irreducible and aperiodic (for any

state s, the greatest common divisor of the set of times the chain can return to s is 1) Markov chain with

finite state space Ω, transition matrix P , initial measure µ0(·) = P(X0 ∈ ·) and stationary distribution

π. Let Ft := σ(Xs | s ≤ t) be the σ-algebra generated by X1, X2, . . . , Xt and {Ft}t∈N0
the filtration

associated with {Xt}t∈N0
. Moreover, denote by Eµ0

the expectation starting from µ0.

One question we might ask is if the distribution of the chain converges (with time t ∈ N0) to its

stationary distribution. In order to know that, we first need a way to compare two probability distributions.

Definition 1.1.5 (Total variation distance). Let µ and ν be two probability distributions defined on a finite

state space Ω. The total variation distance between these two probability distributions is defined as

‖µ− ν‖TV := max
A⊆Ω
|µ(A)− ν(A)|,

where µ(A) =
∑
x∈A µ(x).

Most often, the set which maximizes the difference of the distributions might not be easy to find, so

we propose another way to compute this distance between distributions.

Proposition 1.1.6. Let µ and ν be two probability distributions defined on the state space Ω. Then

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

4



Proof. Consider the event B = {x ∈ Ω : µ(x) ≥ ν(x)} and let A ⊆ Ω.

Let C := A ∩Bc ⊆ Bc. Since µ and ν are finite,

µ(C) < ν(C)⇔ µ(A)− ν(A) < µ(A ∩B)− ν(A ∩B) (1.1)

and for D := Ac ∩B ⊆ B,

µ(D) ≥ ν(D)⇔ µ(A ∩B)− ν(A ∩B) ≤ µ(B)− ν(B). (1.2)

Combining (1.1) and (1.2), we obtain

µ(A)− ν(A) ≤ µ(B)− ν(B).

Similarly, taking C := Ac ∩Bc and D := A ∩B,

ν(A)− µ(A) ≤ ν(Bc)− µ(Bc) = µ(B)− ν(B).

Thus, from the two previous inequalities, we conclude that |µ(A)− ν(A)| ≤ µ(B)− ν(B), so that

max
A⊆Ω
|µ(A)− ν(A)| = µ(B)− ν(B) =

1

2
(µ(B)− ν(B)) +

1

2
(ν(Bc)− µ(Bc))

=
1

2

∑
x∈B

µ(x)− ν(x) +
1

2

∑
x∈Bc

|µ(x)− ν(x)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Remark 1.1.7. It is clear that 0 ≤ ‖µ− ν‖TV ≤ 1 and if ‖µ− ν‖TV = 0, then µ = ν. Furthermore, from

the previous result we can also write the total variation distance as

‖µ− ν‖TV =
1

2
(µ(B)− ν(B)),

where B = {x ∈ Ω : µ(x) ≥ ν(x)}.

Convergence in total variation distance is defined as expected.

Definition 1.1.8 (Convergence in total variation distance). Let {µt}t∈N0
and µ be probability distributions

on a finite set Ω. We say that {µt}t∈N0 converges to µ in total variation, which we denote by µt
TV−−−→
t→∞

µ if

lim
t→∞

‖µt − µ‖TV = 0.

In particular, for an irreducible and aperiodic finite chain, the distribution of the chain converges (in

total variation distance) to the unique stationary distribution π (Section 4.3 of [13]). But how much time

t does it take for the distribution of the chain to get arbitrarily close to the stationary distribution? With

that question in mind, we define a function that keeps track of the distance between the distribution of

5



the chain at time t and the stationary distribution:

d(t) = max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV

,

where P t(x, y) := P(Xt = y|X0 = x) is the probability of reaching state y in t time steps, given that

X0 = x, that is, given that the chain started at state x.

It can be shown that d(t) is a decreasing function (Exercise 4.2 of [13]) which approaches zero as t

goes to infinity, i.e., the more the chain evolves, the closer it is to stationarity. The time t in which the

chain gets arbitrarily close to the stationary distribution is called the mixing time of the Markov chain and

is precisely defined as follows:

Definition 1.1.9 (Mixing time). For ε ∈ (0, 1), we define

tmix(ε) = min{t : d(t) ≤ ε}.

It is common to choose ε := 1
4 and define tmix := tmix(1/4).

1.1.2 Eigenfunctions

It will be useful to introduce the concept of eigenfunctions and eigenvalues of the transition matrix of

a Markov chain. Moreover, there are properties relating eigenfunctions and the stationary distribution of

a Markov chain.

Definition 1.1.10 (Eigenfunction). Let P be a transition matrix of a Markov chain with finite state space

Ω. A function f on Ω is an eigenfunction (or eigenvector) of P associated with the eigenvalue λ if

Pf = λf.

Remark 1.1.11. The eigenfunctions, as well as the eigenvalues, can be complex-valued. Moreover,

by abuse of language, we might say “a Markov chain with eigenfunction f ” instead of “a Markov chain

whose transition matrix has an eigenfunction f ”.

The previous definition is equivalent to having

(Pf)(z) :=
∑
j∈Ω

P (z, j)f(j) = λf(z)

for every state z ∈ Ω. From now on, we will omit the first parenthesis and just write Pf(z).

Let f be a function on Ω and µ be a probability distribution on Ω. Then, we can use the Markov

property to write

Eµ[f(Xt+1)|Ft] = Eµ[f(Xt+1)|Xt] =
∑
x∈Ω

P (Xt, x)f(x) = Pf(Xt),

where the Markov property is used in the first equality. If f is an eigenfunction with eigenvalue λ, then

Eµ[f(Xt+1)|Ft] = Eµ[f(Xt+1)|Xt] = λf(Xt). (1.3)

6



The fact that the transition matrix P is right stochastic (i.e., each entry is non-negative and each row

adds up to 1) will give rise to an eigenfunction associated with the eigenvalue 1. In fact, it is true that all

the eigenvalues have absolute value bounded from above by 1.

Lemma 1.1.12. Let {Xt}t∈N0 be a discrete Markov chain with finite state space Ω, transition matrix P

and initial distribution µ0. Let f be an eigenfunction of P with eigenvalue λ. Then

1. Eµ0
[f(Xt)] = λtf(X0).

2. |λ| ≤ 1 and there exists always one eigenvalue equal to 1.

Proof.

1. If we set g(t) := Eµ0
[f(Xt)] and take expectations on both sides of Eµ0

[f(Xt+1)|Xt] = λf(Xt), we

get (by the Tower Law property) that g(t + 1) = λg(t), for all t ∈ N0. Solving that equation we get

g(t) = λtg(0). Thus, for all t ∈ N0, we have that

Eµ0 [f(Xt)] = λtEµ0 [f(X0)] = λtf(X0).

2. Let ‖f‖∞ = max
x∈Ω
|f(x)|. Since the entries of P are non-negative and the rows add up to 1,

‖Pf‖∞ = max
x∈Ω
|
∑
y∈Ω

P (x, y)f(y)| ≤ max
x∈Ω

∑
y∈Ω

P (x, y)|f(y)| ≤ ‖f‖∞max
x∈Ω

∑
y∈Ω

P (x, y) = ‖f‖∞ .

Now suppose, by contradiction, that |λ| > 1. Then ‖λf‖∞ = |λ| ‖f‖∞ > ‖f‖∞, leading to ‖Pf‖∞ <

‖λf‖∞, which is a contradiction with the definition of the eigenfunction λ.

In order to see that there is an eigenvalue 1, just note that since the rows of P add up to 1, it is true

that Pf = f , if f(x) = 1 for any x ∈ Ω, that is, 1 is an eigenvalue of P .

We define the expectation of a function Ψ : Ω→ C under a probability measure µ on a finite space Ω

by

Eµ[Ψ] =
∑
x∈Ω

Ψ(x)µ(x).

Lemma 1.1.13. Let P be a transition matrix of a Markov chain with finite state space Ω and stationary

distribution π. If f is an eigenfunction with eigenvalue λ 6= 1, then Eπ[f ] = 0.

Proof. Note that

λπf = λ
∑
x∈Ω

f(x)π(x) = λEπ[f ]

and since π is stationary, πPf = πf = Eπ[f ]. Thus, multiplying by π on both sides of Pf = λf , we

obtain that Eπ[f ] = λEπ[f ]. Since λ 6= 1, we must have Eπ[f ] = 0.
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1.2 Rudvalis shuffle

We will now take a look at a very specific way to shuffle a deck of cards. Since a card shuffle consists

of a random walk on the permutations of the deck, this shuffle can be seen as a Markov chain. With that

in mind, we will find a lower bound for the mixing time of this chain. In other words, we will determine

how many times g(n) we have to shuffle the deck so that after those shuffles, the deck is still not well

shuffled (we need at least g(n) shuffles if we want the deck to be well shuffled and we know that shuffling

less than that number will not guarantee a well shuffled deck).

Let us consider a deck with n cards numbered from 1 to n (we label the first card with 1, the second

with 2, and so on). At each time t ∈ N, we remove the card on top of the deck and insert that card at the

second position from the bottom with probability p and at the bottom of the deck with probability 1 − p,

where p ∈ (0, 1).

Figure 1.1: Inserting the top card at positions n− 1 or n with probability p or 1− p respectively.

Example 1.2.1. According to the initial configuration of the deck, we label the cards from 1 to n. We

have the following example for n = 5. We are seeing the deck from below. The top card, the 3 of hearts

Figure 1.2: A deck with n = 5 cards being labelled.

is labelled with 1. The second card, the king of clubs, is labelled with 2. And so on.

In order to see the dynamics of the shuffle, consider the following example of two consecutive shuffles

for a deck with n = 19 cards.
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Example 1.2.2. Suppose the deck has n = 19 cards. We can use a (not necessarily fair) coin to decide

where we place the first card. If it lands “heads”, we place the first card at position n = 19, if it lands

“tails”, we place it at position n− 1 = 18. The following image shows the four different possibilities after

two shuffles. The top card and bottom cards of the initial configuration of the deck are respectively the

Figure 1.3: Example of the Rudvalis shuffle with n = 19.

3 of diamonds and 8 of clubs (we can imagine the deck in a circle where the last and first cards are

“connected”). After the first shuffle, the 3 of diamonds either goes to position n− 1 or position n. We see

that in both cases, all the cards but the 3 of diamonds (and possibly the 8 of clubs) are pushed up one

position, i.e., almost all the cards rotate counterclockwise. If the deck keeps being shuffled, the cards

keep “rotating” and as we will see later on, this is what makes the Rudvalis shuffle so unique.

The discrete-time Markov chain described by Figure 1.1 was introduced by Arunas Rudvalis (in fact

it is a slight generalization of the original shuffle proposed by Rudvalis), which considers p = 1
2 , and for

this reason, it is known as the Rudvalis shuffle. Its state space is the symmetric group Sn of all possible

permutations of an n-element set. For σ ∈ Sn, we write σ(x) = y if card y is in position x of the deck.

The transition matrix P is given by

P (σ, ξ) =


p, if ξ = σn−1

1− p, if ξ = σn

0, otherwise

where σx is the permutation obtained from σ after we move the top card to position x. In other

words, given σ = (σ(1), σ(2), · · · , σ(n)) ∈ Sn, with probability p, the state of the deck changes to

permutation σn−1 = (σ(2), σ(3), · · · , σ(n − 1), σ(1), σ(n)) and with probability 1 − p to permutation

σn = (σ(2), σ(3), · · · , σ(n), σ(1)). Moreover, σn−1(n − 1) = σn(n) = σ(1), σn−1(n) = σn(n − 1) = σ(n)

and for y ∈ {n− 1, n}, σy(x) = σ(x+ 1) for any x ∈ {1, . . . , n− 2}.

We denote the Rudvalis Markov chain by {σt}t∈N0
. Moreover, we denote by P t(σ, ·) the distribution

of the deck after t shuffles, given that the initial permutation of the deck is σ. For example, P t(σ, ξ) is the

probability of having permutation ξ after t shuffles, given that the starting permutation is σ.

We denote by Eσ the expectation with respect to the law of the process when the initial distribution

µ0(·) = P(σ0 ∈ ·) is concentrated on σ, that is, the initial permutation of the deck is σ (we have that
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µ0(σ) = 1).

If the Rudvalis shuffle was not an irreducible chain, it would not make much sense to call it a shuffle

(we would not be able to achieve some specific configurations). But as expected, the Rudvalis chain is

irreducible, as can be seen in the next proposition.

Proposition 1.2.3. The Rudvalis chain is irreducible.

Proof. We start by noting that the chain is irreducible if, and only if, we can move any card k from its

position to a position between any two consecutive cards without changing the order of any card except

k. We then have to show that if the card k is at position i, we have a positive probability of moving it to

between the cards at positions j−1 and j , without changing the order of the remaining cards. First, note

that we can “rotate” the deck by consecutively placing the first card at the bottom of the deck until card

k reaches the first position. Let us call this sequence of shuffles an ascension (of card k). An ascension

brings card k to the top of the deck without changing the order of the deck. Then, we can place card k

at position n− 1 and so this card “moves up” with respect to all the remaining cards. Let us call this only

shuffle, i.e., placing card k at position n − 1 by increment. Next, we can do another ascension followed

Figure 1.4: Ascension of card k = 5 on the left, and its increment on the right.

by an increment, and card k “moves up” one more position. Thus, in order to move card k from position

i to between cards at positions j − 1 and j (“above” the card at position j) , maintaining the order of the

remaining cards, we would need (i − j) mod n ascensions and increments, obtaining a configuration

with the cards initially at positions j−1 and j at positions n−2 and n respectively, and card k at position

n− 1. For example, in Figure 1.4, a card which starts at position i = 5, needs i− j = 1 ascensions and

increments to reach the position between the cards at positions j − 1 = 3 and j = 4.

Remark 1.2.4. As seen in the previous proof, if the Rudvalis shuffle placed the first card at position n

with probability 1, we would just be rotating the deck and the Rudvalis chain would be reducible (this

shuffle would be equivalent to the usual “cut” of a deck of cards).
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Example 1.2.5. Card magicians often use reducible card shuffles. For example, it is common to mem-

orize the first (or last) card of the deck and then apply the riffle shuffle but keeping the first card in its

place (at the eyes of a spectator, this will look like a normal shuffle). This shuffle is reducible since the

first card will always be the same and a configuration where another card is on top is impossible to be

reached using this shuffle. Then, the spectator, who thinks that the magician is, in fact, shuffling the

deck, does not know that the magician holds that extra information of knowing the first card and that he

could use that in his trick.

Since the chain is irreducible and has a finite state space, it has a unique stationary distribution Un,

which is the uniform distribution on Sn (cf. Proposition 2.16 of [13]). In fact, it is simple to verify that

UnP = Un. For any permutation σ,

(UnP )(σ) =
∑
ξ∈Sn

Un(ξ)P (ξ, σ) =
∑
ξ∈Sn

1
n!P (ξ, σ) = 1

n! (P (ξ1, σ) + P (ξ2, σ)) = 1
n! = Un(σ),

where ξ1 and ξ2 are the permutations such that σ = ξn−1
1 = ξn2 .

If we keep shuffling this way, how long must we shuffle the deck until it is well shuffled? But what

does it mean for the deck to be well shuffled? It means that the arrangement of the deck is close to

random. Thus, another way to ask this question is: How many shuffles does it take for the distribution of

the deck to become close to uniform? As we have seen before, this can be done using the mixing time of

the Markov chain. While an upper bound of O(n3 log(n)) for the mixing time was already found (cf. [10]),

in this dissertation we focus on finding a lower bound for the mixing time of this chain. The bound for the

mixing time translates into a bound on the number of shuffles which tells us that if we shuffle the deck

any number of times below that bound, we know for sure that the deck is still not well shuffled. In order

to find this bound, we first find a lower bound for the total variation distance between any two probability

measures. Then, we consider the case in which one of the measures is the uniform measure on Sn and

the other is the distribution of the state of the deck after t shuffles. This will allow finding a lower bound

for d(t). Finally, we will use this result to obtain a lower bound for tmix(ε).

Thus, we need to find g(n, ε) such that tmix(ε) ≥ g(n, ε). If we can find such a function, we have just

shown that for any initial configuration of the deck, we need to shuffle the deck at least g(n, ε) times if

we want the deck to become well shuffled. However, shuffling g(n, ε) times does not guarantee that the

deck will be well shuffled.

1.2.1 Lower bound for the mixing time of the Rudvalis shuffle

Recall that for ε ∈ (0, 1), the mixing time of the Rudvalis Markov chain is given by tmix(ε) = min{t :

d(t) ≤ ε}, where

d(t) = max
σ∈Sn

∥∥P t(σ, ·)− Un∥∥TV ,
where Un is the uniform measure on Sn.

We introduce the following notation for a probability distribution defined on some other space. For

f : Ω → Γ measurable and µ a probability distribution on Ω, denote by µf−1 the probability distribution
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on Γ, which is defined for I ⊆ Γ as

µf−1(I) := µ(f−1(I)).

Lemma 1.2.6. Let µ and ν be probability distributions on Ω and let f : Ω→ Γ be a measurable function,

where Γ and Ω are finite sets. Then

‖µ− ν‖TV ≥
∥∥µf−1 − νf−1

∥∥
TV

.

Proof. For a measurable set J ⊆ Γ, since

|µf−1(J)− νf−1(J)| = |µ(f−1(J))− ν(f−1(J))|,

it follows that

‖µ− ν‖TV = max
I⊆Ω
|µ(I)− ν(I)| ≥ max

J⊆Γ
|µf−1(J)− νf−1(J)| =

∥∥µf−1 − νf−1
∥∥
TV

.

We will use the following proposition to find a lower bound for the distance between the distribution

of the chain at time t and the stationary distribution, i.e., a lower bound for d(t). If we can bound d(t)

by a “large” number, i.e., if we show that for small δ > 0, there is t∗ (possibly depending on ε) such that

d(t∗) ≥ 1− δ then we can conclude, since d is decreasing, that tmix(ε) > t∗.

Recall that for a complex random variable Z, the expected value and variance with respect to a

measure µ are respectively given by Eµ[Z] = Eµ[<(Z)]+ i Eµ[=(Z)] and V ar[Z] = Eµ[|Z|2]−|Eµ[Z]|2 =

Eµ[ZZ] − Eµ[Z]Eµ[Z], where the real part, <(Z), and the imaginary part, =(Z), of Z are real random

variables.

Proposition 1.2.7. Let µ and ν be two probability distributions on a finite state space Ω and let f : Ω→ C

be a complex-valued function on Ω. Then,

‖µ− ν‖TV ≥ 1− 8
max{V arµ(f), V arν(f)}
| |Eµ[f ]| − |Eν [f ]| |2

. (1.4)

Proof. Assume without loss of generality that |Eµ[f ]| ≥ |Eν [f ]| and let

r :=
| |Eµ[f ]| − |Eν [f ]| |

σ∗
,

where

σ∗ :=
√

max{V arµ(f), V arν(f)}.

If I := (|Eν [f ]| + r
2σ∗,∞) ⊆ R and g := |f |, by Markov’s inequality, then (bear in mind that for two
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complex numbers z, w, it holds |z| − |w| ≤ | |z| − |w| | ≤ |z − w| )

νg−1(I) = ν(|Eν [f ]|+ r
2σ∗ < g <∞) = ν(|f | − |Eν [f ]| > r

2σ∗) ≤ ν(|f | − |Eν [f ]| > r
2

√
V arν(f))

≤ ν(|f − Eν [f ]| > r
2

√
V arν(f)) ≤ 4

r2

and

µg−1(I) = µ(|Eν [f ]|+ r
2σ∗ < g <∞) = µ(|f | > |Eµ[f ]| − | |Eν [f ]| − |Eµ[f ]| |+ r

2σ∗)

≥ µ(|Eµ[f ]| − |f | < r
2σ∗) ≥ µ(|Eµ[f ]| − |f | < r

2

√
V arµ(f))

≥ µ(|Eµ[f ]− f | < r
2

√
V arµ(f)) ≥ 1− 4

r2
.

Thus, ∥∥µg−1 − νg−1
∥∥
TV
≥ |µg−1(I)− νg−1(I)| ≥ 1− 8

r2

and by Lemma 1.2.6, since g : Ω→ |f(Ω)| with f(Ω) finite,

‖µ− ν‖TV ≥
∥∥µg−1 − νg−1

∥∥
TV
≥ 1− 8

r2
= 1− 8

max{V arµ(f), V arν(f)}
| |Eµ[f ]| − |Eν [f ]| |2

.

This result is particularly useful if we consider the Rudvalis Markov chain {σt}t∈N0
and take µ :=

P t(σ, ·) (µ is time dependent), the distribution of the state of the deck after t shuffles given that the

initial state is σ ∈ Sn, and ν := Un, the uniform measure on Sn (ν does not depend of t). Indeed, by

Proposition 1.2.7 we have

d(t) ≥
∥∥P t(σ, ·)− Un∥∥TV ≥ 1− 8

r2
(1.5)

where

r2 =
| |Eµ[f(σt)]| − |Eν [f(σt)]| |2

max{V arµ(f(σt)), V arν(f(σt))}
,

and we would just need to compute Eµ[f(σt)] := Eσ[f(σt)], Eν [f(σt)], V arµ(f(σt)) and V arν(f(σt)).

When we look at (1.5), we realize that in order to get d(t) close to 1 (which means that the chain has

not mixed by time t), we would like the variances to be small and the difference of expectations to be

large. But now the question is, how can we find a function f : Sn → C which provides these properties?

The main idea, as we will see, is to use the eigenfunctions of the transition matrix of a Markov chain.

The approach from [15] uses an eigenvector Φ (with eigenvalue λ) of the transition matrix of a Markov

chain {Xt}t∈N0
with initial distribution µ0 and stationary distribution π. As seen in (1.3), since Φ is an

eigenfunction, Eµ0
[Φ(Xt+1) | Xt] = Φ(Xt). Moreover, we have already seen in Lemma 1.1.12 that by

taking expectations on both sides of the last identity, we get Eµ0
[Φ(Xt)] = λtΦ(X0). In particular, if the

eigenvalue λ verifies |λ| < 1, then when the chain approaches stationarity, Eµ0 [Φ(Xt)] approaches 0

(since |λ|t −→
t

0). Furthermore, if the eigenvalue is close to 1, it will take a “long” time before Eµ0
[Φ(Xt)]

is close to 0, which will make it easier for us to find a time in which the chain is distant from stationarity.

If it is still true that Eµ0
[Φ(Xt)] is large, then Eµ0

[Φ(Xt)] is distinguishable from Eπ[Φ(Xt)] = 0 (Lemma
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1.1.13), that is, the difference of expectations is large. In order to have a small variance, this eigenvector

has to be such that Eµ0 [Φ(Xt)] is with high probability close to Φ(Xt).

Another possibility is to find an eigenvector Ψ not for the original chain, but for another chain (Xt, Yt),

where Yt is obtained by taking into account more information about the shuffle. Wilson [15] refers to the

chain {(Xt, Yt)}t∈N0
as the lifted chain. We want the eigenvector of the lifted chain to have the property

that for all x, y1, y2, the eigenvector verifies |Ψ(x, y1)| = |Ψ(x, y2)|, so that |Ψ(Xt, Yt)| is a function of Xt

alone. Now let us see how to define Yt and then obtain an eigenfunction Ψ with the desired properties.

Recall that the state σt of the Rudvalis chain is the permutation giving the order of the cards at

time t. It will be convenient to look at the position of a particular card. Hence denote the position

of card k (with k ∈ {1, · · · , n}) at time t by Xt(k) := σ−1
t (k) , where Xt(k) = 1 if, at time t, card k

is on the top of the deck, Xt(k) = 2 if, at time t, card k is at the second position and so on. Thus

{Xt = (Xt(1), . . . , Xt(n))}t∈N0
is a Markov chain with state space Sn. In particular {Xt(k)}t∈N0

is

the random walk (on Zn) performed by card k. But we have to consider more information about the

Rudvalis chain. We observe that when we place the top card in position n, every card is cyclically

shifted counterclockwise (see Figure 1.3) and when we place the top card in position n − 1, every card

except the last is cyclically shifted (counterclockwise). Thus, at each time t, besides keeping track

of the position of card k, Xt(k), we will also count, with Yt, the number of times the deck is shifted

counterclockwise (modulo n). We shall consider the lifted chain {(Xt, Yt)}t∈N0 with state space (Sn,Zn),

where Xt(k) = σ−1
t (k)

Yt = t (mod n).

With that in mind, given a card k, define

Ψk(Xt, Yt) = v(Xt(k))e
2πi
n Zt(k) (1.6)

where

Zt(k) = (Xt(k)−X0(k) + Yt) mod n

and v : {1, . . . , n} → C is a function, to be determined later, which will turn, for all k ∈ {1, · · · , n}, Ψk into

an eigenfunction (for the lifted chain) with the same eigenvalue λ. Furthermore, define

Ψ(Xt, Yt) =

n∑
k=1

Ψk(Xt, Yt)

which is an eigenfunction with eigenvalue λ, since {Ψk}nk=1 are eigenfunctions with the same eigenvalue

λ. This new eigenfunction Ψ will provide a better bound (when compared with a single eigenfunction

Ψk). The idea is that if we only consider a single Ψk, we are only keeping track of a single card and

the time it takes to reach the equilibrium. Ideally, we want to follow every card so that we know when

the deck has been totally shuffled. For that reason, we consider the sum of the eigenfunctions for each

card, obtaining a “better” eigenfunction.
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Note that Z0(k) = 0 and Zt+1(k)−Zt(k) = Xt+1(k)−Xt(k) + 1. The evolution of Zt in time happens

according to the two possible shuffles:

• if the top card is placed at position n (at time t+ 1),

Zt+1(k)− Zt(k) = −1 + 1 = 0, for k ∈ {1, · · · , n}. (1.7)

• if the top card is placed at position n− 1 (at time t+ 1),

Zt+1(k)− Zt(k) =


−1 if Xt(k) = 1

1 if Xt(k) = n

0 if 1 < Xt(k) < n.

(1.8)

Furthermore, note that

|Ψk(Xt, Yt)| = |v(Xt(k))|
∣∣∣e 2πi

n Zt(k)
∣∣∣ = |v(Xt(k))|,

which means that for fixed x, and for y1, y2,

|Ψk(x, y1)| = |Ψk(x, y2)| = |v(x)|,

hence |Ψ(Xt, Yt)| is a function of Xt only, as we wanted. Finally, the function f to consider in Proposition

1.2.7 is

f : Sn → C

σt 7→ Ψ(Xt, Yt).

A simple, yet useful, result to keep in mind when dealing with the big O notation is the following.

Lemma 1.2.8. If f : N→ C satisfies f(n) = O(nα) for α < 0, then sufficiently for large n,

1

1 + f(n)
= 1 +O(nα).

Proof. For sufficiently large n, |f(n)| < 1. Hence, doing a geometric series expansion,

1

1 + f(n)
=

∞∑
k=0

(−1)kf(n)k = 1 +O(nα).

We shall use this result without mentioning it.

Proposition 1.2.9. The random walk performed by a card k under the lifted Rudvalis shuffle has an

eigenvector of the form

Ψk(x, y) = v(x)e2πiz/n,
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where v(x) is the x-th number in the list

λn−2, . . . , λ2, λ, 1, χ,

the eigenvalue is

λ = 1− p

1− p
4π2

n3
+O( 1

n5 ),

χ = 1 +
p

1− p
2πi

n
+O( 1

n2 ),

and z = x− k + y.

Proof. Let w = e2πi/n and note that from (1.6), Ψk(x, y) = v(x)wz. If at time t, card k is at position

1 < x < n, then from (1.7) and (1.8)

Ψk(Xt+1, Yt+1) = v(Xt+1(k))wZt+1(k) = λv(Xt(k))wZt(k) = λΨk(Xt, Yt)

deterministically, because at time t + 1, card k will be at position x − 1. For the remaining cases, recall

that the first card is placed at position n− 1 with probability p and in position n with probability 1− p.

If at time t, card k is at position 1, i.e., if Xt(k) = 1, then

v(Xt(k)) = λn−2 and v(Xt+1(k)) =

1, with probability p,

χ, with probability 1− p.

Moreover, by (1.7) and (1.8),

Zt+1(k)− Zt(k) =

−1, with probability p,

0, with probability 1− p.

Thus,
Eµ[Ψk(Xt+1, Yt+1))|(Xt, Yt)]

λΨk(Xt, Yt)
=
p 1 w−1 + (1− p) χ w0

λ v(Xt(k))
=
pw−1 + (1− p)χ

λn−1
.

If at time t, card k is at position n, i.e., if Xt(k) = n, then

v(Xt(k)) = χ and v(Xt+1(k)) =

χ, with probability p,

1, with probability 1− p.

Moreover, by (1.7) and (1.8),

Zt+1(k)− Zt(k) =

1, with probability p,

0, with probability 1− p.

Thus,
Eµ[Ψk(Xt+1, Yt+1))|(Xt, Yt)]

λΨk(Xt, Yt)
=
p χ w1 + (1− p) 1 w0

λv(Xt(k))
=
pwχ+ (1− p)

λχ
.
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In order to have

Eµ[Ψk(Xt+1, Yt+1)|(Xt, Yt)] = λΨk(Xt, Yt),

(ensuring that Ψk is an eigenfunction) we must have

pw
−1 + (1− p)χ = λn−1

pwχ+ (1− p) = λχ

⇔

χ = λn−1−pw−1

1−p

χ = 1−p
λ−pw

and combining both equations for χ, we get λn − pwλn−1 − pw−1λ− 1 + 2p = 0. Now let

q(x) = xn − pwxn−1 − pw−1x− 1 + 2p

be a polynomial which has λ as a zero. In order to find λ, we apply Newton’s method and start from a

root close to 1 (recall that we want λ to be close to 1 so that Eµ0
[Ψk(Xt, Yt)] decreases “slowly” to 0).

Starting with x0 = 1, we iterate for i ≥ 0,

xi+1 = xi −
q(xi)

q′(xi)
. (1.9)

By Taylor’s Theorem with Lagrange’s remainder (cf. [1], page 880),

q(xi+1) = q(xi) + q′(xi)(xi+1 − xi) +
1

2
q′′(ξu)(xi+1 − xi)2

for some ξu = uxi + (1− u)xi+1 and some u ∈ (0, 1). Moreover,

q(xi) + q′(xi)(xi+1 − xi) = q(xi) + q′(xi)

(
− q(xi)
q′(xi)

)
= 0.

Therefore,

|q(xi+1)| = 1

2
|q′′(ξu)| |xi+1 − xi|2 ≤

1

2
‖q′′‖∞

∣∣∣∣ q(xi)q′(xi)

∣∣∣∣2 , (1.10)

where ‖q′′‖∞ = max
x∈C
|q′′(x)|. If |x− 1| = O( 1

n2 ) then,

q′(x) = nxn−1 − (n− 1)pwxn−2 − pw−1 = n− (n− 1)p+O(1) = (1− p)n+O(1)

and

q′′(x) = n(n− 1)xn−2 − (n− 1)(n− 2)pwxn−3 = n(n− 1)− (n− 1)(n− 2)p+O(n)

= (1− p)n2 +O(n).

By (1.10), if |xi − 1| = O( 1
n2 ) and |xi+1 − 1| = O( 1

n2 ),

|q(xi+1)| ≤ 1

2

(1− p)n2 +O(n)

(1− p)2n2
|q(xi)|2 =

1 +O
(

1
n

)
2(1− p)

|q(xi)|2. (1.11)
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Now note that

w = 1 + 2πi
n −

4π2

2n2 − 8π3i
6n3 +O( 1

n4 )

w−1 = 1− 2πi
n −

4π2

2n2 + 8π3i
6n3 +O( 1

n4 )

which implies that

q(x0) = p(2− w − w−1) = p 4π2

n2 +O( 1
n4 ).

We claim that for all i ∈ N0 and n sufficiently large,

|q(xi)| ≤ (1− p)
(

p
(1−p)

4π2

n2

)2i

+O( 1
n4 ) (1.12)

and

|xi+1 − 1| = O( 1
n2 ). (1.13)

We can verify both facts by induction on i ∈ N0:

• for i = 0, the inequality holds on account of the computation of q(x0) and

|x1 − 1| = |x1 − x0| ≤
|q(x0)|
|q′(x0)|

=
p 4π2

n2 +O( 1
n4 )

(1− p)n+O(1)
= O( 1

n2 ).

• Now suppose (1.13) and (1.12) hold for i ∈ N0. By (1.11), and for n sufficiently large,

|q(xi+1)| ≤
1 +O

(
1
n

)
2(1− p)

|q(xi)|2 ≤
1 +O

(
1
n

)
2(1− p)

(
(1− p)

(
p

(1−p)
4π2

n2 +O( 1
n4 )
)2i
)2

=
1 +O

(
1
n

)
2

(1− p)
(

p
(1−p)

4π2

n2

)2i+1

+O( 1
n4 )

≤ (1− p)
(

p
(1−p)

4π2

n2

)2i+1

+O( 1
n4 ).

Moreover,

|xi+2 − 1| ≤ |xi+2 − xi+1|+ |xi+1 − 1| ≤ |q(xi+1)|
|q(xi)|

+O( 1
n2 )

≤
(1− p)

(
p

(1−p)
4π2

n2

)2i+1

+O( 1
n4 )

(1− p)n+O(1)
= O( 1

n2 ).

Using (1.9) and (1.12), for i ∈ N0,

|xi+1 − xi| =
∣∣∣∣ q(xi)q′(xi)

∣∣∣∣ ≤
(

(1− p)
(

p

(1− p)
4π2

n2

)2i

+O( 1
n4 )

)
1

(1− p)n+O(1)

=

(
p

(1− p)
4π2

n2

)2i
1

n+O(1)
+O( 1

n4 )
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and thus we can conclude that

|xi+1 − x0| ≤
i∑

j=0

|xj+1 − xj | =
1

n+O(1)

i∑
j=0

(
p

(1− p)
4π2

n2

)2j

=
1

n+O(1)
O( 1

n2 ) = O( 1
n3 ).

Thus, for n sufficiently large, the sequence {xi}i∈N0
converges to a point λ. Since q is continuous, this

limit point must be a root of q. After the first iteration of Newton’s method we get

x1 = x0 −
q(x0)

q′(x0)
= 1−

p4π2

n2 +O
(

1
n4

)
(1− p)n+O(1)

= 1− p

(1− p)
4π2

n3
+O( 1

n5 ).

Since,

|λ− x1| ≤
∞∑
j=1

|xj+1 − xj | =
1

n+O(1)

∞∑
j=1

(
p

(1− p)
4π2

n2

)2j

= O( 1
n5 )

we conclude that the sequence must converge to

λ = 1− p

(1− p)
4π2

n3
+O( 1

n5 ).

Hence we have just found an eigenvalue λ with the properties we wanted. Plugging this value in the first

expression for χ, we get that

χ =
λn−1 − pw−1

1− p
=

(1 +O( 1
n3 ))n−1 − p(1 + 2πi

n +O( 1
n2 ))

1− p
=

(1− p)− p 2πi
n +O( 1

n2 )

1− p

= 1− p

1− p
2πi

n
+O( 1

n2 ).

In order to use Proposition 1.2.7, we need to compute the expected value and variance of Ψ(Xt, Yt).

The expectation can be easily computed, but the variance demands more effort, which is why we com-

pute instead Eµ[|Ψ(Xt+1)−Ψ(Xt)|2] and use the following Lemma.

Lemma 1.2.10. Let {Xt}t∈N0 be a Markov chain with finite state space Ω, with eigenfunction Ψ and

eigenvalue λ, and let µ be a probability distribution on Ω. If <(λ) ≥ 1
2 and |λ| < 1, then

V arµ[Ψ(Xt)] ≤
Eµ[|Ψ(Xt+1)−Ψ(Xt)|2]

2(1−<(λ))
.

Proof. Let Ψt = Ψ(Xt), ∇̃Ψt+1 = Ψt+1 −Ψt, Vt+1 = Eµ[|∇̃Ψt+1|2|Xt] and denote by Ψ the conjugate of

Ψ. Since Ψ is an eigenvector with eigenvalue λ, by (1.3)

Eµ[∇̃Ψt+1|Xt] = Eµ[Ψt+1|Xt]−Ψt = (λ− 1)Ψt.

Since

Ψt+1Ψt+1 = ΨtΨt + Ψt(Ψt+1 −Ψt+1) + Ψt(Ψt+1 −Ψt) + (Ψt+1 −Ψt)(Ψt+1 −Ψt)

= ΨtΨt + Ψt∇̃Ψt+1 + Ψt∇̃Ψt+1 + |∇̃Ψt+1|2,
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we have

Eµ[Ψt+1Ψt+1|Xt] = ΨtΨt + Ψt(λ− 1)Ψt + Ψt(λ− 1)Ψt + Eµ[|∇̃Ψt+1|2|Xt]

= (2<(λ)− 1)ΨtΨt + Vt+1.
(1.14)

By induction on t, we have that

Eµ[ΨtΨt] ≤ (2<(λ)− 1)tΨ0Ψ0 +
Eµ[Vt+1]

2− 2<(λ)
. (1.15)

Indeed,

• for t = 0, since V1 > 0, <(λ) ≤ |λ| < 1 and Ψ0 is deterministic, we have

Eµ[Ψ0Ψ0] = Ψ0Ψ0 ≤ Ψ0Ψ0 +
Eµ[V1]

2− 2<(λ)
.

• Now suppose the inequality holds for t ∈ N0. Then, by (1.14) and by the Tower Law property,

Eµ[Ψt+1Ψt+1] = Eµ[Eµ[Ψt+1Ψt+1|Xt]] = Eµ[(2<(λ)− 1)ΨtΨt + Vt+1]

≤ (2<(λ)− 1)

(
(2<(λ)− 1)tΨ0Ψ0 +

Eµ[Vt+1]

2− 2<(λ)

)
+ Eµ[Vt+1]

≤ (2<(λ)− 1)t+1Ψ0Ψ0 +
Eµ[Vt+1]

2− 2<(λ)
.

By Lemma 1.1.12, Eµ[Ψt] = λtΨ0. Subtracting Eµ[Ψt]Eµ[Ψt] on both sides of (1.15), we get that

for t ∈ N0 (recall the definition of the variance of a complex random variable, above Proposition

1.2.7)

V arµ[Ψt] = Eµ[ΨtΨt]− Eµ[Ψt]Eµ[Ψt]

≤ (2<(λ)− 1)tΨ0Ψ0 +
Eµ[Vt+1]

2− 2<(λ)
− λtΨ0(λtΨ0)

= ((2<(λ)− 1)t − (λλ)t)Ψ0Ψ0 +
Eµ[Vt+1]

2− 2<(λ)

≤ Eµ[Vt+1]

2(1−<(λ))

where the last inequality comes from the fact that Ψ0Ψ0 ≥ 0 and

(λλ)t ≥ (2<(λ)− 1)t ⇔ (λλ) ≥ (2<(λ)− 1)⇔ (1− λ)(1− λ) ≥ 0,

which holds for any t ∈ N0, since 2<(λ)− 1 ≥ 0 and (1− λ)(1− λ) ≥ 0 for any complex number λ.

We need to compute the eigenvector at time t = 0 in order to get its expected value. The next

lemma illustrates that simple computation. In order to find a lower bound for tmix(ε), we can find a

lower bound for d(t). By the definition of d(t), if we pick an initial configuration σ, a lower bound for
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‖P t(σ, ·)− Un‖TV gives a lower bound for d(t). Looking at (1.4), we want to start from a configuration

which maximizes the expectation of Ψ(X0, Y0). In our case, we show that this value does not depend on

the initial configuration of the deck, which means that starting from any given configuration of the deck,

we will obtain the same lower bound.

Lemma 1.2.11. Let {(Xt, Yt)}t≥0 be the lifted Markov chain described above and let Ψ be the eigenvec-

tor with eigenvalue λ. Then,

Ψ(X0, Y0) = n+O( 1
n ).

In particular, this value is independent from the initial configuration of the deck.

Proof. Let X0 = σ−1
0 for some initial configuration σ0 of the deck. Then,

Ψ(X0, Y0) =

n∑
k=1

Ψk(X0, Y0) =

n∑
k=1

v(X0(k))wZ0(k) =

n∑
k=1

v(X0(k))

= 1 + χ+ λ+ ...+ λn−2 = 1 + (1 +O( 1
n )) + (1 +O( 1

n3 )) + ...+ (1 +O( 1
n3 ))

= n+O( 1
n ).

In particular, since X0(k) is the position of card k in the initial configuration, it ranges over {1, ..., n} and

thus the value of Ψ(X0, Y0) does not depend on the initial configuration of the deck.

Now we can compute the expected value and the variance of Ψ(Xt, Yt).

Lemma 1.2.12. Let (Xt, Yt) be the lifted Markov chain described above, Ψ =
n∑
k=1

Ψk the eigenvector

(with eigenvalue λ) obtained from Proposition 1.2.9 and µσt := P t(σ, ·). Then, for any t ∈ N0, the

expectation and the variance of the complex random variable Ψ(Xt, Yt) under the probability distribution

µσt are given, respectively, by

Eµσt [Ψ(Xt, Yt)] = λtΨ(X0, Y0) = λtn+O( 1
n ) and V arµσt [Ψ(Xt, Yt)] = O(n).

Proof. By Lemma 1.1.12, Eµσt [Ψ(Xt, Yt)] = λtΨ(X0, Y0). By the previous lemma, the first result follows.

Let Φt,k be the (complex) random variable given by

Φt,k =
Ψk(Xt+1, Yt+1)−Ψk(Xt, Yt)

wZt(k)
= v(Xt+1(k))wZt+1(k)−Zt(k) − v(Xt(k)).

Given the position of card k (at time t) and where we place the top card, we can express Φt,k determin-

istically:

• if the top card is placed at position n, then

Φt,k =


χw0 − λn−2 = O( 1

n ) if Xt(k) = 1,

w0 − χ = O( 1
n ) if Xt(k) = n,

(λ− 1)λXt(k) = O( 1
n3 ) if 1 < Xt(k) < n.

21



• if the top card is placed at position n− 1, then

Φt,k =


w−1 − λn−2 = O( 1

n ) if Xt(k) = 1,

w1χ− χ = χ(w − 1) = O( 1
n ) if Xt(k) = n,

(λ− 1)λXt(k) = O( 1
n3 ) if 1 < Xt(k) < n.

Since |w| = 1,

|Ψ(Xt+1, Yt+1)−Ψ(Xt, Yt)| ≤
n∑
k=1

|Ψk(Xt+1, Yt+1)−Ψk(Xt, Yt)| =
n∑
k=1

|Φt,k| |wZt(k)|

= 2 O( 1
n ) + (n− 2)O( 1

n3 ) = O( 1
n )

and consequently

Eµσt [|Ψ(Xt+1, Yt+1)−Ψ(Xt, Yt)|2] = O( 1
n2 ).

By Lemma 1.2.10,

V arµσt [Ψ(Xt, Yt)] ≤
O( 1

n2 )

2(1−<(λ))
=

O( 1
n2 )

2 p
1−p

4π2

n3 +O( 1
n5 )

= O(n).

We can finally find a lower bound for the mixing time of the Rudvalis shuffle.

Theorem 1.2.13 (Lower bound on the mixing time of the Rudvalis shuffle). For the Rudvalis shuffle with

n cards,

d(t) ≥ 1− 8e−2t log |λ| O(1)

n+O( 1
n )
,

where

λ = 1− p

1− p
4π2

n3
+O( 1

n5 ).

Furthermore, for ε ∈ (0, 1),

tmix(ε) ≥ 1− p
p

1

8π2
n3 log (n) +O(n3).

Proof. Let µσt := P t(σ, ·) be the distribution of the deck at time t given that the initial configuration of the

deck is σ, and let Un be the uniform distribution on Sn. Let Ψt := Ψ(Xt, Yt) be the eigenfunction with

eigenvalue λ determined in Proposition 1.2.9. If we take f(σt) := Ψt in Proposition 1.2.7,

‖µσt − Un‖TV ≥ 1− 8
max{V arµσt (Ψt), V arUn(Ψt)}
| |Eµσt [Ψt]| − |EUn [Ψt]| |2

. (1.16)

We have seen in the proof of Lemma 1.2.12 that |Eµσt [Ψt]| = |λ|t|Ψ0| and V arµσt [Ψt] = O(n). In partic-

ular, the variance does not depend on t. Hence max{V arµσt (Ψt), V arUn(Ψt)} = O(n). Furthermore, by
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Lemma 1.1.13 , EUn [Ψt] = EUn [Ψ] = 0. Plugging these values in (1.16), we obtain

‖µσt − Un‖TV ≥ 1− 8
O(n)

| |λ|t|Ψ0| − 0|2
= 1− 8|λ|−2t O(n)

|Ψ0|2
= 1− 8e−2t log |λ| O(1)

n+O( 1
n )
.

Hence

d(t) = max
σ∈Sn

‖µσt − Un‖TV ≥ 1− 8e−2t log |λ| O(1)

n+O( 1
n )
.

Since − log |λ| > 0, we can see that for fixed n, for “small” t the distance d(t) stays close to 1 whereas

when t increases, the lower bound keeps getting worse. For sufficiently large n, there is a constant k

such that

d(t) ≥ 1− 8k

n
e−2t log |λ|.

For ε ∈ (0, 1), solving 1− 8k
n e
−2t log |λ| = ε, we get

t =
log(n)

−2 log |λ|
+

log
(

1−ε
8k

)
−2 log |λ|

.

Owing to the fact that |λ| = 1 − γ + O( 1
n5 ) with γ = p

1−p
4π2

n3 , we have that for n sufficiently large,

− log |λ| = γ +O( 1
n5 ) > 0 and consequently

t =
1− p
p

1

8π2
n3 log(n) +O(n3).

Above, note that ε is inside of O(n3). Since d(t) is decreasing, this implies that by doing

t∗(ε) =
1− p
p

1

8π2
n3 log (n) +O(n3)

number of shuffles, the total variation distance from uniformity is greater or equal than ε, i.e., tmix(ε) ≥

t∗(ε).

Remark 1.2.14. A generalization of the Rudvalis shuffle is the top to bottom-k shuffle which places the

first card uniformly at random in one of the bottom kn positions (for kn = 2, we have the Rudvalis shuffle).

In [6] we can see that if kn is a constant, we would still have a lower bound (and upper bound) of order

n3 log (n).
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Chapter 2

Hydrodynamic limit for the continuous

time Rudvalis shuffle

Now that we have studied the discrete time Rudvalis Markov chain, it is time to extend it to continuous

time. In this chapter, we focus on the case p = 1
2 (to simplify the computations and notation). Anyhow,

a general 0 < p < 1 would lead to the same result (see the remark after Lemma 2.6.3). After defining

the process, we will convert it into a particle system and study the hydrodynamic limit of this system.

Moreover, we shall prove the existence and uniqueness of a (weak) solution of a PDE, the transport

equation, and this is the main goal of this chapter.

As we will see, the hydrodynamic limit can be seen as the convergence (in probability) of a random

measure to an absolutely continuous measure (with respect to the Lebesgue measure) whose density

is the unique weak solution of a PDE. If we prove this convergence together with the uniqueness of the

solution, we will have proved that there exists a unique weak solution of that PDE [7].

To prove this convergence, the entropy method is employed. First, we prove that the sequence of

probability measures (associated with the random measures of the density) is relatively compact, which

tells us that every subsequence has a weakly convergent subsequence. Then, we characterize their

limit points by showing that they are unique. Since all the (weakly) convergent subsequences converge

to the same limit point, the whole sequence converges to that unique limit point.

2.1 Rudvalis process

Let us define a continuous-time version of the Rudvalis Markov chain. Let us consider a Poisson

process {Tk : k ∈ N} of rate 1, that is, T0 = 0 and {(Tk−Tk−1) : k ∈ N} is a sequence of i.i.d. exponential

random variables with mean 1 which is responsible for giving our process the Markov property. The

process {Tk : k ∈ N} is known as the Harris process or the clock process (see [9] for instance). It is

important to observe that in Harris’ construction, the probability that two clocks ring simultaneously is

equal to 0. At each time a clock rings, we toss a fair coin (since we fixed p = 1
2 ). If the coin lands heads

up, then we remove the top card from the deck (the card at position 1) and insert it at position n. If the
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coin lands tails up, then we remove the top card from the deck and insert it at position n−1. In particular,

every card performs a continuous-time random walk on the deck.

The continuous-time Rudvalis shuffle is the Markov process {σt : t ≥ 0} with state space Sn and

infinitesimal generator (cf. Chapter 2 of [14]) given on f : Sn → R, by

LRn f(σ) =
1

2

n∑
x=n−1

Θxf(σ),

where

Θxf(σ) = f(σx)− f(σ),

and σx is the permutation obtained from σ by placing the first card at position x.

Denote by T = R/Z = [0, 1) the one-dimensional continuous torus (macroscopic space), by Tn =

Z/nZ = {0, 1, . . . , n − 1} the one-dimensional discrete torus with n points (microscopic space) and by

Ωn = {0, 1}Tn the space of functions from Tn to {0, 1}.

Recall that σ(x) = y if, and only if, card y is at position x in permutation σ. Now we will color the

cards, so, in order to identify the color of the card at a position x, we define η(x) = 1{σ(x) is black}. Thus,

the projection σ 7→ P (σ) = η induces a Markov process with state space Ωn, which we shall call the

space of configurations, and with infinitesimal generator given on f : Ωn → R, by

Lnf(η) =
1

2

n∑
x=n−1

Θxf(η),

where

Θxf(η) = f(ηx)− f(η),

and ηx = P (σx).

Now we can think of a simple, yet remarkable, mapping. Taking each position of the deck as a site,

the black cards as particles and the red cards as empty sites, a particle system emerges!

Remark 2.1.1. For x ∈ Tn and η ∈ Ωn, η(x) is the number of particles at site x:

η(x) =

1, if card x is black (site x is occupied)

0, if card x is red (site x is empty)

.

Example 2.1.2. Consider a simple example of a deck of n = 5 cards.

Figure 2.1: The configuration of the particle system corresponding to a deck with 5 cards.

The top card of the deck, the 3 of hearts, is red, so we do not assign a particle to site 1, the king of
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clubs is black, so we assign a particle to site 2. We keep doing this procedure until there are no more

cards. Moreover, taking the shuffle of Figure 1.3 as an example, we can see a particle system in motion.

Figure 2.2: Particle system in motion obtained from the Rudvalis shuffle.

Our goal is to study the evolution in space and time of this system. In order to restrict the system

to T, we shall consider the process evolving in Tn/n and then we will take n → ∞. We can identify

the microscopic space with Tn (discrete) and the macroscopic space with T (continuous). A site x in

the microscopic space Tn, can be identified with x
n in the macroscopic space T. This means that the

particles move between the sites 0, 1
n ,

2
n , ..., 1. If we let n go to∞, then we can think of an initial density

of particles, denoted by γ : T → [0, 1]. Moreover, if we let the system evolve through time, we can

wonder what function describes the density of particles at each time, given that the initial density is γ.

As we will see, this function will be given by a weak solution (proved to be unique) of some PDE. This

kind of behaviour of the density is the so-called hydrodynamic limit.

Observe that applying the generator LRn to functions that only depend on the colors of the cards is

equivalent to applying the generator Ln. But if we want to see a non trivial evolution of the system when

n → ∞, speeding up the process is absolutely necessary. This is justified by the fact that we want to

divide macroscopic space T into n intervals of size 1
n , that is, {0, 1

n ,
2
n , ...,

n−1
n } = Tn/n, and then let

n → ∞. For this reason, if we want to see an evolution of the initial density of particles γ : T → [0, 1] in

the macroscopic space, we will need to accelerate the process by a function of n. For example, consider

the process with generator Ln and imagine that a particle moves from site k1 to site k2 with k1, k2 ∈ Tn.

If k1 and k2 do not depend on n then, although we see an evolution in the microscopic system (a particle

moves from one site to another), when we look at the macroscopic space (by letting n→∞), it appears

as if the particle stayed at the same place, since k1

n ,
k2

n → 0. According to the Rudvalis shuffle, in the

microscopic system a particle will take O(n) shuffles (time) to return to the same place. Let us go back

to the deck of cards and see how much time it takes for a card to return to its original position. This value

will tell us the factor by which we need to scale the time. Consider for example the top card (position 1).

That card goes to position n− 1 with probability 1
2 and to position n with probability 1

2 . If the card goes to

position n, then, in the next coin flip, it stays there with probability 1
2 (if the first card is inserted at position

n − 1) and goes to position n − 1 with probability 1
2 (if the first card is inserted at position n). Hence, at

each shuffle, the card has probability 1
2 to go to position n − 1 (if that position was not yet reached). It
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follows that the number of shuffles in which the top card reaches position n − 1 is a geometric random

variable with parameter 1
2 . Consequently, the average number of shuffles in which the top card reaches

the second-to-last position is 2. Once the card is in position n− 2, it reaches the top of the deck in n− 2

shuffles (deterministically). We conclude that the top card takes on average n shuffles to return to its

initial position. Similarly, every card takes on average n shuffles to return to its original position. For this

reason, from now on we will speed up the process in the hyperbolic time scale tn.

We will still denote by {ηt}t≥0 the Markov process with generator nLn and denote the initial measure

by µn. Owing to the fact that it was derived from the Rudvalis card shuffle, we call the process {ηt}t≥0

the Rudvalis process.

Remark 2.1.3. Note that ηt ∈ Ωn is already in the hyperbolic time scale, i.e., it is already accelerated

by n. For this reason, these processes are often denoted by ηtn. However, to simplify the notation, we

just write ηt but it should always be kept in mind that the Rudvalis process depends on n, which is the

number of sites (cards), and that this process is already accelerated by n.

In order to study {ηt}t≥0, we start by defining the space where our process lives.

Definition 2.1.4 (Space DX [0, T ]). Let T > 0 and X be a metric space. Denote by DX [0, T ] the space

of functions x : [0, T ]→ X that are right-continuous and have left-hand limits:

(i) for 0 ≤ t < T , x(t+) = lim
s↓t

x(s) exists and x(t+) = x(t);

(ii) for 0 < t ≤ T , x(t−) = lim
s↑t

x(s) exists;

and which is endowed with the Skorohod topology (A.3).

Remark 2.1.5. Functions satisfying the two properties above are called càdlàg (French: “continue à

droite, limite à gauche”, meaning “continuous on the right, limit on the left”) functions. We call the

elements of DX [0, T ] trajectories and denote them by x., i.e., for each t ∈ [0, T ], we denote x(t) by xt.

The trajectories of the Rudvalis process {ηt}t≥0 belong to DΩn [0, T ], i.e., for each time t, ηt is an

element of Ωn. Moreover, the function t 7→ ηt is càdlàg (it has jumps).

Let Pµn be the probability measure in DΩn [0, T ] induced by the Rudvalis process with initial measure

µn. Denote by Eµn the expectation with respect to Pµn .

2.2 Initial measures

We have an initial profile, that we assume to be measurable, denoted by γ : T → [0, 1] , i.e., γ is a

function which assigns mass to points on the torus. As an example, if the density of a gas was initially

described by γ(x) = 1[0, 12 ](x), this would mean that the density of particles is concentrated “on the left”.

Definition 2.2.1 (Sequence of measures associated with a profile). A sequence of probability measures

{µn}n∈N on Ωn is said to be associated with a measurable profile γ : T → [0, 1] if for every δ > 0 and
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every continuous function G : T→ R,

lim
n→∞

µn

(
η ∈ Ωn :

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
η(x)−

∫
T
G(u)γ(u) du

∣∣∣∣∣ > δ

)
= 0.

We might ask if such sequence of measures exists for the Rudvalis process defined above. In order

to see that in fact it does, consider the following example. Throughout the rest of the text, for some space

X and G : X → R, denote the L∞(X)-norm by ‖G‖∞ = sup
x∈X
|G(x)|.

Example 2.2.2. Let γ : T→ [0, 1] be continuous. An example of a sequence of measures satisfying the

assumption above is {νnγ(·)}n∈N, where νnγ(·) is the Bernoulli product measure associated with γ, that is,

it is the measure defined on the state space Ωn such that:

• the random variables {η(x)}x∈Tn are independent;

• η(x) ∼ Bernoulli (γ( xn )).

Thus, the Bernoulli product measures verifies

νnγ(·)(η) =
∏
x∈Tn

[η(x)γ( xn ) + (1− η(x))(1− γ( xn ))]

which means that this measure assigns a particle independently to each site x with probability γ( xn ).

In order to see that this sequence of measures satisfies the condition of Definition 2.2.1, we do the

following: ∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
η(x)−

∫
T
G(u)γ(u) du

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))−

(∫
T
G(u)γ(u) du− 1

n

∑
x∈Tn

G
(
x
n

)
γ( xn )

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))

∣∣∣∣∣+

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
γ( xn )−

∫
T
G(u)γ(u) du

∣∣∣∣∣ .
It is then enough to prove that for any positive δ,

lim
n→∞

νnγ(·)

(
η ∈ Ωn :

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))

∣∣∣∣∣ > δ

2

)
= 0

and

lim
n→∞

νnγ(·)

(
η ∈ Ωn :

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
γ( xn )−

∫
T
G(u)γ(u) du

∣∣∣∣∣ > δ

2

)
= 0.

For the first limit, since {η(x)}x∈Tn are independent with respect to νnγ(·), {G( xn )(η(x) − γ( xn ))}x∈Tn are

also independent random variables with respect to νnγ(·) but this time with mean zero. Thus,

Eνn
γ(·)

( 1

n

∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))

)2
 =

1

n2

∑
x∈Tn

Eνn
γ(·)

[(
G
(
x
n

)
(η(x)− γ( xn ))

)2] ≤ ‖G‖2∞
n

.
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From Markov’s inequality,

νnγ(·)

(∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))

∣∣∣∣∣ > δ

2

)
≤ 4

δ2
Eνn

γ(·)

( 1

n

∑
x∈Tn

G
(
x
n

)
(η(x)− γ( xn ))

)2
 ≤ 4

δ2

‖G‖2∞
n

.

For the second limit, since G and γ are continuous, f := Gγ is continuous and whence there exists

N ∈ N such that for n ≥ N , ∣∣∣∣∣ 1n ∑
x∈Tn

G( xn )γ( xn )−
∫
T
G(u)γ(u) du

∣∣∣∣∣ ≤ δ

2
(2.1)

and the limit follows.

Example 2.2.3. As an example, for γ(x) = 1[0, 12 ](x) (γ is not continuous, but the previous example can

be adapted so that (2.1) holds), the associated initial measure would set particles with probability 1 on

the sites 0, 1, ..., n2 and with probability 0 on the remaining sites.

Since the Bernoulli product measures are quite simple, we can take them as initial distributions when

one wants to obtain scaling limits. In terms of the generator, a measure ν is invariant if

Eν [Lf ] =

∫
Ω

Lf(η) ν(dη) = 0.

Proposition 2.2.4. Let {ηt}t≥0 denote the Rudvalis process. Then, for α ∈ [0, 1], the Bernoulli product

measure with parameter α, νnα , is an invariant measure.

Proof. Let νnα : Ωn → [0, 1] be the Bernoulli measure with parameter α, with α ∈ [0, 1]. We need to show

that for any f : Ωn → R, ∫
Ωn

Lnf(η)νnα(dη) = 0.

It is then enough to show that

∫
Ωn

f(ηn)νnα(dη) =

∫
Ωn

f(ηn−1)νnα(dη) =

∫
Ωn

f(η)νnα(dη).

Since νnα does not depend of the position of the particles (it only depends on the number of particles), if

ξ and ξ′ have the same number of particles, then νnα(ξ) = νnα(ξ′) = αl(1− α)n−l, where l is the number

of particles in ξ. Thus, by a change of variables,

∫
Ωn

f(ηn)νnα(dη) =

∫
Ωn

f(ξ)νnα(dξ) =

∫
Ωn

f(ηn−1)νnα(dη).
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2.3 Empirical measure

We have already seen how to obtain a particle system from the Rudvalis process. Now it is time to

study the evolution of the Rudvalis process {ηt}t≥0 with infinitesimal generator nLn and state space Ωn.

LetM be the set of positive measures on T with mass bounded by 1 endowed with the weak topology.

If {πn}n∈N, π ∈M, we say that πn converges weakly to π, which we denote by

πn
w−−−→

n↑∞
π,

if for all G ∈ C(T) ∫
T
G πn(du) −−−→

n↑∞

∫
T
G π(du).

In order to obtain a scaling limit of the Rudvalis process, we introduce a measure which gives weight 1
n

to each occupied site of the configuration η.

Definition 2.3.1 (Empirical Measure). For each configuration η ∈ Ωn, we define the empirical measure

πn(η, du) in [0, 1] by

πn(η, du) =
1

n

∑
x∈Tn

η(x)δ x
n

(du),

where δy is the Dirac measure concentrated on y ∈ T.

Since we are interested in studying the behaviour of this measure with respect to the Rudvalis pro-

cess {ηt}t≥0, define

πnt (du) := πn(ηt, du) =
1

n

∑
x∈Tn

ηt(x)δ x
n

(du) ∈M.

Given a function G : T→ R, we denote the integral of G with respect to a measure µ (on T) by

〈µ,G〉 :=

∫
G(u) µ(du).

In particular, for the empirical measure πnt , we have

〈πnt , G〉 :=

∫
G(u) πnt (du) =

1

n

∑
x∈Tn

G
(
x
n

)
ηt(x).

Remark 2.3.2. This definition should not be confused with the inner product in L2(T), i.e., for ρ,G ∈

L2(T),

〈ρ,G〉 :=

∫
ρ(u)G(u) du.

For this reason, if a measure πt(du) has a density ρt(u), i.e., πt(du) = ρ(t, u) du, then

〈πt, G〉 = 〈ρt, G〉 =

∫
G(u)ρ(t, u) du.

Using this notation, the convergence in M can be restated as follows: πn w−−−→
n↑∞

π if, and only if, for all
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G ∈ C(T),

|〈πn, G〉 − 〈π,G〉| −−−→
n↑∞

0.

2.4 Transport equation

From now on, fix T > 0. When we think about the Rudvalis shuffle, the behaviour of the cards is quite

similar to a wave: we take the top card and put it in the bottom (or almost at the bottom), pushing all

the cards one position up. We shuffle the deck over and over again, that is, the cards are being pushed

up continuously (Figure 1.3). With that picture in mind, we analyze the following PDE: the transport

equation (sometimes called the one-way wave equation), given formally by

∂tρ(t, u) = ∇ρ(t, u), for t ∈ [0, T ], u ∈ T,

ρ(0, u) = γ(u), for u ∈ T,
(2.2)

where ∇ is the space derivative and γ : T→ [0, 1] is a measurable function.

Observe that the solutions of this equation are functions that behave like “waves” moving to the left,

i.e., if γ is C1 in space, then the function ρ(t, u) = γ(u + t) is a (strong) solution of (2.2). In particular, if

γ(u) = α ∈ [0, 1], then ρ(t, u) = α for any (t, u). For example, we would have the following graph for a

solution of (2.2) captured at three distinct times 0 < t1 < t2 < t3 < T .

0 1
u

ρ(t1, u)

ρ(t2, u)

ρ(t3, u)

2.5 Motivation for the weak solution

When we look at equation (2.2), we see that a necessary condition for a function to be its solution is

that it must be differentiable in time and space. If γ is not differentiable, a function satisfying (2.2) (strong

solution) might not be easy to find and we will instead try to find a weaker solution, i.e., a function for

which the derivatives may not all exist but which satisfies the equation in some sense that we are going

to define below.
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Define C2,1([0, T ] × T) as the space of functions f : [0, T ] × T → R with first derivative in time and

second derivative in space, both being continuous. Let f ∈ C2,1([0, T ] × T). We multiply both sides of

the equation ∂sρ(s, u) = ∂uρ(s, u) by f(s, u) and integrate it on time [0, t], for t < T , and on space T.

Then, applying Fubini’s theorem, we obtain

∫
T

∫ t

0

∂sρ(s, u)f(s, u) ds du =

∫ t

0

∫
T
∂uρ(s, u)f(s, u) du ds.

Applying integration by parts on the left hand side,

∫
T

∫ t

0

∂sρ(s, u)f(s, u) ds du =

∫
T
ρ(t, u)f(t, u)− ρ(0, u)f(0, u) du−

∫
T

∫ t

0

ρ(s, u)∂sf(s, u) ds du.

Integrating by parts again, but this time on the right hand side and using the fact that f is periodic in T,

we obtain

∫ t

0

∫
T
∂uρ(s, u)f(s, u) du ds = −

∫ t

0

∫
T
ρ(s, u)∂uf(s, u) du ds.

Using the initial condition ρ(0, u) = γ(u) and combining both equations, we get

∫
T
ρ(t, u)f(t, u)− γ(u)f(0, u) du−

∫ t

0

∫
T
ρ(s, u)∂sf(s, u) du ds+

∫ t

0

∫
T
ρ(s, u)∂uf(s, u) du ds = 0.

Having come to this, we can define the concept of weak solution for the transport equation (2.2):

Definition 2.5.1 (Weak solution of the transport equation on T ). Let γ : T → [0, 1] be a measurable

function and T > 0. A measurable function ρ : [0, T ]×T→ [0, 1] is said to be a weak solution of equation

(2.2) if for all f ∈ C2,1([0, T ]× T) and all t ∈ [0, T ], ρ satisfies

∫
T
ρ(t, u)f(t, u)− γ(u)f(0, u) du−

∫ t

0

∫
T
ρ(s, u)∂sf(s, u) du ds+

∫ t

0

∫
T
ρ(s, u)∂uf(s, u) du ds = 0.

2.6 Heuristic argument for weak solution

As stated above, our goal is to prove that the density of particles is ruled by the weak solution of a

PDE, in our case, the transport equation. In order to do that, we work with the microscopic space Tn and

then take the limit on the number of sites, n. For that reason, it is useful to define the notion of derivative

in the discrete case.

Definition 2.6.1 (Discrete left derivative). GivenG : T→ R, n ∈ N and x ∈ Tn, the discrete left derivative

at xn is defined by

∇−nG
(
x
n

)
= n

(
G
(
x
n

)
−G

(
x−1
n

))
.

Remark 2.6.2. Note that, if G is C1,

lim
n→∞

|∇−nG( xn )−∇G( xn )| = 0.

33



Computing the generator on 〈πnt , G〉 is one of the first steps when one wants to find how the empirical

measure evolves in space/time. The following lemma shows that computation.

Lemma 2.6.3. Let {ηt}t≥0 be the Markov process with generator nLn (Rudvalis process). Then, for any

t ≥ 0 and G : T→ R

nLn〈πnt , G〉 = −〈πnt ,∇−nG〉 −
1

2n
(ηt(1)− ηt(0))∇−nG(0).

Proof. We start by computing Lnηt(x), for x ∈ Tn.

Lnηt(x) =
1

2

n∑
y=n−1

Θyηt(x) =
1

2
(ηnt (x)+ηn−1

t (x)−2ηt(x)) =
1

2


2ηt(x+ 1)− 2ηt(x), if x 6∈ {n− 1, n}

ηt(n) + ηt(1)− 2ηt(n− 1), if x = n− 1

ηt(1)− ηt(n), if x = n

.

Thus,

nLn〈πnt , G〉 =

n−2∑
x=1

G( xn )[ηt(x+ 1)− ηt(x)] +
1

2
G(n−1

n )[ηt(n) + ηt(1)− 2ηt(n− 1)] +
1

2
G(nn )[ηt(1)− ηt(n)]

= −
∑
x∈Tn

ηt(x)[G( xn )−G(x−1
n )]− 1

2
ηt(1)

[
G
(
n
n

)
−G

(
n−1
n

)]
+

1

2
ηt(n)

[
G
(
n
n

)
−G

(
n−1
n

)]
= − 1

n

∑
x∈Tn

ηt(x)∇−nG( xn )− 1

2n
(ηt(1)− ηt(0))∇−nG(0)

= −〈πnt ,∇−nG〉 −
1

2n
(ηt(1)− ηt(0))∇−nG(0).

Remark 2.6.4. If we had considered the general Rudvalis process with generator given by

Lnf(η) = pΘn−1f(η) + (1− p) Θnf(η), similar computations would lead to

nLn〈πnt , G〉 = −〈πnt ,∇−nG〉 −
p

n
(ηt(1)− ηt(0))∇−nG(0).

As we will see next, what matters is that the rightmost term of the above expression is O( 1
n ) and thus

taking a general p ∈ (0, 1) would lead to the same result.

Remark 2.6.5. Since there is at most one particle per site, |ηt(1)−ηt(0)| ≤ 1. If we take G ∈ C(T), then,

since G is continuous on the compact set T,

|nLn〈πnt , G〉+ 〈πnt ,∇−nG〉| = O( 1
n ).
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Now fix f ∈ C2,1([0, T ]× T) and apply Dynkin’s formula (A.1.2) with F (t, ηt) = 〈πnt , ft〉. Then

Mn
t (f) := 〈πnt , ft〉 − 〈πn0 , f0〉 −

∫ t

0

(∂s + nLn)〈πns , fs〉 ds,

Nn
t (f) := (Mn

t (f))2 −
∫ t

0

Γn(〈πns , fs〉) ds, where Γn(〈πns , fs〉) := nLn〈πns , fs〉2 − 2〈πns , fs〉nLn〈πns , fs〉,

(2.3)

are martingales with respect to the natural filtration Ft = σ(ηs : s ≤ t).

Using Lemma 2.6.3, we can rewrite the first martingale as

Mn
t (f) = 〈πnt , ft〉−〈πn0 , f0〉−

∫ t

0

〈πns , ∂sfs〉 ds+
∫ t

0

〈πns ,∇−n fs〉 ds+
1

2n

∫ t

0

(ηs(1)−ηs(0))∇−n fs(0) ds. (2.4)

Since the expected value of a martingale remains constant and Mn
0 (f) = 0, we have for all t that

Eµn [Mn
t (f)] = 0.

Consider the function ρnt (x) := Eµn [ηt(x)]. The martingale gives us an idea (in the discrete case) of

the condition satisfied by the solution of the PDE which we are expecting. Taking the expectation with

respect to Pµn in (2.4), we get the following equation for ρnt :

0 =
1

n

∑
x∈Tn

ft
(
x
n

)
ρnt (x)− 1

n

∑
x∈Tn

f0

(
x
n

)
ρn0 (x)

−
∫ t

0

1

n

∑
x∈Tn

∂sfs
(
x
n

)
ρns (x) ds+

∫ t

0

1

n

∑
x∈Tn

∇−n fs
(
x
n

)
ρns (x) ds+O( 1

n ).

If we look carefully and assume that |ρnt (x) − ρt( xn )| −−−→
n↑∞

0, these are Riemann sums for the integrals

in Definition 2.5.1.

2.7 Hydrodynamic limit

Now that we have seen an heuristic argument to obtain a weak solution for equation (2.2), let us

see how to prove rigorously the hydrodynamic limit for the dynamics of the Rudvalis process. Recall

Definition 2.1.4 and the space DΩn [0, T ], where Pµn is defined. The process {πnt }t≥0, induced by the

Rudvalis process, can be seen as a Markov process, but this time in DM[0, T ] endowed with the Skoro-

hod topology.

Let {Qn}n∈N be the sequence of probability measures in DM[0, T ] induced by the process {πnt }t≥0

and by the probability measure Pµn . Equivalently, Qn is induced by the application

πn : (DΩn [0, T ],Pµn)→ (DM[0, T ],Qn)

η. → πn(η., du).
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In particular, given a measurable set A ∈ DM[0, T ],

Qn(A) = Pµn((πn)−1(A)) = Pµn(η. ∈ DΩn [0, T ] : πn(η.) ∈ A) = Pµn(η. ∈ DΩn [0, T ] : πn. ∈ A) (2.5)

As we will see later, the sequence {Qn}n∈N of probability measures converges weakly to a limit point.

The concept of relative compactness will help us to assert this fact. In what follows, (X,B) denotes a

metric space X with σ-algebra B generated by the open sets, the Borel σ-algebra.

Definition 2.7.1 (Relatively Compact). Let Π be a family of probability measures on (X,B). We say that

Π is relatively compact if every sequence of elements of Π contains a weakly convergent subsequence,

that is, for every sequence {Pn}n∈N in Π there exists a subsequence {Pni}i∈N and a probability measure

P (defined on (X,B) but not necessarily an element of Π) such that Pni
w−−−→
i↑∞

P.

Recall the concept of a sequence of measures associated with a profile, given in Definition 2.2.1. We

now present the main result of this chapter.

Theorem 2.7.2 (Hydrodynamic Limit). Consider the Rudvalis process {ηt}t≥0. Fix a measurable initial

profile γ : T → [0, 1] and let {µn}n∈N be a sequence of probability measures associated with γ. Then,

for any t ∈ [0, T ], for any δ > 0 and any G ∈ C(T), it holds

lim
n→∞

Pµn

(
η. ∈ DΩn [0, T ] :

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
ηt(x)−

∫
T
G(u)ρ(t, u) du

∣∣∣∣∣ > δ

)
= 0 (2.6)

where ρ(t, ·) is the unique weak solution of (2.2) with initial condition ρ(0, ·) := γ(·).

Remark 2.7.3. We call equation (2.2) the hydrodynamic equation of the Rudvalis process.

But what is the hydrodynamic limit really saying? We start by noting that we can rewrite what is inside

of Pµn in (2.6) as

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
ηt(x)−

∫
T
G(u)ρ(t, u) du

∣∣∣∣∣ = |〈πnt , G〉 − 〈πt, G〉| ,

where πt(du) = ρ(t, u) du, i.e., πt(du) is an absolutely continuous measure (with respect to the Lebesgue

measure) whose density ρt(u) is the unique weak solution of the transport equation.

If all the measures involved were deterministic, we would just say that πnt converges weakly to πt.

However, this is not the case, since πnt := πn(ηt) is a random measure (which depends on the Rudvalis

process) we have to express in which sense this convergence holds. With respect to Pµn , the measure

induced by the Rudvalis process with infinitesimal generator nLn and initial measure µn, verifies πnt
w−→

πt so another way to express the limit in (2.6) is to say that πnt converges in probability to πt (because

the convergence is only verified under Pµn ). Another way to see this condition, is that the Law of Large

Numbers holds at time t ∈ [0, T ] for πnt .

Similarly, the definition of probability measures associated with γ can be rewritten as the sequence
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of measures for which given any integrable function G : T→ [0, 1] and δ > 0, verifies

lim
n→∞

µn (η ∈ Ωn : |〈πn(η), G〉 − 〈γ,G〉| > δ) = 0.

In conclusion, what we are really doing when proving the hydrodynamic limit is showing that if the Law

of Large Numbers for the empirical measure holds at the initial time t = 0, then it also holds for any

subsequent time t. The hydrodynamic limit is a consequence of the following proposition.

Proposition 2.7.4. Let γ : T → [0, 1] be measurable and consider a sequence of measures {µn}n∈N
on Ωn associated with γ. Let Q∗ be the probability measure concentrated on a trajectory π. of DM[0, T ]

consisting of absolutely continuous measures with respect to the Lebesgue measure, i.e., πt(du) =

ρt(u)du where the density ρ. is the unique weak solution of (2.2). Then

Qn w−→ Q∗.

Since Qn is the measure induced by Pµn and the application πn, the weak convergence of Qn to Q∗

is the same as the convergence in distribution of πnt to πt, for any t ∈ [0, T ]. Since πt(du) = ρt(u)du is

a deterministic measure, the previous convergence is also valid in probability (with respect to Pµn ) and

whence, by the previous observations, Proposition 2.7.4 implies Theorem 2.7.2. For this reason, when

we want to prove the hydrodynamic limit, we often follow the sequence of steps given below:

1. The sequence {Qn}n∈N is relatively compact with respect to the Skorohod’s topology (A.3.4).

2. The limit points of the subsequences of {Qn}n∈N are concentrated on trajectories of measures

which are absolutely continuous with respect to the Lebesgue measure and whose densities ρ(t, u)

are weak solutions of the hydrodynamic equation.

3. The hydrodynamic equation has a unique weak solution.

Note that proving these 3 steps is exactly what we need to establish Proposition 2.7.4: if {Qn}n∈N is

relatively compact, then there exists a subsequence of {Qn}n∈N which converges weakly to a limit point

Q∗. By 2., the limit points of every convergent subsequence are concentrated on a trajectory π. such that

for t ∈ [0, T ], πt is absolutely continuous with respect to the Lebesgue measure, i.e., πt(du) = ρt(u) du.

Moreover, the density ρ(t, u) is a weak solution of the hydrodynamic equation. In 3., we are going to

see that the hydrodynamic equation has a unique weak solution ρ(t, u), and this all together implies the

existence and uniqueness of the limit point Q∗. Finally, we conclude (since the limit point is unique) that

the whole sequence {Qn}n∈N converges weakly to Q∗, which is a measure concentrated on a trajectory

π. of absolutely continuous measures with respect to the Lebesgue measure and whose density is the

unique weak solution of the hydrodynamic equation.

2.7.1 Relative compactness

The concepts of tightness and relatively compactness are related in a well know theorem by Prohorov

(Theorem A.2.1). In that regard, we define the concept of tightness:
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Definition 2.7.5 (Tightness). Let Π be a family of probability measures on (X,B) . We say that Π is tight

if for every ε > 0, there exists a compact set K such that P(K) > 1 − ε for every probability measure P

in Π.

Put into words, a family of probability measures is tight (and by Prohorov’s Theorem, is relatively

compact as well) if there exists a compact set that accumulates mass for every measure of that family.

The notion of a compact, which is summarized in A.3, is not so clear when we are working with the

Skorohod topology and we refer the reader to [3] (Chapter 3).

When proving the tightness of {Qn}n∈N, we will use Dynkin’s formula as in Section 2.6. Moreover,

the following lemma will be useful. But before, let us just introduce the next notation (similar to the big

O). For two sequences {fk}k∈N and {gk}k∈N, we say that fn . gn if there exists a positive constant C,

independent of n, such that fn ≤ C gn.

Lemma 2.7.6. Recall the operator Γn defined in (2.3). Let G ∈ C1(T). Then,

Γn(〈πns , G〉) .
‖∇G‖2∞

n
.

Proof. Recall the operator Θx defined in Section 2.1. Note that for ηs ∈ Ωn, if h(ηs) = 〈πns , G〉 then

Θx(h(ηs)
2)− 2h(ηs)Θxh(ηs) = (Θxh(ηs))

2. Using this fact and the mean value theorem, we get

Γn(〈πns , G〉) := nLn〈πns , G〉2 − 2〈πns , G〉nLn〈πns , G〉

= n

n∑
x=n−1

1
2Θx(〈πns , G〉2)− 2n〈πns , G〉

n∑
x=n−1

1
2Θx〈πns , G〉

= n
2

n∑
x=n−1

(Θx〈πns , G〉)
2

= n
2

n∑
x=n−1

 1
n

∑
y∈Tn

G
(
y
n

)
Θxηs(y)

2

= n
2

n∑
x=n−1

 1
n

∑
y∈Tn

G
(
y
n

)
(ηxs (y)− ηs(y))

2

= 1
2n

∑
y∈Tn

G
(
y
n

)
(ηs(y + 1)− ηs(y))

2

+ 1
2n

 ∑
y 6∈{n−1,0}

G
(
y
n

)
(ηs(y + 1)− ηs(y)) +G

(
n−1
n

)
(ηs(1)− ηs(n− 1))

2

= 1
2n

−∑
y∈Tn

ηs(y)
[
G
(
y
n

)
−G

(
y−1
n

)]2

+ 1
2n

−∑
y∈Tn

ηs(y)
[
G
(
y
n

)
−G

(
y−1
n

)]
− (ηs(1)− ηs(0))

[
G(0)−G

(
n−1
n

)]2

≤ 1
2n

∑
y∈Tn

∣∣G ( yn)−G (y−1
n

)∣∣2

+ 1
2n

∑
y∈Tn

∣∣G ( yn)−G (y−1
n

)∣∣+
∣∣G(0)−G

(
n−1
n

)∣∣2

≤ 1
n

∑
y∈Tn

∣∣G ( yn)−G (y−1
n

)∣∣+
∣∣G(0)−G

(
n−1
n

)∣∣2

≤ 1
n

(
‖∇G‖∞ + 1

n ‖∇G‖∞
)2

.
‖∇G‖2∞

n
.
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Proposition 2.7.7. The sequence {Qn}n∈N is relatively compact.

Proof. Recall that Qn is the probability measure defined in DM[0, T ] which is induced by the process

{πnt }t≥0 and Pµn and is defined in DM[0, T ]. We will show that the sequence {Qn}n∈N is tight and use

that fact together with Prohorov’s Theorem to conclude that the sequence is relatively compact.

We start by noting that C1(T) is dense in C(T) under the uniform topology. LetG ∈ C1(T). By Lemma

A.2.2, it is enough to show that {Qn,G}n∈N is tight, where Qn,G is the probability measure induced by

G : (DM[0, T ],Qn)→ (DR[0, T ],Qn,G)

{πnt }t≥0 → {〈πnt , G〉}t≥0.

So if A ∈ DR[0, T ] is measurable, then, by (2.5)

Qn,G(A) = Qn(G−1(A)) = Qn(πn. ∈ DM[0, T ] : G(πn. ) ∈ A) = Qn(πn. ∈ DM[0, T ] : 〈πn. , G〉 ∈ A)

= Pµn(η. ∈ DΩn [0, T ] : 〈πn(η.), G〉 ∈ A).

We thus have to show the tightness of the family {〈πnt , G〉 : 0 ≤ t ≤ T}n∈N for G ∈ C(T), which will be

done by applying Aldous’ criterion (Proposition A.2.4):

• Condition (i) of Aldous’ criterion.

Let t ∈ [0, T ] and ε > 0. Note that

|〈πnt , G〉| =

∣∣∣∣∣ 1n ∑
x∈Tn

G
(
x
n

)
ηt(x)

∣∣∣∣∣ ≤ ‖G‖∞ <∞

where the last inequality comes from the fact that |ηt(x)| ≤ 1 and that G is a continuous function

defined on a compact set and therefore it is bounded. Thus we can takeK := Br(0) with r > ‖G‖∞
(closed ball with radius r centred in 0) as the compact we need for condition (i) of Proposition A.2.4

since, for this set,

Qn,G(〈πn. , G〉 ∈ DR[0, T ] : 〈πnt , G〉 6∈ K) = 0 < ε

and the first condition of Aldous’ criterion is proved.

• Condition (ii) of Aldous’ criterion.

Let ε > 0 and TT be the set of stopping times bounded by T . We have to show that

lim
γ→0

lim sup
n→∞

sup
τ∈TT ,θ≤γ

Qn,G(〈πn. , G〉 ∈ DR[0, T ] : |〈πnτ+θ, G〉 − 〈πnτ , G〉| > ε) = 0. (2.7)

Using Dynkin’s formula with 〈πnt , G〉 as in (2.3), we have that

Mn
t (G) := 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

(∂s + nLn)〈πns , G〉 ds,

Nn
t (G) := (Mn

t (G))2 −
∫ t

0

Γn(〈πns , G〉) ds,
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where

Γn(〈πns , G〉) := nLn〈πns , G〉2 − 2〈πns , G〉nLn〈πns , G〉,

are martingales with respect to the natural filtration Ft = σ(ηs : s ≤ t). We can bound the

probability inside (2.7) as follows:

Qn,G(〈πn. , G〉 ∈ DR[0, T ] : |〈πnτ+θ, G〉 − 〈πnτ , G〉| > ε)

= Qn(πn. ∈ DM[0, T ] : |〈πnτ+θ, G〉 − 〈πnτ , G〉| > ε)

= Pµn

(
η. ∈ DΩn [0, T ] :

∣∣∣∣∣Mn
τ+θ(G)−Mn

τ (G) +

∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣ > ε

)

≤ Pµn

(
η. ∈ DΩn [0, T ] : |Mn

τ+θ(G)−Mn
τ (G)|+

∣∣∣∣∣
∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣ > ε

)
≤ Pµn

(
η. ∈ DΩn [0, T ] : |Mn

τ+θ(G)−Mn
τ (G)| > ε

2

)
+ Pµn

(
η. ∈ DΩn [0, T ] :

∣∣∣∣∣
∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣ > ε

2

)

≤ 4

ε2
Eµn

[
|Mn

τ+θ(G)−Mn
τ (G)|2

]
+

2

ε
Eµn

[∣∣∣∣∣
∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣
]

where the last inequality comes from applying Markov’s inequality. Consequently, in order to

achieve our goal, it is enough to prove the following facts:

lim
γ→0

lim sup
n→∞

sup
τ∈TT ,θ≤γ

Eµn
[
|Mn

τ+θ(G)−Mn
τ (G)|2

]
= 0; (2.8)

lim
γ→0

lim sup
n→∞

sup
τ∈TT ,θ≤γ

Eµn

[∣∣∣∣∣
∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣
]

= 0. (2.9)

a) Proof of (2.8)

We start by noting that for t, s > 0, the quadratic variation of the martingale verifies

Eµn [(Mn
t+s(G)−Mn

t (G))2] = Eµn [Mn
t+s(G)2]− 2Eµn [Mn

t+s(G)Mn
t (G)] + Eµn [Mn

t (G)2]

= Eµn [Mn
t+s(G)2]− Eµn [Mn

t (G)2]

= Eµn
[∫ t+s

t

Γn(〈πns , G〉) ds
]

+ Eµn [Nn
t+s(G)] + Eµn [Nn

t (G)]

= Eµn
[∫ t+s

t

Γn(〈πns , G〉) ds
]
,

where the second equality comes from martingale’s properties, namely

Eµn [Mn
t+s(G)Mn

t (G)] = Eµn [Eµn [Mn
t+s(G)Mn

t (G)|Ft]] = Eµn [Mn
t (G)Eµn [Mn

t+s(G)|Ft]]

= Eµn [Mn
t (G)2].

By the previous observation, by the Optional Stopping Theorem and by Lemma 2.7.6,
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Eµn
[
|Mn

τ+θ(G)−Mn
τ (G)|2

]
= Eµn

[∫ τ+θ

τ

Γn(〈πns , G〉) ds

]
. Eµn

[∫ τ+θ

τ

‖∇G‖2∞
n

ds

]

=
‖∇G‖2∞ θ

n
,

and to conclude (2.8) it is enough to send n to infinity.

b) Proof of (2.9)

By the mean value theorem, we have that

|〈πns ,∇−nG〉| ≤
∑
x∈Tn

|G( xn )−G(x−1
n )|ηs(x) ≤ 1

n

∑
x∈Tn

‖∇G‖∞ = ‖∇G‖∞

and
1

2n
|(ηs(1)− ηs(0))∇−nG(0)| ≤ 1

n
‖∇G‖∞ .

By Lemma 2.6.3,

|nLn〈πns , G〉| ≤ |〈πns ,∇−nG〉|+
1

2n
|(ηs(1)− ηs(0))∇−nG(0)| ≤

(
1 +

1

n

)
‖∇G‖∞ .

We can use this relation to get an upper bound for the expectation in (2.9)

Eµn

[∣∣∣∣∣
∫ τ+θ

τ

nLn〈πns , G〉 ds

∣∣∣∣∣
]
≤ Eµn

[∫ τ+θ

τ

|nLn〈πns , G〉| ds

]
≤
∫ τ+θ

τ

(
1 +

1

n

)
‖∇G‖∞ ds

= θ

(
1 +

1

n

)
‖∇G‖∞ ,

and to conclude (2.9) it is enough to take the limit as n→∞, and then take the limit as γ → 0

(since θ ≤ γ).

This concludes the proof that {Qn,G}n∈N is tight. Using Lemma A.2.2, {Qn}n∈N is tight and finally by

Prohorov’s Theorem, we conclude that {Qn}n∈N is relatively compact.

The next step is to characterize all possible limit points, i.e., to find their properties.

2.7.2 Characterization of limit points

Having proven that {Qn}n∈N is relatively compact, it is time to characterize the limit points of the

subsequences. We divide this proof into two parts. First, we show that any limit point Q∗ is concentrated

on trajectories (in DM[0, T ]) which are absolutely continuous with respect to the Lebesgue measure.

This means that the trajectories π. satisfy πt(du) = ρ(t, u)du for some function ρ (the density). Then,

we prove that the density ρ is a weak solution of (2.2). We start by recalling the concept of absolutely

continuous measure.
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Definition 2.7.8 (Absolutely continuous measure). A measure µ on Borel sets of R is absolutely contin-

uous with respect to the Lebesgue measure λ, which we denote by µ � λ if, for every measurable set

A, λ(A) = 0 implies µ(A) = 0.

The following lemma gives a sufficient condition for a measure to be absolutely continuous with

respect to the Lebesgue measure. If we can prove that the sufficient condition of the lemma holds for

trajectories in which Q∗ is concentrated on, then we can conclude the first part.

Lemma 2.7.9. Let µ be a measure which satisfies |〈µ,G〉| ≤
∫ 1

0
|G(u)| λ(du) for all G ∈ C([0, 1]). Then,

µ� λ, where λ is the Lebesgue measure.

Proof. Let F ⊆ [0, 1] be closed and define for n ∈ N, Fn = {x ∈ [0, 1] : d(x, F ) ≤ 1
n}, where d is the

usual metric in R. Let {gn}n∈N be a sequence of functions such that for each n ∈ N, 0 ≤ gn ≤ 1 is a

continuous function taking value 1 inside of F and 0 outside of Fn. In other words, gn is a continuous

function satisfying 1F ≤ gn ≤ 1Fn . We get that for n ∈ N

µ(F ) = 〈µ,1F 〉 ≤ 〈µ, gn〉 ≤
∫ 1

0

gn(u) λ(du) ≤
∫ 1

0

1Fn(u) λ(du) = 〈λ,1Fn〉 = λ(Fn).

Since
⋂
n∈N

Fn = F and λ(F1) <∞, by continuity from above,

µ(F ) ≤ lim
n→∞

λ(Fn) = λ(F ).

Now assume that A ⊆ [0, 1] is a measurable set such that λ(A) = 0. Hence, (by definition of set with

measure zero) for ε > 0, there are closed intervals I1, I2, ... such that A ⊆
⋃∞
n=1 In and

∑∞
n=1 λ(In) < ε.

Thus

µ(A) ≤ µ
( ∞⋃
n=1

In
)

= lim
n→∞

µ
( n⋃
k=1

Ik
)
≤ lim
n→∞

λ
( n⋃
k=1

Ik
)
≤ lim
n→∞

n∑
k=1

λ(Ik) < ε.

Since ε is arbitrary, we conclude that µ(A) = 0.

Proposition 2.7.10. Let Q∗ be a limit point of a subsequence of the sequence {Qn}n≥1. Then, Q∗ is

concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue measure.

Proof. Let {Qnk}k∈N be a subsequence of {Qn}n≥1 converging to Q∗. We will show that the condition

of Lemma 2.7.9 holds for the trajectories in which Q∗ is concentrated on. Let G ∈ C(T) and denote by

Θ(πn. ) := sup
0≤t≤T

|〈πnt , G〉| a real random variable which depends on the process {ηt}t≥0 (recall that this

process is indexed on n). Since we have at most one particle per site,

Θ(πn. ) = sup
0≤t≤T

|〈πnt , G〉| = sup
0≤t≤T

∣∣∣∣∣ 1
n

∑
x∈Tn

G( xn )ηt(x)

∣∣∣∣∣ ≤ 1
n

∑
x∈Tn

|G( xn )|. (2.10)

Now let ε > 0. Since G is continuous, there exists N := N(ε) ∈ N such that for any n ≥ N ,

∣∣∣∣∣ 1n ∑
x∈Tn

∣∣∣G( xn )
∣∣∣− ∫ 1

0

|G(u)| du

∣∣∣∣∣ < ε. (2.11)
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From (2.10) and (2.11), for sufficiently large n, we get that Qn(Fε) = 1, where

Fε =

{
π. ∈ DM[0, T ] : Θ(π.) ≤

∫ 1

0

|G(u)| du+ ε

}

is the set of trajectories of measures in which Qn is concentrated on , for n ∈ N. Now we proceed to

show that Fε is closed in the Skorohod topology DM[0, T ]. Let {πn. } ∈ Fε and π. ∈ DM[0, T ] such that

πn. → π. in Skorohod’s topology. We aim to show that π. ∈ Fε. By Lemma A.3.8, for almost every s in

[0, T ] (including s = 0 and s = T ), πns
w−−−→

n↑∞
πs. We claim that for every t < T , we have a sequence

{tk}k∈N with tk ↓ t such that πntk
w−−−→

n↑∞
πtk for all k ∈ N.

Let S = {s ∈ [0, T ] : πns
w−−−−→

n→∞
πs} with λ(S) = T , where λ is the Lebesgue measure. We want to

prove that for every 0 ≤ t < T and every δ > 0 such that t + δ < T , we have (t, t + δ) ∩ S 6= ∅, which is

always true because

λ((t, t+ δ) ∩ S) = λ((t, t+ δ) ∩ [0, T ]) = δ > 0.

By definition of weak convergence and since πn. ∈ Fε,

|〈πtk , G〉| = lim
n→∞

|〈πntk , G〉| ≤ lim
n→∞

Θ(πn. ) ≤
∫ 1

0

|G(u)| du+ ε, for all k ∈ N.

Since π. is right continuous, t 7→ |〈πt, G〉| is right continuous, which leads to

|〈πt, G〉| = lim
k→∞

|〈πtk , G〉| ≤
∫ 1

0

|G(u)| du+ ε.

Since πnT
w−−−→

n↑∞
πT , we have that |〈πT , G〉| = lim

n→∞
|〈πnT , G〉| ≤

∫ 1

0
|G(u)| du + ε, which concludes that

π. ∈ Fε, that is, Fε is closed. Since, by hypothesis, {Qnk}n∈N converges weakly to Q∗, by Portmanteau’s

Theorem, given a closed set F ,

lim sup
k→∞

Qnk(F ) ≤ Q∗(F ).

Taking F := Fε,

Q∗(Fε) ≥ lim sup
k→∞

Qnk(Fε) = 1,

which means that Q∗ is concentrated on Fε. Since ε is arbitrary, we have that Q∗ is concentrated on F 1
m

,

for m ∈ N. Moreover, since F 1
m+1
⊆ F 1

m
(and Q∗(F1) < ∞), we have by the property of continuity from

above of measures that

Q∗(F0) = Q∗
( ∞⋂
m=1

F 1
m

)
= lim
m→∞

Q∗(F 1
m

) = 1,

where F0 :=
∞⋂
m=1

F 1
m

= {π. ∈ DM[0, T ] : sup
0≤t≤T

|〈πnt , G〉| ≤
∫ 1

0
|G(u)| du} is a set of trajectories whose

measures satisfy the condition of Lemma 2.7.9. Hence, given a trajectory π. on which Q∗ is concen-

trated, we have that for all t ∈ [0, T ], πt satisfies the condition of Lemma 2.7.9 which means that πt is

absolutely continuous with respect to the Lebesgue measure.

We conclude from this result that Q∗ is concentrated in absolutely continuous trajectories, i.e., for

each t, πt(du) = ρ(t, u)du where ρ is the density of π. Note that in order to achieve this result, we do not
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need to consider anything about the dynamics of the process (the process may have any generator), we

just need ηt to be bounded.

For the second part, we prove rigorously the ideas explored before in the heuristic argument (Section

2.6). This is the main ingredient for the hydrodynamic limit since we are now characterizing the limit of

the sequence, proving that it is concentrated on a set of trajectories whose density is a weak solution of

the transport equation.

For the next proposition, in order to simplify the notation, denote a subsequence of {Qn}n≥1 just by

{Qn}n≥1 and assume (without loss of generality) that it converges weakly to Q∗.

Proposition 2.7.11. Let Q∗ be a limit point of a subsequence of {Qn}n≥1 and assume without loss of

generality that Qn w−→ Q∗. Let f ∈ C2,1([0, T ]× T) and for t ∈ [0, T ], define

At =

{
π. ∈ DM[0, T ] : 〈ρt, ft〉 − 〈γ, f0〉 −

∫ t

0

〈ρs, ∂sfs〉 ds+

∫ t

0

〈ρs,∇fs〉 ds = 0

}
. (2.12)

Then, for t ∈ [0, T ], Q∗ is concentrated on At, that is, Q∗(At) = 1.

Proof. Let δ > 0 and recall that πt(du) = ρ(t, u)du. Fix f ∈ C2,1([0, T ] × T). Define Φf : DM[0, T ] → R

as

Φf (π.) = sup
0≤t≤T

∣∣∣〈πt, g1〉 − 〈π0, g2〉 −
∫ t

0

〈πs, g3〉 ds
∣∣∣,

where g1 := ft : T → [0, 1], g2 := f0 : T → [0, 1], g3 := (∂s − ∇)fs : T → [0, 1] are continuous for all

s, t ∈ [0, T ]. Since for any t ∈ [0, T ],

Φf (π.) ≥
∣∣∣〈ρt, ft〉 − 〈γ, f0〉 −

∫ t

0

〈ρs, ∂sfs〉 ds+

∫ t

0

〈ρs,∇fs〉 ds
∣∣∣,

it is sufficient to show that

Q∗(π. ∈ DM[0, T ] : Φf (π.) > δ) = 0. (2.13)

By Lemma A.3.9, since g1, g2 and g3 are continuous, Φf (π.) is continuous as well. This means that {π. ∈

DM[0, T ] : Φf (π.) > δ} is an open set (because it is the inverse image of the open set {y ∈ R : y > δ}

by a continuous function) and by Portmanteau’s Theorem, it is enough to show that

lim inf
n→∞

Qn(π. ∈ DM[0, T ] : Φf (π.) > δ) = 0, (2.14)

as the probability in (2.13) is bounded from below by the limit above. Using the relationship Pµn ◦

(πn)−1 := Qn between Qn and Pµn , we get

lim inf
n→∞

Qn(π. ∈ DM[0, T ] : Φf (π.) > δ) =

lim inf
n→∞

Pµn
(
η. ∈ DΩn [0, T ] : sup

0≤t≤T

∣∣∣〈πnt , ft〉 − 〈πn0 , f0〉 −
∫ t

0

〈πns , (∂s −∇)fs〉 ds
∣∣∣ > δ

)
.

Summing and subtracting nL〈πns , fs〉 inside of the time integral, the previous limit is bounded by the sum
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of

lim inf
n→∞

Pµn
(
η. ∈ DΩn [0, T ] : sup

0≤t≤T

∣∣∣〈πnt , ft〉−〈πn0 , f0〉−
∫ t

0

〈πns , ∂sfs〉 ds−
∫ t

0

nLn〈πns , fs〉 ds
∣∣∣ > δ

2

)
(2.15)

and

lim inf
n→∞

Pµn
(
η. ∈ DΩn [0, T ] : sup

0≤t≤T

∣∣∣ ∫ t

0

〈πns ,∇fs〉 ds+

∫ t

0

nLn〈πns , fs〉 ds
∣∣∣ > δ

2

)
. (2.16)

So it is sufficient to show that (2.15) and (2.16) are zero.

• For (2.15):

Applying Dynkin’s formula as in (2.3), we have that Mn
t (f) is a martingale with respect to the

natural filtration Ft = σ(ηs : s ≤ t). Moreover, note that the martingale is equal to the term inside

the absolute value in (2.15). By Doob’s inequality (A.1.5) with p := 2, the probability in (2.15)

satisfies

Pµn
(

sup
0≤t≤T

|Mn
t (f)| > δ

2

)
≤ 4

δ2
E
[
|Mn

T (f)|2
]

=
4

δ2
E
[ ∫ T

0

Γn(〈πns , fs〉) ds
]
.

1

nδ2

∫ T

0

‖∇fs‖2∞ ds,

where the last inequality comes from Lemma 2.7.6. Therefore we conclude that

lim
n→∞

Pµn
(

sup
0≤t≤T

|Mn
t (f)| > δ

2

)
= 0.

• For (2.16):

Looking at the action of the generator, we see that in order to prove that the limit is zero, it is

sufficient to show that the following limits are zero:

lim
n→∞

Pµn
(
η. ∈ DΩn [0, T ] : sup

0≤t≤T

∣∣∣ ∫ t

0

(〈πns ,∇−n fs〉 − 〈πns ,∇fs〉) ds
∣∣∣ > δ

4

)
= 0;

lim
n→∞

Pµn
(
η. ∈ DΩn [0, T ] : sup

0≤t≤T

∣∣∣ ∫ t

0

1

2n
(ηs(1)− ηs(0))∇−n fs(0) ds

∣∣∣ > δ

4

)
= 0.

For the first limit, note that

|〈πns ,∇−n fs〉 − 〈πns ,∇fs〉| = 1
n

∑
x∈Tn

ηt(x)|∇−n fs( xn )−∇fs( xn )| ≤ 1
n

∑
x∈Tn

|∇−n fs( xn )−∇fs( xn )|.

We can use Taylor’s Theorem to simplify the difference of the derivatives:

|∇−n fs( xn )−∇fs( xn )| = |n(fs(
x
n )− fs(x−1

n ))−∇fs( xn )| = |n( 1
n∇fs(

x
n ) + o( 1

n ))−∇fs( xn )|

= n o( 1
n ).

It follows that for any t, ∣∣∣ ∫ t

0

(〈πns ,∇−n fs〉 − 〈πns ,∇fs〉) ds
∣∣∣ = n o( 1

n )

converges to zero (with n). For the second limit, ∇−n fs(0) converges to ∇fs(0), which is bounded.
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Thus, by a similar argument as the previous one, we conclude that the limit is zero.

Until now we have seen that Qn converges to Q∗, where Q∗ is a Dirac delta on a trajectory π. which

is absolutely continuous with respect to the Lebesgue measure and whose density is a weak solution of

(2.2). So we might have different subsequences of {Qn}n∈N converging to limit points concentrated on

trajectories whose densities might not be the same. It is thus left to show the uniqueness of the weak

solution of (2.2).

2.7.3 Uniqueness of weak solutions of the transport equation

Recall Definition 2.5.1. Assume that ρl : [0, T ] × T → [0, 1], l = 1, 2, are two weak solutions of (2.2)

starting from the same initial condition. Define ρ̂ = ρ1 − ρ2 and observe that ρ̂(0, u) = 0 for any u ∈ T.

Thus, from the definition of weak solution, for all f ∈ C2,1([0, T ]× T) and t ∈ [0, T ]

∫
T
ρ̂(t, u)ft(u)du =

∫ t

0

∫
T
ρ̂(s, u)(∂s fs(u)) du ds−

∫ t

0

∫
T
ρ̂(s, u) (∇fs(u)) du ds. (2.17)

Now, for t ∈ [0, T ] and u ∈ T, let φm(t) = 1√
T
e2πimt/T and ξk(u) = e2πiku and recall that {φm : m ∈ N0}

and {ξk : k ∈ N0} are orthonormal basis of L2([0, T ]) and L2(T) respectively, for the inner products

〈f, g〉 =
∫ T

0
f(t)g(t) dt and 〈f, g〉 =

∫
T f(u)g(u) du, where g is the conjugate of g. Thus, if ψm,k(t, u) =

φm(t)ξk(u) = 1√
T
e2πi(mt/T+ku), then {ψm,k : m, k ∈ N0} is an orthonormal basis of L2([0, T ]× T) for the

inner product 〈f, g〉 =
∫ T

0

∫
T f(t, u)g(t, u) du dt. It is easy to verify that the functions are orthonormal

〈ψm,k, ψm′,k′〉 =

∫ T

0

∫
T

1√
T
e2πi(mt/T+ku) 1√

T
e−2πi(m′t/T+k′u) du dt

= 1
T

∫ T

0

∫
T
e2πi((m−m′)t/T+(k−k′)u) du dt =

1 if m = m′ and k = k′,

0 if m 6= m′ or k 6= k′.

To see that the functions form a basis of L2([0, T ] × T), check Chapter 7 of [11]. Moreover, for any

m, k ∈ N0 we have ∂s ψm,k(s, u) = 2πimT ψm,k(s, u) and ∇ψm,k(s, u) = 2πikψm,k(s, u). Therefore,

replacing fs by ψm,k(s, ·) in (2.17) for fixed m and k, we obtain

∫
T
ρ̂(t, u)ψm,k(t, u)du = 2πi

(
m
T − k

) ∫ t

0

∫
T
ρ̂(s, u)ψm,k(s, u) du ds.

Taking a time derivative on both sides of the above expression, we conclude that

∂t

(∫
T
ρ̂(t, u)ψm,k(t, u) du

)
= 2πi

(
m
T − k

) ∫
T
ρ̂(t, u)ψm,k(t, u) du.
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Hence,
∫
T ρ̂(t, u)ψm,k(t, u) du is a solution of the first order linear Ordinary differential equation y′(t) −

2πi
(
m
T − k

)
y(t) = 0, that is,

∫
T
ρ̂(t, u)ψm,k(t, u) du =

(∫
T
ρ̂(0, u)ψm,k(0, u) du

)
e2πi(m/T−k)t = 0.

Recall that we can write ρ̂ as a linear combination of the functions {ψm,k : m, k ∈ N0}:

ρ̂(t, u) =

∞∑
m=0

∞∑
k=0

cm,k ψm,k(t, u)

with (ρ̂ is a real function)

cm,k = 〈ρ̂, ψm,k〉 =

∫
T
ρ̂(t, u)ψm,k(t, u) du = 0.

Therefore we conclude that ρ̂(t, u) = 0 a.s. (almost surely), i.e., ρ1 = ρ2 a.s., which proves the unique-

ness of weak solution of (2.2).
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Chapter 3

Conclusions

In this thesis, we analyzed a card shuffle known as the Rudvalis shuffle. In the first chapter, we

proved, by using tools from the theory of Markov chains, that performing this shuffle on a deck of n

cards, we would need at least O(n3 log(n)) shuffles in order to have a well shuffled deck. As expected,

the Rudvalis shuffle would not be a very practical way to shuffle a deck of cards but although the shuffle

is “slow”, we were able to use it to prove some interesting properties regarding the hydrodynamic limit.

In the second chapter, we considered the continuous version of the Rudvalis chain and we did the

a mapping with a particle system, namely, we made a correspondence between the colors of the cards

with particles in the following way: a black card corresponds to a particle and a red card corresponds

to a hole. Therefore, from a deck of n cards, we obtained a particle system with particles and holes

evolving on a discrete set with n sites. By shuffling the deck according to the Rudvalis shuffle, and by

using the previous mapping, we were able to describe the behavior of the density in the particle system.

More precisely, we showed that the space/time evolution of the density of the system is given by the

unique weak solution of the transport equation. In conclusion, we were able to prove the existence (and

uniqueness) of a weak solution of a partial differential equation by means of a random process.

Another interesting problem we could have considered, but for a matter of time we did not, was,

instead of the Law of Large Numbers, the Central Limit Theorem for the empirical measure, which is often

called density fluctuations. In this case, the equation we expect to obtain is no longer a deterministic

one (like the transport equation), but instead a stochastic partial differential equation.
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Appendix A

Auxiliary results

In the next results, denote by X a generic metric space and by B the σ-algebra generated by the

open sets, the Borel σ-algebra on X. We will mainly follow Chapter 4.1 of [12] and the Chapter 3 of [3].

A.1 Probability theory

Proposition A.1.1 (Markov’s inequality). Let Z be a random variable defined on a probability space

(Ω,F ,P) and let E denote the expectation with respect to P. Assume that E[|Z|]t < ∞ for some t ∈ N.

Then, for any δ > 0,

P (|Z| ≥ δ) ≤ E[|Z|t]
δt

Theorem A.1.2 (Dynkin’s formula). Let {ηt}t≥0 be a Markov process with infinitesimal generator L and

with countable state space J . Take a bounded function F : R+ × J → R such that:

1. for all x ∈ J, F (·, x) ∈ C2(R+);

2. there is a constant C such that for k = 1, 2 we have sup
(s,x)

|∂ksF (s, x)| ≤ C.

Define

Mt(F ) := F (t, ηt)− F (0, η0)−
∫ t

0

(∂s + L)F (s, ηs) ds,

Nt(F ) := (Mt(F ))2 −
∫ t

0

Γ(F (s, ηs)) ds, where Γ(f) = L(f2)− 2fLf is the carré du champ operator.

Then, the sequences {Mt(F )}t≥0 and {Nt(F )}t≥0 are martingales with respect to the natural filtration

Ft = σ(ηs : s ≤ t).

Proof. The proof can be found in Appendix 1.5 of [12].

Remark A.1.3. The integral term
∫ t

0
Γ(F (s, ηs)) ds is the quadratic variation of Mt(F ).

Theorem A.1.4 (Portmanteau). Let {Pn}n∈N,P be probability measures on (X,B). Then the following

conditions are equivalent:
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(i) Pn
w→ P;

(ii) lim sup
n→∞

Pn(F ) ≤ P(F ), for all closed F ⊆ X;

(iii) lim inf
n→∞

Pn(G) ≥ P(G), for all open G ⊆ X;

Theorem A.1.5 (Doob’s inequality). Let {Mt}0≤t≤T be a submartingale with right continuous trajecto-

ries. Let δ > 0 and p ≥ 1. Then

P
(

sup
0≤t≤T

|Mt| > δ
)
≤ 1

δp
E[|MT |p]

and

E
[

sup
0≤t≤T

|Mt|
]
≤
( p

1− p

)p
E[|MT |p].

Proposition A.1.6 (Tower Law). If Z is integrable and F1 ⊆ F2 are two σ-algebras, then

E[E[Z|F2]|F1] = E[Z|F1] = E[E[Z|F1]|F2].

A.2 Tightness criteria

Theorem A.2.1 (Prohorov’s theorem). Let Π be a family of probability measures on (X,B).

1. If Π is tight, then Π is relatively compact;

2. If X is separable and complete, then Π is tight if and only if Π is relatively compact.

Proof. The proof of this theorem can be found in Theorem 5.1 and Theorem 5.2 (Section 1.5) of [3].

Lemma A.2.2 (Proposition 1.7 of [12]). Let {gk}k∈N be a dense (with respect to the uniform topology)

sequence in C(T). Let {Qn}n∈N be a sequence of probability measures on DM[0, T ] and define for each

k the sequence {Qn,gk}n∈N of probability measures on DR[0, T ] where Qn,gk is the probability measure

induced by Qn and by the application

G : (DM[0, T ],Qn)→ (DR[0, T ],Qn,gk)

{πnt }t≥0 7→ {〈πnt , gk〉}t≥0.

If for every k the sequence {Qn,gk}n∈N is tight inDR[0, T ] then the sequence {Qn}n∈N is tight inDM[0, T ].

Remark A.2.3. The above result tells us that in order to prove the tightness in DM[0, T ], we just need

to check the tightness in DR[0, T ] (which is easier in general).

Proposition A.2.4 (Aldous’ criterion). Let {Pn}n∈N be a sequence of probability measures on DR[0, T ].

Then {Pn}n∈N is tight in the Skorohod topology of DR[0, T ] if the next two conditions hold:

(i) for each t ∈ [0, T ] and ε > 0, there is a compact K ⊆ R such that

sup
n∈N

Pn(x. ∈ DR[0, T ] : xt 6∈ K) < ε;
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(ii) for each ε > 0,

lim
γ→0

lim sup
n→∞

sup
τ∈TT ,θ≤γ

Pn(x. ∈ DR[0, T ] : |xτ+θ − xτ | > ε) = 0,

where TT is the set of stopping times bounded by T .

The Aldous’ criterion is obtained from Theorem A.3.5 and Proposition A.3.7 which are stated in

Section A.3.

A.3 Skorohod topology

Let (X, δ) be a metric space and {Pn}n∈N be a sequence of probability measures defined onDX [0, T ],

the space of right continuous functions on [0, T ] with left limits taking values in X. To endow this space

with a reasonable topology (cf. Chapter 3 of [3]), consider the following definitions:

Λ = {λ : [0, T ]→ [0, T ] | λ is a strictly increasing function},

‖λ‖ = sup
s6=t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣
and for two trajectories x., y. ∈ DX [0, T ],

d(x., y.) := inf
λ∈Λ

max

{
‖λ‖ , sup

0≤t≤T
δ(xt, yλ(t))

}
.

Proposition A.3.1 (Theorem 12.2 of [3]). DX [0, T ], endowed with the metric d, is a complete separable

metric space.

Definition A.3.2 (Convergence in the Skorohod topology). We say that a sequence {xn. }n∈N of elements

of DX [0, T ] converges to a limit x. in the Skorohod topology if there exist functions λn in Λ such that

1. lim
n→∞

xnλn(t) = xt uniformly in t;

2. lim
n→∞

λn(t) = t uniformly in t.

Consider the following definitions:

ωx(γ) := sup
|s−t|≤γ

δ(xs, xt)

ω′x(γ) := inf
{ti}0≤i≤r

max
0≤i<r

sup
ti≤s<t<ti+1

δ(xs, xt)

where the infimum is taken over the partition 0 = t0 < t1 < · · · < tr = T with ti− ti−1 > γ for i = 1, . . . , r.

Remark A.3.3. A function x : [0, T ]→ X is in DX [0, T ] if and only if lim
γ→0

ω′x(γ) = 0 (cf. page 123 of [3]).

Proposition A.3.4 (Proposition 1.2 of [12]). A ⊆ DM[0, T ] is relatively compact if and only if the next

two conditions hold.
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1. {xt ∈ X : x. ∈ A, t ∈ [0, T ]} is relatively compact inM.

2. lim
γ→0

sup
x∈A

ω′x(γ) = 0.

Theorem A.3.5 (Theorem 1.3 of [12]). Let {Pn}n∈N be a sequence of probability measures on DX [0, T ].

This sequence is relatively compact if and only if the next two conditions hold.

1. For t ∈ [0, T ] and ε > 0, there is a compact K(t, ε) ⊆ X such that supn∈N Pn(xt 6∈ K(t, ε)) ≤ ε.

2. For ε > 0, lim
γ→0

lim sup
n→∞

Pn(x. ∈ DX [0, T ] : ω′x(γ) > ε) = 0.

Remark A.3.6. Since ω′x(γ) ≤ ωx(2γ), we can replace the second condition of the previous theorem by:

For ε > 0, lim
γ→0

lim sup
n→∞

Pn(x. ∈ DX [0, T ] : ωx(γ) > ε) = 0.

Proposition A.3.7 (Proposition 1.6 of [12]). Let {Pn}n∈N be a sequence of probability measures on

DX [0, T ]. This sequence satisfies the second property of Theorem A.3.5 if for every ε > 0,

lim
γ

lim sup
n→∞

sup
τ∈TT ,θ≤γ

Pn(x. ∈ DX [0, T ] : δ(xτ+θ, µτ ) > ε) = 0.

In the previous results, two spaces are of our interest, X := M and X := R. Recall that M is

the space of positive measures on T with total mass bounded by 1, endowed with the weak topology.

Furthermore, the space for the evolution of the empirical measure πnt is DM[0, T ], the set of right contin-

uous functions with left limits taking values inM· In order to define a distance inM, consider a dense

(with respect to the uniform topology) countable family {fk}k∈N of continuous functions on T and define

δ̂ (which is a metric). For µ, ν ∈M,

δ̂(µ, ν) =
∑
k∈N

1

2k
|〈µ, fk〉 − 〈ν, fk〉|

1 + |〈µ, fk〉 − 〈ν, fk〉|
. (A.1)

In the case X := R, we can take δ̂ as the usual distance distance in R, δ̂(x, y) = |x− y|.

Lemma A.3.8. Let {xn. }n∈N, x. be trajectories on DX [0, T ].

1. If xnt −−−→
n↑∞

xt uniformly in t, then the convergence is also valid in the Skorohod topology;

2. If X :=M and xn. → x. in the Skorohod topology then, for every almost every t ∈ [0, T ] including

t = 0 and t = T , xnt
w→ xt.

Proof. By Definition A.3.2, there is a sequence of elements {λn}n∈N ∈ Λ such that for t ∈ [0, T ], |λn(t)−

t| −−−→
n↑∞

0 uniformly in t, and xnλn(t)

w−−−−→
n→∞

xt. For the first statement, just take λn(t) := t. For the second

one, first note that since λn(0) = 0 and λn(T ) = T , we have that xns
w−−−→

n↑∞
xs for s ∈ {0, T}. Now let

A = {t ∈ [0, T ] : xt is continuous in t} and let t ∈ A. Note that the Lebesgue measure of A is T because

x. is càdlàg (it has at most countably many discontinuities). If d is the metric on X defined above,

lim
n→∞

d(xt, x
n
t ) = 0.
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By hypothesis and by symmetry of λn(t) and λ−1
n (t) with t,

sup
0≤t≤T

|t− λ−1
n (t)| = sup

0≤t≤T
|t− λn(t)| −−−→

n↑∞
0

which implies that limn→∞ |t− λ−1
n (t)| = 0. Since x. is continuous at t, we have that

lim
n→∞

d(xt, xλ−1
n (t)) = 0.

Furthermore,

d(xλ−1
n (t), x

n
t ) ≤ sup

0≤t≤T
d(xt, x

n
λn(t)) −−−→

n↑∞
0.

Finally, by the triangle inequality

d(xt, x
n
t ) ≤ d(xt, xλ−1

n (t)) + d(xλ−1
n (t), x

n
t ) −−−→

n↑∞
0.

Lemma A.3.9. Let g1, g2, g3 ∈ C(T) and Φ : DM[0, T ]→ R be defined as follows:

Φ(π.) = sup
0≤t≤T

∣∣∣〈πt, g1〉 − 〈π0, g2〉+

∫ t

0

〈πs, g3〉 ds
∣∣∣.

Then, Φ is continuous for the Skorohod metric in DM[0, T ].

Proof. Check Proposition 8.3 of [5].
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Ωn, 26

Pµn , 28

Ψ(Xt, Yt), 14

Ψk, 14

Qn, 35

T, 26

Tn, 26

Θx, 26

· . ·, 38

LRn , 26

〈·, ·〉, 31

µn, 28

‖·‖∞, 29

πnt , 31

σx, 9

DX [0, T ], 28

d(t), 6

tmix(ε), 6

πnt , 31

Absolutely continuous, 41

Associated with a profile, 28

Bernoulli product measure,

29

Càdlàg function, 28

Discrete left derivative, ∇−n ,

33

Eigenfunction, 6

Empirical measure, 31

Hydrodynamic equation, 36

Lifted chain, 14

Mixing time, 6

Relatively compact, 36

Rudvalis process, 28

Stationary distribution, 4

Tight, 38

Total variation distance, 4

Trajectory, x., 28

Weak solution, 33
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