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Abstract

Skin cancer is a growing public health concern. Early detection of the lesion plays a critical role in ensur-

ing successful treatment of the cancer. Dermatologists traditionally use criteria like the 7-point checklist,

which focuses on specific dermoscopic characteristics without considering their spatial distribution in the

lesion. Multiple Instance Learning (MIL) is a weakly supervised learning technique that serves as an

approximation to this criterion in the field of deep learning. In contrast to these methods, Vision Trans-

formers (ViTs) have recently shown remarkable promise, while at the same time using spatially aware

information from all the patches in the image. This contrast motivates us to address two questions in

dermoscopy image analysis: (1) the understanding of whether all patches are relevant for skin cancer

diagnosis, and (2) the influence of the spatial arrangement of the patches on diagnostic accuracy. To

address these questions, we introduce a two-branch framework that combines a ViT-based architecture

with a MIL model. We tackle both binary classification (melanoma vs. nevus) and multi-class classifi-

cation (with eight skin disease types). Our work presents a novel two-stage MIL formulation oriented

towards binary classification, and we extend it to a three-stage approach for multi-class classification.

Our results consistently demonstrate the competitive performance of these formulations in both binary

and multi-class contexts. Our findings reveal that only certain patches are critical for correct classifica-

tion, and that adding spatial information slightly improves classification accuracy.
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Resumo

O cancro da pele é uma preocupação crescente em termos de saúde pública. A deteção atempada da

lesão desempenha um papel fundamental para garantir o sucesso do tratamento do cancro. Os derma-

tologistas utilizam critérios como a lista de verificação de 7 pontos, que se baseia em caracterı́sticas

dermatoscópicas especı́ficas sem considerar a sua distribuição espacial na lesão. Multiple Instance

Learning (MIL) é uma técnica de aprendizagem com supervisão fraca que serve de aproximação a este

critério no domı́nio da aprendizagem profunda. Em contraste com estes métodos, os Vision Transform-

ers (ViTs) mostraram recentemente uma potencialidade notável, embora utilizem, ao mesmo tempo,

as caracterı́sticas espaciais de todas as partes da imagem. Este contraste motiva-nos a abordar duas

questões no centro da análise de imagens dermatoscópicas: (1) a compreensão de se todas as zonas

são relevantes para a classificação da imagem, e (2) a influência da localização espacial dessas zonas

na exatidão da classificação. Para abordar estas questões, introduzimos uma estrutura de dois com-

ponentes que combina uma arquitetura baseada no ViT com um modelo de MIL. Abordamos tanto a

classificação binária (melanoma vs. nevo) como a classificação multi-classe (com oito tipos de can-

cros da pele). O nosso trabalho apresenta uma nova formulação MIL de duas etapas orientada para a

classificação binária, e estendemo-la a uma abordagem de três etapas para a classificação multi-classe.

Os nossos resultados demonstram consistentemente o desempenho competitivo destas formulações.

As nossas conclusões revelam que apenas determinadas áreas são essenciais para uma classificação

acertada e que a informação espacial melhora a exatidão na classificação de cancro da pele.
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Cancro da Pele; Vision Transformers; Multiple Instance Learning.
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1.1 Motivation

Skin cancer is a growing global health concern. It is the most common type of cancer, with nearly

3.3 million cases diagnosed annually in the U.S. alone [6]. Early detection of the cancer is critical to

improving the chances of successful treatment. The five-year survival rate for melanoma, which is the

deadliest type of skin cancer, is 99% when detected early [7]. However, survival rates are usually low

after the disease has spread beyond the skin [8], which emphasizes the importance of diagnosing the

disease at an early stage.

Currently, the most common method for early detection of skin cancer is through visual inspection by

a specialist. In clinical practice, dermatologists often rely on the identification of specific dermoscopic

criteria to diagnose melanoma lesions. For example, the 7-point checklist criterion [9] relies on the iden-

tification of features such as atypical pigment networks, irregular streaks, irregular pigmentation, and

more, to diagnose a lesion as melanoma. To provide a visual representation of some of the dermo-

scopic criteria used by physicians when analyzing dermoscopic images, Figure 1.1 is included. Given

the challenges in distinguishing malignant from non-malignant lesions, drawing conclusions from these

dermoscopy criteria can be a complex and arduous task.

Figure 1.1: Visual display of two dermoscopic images. The left image shows a melanocytic lesion obtained from
the ISIC 2019 dataset [3–5]. The right image shows a melanocytic lesion with several dermoscopic
criteria commonly assessed by specialists during dermoscopic image analysis [9].

The application of Deep Learning (DL) methods, especially Convolutional Neural Networks (CNNs),

to dermoscopic image analysis has increased significantly in recent years [10]. CNNs have long been at

the forefront of various Computer Vision (CV) tasks, demonstrating outstanding performance in a wide

range of medical image analysis applications. These networks are well suited for tasks such as lesion

detection, segmentation, and classification [11, 12]. However, dermoscopic image classification poses

specific challenges due to the complex and diverse nature of these images, especially when it comes to

identifying the key patches that embody the different Regions of Interest (ROIs) within the dermoscopic

3



image. Consequently, the ability of deep models to identify the most relevant patches in a dermoscopy

image has the potential to provide valuable clinical insight to physicians during the diagnostic process.

1.2 Problem Formulation

In clinical practice, dermatologists diagnose skin cancer using established criteria, such as the 7-point

checklist criterion [9]. These criteria determine whether a skin lesion is a melanoma based on specific

dermoscopic characteristics present in the lesion. Notably, the 7-point criterion [9] focuses solely on

the presence or absence of these dermoscopic features within the lesion, regardless of their spatial

arrangement. DL models have the potential to identify ROIs that correspond to these dermoscopic

criteria, thereby providing dermatologists with significant assistance in their diagnostic process [13].

Multiple Instance Learning (MIL) is a framework in which an image is treated as a “bag”, and each

patch within the image is an “instance”. The key idea in MIL is that the classification of the image

depends on the presence or absence of “key instances”. In the context of the melanoma vs. nevus

binary problem, a “key instance” is a patch that belongs to the melanoma class. If all patches in the bag

are from the nevus class (indicating no “key instances”), the image is classified as a nevus. Conversely,

if there’s at least one “key instance” in the bag (indicating that there’s at least one melanoma patch),

the entire image is classified as melanoma. This MIL approach resembles the 7-point checklist method

in that both rely on the presence or absence of certain regions in the image to diagnose the lesion,

regardless of the spatial location of these regions. Therefore, we can think of the MIL framework as an

approximation of the 7-point checklist criterion in the world of DL.

Most deep MIL techniques applied to medical image analysis currently rely on CNN-based back-

bones. However, Vision Transformers (ViTs) have gained immense popularity in CV for their ability to

match and even surpass state-of-the-art CNN models. ViTs use a mechanism known as Multi-head

Self-Attention (MSA) to extract complex features based on the pairwise relationships between different

patches in the image, while taking into account their spatial location within the image. This approach

differs from that used by dermatologists. As mentioned above, the 7-point checklist criterion [9] focuses

only on the presence or absence of specific dermoscopic features, regardless of their location on the

image. This contrast highlights a significant difference between ViTs and clinical diagnostic methods.

Thus, we are faced with two opposing paradigms. On one side is the ViT architecture, which uses

correlations between patches in the image to make predictions, taking into account spatial information.

On the other is the MIL framework, analogous to the 7-point criterion [9], where specific patches are

crucial for classification, regardless of their spatial location. This contrast raises the question of whether

all patches are relevant for skin cancer diagnosis and whether the spatial arrangement of the patches in

the image has an influence on diagnostic accuracy.

4



1.3 Objectives

The relationship between the ViT and MIL serves as the primary motivation for this work, which aims to

address two key questions in the dermoscopic image analysis:

1. Are all patches within a dermoscopic image equally relevant for a correct diagnosis of skin cancer,

or do deep models primarily rely on the identification of specific ROIs?

2. Does the spatial arrangement of patches within the image have a significant impact on the accurate

classification of a dermoscopic image?

1.4 Contributions

To address these two fundamental questions, we introduce a two-branch framework. One branch fea-

tures an Expediting Vision Transformer (EViT) architecture [14], while the other branch accommodates

a MIL model. This work focuses on two different challenges: a binary classification task distinguishing

melanoma from nevus, and a multi-class problem covering eight different skin disease types.

In the binary classification scenario, we propose a novel two-stage MIL formulation suitable for der-

moscopy image processing. We extend the two-step approach to a three-step method that addresses

the multi-class problem.

In short, the contributions of this thesis are diverse and include the proposal of a comprehensive

framework that merges a ViT-based architecture and the MIL framework to understand the importance

of ROIs and spatial arrangement in dermoscopy image diagnosis. We present innovative deep MIL

approaches that address both binary and multi-class scenarios that are particularly well suited for der-

moscopy image analysis. Our work is complemented by an extensive series of experiments using state-

of-the-art backbones, providing valuable insights into the performance of our model.

1.5 Document Organization

This thesis consists of six chapters designed to provide a structured and logical progression of ideas.

Chapter 1 sets the scene by addressing the motivation for research in skin cancer diagnosis, highlighting

the importance of detecting ROIs in dermoscopy images and the challenges faced by dermatologists.

Chapter 2 introduces the core concepts of ViTs and MIL and presents related work in the field of der-

moscopy image processing. In chapter 3, our approach, which combines ViTs with MIL, is presented in

detail. Chapter 4 provides insights into the experimental set-up, covering datasets, model configurations,

and other critical parameters. Chapter 5 presents the experimental results, analyzing the performance of
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the model in the binary and multi-class contexts. Finally, Chapter 6 summarises the conclusions drawn

from this thesis work and outlines possible future directions.

6



2
State Of The Art Review

Contents

2.1 The Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Expediting Vision Transformer (EViT) . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Vision Transformer Architectures In Dermoscopy Image Processing . . . . . . . . . 15

2.4 Multiple Instance Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Multiple Instance Learning in Medical Image Processing . . . . . . . . . . . . . . . . 23

2.6 The Connection Between MIL, ViTs, and the 7-Point Criterion . . . . . . . . . . . . . 26

7



Chapter 2 is intended to introduce the ViT model and lay the foundation for understanding the concept

of MIL. It will also explore the practical applications of both ViT and MIL in the field of medical imaging,

with a particular focus on their relevance to skin cancer diagnosis.

2.1 The Vision Transformer

In recent years, the Transformer architecture, first introduced by Vaswani et al. [15], has gained promi-

nence in the field of Natural Language Processing (NLP). However, this success was not immediately

transferred to the field of CV until Dosovitskiy et al. [1] introduced the ViT model [16]. Figure 2.1 provides

an overview of the ViT architecture.

Figure 2.1: Overview of the ViT model [1]. On the left, the diagram illustrates the process of transforming an input
image into a sequence of flattened patch embeddings, denoted as z0 ∈ R(N+1,D). This sequence
is then fed into the Transformer encoder. The representation of the Classification (CLS) token at the
output of the last encoder block is used as input for an Multi-layer Perceptron (MLP) classifier to perform
image classification. On the right, an overview of the Transformer encoder introduced by Vaswani et
al. [15], is presented.

The ViT architecture consists primarily of three key components: an initial pipeline responsible for

converting the input image into a sequence of embedded patches, a Transformer encoder block, and

a final MLP head responsible for classifying the entire image. The Transformer encoder block remains

true to the original design proposed by Vaswani et al. [15], which was originally intended to process

sequences of tokens. In contrast, CV applications are primarily concerned with images rather than

token sequences. To accommodate this fundamental shift in input data, substantial modifications are

required to adapt the Transformer architecture for image processing. In the following sections, we will

embark on a more comprehensive exploration of the ViT architecture, delving into the intricate details of

its constituent blocks.
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2.1.1 The Vision Transformer Input

The first step in the ViT framework is to transform the input image into a sequence of embedded patches.

Figure 2.2 shows the process of partitioning the input image into patches of uniform size, which initiates

the process of transforming the image into a sequence of patch embeddings.

Figure 2.2: Dermoscopy image X ∈ RH×W×C (where H is the height of the image, W is the width, and C is
the number of channels). The first step in the ViT pipeline is to divide this input image into N = HW

P2

patches. In this context, the n-th patch in the image can be described as xn ∈ RP×P×C , where P
corresponds to the height and width of a patch [3–5].

Consider the task of classifying a given input image X ∈ RH×W×C , where (H,W ) represents the

image resolution, and C denotes the number of channels. Additionally, assume that each n-th patch is

defined as xn ∈ RP×P×C , where (P, P ) is the patch resolution.

The first step in the ViT pipeline is to transform the input image X into a sequence of flattened

patches: X ∈ RH×W×C → Xp ∈ RN×(P 2·C), more precisely:

Xp =


−−−− x⊤

1 −−−−
−−−− x⊤

2 −−−−
...

−−−− x⊤
N −−−−

 ∈ RN×(P 2·C), (2.1)

where xn ∈ RP 2·C ∀n=1,...,N are column vectors.

Since the Transformer architecture designed by Vaswani et al. [15] uses token embeddings as input,

it is necessary to map the flattened patches, xn ∀n=1,...,N , into an embedding space denoted as D.

To accomplish this transformation, a trainable linear matrix E ∈ R(P 2·C)×D is used. This matrix learns

to linearly project each flattened patch into the D dimensional space. Thus, the sequence of flattened

patch embeddings can be defined as follows:

Xp ·E =


−−−− x⊤

1 E −−−−
−−−− x⊤

2 E −−−−
...

−−−− x⊤
NE −−−−

 ∈ RN×D, where: xn
⊤E ∈ R1×D ∀n=1,...,N . (2.2)

Similar to the BERT model [17], a trainable CLS token, denoted as xclass ∈ RD, is concatenated to

the sequence of patch embeddings. The state of this CLS token at the output of the final ViT encoder
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block serves as a representation of the entire image, which is then used for the classification task.

This approach is motivated by the fact that, through the operations of MSA, the CLS token learns a

representation that can be seen as an aggregation of all the patch embedding representations [17, 18].

Consequently, it is useful to perform image classification based on the information contained in this CLS

embedding.

Until the introduction of the Transformer architecture by Vaswani et al. [15], most of the Sequence

to Sequence (Seq2Seq) models in the field of NLP were based on recurrent architectures, such as

Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), and Long Short-Term Memory

(LSTM) networks. These recurrent architectures process each input in a given sequence one step at a

time, i.e., each token is processed sequentially. This means that these architectures have an inherent

notion of the order within the sequence [19,20].

In contrast to recurrent architectures, the Transformer encoder receives a sequence of embedded

tokens in parallel, not sequentially. This means that in the context of NLP, there was a need to inject the

model with information regarding the position of the tokens within the sequence [15].

As a result of the direct adaptation of concepts from NLP to CV, the ViT model uses the same

positional encoding method as the Bert model [17]. This positional encoding technique involves the

addition of a learnable positional embedding matrix, denoted as Epos ∈ R(N+1)×D, to the sequence of

flattened patch embeddings represented in (2.2). Consequently, we can define the input for the initial

ViT encoder block as follows:

z0 =


−−−− x⊤

class −−−−
−−−− x⊤

1 E −−−−
...

−−−− x⊤
NE −−−−

+Epos, where: z0 ∈ R(N+1)×D. (2.3)

2.1.2 The Vision Transformer Encoder Block

The ViT encoder is composed of two main components: an MSA block and a MLP block. Prior to each

block, Layer Normalization (LN) [21] is applied, and residual connections are added after each block.

The ViT model has L encoder blocks, also referred to as ViT layers. A visual representation of the ViT

encoder is shown in Figure 2.1.

The MSA mechanism originally introduced by Vaswani et al. [15] plays a pivotal role in the Trans-

former encoder process. This mechanism involves the simultaneous execution of multiple Self-Attention

(SA) processes in parallel. To develop a comprehensive understanding of both the SA and MSA mech-

anisms, we will begin by explaining a single SA process. To do so, we will follow the scheme shown in

Figure 2.3, which provides deeper insights into the functionalities of both SA and MSA.

As previously stated, the ViT model comprises L encoder blocks. The input for the l-th encoder block

is denoted as zl ∈ R(N+1)×D (note that the expression for z0 is presented in (2.3)). Each encoder block
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l (∀l=1,...,L) is equipped with three learnable weight matrices: UQ, UK, and UV ∈ RD′×D (represented

as linear layers in Figure 2.3). These weight matrices are initialized using a uniform distribution [22].

Figure 2.3: MSA pipeline overview. MSA consists in multiple SA mechanisms running in parallel [15].

The matrices Q, K, and V are computed by taking the dot product between zl and the linear layers

UQ, UK, and UV, as shown in the following equations:

Q = zl ·U⊤
Q, K = zl ·U⊤

K, V = zl ·U⊤
V, where: Q,K,V ∈ R(N+1)×D′

. (2.4)

These matrices, Q, K, and V, serve as projections of the input into three respective subspaces. Each

row of these matrices contains information related to the patch embedding located at the corresponding

row of the encoder’s input, zl.

From the scaled dot-product attention block, shown in figure 2.3, will result what is called a SA Head:

SA(zl) = AV ∈ R(N+1)×D′
, where: A = softmax

(
QK⊤
√
D′

)
∈ R(N+1)×(N+1). (2.5)

Note that the softmax function applied to the attention map A in (2.5) is a row-wise operation. The

elements of the i-th row of the attention map A represent the attention weights from the i-th token to

all other tokens [14]. Essentially, the attention map A contains information about the pairwise similarity

between every pair of patches in the image [23, 24]. For instance, the attention weight Aij (the entry

in row i and column j of the attention map A) provides information into the pairwise similarity between

patches i and j. Thus, elements in the i-th row with higher attention weights correspond to patches that

are most similar to the i-th patch [1].

As it is possible to see from (2.5), the SA Head is equal to the dot product between the attention

map A and the value matrix V. Each element of the SA(zl), can be computed by the following linear
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combination:

SAij =

N∑
n=0

Ain · Vnj , ∀i=0,...,N and j=0,...,(D′−1). (2.6)

Each i-th row of the SA Head provides a representation of the i-th patch. This representation is con-

structed as a linear combination between the value representations of all the n patches, Vnj , with the

respective attention weights in the i-th row of the attention map A, denoted as Ain (∀n=0,...,N ). These

attention weights, Ain, serve as weights that determine the relevance (or ”attention”) that the n-th patch

will have in constructing the new features of the i-th patch. Thus, it is reasonable to conclude that the

SA mechanism generates new patch features based on the pairwise correlations between each patch

and all other patches in the image [14].

In MSA, multiple SA mechanisms operate in parallel. Given that the learnable weight matrices UQ,

UK, and UV are uniformly initialized, having several SA mechanisms enables the ViT to have multiple

distinct attention maps. This allows the model to capture different types of relationships between the

patches in the image [15]. The MSA mechanism combines these individual SA Heads by concatenating

them and applying a linear layer (represented by Umsa ∈ RD×(H·D′)) to map the patch embedding

sequence to the D-dimensional space. For H SA processes, the output of the MSA mechanism is

defined as follow:

MSA =
[
SA1(zl) SA2(zl) ... SAH(zl)

]
·U⊤

msa, where: MSA(zl) ∈ R(N+1)×D. (2.7)

In short, the MSA mechanism produces highly complex features that are heavily based on the simi-

larity between the patches that comprise the image. Considering the Transformer encoder architecture

presented in figure 2.1, the output of the encoder is defined as follows:

z′l = MSA(LN(zl−1)) + zl−1, l = 1, ..., L

zl = MLP(LN(z′l)) + z′l, l = 1, ..., L.
(2.8)

2.1.3 The Vision Transformer Output And Interpretability

As previously stated, the state of the CLS token at the output of the last encoder block, denoted as

z
(0)
L , serves as an image representation that is fed into a Fully Connected Layer (FC Layer) to obtain the

predicted image label.

Figure 2.4 presents a visual representation of what the ViT model perceives. In this particular exam-

ple, the goal of the model is to classify the dog in the image. When considering the case where l = 8,

it becomes evident that the model highlights the patches containing the dog. This is reflected in higher

attention weights assigned to these patches, effectively “filtering out” the background. Although the ViT

model isn’t inherently interpretable, Figure 2.4 shows that it is possible to understand which patches the
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model considers more relevant.

Figure 2.4: Attention map visualization. On the left, it is displayed the original input image. In the middle, it is
possible to see the effects of the attention map in the first Transformer encoder layer (l = 1). On the
right, a visualization of the attention map for the eighth encoder block (l = 8) is presented [25].

2.2 The Expediting Vision Transformer (EViT)

Thanks to the MSA mechanism, the ViT model can identify the most relevant patches to some extent.

However, the EViT model introduced by Liang et al. [14] is a variant of the ViT that takes a more direct

approach by distinguishing “attentive” from “inattentive” patches. In this section, we will take a closer

look at the EViT architecture and explore its inner workings. In Figure 2.5 it is shown the architecture of

the EViT encoder. The EViT is very similar to the ViT. The only difference is that it uses the attention

weights of the first row of the attention map A to determine the attentive and inattentive patches.

Figure 2.5: Illustration of the EViT encoder block. The EViT encoder is identical to the ViT encoder. The main
difference lies in EViT’s integration of the token reorganization technique before the MLP block. By
calculating CLS attentiveness, EViT distinguishes between attentive and inattentive tokens. Attentive
tokens are propagated forward in the network, while inattentive tokens are merged into an embedded
representation [14].
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The EViT model uses information from the first row of the attention map, A, to determine the im-

portance score of each patch’s contribution to the model’s output. Based on these scores, patches are

categorized as either “attentive” or “inattentive” tokens. The k most relevant patches, i.e., the patches

that translate greater importance to the model’s output, are labeled attentive. All the other patches are

labeled inattentive and are subsequently merged into a single embedding.

Figure 2.6 provides visual examples of the process of discarding inattentive patches. Inspection of

the image shows that the majority of the removed patches correspond to background elements. This

demonstrates how EViT efficiently discards less relevant information.

Figure 2.6: Some examples of the process of discarding inattentive patches. Inspection of the image shows that
the majority of the removed patches correspond to background elements, demonstrating that no crucial
information is lost during the token reorganization process [14].

To better understand EViT’s selection process, let us denote a as the first row of the attention map A.

With this notation, we can define the state of the CLS token at the end of the SA process as xclass = aV,

where a ∈ R1×(N+1) and V ∈ R(N+1)×D′
. Since the state of this token at the output of the last encoder

is used by the model to represent the entire image, and since V contains information about each patch

embedding, we can reasonably conclude that the i-th element of a, ai, quantifies the importance of the

corresponding i-th patch in the model’s output.

In the context of MSA, where we have multiple SA heads, we get multiple a vectors, one from

each attention head. Consequently, we can calculate the average attentiveness across all heads (a =∑H
h=1 a

(h)/H) and use it to determine the k most significant patches, with k as a hyperparameter.

The remaining tokens are then merged into a single token, denoted as xfused =
∑

i∈N aixi, where N
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represents the set of inattentive tokens.

The fusion of inattentive tokens in the EViT significantly improves efficiency by reducing the number

of tokens throughout the network. This reduction in tokens not only improves computational efficiency,

but also reduces the computational complexity of the MSA mechanism in deeper layers. Consequently,

this token reorganization technique significantly increases EViT’s efficiency compared to the original ViT,

all while maintaining its accuracy levels.

Both ViT and EViT have demonstrated competitive performance, often outperforming existing state-

of-the-art models, on various image classification datasets. However, this thesis primarily focuses on

dermoscopy image classification. To address this specific context, we will review two studies that apply

ViT-based architectures to skin cancer classification tasks.

2.3 Vision Transformer Architectures In Dermoscopy Image Pro-

cessing

Since the introduction of ViT, there have been many works published that proposed various ViT variants

to solve CV problems. Especially in the field of classification of dermoscopy images, compelling new

articles show that ViT has surpassed state-of-the-art methods [2,26].

Aladhadh et al. [2] presented the Medical Vision Transformer (MVT), an effective approach for skin

cancer classification in dermoscopy images using a two-tier framework. In the first stage of this frame-

work, various data augmentation techniques, including brightness adjustment, contrast enhancement,

geometric transformations, and more, are applied. This augmentation significantly increases the number

of image samples available for training, which proves advantageous for ViT-based architectures, which

are known for their strong generalization when trained on extensive data [27]. The second stage of the

framework uses a ViT model. This ViT model divides the input image into 7× 7 patches, followed by the

standard ViT patch processing pipeline, as explained in section 2.1. Figure 2.7 illustrates the two-tier

framework proposed by the authors.

Another significant contribution of this work was the establishment of an experimental setup for train-

ing a ViT model for skin cancer classification. The researchers used the HAM10000 dataset [3] for

both training and evaluation. The evaluation metrics included accuracy, recall, precision, and F1 score.

The results showed that the ViT outperformed the state-of-the-art CNN-based frameworks [11, 12]. In

particular, the authors emphasized that the performance of the ViT significantly decreased without data

augmentation, especially in the classification of melanoma. This underlines the need of the ViT model

for extensive training data to achieve optimal performance.
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Figure 2.7: Illustration of the two-tier MVT framework [2]. The first stage involves a data pre-processing block,
where various data augmentation techniques are applied to create an augmented dataset. In the sec-
ond stage, the ViT model, originally introduced by Dosovitskiy et al. [1], is trained using the augmented
dataset.

Figure 2.8 shows heatmaps of some dermoscopy images generated by a Grad-CAM [28] method.

These heatmaps effectively highlight the location of the lesions, demonstrating the model’s ability to

provide some information about the ROIs in the image. Such insights can be particularly helpful in the

clinical diagnosis of skin cancer lesions.

Figure 2.8: Visualization of the heatmaps for dermoscopic images from the HAM10000 dataset [3]. Each column
corresponds to a type of skin lesion. Akiec for Actinic keratosis, Bcc for Basal cell carcinoma, Bkl
for Benign keratosis, Df for Dermatofibroma, Mel stands for Melanoma, Nv for Nevus, and Vasc for
Vascular [2].

The work presented by Aladhadh et al. [2] makes notable contributions, highlighting the competi-
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tiveness of ViT models over CNN-based state-of-the-art counterparts. However, it is important to high-

light certain areas where the article falls short. First, the study’s exclusive reliance on the HAM10000

dataset [3] for evaluation raises concerns regarding the model’s generalization capability. The absence

of validation on diverse dermoscopy datasets, including the publicly available ISIC datasets [4], limits

our understanding of the model’s adaptability to different clinical contexts. Second, there is a lack of an

in-depth exploration of the MSA mechanism within the ViT architecture.

In the same year, Xin et al. [26] introduced the SkinTrans model, a ViT-based architecture that uses

a multi-scale sliding window approach to divide an image into different types of patches. The SkinTrans

model mainly consists of a three-step procedure.

First, it uses multi-scale and overlapping windows to serialize the image, which facilitates the gen-

eration of multi-scale patch embeddings. Second, it implements the ViT network as originally proposed

by Dosovitskiy et al. [1]. Finally, the authors incorporate a contrastive learning loss function. This allows

the model to capture specific features that distinguish one class from another, as well as more complex

features that are shared by instances of the same class [29].

Figure 2.9: Illustration of the class activation maps created using the Grad-CAM method. In the image, ’bbc’ repre-
sents Basal cell carcinoma, ’mm’ corresponds to Malignant melanoma, and ’scc’ stands for Squamous
cell carcinoma, as defined in [26].

Similar to the MVT [2], the SkinTrans framework incorporates data augmentation and data normal-

ization techniques during the initial pre-processing stage. The authors of the SkinTrans model also used

the HAM10000 dataset [3] for both training and evaluation, and extended their evaluation to a smaller

private dataset to measure model generalization. Xin et al. [26] demonstrated that the SkinTrans model

competes favorably with established CNN models.
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Figure 2.9 shows the class activation maps for each class on the authors’ private dataset. The pres-

ence of red areas in these maps highlights the importance of certain regions in skin cancer diagnosis,

demonstrating that the SkinTrans model can identify ROIs in the dermoscopy image, to some extent.

Xin et al. [26], demonstrated that a ViT-based network can successfully generalize when evaluated

in other dermoscopy datasets. However, their study did not explore the potential of the MSA mechanism

to detect whether dermoscopy images exhibit a distinction between attentive and inattentive patches.

2.3.1 Conclusions

In clinical practice, dermatologists rely on established criteria such as the 7-point checklist criterion [9]

to diagnose skin cancer lesions. Essentially, the 7-point checklist diagnoses a skin lesion as melanoma

based on the presence or absence of specific dermoscopic criteria within the lesion. Consequently, the

different ROIs learned by deep models have the potential to significantly benefit clinical practice, as they

may contain information related to these dermoscopy criteria. The 7-point criterion implies that only a

few ROIs within a dermoscopy image are relevant for the diagnosis of the respective skin lesion. This

leads to the question of whether deep models, such as ViT-based architectures, can accurately identify

these ROIs instead of treating the entire lesion as a single ROI.

It is worth noting that the 7-point criterion [9] implies that the position of the dermoscopy criteria in the

lesion does not matter for the diagnostic process, their presence or absence is what counts. However, all

ViT-based models discussed so far remain faithful to the original Transformer architecture introduced by

Vaswani et al. [15]. Consequently, they use positional encoding techniques to provide the model with a

spatial understanding of the patch positions within the image. As shown by Dosovitskiy et al. [1], the use

of positional encoding slightly improves model performance. This improvement is particularly relevant

for most datasets, where adjacent patches are likely to contain similar content. In contrast, dermoscopy

images are inherently complex, making it difficult to distinguish specific concepts within the image.

In summary, the ViT architecture shows great promise, not only in terms of performance, but also

in using the SA mechanism to identify patches critical to the model’s output. However, these ViT ar-

chitectures differ from some of the methods used by dermatologists in clinical practice. For example,

the 7-point criterion bases its diagnosis solely on the presence of specific dermoscopic concepts in the

image, without considering their spatial arrangement. On the other hand, ViT architectures construct

complex features that rely heavily on patch correlations, taking into account their spatial location. To

be more closely aligned with the diagnostic practices of dermatologists, we will explore a weakly su-

pervised learning technique known as MIL. MIL can be considered as a suitable approximation of the

7-point checklist criterion, as it allows independent scoring of each patch, with the image classification

depending on these individual scores. In MIL, there is no dependency or ordering between patches,

similar to the way the 7-point criterion analyzes dermoscopy images.
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In the following section, we will delve into the MIL framework and outline a general formulation for

creating a MIL classifier.

2.4 Multiple Instance Learning

MIL is a type of weakly supervised learning, where the training instances are arranged in groups called

“bags”, and the model is given only a bag label during training [30,31]. In the standard MIL assumption,

a bag is classified as positive if and only if it contains at least one positive instance, whereas a bag

consisting solely of negative instances is assigned a negative label [32].

MIL is often used when dealing with weakly annotated data, a situation frequently encountered in

the field of CV [33]. Weakly annotated data in CV refers to scenarios where the dataset’s images are

associated only with class labels and lack annotations depicting specific ROIs [34]. This scenario is

notably applicable when dealing with dermoscopy image datasets. In this context, a dermoscopy image

is conceptualized as a “bag”, and the constituent patches within the image serve as the independent

“instances” that collectively form the bag. In the problem of diagnosing dermoscopy lesions as either

melanomas or nevi, the melanoma class can be designated as positive and the nevus class as negative.

2.4.1 The Standard Multiple Instance Learning Assumption

The MIL assumption aligns with the conventional binary classification problem, where there exist only

two distinct classes: positive (y = 1) and negative (y = 0). In the MIL approach, instances are grouped

into bags of size N , X = {x1,x2, . . . ,xN}, where N can vary from bag to bag. As mentioned previously,

a bag is classified as negative if it solely contains negative instances. Therefore, we establish the bag

label, denoted as Y , using the following formulation:

Y =

{
0, iff

∑
n yn = 0

1, otherwise
, (2.9)

or even in a more compact form:

Y = max
n

{yn} , (2.10)

where y1, y2, . . . , yN are the respective instance labels.

According to this MIL formulation, the instances within a bag should not have any dependency or

ordering among themselves. This implies that a MIL model must be permutation-invariant [34].
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2.4.2 A Multiple Instance Learning Classifier Framework

Ilse et al. [34] proposed an alternative training methodology for a MIL model, opting for the optimization

of the log-likelihood function. In this revised approach, the bag label is represented as a Bernoulli

distribution parameterized by θ(X) ∈ [0, 1]. Essentially, θ(X) denotes the probability of the bag label

being Y = 1, which corresponds to the likelihood of the MIL model classifying the dermoscopy image as

a melanoma.

Any deep MIL classifier takes as input a bag of embedded instances, denoted by:

X =


−−−− x⊤

1 −−−−
−−−− x⊤

2 −−−−
...

−−−− x⊤
N −−−−

 ∈ RN×D, (2.11)

where D represents the embedding dimension, and N denotes the number of instances within a given

bag. The instances within such a bag are defined as column vectors, xn ∈ RD ∀n=1,...,N . As previously

mentioned, within the context of skin cancer diagnosis, a bag corresponds to a dermoscopy image,

represented as X ∈ RH×W×C (with H denoting the image’s height, W the width, and C the number of

channels). Therefore, any deep MIL classifier framework requires the use of a patch extractor, denoted

as E, responsible for converting a dermoscopy image into a bag of embedded patches. The function of

this patch extractor, E : RH×W×C → RN×D, is to perform transformations on each patch representation

independently. That is, the creation of each patch embedding should depend only on the patch itself and

not on the other patches in the dermoscopy image. For a visual representation of this transformation

process, see Figures 2.10 and 2.11, which provide a high-level overview of the operations conducted by

the patch extractor E.

Ilse et al. [34] proposed that any MIL-based bag classification framework can be generalized by

employing a three-step procedure, formulated as follows:

i. Each instance is independently transformed using a function f .

ii. The transformed instances (by f ) are combined by a permutation-invariant function ϕ, called MIL

pooling.

iii. The resulting representation of the combined instances is transformed by a function g.

The choice of functions f , ϕ, and g determines the specific type of MIL approach used for bag classifi-

cation. There are primarily two prominent deep MIL approaches for bag classification: the instance-level

and the embedding-level approaches. In the following sections, we will illustrate how to formulate both

instance-level and embedding-level approaches using the three-step method proposed by Ilse et al. [34].
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2.4.2.A Instance-level Approach

The three-step method for the instance-level approach, along with the transformation executed by the

patch extractor E, is shown in Figure 2.10.
…………

X 𝜖ℝ𝐻×𝑊×𝐶

𝐸 X 𝜖ℝ𝑁×𝐷

𝜙

𝜃(𝑋)

…𝑓

Figure 2.10: Instance-level MIL model pipeline for image classification. For a given input image X ∈ RH×W×C ,
the patch extractor, E, transforms such an image into a bag of embedded patches, X ∈ RN×D.
These bags of patch embeddings correspond to the input for the instance-level MIL classifier. The
function f transforms each patch embedding into a respective patch probability of the melanoma
class, f : RD → H, where H ∈ [0, 1]. The MIL pooling function, ϕ : HN → H, combines all the
melanoma patch probabilities into a melanoma bag probability θ(X) ∈ H. The function g corresponds
to the identity function.

To formulate an instance-level classifier, the three-step method should be defined as follows:

i. The function f is designed as an instance-level classifier. Given that a patch embedding is denoted

as xn ∈ RD (∀n=1,...,N ), the function f(xn) computes the probability of the positive class (i.e., the

melanoma class) for each patch, f : RD → [0, 1].

ii. The MIL pooling function, ϕ, combines all the individual patch probabilities, f(xn) ∀n=1,...,N , into

a bag probability of the melanoma class, represented as ϕ(X) = θ(X) ∈ [0, 1]. To formalize this

operation, we introduce the concept of a space H ∈ [0, 1], and accordingly, ϕ : HN → H. The MIL

pooling function must be permutation-invariant, e.g., the maximum operator:

ϕ(X) = max
n=1,...,N

{f(xn)}. (2.12)

or the mean operator:

ϕ(X) =
1

N

N∑
n=1

f(xn). (2.13)

iii. Function g corresponds to identity since we already have the bag probability: θ(X) = ϕ(X).
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2.4.2.B Embedding-level Approach

The three-step method for the embedding-level approach, accompanied by the transformation carried

out by the patch extractor E, is visually depicted in Figure 2.11.
…………

X 𝜖ℝ𝐻×𝑊×𝐶

𝐸 X 𝜖ℝ𝑁×𝐷

𝜙

𝜃(𝑋)

g

Figure 2.11: Embedding-level MIL model pipeline for image classification. For a given input image X ∈ RH×W×C ,
the patch extractor, E, transforms such an image into a bag of embedded patches: X ∈ RN×D.
This bag of patch embeddings corresponds to the input of the embedding-level MIL classifier. In this
context, the function f operates as an extension of the patch extractor E, effectively being defined as
f : RD → RD′

. The MIL pooling function, ϕ, combines all the individual patch embeddings into a bag
embedding representation, ϕ : RN×D′

→ RD′
. Finally, the function g : RD′

→ [0, 1] corresponds to a
bag classifier, i.e., it returns the melanoma bag probability θ(X) ∈ [0, 1].

For the embedding-level MIL classifier, the three-step method is defined as follows:

i. The function f performs a transformation on each patch embedding, f : RD → RD′
. Given that

a patch embedding is denoted as xn ∈ RD (∀n=1,...,N ), the function f(xn) returns a new patch

representation in the D′-dimensional space. It is important to note that in this case, the function f

extends the feature extraction process initiated by the patch extractor E.

ii. The MIL pooling function, ϕ : RN×D′ → RD′
, combines all the individual patch embeddings,

f(xn) ∀n=1,...,N , into a bag representation ϕ(X) ∈ RD′
. The MIL pooling function, ϕ, must be

permutation-invariant, e.g., the column-wise global max pooling operator:

∀j=1,...,D : ϕ(X)j = max
n=1,...,N

{f(xn)j} , (2.14)

or the column-wise global average pooling operator:

∀j=1,...,D : ϕ(X)j =
1

N

N∑
n=1

f(xn)j . (2.15)

iii. The function g corresponds to a bag-level classifier. The input of this bag-level classifier corre-

sponds to the bag’s embedding representation obtained from the MIL pooling function, denoted
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as ϕ(X) ∈ RD′
. In the context of the embedding-level approach, the function g(ϕ(X)) computes

the probability of classifying the dermoscopy image as melanoma, denoted as θ(X) ∈ [0, 1], with

g : RD′ → [0, 1].

2.4.2.C Comparison between Instance-level and Embedding-level Approaches

Both the instance-level and embedding-level paradigms produce a bag classification, yet through dif-

ferent methods. In the instance-level approach, an instance classifier is learned and bag classification

is achieved by aggregating independent instance probabilities. Conversely, the embedding-level ap-

proach aggregates multiple instance embeddings into a compact bag representation and then applies a

classifier to estimate the bag probability of the positive class [35,36].

The embedding-level approach generates a low-dimensional bag representation without distinguish-

ing between the constituent instances in the bag. Consequently, it does not allow for the identification of

key instances within the bag, i.e., the specific instances responsible for the bag classification [34,36]. Al-

though embedding-level approaches typically demonstrate superior performance compared to instance-

level approaches, they do not provide substantial clinical insight to healthcare professionals when diag-

nosing skin cancer lesions. Instead, embedding-level MIL approaches primarily serve as a “bridge”

between MIL frameworks and traditional CNN architectures.

In contrast, the instance-level approach provides the ability to identify the specific instances that

trigger the bag’s classification [34]. This information can provide valuable clinical insight to physicians

during the lesion diagnosis process. Since it is possible to map these key instances into ROIs within the

dermoscopy image. The identification of these ROIs is of vital importance in skin cancer diagnosis. As

stated previously, dermatologists often rely on the detection of such regions to apply diagnostic criteria,

including the 7-point checklist [9] and the ABCD rule [37], among others, to make accurate diagnoses.

In the following section, we will provide a general overview of some of the works related to MIL in the

field of medical image processing.

2.5 Multiple Instance Learning in Medical Image Processing

MIL is particularly well suited to the domain of medical image analysis, where an image can be analo-

gized to a bag, and each instance can be associated with a specific location within the image [38]. In

recent years, many applications of MIL in the field of medical image analysis have emerged.

Ilse et al. [34], proposed a new attention-based MIL approach. In this new approach, the authors

proposed an attention-based MIL pooling operator. This operator consists of a weighted average of

the low-dimensional embedding representation of the instances, where the weights are determined by a

Neural Network (NN). Consider X = {x1,x2, . . . ,xN} the bag of N instance embeddings. The proposed
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MIL pooling operator is defined as follows:

ϕ =

N∑
n=1

anxn, where: an =
exp

{
w⊤ tanh (Vxn)

}∑N
j=1 exp {w⊤ tanh (Vxj)}

. (2.16)

In this context xn ∈ RD (∀n=1,...,N ) represents an embedded instance. The vector w ∈ RD′
and the

matrix V ∈ RD′×D are learnable parameters.

The MIL pooling operator proposed by Ilse et al. [34] can be associated with a version of the attention

mechanism [39,40]. However, it differs from the SA mechanism used in the ViT model. Nevertheless, the

proposed operator is capable of measuring similarities between instances. To evaluate the performance

of this method and to determine whether the attention-based deep MIL pooling operator can provide

interpretable results that highlight key instances or ROIs, the authors conducted experiments on two real

histopathology datasets, specifically related to breast cancer and colon cancer. Figure 2.12 illustrates a

heatmap of a histopathology image, which was generated by multiplying each patch by its corresponding

attention weight.

Figure 2.12: (a) H&E stained histology image. (b) 27 × 27 patches centered around all marked nuclei. (c) Ground
truth: Patches that belong to the class epithelial. (d) Heatmap: Every patch from (b) multiplied by its
corresponding attention weight [34].

llse et al. [34] established a compelling connection between MIL and attention mechanisms, demon-

strating its competitiveness with established MIL models. However, this study did not introduce a multi-

class paradigm for a MIL framework. In addition, the experiments were limited to histopathology datasets

focusing on breast and colon cancer.
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There is still much to be explored in the field of medical image analysis for skin cancer, especially in

the context of dermoscopy image processing. It is worth noting that many of the existing MIL models in

skin cancer analysis have been predominantly applied to Whole Slide Images (WSIs) of skin biopsies,

rather than dermoscopy images [41,42]. This highlights the need for further research and development

of a MIL framework in the specific area of dermoscopy image analysis for skin cancer diagnosis.

In the context of dermoscopy image classification, Astorino et al. [43] introduced a notable MIL frame-

work based on a mixed-integer nonlinear optimization problem. Their method is based on the Support

Vector Machine (SVM)-type model for MIL frameworks originally proposed by Andrews et al. [44]. The

authors conducted experiments using the PH2 dataset [45]. However, the authors only considered nega-

tive examples of common nevi and positive examples of melanoma lesions. Therefore, the experimental

dataset contained only 40 images of melanoma and 40 images of common nevi, which is a limited sam-

ple size. Although the proposed method showed promising results, the small dataset size limits the

analysis of the generalization ability of the proposed method. In the field of dermoscopy image analysis,

there remains a need for a more comprehensive study into various deep MIL approaches, including

different MIL pooling operators.

The limited study of the MIL framework in dermoscopy image analysis can be attributed to several

factors. First, dermoscopy images are relatively small compared to WSIs, which poses significant chal-

lenges in extracting high-resolution patches. In addition, while there have been some attempts to adapt

MIL to multi-class problems [46–48], in general, there isn’t a clear-cut MIL approach that solves the

multi-class problem in the context of dermoscopy image analysis. A thorough investigation of different

MIL approaches in the field of dermoscopy image analysis may prove to be of significant importance in

clinical practice. The ability of the MIL framework to identify ROIs has the potential to provide valuable

clinical insights to dermatologists. Therefore, further research in this direction may prove to be highly

relevant for improving the diagnosis of skin lesions in dermoscopy images.

2.5.1 Conclusions

MIL is a weakly-supervised framework in which we consider a dermoscopy image as a bag, with each

patch within the image treated as an instance. The fundamental principle of MIL is that the classification

of the entire image depends solely on the presence or absence of key instances. In the context of bi-

nary melanoma vs. nevus classification, a key instance is defined as a patch belonging to the melanoma

class. If all patches within the bag belong to the nevus class, indicating the absence of key instances, the

image is classified as a nevus. Conversely, if there is at least one key instance within the bag, signifying

the presence of melanoma characteristics in at least one patch, the entire dermoscopy image is classi-

fied as melanoma. This approach is strikingly similar to the 7-point checklist procedure. Both methods

base their classification on the presence or absence of specific regions within the image, regardless of
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the spatial location of these regions. Therefore, it is reasonable to consider the MIL framework as a

robust approximation of the 7-point criterion in the DL world.

2.6 The Connection Between MIL, ViTs, and the 7-Point Criterion

In our current landscape, two apparently opposing paradigms have emerged. On one side, we have the

ViT architecture, which exploits the correlated information across different patches while incorporating

spatial information into its predictions. On the other side, we have the MIL framework, a concept resem-

bling the 7-point criterion [9], where specific patches are selected for classification regardless of their

spatial relationships.

At first glance, the MIL framework and the ViT architecture may seem to be on opposite sides of the

spectrum. However, a closer inspection of the ViT architecture reveals some interesting parallels with

MIL. As mentioned earlier, the inclusion of positional encoding in ViT comes as a result of the direct

adaptation of concepts from NLP to CV. This raises questions about the necessity of positional encoding

in ViT architectures designed for vision tasks. To shed further light on the connection between ViTs and

the MIL framework, we will show that by removing positional encoding from the ViT architecture, ViT

models can be considered a deep MIL framework.

Let us consider the ViT encoder (Figure 2.1) with input z ∈ RN×D, which represents the sequence

of patch embeddings without the addition of the positional embedding matrix, Epos:

z =


−−−− z⊤0 −−−−
−−−− z⊤1 −−−−
−−−− z⊤1 −−−−

...
−−−− z⊤N −−−−

 , where: zn ∈ RD ∀n=0,...,N . (2.17)

In this context, z0 represents the CLS token. As explained in section 2.1.2, the first step of the SA

pipeline involves the computation of matrices Q, K, and V. These matrices are obtained through the

dot product of the Transformer encoder input, denoted as z, with corresponding learnable linear matrices.

For instance, V is calculated as the product of z and U⊤
V, where UV ∈ RD′×D, more precisely:

V = z ·U⊤
V =


−−−− z⊤0 −−−−
−−−− z⊤1 −−−−
−−−− z⊤1 −−−−

...
−−−− z⊤N −−−−

 ·

 | | |
uV1 uV2 . . . uVN

| | |

 =


−−−− z⊤0 U

⊤
V −−−−

−−−− z⊤1 U
⊤
V −−−−

−−−− z⊤1 U
⊤
V −−−−

...
−−−− z⊤NU⊤

V −−−−

 . (2.18)

The procedure for computing Q and K is identical to that described in (2.4). Moving on in the SA

process, our next task is to compute the attention map, A, as described in (2.5). To simplify our sub-
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sequent computations, we will exclude the softmax and scale operators because they do not affect

the row-wise permutation invariance. Consequently, we can represent the attention map, denoted as

A ∈ R(N+1)×(N+1), as follows:

QK⊤ =


−−−− z⊤0 U

⊤
Q −−−−

−−−− z⊤1 U
⊤
Q −−−−

−−−− z⊤1 U
⊤
Q −−−−

...
−−−− z⊤NU⊤

Q −−−−

 ·

 | | | |
UKz0 UKz1 UKz2 . . . UKzN

| | | |



=


z⊤0 U

⊤
QUKz0 z⊤0 U

⊤
QUKz1 z⊤0 U

⊤
QUKz2 . . . z⊤0 U

⊤
QUKzN

z⊤1 U
⊤
QUKz0 z⊤1 U

⊤
QUKz1 z⊤1 U

⊤
QUKz2 . . . z⊤1 U

⊤
QUKzN

z⊤2 U
⊤
QUKz0 z⊤2 U

⊤
QUKz1 z⊤2 U

⊤
QUKz2 . . . z⊤2 U

⊤
QUKzN

...
...

...
. . .

...
z⊤NU⊤

QUKz0 z⊤NU⊤
QUKz1 z⊤NU⊤

QUKz2 . . . z⊤NU⊤
QUKzN

 .

(2.19)

Each element in the resulting matrix, denoted as QK⊤, is a real number. After applying the scale factor

and performing the softmax operation on each row, we derive the attention map A (2.5), as illustrated

in Figure 2.3.

The next step in the Transformer encoder pipeline involves computing the SA Head, which results

from the dot product between the attention map A and the value matrix V ∈ RN×D′
. For simplicity, we

will continue to consider the attention map A as simply the dot product between the query matrix Q and

the transpose of the key matrix K⊤. Thus, we can define A ·V as follows:

QK⊤ ·V =


z⊤0 U

⊤
QUKz0 z⊤0 U

⊤
QUKz1 z⊤0 U

⊤
QUKz2 . . . z⊤0 U

⊤
QUKzN

z⊤1 U
⊤
QUKz0 z⊤1 U

⊤
QUKz1 z⊤1 U

⊤
QUKz2 . . . z⊤1 U

⊤
QUKzN

z⊤2 U
⊤
QUKz0 z⊤2 U

⊤
QUKz1 z⊤2 U

⊤
QUKz2 . . . z⊤2 U

⊤
QUKzN

...
...

...
. . .

...
z⊤NU⊤

QUKz0 z⊤NU⊤
QUKz1 z⊤NU⊤

QUKz2 . . . z⊤NU⊤
QUKzN

 ·


V01 . . . V0D′

V11 . . . V1D′

V21 . . . V2D′

...
. . .

...
VN1 . . . VND′



=



∑N
n=0 (z

⊤
0 U

⊤
QUKzn)Vn1 . . .

∑N
n=0 (z

⊤
0 U

⊤
QUKzn)VnD′∑N

n=0 (z
⊤
1 U

⊤
QUKzn)Vn1 . . .

∑N
n=0 (z

⊤
1 U

⊤
QUKzn)Vn1∑N

n=0 (z
⊤
2 U

⊤
QUKzn)Vn1 . . .

∑N
n=0 (z

⊤
2 U

⊤
QUKzn)Vn1

...
. . .

...∑N
n=0 (z

⊤
NU⊤

QUKzn)Vn1 . . .
∑N

n=0 (z
⊤
NU⊤

QUKzn)Vn1

 ∈ RN×D′
. (2.20)

As discussed in section 2.1.2, the MSA process involves running multiple SA processes in parallel.

Thus, when the patches are initially rearranged at the beginning of the ViT model, all SA processes are

subject to the same permutations.

The linear matrix Umsa ∈ RD×(H·D′) (as seen in (2.7)) performs a linear mapping in the column

dimension, specifically in the embedding dimension. Since each column in every SA process involves

linear combinations, this transformation remains unaffected by row-wise permutations (i.e., patch per-

27



mutations). This linear layer can be interpreted as processing each patch representation independently

and identically [24]. Consequently, we can confidently affirm that both SA and MSA processes maintain

permutation-equivariance in the absence of positional encoding [49].

The LN [21] does not affect this demonstration, and the residual connections also maintain permu-

tation equivariance. Thus, the Transformer encoder remains permutation-equivariant with no positional

encoding. The MLP within the Transformer Encoder block can be thought of as a row-based Feedfoward

Neural Network (FNN), meaning that each patch embedding is processed independently and identi-

cally [24]. Consequently, this MLP preserves the permutation-equivariance of patches within the input

sequence.

Consequently, we can deduce that the Transformer encoder block shown in Figure 2.1 exhibits

permutation-equivariance in the absence of positional encoding. This insight leads to another reve-

lation: each row of the patch embedding sequence is inherently permutation-invariant. In other words, in

the absence of positional encoding, the Transformer encoder maintains permutation-equivariance with

respect to the patch permutations within the input sequence. This also means that any patch embedding

created by the Transformer encoder is unaffected by permutations of patches within the input sequence.

As we will show in chapter 3, a MIL bag classifier only requires two essential components: a

permutation-invariant aggregation function and a classifier. In the absence of positional encoding, the

Transformer encoder can be interpreted as functioning similarly to a MIL pooling operator, with the MLP

head serving as the classifier. In particular, previous studies have demonstrated the aggregation prop-

erties of the Transformer encoder, especially the final encoder block [18]. This conclusion is plausibly

consistent with our observations because, as noted above, each patch representation generated by

the Transformer encoder block remains immune to permutations between patches within the input se-

quence. Consequently, the state of the CLS token at the end of the last Transformer encoder block

remains unaffected by permutations between the patches in the input image.

Thus, the MIL and ViT frameworks reveal a compelling connection. We can view the MIL and ViT

architectures as two seemingly opposing paradigms. On the one hand, the MIL framework closely

approximates the 7-point checklist criterion [9] in the context of DL. Both methods score each patch

independently, regardless of their spatial positions. They then aggregate these scores to classify the en-

tire image. The ViT architecture, on the other hand, exploits correlations between patches and considers

their spatial positions within the image for classification. However, by removing positional encoding

from the ViT architecture, we can view the ViT model as a highly complex MIL pooling framework, with

the Transformer encoder acting as the MIL pooling function.

This intricate relationship between the MIL framework and the ViT architecture serves as the primary

motivation for this thesis. To gain a better understanding of the connection between these two different

paradigms, it is essential to address two key questions regarding dermoscopy image analysis:
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1. Do all patches within a dermoscopy image have the same relevance, or can we distinguish ROIs?

2. Is the spatial positioning of patches in a dermoscopy image crucial for accurate classification?

To address these fundamental questions, we introduce a two-branch framework. One branch con-

sists of an EViT architecture [14], while the other branch contains a MIL model. Our work focuses

on tackling two different challenges: a binary classification task distinguishing melanoma from nevus,

and a multi-class problem involving eight different skin disease types. In the binary classification sce-

nario, we propose a modified MIL formulation that is more appropriate for dermoscopy images. Due to

their smaller size compared to WSIs, extracting high-resolution patches from dermoscopy images is not

straightforward. In addition, we present a specialized MIL framework to address the multi-class problem

in dermoscopy image classification.

Our work involves a comprehensive exploration of the number of patches used for model inference.

Specifically, we experiment with three types of MIL pooling operators: maximum, average, and top-k

average operators. To visualize the different ROIs identified by both the MIL and EViT branches, we

employ a gradient-based visualization technique inspired by Chefer et al. [50]. In addition, we delve

into the evaluation of positional encoding within ViT architectures to assess its significance within our

framework.
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In this chapter, we introduce our proposed method, offering a detailed exploration of the model’s

architecture and delving into the functions of each constituent block. Our model addresses two problems:

the binary classification problem of melanoma vs. nevus, and the multi-class problem. With the proposed

architecture, we aim to address two key questions in the analysis of dermoscopy images:

1. Are all patches within a dermoscopy image equally relevant, or can we filter the image into specific

ROIs?

2. Does the spatial positioning of patches within the image play a critical role in the diagnosis of skin

cancer?

The architecture of the proposed approach is depicted in Figure 3.1.
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Figure 3.1: Architecture of the proposed approach. The proposed model consists of two primary branches: the
EViT branch [14] and the MIL branch. The model takes as input a dermoscopy image represented as
X ∈ RH×W×C , where H = W = 224 and C = 3. The EViT branch is composed of three blocks:
the patch extractor block, the EViT encoder block, and the classifier head. Similarly, the MIL branch
consists of two main blocks: a pre-trained patch extractor block, E, responsible for extracting a 14× 14
feature map, and a MIL classifier. Each branch works independently, producing its own output.

Our proposed approach comprises two primary branches: the EViT branch [14] and a MIL branch.

Both branches take a dermoscopy image as input, represented as X ∈ RH×W×C , with dimensions

set to H = W = 224 and C = 3. These branches are trained separately, and this separation continues

during inference, allowing an unbiased comparison of their outputs. This approach also helps to evaluate

whether the more relevant patches in the EViT’s output correspond to the key patches learned by the
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proposed MIL framework.

The EViT branch closely follows the architecture proposed by Liang et al. [14]. It consists of three

primary blocks. First, a patch extractor block processes the input image using a procedure similar to

that described in section 2.1.1. Next, the EViT encoder is applied to the sequence of patch embed-

dings. Finally, the state of the CLS token at the last encoder block is fed into a FC Layer to perform the

classification task.

The MIL branch comprises two key blocks. First, the dermoscopy image is passed to a pre-trained

feature extractor, denoted E. This feature extractor is responsible for generating a 14× 14 feature map,

where each entry represents a patch embedding. The collection of patch embeddings forms a bag,

which is then processed by a MIL classifier framework.

In the following sections, we will delve deeper into the inner workings of each branch, with a particular

focus on presenting a novel formulation for the MIL framework that is applicable to both binary and multi-

class problems.

3.1 The EViT Branch

As mentioned above, the EViT branch comprises three main blocks. In this section, we will delve into

each of these blocks in more detail. In Figure 3.1 a high-level overview of the EViT branch is presented.

The first block corresponds to the Patch Extractor block, which is responsible for converting the input

dermoscopy image into a sequence of patch embeddings, more specifically: X ∈ RH×W×C → X ∈

RN×D. In our implementation, the patch size, P , is equal to 16. Since the input images have a resolution

of (224, 224), this translates to a total of N = 196 patches. This block uses a convolutional layer with

a (P × P ) kernel and a corresponding P -stride to separate the different patches in the image. The

convolutional layer is defined with C input channels, aligning with the image’s Red,Green and Blue (RGB)

composition. The output channels of the convolutional layer are defined by the embedding dimension,

denoted by D. This results in a 14 × 14 feature map, with each entry corresponding to a distinct patch

within the image. A flattening operation shapes the feature map into the sequence of patch embeddings,

denoted by X ∈ RN×D. To this sequence of patch embeddings, a CLS token is appended, and positional

embeddings are incorporated, following the description provided in section 2.1.1. This block serves as

a necessary step to effectively segment the dermoscopy image into a sequence of patch embeddings,

which corresponds to the input of the second block, the EViT encoder.

The EViT encoder block closely follows the structure proposed by Dosovitskiy et al. [1], with the

addition of a token reorganization block preceding the MLP block. This token reorganization block is

crucial in distinguishing between attentive and inattentive patches. Attentive patches are propagated

through the network, while inattentive patches are merged into a concise representation. Similar to the
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ViT model, the state of the CLS token at the end of the last EViT encoder block serves as input to a

classifier that produces the classification for the entire image. For a more complete understanding of the

EViT architecture, refer to sections 2.1 and 2.2.

Finally, a FC Layer is used to derive a classification for the entire image. The state of the CLS token

at the end of the last EViT encoder block can be represented as xclass ∈ RD. In this context, the

FC Layer is defined as h(xclass) = σ(w⊤xclass + b), where w ∈ RD×k, b ∈ Rk, and σ denotes the

softmax function. Here, k represents the number of classes. This operation gives us the probability

distribution over the k classes.

3.2 The MIL Branch

As mentioned above, the MIL branch comprises two fundamental components: a deep patch extractor

and a MIL classifier. In the following sections, we will explore the constituent blocks of the MIL branch

in more detail. Our approach introduces a two-step method for generalizing binary MIL classifiers and

extends it to a three-step method for multi-class classification. For clarity, we discuss binary and multi-

class scenarios separately, and provide insights into the two deep MIL approaches: the instance-level

and embedding-level methods. We also provide clear descriptions of the MIL pooling operators used in

these approaches.

3.2.1 Deep Patch Extractor

The first component of the MIL branch is a deep patch extractor denoted as E, responsible for gener-

ating a 14 × 14 feature map. We employ this deep patch extractor to address the challenges posed by

dermoscopy images’ relatively small size, especially when compared to the WSIs typically used in many

MIL-based studies. Given the inherent limitations of dermoscopy images, extracting high-resolution

patches individually proves to be a very challenging task. The choice of a 14 × 14 configuration solves

this problem, as each element within this map directly corresponds to a specific region in the input im-

age, a property attributed to the receptive field of CNN-based architectures [51]. The 14 × 14 feature

map is strategically chosen to serve as a “bridge” between the Transformer branch and the MIL branch.

This choice derives from EViT’s method of dividing the input image into (16, 16) patches, a process

adapted to images with dimensions of (224, 224). This results in a total of N = 196 patches, which can

be efficiently transformed into a 14× 14 feature map.

Figure 3.2 provides an overview of the functions performed by the patch extraction block. In this

scheme, the dermoscopy image, represented as X ∈ RH×W×C , is processed by a pre-trained patch

extractor, denoted as E. The extractor produces a 14 × 14 feature map, which can be expressed as

E : RH×W×C → R14×14×D. The 14 × 14 output is transformed into a collection of patch embeddings,
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denoted as X ∈ RN×D, where, in our particular scenario, N = 196 and D denotes the embedding

dimension.

Pre-trained
Patch

Extractor

14x14 Feature Map

…

X 𝜖ℝ𝐻×𝑊×𝐶 X 𝜖ℝ𝑁×𝐷

Bag of patch embeddings

X 𝜖ℝ14×14×𝐷

#1 #2 #3 #4

#N

…

…
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Figure 3.2: Transformation of a dermoscopy image into a bag of patch embeddings by a pre-trained feature extrac-
tor, denoted E. The pre-trained patch extractor E processes the input dermoscopy image, resulting in
a 14 × 14 feature map, more precisely: E : RH×W×C → R14×14×D. Next, this 14 × 14 feature map
is reshaped, resulting in a bag of patch embeddings denoted as X ∈ RN×D. In this particular case,
N = 196 patches are generated.

The deep patch extractor block, plays a pivotal role within the MIL branch pipeline, as it transforms

the input image into a bag of patch embeddings. This bag of patch embeddings serves as the input to

both the instance-level and embedding-level MIL approaches, in both binary and multi-class scenarios.

3.2.2 MIL Classifier: Binary Formulation

The second component of the MIL branch is the MIL classifier. In section 2.4.2, we provide a detailed

description of the three-step method proposed by Ilse et al. [34], which forms the basis of many MIL

classifiers. However, this three-step approach can sometimes create ambiguity in defining the boundary

between the patch extractor, E, and the function f . To address this ambiguity, we propose a two-

step framework. Our two-step approach is validated by two different works. These works confirm the

feasibility of decomposing any permutation-invariant function, a property shared by MIL classifiers, into

two essential parts [24,52]. This deconstruction is closely related to our own approach.

The proposed framework operates on a bag of embedded instances, denoted as X ∈ RN×D, where

N signifies the total number of instances within the bag, and D denotes the embedding dimension. Our

two-step approach is characterized by two key functions: {h, ϕ}, where:

• h represents a non-linear classifier.

• ϕ represents a permutation-invariant aggregation function.

The order in which these functions are applied, {h, ϕ}, defines the specific deep MIL approach, i.e.,
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the instance-level or the embedding-level approach. In the following sections, we will elaborate on the

formulation of both instance-level and embedding-level approaches using this two-step method.

3.2.2.A Instance-level Approach

The instance-level MIL classifier is defined by the proposed two-step method as follows:

i. The function h is designed as an instance-level classifier. We define h(xn) as a FC Layer with a

sigmoid activation function: h(xn) = σ(w⊤xn + b), where w ∈ RD, b ∈ R, and σ(·) represents

the sigmoid function. In this context, xn ∈ RD (∀n=1,...,N ) represents a patch embedding. The

function h(xn) provides the probability of the positive class (i.e., the melanoma class) for each

patch, expressed as h : RD → [0, 1].

ii. The function ϕ combines all the individual patch melanoma probabilities, h(xn) ∀n=1,...,N , into

a bag probability for the melanoma class, denoted as θ(X) = ϕ(X) ∈ [0, 1]. To formalize this

operation, we introduce the concept of a space H ∈ [0, 1], and thus, ϕ : HN → H. The MIL pooling

function must exhibit permutation invariance, such as the maximum operator (2.12), the average

operator (2.13), or the top-k average operator.

Figure 3.3 illustrates the workflow of the instance-level MIL classifier framework using the proposed

two-step approach.

3.2.2.B Embedding-level Approach

The embedding-level MIL classifier is defined by the proposed two-step method as follows:

i. The MIL pooling function, denoted as ϕ : RN×D → RD, aggregates individual patch embeddings,

xn ∀n=1,...,N , into a bag representation, ϕ(X) ∈ RD. It is crucial that ϕ is permutation-invariant,

and options include the column-wise global max pooling operator (2.14), the column-wise global

average pooling operator (2.15), or the column-wise global top-k average pooling operator.

ii. The function h serves as a bag-level classifier. We define h(ϕ(X)) as an FC Layer with a sigmoid

activation function: h(xn) = σ(w⊤ϕ(X)+b), where w ∈ RD, b ∈ R, and σ(·) represents the sigmoid

function. In this context, ϕ(X) ∈ RD represents the output of the MIL pooling function, which

serves as the bag’s embedding representation. h(ϕ(X)) computes the probability of classifying

the dermoscopy image as melanoma, denoted as θ(X) ∈ [0, 1], with h : RD → H, where H ∈ [0, 1].

Figure 3.3 illustrates the workflow of the embedding-level MIL classifier framework using the pro-

posed two-step method.
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Figure 3.3: MIL classifier approaches. On the left, the figure presents the instance-level MIL classifier framework,
while on the right, it illustrates the embedding-level MIL classifier framework. It is important to note that
the order of the functions {h, ϕ} defines the specific deep MIL approach used.

3.2.3 MIL Classifier: Multi-class Formulation

As previously mentioned, there is a notable gap in the literature when it comes to formulating multi-class

MIL solutions. This limitation was the driving force behind our quest to address the multi-class challenge

within the MIL framework.

Similar to the two-step approach, the proposed three-step method operates on a bag of embedded

instances denoted as X ∈ RN×D, where N is the total number of instances in the bag and D is the

embedding dimension. The three-step method has three key functions: {z, ϕ, σ}, each with a different

role:

• z is a linear layer that maps the input from the embedding dimension D to the k-th dimension,

where k represents the number of classes, more specifically z : RD → Rk.

• ϕ is a permutation-invariant aggregation function.

• σ is the softmax function.

The order of these three functions: {z, ϕ, σ}, determines the specific deep MIL approach used: instance-

level or embedding-level.

It should be emphasized that the binary formulation represents a specific case within the broader

multi-class approach. In binary scenarios, the functions z and σ operate sequentially, forming the h

function of the two-step method. In particular, the σ function is represented by a sigmoid activation

function rather than the softmax used in multi-class classification. Consequently, the proposed two-

step method can be seen as a specific case within the more comprehensive three-step method used

36



in multi-class problems. In this three-step method, the separation of the affine function z from the non-

linear function σ opens the way for the creation of two different instance-level methods in the multi-class

scenario. These approaches will be elaborated in the following sections. These sections will describe in

detail both the instance-level and embedding-level approaches using the proposed three-step method.

3.2.3.A Instance-level Approach

As previously mentioned, the instance-level approach can be implemented in two different modes using

the proposed three-step method. In this section, we will explain both implementations, providing insights

into the underlying reasoning for each.

With the proposed three-step method for the multi-class MIL framework, we derive the first instance-

level implementation as follows:

i. The function z is a linear layer, expressed as z(xn) = w⊤xn + b. Here, w ∈ RD×k and b ∈ Rk.

In this context, k represents the number of classes, and xn ∈ RD (∀n=1,...,N ) denotes a patch

embedding. The function z(ϕ(X)) independently maps each patch embedding linearly onto a

k-dimensional subspace, namely z : RD → Rk.

ii. The softmax function, denoted as σ, performs a non-linear transformation on each z(xn) (∀n=1,...,N ),

converting real-numbered vectors into probability distributions. Specifically, σ : Rk → Hk, where

H ∈ [0, 1]. Thus, instead of patch embeddings, we obtain a probability distribution for each patch.

iii. The MIL pooling function, ϕ : HN×k → Hk, aggregates the individual patch probability distribu-

tions into a bag-level softmax probability distribution, denoted as θ(X) = ϕ(X) ∈ Hk. The MIL

pooling function ϕ must be permutation-invariant. We can use operators such as the maximum

operator, which selects the patch with the highest probability across all classes; the column-wise

global average operator; or a top-k average operator, which selects the patches with the highest

probabilities across all classes and then performs the average operation per class.

In this first implementation, we compute a probability distribution for each patch. Through the MIL

pooling function, we then derive a bag-level softmax probability distribution. This method is inspired

by the original MIL formulation, where a bag is considered positive if it contains at least one positive

instance. For example, when using the maximum pooling operator, we select the patch with the highest

probability across all classes to represent the entire image. Consequently, the image’s label corresponds

to the label of that particular patch.

When defining the MIL pooling operators for the multi-class scenario, it is essential to guarantee that

the resulting bag probability distribution sums to 1. This requirement is satisfied by the maximum pooling

operator, which selects the patch with the highest probability distribution across all classes. Likewise,

the column-wise global average pooling operator also satisfies this constraint. For the mathematical
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proof that this average operator also satisfies this constraint, see section A.1 in appendix A. The top-

k operator, which is a “filtered” version of the average operator, maintains the probability distribution

constraint by using only certain patch representations for the averaging operation.

As previously mentioned, using the proposed three-step method for a multi-class MIL framework, we

can derive a second instance-level implementation:

i. The function z is designed as a linear layer: z(xn) = w⊤xn + b, where w ∈ RD×k, and b ∈ Rk.

Here, k represents the number of classes, and xn ∈ RD (∀n=1,...,N ) represents a patch embedding.

In this case, the function z(ϕ(X)) linearly maps each patch embedding independently to a k-

dimensional subspace, denoted as z : RD → Rk.

ii. The MIL pooling function, ϕ : RN×k → Rk, aggregates individual patch representations into a bag-

level representation, ϕ(X) ∈ Rk. The MIL pooling function, ϕ, must be permutation-invariant, e.g.,

the column-wise global max pooling operator, the column-wise global average pooling operator, or

the column-wise global top-k average pooling operator.

iii. The softmax function, denoted σ, performs a non-linear transformation on the bag-level repre-

sentation ϕ(X). This function transforms a vector of real numbers into a probability distribution,

represented as σ : Rk → Hk, with H ∈ [0, 1].

In this second approach, the MIL pooling function is applied before the softmax step, ensuring that the

resulting bag probability distribution sums to 1. For example, in the case of the maximum operator, the

resulting bag probability distribution corresponds to the softmax of the highest logits for each respective

class. The other MIL operations follow a similar logic, with their respective operators.

3.2.3.B Embedding-level Approach

The embedding-level MIL multi-class classifier is defined by the proposed three-step method as follows:

i. The MIL pooling function, denoted as ϕ : RN×D → RD, aggregates all individual patch embed-

dings, represented as xn ∀n=1,...,N , into a bag-level representation, ϕ(X) ∈ RD. The MIL pooling

function ϕ must be permutation-invariant, and common choices include the column-wise global

max pooling operator, the column-wise global average pooling operator, or the column-wise global

top-k average pooling operator.

ii. The function z is designed as a linear layer, specifically: z(xn) = w⊤ϕ(X) + b, where w ∈ RD×k,

b ∈ Rk. In this context, k denotes the number of classes, and ϕ(X) ∈ RD represents the output

of the MIL pooling function, which serves as the embedded representation of the bag. Here, the

function z(ϕ(X)) linearly maps the embedded bag representation onto a k-dimensional subspace,

notably: z : RD → Rk.
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iii. The softmax function, denoted as σ, operates as a non-linear transformation on z(ϕ(X)), trans-

forming the vector of real numbers into a probability distribution. More specifically, σ : Rk → Hk,

where H ∈ [0, 1].

In the next chapter, we will delve into the experimental setup, where we will present the datasets

used for both training and testing, along with a detailed overview of the model configurations we used,

among other important experimental details.
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4.1 The Datasets

To conduct this thesis research, we used several publicly available dermoscopy image datasets. The

datasets used in this thesis are the ISIC 2019 [3–5], the PH2 [45], and the Derm7pt [53]. The ISIC 2019

dataset was used for training and validation, while the other two were used exclusively for testing. This

approach allowed us to assess the ability of the model to generalize across different hospital domains

and distribution patterns, addressing a gap present in the works discussed in section 2.3.

4.1.1 Training and Validation Datasets

The original ISIC 2019 training dataset [3–5] consists of 25, 331 dermoscopic images categorized into

8 diagnostic classes: Actinic keratosis (AK), Basal cell carcinoma (BCC), Benign keratosis (BKL),

Dermatofibroma (DF), Melanoma (MEL), Melanocytic nevus (NV), Squamous cell carcinoma (SCC),

and Vascular lesion (VASC). The corresponding test set contains 8, 238 images. However, it lacks pub-

licly available labels and was therefore not used in this thesis. A summary of the original ISIC 2019

dataset [3–5] is shown in table 4.1.

Table 4.1: Number of training and test samples of the original ISIC 2019 dataset [3–5]. This dataset comprises a
total of 8 classes: AK, BCC, BKL, DF, MEL, NV, SCC, and VASC.

ISIC 2019 Dataset AK BCC BKL DF MEL NV SCC VASC Total

Train 867 3323 2624 2624 4522 12875 628 253 25331
Test — — — — — — — — 8238

To prepare the original ISIC 2019 training dataset for our dissertation experiments, we performed

initial data processing steps. First, we ensured data cleanliness by removing duplicate images, resulting

in a reduction from 25, 331 to 25, 294 images. Additionally, we split the training set into separate training

and validation sets, resulting in 20, 228 images for training and 5, 066 images for validation. This split is

essential for training and validating our models.

Our research includes two classification problems: binary and multi-class classification. The binary

task focuses on classifying samples as either MEL or NV, while the multi-class task includes all eight

classes. Both the training and validation datasets generated are unbalanced for both the binary and

multi-class scenarios. Table 4.2 provides a detailed analysis of the class distributions within the training

and validation sets.

4.1.2 Test Datasets

Two datasets were used for testing in this study. First, we used the PH2 dataset [45], which consists of

a modest 200 dermoscopy images. Among these, 40 images represent melanoma cases (MEL), while
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the remaining 160 represent nevus cases (NV). Additionally, we included the Derm7pt dataset [53] for

testing purposes. These two test sets are only used in the binary classification problem, which focuses

only on the MEL and NV classes for testing.

Table 4.2 provides a comprehensive view of the class distributions of the training and validation

datasets. It also provides an overview of the number of samples in the test sets, which come from both

the PH2 [45] and Derm7pt [53] datasets.

Table 4.2: Summary of the overall distribution of the training, validation, and testing datasets. This summary in-
cludes the number of samples in the training and validation sets from the original ISIC 2019 dataset [3–5],
along with the number of samples for the test sets from the PH2 [45] and Derm7pt [53] datasets.

Classes ISIC 2019 PH2 Derm7pt

Train Validation Test Test

AK 687 173 — —
BCC 2653 664 — —
BKL 2089 525 — —
DF 191 48 — —
MEL 3611 904 40 252
NV 10293 2575 160 575
SCC 502 126 — —
VASC 202 51 — —

Total 20228 5066 200 827

4.2 Dermoscopic Image and Mask Pre-processing

In this section, we address the pre-processing of dermoscopy images. To facilitate the effective use of

pre-trained models in both training and inference, dermatoscopy images require dimensional standard-

ization. To achieve this, we resized all input images to a common size of 224× 224× 3. During resizing,

we preserved the original aspect ratio by first converting it into a square format, which was achieved

via padding. Only then was the image reduced to the desired dimensions. For both the EViT and MIL

branches, we divided the images into patches with a resolution of 16× 16, resulting in a total of N = 196

patches.

In specific experiments, we integrated binary segmentation masks into the MIL framework. This

was done to introduce some domain knowledge into the framework and to narrow the focus of the

identification of key patches to the lesion area only. This prevented the framework from identifying key

patches in undesirable regions of the image, such as corners, edges, air bubbles, hair, or rulers. These

masks use binary values, where “1” represents relevant pixels and “0” represents non-relevant pixels.

In the process of creating binary masks, we encountered two scenarios: one where we used seg-

mentation algorithms and another where manual binary masks were publicly available. For the ISIC

2019 dataset, some images already had segmentation masks from the ISIC 2018 dataset [3,4]. For the
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rest, we used an automatic segmentation model [54, 55]. It is important to note that this segmentation

did not always produce perfect “0” and “1” masks. Sometimes pixel values fell between “0” and “1”,

especially near lesion borders. To address this, we designated values below 0.5 as “0” and those above

0.5 as “1”. This method resulted in binary masks for all training and validation images. For binary clas-

sification, approximately 14% of the masks came from the ISIC 2018 dataset, while the remaining 86%

were generated by the segmentation algorithm. In the case of the test sets, the PH2 test dataset [45]

had publicly available manual segmentation masks. For the Derm7pt test set [53], we had to generate

binary masks by applying a segmentation algorithm [54,55]. We did not use binary masks in the context

of the multi-class problem, as explained in section 4.4.2.

Figure 4.1 visually summarizes the process of obtaining the 224 × 224 × 3 input images and binary

masks from the original dermoscopy images.

X 𝜖ℝ224×224×3

X 𝜖ℝ224×224×1

Resized Input Image

Binary Mask

Original 
Image

Figure 4.1: An illustration of a training image from the ISIC 2019 dataset [3–5] assigned to the class MEL. On the
left, the dermoscopy image is shown in its original size. The resized model input is shown on the upper
right, while the corresponding binary mask is shown on the lower right. The resized input and binary
mask retain the original proportions and are set to dimensions of 224× 224× 3.

4.3 Evaluation Metrics

In this section, we discuss the evaluation metrics used to assess the performance of different approaches

on different architectures. These metrics, including Balanced Accuracy (BA) and recall, are derived from

the confusion matrix and play a crucial role in measuring the effectiveness and accuracy of our methods.
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4.3.1 Confusion Matrix

The confusion matrix helps us evaluate the performance of a model. When dealing with k classes, the

confusion matrix takes the form of a square k × k matrix. Each cell at position (i, j) tells us how many

samples were classified as class j when they really belonged to class i. More specifically, the rows

in a confusion matrix represent the true classes, and the columns represent the predicted classes. By

analyzing the confusion matrix for class i, we can compute metrics such as True Positives (TP), False

Positives (FP), True Negative (TN), and False Negatives (FN). Let us consider the case where class

i is considered the positive class, while the other classes are considered negative. In this case, TPi

stands for correctly identified samples that belong to class i. FPi includes samples that do not belong to

class i but are mislabeled as class i. TNi includes samples that don’t belong to class i but are correctly

labeled as negative. Finally, FNi represents instances that really belong to class i but are misclassified

as negative.

4.3.2 Balanced Accuracy and Recall

As previously mentioned, the datasets used in the experiments in this thesis exhibit imbalances in both

the binary and multi-class contexts. Therefore, evaluating the proposed models using the Accuracy (Acc)

metric may lead to misleading results and conclusions. To address this issue, we chose to evaluate all

the models tested using the recall metric for each class i (∀i=0,...,(k−1)). Here, k denotes the total number

of classes, with k = 2 for the binary problem and k = 8 for the multi-class problem. For each class i, the

recall Ri is computed as follows:

Ri =
TPi

TPi + FNi
. (4.1)

The Balanced Accuracy (BA) corresponds to the average of the recall values across all k classes and is

defined as follows:

BA =
1

k

k−1∑
i=0

Ri. (4.2)

4.4 Model Configurations and General Set-up

In this section, we present the model configurations used for each branch of the framework proposed

in chapter 3. In addition, we discuss the configurations of the baseline models used for comparison

with our approach. The experimental setup was intentionally consistent across all models to ensure fair

comparisons. We will begin by discussing the general methods applied to all models in the EViT branch,

the MIL branch, and the baseline models. Specific model details will follow.

Since Transformer-based architectures involve a large number of learnable parameters, training from

scratch would be time-consuming and potentially lead to sub-optimal generalization. Hence, to maintain
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fairness in model comparisons, we initialized all architectures with weights pre-trained on the ImageNet-

1k dataset [56].

Given the need for large amounts of data for DL models to effectively generalize [57], we employed

data augmentation techniques. Inspired by the Data-efficient Image Transformer (DEiT) model [57], we

incorporated random augmentation techniques [58], repeated augmentation [59], and random erasing

[60]. Additionally, we implemented an early stopping technique to prevent overfitting on the training data.

Training is stopped if the validation loss does not decrease over a period of 15 epochs.

Given the unbalanced nature of the datasets used in the experiments of this thesis, we employed

a class-weighting technique for all models. These models were trained using the categorical Cross

Entropy (CE) loss function. In the multi-class scenario, the CE loss function for one training example is

defined as follows:

LCE =

k∑
i=0

−wiyi log (pi) , (4.3)

Where k represents the total number of classes, pi is the probability of the i-th class defined by the

softmax function, and wi is the class weight, computed as:

wi =
Total number of samples

k×(number of samples of the i-th class)
, ∀i=0,...,k. (4.4)

In the binary classification problem of melanoma (MEL) versus nevus (NV), we use the binary CE loss

function and only consider the class weights of the positive class, i.e., the melanoma (MEL) class. Table

B.1, located in Section B.1.1 in Appendix B, provides an overview of the different configurations used for

each of the architectures used in this thesis.

All the experiments in this thesis work were performed using a computer equipped with the high-

performance NVIDIA GeForce RTX 3090 graphics card paired with 24 GB of GDDR6X RAM memory.

All models were implemented using the Python programming language, specifically using deep learning

Python libraries such as Pytorch [61], timm [62], and Scikit-learn [63].

It is crucial to note that the configurations for each branch were determined based on performance

in the binary melanoma (MEL) versus nevus (NV) problem on the validation set of the ISIC 2019 dataset

[3–5].

4.4.1 EViT Branch Configuration

The architecture of the EViT model is governed by four critical hyper-parameters that require pre-

configuration. The EViT architecture includes several models, such as the EViT-S with approximately

22 million parameters and the EViT-B with nearly 86 million learnable parameters. Therefore, it is cru-

cial to specify the particular EViT model that will serve as the basis for our experiments. In addition,

45



we must decide how to handle inattentive tokens within EViT, whether to aggregate them into a fused

representation or to discard them altogether. Implementation-wise, the distinction between attentive and

inattentive tokens depends on two crucial settings: Keep rate (Kr), which determines the token survival

rate (i.e., how many attentive tokens are left), and the explicit specification of layers, known as EViT

encoder blocks, where token reorganization takes place. For all the experiments performed, we decided

to apply the token reorganization block in three layers: the 3rd, the 6th, and the 9th layers. We decided

to keep this configuration because it matches the default settings of the original EViT model [14]. In this

section, we will provide a clear overview of the EViT configurations used in the experiments conducted

in chapter 5.

The EViT models tested include the EViT-S and EViT-B variants. Table 4.3 shows a comparison be-

tween the configuration of these two models. In essence, the EViT-B has nearly four times the number of

parameters compared to the EViT-S. However, preliminary experiments indicate that both models show

similar performance on the validation set of the ISIC 2019 dataset [3–5]. Our experiments included both

models, with Kr = 0.6 and inattentive tokens discarded at the 3rd, 6th, and 9th layers, without introduc-

ing fused tokens. The EViT-S obtained a balanced accuracy (BA) of 91.4%, while the EViT-B obtained

91.5%. Consequently, for the subsequent experiments conducted using the EViT architecture, we chose

to proceed with the EViT-S due to its comparable performance and significantly fewer parameters.

Table 4.3: Comparison between EViT-S and EViT-B model configurations.

EViT Models #Layers #SA Heads Embedding Dim. (D) #Params.

EViT-S 12 6 384 22.1M

EViT-B 12 12 768 85.1M

In the original EViT architecture, inattentive tokens are combined into a fused representation. This

fused token is then forwarded through the network. The rationale behind this approach is that even

though inattentive tokens may be less significant than attentive ones, they still hold valuable information

that could contribute to classification. Figure 4.2 presents a bar plot that allows for a comparison of

different EViT-S configurations with and without the fused token. For this experiment, we considered six

different Kr configurations: Kr = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The token reorganization block was applied

in the 3rd, 6th, and 9th layers.

Upon thorough examination of the bar plot depicted in Figure 4.2, it becomes evident that the per-

formance of various EViT-S configurations shows minimal variance. In fact, across different Kr values,

the BA on the ISIC 2019 validation set [3–5] only varies between 90% and 92%. Overall, while the use

of a fused token can improve the performance of the EViT-S model, the difference is relatively small.

Furthermore, since the MIL framework does not accommodate the concept of “fused embedding”, we

have chosen to use the EViT-S configuration without the fused token in our subsequent experiments.
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Figure 4.2: Comparison between different EViT-S configurations with and without the use of the fused token. These
results were obtained through an evaluation on the ISIC 2019 validation set [3–5], specifically address-
ing the binary classification task of melanoma (MEL) versus nevus (NV). The x-axis represents the
different Krs considered, and the y-axis represents the BA. For this experiment, we considered six
different Kr configurations: Kr = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The layers where inattentive tokens are
discarded correspond to the 3rd, 6th, and 9th layers.

The combination of layers in which token reorganization takes place and the choice of Kr are the

most critical hyper-parameters in the EViT architecture. Since we decided to fix the token reorganization

block in the 3rd, 6th, and 9th layers, an extensive search for the best Kr configurations in the EViT-S

model was required. For a better understanding of the importance of the Kr hyper-parameter in the

EViT model, please refer to Figure 4.3 and table 4.4. Figure 4.3, illustrates the process of eliminating

inattentive tokens across the three layers (3rd, 6th, and 9th) using Kr = 0.7. The table 4.4 shows the

number of preserved attentive patches that were not discarded by the EViT model over the different Krs.

Input image Layer 3 Layer 6 Layer 9

Figure 4.3: Visual representation of the removal of inattentive patches in the 3rd, 6th, and 9th layers with a Kr = 0.7.
In the final layer, only 68 attentive patches remain. Note that the inattentive patches that were discarded
correspond to healthy parts of the skin.
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Table 4.4: EViT’s number of attentive tokens left for each respective Kr, accordingly with the configuration of three
removal layers: 3rd, 6th, and 9th layers.

Kr 0.5 0.6 0.7 0.8 0.9 1.0 (DEiT)

#Attentive patches 25 43 68 101 144 196 (N)

Since the Kr hyper-parameter plays a crucial role within the EViT architecture, we conducted a se-

ries of experiments to examine its impact on the EViT-S configuration. Figure 4.4 shows the BA results

across different Kr values for the ISIC 2019 [3–5] validation set and both test datasets: PH2 [45] and

Derm7pt [53]. These results indicate that a higher Kr does not necessarily lead to better performance,

especially on the test datasets. It is clear that Kr values of 0.6, 0.7, and 0.8 outperform the rest. Conse-

quently, in the experiments in chapter 5 we will use the Kr = 0.6 and Kr = 0.7 EViT-S configurations.

0.5 0.6 0.7 0.8 0.9 1.0
Keep rate (Kr)

70
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85

90

95
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Datasets
ISIC 2019 PH2 Derm7pt

Figure 4.4: Performance comparison between EViT-S models with different Krs. The experiments were conducted
on the ISIC 2019 validation dataset [3–5], as well as on the two test datasets: PH2 [45] and Derm7pt
[53], for the binary classification task of melanoma (MEL) versus nevus (NV). The x-axis represents the
different Kr values, while the y-axis represents the corresponding BA results.

4.4.2 MIL Branch Configuration

In this section, we will define the configurations for the MIL branch. As with the EViT architecture,

determining the optimal configuration for the MIL branch is critical to our experiments.

First, let us address some implementation details that play a crucial role during the training process of

the MIL branch. During the first 5 epochs of training, only the classifier is updated, i.e., the backpropaga-

tion algorithm only targets the classification head. After this initial phase, we start updating the weights
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of the patch extractor, E. This approach can be seen as a “warm-up” strategy for the MIL classifier.

For the pre-trained patch extractors, we experimented with five CNN-based architectures and with

four Transformer-based architectures. The CNN-based pre-trained patch extractors used in this thesis

consist of the ResNet-18 (RN-18) [64], the ResNet-50 (RN-50) [64], the VGG-16 [65], the DenseNet-

169 (DN-169) [66] and the EfficientNet-B3 (EN-B3) [67]. The Transformer-based architectures include

the DEiT-S (with and without the CLS token) and the EViT-S (without the CLS token). The EViT-S

models are configured with Kr = 0.7 and with the default layer distribution for patch removal (i.e., the

3rd, 6th, and 9th layers). One version of EViT-S has a fused token (denoted as EViT-fused), while

the other does not (denoted as EViT-S). Note that using Transformer-based architectures as patch

extractors in the MIL framework changes the conventional MIL formulation presented in section 2.4.

Nevertheless, this exploration may allow us to understand whether ViT models really need a CLS token

for classification, or whether using other types of classifiers, in this case the MIL classifier, can achieve

competitive results. This exploration may also provide insight into whether it is beneficial for the MIL

framework to use instance embeddings that contain correlated and spatial information of all patches in

the image.

Max

Top-k

Avg

Probability 
heatmap Grad-Cam Key patches

Input image

Figure 4.5: MIL visualization pipeline for identifying key patches using the three main MIL pooling operators: max-
imum operator, average operator, and top-k average operator. The pipeline begins by visualizing
heatmaps representing the probabilities of each patch belonging to the melanoma (MEL) class. Sub-
sequently, it applies a Grad-Cam visualization technique [50] to highlight the patches that shape the
model’s output. This process identifies the key patches responsible for the classification of the image.
In the case of the top-k average operator, the k value is set at approximately 12%, which corresponds to
16 patches for this configuration (N = 196). It is important to note that the average pooling operator as-
sumes that all patches belong to the melanoma class, making it difficult to identify specific key patches
since they all contribute to the model’s output. These visualizations are based on the MIL framework
using the RN-18 backbone.
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To visualize and better comprehend the “key patches” identified in the melanoma (MEL) versus ne-

vus (NV) problem, we have developed a visualization pipeline. The pipeline involves visualizing the

melanoma probability heatmap for each patch in the image and subsequently using a Grad-Cam tech-

nique to identify the patches that triggered the bag classification. Essentially, for an image classified

as melanoma by the MIL framework, we aim to determine which patches exhibit the highest melanoma

probability. Figure 4.5 provides an overview of this process for the three MIL pooling operators studied

in the instance-level approach: the maximum operator, the average operator, and the top-k average

operator. When visualizing the gradients, we adopt an approach similar to that of Chefer et al. [50],

which differs from the original Grad-Cam implementation [28]. In our approach, we propagate gradients

in their raw form, applying only min-max normalization to visually capture the “key patches”.

This pipeline only applies to the instance-level approach, as the embedding-level approach does not

allow for the identification of “key patches”. The embedding-level approach primarily serves as a bridge

between the MIL framework and traditional CNN architectures. However, we use the original Grad-Cam

technique [28] to visualize the most significant regions identified by the embedding-level models.

As depicted in Figure 4.5, it is evident that the average MIL pooling operator falls short in providing

insightful details about the “key patches” in a dermoscopy image. To improve the performance of this

operator, we introduced domain knowledge by incorporating binary masks of the images into the MIL

framework. Consequently, we devised four additional MIL pooling operators. For the instance-level

approach, we experimented with a masked maximum operator and a masked average operator. In

the embedding-level approach, we explored a masked column-wise global max pooling operator and a

masked column-wise global average pooling operator. Figure 4.6 visually illustrates the operations of

the masked average operator.

×

Average 
operator

Input 
image

Binary 
mask

Masked 
average pool

Figure 4.6: Visualization of the process performed by the instance-level MIL model using the masked average
pooling operator on an image from the ISIC 2019 dataset validation set [3–5]. The masked average
pooling operator multiplies a binary mask with the input image and then applies the average operator
during both training and inference. Similar reasoning applies to the masked max operator and the
corresponding masked pooling operators used in the embedding-level approach.

To assess the impact of applying binary segmentation masks on the performance of the MIL frame-

work, we performed a comparative analysis of different MIL pooling operators. Specifically, we com-

pared the masked operators with the max and average operators using the validation set of the ISIC
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2019 dataset [3–5]. The experiments were performed with two different backbones, namely RN-50 and

EN-B3, within our MIL framework. The results of this performance comparison are summarized in table

4.5.

Table 4.5: Comparison between standard MIL pooling operators and the MIL pooling operators incorporating binary
masks. In this experiment, we used the RN-50 and EN-B3 architectures as backbones for the MIL
framework. The experiment was conducted on the ISIC 2019 validation dataset [3–5], with respect to the
binary melanoma (MEL) versus nevus (NV) task. The results suggest that constraining deep models to
specific image regions may not consistently improve performance.

Models ISIC 2019

Backbone Approach Pool. BA R-MEL R-NV

RN-50

Instance

Max 88.1 85.6 90.6
Avg 89.0 85.3 92.6

Masked max 87.5 86.2 88.9
Masked avg 89.9 85.3 92.5

Embedding

Max 89.9 84.7 95.1
Avg 88.9 85.6 92.2

Masked max 89.3 85.7 92.8
Masked avg 89.2 88.1 90.3

EN-B3

Instance

Max 88.5 86.7 90.2
Avg 89.1 86.7 91.8

Masked max 88.3 86.4 90.1
Masked avg 87.4 85.1 89.8

Embedding

Max 86.0 85.7 86.4
Avg 89.1 84.4 93.8

Masked max 87.1 83.9 90.3
Masked avg 89.0 85.8 92.2

The results shown in table 4.5 suggest that constraining the model with domain-specific knowledge

does not consistently lead to superior performance. Consequently, we decided not to use domain-

specific binary masks in the experiments conducted in chapter 5. Instead, we focused on investigating

the effect of the k hyper-parameter associated with the top-k average pooling operator.

We conducted experiments with three different k values in the instance-level approach: approxi-

mately 12.5%, 25%, and 50%. In the context of our experiments, which involved input images of (224, 224)

resolution and patches of (16, 16) resolution, we dealt with a total of N = 196 patches. This implies that

for the k ≈ 12.5% configuration, we considered 25 patches; for k = 25%, we worked with 49 patches,

and for k = 50%, we used 98 patches. To determine the optimal k value for the top-k average operator in

the instance-level approach, we conducted experiments using various backbones on the validation set

of the ISIC 2019 dataset [3–5]. A summary of these experiments is shown in Figure 4.7.
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Figure 4.7: Search for the optimal k hyper-parameter in the instance-level top-k average MIL pooling operator. We
explored three values for the hyper-parameter: k ≈ 12.5%, k = 25%, and k = 50%. Our experiments
were conducted and evaluated on the validation set of the ISIC 2019 dataset [3–5], employing various
MIL backbones. The backbones included RN-18, RN-50, VGG16, DN-169, EN-B3, DEiT-S, DEiT-cls,
EViT-S, and EViT-fused. Notably, with EViT backbones, k ≈ 12.5% resulted in only 9 patches, k = 25%
retained 17 patches, and k = 50% maintained 34 patches. These results indicate that using more
patches in the bag evaluation does not necessarily lead to better performance.

The plot in Figure 4.7 shows that the choice of k for the top-k average operator in the instance-level

approach does not significantly impact the performance of the different MIL models. This observation

suggests that not all patches within a dermoscopy image contribute equally to the classification task.

Interestingly, the k ≈ 12.5% and k = 25% scenarios consistently yield the highest BA results across

different MIL backbones. Based on these results, we selected k = 25% as the default configuration

for the top-k average pooling operator. To ensure a fair comparison between the embedding-level and

instance-level approaches, we have also adopted k = 25% as the preferred setting for the column-wise

global top-k average operator in the embedding-level approach.

Among the diverse backbones used in our MIL framework, we selected the top-performing configu-

rations from both CNN-based and Transformer-based backbones. To make this choice, we conducted

comprehensive experiments using all MIL backbones, approaches, and associated pooling operators on

the validation set of ISIC 2019 [3–5]. Figure 4.8 presents a bar plot summarizing the results of these

experiments.

Our results indicate that, in general, Transformer-based backbones tend to deliver superior perfor-

mance. It is important to note that using a Transformer-based model as a patch extractor within the MIL

framework, as proposed in chapter 3, introduces a paradigm shift in traditional MIL approaches. There-
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fore, it would be naive to conclude that Transformer architectures universally outperform CNN models.

Based on the findings in Figure 4.8, we have identified the best performing CNN backbones as

RN-50 and EN-B3, and in the Transformer-based category, we have chosen the DEiT-S and EViT-S

architectures. In chapter 5, we will refer to the MIL models using these respective patch extractors as

MIL-RN-50, MIL-EN-B3, MIL-DEiT-S, and MIL-EViT-S. In particular, the EN-B3 and DEiT-S backbones

have demonstrated superior performance, and, as a result, our focus will be primarily on the MIL-EN-B3

and MIL-DEiT-S models.
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Figure 4.8: Bar plot illustrating the performance of the MIL framework for different patch extractors, referred to as
backbones in this plot. Our evaluation involved extensive experimentation with several CNN-based and
Transformer-based backbones, as well as different MIL approaches and pooling operators. The back-
bones experimented with consisted of the RN-18, the RN-50, the VGG-16, the DN-169, the EN-B3, the
EViT-S, the EViT-fused, the DEiT-S, and the DEiT-cls. The evaluation was conducted on the ISIC 2019
validation dataset [3–5]. While Transformer-based backbones generally showed superior performance,
it is important to acknowledge that the inclusion of Transformer models as patch extractors in the MIL
framework represents a significant deviation from the conventional MIL formulation.

4.4.3 Baseline Models

To ensure a fair and comprehensive evaluation of our models, we conducted comparative evaluations

involving both the EViT and MIL branches in conjunction with a set of baseline models covering both

CNN-based and ViT-based architectures. The CNN-based baseline models include RN-18 [64], RN-50

[64], VGG-16 [65], DN-169 [66], and EN-B3 [67]. In the Transformer-based architectures category, we

considered ViT-S and ViT-B [1], and DEiT-S and DEiT-B [57].

To facilitate the experiments described in chapter 5, we carefully selected two representative mod-
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els from each of the CNN and Transformer baselines. This selection process involved an extensive

evaluation of each model on the validation set of the ISIC 2019 dataset [3–5], focusing on the binary

classification problem of melanoma (MEL) versus nevus (NV). The results of this evaluation are sum-

marized in table 4.6.

Table 4.6: Evaluation results of a set of baseline models on the validation set of the ISIC 2019 dataset [3–5]. The
baseline models include different architectures, including RN-18, RN-50, VGG-16, DN-169, EN-B3 from
the CNN-based category, and ViT-S, ViT-B, DEiT-S, DEiT-B from the Transformer-based category. The
evaluation is performed for the binary classification problem of melanoma (MEL) versus nevus (NV).

Baseline models ISIC 2019

BA R-MEL R-NV

C
N

N
s

RN-18 88.6 83.8 93.4
RN-50 88.9 82.6 95.1
VGG-16 87.7 83.6 91.8
DN-169 89.1 83.2 95.0
EN-B3 90.7 85.5 95.8

V
iT

s

ViT-S 91.3 86.8 95.8
ViT-B 90.6 85.3 95.8
DEiT-S 91.7 86.7 96.7
DEiT-B 91.7 87.2 96.2

Based on the results present in table 4.6, in conjunction with the decisions made in section 4.4.2, we

have decided to proceed with RN-50, EN-B3, DEiT-S, and ViT-S as our selected baseline models. Of

these models, the EN-B3 and DEiT-S baseline models will receive special attention due to their superior

performance. Additional results related to the multi-class problem can be found in section B.1.1.A of

appendix B.
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In this chapter, we present the results related to the framework proposed in chapter 3. These results

are crucial in addressing the two key questions that motivate this thesis:

1. Are all patches within a dermoscopy image equally relevant, or do deep models rely primarily on

specific ROIs to perform classification?

2. Does the spatial positioning of patches within the image play a critical role in an accurate diagnosis

of skin cancer?

5.1 Binary Problem: Melanoma vs. Nevus

5.1.1 Performance and Generalization Results

Table 5.1 provides a comparative analysis of the results for different model configurations following the

settings detailed in Section 4.4. The models evaluated include the best-performing baseline models

(EN-B3 and DEiT-S), the two best EViT configurations (Kr = 0.6 and Kr = 0.7), and the best-performing

MIL backbones (MIL-EN-B3 and MIL-DEiT-S). For a more comprehensive overview, please refer to

Table B.3 in Section B.2.1 of Appendix B, which contains additional results for the RN-50 and ViT-S

baseline models, as well as the MIL-RN-50 and MIL-EViT-S models.

Table 5.1: Results of the best-performing models within the EViT branch, the MIL branch and the baseline models.
These models include the best-performing baseline models (EN-B3 and DEiT-S), the two best EViT
configurations (Kr = 0.6 and Kr = 0.7), and the most effective MIL backbones (MIL-EN-B3 and MIL-
DEiT-S). Validation was performed on the ISIC2019 validation set [3–5], together with assessments on
the two test datasets: PH2 [45] and Derm7pt [53].

Models ISIC 2019 PH2 Derm7pt

BA R-MEL R-NV BA R-MEL R-NV BA R-MEL R-NV

B
as

e EN-B3 90.7 85.5 95.8 88.8 82.5 95.0 76.2 57.9 94.4
DEiT-S 91.7 86.7 96.7 86.6 75.0 98.1 74.0 53.2 94.8

E
V

iT Kr=0.6 91.4 86.6 96.3 88.8 80.0 97.5 73.4 52.8 94.1
Kr=0.7 90.7 85.4 95.7 86.6 75.0 98.1 74.9 56.7 93.0

M
IL

-E
N

-B
3 Instance

Max 88.5 86.7 90.2 84.4 75.0 93.8 78.7 67.1 90.4
Topk 89.5 85.6 93.3 89.7 82.5 96.9 77.0 60.7 93.2
Avg 89.1 86.7 91.6 85.0 77.5 92.5 76.5 64.3 88.7

Embedding
Max 86.0 85.7 86.4 85.3 77.5 93.1 76.1 66.3 85.9
Topk 89.2 85.7 92.7 88.1 82.5 93.8 76.7 59.5 93.9
Avg 89.1 84.4 93.8 83.4 70.0 96.9 75.3 56.3 94.3

M
IL

-D
E

iT
-S Instance
Max 91.7 87.1 96.3 87.2 77.5 96.9 74.4 54.8 94.1
Topk 91.4 86.6 96.2 84.1 72.5 95.6 71.8 49.6 94.1
Avg 91.8 87.5 96.1 87.8 80.0 95.6 74.8 56.0 93.7

Embedding
Max 91.0 87.4 94.5 85.3 75.0 95.6 74.7 58.3 91.1
Topk 91.5 86.9 96.1 89.7 80.0 99.4 75.1 55.2 95.1
Avg 91.4 87.4 95.4 85.0 75.0 95.0 76.0 61.1 91.0
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Results on the validation set: A detailed analysis of the results in table 5.1 shows that Transformer-

based architectures perform slightly better in terms of BA compared to CNN-based architectures. For

example, both MIL-DEiT-S and DEiT-S achieve approximately 2% higher BA compared to the MIL-EN-B3

models. However, we cannot definitively conclude that ViT-based models generally outperform CNN-

based models, as the performance difference does not appear to be substantial. In addition, changing

the classification head for the DEiT-S model to a MIL classifier did not significantly affect its performance.

This observation suggests that to obtain accurate results with ViTs, it may not be necessary to introduce

an additional CLS token for classification purposes. This finding opens the possibility for further explo-

ration of Transformer-based feature extractors with different classifiers, including an assessment of the

individual contributions of the composing patches to the output of the model.

In terms of recall of the melanoma (MEL) class, R-MEL, the MIL-EN-B3 models effectively compete

with and sometimes outperform the Transformer-based models. The MIL-EN-B3 and DEiT-S baseline

models both achieved an R-MEL of 86.7%. This observation is consistent with the classic MIL for-

mulation, suggesting that a single melanoma patch may be sufficient to classify the entire image as

melanoma. However, in terms of recall for the nevus class, R-NV, Transformer-based architectures

stand out, justifying the differences seen in the BA results. It is important to note that MIL models are

implicitly designed to maximize R-MEL, possibly leading to lower recalls for the nevus class. Surprisingly,

the MIL-DEiT-S model did not significantly decrease R-NV, which may indicate that creating complex

features that combine information between different patches in the image while also considering their

spatial location may be relevant to correctly identify nevi lesions.

Results on the PH2 test set: Contrary to the results observed on the validation set, the MIL-EN-B3

competes effectively with Transformer-based models on the PH2 test set. In particular, the instance-level

MIL-EN-B3 model using the top-k average pooling operator achieves approximately 3% higher BA com-

pared to the DEiT-S model and 1% higher compared to the best EViT configuration. This suggests that

Transformer-based architectures do not necessarily generalize better than CNN-based architectures.

Furthermore, the performance of the instance-level MIL-EN-B3 with top-k average pooling implies that

specific ROIs may be sufficient for the diagnosis of melanoma (MEL) lesions. In contrast, Transformer-

based architectures may perform better in identifying nevus lesions, highlighting the importance of cor-

relations and spatial location of patches in the image to correctly identify nevus lesions. R-MEL results

between the DEiT-S model and the EViT configurations suggest that more patches do not necessar-

ily lead to better performance, reinforcing the idea that specific ROIs are crucial for correct melanoma

classification. However, this is different for R-NV, where the EViT configuration with Kr = 0.6 performs

slightly worse than the Kr = 0.7 configuration and the DEiT-S baseline model.

Results on the Derm7pt test set: Similar to the PH2 test set results, Transformer-based models

do not necessarily generalize better than CNN-based architectures. The best BA and R-MEL results
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on this test set come from the instance-level MIL-EN-B3 with max and top-k average pooling. This

strengthens the argument that specific ROIs may be sufficient for the diagnosis of melanoma (MEL)

lesions. These observations suggest that the number of patches used for classification does not always

correlate with better BA performance. In the same manner, the DEiT-S models also achieve slightly

worse BA compared to the EViT-S model with Kr = 0.7. Similar to the previous two datasets, the

Transformer-based models performed better in identifying nevus lesions.

In summary, although ViTs exhibited slightly better performance on the validation set compared to

CNNs and various MIL models, this superior performance did not consistently carry over to the gener-

alization tests. In fact, on both generalization tests, the instance-level MIL-EN-B3 achieve the best BA

and R-MEL results. As a result, it remains uncertain whether ViTs have definitively surpassed CNNs in

CV tasks, particularly in classification.

The MIL-DEiT-S model showed the highest BA and R-MEL results on the validation set. This result

suggests that further exploration of ViT-based feature extractors in conjunction with alternative classi-

fiers, such as the MIL classifier, has the potential to uncover interesting findings.

In particular, we observed an interesting trend for the MIL branch across all tested datasets. Contrary

to the conventional view suggested by the literature [34], the embedding-level approach did not consis-

tently outperform the instance-level models. In fact, the instance-level models often outperformed their

embedding-level counterparts. These results underscore the ability of the instance-level approach to

provide valuable clinical insight to physicians by identifying key patches that influence bag classification

results, while achieving very good performance. In addition, the instance-level models also demon-

strated competitive performance against both the CNN and Transformer architectures, reinforcing the

previous statement.

5.1.2 Are All Patches Equally Important in Dermoscopy Image Analysis?

Throughout our evaluation of different datasets, an interesting trend emerged. When considering the

recall of melanoma (MEL), denoted as R-MEL, we observed that models using fewer patches for clas-

sification often competed effectively and even outperformed those using all patches. For example, both

the instance-level MIL-EN-B3 models using the max and top-k average pooling operators achieved the

best results on the Derm7pt [53] and PH2 [45] test sets, respectively. This suggests that the accurate

diagnosis of melanoma (MEL) lesions may rely primarily on the identification of specific regions within

dermoscopy images, aligning with the 7-point checklist criterion [9]. However, the same trend did not

hold for R-NV, where the MIL-EN-B3 models generally achieved lower recalls compared to Transformer-

based architectures. This suggests that correlations between patches and their spatial positions may be

important in nevus identification.

To further investigate the effect of the number of patches used for classification, we performed a
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special experiment. We evaluated the BA for several instance-level MIL pooling operators, including

the maximum operator, the average operator, and three different top-k average operators (k = 12.5%,

K = 25%, and k = 50%). These approaches were tested on different MIL backbones, as shown in

Figure 5.1.

As Figure 5.1 shows, there is no conclusive evidence regarding the optimal number of patches for

the classification process in the MIL branch. For CNN-based backbones, the top-25% average operator

yielded the highest BA results for three of the five backbone architectures, and ranked second for the

other two. However, for MIL models with Transformer-based backbones, the average pooling operator,

which uses all patches, appeared to perform better. Nonetheless, the difference in performance be-

tween BA and other MIL pooling operators was less than 1%, indicating its limited significance. Thus, it

appears that not all patches in a dermoscopy image are equally relevant for accurate classification of a

dermoscopy image.

The results from the various EViT-S configurations and the DEiT-S model support this assessment.

In both generalization tests, the EViT-S configurations outperformed their DEiT counterparts. Specifi-

cally, the EViT-S configuration with Kr = 0.6 showed better BA and R-MEL in the PH2 test set, while for

Derm7pt the EViT-S configuration with Kr = 0.7 achieved higher BA and R-MEL than DEiT-S.

RN-18 RN-50 VGG-16 DN-169 EN-B3 DEiT-S EViT-S DEiT-cls EViT-fused
MIL Backbones
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Figure 5.1: Performance comparison of various instance-level MIL frameworks using different MIL pooling opera-
tors, including the maximum operator, the average operator, and the top-k average operator with three
different configurations: k ≈ 12.5%, k = 25%, and k = 50%. Our evaluation included extensive exper-
iments with multiple CNN-based and Transformer-based backbones, such as RN-18, RN-50, VGG-16,
DN-169, EN-B3, EViT-S, EViT-fused, DEiT-S, and DEiT-cls. We conducted these evaluations on the
ISIC 2019 validation dataset [3–5].

While it is a stretch to assume that fewer patches used for classification are always better, it is evident

that certain patches are more significant in dermoscopy image analysis, especially in melanoma (MEL)

lesion identification. These “key patches” deserve special attention and may provide invaluable insights

59



for clinical skin cancer diagnosis.

5.1.3 Is Spatial Information Relevant in Dermoscopy Image Analysis?

In our exploration of dermoscopy image analysis, we also set out to understand the importance of spatial

composition in a dermoscopy image. To investigate this aspect, we performed a special experiment. In

this experiment, we removed the positional embedding matrix, Epos, from the ViT pipeline, i.e., it was not

added to the sequence of patch embeddings in (2.3). We applied this experiment only to Transformer-

based architectures. The results obtained for the validation set and both test sets are summarized in

table 5.2.

Table 5.2: Results of the best-performing models in the EViT branch, the MIL branch with Transformer-based back-
bones, and the DEiT-S baseline model, without positional encoding. These models include the two best
EViT configurations (Kr = 0.6 and Kr = 0.7) and the best-performing MIL framework with a ViT-based
backbone (MIL-DEiT-S). All models were validated using the ISIC2019 validation set [3–5] and the two
test datasets: PH2 [45] and Derm7pt [53].

Models ISIC 2019 PH2 Derm7pt

BA R-MEL R-NV BA R-MEL R-NV BA R-MEL R-NV

DEiT-S 90.3 85.3 95.4 80.3 65.0 95.6 72.0 53.2 90.8

EViT (Kr=0.6) 88.6 83.2 94.0 82.5 72.5 92.5 72.9 52.0 93.7
EViT (Kr=0.7) 88.9 83.4 94.4 80.3 62.5 98.1 72.4 50.8 94.1

M
IL

-D
E

iT
-S Instance

Max 88.8 83.5 94.2 73.1 50.0 96.3 72.8 53.2 92.3
Topk 90.1 85.8 94.3 80.0 65.0 95.0 72.4 56.3 88.5
Avg 89.2 83.5 94.9 79.1 60.0 98.1 71.4 52.8 90.1

Embedding
Max 88.8 83.5 94.2 75.3 52.5 98.1 71.3 50.0 92.5
Topk 90.0 85.5 94.6 80.3 65.0 95.6 70.8 51.2 90.4
Avg 89.2 83.5 94.9 81.6 65.0 98.1 70.9 51.2 90.6

Results on the validation set: Excluding positional encoding resulted in a slight decrease in BA

performance (about 1% to 2%) compared to models with positional encoding (as shown in table 5.1).

This decrease is also reflected in the R-MEL and R-NV values. Although there was a slight decrease

in results, this decrease is not sufficiently significant to conclude that spatial information in dermoscopy

images is essential to obtain accurate results. Comparing the results in Table 5.2 with those in Table

5.1, it is interesting to note that Transformer-based architectures without positional encoding perform

remarkably close to the MIL models in Table 5.1. This suggests that the ViT and MIL frameworks may

in fact be closer than originally thought.

Results on the PH2 test-set: The BA results without position encoding on this test set decrease

significantly compared to the results in table 5.1. The R-NV remains relatively stable without positional

encoding, suggesting that spatial patch positions may be less critical in identifying nevus lesions. How-

ever, for R-MEL there is a significant drop in performance, suggesting that spatial composition may be
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critical for identifying melanoma (MEL) lesions. It is important to note that the PH2 test set consists of

only 40 melanoma samples, so a few misclassifications can have a significant impact on R-MEL.

Results on the Derm7pt test set: On the Derm7pt test set, BA performance decreases slightly

(about 1% to 2%), similar to the validation set. However, R-MEL without positional encoding does not

show a significant decrease compared to the results of with positional encoding (Table 5.1). The per-

formance of R-NV seems to have decreased, suggesting that spatial information may be relevant for the

identification of nevus lesions in dermoscopy images.

In summary, the inclusion of positional information in ViTs appears to slightly improve model perfor-

mance. Due to the specific characteristics of the PH2 test set, our conclusions are based only on the

results of the validation set and the Derm7pt test set. For accurate identification of nevi lesions, posi-

tional encoding appears to improve the overall performance. However, we suspect that there is another

specific property of Transformer-based models that is more important for the correct identification of ne-

vus lesions. As can be seen in table 5.1, Transformer-based architectures exceed CNN-based models

in nevus lesion identification. This is due to the fact that ViTs have a wider receptive field over the entire

image in earlier layers, which allows it to generate features that depend on correlations between patches

from opposite sides of the image. This ability is not typical in CNN architectures. We hypothesize that

ViTs generate features with global information, which is advantageous for identifying nevi lesions. In the

case of melanoma (MEL) lesion identification, the influence of positional encoding is less obvious. We

believe that the positional embedding matrix, Epos, represents an additional learnable parameter that

provides the model with more flexibility, incorporating spatial information. While this parameter improves

the performance of Transformer-based models, it may not be the primary factor that differentiates ViTs

from the MIL framework.

5.2 Multi-class Problem

Table 5.3 provides a comparative analysis of the results for the method described in section 3.2.3 for

different model configurations accordingly with the settings established in section 4.4.

In the case of the multi-class problem, we can observe that the baseline models and the EViT-S

configurations generally outperform the proposed instance-level MIL implementations. For example, the

instance-level MIL-EN-B3 model achieved a BA of 78.8%, which is 4.4% lower than the EN-B3 baseline

model. This discrepancy is more significant than what we observed in the results for the binary classi-

fication problem (see section 5.1). However, it is important to note that the traditional MIL assumption

is inherently aligned with the binary classification problem, which revolves around defining positive and

negative classes. Defining positive and negative classes in the context of the multi-class problem is

more complex. Therefore, the proposed method represents a relaxation of the classical MIL formulation
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adapted to multi-class problems.

Both proposed instance-level methods perform competitively with the embedding-level approach.

Although the embedding-level approach does not identify key instances, it serves as a “bridge” to tradi-

tional CNN-based architectures. A comparison of the BA results of the embedding-level MIL-EN-B3 with

the EN-B3 baseline model shows that the observed discrepancies are consistent with those seen for the

two instance-level methods. We hypothesize that the choice of configuration for the path extractor, E, in

the MIL branch plays a significant role in these results. As explained in chapter 3, we extract a 14 × 14

feature map. Whereas, the EN-B3 model produces a 7 × 7 feature map, with a much deeper embed-

ding dimension. Since the multi-class problem is more complex, the preference for a deeper model that

extracts more complex features may explain the observed discrepancies.

Table 5.3: Results from the best-performing models in the EViT branch, MIL branch, and baseline architectures.
These models include the best-performing baseline models (EN-B3 and DEiT-S), the two best EViT
configurations (Kr = 0.6 and Kr = 0.7), and the best-performing MIL backbones (MIL-EN-B3 and MIL-
DEiT-S). ’Inst. 1st’ and ’Inst. 2nd’ stand for the first and second instance-level methods proposed in
section 3.2.3. All models were evaluated using the ISIC2019 validation set [3–5].

Models ISIC 2019

BA R-AK R-BCC R-BKL R-DF R-MEL R-NV R-SCC R-VASC

EN-B3 82.2 71.1 87.8 79.4 81.3 76.5 91.6 72.2 98.0
DEiT-S 83.6 72.3 90.5 82.7 87.5 80.3 92.1 65.1 98.0

EViT (Kr=0.6) 83.6 71.7 89.0 80.4 93.8 77.8 91.3 66.7 98.0
EViT (Kr=0.7) 84.3 78.6 90.7 80.4 87.5 75.6 93.5 69.8 98.0

M
IL

-E
N

-B
3

Inst. 1st
Max 74.1 57.2 81.5 74.3 77.1 74.6 77.8 61.9 88.2
Topk 78.4 72.8 78.8 75.6 79.2 74.9 87.3 68.3 90.2
Avg 79.9 71.7 86.4 78.1 83.3 76.8 84.1 62.7 96.1

Inst. 2nd
Max 76.4 72.3 82.4 75.4 72.9 66.7 80.0 65.1 96.1
Topk 76.2 75.7 77.1 65.5 79.2 71.0 82.5 66.7 92.2
Avg 77.5 68.2 86.5 74.1 77.1 73.5 81.2 69.0 90.2

Embed.
Max 72.3 55.5 77.6 73.7 68.8 66.9 79.0 70.6 86.3
Topk 78.9 66.5 86.3 79.6 81.3 74.2 84.1 66.7 92.2
Avg 77.6 68.8 84.2 77.3 77.1 77.4 80.7 63.5 92.2

M
IL

-D
E

iT
-S

Inst. 1st
Max 82.2 72.8 88.7 81.1 89.6 80.1 82.7 64.3 98.0
Topk 78.4 78.0 84.0 73.0 66.7 78.4 88.4 68.3 90.2
Avg 81.6 76.3 85.7 72.0 89.6 75.4 88.6 69.0 96.1

Inst. 2nd
Max 75.4 70.5 80.9 75.8 72.9 66.6 83.1 61.1 92.2
Topk 79.0 74.0 84.5 75.6 72.9 76.3 87.2 65.1 96.1
Avg 82.6 79.2 87.8 76.2 87.5 77.9 91.1 66.7 94.1

Embed.
Max 82.4 80.9 87.8 75.1 83.3 76.4 89.0 74.6 92.2
Topk 82.2 73.4 83.6 74.3 93.8 75.6 92.2 69.1 96.1
Avg 82.6 70.5 88.7 79.8 89.6 75.1 91.5 65.9 99.9

The EViT branch achieves better BA performance compared to the baseline models, which is consis-

tent with the concept that not all patches in a dermoscopy image have the same relevance. In addition,
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Transformer-based models perform well, suggesting that constructing features based on patch correla-

tions and introducing some spatial context may be advantageous for diagnosing dermoscopy images.

In summary, the multi-class problem presents challenges due to the conventional MIL assumption,

which is closely tied to binary classification. The definition of positive and negative classes in a multi-

class context is a complex task. Our proposed MIL formulation addresses this challenge and serves as

a bridge between traditional MIL and the multi-class scenario. The configuration of the patch extractor,

E, can explain the discrepancies in performance, since the choice of the size of the feature map is

different between the MIL branch and the EN-B3 model. Since the multi-class problem is more complex,

deeper models that extract more complex features may be preferred. Thus, we believe that our proposed

formulation paves the way for multi-class MIL models.

5.3 Assessment of the Regions of Interest (ROIs)

Both the EViT and MIL branches have consistently produced competitive results when compared to

the CNN-based and Transformer-based baseline models, for both binary and multi-class problems. To

further our understanding of their performance, we will now turn our attention to the different ROIs

identified by these two branches in the context of the binary classification problem of distinguishing

melanoma (MEL) from nevus (NV). In addition, to assess whether the proposed framework can provide

valuable insights to physicians by performing a detailed patch-level analysis of dermoscopy images, we

will compare the identified ROIs with the traditional Grad-Cam technique [28].

5.3.1 Identification of ROIs by the EViT Branch

In this section, we will examine the visualization techniques employed by the EViT branch. Figure 5.2

visually demonstrates the inner workings of the EViT branch. The first row shows the input images. The

second row illustrates the patch removal process within the EViT architecture. The third row contains

a heatmap showing the influence of each patch on the model’s output, and the fourth row shows the

corresponding gradient information. This Figure shows the different visualization processes used by two

EViT-S models: one with and one without positional encoding.

Visualization of the EViT Mask: Typically, when the dermoscopy images contain a small lesion and

the majority of the image shows healthy skin, the EViT architecture tends to discard patches around the

lesion. This process typically starts at the corners of the image and extends to the healthier regions of

the skin. However, in both scenarios (with and without positional encoding), if the lesion is relatively

large and essentially covers the entire dermoscopic image (which is often the case with melanoma

lesions), some patches within the skin lesion will inevitably be removed. Consequently, while the EViT

mask can perform something like a patch-level segmentation of the image, the static nature of the Kr
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hyper-parameter may result in the exclusion of potentially important patches, particularly those located

inside the skin lesion. A more comprehensive exploration of the Kr hyper-parameter may be worth

pursuing, exploring the feasibility of designing a non-fixed Kr parameter.

With Pos. Encod. Without Pos. Encod.

Figure 5.2: Visualization of the EViT architecture process with Kr = 0.7 and the default configuration for the place-
ment of token reorganization blocks. On the left we have the visualizations for the EViT-S model with
positional encoding, while on the right we have the visualizations without the inclusion of positional
encoding. The first row displays input images from the PH2 test set [45]. The second row illustrates
the inattentive patches removed by the EViT model. The third row exhibits the attentiveness of the CLS
token in the final encoder block. This heatmap is created by transforming the first row of the attention
map A (2.5), represented as a ∈ R1×N , into a 14 × 14 heatmap. This heatmap is then transformed
into a 224× 224× 3 representation using bilinear interpolation. The last row shows the gradient-based
visualization of CLS embedding attentiveness, inspired by Chefer et al. [50].

Attention Visualization: In Figure 5.2, the third row showcases the attention of the CLS token in the

last encoder block. The heatmap is created by transforming the first row of the attention map A (2.5),

represented as a ∈ R1×N , into a 14×14 heatmap. This heatmap is then interpolated into a 224×224×3

representation.

These visualizations show significant differences between the EViT model with positional encoding

and the model without it. In particular, the addition of positional encoding seems to confine the most at-

tentive patches to those located within the skin lesion. In contrast, the model without positional encoding

assigns importance to more patches, which are mainly located around the borders of the lesion.

In summary, our visualizations comparing the configurations with and without positional encoding

show that the addition of positional encoding tends to focus attention on patches within the skin lesion.

Conversely, the removal of positional encoding encourages the EViT model to pay more attention to
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the border regions of the lesion. However, it remains inconclusive which set of visualizations might

offer more practical benefits in clinical contexts, as one prioritizes patches within the lesion while the

other emphasizes the borders. For additional visualization examples illustrating the impact of positional

encoding on the EViT branch, please refer to section B.3.1 in appendix B.

5.3.2 Identification of ROIs by the MIL Branch

As previously mentioned, the existing literature often emphasizes the superior performance of embedding-

level approaches within the MIL framework as opposed to instance-level methods. However, our results

challenge this convention by showing that instance-level approaches can produce competitive results,

often surpassing those of embedding-level models. This suggests that instance-level methods effec-

tively identify the key patches that influence the model’s predictions, while maintaining strong perfor-

mance against baseline methods. To determine whether the ROIs identified by instance-level MIL mod-

els actually contain more specific and meaningful information compared to CNN-based architectures,

we will examine the ROIs identified by two different instance-level models and compare them to those

identified by an embedding-level approach. In this context, the embedding-level model serves as a

bridge between the MIL framework and conventional CNN architectures, making it a solid representative

of CNN-based architectures.

5.3.2.A Instance-level Approach

Figure 5.3 provides a visual representation of the visualization pipeline outlined in section 4.4.2 for the

instance-level MIL-EN-B3 model, using both the maximum and top-k average pooling operators. It is

important to emphasize that in order to simplify the visualization process, we have chosen the top-k

average operator with a value of approximately 12.5% (k ≈ 12.5%), which corresponds to selecting 25

patches to represent the entire image. The first three rows of this visualization pipeline remain the same

for both models. The first row displays the input dermoscopy images. The second row presents the

patch probability heatmap for the melanoma (MEL) class, while the third row provides insight into the

gradients associated with the same class. The fourth row, however, differs between the two models. For

the instance-level MIL model, which uses the maximum operator, the fourth row reveals the key patch

identified by the model. In contrast, the fourth row of the MIL model using the top-k average pooling

operator illustrates the gradients associated with the nevus (NV) class.

Note that the instance-level approach with the average pooling operator is not presented in this

section. As noted in section 4.4.2, this pooling operator considers all patches to represent the bag,

making it impossible to isolate the most relevant patches in the image as all of them are considered for

classification.
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Instance-level MIL-EN-B3 with top-k average pool.
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Figure 5.3: Visualization of two different MIL branch processes, specifically the instance-level MIL models using
the max and top-k average pooling operators. To simplify the visualization process, we chose the top-k
average operator with a value of approximately 12.5% (k ≈ 12.5%), which is equivalent to selecting 25
patches to represent the entire image. The backbone architecture used for these MIL models is the
EN-B3. The images used for visualization are taken from the PH2 test set [45] and refer to the binary
classification task of melanoma versus nevus. On the left is the visualization pipeline for the MIL model
using the max pooling operator, while on the right is the visualization framework for the model using the
top-k average pooling operator. The first three rows of this visualization pipeline remain the same for
both models. The top row shows the input dermoscopy images. The second row illustrates the patch
probability heatmap for the melanoma class, while the third row displays the gradients for the same
class. The fourth row diverges between the two models. In the case of the instance-level MIL model
using the max operator, the fourth row shows the key patch identified by the model. The fourth row of
the MIL model using the top-k average pooling operator provides insight into the gradients associated
with the nevus class. Note that these images use a gradient-based visualization method inspired by the
work of Chefer et al. [50].

Visualization of patch probabilities: In the context of the visualization pipeline introduced in section

4.4.2, the first row refers to the heatmap probability for the melanoma class. This heatmap is designed

so that reddish regions correspond to probability values closer to 1, while bluish regions represent values

closer to 0. Regions with shades of green and yellow denote probability values close to 0.5. In Figure 5.3,

the visualizations are specifically focused on the binary classification task of melanoma (MEL) versus

nevus (NV). Consequently, it is clear that the probability heatmap for the nevus class is essentially an

inverted version of the one shown in the first row. This inversion implies that bluish regions become

reddish and vice versa.

Analysis of these probability heatmaps reveals a general trend: for melanoma lesions, patches with

high melanoma probabilities tend to be concentrated within the lesion boundaries. Patches outside the

lesion boundaries, such as healthy skin areas or image corners, typically have low melanoma proba-

bilities (close to 0). As a result, the probability of nevus is often high in these areas outside the lesion

boundaries.
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When the model confidently identifies a lesion as a nevus, the melanoma probabilities are signifi-

cantly low across the entire image. In contrast, the probabilities of nevus patches are consistently high

(close to 1) for all image patches. This contrast suggests that for accurate melanoma detection, only

specific ROIs are truly relevant, whereas for nevus detection, all information in the image is relevant to

the model.

Comparison of the model using max pooling with the one using top-k average pooling shows that

the latter typically assigns high melanoma probabilities to more patches (i.e., reddish regions are often

more extensive). This is natural since the model using top-k average pooling evaluates a larger number

of patches to determine whether the entire lesion is melanoma or not.

Gradient-based visualization: When examining the MIL model using the maximum pooling opera-

tor, it becomes clear that the gradients provide insight into the key patches identified by the model.

For the MIL model with the top-k average pooling operator, the gradients reveal the most relevant

patches for the model’s classification process. Essentially, this model can be considered a more robust

version of the MIL model with the max pooling operator, as it considers the k patches with the highest

melanoma probability to determine the melanoma probability of the entire image. In the traditional MIL

framework, represented by the instance-level MIL model with max pooling, a single positive instance

is sufficient to classify the entire bag as positive. This approach is implicitly designed to maximize

melanoma recall, since the presence of a single melanoma patch causes the entire image to be classi-

fied as a melanoma. However, this can lead to the misclassification of some nevi lesions as melanomas,

as shown in the third column of Figure 5.3. In contrast, the MIL model using the top-k average operator

is usually more robust to this type of misclassification because it does not base its classification on a

single patch, but rather on a specific set of patches.

With the top-k average pooling operator, we observe that for melanoma cases, the key patches

identified by the model are mainly within or at the borders of the lesion. In contrast, when visualizing

the gradients related to the nevus class, most of the key patches identified by the model correspond

to healthy skin areas. This reinforces the notion that correct identification of nevus lesions benefits

from considering different regions of the dermoscopic image, such as healthy skin areas. However, the

same principle is not necessarily true for melanoma lesions, where patches within the lesion borders are

critical for accurate classification.

In summary, the instance-level visualization pipeline outlined in section 4.4.2 effectively identifies

key patches within the image. These key patches can be viewed as ROIs, which may provide valuable

insights into clinical skin cancer diagnosis. We have observed that, in general, for melanoma lesions,

the key patches tend to be located within the lesion or at its border. Conversely, for nevi lesions, the

model identifies key patches predominantly at the border or within healthy skin areas.

When comparing the top-k average and the traditional max pooling operators, it is evident that the
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top-k average pooling operator exhibits greater robustness. This can be attributed to the fact that top-

k average does not rely solely on the melanoma probability of a single patch, but rather considers

a specific set of patches. As a result, the top-k average operator mitigates the misclassification of

nevi lesions when compared to the max operator. In future work, it would be worth exploring more

sophisticated top-k average pooling operators within the MIL framework.

5.3.2.B Comparison between Instance-level and Embedding-level Approaches

The visualizations shown in Figure 5.3 are a product of the visualization pipeline outlined in section

4.4.2. In this pipeline, gradients are computed during inference and then multiplied by the patch proba-

bility heatmap of the corresponding class. However, in the case of the embedding-level approach, this

visualization pipeline is not applicable because the embedding-level approach is not able to compute

the independent patch probabilities. To gain insight into the ROIs for embedding-level models, we use

the standard Grad-Cam technique [28].

This section provides a comparative analysis between the ROIs identified by the instance-level MIL

model using the top-k average pooling operator (as shown in Figure 5.3) and those identified by the

corresponding embedding-level model using the column-wise global average pooling operator, as shown

in Figure 5.4.

When we compare the Grad-Cam visualizations shown in Figure 5.4 with the gradient visualizations

of the instance-level MIL model using top-k average pooling (shown in Figure 5.3), significant differences

become apparent.

In the Grad-Cam visualization of the embedding-level approach, there is a higher occurrence of

greenish and yellowish regions compared to the instance-level counterpart. This suggests that the

embedding-level model has greater uncertainty in classifying patches as melanoma or nevus when

compared to the instance-level model. Consequently, the ROIs generated by the embedding-level ap-

proach, analogous to CNN architectures, do not provide as much valuable information at the patch level.

In fact, the regions generated by the embedding-level approach appear more like blurs when compared

to the melanoma gradients produced by the instance-level model. By comparing these two grad-cam

techniques, it is clear that the instance-level approach provides a more accurate patch-level identifi-

cation of the most relevant patches. This, in turn, contributes to the identification of key patches on

which the model bases its classification. Such patch-level analysis has the potential to be significantly

more useful in clinical practice than the vague regions identified by the embedding-level and CNN-based

architectures.
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Embedding-level MIL-EN-B3 with column-wise global average pool.
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Figure 5.4: Visualization of various results generated by the embedding-level MIL model with the column-wise
global average pooling operator. The backbone used for the MIL model is the EN-B3. The images
used for visualization are taken from the PH2 test set [45] and refer to the binary classification task of
melanoma vs. nevus. The first row of the Figure shows the input images, while the second and third
rows illustrate Grad-Cam [28] visualizations for the melanoma and nevus classes, respectively.

5.3.3 Comparison between the EViT and MIL branches

Figure 5.5 shows visualizations that highlight the most relevant patches derived from the instance-level

MIL models using max and top-k average pooling. Additionally, this illustration includes visualizations

from the EViT branch without positional encoding.

Upon closer examination of Figure 5.5, we can draw comparisons between the key patches identi-

fied by the two different MIL models and the attentive patches identified by the EViT architecture. While

some relevant patches overlap between the two architectures, such cases are rather rare. Consequently,

these models demonstrate the ability to identify different ROIs, but it remains inconclusive whether these

regions represent matching patches within the lesion. Although it is difficult to determine which frame-

work provides the most informative ROIs, the instance-level MIL framework has the advantage that the

identification of key patches depends directly on the patch probabilities. This distinction is particularly

valuable because it allows for clear segmentation of the patches classified as melanoma or nevus. In

contrast, the patches identified by the attention mechanism in the EViT branch do not provide the same

level of direct association with either class. This particular advantage reinforces the potential value of

the instance-level MIL framework in automatically identifying different ROIs within a dermoscopic image.

For a more comprehensive set of visualizations illustrating the key patches identified by the EViT and

MIL branches, refer to section B.3 within appendix B.
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Figure 5.5: Visual exploration of the ROIs identified by the two branches within the proposed framework. It com-
prises two MIL models, one using an instance-level approach with max pooling and the other using
top-k average pooling. The latter model employed a value of approximately 12.5% for k, which corre-
sponds to selecting the top 25 patches with the highest melanoma probability. Both MIL models use
the EN-B3 architecture as their backbone. The EViT branch keeps the configuration defined in section
4.4.1, with a Kr value of 0.7, and is configured without positional encoding. In the MIL branch, the
sequence starts by displaying the melanoma (MEL) patch probability heatmap. The specific ROIs are
then revealed by visualizing gradients associated with the MEL class. In the EViT branch, the process
begins with the application of the EViT mask, followed by the display of attention weights associated
with the CLS token within the final EViT layer. This image is taken from the PH2 test set [45].
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6.1 Conclusions

In this dissertation, we embarked on a quest to answer two key questions in the field of dermoscopy

image analysis:

1. Are all patches within a dermoscopy image equally important, or do deep models primarily rely on

specific ROIs for classification?

2. Does the spatial arrangement of patches within the dermoscopy image have a significant impact

on skin cancer diagnosis?

To address these questions, we introduced a novel framework that combines two branches: one

using the EViT and the other using MIL. We applied this framework to study both the binary and multi-

class problems.

In the binary scenario, the proposed two-step MIL approach proved to be quite effective. It not only

achieved comparable results with baseline models, but often outperformed both ViTs and CNN-based

architectures, demonstrating the robustness and generalization ability of the proposed framework across

different hospital domains and distribution patterns.

In the multi-class scenario, our three-stage MIL framework demonstrated competitive performance

with both the Transformer-based and CNN-baseline models. Although the performance in this case was

not as good as in the binary case, we believe that our proposed formulation can open the door to new

MIL multi-class framework adaptations.

With respect to the automatic identification of ROIs in dermoscopy images, our results indicate that

instance-level approaches provide more detailed visual analysis compared to the blurry visualizations

produced by embedding-level approaches, which closely resemble CNN architectures. Instance-level

approaches excelled in terms of performance, often outperforming embedding-level and CNN-based

architectures. In particular, the instance-level MIL model with top-k average pooling emerged as the

framework with the most significant ROIs. This is partly attributed to the robustness of the top-k average

operator, which considers a set of specific patches rather than relying on a single patch to classify the

entire image. When comparing the ROIs identified by the MIL and EViT branches, we concluded that

they do not necessarily identify the same ROIs. However, we argue that the ROIs identified by the

instance-level MIL branch contain more valuable information compared to the regions identified by the

EViT branch, due to the fact that the identification of key patches by the instance-level MIL branch is

directly tied to patch probabilities. This ability to distinguish between patches classified as melanoma or

nevus may have significant clinical value that is not as apparent in the case of the patches identified by

the EViT branch.

In both scenarios, our experiments have implicitly implied that not all patches on a dermoscopy image

have the same relevance for the diagnosis of melanoma skin cancer. In the binary problem of distinguish-
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ing melanoma (MEL) from nevus (NV), it is evident that the accurate identification of melanoma relies

heavily on the detection of distinct, focal regions. This is consistent with the principles of the 7-point

checklist criterion [9], suggesting that the identification of specific regions is crucial for the diagnosis of

melanoma. On the other hand, when it comes to nevus detection, models that are good at capturing

inter-patch relationships tend to outperform the rest. Thus, while the identification of melanoma depends

on the detection of precise regions, the same is not true for nevus lesions.

We explored the importance of spatial positioning within the image. Our findings strongly suggest

that the spatial information in the image has value in capturing lesion characteristics. In particular, the

incorporation of positional encoding proved advantageous for ViT architectures. A notable observation,

particularly in the evaluation of the validation set, is that when Transformer-based architectures operated

without positional encoding, their results closely matched those of the MIL branch. This observation

suggests that the ViT architecture may be more similar to the MIL framework than originally assumed.

In chapter 2, we established the connection between the MIL framework and the 7-point checklist cri-

terion. We first introduced the deep MIL as an appropriate representation of the 7-point criterion in the

domain of DL. The two paradigms are quite similar in their approach. Both score each patch indepen-

dently, regardless of their spatial location within the dermoscopic image. They then use a permutation-

invariant function to aggregate these individual scores into an overall classification of the dermoscopic

image.

While establishing this connection, we also made sure to point out the differences between the MIL

and ViT frameworks. Unlike MIL, the ViT architecture exploits intricate patch correlations, taking into

account their positions within the image to produce highly complex features. However, a deeper analy-

sis of the ViT architecture led to a very interesting finding: without the inclusion of positional encoding,

ViTs could actually be characterized as a variant of the MIL framework. In this context, the Trans-

former encoder block essentially served as a sophisticated MIL pooling operator. The results obtained

are consistent with this observation, suggesting that the ViT architecture and the MIL framework may

share more similarities than originally believed. In fact, our experiments show that ViT models, without

positional encoding, perform similarly to CNN-based MIL architectures. This discovery highlights an

interesting connection between the ViT architecture and the MIL framework. While initially perceived

as distinct methodologies, their similarities became apparent, especially in the absence of positional

encoding, challenging our initial assumptions.

6.2 Future Work

In this thesis, we have provided critical insights into dermoscopy image analysis, highlighting the impor-

tance of region emphasis, spatial context, and the intriguing relationship between MIL and SA-based
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architectures. Nevertheless, several areas still require further investigation and research.

Within the MIL branch, our findings underscore the potential of the instance-level approach coupled

with the top-k average pooling operator in capturing valuable ROIs in dermoscopy image analysis. Fu-

ture research on this MIL pooling operator may hold great promise. For example, we could explore an

instance-level MIL framework that incorporates a top-k average operator with a fixed k during its initial

training phase. Subsequently, after this initial training phase, the k parameter would become a learned

variable, meaning that only gradients associated with patches predicted to be melanoma would be up-

dated. We believe that further experiments with different variants of the top-k average pooling operator

could yield interesting results.

Within the EViT branch, we observed the behavior of the Kr parameter, which basically performs

a learned patch-level segmentation of the lesion. However, given the complex and varied nature of

dermoscopic images, a fixed Kr parameter may lead to discrepancies in the results. In cases where the

image contains predominantly healthy skin, substantial patch removal may be appropriate. However, in

scenarios where the skin lesion occupies most of the image, removing too many patches could result in

the loss of critical information. Therefore, it would be valuable to explore the feasibility of a non-fixed Kr

parameter that adapts to different image scenarios.

With respect to the identification of ROIs, there is a need for further exploration of evaluation met-

rics that effectively measure the quality of identified ROIs. One avenue of exploration could be to use

publicly available segmentation masks to determine whether the key patches identified by the model are

predominantly inside or outside the boundaries of the skin lesion. In addition, an intriguing direction of

study is to evaluate whether the ROIs identified by the MIL and EViT branches meet established der-

moscopy criteria, such as assessing general lesion asymmetry, irregular borders, color variations, and

other criteria.

In the context of the multi-class scenario, we have introduced a novel three-stage MIL formulation

that shows promise for advancing multi-class MIL frameworks. However, much remains to be explored

in this scenario. Extensive testing is needed to evaluate the generalization capability of the proposed

three-step approach. In addition, exploring alternative approaches to the multi-class setting, such as

transforming it into multiple binary classification tasks where each class is paired against all others,

could open new avenues for investigation and development.
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A.1 Complementing Information Regarding Section 3.2.3.A

In this section, we mathematically demonstrate that the column-wise global average pooling method

used in the first implementation of the instance-level approach within the three-stage MIL formulation for

multi-class problems results in a bag probability distribution that sums to 1.

Consider the output of the softmax step (the second step in this implementation), which is denoted

as σ (z(X)) ∈ RN×k. Each row in this matrix represents the patch probability distribution across the k

classes, more specifically:

σ (z(X)) =


σ (Z00) σ (Z01) · · · σ

(
Z0(k−1)

)
σ (Z10) σ (Z11) · · · σ

(
Z1(k−1)

)
...

...
. . .

...
σ
(
Z(N−1)0

)
σ
(
Z(N−1)1

)
· · · σ

(
Z(N−1)(k−1)

)
 , (A.1)

where σ (Zij) =
eZij∑k−1
j=0 e

Zj

and
∑k−1

j=0 σ (Zij) = 1 ∀i=0,..,(N−1). Applying the column-wise global average

pooling operator, we obtain:

N−1∑
i=0

(
σ (Zi0)

N

)
+

N−1∑
i=0

(
σ (Zi1)

N

)
+ . . .+

N−1∑
i=0

(
σ
(
Zi(k−1)

)
N

)
=

=
1

N

(
N−1∑
i=0

σ (Zi0) +

N−1∑
i=0

σ (Zi1) + . . .+

N−1∑
i=0

σ
(
Zi(k−1)

))

=
1

N

N−1∑
i=0

(
σ (Zi0) + σ (Zi1) + · · ·+ σ

(
Zi(k−1)

))
=

1

N

N−1∑
i=0

k−1∑
j=0

σ (Zij)


︸ ︷︷ ︸

1︸ ︷︷ ︸
N×1

= 1.

(A.2)

Thus, the column-wise global average pooling operator guarantees that the resulting bag probability

distribution adds up to 1.
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B.1 Additional Information Regarding Chapter 4

This section serves as a supplemental resource to the chapter 4, providing additional tables and figures

that enhance and expand the information presented in the main document.

B.1.1 Additional Information Regarding Section 4.4

Table B.1 provides an overview of the most important general configurations used in the main architec-

tures experimented with in this thesis.

Table B.1: Models configurations. The symbols ✓ and ✗ indicate that we use and do not use the corresponding
method, respectively. Most of these configurations were inspired by the DEiT model [57], specifically
the data augmentation techniques, the learning rate values and scheduler, the weight decay, and the
optimizer.

Methods EViT-S MIL Models CNN Base. ViT Base.

Epochs 60 100 100 60
Batch size 128 128 128 128
Optimizer AdamW AdamW AdamW AdamW
Learning rate init. 2e−4 2e−4 2e−4 2e−4
Learning rate sched. Cosine Cosine Cosine Cosine
Min. learning rate 2e−6 2e−6 2e−6 2e−6
Warmup epochs ✗ 5 ✗ ✗
Warmup learning rate ✗ 1e−6 ✗ ✗
Weight decay 1e−6 1e−6 1e−6 1e−6
Dropout ✗ ✗ ✗ 0.1
Data aug. ✓ ✓ ✓ ✓
Class Weighting ✓ ✓ ✓ ✓
Pre-trained dataset ImageNet-1k ImageNet-1k ImageNet-1k ImageNet-1k
Early stopping ✓ ✓ ✓ ✓
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B.1.1.A Additional Information Regarding Section 4.4.3

Table B.2 presents the performance results obtained for each of the baseline models when evaluated in

the context of the multi-class classification problem.

Table B.2: Evaluation results of a set of baseline models on the validation set of the ISIC 2019 dataset [3–5]. The
baseline models include different architectures, including RN-18, VGG-16, RN-50, DN-169, EN-B3 from
the CNN-based category, and ViT-S, ViT-B, DEiT-S, DEiT-B from the Transformer-based category. The
evaluation is performed for the multi-class problem.

Baseline models ISIC 2019

BA R-AK R-BCC R-BKL R-DF R-MEL R-NV R-SCC R-VASC

C
N

N
s

RN-18 76.3 65.3 81.3 75.8 75.0 73.8 88.0 65.1 86.3
RN-50 79.8 68.2 87.7 75.2 83.3 72.9 91.5 65.1 94.1
VGG-16 73.1 63.0 82.7 72.0 62.5 69.9 85.3 59.5 90.2
DN-169 80.7 75.1 86.4 79.6 79.2 72.5 91.8 70.6 90.2
EN-B3 82.2 71.1 87.8 79.4 81.3 76.5 91.6 72.2 98.0

V
iT

s

ViT-S 83.5 76.9 90.5 78.9 93.8 79.4 92.6 65.9 90.2
ViT-B 84.3 80.9 91.6 74.3 91.7 78.9 89.0 69.8 98.0
DEiT-S 83.6 72.3 90.5 82.7 87.5 80.3 92.1 65.1 98.0
DEiT-B 84.5 75.1 92.5 79.6 87.5 79.9 94.6 70.6 96.1
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B.2 Additional Information Regarding Chapter 5

In this section, we will provide additional tables that complement the results presented in chapter 5.

B.2.1 Additional Information Regarding Section 5.1

The table B.3 is a more complete version of the table 5.1 originally presented in section 5.1.

Table B.3: This table complements the results presented in table 5.1 by including additional results for the RN-50
and ViT-S baseline models and the EViT-S backbone.

Models ISIC 2019 PH2 Derm7pt

BA R-MEL R-NV BA R-MEL R-NV BA R-MEL R-NV

C
N

N RN-50 88.9 82.6 95.1 81.9 77.5 86.3 74.4 58.7 90.1
EN-B3 90.7 85.5 95.8 88.8 82.5 95.0 76.2 57.9 94.4

V
iT

s ViT-S 91.3 86.8 95.8 88.8 80.0 97.5 71.7 50.8 92.7
DEiT-S 91.7 86.7 96.7 86.6 75.0 98.1 74.0 53.2 94.8

E
V

iT Kr=0.6 91.4 86.6 96.3 88.8 80.0 97.5 73.4 52.8 94.1
Kr=0.7 90.7 85.4 95.7 86.6 75.0 98.1 74.9 56.7 93.0

M
IL

-R
N

-5
0 Instance

Max 88.1 85.6 90.6 75.0 67.5 82.5 74.3 59.9 88.7
Topk 88.5 85.3 91.8 78.8 67.5 90.0 78.3 71.0 85.6
Avg 89.0 85.3 92.6 77.2 75.0 79.4 75.0 60.3 89.7

Embedding
Max 89.9 84.7 95.1 85.9 77.5 94.4 73.8 57.1 90.4
Topk 89.1 84.7 93.6 85.3 77.5 93.1 75.1 62.3 87.8
Avg 88.9 85.6 92.2 84.1 77.5 90.6 77.5 67.1 88.0

M
IL

-E
N

-B
3 Instance

Max 88.5 86.7 90.2 84.4 75.0 93.8 78.7 67.1 90.4
Topk 89.5 85.6 93.3 89.7 82.5 96.9 77.0 60.7 93.2
Avg 89.1 86.7 91.6 85.0 77.5 92.5 76.5 64.3 88.7

Embedding
Max 86.0 85.7 86.4 85.3 77.5 93.1 76.1 66.3 85.9
Topk 89.2 85.7 92.7 88.1 82.5 93.8 76.7 59.5 93.9
Avg 89.1 84.4 93.8 83.4 70.0 96.9 75.3 56.3 94.3

M
IL

-E
V

iT
-S Instance

Max 90.6 86.7 94.4 81.2 72.5 90.0 73.6 54.0 93.2
Topk 90.8 86.0 95.7 81.3 65.0 97.5 73.0 52.4 93.6
Avg 91.5 86.9 96.0 84.1 70.0 98.1 73.4 52.4 94.4

Embedding
Max 90.9 86.0 95.8 82.8 70.0 95.6 74.2 54.4 94.1
Topk 91.1 86.0 96.3 88.4 80.0 96.9 73.1 50.8 95.5
Avg 91.3 86.6 96.0 80.9 70.0 91.9 73.4 54.4 92.5

M
IL

-D
E

iT
-S Instance
Max 91.7 87.1 96.3 87.2 77.5 96.9 74.4 54.8 94.1
Topk 91.4 86.6 96.2 84.1 72.5 95.6 71.8 49.6 94.1
Avg 91.8 87.5 96.1 87.8 80.0 95.6 74.8 56.0 93.7

Embedding
Max 91.0 87.4 94.5 85.3 75.0 95.6 74.7 58.3 91.1
Topk 91.5 86.9 96.1 89.7 80.0 99.4 75.1 55.2 95.1
Avg 91.4 87.4 95.4 85.0 75.0 95.0 76.0 61.1 91.0
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B.3 Additional Visualizations Regarding Section 5.3

In this section of the appendix B, we include additional images that visually illustrate the process per-

formed by both branches of the proposed framework.

B.3.1 Additional Visualizations Regarding Section 5.3.1

Figure B.1 provides a visual representation of the operations performed by the EViT architecture. It

provides a clear illustration of the patch removal process within the EViT architecture. In addition, this

figure presents a heat map showing the “importance” of individual patches in influencing the model’s

predictions. It also shows the corresponding gradient information that describes this process.

Figure B.1: Visualization of the EViT architecture process with Kr = 0.7 and the default configuration for the place-
ment of token reorganization blocks. The first row displays input images from the ISIC 2019 validation
dataset [3–5]. The second row illustrates the inattentive patch removed by the EViT model. The third
row exhibits the attentiveness of the CLS token in the final encoder block. The heatmap is created by
reshaping the first row of the attention map A, represented as a ∈ R1×N , into a 14× 14 heatmap. This
heatmap is then transformed into a 224 × 224 × 3 representation using bilinear interpolation. The last
row presents the gradient-based visualization of CLS embedding attentiveness, inspired by Chefer et
al. [50].
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Figures B.2 and B.3 illustrate the visualization processes performed by the EViT branch with and

without positional encoding, respectively.

Figure B.2: Visualization of the EViT-S architecture process with positional encoding. The model is configured
with Kr = 0.7 and the default configuration for the placement of token reorganization blocks. The
first row displays input images from the PH2 test set [45]. The second row illustrates the inattentive
patch removed by the EViT model. The third row exhibits the attentiveness of the CLS token in the final
encoder block. The last row presents the gradient-based visualization of CLS embedding attentiveness.

Figure B.3: Visualization of the EViT-S architecture process without positional encoding. The model is configured
with Kr = 0.7 and the default configuration for the placement of token reorganization blocks. The
first row displays input images from the PH2 test set [45]. The second row illustrates the inattentive
patch removed by the EViT model. The third row exhibits the attentiveness of the CLS token in the final
encoder block. The last row presents the gradient-based visualization of CLS embedding attentiveness.
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B.3.2 Additional Visualizations Regarding Section 5.3.2

In this section of the appendix B, we include additional images that visually illustrate the process per-

formed by the MIL branch. These images provide further insight into the processes described in section

4.4.2.

Figure B.4 provides a visual representation of the different MIL branch visualizations for the binary

melanoma (MEL) versus nevus (NV) problem. Specifically, this figure highlights the heatmaps generated

by the instance-level MIL model using the max pooling operator. The first row shows the input images,

followed by the second row, which shows the patch probability heatmap for the melanoma (MEL) class.

The third row shows the gradient heatmap for each patch, and the last row shows the identification of

the key patch as detected by the corresponding MIL model.

Figure B.4: Visualization of the MIL branch processes, specifically the instance-level MIL model using max pool-
ing. The backbone used for the MIL model is the RN-18. The images are taken from the validation
set of the ISIC 2019 dataset [3–5], and belong to the binary problem of melanoma (MEL) vs. nevus
(NV). The Figure shows the input images in the first row, followed by the patch probability heatmap
for the melanoma (MEL) class in the second row. The third row shows the gradient heatmap for each
patch, while the last row shows the identification of the key patch as detected by the corresponding MIL
model.
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Figure B.5 provides a visual representation of the different visualizations produced by the instance-

level MIL model using the top-k average pooling operator. In this case, the last row shows the gradients

associated with the patches classified as nevus (NV).

Figure B.5: Visualization of the MIL branch processes, specifically the instance-level MIL model using the top-k
average pooling operator. The backbone used for the MIL model is the RN-18. The images are taken
from the validation set of the ISIC 2019 dataset [3–5], and belong to the binary problem of melanoma
(MEL) vs. nevus (NV). The Figure shows the input images in the first row, followed by the patch
probability heatmap for the melanoma (MEL) class in the second row. The third row shows the gradient
heatmap for each patch. In this case, the last row shows the gradients with respect to the patches that
the model predicted to be nevus (NV).
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Figure B.6 provides a visual representation of the different visualizations produced by the instance-

level MIL model using the average pooling operator.

Figure B.6: Visualization of the MIL branch processes, specifically the instance-level MIL model with the average
pooling operator. The backbone used for the MIL model is the RN-18. The images are taken from
the validation set of the ISIC 2019 dataset [3–5], and belong to the binary problem of melanoma (MEL)
vs. nevus (NV). The Figure shows the input images in the first row, followed by the patch probability
heatmap for the melanoma (MEL) class in the second row. The third row shows the gradient heatmap
for each patch. In this case, the last row shows the gradients with respect to the patches that the model
predicted to be nevus (NV). It’s important to note that the gradient-based visualization method used
in these images is inspired by the work of Chefer et al. [50] and differs from the standard Grad-Cam
approach.

91



Figure B.7 visually represents the different visualizations generated by the instance-level MIL model

using the masked max pooling operator. It is worth noting that the max pooling results shown in

Figure B.4 often match those produced by masked max pooling in Figure B.7. This suggests that

the MIL framework can effectively identify key patches without the need for additional domain-specific

knowledge.

Figure B.7: Visualization of the MIL branch processes, specifically the instance-level MIL model using the masked
max pooling operator. The backbone used for the MIL model is the RN-18. The images are taken from
the validation set of the ISIC 2019 dataset [3–5], and belong to the binary problem of melanoma (MEL)
vs. nevus (NV). The Figure shows the input images in the first row, followed by the patch probability
heatmap for the melanoma (MEL) class in the second row. The third row shows the gradient heatmap
for each patch. In this case, the last row shows the key patches identified by the MIL model.
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Figure B.8 visually represents the different visualizations generated by the instance-level MIL model

using the masked average pooling operator.

Figure B.8: Visualization of the MIL branch processes, specifically the instance-level MIL model with the masked
average pooling operator. The RN-18 serves as the backbone for this MIL model. The images shown
in this figure are from the validation set of the ISIC 2019 dataset [3–5] and are associated with the binary
classification task of melanoma (MEL) versus nevus (NV). The figure shows the input images in the first
row, followed by the patch probability heatmap for the melanoma (MEL) class in the second row. The
third row shows the gradient heatmap for each patch. In this case, the last row highlights the gradients
for patches predicted by the model to be nevus (NV). Notably, the gradient-based visualization method
used in these images is inspired by Chefer et al. [50] and differs from the standard Grad-Cam approach.
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Figure B.9 shows the different visualizations generated by the embedding-level MIL model using

the column-wise global max pooling operator. In the embedding-level cases, we used Grad-Cam

approaches exclusively. Specifically, for the column-wise global max pooling operator, we used a

Grad-Cam approach inspired by the work of Chefer et al. [50]. It is important to note that for the bag of

patch embeddings, denoted as X ∈ RN×D, we selected the maximum values for each feature along the

embedding dimension D, resulting in a tensor X ∈ RD.

Figure B.9: Visualization of the MIL branch processes, specifically the embedding-level MIL model using the
column-wise global max pooling operator. The backbone used for this MIL model is the RN-18.
The images used for visualization are taken from the validation set of the ISIC 2019 dataset [3–5] and
refer to the binary classification task of melanoma (MEL) vs. nevus (NV). The first row of the fig-
ure shows the input images, while the second and third rows show Grad-Cam [50] visualizations for
the melanoma (MEL) and nevus (NV) classes, respectively. It is worth noting that these images use
a gradient-based visualization method inspired by the work of Chefer et al. [50], which distinguishes
them from the standard Grad-Cam technique.
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Figure B.10 visually represents the different visualizations generated by the embedding-level MIL

model using the column-wise global top-k average pooling operator.

Figure B.10: Illustration of different visualizations using the embedding-level MIL model with the column-wise
global top-k average pooling operator. The backbone used for the MIL model is the RN-18. The
images are taken from the validation set of the ISIC 2019 dataset [3–5], and belong to the binary
problem of melanoma (MEL) vs. nevus (NV). The first row of the figure shows the input images, while
the second and third rows illustrate Grad-Cam [28] visualizations for the melanoma (MEL) and nevus
(NV) classes, respectively. Note that in this case we used the standard Grad-Cam algorithm [28].

Figure B.11 visually represents the different visualizations generated by the embedding-level MIL

model using the column-wise global average pooling operator.

Figure B.11: Illustration of different visualizations using the embedding-level MIL model with the column-wise
global average pooling operator. The backbone used for the MIL model is the RN-18. The images
are taken from the validation set of the ISIC 2019 dataset [3–5], and belong to the binary problem
of melanoma (MEL) vs. nevus (NV). The first row of the figure shows the input images, while the
second and third rows illustrate Grad-Cam [28] visualizations for the melanoma (MEL) and nevus
(NV) classes, respectively. Note that in this case, we used the standard Grad-Cam algorithm [28].
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Figure B.12 visually represents the different visualizations generated by the embedding-level MIL

model using the column-wise global masked pooling operator.

Figure B.12: Illustration of different types of visualizations using the embedding-level MIL model with the column-
wise global masked average pooling operator. The backbone used for the MIL model is the RN-18.
The images are taken from the validation set of the ISIC 2019 dataset [3–5], and belong to the binary
problem of melanoma (MEL) vs. nevus (NV). The first row of the figure shows the input images, while
the second and third rows illustrate Grad-Cam [50] visualizations for the melanoma (MEL) and nevus
(NV) classes, respectively. Note that the gradient-based visualization method used in these images is
inspired by the work of Chefer et al. [50].

Figure B.13 visually represents the different visualizations generated by the embedding-level MIL

model using the column-wise global masked average pooling operator.

Figure B.13: Illustration of different visualizations using the embedding-level MIL model with the column-wise
global masked average pooling operator. The images are taken from the validation set of the ISIC
2019 dataset [3–5], and belong to the binary problem of melanoma (MEL) vs. nevus (NV). The first
row of the figure shows the input images, while the second and third rows illustrate Grad-Cam [28]
visualizations for the melanoma (MEL) and nevus (NV) classes, respectively.

96



Figure B.14 serves as an additional example for Figure 5.5 present in section 5.3.

EViT

MIL

Max

Top-k

Melanoma patch 
probability 
heatmap

Melanoma 
Grad-Cam Key Patches

EViT mask
Last layer CLS 
attentiveness

Input

Figure B.14: Visualization of the ROIs identified by the two branches of the proposed framework. This Figure
shows two MIL models, one consisting of a instance-level MIL model using the max pooling operator,
and the other using the top-k average pooling operator. The model using the top-k average pooling
operator used k = 25%, which corresponds to selecting the 49 patches with the highest probability
of melanoma. Both MIL models use the EN-B3 architecture as a backbone. The EViT is defined
according to the configuration set in section 4.4.1, has Kr = 0.7 and is set without positional encoding.
In the MIL branch, we first see the melanoma (MEL) patch probability heatmap. Then, by visualizing
the gradients with respect to the MEL class, we obtain the ROIs. In the EViT branch, we see first the
application of the EViT mask, and then the attention weights with respect to the CLS token on the last
EViT layer. This image was sampled from the Derm7pt test set [53].
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