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Abstract. Extreme wildfires are increasingly hazardous, particularly
plume-dominated fires, which exhibit unpredictable behavior due to their
self-sustaining convective columns. Despite their significance, these fires
remain poorly understood, hindered by limited observational data and
fragmented remote sensing approaches. This paper proposes an Artifi-
cial Intelligence-based method adaptive framework for real-time detec-
tion and characterization of plume-dominated wildfires using satellite
and aerial imagery. The framework focuses on three critical aspects: fire
intensity, vertical plume development, and rotational motion. Leverag-
ing satellite data, alongside aerial datasets, the methodology dynamically
adapts to available data to ensure accurate assessments. The final out-
put is a risk-graded map identifying zones of active or potential plume-
dominated activity, and a deeper characterization of the plume inter-
nal mechanisms. The proposed framework has significant potential for
improving wildfire prediction, management, and mitigation strategies,
contributing to improved safety and resource allocation in wildfire-prone
regions.
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1 Introduction

Extreme wildfires are increasingly intensified by climate [1] and land-use trends [48,6].
Understanding their mechanisms is crucial for effective mitigation. Wildfires are
influenced by topography, fuel, and weather—the wildfire triangle [9]. Weather,
particularly wind, significantly impacts fire spread, intensity, and longevity [54,17].
Rothermel [55]identifies two distinct mechanisms through which wind influences
wildfire behavior: wind-driven and plume-dominated fires. A transverse view of
these two fire types is illustrated in Figure 1.
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Fig. 1. Transverse representation (a) wind-driven and (b) plume-dominated wildfires.
Adapted from [55].

In wind-driven fires, strong ambient winds push the fire front forward, driving
rapid and directional spread. These fires typically exhibit predictable behavior,
with the rate of spread largely determined through wind speed, fuel type, and
topography.

Plume-dominated fires, on the other hand, generate self-sustaining convective
columns, creating localized wind systems that override external winds. These
fires, often extreme, exhibit unpredictable behavior, including fire whirls and
rapid growth. Collapse of the convective column can cause erratic, multidirec-
tional fire spread via embers.

Despite being the most hazardous, plume-dominated fires are also the least
understood, to the extent that reliably and accurately predicting them remains
unfeasible. Although it is widely accepted that the associated self-sustaining
wind events exist and heavily influence fire behavior, the finer details regarding
how and when this process initiates and is maintained remain poorly understood,
hindering validation efforts for novel modeling, simulation, and prediction solu-
tions. Furthermore, remote sensing solutions specifically for plume-dominated
fire assessment are limited, often focusing on singular aspects of these fires [5].

This proposal aims to: (1) identify components of plume-dominated fires us-
ing satellite/aerial imagery; (2) assess and delineate zones of active/potential
plume-dominated dynamics; and (3) achieve (2) in real or near-real time. The
paper is structured as follows. Section 2 elaborates on the significance of this re-
search within the broader landscape of innovation in AI-powered Cyber-Physical
Systems. Section 3 reviews literature on real/near-real-time identification of
plume-dominated wildfires. Section 4 outlines the proposed methodology. Sec-
tion 5 analyzes risks and contingency strategies during the framework’s develop-
ment. Finally, Section 6 discusses the potential contributions and implications
of the proposed framework.



Detection and Characterization of Plume-Dominated Wildfires 3

2 This Research Within the Context of Technological
Innovation for AI-Powered Cyber-Physical Systems

This research leverages advanced remote sensing, computational methods, and
Artificial Intelligence (AI) to develop a cyber-physical system for real-time wild-
fire monitoring and analysis. Integrating satellite and aerial imagery with AI-
driven data processing, the framework bridges physical environmental phenom-
ena and digital intelligence, improving decision-making and response strategies.
An innovation is the use of AI to dynamically adapt methodologies based on
data characteristics, addressing the variability and unpredictability of wildfires.

3 Literature Review

The earliest works recognized that large wildfires could create intense vertical air
currents, or plumes, due to the heat generated through combustion [22], which
could transport heat and particulates high into the atmosphere [23]. It was also
understood that under hot and dry conditions, the massive release of smoke into
the atmosphere could give rise to pyroconvective clouds [18]—heat-driven clouds
formed above intense heat sources—which have the potential to form fire-induced
thunderstorms [34,49].

Subsequent studies revealed that, upon reaching a critical intensity, these
fires could exert significant influence over their local wind systems [16]. The
intense convection generated has the capacity to disrupt and modify local wind
patterns, which, in turn, can accelerate the spread of fires [13]. This feedback
mechanism became a foundation for the development of fire behavior modeling
in simulations under plume-dominated conditions [8,32]. Nevertheless, despite
these advances, predicting whether or when a fire becomes plume-dominated
remains challenging, limiting the accuracy of real-world fire simulations [33].

Lareau et al. [33] highlight three fundamental characteristics of plume-dominated
wildfires: high fire intensity, vertical plume development—i.e., the emergence of
fire-induced updrafts and associated fire clouds—and rotational motion of the
plume, discussed in the following subsections.

3.1 Fire Intensity

Wildfires are sustained through a process of combustion, where fuel reacts with
oxygen in the atmosphere, releasing energy in the form of heat and light. The rate
at which energy is released—fire intensity [22,30]—directly affects heat output
and is closely related with the type and amount of fuel spent [38]. Consequently,
the rate of spread [11] and the quantity and type of fuel burning [4,25] can serve
as indirect estimators of fire intensity.

Thermal Infrared Remote Sensing (TIR) imaging is the most widely accessi-
ble method for measuring fire intensity, with satellite-based sensors—such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) [44] and the Visible
Infrared Imaging Radiometer Suite (VIIRS) [45]—being the most employed tools
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in the literature for this purpose [42,36,2]. Airborne platforms equipped with
thermal sensors can also be used effectively to achieve accurate results [63,57].
Fire Radiative Power (FRP) [29], which quantifies the rate of radiative energy
released by a fire, is the primary metric derived from TIR imagery to estimate
fire intensity and is mathematically expressed through the Stefan-Boltzmann
law:

FRP = σ · ϵ ·A · T 4 (1)

where σ represents the Stefan-Boltzmann constant (5.67× 10−8 W ·m−2 ·K−4),
ϵ denotes the emissivity of the fire (typically between 0.85 to 1.0), A corresponds
to the fire-affected area in square meters, and T is the absolute temperature of
the fire in Kelvin.

3.2 Vertical Plume Development

Remote sensing solutions for studying the vertical development of wildfire plumes
primarily focus on two areas: measuring plume injection height and detecting fire
clouds. There are far fewer methods available for analyzing fire-induced updraft
dynamics, and the existing approaches are mostly observational in nature. The
limited research on detecting fire-induced updrafts relies on technologies such as
infrared [14], radar [53], and Light Detection and Ranging (LiDAR) [7]. Although
studies in this area are scarce, there is general agreement that these updrafts are
extremely powerful and develop quickly as wildfires grow in intensity.

Accurate estimations of plume injection height have been achieved using ac-
tive remote sensing technologies [31], such as radar [24] and LiDAR [62], which
provide high-resolution vertical profiles of plume height. Satellite-based meth-
ods have also proven highly effective, particularly through satellite multispectral
stereoscopic imaging. This technique uses the parallax effect—the apparent shift
in the position of an object when viewed from different angles—between two
or more sensor views of the same plume to estimate height. Studies employing
this approach have demonstrated its ability to deliver spatially extensive plume
height data [28,59]. Additionally, TIR imagery, such as that from the MODIS
satellite, can be used for this purpose [37].

Satellite-based observations, such as those from MODIS and Geostationary
Operational Environmental Satellite (GOES) [46], have been widely used to de-
tect and analyze fire clouds. Studies have utilized multispectral and TIR imagery
to characterize their development [20,50] and distinguish them from other cloud
types based on their unique spectral signatures [51,12]. Additionally, radar and
LiDAR-based techniques have proven effective in capturing the vertical struc-
ture and dynamics of fire clouds [39,35,62]. Advances in machine learning and
automated algorithms have further improved the ability to classify these phe-
nomena [52].
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3.3 Rotational Motion

The literature suggests various relatively limited methods for studying the mo-
tion of wildfire plumes. However, most of these methods focus on general turbu-
lence detection and localized flow mapping [10,60], failing to assess whole-plume
rotation.

Several authors demonstrated the use of LiDAR to study vorticity (local ro-
tation) and turbulence in wildfire plumes, providing high-resolution air velocity
data [32,10]. LiDAR is advantageous for its ability to operate up to several kilo-
meters, but it requires clear atmospheric conditions and can be limited by signal
attenuation. Radar-based techniques have also been used to measure rotational
motion in fire plumes [64], offering the benefit of operating in adverse weather
conditions, though with a potentially lower spatial resolution.

Infrared thermography has been employed to infer flow patterns and rota-
tional motion in fire plumes. In [60], the authors used infrared thermography to
study plume dynamics, including the development of vortical structures. This
method is non-intrusive and provides simultaneous temperature and flow data,
but it is limited by its indirect measurement of velocity and the need for cali-
bration.

Satellite-based remote sensing offers a wide perspective for studying large-
scale fire plumes. Techniques such as multispectral and hyperspectral imaging
can detect rotational motion by analyzing plume morphology and temperature
gradients [43]. However, while satellite remote sensing provides global coverage,
its spatial and temporal resolution may be insufficient for detailed studies of
rotational motion if care is not taken when choosing the instrument and its
specifications.

4 Methodology

This proposal aims to assess plume-dominated wildfire behaviors using satellite
imagery and aerial imagery. It builds on the framework of Laureau et al. [33],
which identifies three prime characteristics of plume-dominated wildfires: high
fire intensity, vertical plume development and rotational motion of the plume.
Figure 2 summarizes the proposal’s architecture, including the planned data
sources, supported methodologies, data fusion steps, and mapping of results.

4.1 Data Collection and Preprocessing

A selection of data sources was curated, covering both real-world and simulated
datasets. The objective of using real-world data is to analyze actual patterns and
behaviors in real environments, ensuring authenticity and relevance for decision-
making. It reflects real-world complexities, though it may be noisy, biased, or
incomplete due to limitations in data collection and privacy concerns. In con-
trast, simulated data is used to test hypotheses, model behavior under controlled
conditions, and explore scenarios where real-world data is unavailable or difficult
to obtain.
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Fig. 2. High-level architecture of the proposed methodology. In the Data Sources’
section, solid lines indicate primary sources, while dashed lines represent secondary
(optional) sources. Other Bands include Near Infra-Red, Infra-Red and Red Edge.

Real-world data sources are categorized into satellite and aerial imagery. To
enhance feature tracking, priority is given to satellite imagery with the highest
available temporal resolution. Specifically, data from the GOES and Himawari-
9 [26] will be utilized, offering temporal resolutions of 5 and 10 minutes, re-
spectively. If necessary—should the data be of poor quality or insufficient for
accurate feature tracking—supplementary imagery may be acquired from the
VIIRS [45], Sentinel-3 [19], and the MODIS, albeit with lower temporal resolu-
tions. In addition to satellite data, precompiled aerial datasets will be incorpo-
rated, including the FLAME dataset [56], the WIT-UAS dataset [27], and the
UAVs-FFDB dataset [41]. Furthermore, the authors are developing their own
dataset that will include multispectral imagery with fire and smoke masks, as
illustrated in Figure 3.

(a) (b)

Fig. 3. Typical fire image sample in dataset under development: a) RGB image; and,
b) the accompanying fire/smoke mask. In the mask, the background is represented in
black, fire in white, and smoke in grey.

Simulated datasets are also considered, as their structured nature allows for
controlled experimental conditions. Relevant sources include WildfireDB [58] and
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PyroVision [15]. Additionally, the Fire Dynamics Simulator (FDS) [40] will be
employed to generate high-precision datasets for analysis.

To ensure accuracy and consistency, all imagery will undergo several pre-
processing steps. First, radiometric and atmospheric corrections will be applied
to mitigate atmospheric interference. Next, cloud masking will be performed to
remove pixels obscured by clouds, ensuring clear visibility of fire plumes. Finally,
all data layers, including imagery, weather data, and topography, will be geo-
referenced to a common coordinate system to facilitate spatial alignment and
analysis. All image processing tasks will be implemented using Python, using
libraries such as Raster Forge [47], Rasterio [21], PyProj [3] for data handling
and transformation.

4.2 Plume Detection and Characterization

As discussed in Section 3, the proposed methodology builds on the observations
of Laureau et al. [33]. The primary philosophy underpinning the design of this
architecture is to maximize adaptability. Specifically, the system is designed to
dynamically adjust its methodologies based on the available data for a given
region of interest using AI, with the goal of extracting the most accurate as-
sessment possible. This approach inherently involves a data fusion step, where
results from multiple methods are integrated to provide a unified evaluation of
the same characteristic. This process not only enhances the robustness of the
output but also offers a unique opportunity to evaluate the performance of in-
dividual methods within the context of specific regions of interest.

Given a dataset, the system will employ a AI-driven approach—e.g., random
forests or gradient boosting machines—to identify and apply the most appro-
priate methodologies based on the inherent characteristics of the data (type,
resolution, format, etc), which aims to optimize efficiency and usability. Follow-
ing the application of these techniques, the results are integrated, after which a
preliminary statistical evaluation of results is conducted. Spatial representations
of the three main attributes are subsequently derived, enabling a detailed assess-
ment of plume-dominated activity. This analysis facilitates the identification of
areas with the highest likelihood of exhibiting or developing extreme fire behav-
ior dynamics. The final output is presented as a risk-graded map, which spatially
delineates zones according to their probability of plume-dominated wildfire ac-
tivity.

4.3 Validation

To ensure the robustness of the results, this study will employ multiple validation
techniques. The limited observational data available on plume-dominated wild-
fire events will serve as a foundational basis for validation. Additionally, specific
isolated characteristics of the phenomena will be validated using established tools
and datasets. For instance, plume height estimates will be cross-validated using
data from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observa-
tions (CALIPSO) [61] instrument, which provides independent measurements of
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aerosol vertical distribution. This multi-faceted validation approach ensures the
reliability of the findings and enhances the credibility of the analytical outcomes.

5 Contingencies

In any research study, anticipating challenges and developing mitigation strate-
gies is crucial. One primary risk is the unavailability or poor quality of satellite
and aerial imagery, which could hinder the analysis of plume-dominated wild-
fire behaviors. This risk, with a moderate to high probability depending on the
region, will be mitigated by relying on multiple data sources for redundancy.

Another potential risk is computational limitations, as processing high-resolution
imagery and large datasets may overwhelm available resources, leading to de-
lays. This risk has a moderate probability of occurring and can be mitigated
by processing only a subset of the data while ensuring the viability of the pro-
posed framework is maintained. Furthermore, in the event of local computational
failure, cloud computing can serve as a viable solution to safeguard processing
capabilities.

Methodological limitations, with a low to moderate probability, may arise
if plume detection and characterization methods perform inconsistently across
regions or datasets. To address this, the methodology will undergo rigorous test-
ing and validation in diverse environments to ensure its generalizability. In cases
of under-performance, alternative or complementary techniques will be explored
to enhance the robustness and accuracy of the extraction methodology. Addi-
tionally, the framework will be designed for seamless integration of alternative
data sources and methods, which will not only help mitigate this risk but also
improve the general usability of the framework.

Finally, unforeseen external factors like changes in satellite missions or geopo-
litical issues, though with low but increasing probability, could disrupt data
access. To address this, the study will maintain flexible data sourcing and peri-
odically update contingency plans to adapt to changing circumstances.

6 Conclusions

This research proposal aims to make several significant contributions to the field
of wildfire research and remote sensing through a novel methodology for assessing
plume-dominated wildfire behaviors.

The study will introduce a framework for analyzing plume-dominated wild-
fires, focusing on three critical aspects: thermal assessment, vertical develop-
ment, and rotation of the plume. In addressing these dimensions simultaneously,
the proposed methodology aims to provide a more comprehensive assessment of
plume dynamics than previous studies, which often focus on isolated aspects.

The four primary potential contributions of this study are as follows. First,
it advances the understanding of plume-dominated wildfires, addressing the cur-
rent gap in knowledge by providing a structured, data-driven approach to analyze
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their complex dynamics. Second, the adaptive nature of the framework ensures
its applicability across diverse regions and datasets, making it a versatile tool for
global wildfire monitoring. Third, the risk-graded maps generated by the frame-
work offer actionable insights for emergency responders and land managers, fa-
cilitating more effective resource allocation and mitigation strategies. Finally,
the study’s emphasis on real-time or near-real-time assessment addresses a crit-
ical gap in current wildfire monitoring capabilities, paving the way for improved
early warning systems and predictive modeling.

By bridging the gap between remote sensing technology and plume-dominated
fire understanding, this study has the potential to significantly boost our abil-
ity to monitor, predict, and manage plume-dominated wildfires, contributing to
reduced risks and improved safety in wildfire-prone regions.
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