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Theoretical and numerical studies of magnetic field
generation in plasma astrophysics

Nitin Shukla

Supervisor: Doctor Luı́s Miguel de Oliveira e Silva

Co-Supervisor: Doctor Jorge Miguel Ramos Domingues Ferreira
Vieira

Thesis approved in public session to obtain the PhD Degree in
Physics

Jury final classification: Pass with Distinction

Jury

Chairperson: Doutor Luı́s Paulo Da Mota Capitão Lemos Alves
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Instituto Superior Técnico, Universidade de Lisboa

Funding Institutions
Fundação para a Ciência e Tecnologia, European Research Council

2019



Resumo

A origem dos campos magnéticos em astrofı́sica é uma das grandes perguntas cientı́-
ficas ainda sem resposta certa, uma vez que as grandes escalas temporais e espaciais
destes campos magnéticos são considerados fundamentais na explicação de obser-
vações de erupções de raios Gama. Atualmente é aceite que instabilidades em plasma
têm um papel essencial na geração e amplificação do campo magnético. Por exemplo,
a instabilidade de Weibel, também denominada instabilidade de filamentação de cor-
rentes pode amplificar campos magnéticos e causar a formação de ondas de choque
electromagnéticas onde as partı́culas podem ser aceleradas até energias muito eleva-
das, ao mesmo tempo que emitem fortes impulsos de radiação. Têm sido desenvolvi-
dos grandes esforços para reproduzir estes mecanismos fundamentais em laboratório,
através de experiências que preservam as diferenças de escala dos cenários astrofı́sicos
e regidas por leis fı́sicas semelhantes. No entanto, reproduzir estes cenários extremos
no laboratório é ainda um desafio em aberto.

O progresso extraordinário em técnicas de simulação sofisticadas e o aumento do
poder computacional permitem uma abordagem ab initio para a compreensão de uma
vasta gama de problemas astrofı́sicos e o design de experiências que permitem repro-
duzir estes fenómenos em laboratório. Nesta Tese usei o código OSIRIS para reali-
zar cálculos numéricos multidimensionais e multi-escala para investigar como podem
plasmas neutros de elctroões e positrões movendo-se com velocidades relativistas ser
gerados experimentalmente, e como podem ser usados para investigar a instabilidade
de filamentação de correntes no laboratório. Determinei as condições limites que es-
tabelecem critérios-chave para as observações experimentais destes processos. Adici-
onalmente, motivado pelas recentes observações de possı́veis nuvens interpenetran-
tes de matéria negra, investiguei também se a matéria negra pode interagir consigo
própria através de interações eletromagnéticas negras. Uma vez que o eletromagne-
tismo de matéria negra é semelhante ao eletromagnetismo clássico, mas apenas atua
em matéria negra, explorámos este tópico através de simulações com o OSIRIS de
eletromagnetismo clássico, o que permitiu estabelecer os limites superiores do rácio
carga-massa da matéria negra. Finalmente, é mostrado numericamente e experimen-
talmente que a interação de lasers intensos com alvos sólidos pode levar à geração
de campos Weibel, que competem com os campos gerados através do mecanismo da
bateria de Biermann. Demonstrei que através do ajuste do perfil de plasma e da di-
mensão transversal do feixe laser é possı́vel observar campo magnético Weibel em
experiências de interação laser-alvo para testar a microfı́sica relevante da geração de
campos magnéticos no laboratório.

Palavras-chave:
Simulações Multi-Escala; Fusão por Confinamento Inercial; Astrofı́sica em Laboratório;
Aceleradores Baseados em Plasma; Novas Fontes de Radiação





Abstract

The origin of magnetic fields in astrophysics is one of the grand scientific questions
still without a definite answer. For instance, large-scale and persistent magnetic fields
are thought to be essential to explain Gamma-ray bursts observations, but their origin
is still an argument of debate. It is currently accepted that plasma instabilities can
play a key role in magnetic field generation and amplification. The Weibel or Current
Filamentation instability, for instance, can amplify seed magnetic fields and lead to the
formation of electromagnetic shocks where particles can be accelerated to very high
energies, while also emitting strong radiation bursts. There have been strong efforts
to recreate these key mechanisms in the laboratory, through scaled experiments which
are governed by similar physical laws. Reproducing these extreme scenarios in the
laboratory is still, however, an open challenge.

Outstanding progress in simulation techniques and increasing computation-al pow-
er allow for an ab initio approach to understanding a wide range of astrophysical prob-
lems and the design of these upscale experiments. In this Thesis, using full scale,
multi-dimensional numerical calculations employing the particle-in-cell code Osiris,
I explored how electron-positron fireballs, that have been produced experimentally,
could be used to probe the current filamentation instability in the laboratory. I derived
a set of threshold conditions that establish key criteria for the experimental observa-
tions of these processes. In addition, motivated by recent observations of potential
dark-matter interpenetrating clouds, I also investigated if dark-matter could interact
with itself through dark electromagnetic interactions. Because dark-matter electro-
magnetism is similar to classical electromagnetism but acting only on dark-matter, I
studied this topic using classical electromagnetic Osiris simulations, which enabled to
set upper limits to the dark matter charge-mass ratio. Finally, it is shown, both numer-
ically and experimentally, that the interaction of intense lasers with solid targets could
lead to the generation of Weibel-magnetic fields, which competes with Biermann bat-
tery. I have demonstrated that by tuning the plasma profile and large spot size, it is
possible to observe Weibel-magnetic fields in the laser-target experiments and, thus,
to test the very important microphysics of generating the magnetic field in the labora-
tory.

Keywords:
Multi-Scale Simulations; Electron and positron beam-plasma interactions, Laser-pla-
sma experiments; Laboratory Astrophysics; Gamma-Rays-Bursts, Dark-electromag-
netism
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Relativistic and non-relativistic plasma outflows are ubiquitous in astrophysical
environments like the Gamma Ray Bursts (GRBs), Supernova Remnants (SNRs), TeV-
Blazar, Active Galactic Nuclei (AGN) and Pulsar Wind Nebulae (PWN) [1–3]. Much
of the Universe is filled with these energetic particles. In these explosions, energies
between 1030 to 1050 ergs are released in a few seconds making them the brightest and
most energetic events in the universe [4, 5]. At such high energies matter exists in the
plasma state. Thus, the interactions of these particle flows with the external medium
becomes increasingly important for a better understanding of extreme astrophysical
events. Some of the underlying physical mechanisms in these flows have strong con-
nections with the dynamics and physics of plasmas, and many outstanding problems
in astrophysics are closely associated with scenarios where the collisionless dynamics
of plasmas can play an important role [6–8]. In particular, some of the long-standing
quests in astrophysics are related to the origin of magnetic fields and to the physics in-
volving magnetized flows of charged particles, close to equipartition, where the mag-
netic field energy is close to the kinetic energy of the flow. In particular, radiation
from GRBs indicate the presence of a power law distribution of particles and mag-
netic fields of strengths close to sub-equipartition levels. For instance, observations
of GRBs in afterglow region seems to indicate that the most likely prompt emission
is being arisen from synchrotron emissions, which can only be explained due to the
presence of strong magnetic fields. Several models have been formulated in the past
few decades to explain such observations as well as to design laboratory experiments
to develop a better understanding [9–11]. However, studying the self-excitation large
scale magnetic field B in GRBs [12, 13], is a still challenging problem.
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1.2 HISTORY OF GRBS

More than five decades ago, GRBs were accidentally discovered by the U.S. Vela
satellites and which was designed to detect gamma radiation pulses emitted by nu-
clear weapons tested in space [14]. Although the purpose was to monitor any nuclear
activity by the Soviet Union or other nations, the Vela satellites instead detected in-
tense bursts of GRBs coming from deep space. This was one of the most important
discoveries in astrophysics of the century. Since then, several GRBs have been ob-
served. In 1991, the Burst and Transient Source Experiment (BATSE) was launched to
understand the source of these mysterious events. Over a period of 9 years of con-
tinuously monitoring the sky, BATSE recorded thousands ( 8000 triggered events) of
GRBs (1 per day on average). On March 26 2000, the BATSE released incredible results
suggesting the evidence of the cosmological distribution of GRBs Fig. [1.1]. Further

FIGURE 1.1: The locations of 2704 Gamma-Ray Bursts recorded with BATSE in galactic co-
ordinates distributed isotropically. The projection is in galactic coordinates; the plane of the
Milky Way Galaxy is along the horizontal line at the middle of the figure. The burst locations
are color-coded based on the fluence, which is the energy flux of the burst integrated over
the total duration of the event. Long duration, bright bursts appear in red, and short dura-
tion, weak bursts appear in purple. Grey is used for bursts for which the fluence cannot be
calculated due to incomplete data.

progress in research of GRBs was made with the launch of Italian-Dutch satellite Bep-
poSAX (1997-2003), which was equipped with detectors of both gamma- and X-rays
and observed for the first time the X-ray afterglow coming along with a GRBs [15,16].
In the fall of 2004, NASA launched the Swift satellite dedicated to solve the mystery of
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GRBs. It was equipped with three instruments, Burst Alert Telescope (BAT) to detects
gamma rays, X-ray Telescope (XRT) for detecting Xrays, and Ultraviolet/Optical Tele-
scope (UVOT) for optical afterglows. The satellite sends the locations of GRBs within
seconds of detection to both ground and space-based telescopes around the world.
On October 27 2015, Swift detected 1000th of GBRs (GRB 151027B). Despite such large
number of observations, the physics of GRBs remains unknown. GRBs are the most
explosive flashes of cosmic γ-rays that have been ever detected since the Big-bang [17].
These rare events that can roughly last anywhere from a milliseconds (30 ms) to tens
of minutes (1000 s). In most cases an observed peak energy around 100 keV. A typical
photon from a GRBs carries 100,000 times more energy than visible light, and is hun-
dreds of times brighter than a typical supernova and about a million trillion times as
bright as the Sun. It is caused by very energetic explosions, when a large amount of
energy E ∼ 1051 − 1053erg (1044 − 1046 Watt) is released over a few seconds in a small
volume assuming isotropic emission. It is widely accepted [18,19] the GRB huge lumi-
nosities involves a newborn stellar-mass black hole emitting a relativistic collimated
outflow (figure 1.2). There is ample amount of evidence revealing that the GRBs are
collimated into jets, with opening angles of a few degrees only [20, 21].

FIGURE 1.2: Cartoon shows the schematic of the GRB fireball model: (1) The source of energy
is a collapse of a massive star (2) A compact source produces a relativistic outflow. This could
be mediated by hot photons (”fireball model”), or by magnetic field (3) Internal shocks within
the outflows produce prompt γ-rays emission (4) while external shocks with the surrounding
matter produce the lower energy and longer lasting afterglow. The remaining kinetic energy
is deposited into the surrounding medium. (credit NASA).
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FIGURE 1.3: Graph of the duration versus number of bursts for the gamma-ray bursts ob-
served by the BATSE instrument on the Compton Gamma-ray Telescope Peer, 37 2015 Advances
in Astronomy (2015).

1.3 THEORY OF THE GRBS

GRBs can be broadly classified into two groups based on the time, T90, it takes to
release 90 % of its total energy. GRBs with T90 < 2s are called short duration bursts
and those with T90 > 2s are long duration. The distribution of long and short duration
bursts reported by the BATSE instrument is shown in Fig. [1.3] [22]. Gamma ray
spectrums have been observed to have peak energies of ∼ 100 keV and obey a power
law distribution given as,

N(E)dE ∝ E−α (1.1)

with a spectral index α ≈ 2, where N is the number of photons with energy E. The
spectrum is non-thermal and can be detected about once per day.

The intriguing feature about GRBs is that it releases enormous amount of energy
in a very short time, and objects responsible for the GRBs (”the internal engine”) is
still unknown due to the optical thickness of the engine. How can such an emission
take place from a compact source is an open question? The detection of GRBs 030329
suggests that core-collapse events during the death of massive stars can give rise to
GRBs (see figure 1.2). The engine of many other explosions is still under debate. This
is knowns as the compactness problem [23–25].
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1.3.1 THE COMPACTNESS PROBLEM

The compactness problem arises due to the combination of the large energy in-
volved, short-time variability and observed non-thermal spectrum. For a typical GRBs
corresponds to F ∼ 107 erg cm−2, for an isotropic source at a distance D, the total
isotropic γ-ray energy released is

E = 4πD2F = 1050ergcm−2
(

D
3000Mpc

)2 ( F
10−7 ergcm−2

)
(1.2)

The scale of emission area is c ∆t = 3000 km and implies that the sources are com-
pact with a size Ri (< c ∆t). By assuming isotropic emission, this energy E is sufficient
to annihilate γ-rays and produces γγ → e−, e+ pairs, if the energy in their center-of-
mass frame is larger than 2me c2, the implied optical depth is [22–25]:

τ(γγ) '
fpσT FD2

R2
i mec2

∼ 1013 f2mec2

(
F

10−7 ergcm−2
)(

D
3000Mpc

)2 ( ∆t
10msec

)−2

(1.3)

where fp is the photon energy needed to produced e−/e+ (2 · 0.511MeV ∼ 1MeV)
and σT is Thomas cross section, me is the mass of e−/e+ and c is the speed of light.

For typical parameters, D ' 100 kpc, σT = 6.25 × 10−25cm2, the resulting pair
production optical depth is ∼ 1015, we get very large optical depth for any reason-
able values of fp and that would therefore mean that the sources are optically very
thick to pair production (known as the compactness problem). However, the observed
non-thermal spectrum indicates with certainty that the sources must be optically thin.
Arguably, there is only one way to get rid of this apparent paradox by considering a
source moving at a high relativistic Lorentz factor γ towards the observer. Hence ”the
new physics” of relativistic motion is inevitable.

There are two ways to resolve this issue: first, the photon energy is blue-shifted
by a factor of γ, and therefore the energy at the source frame is reduced by a factor
γ ∼

√
1− v2/c2 � 1, hence this significantly reduces the number of photons above

the pair production threshold, i.e f2mec2 drops by a factor γ−α. Therefore, the radius
from which the radiation is emitted is reduced by a factor of γ2

τ(γγ) '
f2mec2 σT FD2

γαR2
i mec2

∼ 1013

γ4+α
f2mec2

(
F

10−7 ergcm−2
)(

D
3000Mpc

)2 ( ∆t
10msec

)−2

(1.4)
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The second effect is to introduced the relativistic outflow from generating the real
physical scale of the emission region Ri < Γ2c∆t for an observed timescale of ∆t.
Hence, the problem of compactness can be solved if the source is moving with a
Lorentz factor γ > 1013/(4+α) ∼ 102. A small fraction of photons is energetic enough
in the outflow rest frame to produce e−, e+ pairs. The non-thermal spectrum indicates
that the observed emission emerges from an optically thin region. To overcome this
problem it is widely accepted that the source is moving relativistically with a lower
limit of γ ∼ 100. This leads to the relativistic fireball model. A more detailed descrip-
tion of the Compactness problem is discussed in [23, 24].

1.3.2 THE FIREBALL MODEL

The fireball model relies on the dissipation of kinetic energy of an ultrarelativistic
flow, where huge amount of energy (1052 − 1053 erg) is released in such a short time
and compact volume. A fraction of the energy (∼ 10−3 − 10−2 of the total energy)
transfers in to high temperature (≥ MeV) plasmas. As a result, abundant electron-
positron (e− e+) pair plasmas via photon-photon interactions and a small amount of
baryons are produced, known as the fireball [26,27] creating a hot fireball which would
expand, eventually reaching relativistic bulk velocities. The interaction of the fireball
beam, characterised by relativistic factors ranging from 102 − 106, with the external
medium can drive field structures that accelerate particles to high energies. As parti-
cles accelerate to such high energies, the kinetic energy of the jets is dissipated (by in-
ternal collisions, in this picture) to produce strong radiation bursts, with wavelengths
ranging from γ-rays to radio waves. The remaining part of energy is deposited into
the interstellar medium (ISM), heating it and producing the observed afterglow.

The main idea leading to the fireball model involves the gamma-ray emission in
GRBs radiates behind a shock that has developed within a shell moving with a Lorentz
factor γ > 1. In particular, the model, depicted in Fig. 1.4, considers

1. Sources of inner engine: The core of fireball model is inner engine which ejects a
collimated ultrarelativistic electrons and positrons (e−, e+) with a Lorentz factor
γ ∼ 100 from a compact sources (106− 108cm) shown in Fig. 1.4 (1). It is believed
that the inner engine of a GRBs are either a neutron star or a black hole [17, 23].

2. Transport of energy: The general statement of these theories predicts that γ-rays
thermalization, caused by photon-photon and electron-positron pair creation,
is avoided due to the highly relativistic motion of shells. The energy is rela-
tivistically transferred from the source to optically thin regions whose radius is
∼ 1010cm (Fig. 1.4 (2)).

3. Conversion of kinetic energy into GRB prompt emission: The bulk Lorentz
factor increases linearly as the fireball shell expands. It accelerates leptons with
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higher Lorentz factor 103 − 104 by radiation pressure (see Fig. 1.4 (3)). The
ultra-relativistic ejecta is slowed down and the shocks arising when faster shells
overtake slower ones convert the kinetic energy in internal energy of acceler-
ated particles (electrons, positrons, baryons), which in turn emit the observed
prompt γ-rays via synchrotron radiation through internal shocks that take place
1013-1015cm.

4. Afterglow in external shocks: The relativistic outflow, whose speed has been
decreased by the internal shocks but that has not been stopped, is further slowed
down by the surrounding interstellar medium (ISM) at ∼ 1016cm producing the
afterglow (Fig. 1.4 (4)).

FIGURE 1.4: A schematic diagram of the internal-external shocks model. The magnets depict
the essential magnetic fields in this model and their typical values (Crdit: Jaroschek [28]).

Despite of the general acceptance of the model, one of the open questions involves
the conservation of kinetic energy of the plasma shells into the nonthermal radiation.
Astrophysical observations indicate that the main process leading to radiation emis-
sion is synchrotron radiation, which requires large amplitude magnetic fields on the
order of G to operate [27, 29]. The origin of magnetic fields, and their amplification to
these extreme values is a pressing challenge in astrophysics [3, 29].

1.3.3 MAGNETIC FIELDS IN GRBS

There has been an extensive effort, based on theoretical and numerical advances,
with the objective of understanding the mechanisms by which strong magnetic fields
are formed in astrophysical scenarios [30–32]. The general consensuses in the sci-
entific community is that plasma instabilities are plausible mechanisms for the mag-
netic field generation in astrophysics, especially in Gamma-Ray Bursts (GRBs). The
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natural occurrence of these plasma instabilities growing density and thermal fluctua-
tions may generate strong magnetic fields which are required to explain the nonther-
mal radiation [33]. It was suggested that the Current filamentation/Weibel instability
(CFI/WI) plays a crucial role in generating relatively strong magnetic fields such that
ωc/ωp ∼ 1, where ωc is the cyclotron frequency and ωp = 4πn0e2/me the plasma fre-
quency, from ambient B-field fluctuations [34]. The discription of the kinetic energy of
the flow to the amplifications of the magnetic fields leads to the on-set of collisionless
shocks, where particles can be accelerate in a Fermi-like accelerations process, where
the magnetic field was observed to be amplified substantially at the shock front. Of-
ten, an electromagnetic wave propagating ahead of the shock is present, the so-called
precursor [35, 36]. The large size of the shock provides enough time for plasma in-
stabilities to occur between the precursor and the surrounding medium. Here, we do
not provide a full consistent theory of the shock model, but focus on the precursor
regime and the generation of plasma instabilities and the self-consistently generated
magnetic field.

The connections between the CFI/WI and GRBs can be described in the follow-
ing way; When a GRB explodes, it ejects out a dense relativistic jet which collides
with the interstellar plasmas. Thus, a counter-streaming return current forms and the
instability can grow. In general, longitudinal and transverse instabilities occur simul-
taneously. Theoretical studies have been made that demonstrate the fastest growing
instability which can generate strong magnetic fields [37]. Purely transverse electro-
magnetic instabilities generate strong magnetic fields which scatter charged particles,
emitting the electromagnetic radiation through synchrotron like processes. Numeri-
cal simulations reveals the validity of the above mechanism in astrophysical scenar-
ios [38]. Many 2D and 3D numerical simulations have been performed by colliding
two plasma shells [39, 40]. Simulation results show that when the magnetic fields are
strong enough, charged particles are trapped in the magnetic field. This magnetic field
merges into wider filaments causing the magnetic energy to cascade from the initial
skin depth scale c/ωp to larger scales. The magnetic fields saturates typically at a time
scale of the order 100 ω−1

p . After the saturation of the instability it is important to un-
derstand the relative distribution of magnetic field energy and the kinetic energy of
the flow. To explain the GRBs, this relative distribution needs to be close to equiparti-
tion, i.e. the magnetic field is comparable to the kinetic energy of the flow. Medvedev
and Loeb [41] studied the relativistic two-stream (Weibel) instability in an astrophysi-
cal scenario and predicted a near equipartition field distribution, where the magnetic
field energy density is comparable with the initial particle energy density. The ratio
between the energy density in the B-field and the initial kinetic energy density is of the
order of 10−3− 10−5 [40–42]. In the case of a pure electron-positron plasma, computer
simulations have conclusively demonstrated that the generated magnetic field reaches
sub-equipartition and grows to about 10% of initial kinetic energy density [40]. These
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predictions for the equipartition parameter 10−2− 10−1 agree with the values inferred
from GRBs afterglows. It is concluded that this instability can be the main mechanism
to generate sub-equipartition magnetic fields required to explain the afterglow emis-
sion of GRBs.

1.4 DARK-ELECTROMAGNETISM

The nature of the dark matter comprising over 23% of the mass of the universe
remains a mystery. Having been observed only through its gravitational interac-
tions [43], we know very little about the underlying particle physics of dark matter. A
huge array of theoretical possibilities remains open, spanning a 50 order-of-magnitude
mass range from ∼ 10−22 eV to ∼ 1019 GeV. Dark matter could have a wide variety
of possible non-gravitational interactions both with itself and with other particles. Al-
though all we can currently say is that they must be weak enough to have evaded
observation. Discovering such interactions would be a huge leap forward in under-
standing dark matter, and is one of the biggest goals of modern particle physics.

It was recently proposed that with the constrain of dark fine-structure constant
(αD = 10−3) and the mass of the Dark matter (DM) (mDM ≤ 10 TeV ), weak dark mat-
ter self-interactions could naturally occur with possible observable consequences for
large scale structure and halo dynamics. A minimal type of DM self-interaction is a
”dark electromagnetism”, which could cause DM to exhibit collisionless plasma-like
collective behaviour [44]. Besides their difference in charge to mass ratio, DM plasmas
can be considered to be cold and collisionless plasma. One of the key questions that
has been pointed out is whether plasma instabilities may have significant impact on
galactic dynamics [45]. Resolving this will determine whether or not such an inter-
action is consistent with current observations, and whether plasma instabilities may
have significant impact on galactic dynamics.

1.5 INERTIAL CONFINEMENT FUSION (ICF)

The recent developments of ultra-intense laser beams (intensity of the order of
1021− 1022 W/cm2) with durations shorter than 1 picosecond (ps) open new possibili-
ties to study different mechanisms for magnetic field generation that can be relevant in
inertial confinement fusion (ICF) experiment [46, 47]. In this approach, a small spher-
ical pellet containing micrograms of deuterium-tritium (DT) is compressed by pow-
erful laser beams. The enormous energy influx explodes the outer layer of the target;
the remaining portion of the target is driven inward. As a result, a shock wave forms
which is hot and dense enough to ignite the DT fuel [48]. Two approaches have been
systematically investigated:(i) direct drive and (ii) indirect drive. In indirect drive
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Conventional ICF

Fast Ignition

The target is compressed

The target is ignited The target burns

Ignited Burn

Laser light shines on the target

FIGURE 1.5: The standard scheme of Fast Ignition (FI): (a) capsule of DT fuel with an imbed-
ded cone of gold is irradiated by many symmetrically arranged laser beams, (b) the material
converges around the tip of a gold cone. The density of the DT is now hundreds of times
the density of solid material, (c) An ultra intense laser is fired onto the gold cone. When the
laser beam interacts with the tip of the gold cone, a large number of energetic electrons are
produced, (d) The energetic electrons travel into the dense DT fuel and deposit their energy.
This raises the fuel to 100 million degrees centigrade, which is hot enough to initiate the fusion
reactions. (Courtesy of HiPER)

the laser energy is converted into x-rays by the interaction with the holharum [49] to
obtain a symmetric compression from a limited amount of laser beam lines whereas
in the direct drive scheme a large number of beam lines is used to directly obtain a
symmetric compression directly from the laser light [50]. The fast ignition scheme
(FIS) is a more recent and an alternative approach to ICF. Using this scheme, very high
energies can be obtained by using a low energy driver. Thus, being very efficient in
terms of energy gain. It is also less expensive than conventional inertial confinement
fusion. The scheme of FI [51] is illustrated in figure 1.5. In this scheme, a capsule of
DT fuel is implanted on a gold cone. The spherical pellet of DT is compressed having
a density in the core of a target of the order of 300 g/cm3. Then, a very-short (∼ 10 ps)
high-power (70 KJ, 4 PW) intense laser beam is incident on the gold cone. When this
pulse interacts with the fuel, it produces energetic electrons (3.5 MeV) with relativistic
velocities. These electron beams transport the energy to ignite the hot spot in the core
of the pre-compressed target and heat up the fuel to 100 million degrees centigrade,
which is hot enough for thermonuclear reactions [52, 53].
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1.6 MAGNETIC FIELD GENERATION IN LASER-PLASMA IN-
TERACTIONS

The generation of strong magnetic fields is not only a topic of fundamental in-
terest in the extreme astrophysical objects but it also has importance in laser-plasma
experiments where similar physical processes could also be provoked. The advent of
multi-terawatt lasers (1019W/cm2) has been helpful to the investigation of such prob-
lems in the laboratory. Various mechanisms of generating magnetic fields have been
identified in the context of laser-solid interactions [54–57]. The production of large
quasi-static magnetic fields has been observed in laser-produced plasma. Such mag-
netic fields are observed to exceed 100-200 kG in early experiments of a short laser
pulse (100 ps) interacting with underdense plasma ne ' 0.2nc with target larger than
100 µm in diameter [58]. These magnetic fields can only be observed when the target
diameter is at least several times larger than the focal spot diameter. For laser pulse
lengths longer than 1 ns, one obtains a larger-scale toroidal magnetic field surround-
ing the laser spot. One is then tempted to attribute these toroidal fields to the∇n×∇T
mechanism [59], which is responsible for the Biermann battery, where a magnetic field
can grow from a configuration that is initially perfectly current and charge neutral, as
long as the plasma contains perpendicular temperature and density gradients. The
Faraday rotation of a high frequency electromagnetic probe beam has been used to
detect such magnetic fields [60].

The propagation of a short laser pulse in an overdense plasma has been widely
studied [61]. It was found that high intensity laser pulses drive electrons in the for-
ward direction. For such intense laser pulses, the electron velocity becomes relativistic
and with its progress in the background plasma, a return electron current flows in the
opposite direction to maintain the global charge and current neutrality. Plasma flows
lead to anisotropic velocity distribution which is unstable to transverse electromag-
netic perturbations and leads to the Weibel instability (WI) or the current filamentation
instability (CFI).

The Weibel instability also appears in the coronal region, typically for densities be-
low 1024cm−3 [62]. The evolution of the instability can be divided into two stages, In
the linear stage, the fast MeV-beam electrons move into the target; the plasma electrons
respond and a return current is set up compensating the micro-currents carried by the
fast MeV-beam electrons. These currents induce the magnetic field that reinforces the
initial disturbance. This instability generates electromagnetic fields, creating current
filaments and the magnetic field amplification. The growth rate of the instability is
given by Γ ∼ ω−1

p in the linear stage [63]. Later the magnetic field decays rapidly due
to the fact that the electrons reach thermal equilibrium and the ions begin to respond
to the instability. As a result, the Weibel instability ceases at a few 100 ω−1

p . The Weibel
instability breaks the flow of particles into tiny dissipated magnetic field regions. At
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this stage, the linear instability enters into the nonlinear dissipative stage and gets
filamented. Theoretically, it has been predicted that the magnetic field saturates at
Bsat ∝ Γ2 [64] and reaches a quasi-steady linear level with no or very slow decay on
a time scale much longer than 100ω−1

p . Both the analytical and numerical simulations
reveal that these instabilities can play an important role in stopping the hot electrons
in the core [65, 66]. Spontaneously generated magnetic fields by these plasma insta-
bilities are an undesirable effect in FIS scenarios [67]. Due to these instabilities, it is
a challenge to deposit energies of the order of 10 kJ in a small region of 20 µm radius
near the compressed core. Hence, it is necessary to understand the consequence of
these instabilities to design FI experiments. Several experiments have been conducted
to inspect the role of the Weibel instability in different scenarios [68, 69].

1.7 PARTICLE IN CELL SIMULATIONS OF PLASMA INSTABILI-
TIES

The importance of plasma instabilities in generating strong magnetic fields as in-
dicated by the synchrotron spectra has been widely recognized. In such instabilities,
the dynamics occur at electron time scales and the free energy of the plasma particles
are converted into magnetic energy. Thus, a kinetic approach is necessary to simulate
such systems. The particle-in-cell (PIC) method is one such suitable technique. We
have carried out multi-scale ab initio fully kinetic numerical simulations of plasmas
instabilities using the PIC code OSIRIS [39, 40].

Integration 
of equations of motion

Deposit current 
in grid

Integration 
of �eld Equations

Interpolate �elds 
at particles positions

Δt

FIGURE 1.6: OSIRIS: fully relativistic, electromagnetic, massively object oriented particle-in-
cell with a visualization and data analysis software package

OSIRIS is a fully relativistic, electromagnetic, massively object oriented particle-
in-cell (PIC) code with a visualization and data analysis framework (Figure 1.6). The
code has been developed for more than ten years by the Osiris consortium composed
by University of California at Los Angeles and Instituto Superior Técnico [70, 71].

The full set of Maxwell’s equations were solved on a grid using currents and charge
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densities calculated by weighting discrete particles onto the grid. Each particle is
pushed to a new position and momentum via self-consistently calculated fields. In or-
der to advance the particles, the Boris pusher has been implemented [72]. The method
is based on a multi-step process and is second-order accurate in time. The rotational
operator is replaced by a finite difference approximation on the grid and fields and
current are defined on shifted meshes for achieving a second-order accuracy. The inte-
gration in time follows a second order accuracy scheme. A charge-conserving current
deposition algorithm has been enforced [73].

The code is written in Fortran 90 in an object-oriented way. The parallelization
of the code is done for distributed memory system and it is based on the Message
Passing Interface (MPI) paradigm [74]. The parallelization is based on a domain de-
composition across the available nodes. The output data are saved in the HDF format,
a standard, platform independent and self-contained file format. Simulation result vi-
sualization is performed with visXD, a custom designed set of IDL (Interactive Data
Language) based tools [75].

1.8 ORIGINAL CONTRIBUTIONS

The primary goal of this thesis is to demonstrate the role of electromagnetic in-
stabilities generating magnetic fields in plasmas, which has been recognized in the
context of the inertial confined fusion (ICF) schemes, as well as in the study of gamma-
ray-bursts (GRBs). By using first principles kinetic simulations, we identify and estab-
lish those conditions, which will also allow to produce and test these astrophysical
conditions in laboratory plasmas. Each Chapter of this Thesis corresponds to at least
one paper, published or in preparation for publication. The thesis is organized in the
following fashion:

Chapter 2 discusses the basic theory beam-plasma interactions, followed by a de-
tailed discussion of the longitudinal to transverse instabilities. We discussed the dom-
inant mechanisms, i.e WI/CFI of magnetic field generation relevant to this thesis.

The physics associated with a realistic condition of the propagation of Ultra-
relativistic e−, e+ fireball beam or neutral plasma mimicking a realistic plasma shell,
with static plasma consisting of e−, p+ is studied in Chapter 3. Systematic numeri-
cal investigation of the multi-dimensional dynamics of the fireball expansion using
different fireball densities, temperatures, velocities and dimensions are investigated.
The investigation is focused on the propagation of short vs longer fireball beams, i.e.
beams that are shorter vs longer than the plasma wavelength, and on the propagation
of long beams, i.e. beams that are much longer than the plasma wavelength. The main
goal of this part of the work is to find ideal conditions for the amplification of mag-
netic fields, and modeling of possible experimental set-ups. In addition, we extend
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the studies of non-neutral e−, e+ beam propagation into plasma.

In Chapter 4, we studied the interaction of two dark electromagnetism electron-
positron (e−, e+) like plasmas. Assuming the electromagnetic interaction to be a fun-
damental interactions in dark matter, the studies of electromagnetic instabilities in
interpenetrating plasma flows can be extended to collision of dark clouds. The insta-
bilities can lead to slowdown of the bulk flow. These studies can help us understand
the distribution of the dark matter in space. We established a strong upper bound on
the strength of the dark electromagnetic like self-interaction.

Chapter 5 discusses the self generated magnetic field in laser matter interactions.
Ab initio particle-in-cell simulations of the interaction of short (≤ ps) intense (a0 ≥ 1)
laser-pulses with over-dense plasma targets show observable Weibel generated mag-
netic fields. This field strength surpasses that of the Biermann battery, usually domi-
nant in experiments, as long as the gradient scale length is much larger than the local
electron inertial length; this is achievable by carefully setting of the appropriate gradi-
ents in the front of the target e.g. via pump-probe configurations.

Finally, Chapter 6 summarizes the thesis and discusses possible future research
directions.

The work developed in this Thesis has led to the following scientific publications:

1. Generation of neutral and high-density electron-positron pair plasmas in the lab-
oratory, G Sarri, K. Poder, J. M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T.
Dzelzainis, D. Doria, L. A. Gizzi, G. Grittani, S. Kar, C. H. Keitel, K. Krushelnick,
S. Kuschel, S. P. D. Mangles, Z. Najmudin, N. Shukla, L. O. Silva, D. Symes, A. G.
R. Thomas, M. Vargas, J. Vieira, and M. Zepf, Nature communications 6 (2015).

2. Condition for the onset of the current filamentation instability of ultra-relativistic
fireball bunches in plasmas, N. Shukla, J. Vieira, P. Muggli, G. Sarri, R. A. Fon-
seca, L. O. Silva, Journal of Plasma Physics 84 (2018).

3. Ultra-relativistic fireball beam interaction with plasma, P. Muggli, S. F. Martins, N.
Shukla, J. Vieira, L. O. Silva, arXiv e-prints (2013), arXiv:1306.4380.

4. A (Nearly) Weaker-than-Gravity bound on long range dark mater interactions,
N. Shukla, K. Schoeffler, J.Vieira, R. A. Fonseca, L. O. Silva, J. Mardon, and B.
Feldstein, in preparation to Physical Review D (2019).

5. Weibel magnetic field competes with Biermann field in laser-solid interactions, N.
Shukla, K. Schoeffler, E. Boella, J.Vieira, R. A. Fonseca, L. O. Silva, in preparation
to Physical Review Letters (2019).



CHAPTER 2

PHYSICS OF RELATIVISTIC CHARGED PAR-
TICLE BEAM PROPAGATION

2.1 OVERVIEW

In early 1960, an intense particle beam with power levels up to 1013W was pro-
duced using Marx generator technology for time durations of the order of 10-100 nsec.
Since then, there have been rapid advances in pulse technology at a number of major
laboratories around the world. For example, experiments at SLAC laboratory are ca-
pable of driving charged beams with 1010 particles per pulse with 120 Hz repetition
rate up to an energy of 50 GeV. Much of the research interest in using the interaction
of such intense beam with plasmas is to investigate particle acceleration via Plasma
Wakefield Acceleration (PWFA) [76–78] and to generate magnetic field via plasma in-
stabilities in order to probe the phenomenon in the laboratory, this explaining ener-
getic phenomena in astrophysical objects [79, 80].

In the following section, the basic physics of propagation of intense relativistic
charged particle beams into the vacuum and through a plasma is briefly addressed
from a theoretical point of view [9, 41]. Results of this section will help to understand
the microphysical plasma processes that have been explored by the means of first prin-
cipal kinetic simulations for different regimes.

2.1.1 CONCEPT OF PROPAGATING A CHARGE PARTICLE BEAM IN VACUUM

A charged particle beam is a bundle of moving particles such that the trajectories
generally make a small angle with the axis of propagation. The dynamics of charged
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particles is subjected to self-electric and magnetic fields which obey Maxwell’s equa-
tions

∇ · E = 4πρ (2.1a)

∇× E = −1
c

∂B
∂t

(2.1b)

∇ · B = 0 (2.1c)

∇× B =
4π

c
J +

1
c

∂E
∂t

(2.1d)

where E, B are the electric and the magnetic field and ρ = |q|n and J = |q|n v are the
charge and current densities of the beam, which satisfy the continuity equation

dρ

dt
+∇ · J = 0 (2.2)

The force on a point charge q (e−, e+) and velocity v in an electromagnetic field is
defined by Lorentz force

dP
dt

= |q|
(

E +
v× B

c

)
(2.3)

where P = γmv is the relativistic momentum with γ = 1/(1− β2)1/2, known as
Lorentz factor and β = |v|/c.

To explore the key aspects of the beam dynamic, a cylindrically symmetric beam
around the propagation z-direction is assumed. The velocity is decomposed into lon-
gitudinal and transverse components

v = vr êr + vθ êθ + vz êz (2.4)

For a monochromatic relativistic beam, it is assumed that the transverse random
motion is smaller than the longitudinal motion |vr|, vθ � vz. This assumption is
known as the paraxial approximation and it entails that the particles only slightly
deviate from their axis. The beam emittance is therefore neglected. Hence, the per-
pendicular components of the equation of motion are given by:

d(γmv⊥)
dt

= q
(

E⊥ +
(v× B)⊥

c

)
(2.5)

An intense beam in the absence of external fields propagating in vacuum evolves in
its self-fields. The radial electric force due to the beam space charge always dominates
the self-magnetic pinching force. By transforming to a reference frame with the beam,
the magnetic field can be transformed away however the radial electric field does not



2.1 Overview 17

change sign. Therefore, it requires a degree of space charge neutralization for the
existence of a radial force equilibrium.

Let’s consider a cylindrically symmetric electron beam with velocity ve = βc and
density ne propagating in a stationary ion background of density ni. The radial force
Fr on a test electron can computed as:

Fr = −e (Er − βBθ) (2.6)

From Gauss’ law and Ampere’s law, Er and Bθ can be estimated as:

Er = −
4πe

r

∫
ne (1− fe) rdr (2.7)

Bθ = −
4πe

r

∫
βnerdr (2.8)

where fe = ni/ne is fractional electron space charge neutralization. Substitution of
Eqs. (2.8, 2.7) into Eq. (2.6), the radial force yields

Fr =
4πe2

r

∫ (
1− fe − β2) nerdr (2.9)

If fe = 0, the beam is unneutralized, the force is radially outward and beam ex-
pands (since 1− β2 > 0). Therefore, fe = 1− β2 = γ−2

b is required for Fr = 0.

The neutralization of a high intensity relativistic electron beam can also be achieved
by using a strong longitudinal magnetic field. However, ion beams require the strength
of such a field to be too high to be practical. Although the required magnetic field is
feasible for the stability of beam propagation, there still exists a limit to the amount
of current that can propagate. It can transport current only up to a maximum value,
called Alfvén current limit [81]. This is because currents larger than the Alfvén current
IA generate a magnetic field large enough that the Larmour radius of the electrons
becomes smaller than the beam radius. As a consequence, the beam is not further
transported in the beam direction. For relativistic beams the Alfvén current IA limit is

IA = βγ
4πmc
qµ0

=
qcβγ

rb
≈ 17000βγA (2.10)

where rb is the electron classical radius. This fundamental current limit was first de-
rived in 1939 by H. Alfvén [81], who studied the propagation of electrons through a
plasma in space. A more detailed description of the beam equilibrium configurations
is discussed in [81, 82].
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2.1.2 PROPAGATION OF A CHARGED PARTICLE IN A PLASMA

The situation changes when an intense beam passes through a background plasma
because the displacement of plasma charges tends to neutralize the beam self-fields.
During the beam injection, the background plasma electrons move out of the beam
region during the characteristic time (4πσ/c)−1, which is typically quite short (10−9

sec). The net space charge effects are quite minimal which does not pose a serious
limitation to beam transport in plasma. However, the azimuthal self-magnetic fields
of the beam cause a further limitation on the beam transport in plasma. Hence, the
Alfvén limit is modified and corresponds to the charge and current neutralization
fractions [83]

Er = 2πen0rb(1− fe), Bθ = 2πen0rbβ0(1− fm) (2.11)

where fe and fm are the fractional electric and magnetic neutralization due to the
counter-streaming plasma current. When fe = 1 the beam is fully neutralized and,
as a consequence of the self-focusing forces, it pinches. When fm = 1 no net fields
act on the beam particles which propagates following linear trajectories. Therefore, if
fe = fm = f , the force experienced by the charged particle beams becomes:

Fb = −e(Ebr + vb × Bθ)(1− f ) ∝
1

γ2 (−eEbr)(1− f ) (2.12)

where vb is the beam velocity and γb is the Lorentz factor. Hence, beams defocuse at a
rate ∝ 1/γ2

b , which is known as Bennett pinch [83]. Therefore, for a highly relativistic
beam the defocusing force is sufficiently small. As a consequence, the electric field
produced by a relativistic beam compensates almost the self produced magnetic field.

The neutralization of a high intensity relativistic electron beam can also be achieved
in the presence of stationary ions with mass mi. When the beam propagates in the
presence of a background plasma, it creates a current imbalanced in the system which
is reduced or eliminated by the plasma ions. Therefore, the total current density is
Jb + Jp = 0, Jb = −enbvb and Jp = Zienivi. As a consequence, it reduces the defocusing
forces [84]:

Fb = −e((Ebr − Epr) + vb × (Bbθ − Bpθ)) (2.13)

where Ebr, Epr and Bbθ , Bpθ are the self electromagnetic fields of the electrons and plas-
mas, respectively.

An intense relativistic charged particle beam containing a uniform current den-
sity with no emittance can propagate long distances without expansion in the plasma.
Even in this area, there are two distinct regimes for beam-plasma interactions depend-
ing on the ratio between the transverse size of the beam (σr) and the collisionless skin
depth (c/ωp) of the plasma:
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• Plasma focusing regime: In this regime, the transverse beam size is smaller than the
plasma skin depth (σr � c/ωp or kpσr < 1). A relativistic electron beam propa-
gating into a neutral plasma pushes away the electrons via electrostatic repulsive
forces. The plasma ions remain immobile because of their high mass. The ma-
jority of the plasma return current flows outside of the beam. Thus, Jb > Jp and
np/np < 1 lead to Bbθ > Bpθ . Therefore, the net magnetic fields |Bbθ − Bpθ | > 0
and the background plasma ion Coulomb attractive forces focus the beam reducing
the size of the radial beam size σr. In the linear regime, the focusing forces scale
with the beam density, Fb ∝ nb. Thus, the beam generates longitudinal and trans-
verse wake fields. This process is at the base of the mechanism for accelerating
electrons called PWFA, which can accelerates electrons to GeV in few centimeters,
thus constituting de facto a table top accelerator [85–87].

• Return current regime: When a highly relativistic beam enters a plasma, it displaces
the plasma particles, driving a return current. If the transverse beam size is larger
than the plasma skin depth (σr ≥ c/ωp or kpσr > 1), the current flows through
the beam. In this case, the net magnetic field |Bbθ − Bpθ | = 0. The beam is subject
only to the net electric field. Even though the system is not fully neutral, this signifi-
cantly reduces the focusing force. One of the key problems in the beam propagation
in this case is its stability. As the beam interacts with the plasma it can drive sev-
eral plasma instabilities. In addition, the growing mode is amplified and damped
during the propagation. Depending on the density, bulk velocity and emittance of
the beam, parallel and transverse modes can be generated [88–91].

2.1.3 EFFECT OF EMITTANCE

So far the analysis has been limited to beams with zero emittance. A realistic beam
contains finite emittance. The beam emittance is related to the area of the beam in the
transverse x⊥, p⊥ phasespace and it constitutes also a measurement of its divergence.
The normalized transverse phase-space emittance is defined as:

ε̂x =
< pz >

ε̂

√
< x2 >< x′2 > − < xx′ >2 (2.14)

where x is the transverse particle position measured from the beam axis. In addi-
tion,

√
< x2 >,

√
< x′2 > and

√
< x2x′2 > are the rms beam size, angular spread and

correlation between x and x’, respectively. The normalized transverse phase-space
emittance is expressed as [92, 93]:

εn =
1

mec

√
< x2 >< p2

x > − < xpx >2 (2.15)

where is px = vxγmec. If we neglect the terms < xpx >2, then
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ε̃x = x̃x̃′th = x̃
ṽx,th

v0
(2.16)

where x̃ =
√

x2 is the transverse beam size and ṽx,th =< x′2 >= px/pz is the beam
divergence. The spread in momentum, or velocity, increases the emittance, which
tends to bend the beam spread apart. It is possible to relate the transverse beam energy
spread with its effective temperature :

1
2

meṽ2
x,th = 2

1
2

kBT⊥ (2.17)

where kB and Te⊥ are the Boltzman’s constant and the transverse beam temperature.
The beam emittance is an initial condition for the particles velocity and it leads to the
defocusing of the beam.

2.2 BEAM-PLASMA INSTABILITIES

The propagation of an intense particle beam into a plasma is subjected to a variety
of plasma instabilities [94]. These instabilities are excited and amplified by the kinetic
energy of the beam, which represents substantially a source of free energy. The studies
concerning beam plasma instabilities are usually carried out by using standard per-
turbation techniques. If the system is unstable, an initial perturbation increases with
time, causing a rapid growth of the electromagnetic field until the plasma reaches
again an equilibrium state. In the following section, a general description of collective
processes of intense charge particle beams interactions with plasma are provided by
resorting to plasma kinetic theory.

2.2.1 KINETIC DESCRIPTION OF A RELATIVISTIC COLLISIONLESS PLASMA

In kinetic theory, a closed set of linearized Vlasov and Maxwell equations are used
to derive a linear dispersion for beam-plasma interactions. Here, a relativistic, homo-
geneous and spatially infinite collisionless plasma is considered. Initially, the system is
charge and current neutral ( i.e ∑j qjn

(0)
j = 0, ∑j qjn

(0)
j v(0)

j = 0, where v(0)
j is velocity of

the species). External magnetic or electric fields are not considered. The initial pertur-
bation for E and B is assumed to be small enough, such that the linear approximation
remains valid. Each plasma species obeys an initial momentum distribution f (0)j (p)

normalized to unity in the momentum space (
∫

f (0)j (p)dp = n(0)
j ). The linearized

Vlasov equation for the total jth distribution function is f = f (0)j (p) + f (1)j (p). The
following closed set of equations is required to derive the linear dispersion relation
and to determine the complete dynamics of the plasma:
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∂ f j

∂t
+ vj · ∇r f j + qj

(
E + vj × B

)
· ∇p f j = 0, (2.18)

ρ(x, t) = ∑
j

qjnj = ∑
j

qj

∫
d p f j(x, p, t), (2.19)

J(x, t) = ∑
j

qjnjvj ∑
j

qj

∫
d p vj f j(x, p, t), (2.20)

where vj (pj/mjγ) and γ =
√

1 + |p|2/(mjc)2 are the relativistic velocity and the
Lorentz factor. In order to derive the electromagnetic dispersion relation, the system
includes Faraday’s (2.1b) and Ampere’s laws (2.1d). There is no collision, hence the
particles do not interact directly with each other instead interacts via electromagnetic
fields.

2.2.2 THE LINEARIZED VLASOV-MAXWELL MODEL

The above system of equations has been linearized and perturbations ∝ exp(ik ·
x − iωt), such that ∂/∂t → −iω, ∂/∂x → −i k have been considered. The Vlasov
equation becomes:

−iω f (1)j + iv · k f (1) + qj

(
E(1) + vj × B(1)

)
· ∇p f (0)j = 0, (2.21)

f (1)j =
iqj

mj(k · v−ω)

(
E(1) + vj × B(1)

)
· ∇p f (0)j , (2.22)

which results the density current J(1) = ∑j qj
∫

d p v f (1)j and the linearized Maxwell-
Faraday’s and Maxwell-Ampere’s equations,

ik× E(1) = i
ω

c
B(1), (2.23)

ik× B(1) = −i
ω

c
E(1) +

4π

c
J(1), (2.24)

By combining Eq. (2.23) and (2.24), the following expression is found

k× k× E(1) +
ω2

c2

(
E(1) +

4π

ω
J1

)
= 0, (2.25)

which can be rewritten as
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T(k, ω) · E(1) = 0, (2.26)

with

T(k, ω) =
ω2

c2 ε(k, ω) + k⊗ k− k2I (2.27)

where ⊗ denotes tensor product, and the dielectric tensor is given by

εαβ(k, ω) = δαβ + ∑
j

ω2
pj

ω2

∫
dp

pα

γ
·

∂ f (0)j

∂pβ
+ ∑

j

ω2
pj

ω2

∫
dp

pα pβ

γ

k · ∂ f (0)j /∂p

mωγ− k · p (2.28)

FIGURE 2.1: Axis conventions adopted in this chapter considering the wavevector~k lies in the
(x, z) plane

Equation (2.27) has non-zero solutions if and only if det |T| = 0. This allows
for finding one or more ω’s, (ω1,k, ..., ωn,k ∈ CN) as a function of k, known as the
dispersion relation. Each couple (k, ωj,k) defines a proper mode of the system and the
unstable modes are those with Im(ω) > 0. Without loss of generality, the wave vector
of the perturbation can be preferably considered in the plane k = (kx, 0, kz) as shown
in Figure 2.1 and that f is an even function of px, py. Hence, all off diagonal terms
(εxy = εyz) are zeros except εxz. The final form of the tensor T then reads:

T =

∣∣∣∣∣∣∣
ω2

c2 εxx − k2
z 0 ω2

c2 εzx + kxkz

0 ω2

c2 εyy − k2 0
ω2

c2 εxz + kxkz 0 ω2

c2 εzz − k2
x

∣∣∣∣∣∣∣ (2.29)
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The dispersion relation is solved looking for ω looking for roots with positive imagi-
nary part, which corresponds to growing unstable modes depending on the orienta-
tion of the wave vector and any orientation of the electromagnetic field with respect
to the wave vector.

2.3 A MULTIDIMENSIONAL UNSTABLE SPECTRUM

There has been considerable theoretical progress in studying multidimensional
beam-plasma instabilities in the relativistic and non-relativistic regime. In 1925, Lang-
muir first suggested the existence of oscillations in beam-plasma systems, which was
demonstrated by Pierce in 1948 showing unstable oscillations that arise within such
systems. In 1949, Bohm and Gross discovered unstable perturbation along the beam
direction using a kinetic approach, known as the electron two-stream electrostatic
instability (TSI). Later on, Weibel [30] and Fried [95] showed that the beam-plasma
system can also be unstable against electromagnetic modulations, also known as the
Weibel/Current Filamentation (WI/CFI) electromagnetic instability. Bludman et al.
[96] suggested a third type of instability, which is unstable against arbitrary k with
respect to the flow, known as the Oblique instability (OBI). There are many possible
ways to excite these modes in laboratory such as intense charge particle beam-plasma
interactions or two counterpropagating plasma flows, due to laser-plasma interaction.
Because of their large presence and importance, the most common configuration of
two counter-propagating neutral plasmas is considered. A whole class of instabilities
potentially could develop in this configuration [94].

Two identical components of an unmagnetized plasma composed of relativistic
electrons and positrons are considered. The beam is homogeneously infinitly long (�
c/ωp). Initially the beams are current and charge neutral. Therefore, the equilibrium

velocity and the number density are v(0)e1 = v(0)p1 ≡ v(0)1 , v(0)e2 = v(0)p2 ≡ −v(0)2 and n(0)
e1 =

n(0)
p1 ≡ n(0)

1 , n(0)
e2 = n(0)

p2 ≡ −n(0)
2 , respectively. We indicate each of them with ja, where

j specifies the charge of the species and a specifies the beam to which it belongs. At
equilibrium, we have

J(ε) = JBeam1(ε) + JBeam2(ε) (2.30)

In this configuration, the interpenetration between two neutral plasma beams
could in principle induce several instabilities, involving transverse and parallel modes,
that allows small field perturbations to grow exponentially. The full unstable wavenum-
ber k spectrum has been intensively studied in the cold plasma limit. Bi-Maxwellian,
waterbag, Maxwell-Jüttner and kappa distribution functions are the most commanly
used beam distribution functions to derive the linear dispersion relation for longitu-
dinal, oblique and transverse instability [94]. Since it is cumbersome to analyze the
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coupling between the electrostatic and electromagnetic modes, significant progress
has been made by considering the electrostatic and electromagnetic modes separately.
In order to derive the dispersion relation of TSI/WI/CFI/OBI, an initial cold distribu-
tion function for each species is considered:

f (0)ja = δ(px)δ(py)δ(pz − pja) (2.31)

Eq. (2.29) exhibits two main branches.

— First branch shows the well-known dispersion relation of the electromagnetic waves
propagating (k ⊥ E) in a plasma:

ω2εyy − k2c2 = 0, (2.32)

ω2 + k2c2 −∑
p,ja

ω2
p,ja

γja
= 0 (2.33)

where ωp,ja = ∑p,ja

√
4πe2nja/me is the electron plasma frequency, e the elementary

charge, me the electron mass and ω and k the wave frequency and wavenumber
respectively.

— The second branch defines mixed modes (longitudinal, transverse or more general
Oblique) with electric field the associated in the (x, z) plane:

(ω2εxx − k2
zc2)(ω2εzz − k2

xc2)− (ω2εxz − kxkzc2)2 = 0, (2.34)

The analysis of this dispersion relation gives unstable growing modes. In next
sub-sections, we distinguish three major types of instabilities (TSI, WI/CFI, OBI), sep-
arately.

2.3.1 PURELY LONGITUDINAL INSTABILITY: TWO-STREAM INSTABILITY

(TSI)

Eq. (2.34), for the wave vector parallel to the beam flow, kx = 0, the off-diagonal
terms εxz vanishes, giving rise to:

(ω2εxx − k2
zc2)ω2εzz = 0, (2.35)

The dispersion relation for the purely two-stream instability is obtained for εzz = 0
(see Appendix A):
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D(k, ω) = 1−
ω2

p,ja

2

[
1

γ3
1(ω− kv(0)1 )2

+
1

γ3
2(ω + kv(0)2 )2

]
(2.36)

When two plasma beams propagate against each other, a density perturbation on
one beam is reinforced by the force due to bunching off the particles in the other stream
and vice versa. As a consequence, the beam velocity is higher than the phase speed
of plasma waves vb > ωpe/k. Hence, the instability is being seeded by spatial inho-
mogeneities, in which electrons are bunched together, and their energy is transformed
into the energy of plasma waves. The perturbation grows exponentially in time driv-
ing purely longitudinal electric fields. The instability stops growing when all the free
energy of the beams is converted into field energy. At saturation, the beams thermalize
and a hot plasma is formed.

2.3.2 TRANSVERSE ELECTROMAGNETIC INSTABILITY

Now, if we consider wave vectors normal to the flow, i.e. kz = 0, we obtain the
following dispersion relation

εxx(ω
2εzz − k2

xc2)−ω2ε2
xz = 0, (2.37)

The unstable solutions of this dispersion relation have an electric field that, in gen-
eral, lies in the (x, z) plane. The collection of these modes represents the instability
called filamentation instability. Generally, the filamentation instability is not consid-
ered to be a purely transverse mode i.e it has a finite electrostatic component [97].
However, when the beam and return current are perfectly symmetric (i.e with same
density, drift energies and temperature), there is no space charge separation, εxz = 0,
leading to the purely transverse mode. Thus, we can recover the dispersion relation
of purely ”transverse” filamentation instability.

εzz − k2
xc2/ω2 = 0, (2.38)

In the literature, two classes of purely transverse electromagnetic instabilities are re-
ported, i.e the Weibel (WI) [30] and the Current Filamentation instability (CFI) [95].
Even though, these two instabilities are quite similar in nature driving a purely trans-
verse mode, but there is a difference how these instabilities are generated in the first
place. The Weibel instability is generated due to temperature anisotropy in a homo-
geneous collisionless plasma. However, the CFI is strictly driven due to counterprop-
agating beams (see Fig 2.2). During the past few decades, the WI and CFI have been
thoroughly studied both theoretically and as well experimentally [94,98]. In following
section, we briefly explain the basic mechanisms of WI and CFI.
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FIGURE 2.2: (From Bret et al. [94]) Illustration of typical distribution functions subject to the
Weibel and the filamentation instabilities. An anisotropic Weibel-unstable hot plasma can be
approximated by a cold filamentation-unstable two-beam system.

WEIBEL INSTABILITY

The Weibel instability [30] is considered to be the most important for a purely
growing electromagnetic mode in an anisotropic plasma (for full derivation see Ap-
pendix B). In his seminal paper [30], Weibel found that an anisotropic plasma having a
directional dependence of the temperature is unstable against a magnetic field pertur-
bation. Transverse modes are amplified in a collisionless plasma even in the absence
of an external magnetic field. The free energy is stored in the electron temperature
anisotropy, which causes a purely growing magnetic field. Ions is assumed to be im-
mobile. The dispersion relation in an unmagnetized plasma was derived by using a
closed set of linearized Vlasov-Maxwell equations, given by

ω2 − k2c2 −
∫ ∞

0

∫ ∞

−∞

(
∂ f0

∂v0
− v0k

(ω + kvz)

∂ f0

∂vz

)
v2

0 dv0 dvz = 0, (2.39)

where f0(v) is an anisotropic distribution functions for the electrons, with v2
0 = v2

x +

v2
y. The wave vector k is parallel to the z-direction, and a bi-Maxwellian distribution

function (temperature anisotropy (v0/vz)2− 1 > 0) was chosen to solve Eq. (2.39) and
determine the growth rate Γ of a purely growing electromangetic growing wave. The
distribution function is thus given by:

f0 =
n0

v2
0vz(2π)3/2

exp
(
− v2

0

2u2
0
− v2

z
2u2

z

)
, (2.40)

where u0 and uz are the intial thermal velocities in the direction of v0 and vz, respec-
tively. The dispersion, in the limit ω/kvz � 1, reads

ω4 − (ω2 + k2c2)ω2 − k2u2
0ω2

pe = 0, (2.41)

where ω is the frequency of the unstable wave.The solution of the biquadratic Eq.
(2.41) is
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ω = ±
(

1
2
[(ω2

pe + k2c2)± ((ω2
pe + k2c2)2 + 4k2u0ω2

pe)
1/2]

)1/2

. (2.42)

The negative imaginary solution of the above equation shows the growth rate of self-
excited waves. In the limit kuz/ω � 1 (and thus u0 � uz) is

ω ' i
ku0ωpe

(ω2
pe + k2c2)1/2 , (2.43)

Hence, a large electron temperature anisotropy drives the instability with a higher
growth rate. The saturation of the Weibel instability is magnetic trapping of particles
in filaments [99]. When the magnetic field reaches the value

Bsat =
γ2

i Γ2
i0mi

kui0ei
(2.44)

When the magnetic fields are so strong that the Larmor radius becomes smaller than
the thickness of the filaments, particles entering the filament will move in closed or-
bits. The particles cannot overcome the magnetic potential and are trapped.

CURRENT FILAMENTATION INSTABILITY

The physical picture of the Weibel instability in the presence of counterstreaming
electron beams in plasmas was given by B. D. Fried [95]. To understand the physi-
cal mechanism of the Weibel instability, let us consider a system of counterstreaming
electrons moving parallel and anti-parallel to the x-axis (see Fig. 2.3). We also assume
some initial perturbation in the magnetic field B = ẑBz cos(ky), which is polarized
along the z-axis and propagating along the propagating along the y-axis, arising from
noise. As electrons move, they experience the Lorentz force ∝ (−e(v/c) × B). The
electrons are deflected by the magnetic field and micro-currents, in turn, enhance the
initial magnetic fluctuation due to the Lorentz force. The growth rate for the Weibel
instability in the presence of two-components of non-relativistic electrons streaming
(with the speed ve) relative to each other is

Γmax =
ωpeve

c
, (2.45)

The magnetic field generated by the instability always lies in the plane perpendic-
ular to the bulk electron motion. The case of the Current filamentation instability with
the ultra-relativistic electron streams (viz., ve/c ∼ 1) was investigated by Yoon and
Davidson (derivation see Appendix B) who obtained the maximum growth rate as

Γmax =
ωpe

γ1/2 , (2.46)
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FIGURE 2.3: Physical mechanism of the Weibel instability: counter-propagation of two elec-
tron beams [41].

where γ = (1− v2
e /c2)−1/2 is the relativistic gamma factor. The instability generates a

transverse magnetic field.

The Weibel plasma instability has a wide range of relevance in astrophysical plas-
mas, such as gamma ray burst sources, supernovae and galactic cosmic environments.
The Weibel instability has been extensively studied in both the relativistic and nonrel-
ativistic regimes [30, 41, 67, 94, 95] .

2.3.3 OBLIQUE INSTABILITY

In an ultra-relativistic dilute electron beams propagating through a cold plasma,
the oblique instability grows faster than CFI/WI. The modes of the instability lie in the
plane perpendicular or in between the longitudinal kx and transverse kz plane. The
modes were first investigated in the fluid approximation [96]. There are two distinct
regimes i.e cold plasma limit or hydrodynamic (reactive limit) and kinetic regime.

HYDRODYNAMIC (REACTIVE) REGIME

In this limit, the particle distribution function does not play a role in defining the
physics of the instability, as it is only the bulk response that is important. The beam
particles are resonant with the unstable wave over a timescale much longer than the
growth time, i.e., the beam particles do not drift a distance larger than the wavelength
of the unstable mode over the growth time of the instability. The growth rate of the
oblique instability in the reactive regime can be calculated directly from the continuity
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equation and the momentum equation in cold plasma limit kBT → 0, we find (for full
derivation see Appendix C)

ωOBL(k) =

√
3

24/3

(
2α

γb

)1/3
(

k2
z

k2 +
k2

x

γ2
bk2

)1/3

ωp (2.47)

where kx and kz are the longitudinal and transverse components of the wave vector
relative to the beam. The transverse inertia is much smaller than the longitudinal
inertia (by a factor of γ2

b), so that the modes transverse to the beam are the easiest to
be excited. The fastest growing oblique mode occurs at kx ∼ kz ∼ k/

√
2

ωOBL(k) ∼
√

3
24/3

(
2α

γb

)1/3

ωp (2.48)

KINETIC REGIME

The linear and nonlinear features of the oblique modes in a fully kinetic framework
indicates a specific orientation of the wave vector relative to the beam velocity vector
for which the instability domain is unbounded. Given the symmetries of the problem,
the dispersion relation for the oblique instability is given by the Eq. (2.34) within the
(x, z) plane. We consider the ions are immobile providing the neutralization condition.
The dielectric tensor components εij are given by

εij(ω, k) = δij + Σα=b,p
nα

ω2

∫ ∫ ∫ pi

γ

∂ f 0
α

∂pl
d3 p + Σα=b,p

nα

ω2

∫ ∫ ∫ pi pj

γ2
k · ∂ f 0

α

(ω− k · p/γ)
d3 p

(2.49)
where nα is density of the electrons beam and plasma (hereafter labeled b and p) nor-
malized by the total electron density.

Finally, it is useful to summarize the hierarchy of these modes for the cold regime
in the (α, γ) phase space. In Table 2.1, we report the dimensionless maximum growth
rates of competing instabilities, with their variation from 1 � α < 1 (where α =

nb/np). In the case α� 1; the couple of longitudinal and transverse modes becomes
important provided the wave vectors have both the two components. In this case the
growth of the instability is contributed to both components (longitudinal and trans-
verse component see Fig. 2.4). Therefore, it is hard to distinguish between purely lon-
gitudinal and transverse mode in this case. As a result, the grow rate of this oblique
instability has an intermediate value between their grow rate. On other hand, for
α= 1, the transverse filamentation instability grows faster than the longitudinal mode.
There is no oblique extremum in this case.
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FIGURE 2.4: Illustration of the beam-plasma instabilities (Cottrill el al. [100])

TABLE 2.1: Analytical expression of the dimensionless maximum growth rate Γ̃max and associ-
ated dimensionless wave vector k in the cold limit for each class of instability in the case α� 1
and α= 1 (where α = nb/np)

Two-stream Filamentation Oblique
α� 1
Γ̃max ∼

√
3

24/3
α1/3

γb
∼ βb

√
α
γb

∼
√

3
24/3

α1/3

γb

k̃z ∼ 1 0 ∼ 1
k̃x ∼ 0 � βb � 1
α= 1

Γ̃max ∼
√

1
2γ3

b
∼ βb

√
2

γb
...

k̃z ∼
√

3
2γ3/2

b
0 ...

k̃x ∼ 0 �
√

2 βb

γ3/2
b

...
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During the past few decades, two/three dimensional, relativistic, massively par-
allel, particle-in-cell code are being used to model beam-plasma interactions. These
simulations represent an efficient and powerful tool probing the microphysics on the
time scale of the electron collective dynamics. The growth of electrostatic and trans-
verse electromagnetic modes trigger due to the interaction of the plasma stream. The
instabilities give rise to the growth in the electric or magnetic field energy which grows
exponentially with time (< E2 >,< B2 >∝ exp(2Γt)), where Γ is the growth rate of the
instabilities. In general, we normally discuss the linear growth of a given instability
since theory can only predict the linear phase of the instability. Obviously, the linear
phase cannot grow indefinitely. At some point the instability enters the non-linear
phase and the instability stops growing.

2.4 CONCLUSIONS

In conclusion, the stability of beam propagation in vacuum and plasma is intro-
duced. The full electromagnetic dispersion relation in the entire k-space associated
with the Bi-Maxwellian and waterbag distribution functions is briefly described. We
also briefly discuss condition how current filamentation instability can be observed in
the finite beam-plasma system.

Relativistic and non-relativistic plasma outflows are quite ubiquitous in astrophys-
ical scenarios, as well as in laboratory plasmas. The plasma outflows are an important
candidate to mediate shock formation, energy transfer processes, non-thermal parti-
cle acceleration and generation of large-scale magnetic field via current filamentation
(CFI)/ Weibel instability. The goal of this thesis is to identify and investigate those
astrophysical conditions, which will allow as to reproduce astrophysical scenarios in
laboratory plasmas.





CHAPTER 3

PROPAGATION OF A NEUTRAL BEAM INTO

AN UNIFORM PLASMA

3.1 OVERVIEW

Relativistic outflows of lepton mass, with an arbitrary mixture of electrons-posi-
trons-ions (e−e+p+), are ubiquitous in astrophysics such as jets from active galactic
nuclei (AGN), gamma-ray bursts (GRB), and ultrahigh-energy cosmic rays (UHECR).
Recent advent in the observation of such high-energy astrophysical object demands to
be investigated in the laboratory which is required to gain insights into the underly-
ing physics. It is known that these baryonic highly collimated objects are expanding
at Ultra-relativistic velocity interacting with surrounding mediums. There are many
outstanding problems in astrophysics closely associated with these flows and have
strong connections with particle acceleration, shock formation, magnetic field genera-
tion or non-thermal radiation. The role of microscopic collisionless plasma instabilities
plays a pivotal role dissipating the free kinetic energy of an ultra-relativistic plasma-
shell into electric and magnetic turbulence, ultra-high energy charged particles and
non-thermal radiation.

Although such extreme experimental conditions relevant for astrophysics are com-
plex and needs a careful design of such complex experiments, a theoretical together
with sophisticated computer simulations effort is quite essential to provide the ex-
perimental condition for future fireball experiments. The possibility to explore in the
laboratory the physics of relativistic outflows would be of great interest not only for
astrophysics but also to understand the physics of relativistic beam-plasma interac-
tions. Experimentally probing of the relativistic fireball model is still an open chal-
lenge, since the creation of these astrophysical conditions in the laboratory is very
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difficult. However, present laboratory facilities, such as the Stanford Linear Acceler-
ator (SLAC), may offer a possible solution to this problem [101, 102]. Nevertheless,
theoretical and numerical work is still necessary. Thus, the prime goal of this work
is to investigate the physics of fireball beams by mimicking astrophysical conditions
in the laboratory through the detailed investigation of the expansion and dynamics of
fireball beams in plasmas.

This Chapter is organized as follows: In section 3.2, we briefly elaborate the future
possible experimental set-up within the framework provided at the Stanford Linear
Accelerator Center (SLAC), could produce a neutral beam that resembles high-energy
astrophysics phenomena in the lab. Section 3.3 demonstrates the regime of the exis-
tence of two competing instabilities i.e Current Filamentation and Oblique Instability
which depends on the bunch length. We investigated a detailed numerical and the-
oretical studies of a fireball beam propagation into a pre-formed static plasma using
ab initio multi-dimensional relativistic PIC simulations, which mimic realistic astro-
physical scenarios in Section 3.3.1. The detailed investigation of SLAC fireball beam
interaction with plasma is being carried out using ab initio 3D/2D PIC simulations.
The numerical method OSIRIS [70, 71] and unique computational infrastructure (IST
cluster), which supports this work, is developed and maintained at GoLP. The multi-
dimensional dynamics of the fireball beam using different densities and beam sizes
are demonstrated in section 3.3.2. In Section 3.4, the effects of beam emittance with
different beam velocities are described. In addition, the effect of energy spread of the
fireball beam is demonstrated through 2D PIC simulations and verified by the the-
oretical predictions in Section 3.5. Finally, the conclusions are presented in Section
3.7.

3.2 ULTRA-RELATIVISTIC FIREBALL BEAMS IN THE LABORA-
TORY

The SLAC National Accelerator Laboratory is capable of delivering electron e−

and positron e+ beams of the order of' GeV with the bunch length of the order of the
plasma wavelength or about 10 µm and consists of 1010 particles. The bunch energy
density is the order of 1013 J/m3. Typical relativistic bunched beam Debye radius (λD)

is smaller than bunch length but larger than the transverse beam size. With the help of
a sailboat magnetic chicane, the relativistic electron and positron bunched beam could
be used to combine with an equal charge. High-resolution beam position monitors
have been demonstrated to aligned these two beams to micro precision and temporal
locations could be synchronized using the damping rings’ RE phase control which
help effectively both in space and time to create a neutral beam (fireball beam). Neutral
co-moving e−, e+ beams reduce the disruptive effect of one beam’s electromagnetic
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FIGURE 3.1: slack layout: Combining electron and positron bunches to form a relativistic
plasma. [101]

fields (EMF) by compensating the EMF fields generated by another beam. Hence,
such neutral beams could be stable at the sub-picosecond level. The experimental
step is illustrated in Figure 3.1 which could produce a neutral beam using the SLAC
facility. For a relativistic bunched beam, the emittance is one of the key parameters
which defines the beam’s transverse temperature given by

kT⊥ =
γmc2ε2β2

4σ2
r

(3.1)

where γ the Lorentz factor, σr the transverse beam size, β = |v|/c, c speed of light and
ε is the beam’s emittance. The longitudinal temperature due to energy spread is neg-
ligible for relativistic beams. Using typical SLAC parameters, the beam emittance in
longitudinal direction ε‖ and transverse ε⊥ direction could be achieved to 10−10mrad,
10−8mrad respectively. Note also that, as in astrophysics, these parameters correspond
to a collisionless fireball-plasma interaction: νei/ωp = ϑ(10−18), where νei is the beam
e−, e+ background p+ collision frequency. This creates a possibility to generate the
first-ever collision between relativistic neutral plasmas in the laboratory: a relativis-
tic fireball beam propagating into a e−, p+ plasma at rest, separating the effects of the
space charge fields associated with a charged beam.

3.3 PIC-SIMULATIONS OF A FINITE NEUTRAL BEAM INTERAC-
TION WITH PLASMA

The temporal and spatial growth of self-electromagnetic fields as result of fire-
ball beam interaction with plasma is examined. The results focus on the underlying
physics of multi-dimensional effects, such as beam defocusing due to the finite beam
radius and finite emittance. We have simulated a wide range of fireball beam Lorentz
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factors γ∼ 103 to 104, fireball beam peak density 1015 - 1017 cm−3 and transverse beam
temperature, with the aim of providing the optimal conditions to explore instabilities
in the laboratory.

A distinct regimes of beam-plasma interaction is identified, where the ratio be-
tween the transverse beam size σy and the plasma collisionless skin depth (c/ωp),
where ωp =

√
4πn0e2/me is the plasma frequency with n0 being the plasma the

plasma density, me the mass of the electron, e the charge of the electrons and c the
speed of light, drives the Current Filamentation or Oblique Instability. It is found that
in the case of short fireball beams, i.e beams are shorter than the plasma wavelength,
plasma return currents can flow through the beam leading to the growth of CFI. The
effect of the propagation of long beams, i.e beams are longer than the plasma wave-
length is also investigated by keeping the total number of particles constant with ex-
act parameters. The results show some degree of tilting of magnetic field lines, which
clearly indicates coupling of the CFI and the two-streaming instability i.e Oblique In-
stability. The existence of two-streaming instability reduces the growth rate of the CFI.
The effect of higher temperature has also been investigated. When the beam is warm,
the Oblique Instability saturates. The filament inside the fireball is destroyed due to
the temperature effect.

3.3.1 INTERACTION OF A SHORT (σy ≤ c/ωp) BEAM WITH STATIC PLASMA

In order to illustrate the generation of magnetic fields through the CFI, the two
and three dimensions numerical simulations were performed with the fully relativis-
tic, massively parallel particle-in-cell (PIC) code OSIRIS [70, 71] by considering the
propagation SLAC fireball beam in a pre-formed plasma. The simulations use a mov-
ing window travelling at c. The simulation box has absorbing boundary conditions
for the fields and for the particles in the transverse direction. The globally neutral
fireball beam is initialized at the entrance of a stationary plasma with n0 = 1017 cm−3.
The initial density profile for the electron and positron fireball beam is given by nb =

nb0 exp(−x2/σ2
x − y2/σ2

y ) where nb0 = n0 = 1017 cm−3, σx = 0.99 c/ωp = 10.2 µm
and σy = 2 c/ωp = 20.4 µm are the bunch peak density, length and transverse waist,
respectively. The simulation box dimensions are Lx = 8.02 c/ωp and Ly = 20.0 c/ωp.
The box is divided into 128× 512 cells with 2× 2 particles per cell. The globally neu-
tral fireball beam used in the simulation consists 1.8××1010 same number of elec-
trons e− and positrons e+ with an incoming energy of 29 GeV and a normalized emit-
tance of 2× 10−5m− rad, corresponding to a peak beam density nb = ne. Hence, the
beam propagates with Lorentz factor γb = 5.6× 104, with transverse velocity spread
vth/c = 1.7× 10−5 and with no momentum spread in the longitudinal direction. We
used a total of 2 million simulation particles which is pushed for ∼ 104c/ωp ' 10 cm
of pre-formed plasma. The time step is 0.033/ωp. We have performed simulation of a
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FIGURE 3.2: The interaction of a neutral e−, e+ fireball beam having a Gaussian profile with
σx = 2σy = 20.4 µm, peak density nb = 2.7× 1017 cm−3, γb0 = 5.6× 104 with a static plasma
with n0 = nb. (a) Evolution of Transverse magnetic εbz (red), Longitudinal εex (green) and
transverse electric εey (blue) field energy as function of distance normalized to the initial ki-
netic energy of the beam εp = (γ0 − 1)V, where Vb = π × σx × σy is the volume of the beam.
The dotted line represents the theoretical growth rate of the CFI (b) the density filaments cor-
responds to the electron e− (blue) and positron e+ (red) spatially separated from each other (c)
shows the associated transverse magnetic (Bz) filaments at linear regime after 3.7 cm (d) due
to space charge radial electric field (Ex) created.

neutral fireball beam into vacuum to guarantee it’s stable propagation with at constant
radius. The background neutral-plasma (e−-p+) is assumed to be static.

Figure 3.2 depicts the growth of the transverse magnetic field energy (panel a), the
beam filaments due to the CFI (panel b), and the typical electromagnetic field struc-
ture (panels c and d). In Fig. 3.2a shows that the growth of the magnetic field energy
as a function of the propagation distance is exponential. The electromagnetic field is
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normalized with respect to the initial kinetic energy of the particles εp = (γ0 − 1)Vb,
where Vb = (π × σx × σy) is the volume of the beam. Simulations reveal that the field
energy grows at the expense of the total kinetic energy of the fireball beam. The linear
growth rate of the CFI measured in the simulation is ΓCFI/ωp ' 6.0× 10−3, in good
agreement with Silva et. al [67]. As a consequence of the instability, the beam breaks
up into narrow (with a width on the order of 0.5c/ωp, which corresponds to 5µm)
and high current density filaments. Figure 3.2(b) shows that these electron-positron
filaments are spatially separated from each other. Each filament carries strong cur-
rents which lead to the generation of strong out-of-the-plane (i.e. azimutal) magnetic
fields with amplitudes beyond 20 T. The azimutal magnetic fields are also filamented,
as shown in Figure 3.2 (c). Because of their finite transverse momentum, simulations
show that current filaments can merge. As merging occurs, the width of the filaments
increases, until beam breakup occurs. At this point, the CFI stops growing, and no
more beam energy flows into the generation of azimutal magnetic fields. Simultane-
ously, radial E-fields above 15 GV/m are also generated (Fig. 3.2d).

To examine the multi-dimensional effect on the growth of CFI, additional 3D PIC
simulations in OSIRIS [70,71] were carried out. In these simulations, the fireball beam
is defined with Gaussian profiles in all directions with rms sizes: σx = σy = 2σz =

2c/ωp = 20.4µm where nb0 = n0 = 1017 cm−3 is the bunch peak density. The system
is studied numerically with a 205× 205× 82 µm3 window moving at the speed of light
along the z-direction, and discretized in 400× 400× 80 cells with absorbing boundary
conditions for the fields and for the particles in the transverse x, y directions.

The results shown in Fig. 3.3, reveal the similar results demonstrating the existence
of CFI. Figure 3.3 (a)-(c) shows the beam filament structure after 10 cm propagation in
the laboratory plasma, or, equivalently, to the propagation of a fireball with a density
1 cm−3 in > 50 km in the background density of 1 cm−3. Figure 3.3 (d)-(e) illustrates
the large B-fields in radial and azimuthal magnetic field generated due to the CFI. The
CFI generates well-defined current (and density) filaments, which size increases as the
beam propagates in the plasma, and may grow to a thickness above 5 µm' 0.5 c/ωpe.
These conditions correspond to a beam with σr/(c/ωpe) ' 2, which explains the few
filaments obtained at saturation, reached when the filaments coalescence ceases and
the B-field energy remains constant. The large currents associated with the beam fila-
ments generate local B-fields up to 2 MGauss (Fig. 3.3d). The space charge separation,
also associated with the filaments, leads to radial E-fields as high as 5× 108 V/cm.
Finally, a system of filaments is present in the background plasma, behind the beam,
evidencing a 3D structure. As the filaments merge, the space-charge separation leads
to the plasma blowout and to the generation of strong E-fields.

As merging occurs, the width of the filament increases, until the beam filament
width becomes comparable to the initial bunch transverse size. At this point, the CFI
stops growing, and no more beam energy flows into the generation of azimuthal mag-
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FIGURE 3.3: Beam density and B-field after 10 cm propagation in a plasma with ne = 2.7×
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y, responsible for particle transverse

motion and radiation (vectors represent B-field lines). (e) Integral of By along y (
∫

Bydy/
∫

dy),
measurable experimentally by Faraday rotation.

netic fields. Simultaneously, radial E-fields above 10 GV/m are also generated (Fig.
1d) due to space charge effects related to the separation between plasma electrons and
ions. The beam transverse size is larger than the plasma skin depth, which corre-
sponds to the spatial scales where the instability growth rate is maximum [79]. Our
simulations show a clear transition from the linear to nonlinear stage of CFI due to the
merging of fireball bunch filaments and we expect that the mechanisms leading to the
saturation of the magnetic fields in our simulations will not differ from well-known
saturation mechanisms, described in [41, 103, 104]

In Fig. 3.4, we present the evolution with propagation distance in the plasma of
the total normalized energy in the B-field, εB for different beam/plasma parame-
ters, illustrating the exponential growth and saturation within the 10 cm range. The
growth rates (Γstd/ωpe ' 2.0× 10−3, Γhot/ωpe ' 1.7× 10−3, Γhigh/ωpe ' 2.3× 10−3)
are within the range predicted for this configuration for the purely transverse CFI
(Γmax/ωpe '

√
2β0/

√
γ0[1 + βth], with βth = vth/c the particle thermal rms spread

of velocity [67]). A more detailed analysis reveals, however, that for higher plasma
densities (keeping the beam density fixed) the growth rate is higher, but the saturated
level of the B-field is lower. The former is an indication of the spatial-temporal charac-
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(which also defines the baseline density for the normalization). The dotted line illustrates the
linear growth rate. Slices of the density in the middle of the beam after ∼ 1.5 cm of plasma
(plotted in blue) illustrate the difference in the instability structure. The inset includes the
trajectories of two fireball electrons for the standard case.

ter of the instability in this configuration, while the latter is evidence for the different
saturation mechanisms involved when the mixed mode/tilted filamention is domi-
nant [37].

3.3.2 MODELLING OF LONGER BEAMS IN LONGITUDINAL DIRECTION

In the previous section, a short beam, when compared with the plasma wavelength
λp = 2πc/ωp was considered. Here, we investigate the propagation of longer beams
with σx ≥ λp, while keeping the total number of the beam particles constant. In these
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TABLE 3.1: Modelling of longer beams with constant beam particle number

Run beam size σ‖ beam size σ⊥ α = nb0/ne0

R1 λpe = 6.28 2.00 1
R2 2 λpe = 12.56 2.00 0.01274
R3 4 λpe = 25.12 2.00 0.006368
R4 6 λpe = 37.68 2.00 0.004245
R5 8 λpe = 50.24 2.00 0.003184
R6 10 λpe = 62.80 2.00 0.002547

conditions, we found that the growth rates of the CFI can be substantially lower and
that competing instabilities also grow.

With the set-up described in the previous section, we have further carried out sim-
ulation with same parameter except the longitudinal beam length/peak beam density
which is given in Figure 3.5. We have performed a detailed study of different longer
beams as shown in the following table 3.1.

ROLE OF THE PEAK BEAM DENSITY AND BEAM DURATION IN THE GROWTH OF CUR-
RENT FILAMENTATION INSTABILITY

In the previous section, and for illustration purposes only, we have considered
that the total beam density was twice the background plasma density. In this section,
we will investigate the propagation of beams with lower peak densities. In order to
keep the number of particles constant, we then increase the beam length, such that
σx ≥ λp. In these conditions, the OBI competes with the CFI [97]. The OBI can grow
when the wave-vector is at an angle with respect to the flow velocity direction, and it
leads to the generation of both electric and magnetic field components. The maximum
growth rate for the CFI and the OBI, assuming the beams are infinitely long, are given
by ΓCFI ∼

√
α/γb βb0 and ΓOBI ∼

√
3/24/3(α/γb)

1/3 respectively [105], where α is the
beam (nb) to plasma density (ne) ratio and βb0 = vb/c is the normalized velocity of the
beam. Thus, the ratio between the CFI growth rate and the OBI growth rate is given
by:

ΓOBI

ΓCFI
=

√
3

24/3
1
βb

(γb

α

)1/6
(3.2)

Equation (3.2) provides criteria for determining which of the two instabilities will
dominate. The OBI is almost universally faster than the CFI. However, due to the
weak dependence on γb/α, given γb ∼ 104 the OBI will begin to dominate when α is
much smaller than 1.
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FIGURE 3.5: Interaction of a neutral e−, e+ fireball beam with longitudinal beam size σx =
2× λp and a static plasma by keeping constant beam particle number. (a) Evolution of Trans-
verse magnetic εbz (red), Longitudinal εex (green) and transverse electric εey (blue) field energy
as function of distance normalized to the initial kinetic energy of the beam εp. The dotted line
represents the theoretical growth rate of OBI (b) the density filaments corresponds to the elec-
tron e− (blue) and positron e+ (red) spatially separated from each other (c) shows the associate
transverse magnetic (Bz) filaments at linear regime between x1 = 0.0551− 0.0556 m (d) the
space charge separation leads to radial electric field (Ex).

In order to verify this hypothesis, we have carried out additional 3D and 2D
dimensional OSIRIS PIC [70, 71] simulations using the ini tial set up described in
Sec. 3.3.1, varying σx between 2λp < σx < 10λp, for which α varies between 0.0026 <

α < 1. In all these cases, our results have been consistent showing the evidence of the
OBI growth.

In Figure 3.5, we show an illustrative simulation result considering σx = 2× λp

and with nb = 1.274 × 1015 cm−3, for which α = 0.01274. In order to describe the
propagation of a longer beam, we have increased the simulation box length. The
box dimensions are then Lx = 63c/ωp (Ly = 20c/ωp remains identical to that of
Sec. 3.3.1). The box is divided into 1024× 512 cells and uses 4× 4 particles per cell for
each species.
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instability

Figure 3.5 (a) illustrates the evolution of the longitudinal and transverse electric
and transverse magnetic energy (normalized to εp = (γ0 − 1)Vb, where Vb = (π ×
σx × σy) is the volume of the beam). The emergence of oblique modes can be seen in
Figs. 3.5 (b), which shows tilted beam filaments. The corresponding oblique wave-
vector couples the transverse (filamentation) and longitudinal (two-stream) instabili-
ties. Unlike Fig. 3.2, the simulation results in Fig. 3.5 show that the transverse electric
field component provides the dominant contribution to the total field energy. The
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plasma is only weakly magnetized ωc/ωp = 0.01, and the CFI does not play a criti-
cal role in the beam propagation. The longitudinal and transverse electric fields grow
exponentially, as predicted by the linear analysis of the OBI, matching well the sim-
ulation results. The growth rate measured in the simulations is Γmax/ωp ' ΓOBI '
2.1× 10−3, while the theoretical growth rate is' 2.0× 10−3. The OBI generates plasma
waves with strong radial electric fields in excess of 500 MV/m (Fig. 3.5 (d)). After 20
cm, the beam can not penetrate deeper inside the plasma, which leads to the saturation
of the OBI.

These results were further supported by one-to-one 3D simulations using identi-
cal simulations setup in OSIRIS [70, 71], which confirms presence of tilting angle in
the beam filament and magnetic field filaments indicating coupling between Current
Filamentation and Two-stream instability shown in panel 3.6 (a) and (c).

3.4 EFFECTS OF FINITE BEAM WAIST AND EMITTANCE

Theoretical and numerical studies performed to identify the effect of beam emit-
tance on the growth of plasma instabilities and their saturation [42, 106, 107] typically
assume that the beam is infinitely wide. In this section, we will investigate the role of
the beam emittance considering finite beam size effects, in order to make closer con-
tact with laboratory conditions. To study the influence of the beam emittance on the
propagation, we first consider the equation for the evolution of the beam waist σy in
vacuum [108]:

1
c2

d2σy

dt2 =
1
4

ε2
N

σ3
y γ2

b
, (3.3)

where σy is the beam radius, εN ' ∆pyσy is a figure for the beam emittance (corre-
sponding to the area of the beam transverse phase space), and ∆py is the transverse
momentum spread. According to Eq. (3.3), the evolution for σy and for sufficiently
early times is given by:

σy ' σy0

(
1 +

ε2
N t2c2

4σ4
y0γ2

b

)1/2

, (3.4)

where σy0 is the initial beam radius. Hence, according to Eq. (3.3), the rate at which σy

increases is:
1
σy

dσy

dt
=

1
4

t c2 ε2
N

σ2
y0γ2

b

1
σ2

y
, (3.5)

Equation (3.5) indicates that the beam expands in vacuum due to its transverse mo-
mentum spread. As the beam expands, nb decreases as nb/ne ∼ (σy0/σy)2, in 3D,
and as (σy0/σy), in 2D. Because of the reduction of nb/ne, the growth rates for the
CFI and for the OBI will also decrease. We then estimate that these instabilities (i.e
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CFI and OBI) are suppressed when the rate at which nb/ne decreases is much higher
than the instability growth rate. Matching the rate at which the beam density drops,
which in 2D is given by (1/σy) (dσy/dt), to the growth rate of the instability (Γ)
gives an upper limit for the maximum beam divergence θ = ∆py/γb (and emittance
εN ≈ σy(< p2

y >)1/2) allowed for the growth of the CFI/OBI:

θ = 2

(
Γσ2

y0

Lgrowth c

)1/2

, (3.6)

where we have considered that t ∼ Lgrowth/c in Eq. (3.6), being Lgrowth the growth
length of the CFI/OBI instability. Equation (3.6) then gives the threshold beam diver-
gence, beyond which the CFI/OBI will be suppressed. It indicates that beams with
higher energy can support higher thermal spreads and still be subject to the growth
of the CFI because the beam expands slowly in comparison to lower energy beams.
Similarly, beams with higher σy0 also support higher emittance than narrower beams
because of the slower expansion rate.

To confirm our theoretical findings, we performed additional two-dimensional
simulations using fireball beams with relativistic factors γb = 700, 1050, 1400 (the
lower γb factors used now, in comparison to Sec. 2, minimize the computational re-
quirements). We use σx = 0.22 c/ωp = 11.7 µm and σy = 10 c/ωp = 530 µm with
peak density nb0 = 10 ne = 1015 cm−3. For each case, we varied the transverse temper-
ature ∆py = γbθ = 1, 3, 5, 7, 10 and 20 in order to determine the threshold beam spread
for the occurrence of instability. We note that we have used the classical addition of
velocities in the beam thermal spread initialization in order to more clearly identify
the dependence of evolution of the instabilities with emittance.

Figure 3.7(a) shows that the magnetic field energy decreases with increasing trans-
verse momentum spread. Fig. 3.7 (a) also shows a transition in the evolution of the
magnetic energy between ∆py = 10, where the B-field still grows at the end of the
simulation, and py = 20, where the B-field decreases with propagation distance. Ac-
cording to Eq. (3.6), using Lgrowth ∼ 0.037 m and ΓCFI ∼ 1.657× 1011s−1, we obtain the
threshold θ ∼ 0.12 for the shutdown of the instability. This is in good agreement with
Fig. 3.7 (a).

Figure 3.7 (b) depicts the dependence of the threshold beam emittance with the
fireball beam energy. Figures 3.7 (c)-(d) show the positron density for two simula-
tions, where all the parameters are kept constant, except for the beam emittance. In
particular, in Fig. 3.7 (c) a beam emittance of ∆py = 1, much smaller than the threshold
value given by Eq. (3), has been considered. In this case, the CFI develops, leading to
the filamentation of the beam (see Fig. 3.7c) and to the exponential growth of the mag-
netic field energy (see Fig. 3.7 (a), red curve). However, in the second case (Fig. 3.7 (d))
a higher beam emittance ∆py = 10 is considered. This suppresses the growth of the
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FIGURE 3.7: (a) Temporal evolution of the transverse magnetic field energy for different beam
emittance (b) Thermal velocities as function of Lorentz factor γb, filamentation suppressed for
higher thermal velocities. At time t = 705.60 [1/ωp], panels (c)-(d) show beam filaments for
thermal velocities 〈pz〉 = 〈pz〉 = 1, 3, 5, 7, 10, 20 from 2D PIC simulations.

magnetic field energy (see Fig. 3.7 (a), orange curve). As a result, the beam expands
before the development of the CFI. These results show that the growth of CFI can only
be achieved if the beam emittance is sufficiently small.

3.5 EFFECT OF BEAM ENERGY SPREAD

In typical laboratory settings [80], electron-positron fireball beams can contain fi-
nite energy spreads. It is, therefore, important to evaluate the potentially deleterious
role of the energy spread in the growth of CFI. In this section, we then present simula-
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tion results with finite longitudinal momentum spreads. We consider that the central
beam relativistic factor is γb = 700, and compare two simulations with ∆px/γb = 0.13
and ∆px/γb = 0.29 (∆px is the longitudinal momentum spread). All other simulation
parameters are similar to those described in previous section.

In order to study the role of the beam energy spread, we derive the CFI growth
rate considering a model where the fireball bunch is decomposed into beamlets with
different energies, but where each beamlet has no energy spread and no transverse
emittance. We consider electromagnetic waves propagating with the transverse wave
vector ~k = kẑ, with the counter-propagating neutral fireball beams propagating in
the x-direction. In equilibrium, the densities of each electrons (e−) and and positrons
(e+) is nae− and nae+, respectively, where a = (1,n) and n is the number of beamlets.
Each beamlets has longitudinal momentum p−a = p+a . Thus, the charge and current
densities of each fireball beam is,

a=n

∑
a=1

naαQα = 0 and
a=n

∑
a=1

naαQαβaαc = 0. (3.7)

where α denotes the charge of electron (e−) and positron (e+).

To obtain a general linear dispersion relation, we use a relativistic cold fluid model
that neglects pressure perturbations. Hence the dispersion relation for a purely trans-
verse mode (~k · ~E = 0) is given by (see Appendix B):

ω2 − k2c2 −
a=n

∑
a=1

ω2
aα

γaα
− k

a=n

∑
a=1

ω2
aα

γaα

vaα

ω−~k ·~vaα

+

a=n

∑
a=1

ω2
aα

γaα

β2
aα(

ω−~k ·~vaα

)2

(
ω2

c

(
1− k2c2

ω2

))
= 0 (3.8)

By assuming~k ·~v = 0, we obtain a reduced dispersion relation, which can then be
written as :

ω2 − k2c2 −
a=n

∑
a=1

ω2
aα

γaα
−

a=n

∑
a=1

ω2
aα

γaα

β2
aα

ω2 (ω
2 − k2c2) = 0 (3.9)

We consider that ω = i ΓCFI and |ΓCFI |2 � k2c2. Thus, Eq. (8) can be rewritten as :

k2c2 +
a=n

∑
a=1

ω2
aα

γaα
=

a=n

∑
a=1

ω2
aα

γaα
β2

aα

k2c2

Γ2
CFI

(3.10)

as:
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Γ2
CFI [1/ω2

aα] =
∑a=n

a=1
2naα β2

aα
γa

1 + 2
k̃2 ∑a=n

a=1
naα
γa

(3.11)

Equation (10) shows that the finite energy spread will not suppress the instabil-
ity. The main contribution to the growth rate comes from the particles with lower
energies, which, by having lower relativistic masses can react quicker to the initial
perturbations.

In order to simplify the analysis, and without losing generality, we now consider
a case of two fireball beams (a = 1, 2 ; α = e−, e+) propagating into opposite direction.
The reduced dispersion relation given by Eq. (10) can then be written as :

Γ2
CFI [1/ω2

aα] =

2n1α β2
1α

γ1
+

2n2α β2
2α

γ2

1 + 2
k̃2

(
n1α
γ1

+ n2α
γ2

) (3.12)

The growth rate of CFI due to ultra-relativistic neutral plasma attains its maximum
growth rate when~k→ ∞, for which :

Γ̃CFI =

√
2n1αβ2

1α

γ1
+

2n2αβ2
2α

γ2
(3.13)

To confirm our theoretical predictions, we have performed numerical simulations
considering the propagation of two fireball beams with energy distribution given by
γb = δ(γ− 300) + δ(γ− 700) (γb = 350, 700) beams into the plasma. Figures 3.8 (a)-
(b) show the temporal evolution of the beam electrons density for ∆px/γb = 0.13 (Fig.
3.8(a)) and for ∆px/γb = 0.29 (Fig. 3.8 (b)). The initial energy spectra of these two
beams are shown in Fig. 3.8 (c). Figure 3.8 (d) shows the comparison of the magnetic
field energy evolution. The blue curve shows the growth of magnetic field energy gen-
erated by the fireball beam with energy spread ∆px/γb = 0.29, while the red curve is
associated with the lower energy spread ∆px/γb = 0.13.

The simulation growth rate (Γ/ωp ' 2.8 × 10−2; shown by dotted black line in
Fig. 3.8 (d)) is consistent with the theoretical growth rate predicted for the purely
transverse CFI [109, 110]. We notice that one to one comparisons with the simula-
tion growth rate are non-trivial. We speculate that the differences are probably due to
the finite beam size and non-uniform density profile in the transverse directions. We
have performed additional simulations, which confirmed that numerical results con-
verge to theoretical predictions as simulations considered progressively wider beams.
In fact to the best of our knowledge, the excitation of these modes for finite length
finite-width modes has not been investigated. Thus, this work also motivates further
theoretical developments that could predict the exact growth rate for non-uniform
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density profiles. However, this discussion does not prevent the main purpose of this
section, namely, the energy spread naturally present in laser-produced fireball beams
will not prevent the CFI to occur.

3.6 PIC SIMULATIONS OF THE LEPTONIC BEAM (400MeV) DY-
NAMICS IN A BACKGROUND ELECTRON-ION PLASMA

Exploring laboratory surrogates capable of reproducing these mechanisms under
controlled conditions is a promising path to gain physical insights that would be other-
wise inaccessible. Recent experimental developments [80] promise to make this explo-
ration possible. The generation of quasi-neutral electron-positron fireball beams, with
maximum energy ' 400 MeV (average fl ∼ 15), has been achieved in a laser-plasma
accelerator. These beams have large energy spreads, they have a finite length and
transverse size, and have small charge. Further details of experimental results can be
found in Sarri et. al. [80]. In order to the check the validity of the experiments, we car-
ried out three-dimensional (3D) particle-in-cell (PIC) simulations using OSIRIS [39].
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FIGURE 3.9: Simulation results of the propagation of a fireball bunch in a plasma. The arrow
indicates the bunch propagation direction. (a) electron (blue) and positron (red) density iso-
surfaces showing growth of the Weibel instability at the back of the bunch. (b) Magnetic field
(By) filaments due to the Weibel instability,where the By lies on the plane transverse to bunch
propagation direction. The insets in (c) and (d) show the electron density and magnetic field
corresponding to the propagation of a purely electronic fireball bunch.

Simulations used a moving window with dimensions 1.5 × 100 × 100 (c/ωp)3 di-
vided into 75× 1000× 1000 cells with 2× 1× 1 particles per cell for plasma electrons
and for fireball particles. A charge-neutral fireball constituted by electrons and posi-
trons was initialized at the entrance of the plasma with n0 = 1016 cm−3. The density
profile for electrons and positrons is given by nb = nb0 exp

(
−ξ2/σ2

ξ − r2/σ2
r

)
where

nb0 = 10 n0 = 1017 cm−3, σξ = 0.22 c/ωp = 11.7 µm and σr = 10 c/ωp = 530 µm are
the bunch peak density, length and transverse waist respectively. The bunch trans-
verse energy spread is 〈pr〉 = 7 mec with relativistic factor γ = 700 such that the
fireball divergence is 0.01 mrad.

Simulation results are illustrated in Fig. 3.9 of fireball beam propagation through a
denser e−-ion plasma, showing the growth of the Weibel/current filamentation insta-
bility from the back to the front of the bunch illustrating the spatial-temporal nature
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FIGURE 3.10: Simulation results of the propagation of a fireball bunch through an e−-ion
plasma. The first row depicts the results for a perfectly neutral beam (50% electrons and 50%
positrons). (a,b) depict the results for an analogous simulation, with the only difference that
now the positrons account only for 45% of the beam. The frames show slices of the elec-
tron (blue) and positron (red) spatial distribution. (c) Comparison between the magnetic field
growth for the case of a purely neutral beam (blue) and a slightly asymmetric beam (45% of
positrons, red). For what concerns the plasma dynamics, the two cases are virtually undistin-
guishable.

of this instability. The instability leads to the formation of electron and positron fil-
aments with thicknesses of 2 − 4 c/ωp = 100 − 200 µm (Fig. 3.9a). The filaments
from fireball electrons/positrons are located in complementary regions without posi-
trons/electrons (Fig. 3.9b). This leads to a current imbalance and generation of mag-
netic field filaments (Fig. 3.10c) with maximum amplitudes in excess of 40 T at the
middle of the bunch. Magnetic field filaments are also clearly visible in the plane
transverse to the propagation direction (Fig. 3.9d). At early times, the simulations
show that the transverse scale length of the filaments is even shorter than the initial
beam skin depth. To further understand the impact of charge neutrality on the insta-
bility onset, additional 3D simulations were performed using a purely electron bunch
with the same characteristics. In this case, the electron bunch generates plasma wake-
fields, and neither filamentation of the beam (insets in Fig. 3.9 b) nor the generation of
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strong magnetic fields (inset Fig. 3.9 d) are observed. These results corroborate the ex-
pectation that current filamentation instability growth can be controlled by changing
the beam overall total charge and it is maximized for a purely neutral e−/e+ plasma.

Finally, we performed an additional 3D PIC simulation devoted to study whether
a slight charge imbalance in the e−/e+ plasma could result in a change in the plasma
dynamics if compared with the idealized perfectly neutral plasma scenario shown in
Fig. 3.10. We have thus maintained exactly the same conditions as the other simula-
tion, with the only difference is that now the positron account for 45% of the plasma
population, in order to match the experimental findings more closely [80]. The ob-
tained spatial distribution of the e−/e+ plasma after propagation through the back-
ground electron/ion plasma is shown in Fig. 3.10 a,b, indicating essentially no differ-
ence if compared with the purely neutral case. This statement is corroborated by the
growth of magnetic fields due to CFI. This is plotted in Fig. 3.9 c that shows virtually
the same magnetic field growth for the purely neutral case (blue line) and for the slight
charge imbalance (red).

3.7 SUMMARY

In summary, the growth and saturation of an ultra-relativistic beam propagating
through plasma have been investigated using particle-in-cell (PIC) simulations. We
have shown that short fireball beams, i.e beams shorter than the plasma wavelength,
interacting with uniform plasmas lead to the growth of the CFI. For typical parameters
available for experiments, the instability can generate strong transverse magnetic field
on the order of the MGauss. We found that in typical laboratory settings, the incoming
fireball beam filamentation saturates after 10 cm of propagation for the SLAC param-
eters [102], while for the laser-plasma generated fireball beam produced recently [80]
it saturates after 4.4 cm.

We have demonstrated that the beam density needs to be higher than the back-
ground plasma density to suppress the growth of the competing OBI instability, which
leads to the growth of electrostatic modes (instead of electromagnetic). Beams with
lower peak densities will then drive the OBI, which results in tilted filaments and the
generation of mostly electrostatic plasma waves. We have also shown that the beam
emittance needs to be minimized, reducing transverse beam defocusing effects, which
can shut down the CFI or the OBI if the beam defocuses before these instabilities grow.
We have also extended our numerical studies to investigate the effect of finite fireball
energy spreads on the growth of CFI, and showed that the energy spreads of currently
available fireball beams allow for the growth of CFI in the laboratory.

In conclusion, we have identified the factors for the generation of strong magnetic
fields via CFI. We expect that the results will influence our understanding of astro-
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physical scenarios, by revealing the laboratory conditions where these effects can be
studied.





CHAPTER 4

INFLUENCE OF PLASMA INSTABILITIES ON

INTERPENETRATING PLASMA CLOUDS AS A

TEST FOR ELECTROMAGNETIC DARK MAT-
TER SELF-INTERACTIONS

4.1 INTRODUCTION: THE MYSTERY OF DARK MATTER (DM)

Our Milky Way contains approximately 1011 stars with total mass ∼ 5× 1010M�,
where M� = 2.99× 1010 kg is a unit solar mass, with a radius 10 kpc and with height
of ∼ 0.5 kpc. The circular velocity of the stars is vc(r) = (GM/r)1/2, where M is the
enclosed mass, r is the radial distance, and G is the gravitational constant. At the dis-
tances beyond Galactic disk (r ≥ Rdisk), the total mass in the disk M should remain
constant following Gauss’s law. Instead, the observational findings indicate that the
circular velocity curve flattens out at these distances, implying that M(r) α r suggest-
ing a hidden component of matter beyond the visible matter, known as “dark” mat-
ter [111–115]. Dark matter (DM) contributes approximately 23 % the energy density of
the Universe, with an abundance about five times as large as that of baryonic matter.
It neither emits nor absorbs light or any other electromagnetic radiation at any signif-
icant level. The DM can only be observed via gravitational effects: galactic rotation
curves, gravitational lensing, cosmic microwave background [116, 117]. Having been
observed via only gravitational interactions, we know very little about the underlying
particle physics of dark matter [118]. A huge array of theoretical possibilities remains
open, spanning a 50 order-of-magnitude mass range from ∼ 10−22 eV to ∼ 1019 GeV
(assuming dark matter is a new type of particle). Dark matter could have a wide vari-
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ety of possible non-gravitational interactions both with itself and with other particles
although all we can currently say is that they must be weak enough to have evaded
observation [116,117]. Discovering such interactions would be a huge leap forward in
understanding dark matter, and is one of the biggest goals of modern particle physics.

4.1.1 HOW DO THEY INTERACT?

Interestingly, as we explore in this paper, the most minimal type of dark matter
interaction can have rich astrophysical consequences over the entire allowed mass
range [118, 119]. An unbroken U(1) gauge force, similar to electromagnetism but act-
ing only between dark matter particles, would mediate long-range dark-matter self-
interactions. We refer to such a force as dark electromagnetism (dark-EM) [120, 121].
This is a very natural possibility that arises in a wide range of underlying dark matter
models [122–125]. The stability of dark matter constrains these models as the con-
servation of dark-EM charge could forbid dark matter decay. In general, constraints
on this scenario or observable consequences are of broad interest and merit thorough
study. Assuming the interactions are weak enough not to bind dark matter particles
together, dark matter would then consist of a net-neutral plasma of dark-EM charged
particles. In this paper we investigate the effects this would have on halo dynamics.

4.1.2 DARK-MATTER COULD INTERACT DUE TO THE PRESENCE OF DARK-
CHARGE PARTICLES

The dynamics of dark matter halos is the natural place to observe dark matter self-
interactions. A recent observation of the “Bullet Cluster” (1E 0657-558), where a colli-
sion between a sub-cluster and the main cluster confirmed that the dark matter halo of
the subcluster passes through the main cluster with no visible offset between the stars
and the DM, thus indicating weak self-interactions. The seemingly clean passage of
one halo through another in the “Bullet Cluster” led to well-known bounds being
placed on 2 → 2 hard scattering (i.e. short-ranged interactions) [125, 126]. Dark-EM
also gives rise to conceptually different effects which result in far stronger bounds, due
to the collective dynamics of the dark-matter plasma. The dark-EM interaction would
act as a N → N rather than a 2 → 2 scattering process, where N is extremely large.
The bounds from 2→ 2 scattering require that a typical dark matter particle has never
undergone a hard scattering [122, 123]. This indicates that the dark-matter plasma is
in the “collisionless” regime [124, 125]. Under this hypothesis, we shall see whether
the most minimal type of dark matter self-interaction via a new long-range force anal-
ogous to the electromagnetic interaction in the standard model could have impact on
the DM self-interactions. This possibility raises the question of whether plasma in-
stabilities may have significant impact on galaxy and cluster dynamics. Resolving
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this will determine whether or not such an interaction is consistent with current ob-
servations, and whether plasma instabilities may have significant impact on galactic
dynamics.

4.1.3 PEDAGOGICAL DESCRIPTION OF PLASMA INSTABILITIES KNOWN IN

LITERATURE

In this work, we consider the simple possibility of an electromagnetic self-interac-
tion between two collisionless dark matter plasma slabs. The equations that govern
DM self-interactions is identical to that of a collisionless e−, e+ plasma. Collisionless
plasma dynamics is both a well-studied field and an area of active research with rich
dynamics that are still not fully understood. It is known that two counterpropagat-
ing plasmas are subjected to the several microinstabilities that generate the growth
of electromagnetic fields, involving transverse and parallel modes. The full unsta-
ble wavenumber k spectrum has been intensively studied in the cold plasma limit
[40,94,127,128]. There are three main dominating instabilities which exist with differ-
ent wave-vectors with respect to the flow: The two-stream instability (TSI), which has
a wave-vector aligned with the flow, is driven by the two peaked nature of the velocity
distribution [127]. The anisotropy in the velocity spread in different directions (larger
along the flow direction) excites the Weibel/Filamentation instability (WI/FI) with a
wave-vector normal to the flow [30]. A hybrid of these two modes, with a wave vector
with and angle oblique to the flow, is known as the oblique instability (OBI) [128].

Plasma instabilities are well understood analytically in the linearized regime with
small perturbations to an infinite homogeneous plasma. Furthermore, the theoretical
estimates of linear growth of electromagnetic field generated via plasma instabilities,
complemented by numerical simulations, have been well studied during the interac-
tion of two plasma slabs [42,99]. The electromagnetic fields driven by these plasma in-
stabilities will lead to bulk slowdown of the counterpropagating plasma slabs as long
as there is sufficient time for the instabilities to grow. The exact time required before
a significant slowdown occurs, however, depends on nonlinear effects not included
in such analysis and can be only captured via numerical simulations, as performed in
this paper. Our studies, therefore, can place a limit on the interaction strength.

The dimensionless quantities, αB = UB/Ep and αE = UE/Ep are the respective
magnetic and electric equipartition parameters. Here the energy density of the mag-
netic fields (UB =

∫
B2dV) and electric fields (UE =

∫
E2dV) is normalized to the

initial total kinetic energy density in the system Ep = ∑α

∫
n0αmev2

f l/2dV, summing
over each species α; in our case the number of species is NSP = 2, (e−, e+). Here me,
n0α, v f l , are the respective mass, density, and the velocity of the species, and V is the
total volume of the two slabs. Above quantities will be used demonstrating the slow-
down process that occurs during the interaction of two plasma slabs.
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FIGURE 4.1: (color online) The temporal evolution of the e− filament density for simulation
R1, where Slab 1 (orange) and Slab 2 (blue) are moving to the respective right and left at
tωp = 0.0, 33.17, 497.50, 995.00 (a)-(d). The green color represents where the plasma from both
slabs overlap.

4.2 MODELING OF DARK-PLASMA INTERACTION WITH PIC

In order to put a limit on the strength at DM self-interactions, we simulate the
interaction of two initially unmagnetized electron-positron plasma slabs propagat-
ing towards each other. Two and three dimensional numerical simulations were per-
formed with the fully relativistic, massively parallel, particle-in-cell (PIC) framework
OSIRIS [70, 71]. The box has dimensions of 2.2L× L2

⊥ with a resolution ∆x, where L
is the length of the plasma slab and L⊥ is the transverse dimension. The two slabs,
shown in Fig. 4.1a, consist of a plasma with uniform density n0 moving to the right
(red) between x1 = 0.1L− 1.1L, and moving to the left (blue) between x1 = 1.1L− 2.1L
with a bulk proper fluid velocity v f l . We chose a step function density profile rather
than Gaussian in order to maximize the interaction time where the plasmas are un-
stable. We ran each simulation for one crossing time τc = L/v f l with a temporal
resolution ∆t ≈ 0.98∆x/

√
Dc, where D is the number of dimensions of the simula-
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tion.

We performed 3D simulations (R1) with 4 particles per cell for each plasma species,
and 2D simulations (R2, R5, and R6) with 16 particles per cell for each plasma species,
all with L = 100[c/ωp], L⊥ = 70[c/ωp], and ∆x = 0.1[c/ωp], where c/ωp is the
electron skin depth, c the speed of light, ωp =

√
4πe2n0/me the electron plasma fre-

quency, e the elementary charge, and me the electron mass. The rest of the simulations
are 2D with 16 particles per cell for each plasma species. Simulations (R3 and R7) have
L = 5[c/ωp], L⊥ = 5[c/ωp] with resolution ∆x = 0.01[c/ωp], and (R4 and R8) have
L = L⊥ = 0.02[c/ωp] with ∆x = 0.0004[c/ωp].

We performed simulations with respective flow and thermal velocities v f l/c ∈
[0.01 − 0.1] and vth/c ∈ [0.001 − 0.01] which have been listed in the table 4.1 and
4.2. Absorbing boundary conditions have been used for the fields and the particles
in the direction parallel to the flow velocities and periodic in the transverse direction.
To suppress the numerical heating, a fourth order interpolation scheme has been used
together with a 5-pass filter to evaluate current and fields. Larger transverse box sizes,
higher spatial and temporal resolution and the higher number of particles per cell
were tested, showing overall convergence.

4.3 INTERPRETATION OF SIMULATION RESULTS

Here we report the three dimensional simulation results of the most representa-
tive run (R1). In Fig. 4.1, we show four representative times over the period of one
crossing time τc = L/v f l . During this time, the plasmas penetrate (see in Fig. 4.1b),
filament (see in Fig.4.1c), and slow down significantly by τc (see in Fig. 4.1d). The
slowdown and isotropization of the velocity distribution occurs at three time scales,
that of the two-stream/oblique instability, the Weibel instability, and the crossing time
of the plasma slabs.

At the earliest stage, the overlapping plasma slabs result in two peaks in veloc-
ity space in opposite directions, which drives the oblique instability. The oblique in-
stability generates electric and magnetic fields at the expense of the initial bulk en-
ergy: a fraction of the initial kinetic energy εp is transferred into the different com-
ponents of longitudinal E1 and transverse electric E2, and magnetic fields B3 shown
in Fig. 4.2a. In Fig. 4.2a, we present the temporal evolution of the electric and mag-
netic field energy. Throughout this study, when we refer to the oblique instability, the
two-stream component of the oblique instability dominates. The oblique instability
(not just two-stream) can be seen in Fig. 4.2a, since the magnitude of the longitudinal
E1 and the transverse electric fields E2 (unique to the oblique instability) are about
equal. During the linear stage of the instability at time tωp ≈ 13, the transverse elec-
tric fields E2 are greater than the transverse magnetic fields B3, consistent with the
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FIGURE 4.2: (a) Temporal evolution of the total electromagnetic energy of the system for the
3 components Ex1 (blue), Ex2 (green), and Bx3 (red) in their normalized form αE,B. Panels (b)-
(d) show the electron distributions of momentum along the x1 direction calculated between
x1 = 109.9− 110.1 [c/ωp] over all x2, for t ωp = 9.15, 16.52, and 23.08. Panel (e) shows the
temporal evolution of the mean kinetic energy density of electrons in slab 1 over the same
region (K1 (red) and K2 = K3 (blue), where Ki ≡

〈
menv2

i /2
〉

/men0c2. K1 is longitudinal
kinetic energy in the direction of flow velocity and, K2 and K3 are transverse)

modes of the oblique instability. The theoretical growth rate of the oblique instability
ΓTS ≈ ωp/

√
2 [94] shown in Fig. 4.2a (red dotted), matches well with the simulation

result.

To further illustrate that the instability acts like the two-stream instability, we
examine the evolution of the distribution f0(p1) through the course of the growth
and saturation of the oblique instability in the region x1 = [109.9− 110.1] [c/ωp]. At
t ωp = 9.15, once the two slabs overlap, the two peaks in velocity space in opposite
directions is illustrated in Fig. 4.2b. During the interaction, the electric field grows lin-
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early due to the oblique instability causing a strong heating which broadens the initial
particle distribution (see Fig. 4.2c). After the linear phase, at time t ωp = 23.08, the in-
stability saturates and the distribution is completely thermalized (see Fig. 4.2d). Here
the free energy that drives the oblique (two-stream) instability is no longer present.
During the linear phase of the instability, the transverse electric field accelerates the
particles in the transverse directions x2 and x3. The particles slow down in the longi-
tudinal (x1) direction, such that the total kinetic energy does not change much, as only
0.1 % of the initial flow kinetic energy is converted into field energy, see in Fig. 4.2(a,e).
In this process, the kinetic energy becomes significantly isotropized (see Fig. 4.2e);
each of the components of the kinetic energy density approach a number close to 0.004
[men0c2].

Here we estimate the typical timescale for isotropization of the kinetic energy in
D dimensions solely due to the electric fields. Assuming that the total kinetic energy
does not change, complete isotropization of the velocity distribution will occur once
the change of velocity along the directions perpendicular to the flow is

∆v =
√〈

v2
i

〉
≈ 1/

√
Dv f l . (4.1)

Each component of the electric field can be expressed as Ei = ωpme/e
√

αE,locNsp/Dv f l ,
where αE,loc ≡ E2/mn0Nspv2

f l/2 is the local electric equipartition parameter. From the
Lorentz equation:

∆v
∆t

= − e
me

Ei (4.2)

by substituting ∆v/v f l and Ei, we can estimate the isotropization time due to elec-
tric field:

∆tαE ωp =

√
1

αE,locNsp
≈ 5.85, (4.3)

where αE,loc is calculated at tωp = 16.52, when the αE begins to saturate (Fig.4.2aαE,loc)
reaches a maximum αE,loc = 1.46% at x1 = 109.8 [c/ωp]. This timescale is in good
agreement with the simulation result (see Fig. 4.2e between tωp = 16.52 and 22.37.
Note that further isotropization occurs after tωp = 25.00.

The Weibel instability is driven by a temperature anisotropy [30]. Although
the oblique instability thermalizes, and significantly isotropizes the plasma veloc-
ity distribution, an anisotropy remains (see Fig. 4.2e). At about tωp = 40.00, the
magnetic field energy grows at a rate consistent with the theoretical growth rate
(ΓWI/ωp ≈ v f l/

√
2 ≈ 0.07 [94]) indicated by the red dotted in Fig. 4.3a. The in-

stability saturates at about tωp = 100.00, and the magnetic fields are responsible for
the further isotropization of the slabs. After saturation, the magnetic field strength
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kinetic energy in the direction of flow velocity and, K2 and K3 are transverse). The red dotted
line is the theoretical growth rate of the Weibel instability.

grows linearly, between tωp = 200.00− 800.00, as the shock front propagates across
the plasma slab. The magnetic field isotropizes the kinetic energy by bending the
trajectories such that K1 is converted to K2 and K3 see Fig. 4.3b.

A similar method is adopted to calculate the istropization time due to the magnetic
fields (αB,loc = 0.3% calculated from Fig. 4.4f at x1 = 109.8 [c/ωp])

∆tαB ωp =

√
2

DαB,locNsp

c
v f l
≈ 105.4, (4.4)

consistent with the saturation of the Weibel magnetic field at time tωp ≈ 100.0

Fig. 4.4a illustrates the formation and propagation of the shock front presented
with the best fit solid line. As the slabs overlap, the density of plasma slabs increases
from n0 to 4n0 see Fig. 4.4b-d. The step region in the density shows a shock front which
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110. Panels (b-d) show the spatial profiles of the average x1 velocity of electrons with positive
velocity (to the right) (black) and average density (red) averaged along the x2 direction. Panels
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energy averaged along the x2 direction. The black dotted line is the position of the shock front,
and at tωp = 26.53 where there is no shock, this represents the density front.

propagates at the average speed (0.0286 c) shown in Fig. 4.4 a. The shock develops
fully once both the oblique (two-stream) and the Weibel instabilities have time to grow
and saturate. The isotropization time (∆tεB ωp ≈ 105.4, see Eq. 3, which is about equal
to the Weibel saturation time), is consistent with the shock formation time t0ωp = 110
shown in Fig. 4.4a.

The growth and saturation of both instabilities can be seen as a function of space,
during various times, eventually leading to the total slowdown of the plasma slab. At
early time (see Fig. 4.4e) the E-fields from the oblique instability begin to isotropize the
kinetic energy and significant slowdown occurs (see Fig. 4.4b). The electric field of the
oblique modes are coincident with the density front at t ωp = 26.53 (see Fig. 4.4b,e).
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At this stage the shock is not yet formed.

As the plasma slabs overlap further, the Weibel instability begins to play role (see
Fig. 4.4f). At t ωp = 414.58, the density front has become a fully formed shock. The
slabs slow down in the shock region, as seen in Fig. 4.4(c,f) between L = 80 −
100 [c/ωp]. This slowdown of v f l across the shock is stronger than in Fig. 4.4b. In
Fig. 4.4f, at the position x1 = 92.0[c/ωp], the electric field generated by the oblique
instability contributes to the isotropization of the kinetic energy. The magnetic field
generated by the Weibel instability, peaking at x2 = 102.0[c/ωp], further isotropizes
the kinetic energy (until K1 ≈ K2 ≈ K3). Assuming a steady state propagating shock
front has been established (evidenced in 4.3a), and the flow velocity v f l = 0.1c, the
time between x1 = [90 − 100][c/ωp] can be estimated by 100 [1/ωp], matching the
Weibel saturation time.

At the transit time tωp = 802.63, once the shock has traversed the entire slab (see
Fig. 4.4d), the slowdown of the two slabs is completed. Fig. 4.4f shows the complete
isotropization across the entire slab.

We determined two measures that can be used to quantify the slowdown of the
plasma; the average velocity of the initially right moving electrons vinit =

∫ +p
−p p f (p)dp

/
∫ +∞
−∞ f (p)dp (from the left slab only) (blue) and instantaneously right moving elec-

trons vinst =
∫ +∞

0 p f (p)dp/
∫ +∞

0 f (p)dp (from both slabs) (red). We define a signif-
icant slowdown as vinit < 0.46 v f l , and vinst < 0.9 v f l to determine whether there
is slowdown or not. At the transit time tωp = 802.63, the velocities reach vinit =

0.1444 v f l and vinst = 0.5 v f l , a significant slowdown under both measures (Fig. 4.5a).

Note the slowdown of vinst is consistent with the prediction that once isotropized
vinst = ∆v ≈ 0.577v f l , see Eq.1. Furthermore, a significant slowdown of the front of the
plasma slabs (at the center of the box) is shown in the inset Fig. 4.5b. This occurs at a
much shorter time scale tωp = 25, the time scale of the two-stream/oblique instability.

The relative growth of the WI/OBI and the crossing time τc, which determines
whether there can be a slowdown of the two plasma-slabs, depends on L, v f l , and
vth. Now, we present simulation results varying these key parameters. As there is
small difference between the 2D and 3D runs, in order to minimize the computational
time, these simulations are done in 2D. To explore the influence of L and v f l on the
slowdown of the plasma slabs, we have performed 4 simulations listed in Table 4.1
varying these parameters, while keeping vth � v f l . This parameter space with each
of the simulations is presented in Fig. 4.6.

For L/v f lΓW ≥ 10 we expect slowdown of the plasma caused by both the Weibel
and oblique instabilities in the red shaded region shown in Fig. 4.6. This is confirmed
for runs R1 and R2 which exhibit a significant slowdown. Even when this constraint is
not satisfied, and only L/v f lΓTS ≥ 10, we expect a moderate slowdown caused by the
oblique instability shown in Fig. 4.6 in the green shaded region. This is confirmed in R3
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TABLE 4.1: Slowdown (1− v/v f l , where v is the final measured velocity) expected due to the
two-stream/oblique or Weibel instability for various v f l and L with cold slabs vth/v f l = 0.1.

Runs v f l/c L [ωp/c] Cause 1− vinst/v f l 1− vinit/v f l

R1 0.1 100 WI/OBI 0.5000 0.8556
R2 0.01 100 WI/OBI 0.4680 0.8765
R3 0.01 5 OBI 0.3490 0.5580
R4 0.01 0.02 No slow-

down
0.00171 0.000024

where there is moderate slowdown. However, if neither of these constraints are met,
highlighted as the blue region in Fig. 4.6, no slowdown is expected. For simulation
R4, neither the oblique instability nor the Weibel instability has time to grow and there
is no slowdown. For the cases where there is significant slowdown, the velocity is
thermalized such that the new thermal velocity v

′
th = vinst. For example for Run

R1, after the slabs have crossed they obtain a thermal velocity v
′
th = 0.05 (T/mec2 =

0.0025).
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a significant slowdown. In the green region, only the two-stream/oblique instability should
act to slow down the plasma. In the blue region slow down is not expected. The dashed red
and green lines show where the growth rate of the respective Weibel and two-stream/oblique
instabilities are equal to the rate at which the two slabs cross past each other. Significant slow-
down is expected after a factor of 10 growth times, based on our predicted slowdown times
∆tαBΓW ≈ 6.324 and ∆tαEΓTS ≈ 8.66.

TABLE 4.2: Slowdown (1− v/v f l , where v is the final measured velocity) expected due to the
two-stream/oblique or Weibel instability for various v f l and L with warm slabs vth/v f l = 1.0.

Runs v f l/c L [ωp/c] Cause 1− vinst/v f l 1− vinit/v f l

R5 0.1 100 WI 0.3765 0.7020
R6 0.01 100 WI 0.14287 0.9436
R7 0.01 5 No slow-

down
0.09592 0.5331

R8 0.01 0.02 No slow-
down

0.00012 0.00023

To understand the role of the initial thermal velocity of the slabs, we perform sim-
ilar simulations with the set-up described in the above section, but with a significant
thermal velocity (vth = v f l , as shown in Table 4.2. In a warm plasma (v f l ≤ vth), the
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two peak structure seen in Fig. 4.2b, which drives the two-stream/oblique instability,
is not present due to significant thermal spread. However, slowdown can occur due to
the Weibel instability for L/v f lΓW ≥ 10. Therefore, in this scenario, we do not expect
a slowdown in both the green and the blue region where the plasma slabs L(ωp/c)
are smaller than 10. This is confirmed in runs R7 and R8. However, in the red region,
for plasma length L(ωp/c) greater than 100, we always expect slowdown. This is
confirmed in runs R5 and R6.

4.4 PARAMETRIC ESTIMATE OF BOUNDS ON DARK-EM

Based on our simulation findings, we put a very strong constraint on the param-
eter space (αD, mD) for DM particles. Here αD ≡ e2

D/h̄c and mD are the respective
dark electromagnetic coupling constant and mass, and eD is the dark electromagnetic
charge of the particle. Our numerical simulations so far have shown that for suffi-
ciently large L the DM slab will slow down due to the Weibel and oblique instabilities.
Given that we have estimates for L ≈ 100kpc , as well as v f l ≈ 0.1 c, mD ≈ 1 TeV,
and the mass density ρD ≈ 0.01GeV/cm3 [120–123, 129], we can recast our limit of a
maximum L to evade slowdown to a limit on the coupling strength αD(� 1)

First we estimate coupling constant based on the Weibel growth. We found a sig-
nificant slowdown occurs if the length L > 10 Γ−1

W v f l .

LΓw
10v f l

=
L

10v f l

(
4πρDαD h̄c

m2
D

)1/2 v f l

c
(4.5)

Recast in terms of αD this is equivalent to the constraint

αD < L−2ρ−1
D m2

D

(
4πh̄
100

)−1

(4.6)

Using our estimates for the parameters, we find a quantitative limit on αD in engi-
neering form

αD < 4.2355× 10−25
(

L
100kpc

)−2 ( ρD
0.01GeV/cm3

)−1

×
( mD

1TeV

)2
(4.7)

Similarly, we can estimate coupling constant due to the oblique instability. The
limit on L for the oblique instability is

LΓTS

10v f l
=

L
v f l

(
4πρDαD h̄c

m2
D

)1/2

(4.8)
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FIGURE 4.7: Constraints on the dark electromagnetic coupling constant αD as a function of mD.
αD must lie below the region (in blue) due to expected slowdown from Coulomb scattering, (in
red) from filamentation, and (in green) from the two-stream/oblique instability. For reference,
the dark electromagnetic coupling forces will be equal to the gravitational forces along the
blue line.

which recast in terms of αD is

αD < L−2v2
f lρ
−1
D m2

D

(
4πh̄c2

100c

)−1

(4.9)

and in engineering form is

αD < 4.2355× 10−27
(

L
100kpc

)−2 ( ρD
0.01GeV/cm3

)−1

×
( mD

1TeV

)2
(

v f l
0.1c

)2 (4.10)

Fig. 4.7 shows the two limits from Eqs. (4.7,4.10). In contrast, a much weaker bound
on αD has been established assuming a slowdown caused by Coulomb scattering [129].
For this limit the collision frequency

ν =

(
4πρDαD h̄c

m2
D

)2 mD

ρD

ln(ΛC)

2πv3
f l

(4.11)
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where ln(ΛC) is the Coulomb logarithm, is comparable to the crossing time ντD = 1, .

αD < 1.9454× 104
(

L
100kpc

)−1/2 ( ρD

0.01GeV/cm3

)−1/2

×
( mD

1TeV

)3/2
(

v f

0.1c

)2 ( ln(ΛC)

35

)−1/2

(4.12)

In the blue region, a slowdown due to Coulomb scattering is expected. In the
red region, a slowdown due to the Weibel and oblique instabilities is expected. In
the green region, a moderate slowdown due to the oblique instability is expected. In
the white region, no slowdown is expected, consistent with observations. This estab-
lishes a strong upper bound on the the typical strength of any dark electromagnetic
self-interaction. To emphasize how strong the bound on αD this establishes, we also
include a line where the strength of the dark electromagnetic force between two dark
matter particles is equal in magnitude to the gravitational force. Larger αD particles
could potentially be explained by more complex theories which include an ionization
fraction, where only a select few particles have this larger interaction [129].

4.5 CONCLUSION

In conclusion, using PIC simulation of the interpenetration of two e−, e+ plasma
clouds, we established a strong upper bound on the strength of any dark electromag-
netic self-interaction where the Dark-matter self-interaction strength αDM � 1. In case
of the self-interactions of two cold dark plasmas clouds (v1 ≥ uth) lead to the genera-
tion of Weibel and Two-stream instability which deflects the particles trajectories such
that the particles acquire transverse momentum. Hence, this process causes the slow-
down due to Wiebel and Two-stream instability. We also have shown that for typical
DM slab length much larger than v∆t, DM particles lose half of its initial velocity. In
the case of a hot plasma cloud (v1 ≤ uth), we observed slowdown mostly occur due
to the Weibel instability. However, a slowdown is less efficient in this case.





CHAPTER 5

KINETIC SIMULATION OF MAGNETIC FIELD

GENERATION IN THE CONTEXT OF LASER-
PLASMA INTERACTION

5.1 INTRODUCTION

Unprecedented progress in high-intensity laser facilities is enabling the explo-
ration of laser-matter interactions under extreme conditions, which is at the heart
of High Energy Density Physics (HEDP) research. Much of the interest in short
laser pulses started after the development in laser techniques like Chirped Pulse
Amplification (CPA), developed by Strickland & Mourou [130], allowing the con-
struction of lasers deliver hundreds of joules of energy down a single beam line in
a sub-picosecond pulse. The interaction of ultra-high intensity lasers (I ∼ 1014 −
1019W/cm2) with matter is characterized by the deposition of huge energy densities
for a short period of time τ ∼ 1ps). A short intense laser-plasma interaction scenarios
have been extensively studied, both theoretically and experimentally. The interest is
mainly driven by the potential applications such as inertial confinement fusion, com-
pact particle accelerator radiation sources, Gamma rays sources, electron-positron pair
productions, and medical applications, for instance, ion accelerations, compact x-rays
sources. One of the active areas of research with this configuration is self-magnetic
field generation of MegaTesla (MT) strength.

Radiation from astrophysical events like Gamma-rays, Active Galactic Nuclei, Su-
pernova explosions, TeV, pulsar wind outflows, etc indicates the presence of strong
Magnetic fields. However, the origin of these magnetic fields is not clearly under-
stood. Therefore, the origin of magnetic fields from zero-magnetic fields for nonther-
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mal particles and radiation process is a fundamental and challenging problem in the
context of the astrophysical and laboratory plasma (e.g. fast ignition). It is widely
accepted that during the period before recombination, when the cosmic microwave
background was generated, there was no magnetic field. However, such radiation
process can be explained by two prominent steps: (1) existence of a seed field (2) am-
plification of that field by a dynamo mechanism. One of the main problems of the
origin of seed magnetic fields is how to produce them coherently on cosmological
(large) scales. There have been considerable theoretical and experimental investiga-
tion of self generating magnetic fields by microphysical plasma processes e.g. due
to non-parallel electron density and temperature gradients (∇ne × ∇Te) (known as
the Biermann battery [131]), by electron temperature anisotropy (known as the Weibel
instability [30]), by counterstreaming charged particle beams (known as the current-
filamentation instability [132]), due to the inverse Faraday effect [133,134], and by the
ponderomotive forces of intense laser beams [135, 136].

Proof of principle experiments of self-generated magnetic fields were first investi-
gated by Stamper et al. [60] involving measurements of magnetic fields in the under-
dense (coronal) plasma resulting from high power laser interactions with high-density
targets. An analytical discussion of the many sources of magnetic fields in hot laser-
produced plasmas is presented in [137]. To date, the self-generated magnetic field has
been experimentally observed by many groups around the world using different tech-
niques in under/over-dense region [138, 139]. Important aspect of the experiments is
to examine extremely large magnetic fields (up to Gigagauss) and their consequent
effects on the dynamics of the plasma as well as on the propagation of fast electrons
produced during the interaction.

Previously, the measurements of self-magnetic fields were extensively demonstrat-
ed resulting from high power laser interactions with high-density targets. For a target
irradiated with one finite-sized laser beam, this process is most likely to occur in the
outer regions of the laser spot, as shown in Fig. 5.1. The density gradient points
into the solid-density target face, whereas near the edge of the laser spot the tempera-
ture gradient points radially inward toward the axis of the laser beam. The magnetic
field is toroidal in shape, has a scale size comparable to the spot radius, and falls to
zero at the axis of the laser beam. Since the intensity distribution of the laser beam is
usually rather flat near the middle of the focal spot, radial temperature gradients are
thought to be small there. Thus, one expects low magnetic fields at the center of the
focal region. The order of magnitude of the magnetic field over a time ∆t is roughly
δt(me/e)(V2

Te/LnTT) sin θ, where VTe = (kBTe/me)1/2 is the electron thermal speed,
Ln and LT are the scale lengths of the density and electron temperature gradients, re-
spectively, and θ is the angle between the direction of the density and temperature
inhomogeneities. To estimate the steady-state size of the magnetic field Bs, one could
balance the baroclinic driver and the curl of the u× B, where u =< vi > is the out-
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where L is the scale size of the variation of the u× B flow, |u| ∼ cs, and cs is the ion
sound speed.

For a 1-KeV hydrogen plasma with the electron temperature and density gradient
scale lengths of order 20 µm, one would obtain a magnetic field strength of the order
' 4 MG at place where the density and temperature gradients were at large angles
relative to each other. Recently, huge magnetic fields (of the order of 340 MG) have
been measured in the high-density region of plasmas produced during intense laser-
matter interaction, near the critical density surface [140].

Recent developments in laser technology (with the intensity of 1019W/cm2 and
duration shorter than 1 ps, and high-resolution diagnostics) open the possibility to
probe such processes through laser-solid interactions [140,142,143]. Much interest has
been revived to demonstrate the generation of the magnetic fields driven by the Cur-
rent Filamentation/Weibel Instability in the laboratory using an intense short/long
pulse laser. The demonstration of magnetic field generation in laser-plasma interac-
tion experiments is addressed by several labs around the world citations [98, 144]. In
particular, the experiments carried out by Kugland et al [141] shows the signature
of the magnetic field generated by the Current Filamentation/Weibel Instability and
Biermann Battery. In this experiment, two 2-mm-diameter ×0.5mm-thick CH2 disc
target target was ionized by two long pulse (2000 J, 3 ns) 351 nm laser beams with
intensity ∼ 1015w/cm2 shown in Fig 5.2. As a result, two counter-streaming plasmas
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FIGURE 5.2: Experimental set-up at the OMEGA EP laser showing the targets, laser beams
and diagnostic configuration Courtesy: Kugland et al. [141]

are created which leads to the generation of Current Filamentation/Weibel Instability.
The magnetic filament structure is observed using proton beam imaging. It is pointed
out that these structures can persist for thousands of ions- and tens of thousands of
electron-kinetic timescales. Although it was not entirely clear how these structures
form, evidence of their existence is clearly seen in the experimental data. A similar ex-
periment was performed by Huntington et al [145] which then confirms the existence
of filamentary structure as ion the Current Filamentation/Weibel Instability.

In another experiment, where the direct observation of a strong magnetic field is
clearly seen in hot, dense laser-produced plasmas [98]. An optically the polished alu-
minum coated BK-7 glass plate target was used and ionized by an intense pump laser
with the intensity∼ 1018w/cm2 see Fig. 5.3. The filamentary structure of the magnetic
field is observed at the critical surface of the plasma target see Fig. 5.4. 2D dimension
PIC simulation supports underlying physics of CFI, where a forward current of rela-
tivistic energy ”hot” electrons by the laser pulse and ”cold” return currents of thermal
electrons induced in the target. However, the power spectrum of magnetic fields spa-
tial profiles does not seems to match with the spectrum of CFI.

In the present work explores a possibility of investigating self consistence magnetic
field generation in Laser-plasma interactions via Weibel instability which is in contrast
to the magnetic field due to Current filamentation instability seems to occur in the
most experiments. We believe that these results are of fundamental importance to
understand recent experimental results and to understand the long term evolution of
the filaments generated by the Weibel instability.
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FIGURE 5.3: Sketch of the experimental arrangement for measuring spatial and temporal
profiles of the magnetic field (Courtesy: S. Mondal et al. PNAS 2012;109:8011-8015)

5.2 WEIBEL INSTABILITY OCCURS ALONG WITH BIERMANN

BATTERY IN COLLISIONLESS SYSTEMS

The Biermann battery is commonly explored in the context of hydrodynamical
systems. It occurs due to the non-parallel electron density and temperature gradi-
ents which generates the static magnetic field order of 106G. In these experiments,
the magnetic field generation is often attributed to the Biermann battery [60, 98, 146].
Magnetic field grows linearly as B(t) ≈ (mec/e)(v2

thet/LT Ln), where Ln ≡ n/∆n and
LT ≡ Te/∆Te are the density and temperature gradient scale lengths, respectively. In-
tensive theoretical and computational studies have been carried out to demonstrate
the magnetic field generation via the Biermann battery [60, 137, 138] in the context of
hydrodynamical systems. Recently, Schoeffler et.al [147] investigated the kinetic effect
of the Biermann battery in a collisionless expanding plasma (see in Fig. 5.5). For sim-
plicity, L = Ln = LT was considered. It is found that the Weibel instability competes
with the Biermann battery. The relative importance of the Biermann battery can be ad-
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FIGURE 5.4: Complete dynamics of spatiotemporal evolution of the intense laser induced
magnetic field at the critical surface of the plasma measured with a 400-nm probe pulse (Cour-
tesy: S. Mondal et al. PNAS 2012;109:8011-8015)

justed by changing the scale length of the density and temperature non-uniformities
such that the kinetic effects become important. The Biermann battery generated field
obeys the scaling:

B√
8πPplasma

= β−1/2
e ≈ 1√

2
de

L
(5.2)

where Pplasma is the plasma pressure, de ≡ c/ωp and ωp = (4πe2ne/me)1/2 are the
electron skin depth and the plasma frequency, ne is the electron density, e and me are
the charge and the rest mass of the electrons and c is the speed of light in vacuum.
In this configuration, it is pointed out that for small scale lengths L/de < 100 the
dominant magnetic field is generated via the Biermann mechanism. In contrast when
L/de ≥ 100, the Weibel instability generates magnetic fields faster than the Biermann
battery. Fig. 5.5 illustrates the scaling with the system size of the maximum and the
average magnitude of the magnetic field. These simulations showed that there are
magnetic fields even for very large scale lengths, where no Biermann driven magnetic
fields are to be expected. At these scale lengths, the magnetic field is generated by
the Weibel instability. It is pointed out for small systems Ln/de < 100 the dominant
magnetic field is generated by Biermann mechanism. In contrast, Ln/de ≥ 100, the
Weibel fields, which are caused by temperature an anisotropy [30], grows faster than
Biermann fields. The Biermann field is a pervasive mechanism in laser-solid experi-
ments. The processes of generating magnetic fields via Weibel instability have been of
strong interest to be demonstrated in experiments. Although this Weibel dominated
regime has been shown to exist theoretically, it has not yet been demonstrated that this
regime can be achieved and measured experimentally in the context of laser-plasma
interaction.
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FIGURE 5.5: (a) Kinetic 3D simulation of Biermann battery (b) magnetic energy contours after
saturation (c) Maximum (black asterisks), and average magnitude of the magnetic field Bz, vs.
LT/de with mi/me = 2000 (d) Out-of-plane magnetic field at peak magnitude with mi/me=
2000 showing existence of Weibel fields [147] .

In this work, we carry out a detailed numerical and theoretical study using first-
principles particle-in-cell (PIC) simulations to investigate magnetic fields generated
by the Weibel instability in the interaction of a short (ps) high intensity (a0 ≥ 1) laser
pulse with a plasma having a sufficiently large gradient scale length (L). Our simu-
lation results reveal that by tuning the delay between the ionizing pre-pulse and the
main pulse, and the spot size of the laser such that L/de ≥ 100, the Weibel generated
magnetic fields can be observed in laser-plasma interaction experiments in current
available facilities.

5.3 2D PIC SIMULATION MODEL

In order to study the laser-driven Weibel instability, a series of two-dimensional
(2D) PIC simulations have been performed with the fully relativistic, massively paral-
lel code OSIRIS [70, 71]. We modeled the interaction of a s-polarized (i.e. the electric
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field is perpendicular to the simulation plane) intense laser pulse with a pre-formed
plasma, consisting of electrons and fully ionized hydrogen ions with mi = 1836 me,
where me is the electron mass. We have chosen s-polarization in order to isolate the
out-of-plane Biermann and Weibel magnetic fields from laser fields. In 2D simulations,
a p-polarized laser will generate a higher temperature than 3D. Therefore, in order to
better approximate 3D conditions, we use s-polarized simulations, which have been
shown to have less heating than p-polarized. [148, 149].

A laser with normalized vector potential a0 = 2 corresponding to a peak intensity
of IL = 1019 W/cm2 and wavelength λL = 1.0 µm propagating in the x1 direction has
been considered. We consider a reference plasma density n0 = 1.1× 1022 cm−3 = 10 nc,
where nc = ω2

Lme/4πe2 is the critical density, and ωL = 2πc/λL the laser frequency.
The envelope of the pulse follows a flat-top (FT) function having rise (R) and fall (F)
time τR = τF = 10.0 ω−1

p (1.7 fs) and duration τFT = 1034 ω−1
p (175 fs). Its transverse

profile is modelled as a Gaussian function with spot size at full width half maximum
(FWHM) wFWHM = 100 de(5 µm). These are typical laser parameters in laser-solid
interaction experiments [144]. The laser interacts with a plasma having longitudinal
electron density profile n(x1) = 0.5 n0 {tanh [2 (x1 − x10) /Ln] + 1}, where n0 = 10 nc

is the maximum density, x1 the longitudinal coordinate, and Ln(= n0/∇n(x10)) is the
initial density scale length.

In the simulation results presented here, x10 = 1250 de, coinciding with the laser
focal plane and Ln = 400 de(20 µm), where de ≡ c/ωp and ωp = (4πe2n0/me)1/2. In
this configuration, we are interested to observe the magnetic field at the front surface
of the target. The length of the target is chosen to be long enough that the back side
does not influence the front, while the density is 0 at the right wall to avoid significant
particle loss at the boundary. We chose a step function at x1 = 1750 de to minimize the
length and save computational time (see Figure 5.6 (a)) .

At the beginning of the simulation, electrons and ions have a temperature Te =

1 keV and Ti = 1 eV, respectively (small compared to the laser heating, but large
enough that we can resolve the Debye length). A simulation box with size 2000 ×
2000 d2

e divided into 20000× 20000 cells and a time step ∆t = 0.05 ω−1
p have been em-

ployed. Each cell contains 12 macro-particles per species, whose dynamics have been
followed for more than 100000 time steps. Absorbing boundary conditions along x1

and periodic along x2 have been selected for fields and particles. To suppress the nu-
merical heating, a fourth order interpolation scheme has been used together with a
5-pass filter to evaluate current and fields. Larger transverse box sizes, higher spatial
and temporal resolution and higher number of particles per cell were tested, show-
ing overall result convergence. The laser enters the simulation domain from the left
and at first, interacts with an underdense plasma. It penetrates until 1000 de, where
the plasma density reaches the critical density nc at time t ' 1200.50 ω−1

p (Figure 5.6
(a)). The interaction of the laser with the plasma resonantly heats the electrons and
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FIGURE 5.6: Electron density (blue) and laser magnetic field (B2
2) (orange) (a, c) and electron

temperature calculated at the fluid rest frame (b, d) at t = 1200.5 and 2812.6 ω−1
p respectively.

The red solid lines in (a) and (c) are an average of the density along the x2 direction, and
the dashed red line shows the gradient length scale Ln = 400 de. The red dashed box in (c)
indicates the focal spot of the laser. The red dashed line defines the boundary between Ln >
100 de(x1) (left), and Ln < 100 de(x1) (right). The blue dashed lines in (d) point to the location
where LT ' 1000 de.

results in a temperature gradient pointing radially towards the axis of the laser beam
(Figure 5.6 (b)). The temperature averaged in the region x1 = [850− 1050] de, x2 =

[980 − 1020] de is Te ' 9.0 mec2, comparable to the Pukhov scaling [150] for the la-
ser intensity a0 = 2 (Te ' 6.9 mec2). The temperature gradient is not aligned with
the density gradient along x1 allowing the Biermann battery to generate a toroidal
B-field. The laser compresses the target locally and pushes the electrons inwards
via the ponderomotive force, creating a conical shaped channel by t ' 2812.60 ω−1

p
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FIGURE 5.7: (color online). Transverse magnetic field B3 at t = 2641.10 ω−1
p (440 fs) (a) and

zoom-in of Weibel-generated magnetic filaments with k ≈ 0.06 d−1
e . The black dashed line in

(a) indicates the transition point between the region where Biermann fields dominate (LT/de <
100) and the region where Weibel fields dominate (LT/de > 100). Note that the spatial scale is
identical in all sub-figures.

(Figure 5.6 (c)). Meanwhile the heat spreads across the target leading to a smoother
temperature gradient. Along x1 = 700 de, the average temperature is 0.34 mec2 (see
Fig. 5.6). Given this lower temperature and the density n0 = 1.1 × 1022 cm−3, we
can make a conservative estimate on the collisionality, which we have neglected. The
ratio of the gradient scale length Ln and the electron collisional mean free path le,
Ln/le = 0.00047 � 1 [151], and thus collisions can be neglected. The Bierman-
produced out-of-plane magnetic field B3 is shown in Figure 5.7 at t = 2641.10 ω−1

p .
However, along side the Biermann-generated field, clearly recognizable in the region
x1 = [0, 700] de, a region where the field is due to the Weibel instability is also ob-
served. Note that a low-pass filter was applied to the magnetic field only allowing
wavelengths above 31.4 de (1.57 µm), mimicking the experimental resolution [144].
The boundary between Biermann and Weibel regimes can be estimated at the location
where LT(x1)/de(x1) ≈ 100 [147, 152], where de(x1) ≡ c/ωp(x1) is the local electron
inertial length. At x1 ≈ 700 de, de(x1) ≈ 10 c/ωp based on the density (n = 0.01 n0; see
Figure 5.6(c)), and the length scale of LT(x1) ≈ 1000de estimated from Figure 5.6(d).
The dotted vertical line in Figure 5.7(a) therefore separates regimes of Biermann and
Weibel fields at LT(x1)/de(x1) ≈ 100. In the region where LT(x1)/de(x1) < 100
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FIGURE 5.8: (color online). Temporal evolution of the out-of-plane magnetic field strength in
the green box indicated in Fig 5.7 (a). The slope of the curve in (a) allows for inferring the
growth rate of the Weibel instability, which is measured to be ' 0.0015 ωp (black dashed line).
Average anisotropy (Thot/Tcold − 1) in the green box indicated in figure 5.7 (b). Average energy
of the magnetic field (B2) in the x2 direction showing the time evolution of laser field energy
for the same region (c) and temporal evolution of the transverse magnetic field energy (B2

3)
spectrum showing the contribution to B-field from Weibel instability and Biermann battery(d).

the dominant mechanism for magnetic field generation is the Biermann battery ef-
fect, which arises due to the gradients of electron density and temperature where
∇ne×∇Te is non-zero. However, the Weibel instability dominates in the region where
LT(x1)/de(x1) > 100 (Figure 5.7) (a,b) exhibiting small magnetic filament structures.
These results are consistent with the predictions from Schoeffler et. al [147]. Figure
5.8 (a) shows the temporal evolution of the averaged out-of-plane magnetic field B3

in the region x1 = [800− 900] de, x2 = [600 − 900] de, where the dominant source of
the magnetic field is the Weibel instability. We observe an exponential growth of the
magnetic field between 2000 − 3000 ω−1

p , after the laser has passed this region (see
Figure 5.8 (c)). The expansion of the hot energetic electron population generated by
laser-heating produces an anisotropy in the velocity distribution [153]. Furthermore,
the laser itself will contribute to the temperature anisotropy. The anisotropy with the
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temperature in one direction (Thot), larger than the perpendicular temperature Tcold,
provides the free energy that drives the Weibel instability.

The linear growth rate of the Weibel instability from the average magnetic field
strength measured in the region x1 = [800− 900] de, x2 = [600 − 900] de is Γsim =

0.0015 ωp with a corresponding wave-vector k ' 0.15 d−1
e (see Fig. 5.8(a)). The theo-

retical growth rate assuming a relativistic generalization of the bi-Maxwellian electron
distribution according to Kaang [154] can be calculated using the measured temper-
atures and density (Thot = 0.34 mec2, Tcold = 0.18 mec2, and ne = 0.019 n0) averaged
over the same region at time t = 2006 ω−1

p . This is the earliest time after the laser field
strength becomes negligible (see Fig. 5.8(b)), which avoids further deviation from a
bi-Maxwellian distribution, as the Weibel field is biased towards isotropizing the par-
ticles with momentum p/mec ∼ 1. Despite the roughness of the theoretical model, the
theoretical fastest growth growing mode occurs at k ' 0.05 d−1

e , with a growth rate
Γtheory = 0.0043 ωp, fitting the simulation within an order of magnitude.

To isolate the magnetic fields generated by the Weibel instability, we ran our simu-
lation long enough (t > 2000 ω−1

p (330 fs)) that the magnetic fields associated with the
laser are no longer present. The spatiotemporal evolution of the laser magnetic field
energy is shown in Figure 3 (c). The laser interacts with the target at the critical den-
sity at 1000 ω−1

p . The end of the laser pulse passes the region where we calculated the
growth rate at ∼ 2000 ω−1

p . For t > 2000 ω−1
p , the magnetic field is thus produced by

the Weibel instability. The instability can generate a strong transverse magnetic field
with maximum amplitudes of the order of 0.065 mec/eωp (22 MGauss). The spectrum
of B2

3 as a function of time is shown in 5.8(d), showing the contribution of the Weibel
instability and the Biermann battery to the magnetic field energy. The spectra are ob-
tained by performing a Fourier transform over the entire system for the out-of-plane
magnetic fields, and then averaging over all directions of k. Note that due to the log
scale it may not be obvious that the energy contained in the Weibel magnetic fields is
comparable to that of the Biermann. The Biermann magnetic field energy is five times
higher than the Weibel magnetic fields energy.

By investigating the interaction of a laser with targets of various density gradients,
we have demonstrated that there is a transition between the regimes where only the
Biermann battery is present (for Ln/de < 160) and both the Weibel instability and the
Biermann battery are present (for Ln/de > 160), as shown in Figure 5.9. We kept the
laser and simulation parameters constant in order to isolate the role of the scale length.
In experiments, after the target is ionized by the pre-pulse, the plasma expands result-
ing in a non-uniform density with a gradient length that can reach several micrometers
when the main pulse arrives. A possible model for the density scale length as a func-
tion of time yields Ln(t) = 2.75× 10−7cm · I10/27

L A−2/27Λ4/27λ4/9
L t31/27, where A (= 2)

and Λ (= 5) are the nuclear mass number and Coulomb logarithm of deuterium [155].
For example, with these scalings, if we use a typical pre-pulse laser with intensity of
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IL = 1012W/cm−2 and a pulse delay of 278 ps, we can obtain a density scale length
Ln of 400 de, while for 68.4 ps we obtain 80 de. This confirms that these density scale
lengths can be tuned experimentally.

We performed a parameter scan for Ln/de = 0, 80, 160, 240, 320, 400 of the plasma.
Note that by the time the laser reaches the target at t ∼ 1250 ω−1

p , the length scale
should have risen by ∼ vth

√
me/mi t ∼ 1.3 de using our initial T = 1 keV. Therefore,

for Ln/de = 0, the effective density scale length is 1.3 de. The out-of-plane magnetic
field B3 is shown in Figure 5.9 (a)-(d) at time t = 2023.70 ω−1

p for different density gra-
dient lengths Ln/de = 0, 80, 160, 320. With a target of sufficiently large gradient scale
length Ln/de > 160, the expanding hot energetic electron population generated by the
laser leads to the region of Weibel generated magnetic fields as shown in Figure 5.9 (a)
with Ln/de = 320. However, for short plasma scale lengths (Ln/de < 160), the Bier-
mann magnetic field dominates, and no region is found where the Weibel instability
is prominent.

When the laser hits the plasma target with a sharp boundary density profile, a
transverse magnetic field is generated via the current filamentation instability (CFI)
[95, 156] which has been used to explain many experiments [157, 158]. Unlike the
Weibel generated field described in this work, a sharp relativistic electron beam pro-
vides the free energy rather than a thermal expansion of the plasma. Although CFI
does drive out-of-plane magnetic field B3, our simulations show that the magnetic
field generated by CFI is much weaker than both the Weibel and the Biermann fields.
Furthermore, the Weibel instability is generated in the same region where the Bier-
mann battery can be found (where the density and temperature gradients exist), rather
than deep in the target.

The temporal evolution of the averaged magnetic fields in the region between
x1 = (1250− 1.875 Ln) de and x1 = (1250 + 1.25 Ln) de for each simulation is shown in
Figure 5.9(e) (see highlighted regions in Figure 5.9 (a)-(d) for each scale length Ln/de).
For all cases, except (Ln/de = 0), the averaged magnetic field saturates at t ∼ 2000 ω−1

p
and slowly decays. The mean B-field energy is shown as a function of Ln/de. The max-
imum average magnetic field strength is achieved for Ln/de = 160, at the same length
scale where the transition from Biermann to Weibel regimes occurs.

In addition to the standard method of measuring magnetic fields using proton
radiography, it may be possible to measure the synchrotron radiation. If we consider a
cone from x = (750− 1150) de with radius r = 500 de (where the Weibel magnetic field
B ≈ 22 MGauss), this would correspond to a volume 13000µm3 with average density
n0 = 2.2× 1020 cm−3. Assuming the electrons have a Lorentz factor γ = 2, this would
generate 881 kW of 1.02 eV radiation. If we assume 10% of those particles have γ = 5,
these would generate 550 kW of 6.39 eV radiation. A measurement of the radiation
spectra could be used to measure the magnetic field strength or the electron energy
spectra. For higher power lasers, this signal would become stronger and approach
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FIGURE 5.9: Out of plane magnetic field for Ln/de = 320, 160, 80, 0 at time t = 2023.70 ω−1
p .

Shaded regions where the mean field energy was averaged between L = (1250− 1.875Ln) de
and (1250 + 1.25Ln) de. Temporal evolution of the average magnetic field energy (averaged
over the specified regions highlighted in (a)-(d)). The average magnetic field reaches a max-
imum at Time = tmax (c) The average magnetic field at tmax vs. Ln. The Biermann field
dominates over the Weibel between 80 ≥ Ln/de ≥ 160 (blue region), while a region where
the Weibel field dominates exists when 240 ≥ Ln/de (red region). Only the weak current
filamentation instability is found for Ln/de = 0 (effectively 1.3).

x-ray frequencies.
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5.4 CONCLUSIONS

In this chapter, we have demonstrated for the first time the possibility to clearly
observe the generation of electron Weibel magnetic fields in laboratory experiments.
First-principles PIC simulations of the interaction of an intense laser pulse with an
overdense plasma target have shown that in the presence of sufficiently weak den-
sity gradients at the front of the target (Ln/de ≥ 160 and wFWHM = 100 de), the
Weibel instability grows on very short time scales and produces fields whose satu-
ration strength is large compared to the Biermann battery fields, which naturally arise
in laser-plasma experiments. The Weibel instability is driven by an electron pressure
anisotropy caused by the rapid expansion of the electrons, which follows the laser-
plasma interaction.

Finally, we notice that density gradients of the type needed to observe the insta-
bility at work could easily be achieved by tuning the delay between the ionizing pre-
pulse and the main pulse of the laser system at existing laser facilities. For instance,
facilities such as the Vulcan laser facility at Rutherford Appleton Laboratory [159] with
a peak intensity around IL = 1019 W/cm2, wavelength λL = 1.054 µm a duration of
hundreds of femtosecond and a contrast of 107 would easily allow testing the inter-
play and the competition between the Weibel and the Biermann regimes, thus opening
the way to explore magnetogensis due to these mechanisms and their interplay.





CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY

The generation of magnetic fields in astrophysical and laboratory plasmas is of
paramount importance. In this context, this thesis investigates the role of plasma
instabilities in the self-consistent generation of magnetic fields, as a mechanism for
magnetic field generation in Gamma-ray-bursts (GRBs) as well as for its implication
of probing magnetic field structure in laser-matter interactions. Leveraging on fully
kinetic one-to-one particle-in-cell (PIC) simulations, I defined criteria for probing mag-
netic fields driven by Current Filamentation/Weibel instability (CFI/WI) experimen-
tally. I have explored the microphysical plasma processes mimicking realistic astro-
physical scenarios such as the fireball beam interaction with plasma, the interpenetra-
tion of two dark-plasma clouds, and intense-laser matter interactions. I demonstrated
the temporal and spatial behaviours of these microphysical plasma processes on the
smallest scales of the plasma.

In chapter 3, I investigated how electron-positron fireballs, that have been pro-
duced experimentally, could be used to investigate the CFI in the laboratory. I derived
a set of threshold conditions that establish key criteria for the experimental observa-
tions of these processes. I show that the ratio between the density of the fireball and
background plasma controls a transition between the CFI and the competing trans-
verse two-stream instability. When the density ratio is higher than unity the CFI can
grow as long as the beam expansion rate, caused by a finite emittance, is larger than
the CFI growth rate. I find that the longitudinal energy spread, typical of plasma-
based accelerated electron-positron fireball beams, plays a minor role in the growth of
CFI.
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In addition, motivated by recent observations of dark-matter with the constrained
of dark fine-structure constant (αD = 10−3) and the mass of the Dark matter (DM)
(mD ≤ 10 TeV ) dark matter might exhibit plasma like collective nature that could
determine the dynamics of DM. Besides their differences in charge to mass ratio, DM
like plasmas are considered being albeit cold and collisionless plasma. One of the
key questions that has been pointed out, is whether plasma-like instabilities may have
a significant impact on the dynamics of galactic DM clouds. In Chapter 4, I inves-
tigate if dark-matter could interact with itself through dark electromagnetic interac-
tions. Because dark-matter electromagnetism is similar to classical electromagnetisms
but acting only on dark-matter, I explored this topic using classical electromagnetic
OSIRIS simulations, which enabled to set upper limits to the dark matter charge-mass
ratio by considering the interaction between two DM plasma-like e−-e+ clouds. I have
shown the interpretation of DM suffers from the plasma-like instabilities generating
dark electromagnetic fields at the expense of bulk flow energy. I estimate the slow
down due to the interaction of two DM clouds via an electromagnetic-like interac-
tion. The slow down is mostly due to the generated magnetic fields, which deflects
particles trajectories such that their velocities acquire a transverse component. This
isotropizes the velocity distribution and is responsible for slowing down the flow in
the initial longitudinal direction. The isotropization of the velocity distribution would
slow down the flow roughly by 1/

√
2 in 2D and 1/

√
3 in 3D. I have also shown that

if typical dark matter slab length is much longer than v1Dt, I always expect particles
to slow down.

Finally, I demonstrated the possibility of driving the Weibel magnetic field in the
laboratory by the interaction of an intense laser pulse with an overdense target under
realistic conditions (finite laser spot size, realistic ion-electron mass ratio, and realis-
tic target densities) in Chapter 5. The generation of the magnetic fields in laser-solid
experiments is often attributed to the Biermann battery, which is generated by non-
parallel density and temperature gradients. In this work, I demonstrate the possibility
of experimentally generating a strong Weibel magnetic field. I model, using ab ini-
tio PIC simulations, the interaction of a short (ps) high intensity (a0 ≥ 1) laser pulse,
with a target of sufficiently large gradient scale length. The expanding hot energetic
electron population generated by the laser produces an anisotropy in the velocity dis-
tribution. This anisotropy provides the free energy that drives the Weibel instability
that appears on the surfaces of the target and dominates over the Biermann battery
field.

6.2 FUTURE DIRECTIONS

The work developed in this thesis provides fundamental guidelines for probing
the generation of magnetic field in controlled laboratory environments, thus allowing
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the comprehension of astrophysical phenomena, where in situ measurements are not
possible and the available information mostly derives from indirect measurements of
emitted radiation. Therefore, as a natural continuation of this work, I speculate that
it would be interesting to determine the main radiation signatures linked to the ana-
lyzed framework resorting to post-processing diagnostics. These radiation signatures
can then be used to perform predictions for future laboratory experiments and to com-
pare them with astronomical observations. In particular, the innovative configuration
explored in chapter 3, which leverages ultra-relativistic fireball beams, provides a real-
istic insight into the GRBs dynamics. Therefore radiation signatures could be directly
correlated with the spectra of the afterglow of GRBs. The strong fields generated by
the interaction of the fireball beams with the plasma will lead to extreme particle ac-
celeration and emission of gamma rays via synchrotron or synchrotron self-Compton
emission. Hence, it would be intriguing exploring the effects of more exotic physical
processes, as radiation reaction or quantum electrodynamics effects on the dynamics
of the interaction. Moreover, the same setup adding an external magnetic field could
be employed to explore the interaction of astrophysical jets with the magnetized am-
bient medium. Also, in this case, it is expected that a multitude of plasma phenomena
spanning from the generation of turbulence to particle acceleration will be observed.
An ion component could be added to the fireball beam. This would provide an un-
derstanding of the jet composition, the relative abundance of ions and pairs and their
roles in the jet dynamics, dissipation, and radiation. All these topics are in fact still
the argument of debate by the scientific community. A similar simulation setup could
also be exploited to explore the onset of shock formation and propagation.

Radiation reaction and quantum electrodynamics effects play a role also during
ultraintense laser-matter interaction. Therefore, exploring their role on the physics ex-
amined in chapter 5 is of extreme importance. To plan a possible experiment to probe
the Weibel instability via laser-solid target interaction, 2D simulations are enough to
provide general guidance. However, in order to thoroughly interpret laboratory re-
sults, where experimental diagnostics might be limited, full 3D simulations will be
necessary. They will be indeed required to examine the complex structures of 3D mag-
netic fields

Finally, about the existence of dark electromagnetism, which was extensively dis-
cussed in chapter 4, I believe that the effects of the dark plasma during the merger of
galaxy clusters remain to be studied. Furthermore, the validity of the fluid approxima-
tion has to be identified as a function of the mass, charge, and density of the charged
DM particles.





APPENDIX A

THE TWO STREAM INSTABILITY

Two-stream instability occurs due to two counter-streaming plasma flow in the
space. The initial stage is described by using the linearized Vlasov equation

∂ f j1

∂t
+ v

∂ f j1

∂z
+

qjE
mj

∂ f j0

∂v
= 0 (A.1)

where f j0 is the distribution function of the unperturbed particles (s=e for electrons
and j=0 for protons) and f j1 is the perturbation induced by and linearly proportional
to the electric field E.

We consider an electrostatic propagation in the z-directions where the electric field
point in the z-direction E = Eez, and varies with e−i(kz−ωt) which imply ∂/∂t → −iω
and ∂/∂z→ ik. Solving the equ. (A.1) for f j1, we obtain

f j1 =
−iqj

mj(ω− kv)
∂ f j0

∂v
E (A.2)

The electric field is calculated by using Poisson’s equation

ikEj1 =
ρj1

ε0
(A.3)

which leads to the dispersion relation:

ε(kω) = 1 +
e2

meε0k

∫ ∞

−∞

∂ f j0
∂v

ω− kv
dv = 0 (A.4)

We chose a δ distribution function for each species with moving opposite bulk mo-
menta (±v0) along the z-direction in a Cartesian coordinate system

f0(v) =
1
2

n[δ(v− v0) + δ(v− v0)] (A.5)
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where n is the total electron and proton density of the two streams. We then calcu-
late the integral of the above equation using the integration by parts:

∫ ∞

−∞

∂ f j0
∂v

ω− kv
dv =

∫ ∞

−∞
f j0

∂

∂v
1

(ω− kv)
dv +

[
f j0

(ω− kv)

]
(A.6)

∫ ∞

−∞

∂ f j0
∂v

ω− kv
dv = − kn

2

(
1

(ω− kv)2 +
1

(ω + kv)2

)
(A.7)

The dispersion relation for a purely electrostatic mode is given by

ε(kω) = 1− 1
2

(
ω2

p

(ω− kv)2 +
ω2

p

(ω + kv)2

)
(A.8)

Hence, the instability develops when v0 > ωp/k.



APPENDIX B

THE WEIBEL INSTABILITY

The Weibel instability occurs due to a pressure anisotropy in an arbitrary the di-
rection in a plasma with a small magnetic field. A linear instability is derived from
kinetic theory using the Vlasov equation and Maxwell’s equations, implementing an
anisotropic velocity distribution.

Consider the Vlasov equation for the distribution function f j(t, x, v) = f0(v) +
fj1(t, x, v) by neglecting external E0 = B0 = 0,

∂ f j

∂t
+ v · ∇fj +

e
m

(
E +

v× B
c

)
·

∂fj
∂v

= 0 (B.1)

The j subscript presents the species of interest, for instance electrons or ions. Tak-
ing only the first terms in E, B and fj, v assuming space-time dependence in the form
eik·x−i!t. This yields

f j1 = − ie
m(ω− k · v)

(
E1 +

v× B1

c

)
·

∂ f j0

∂v
(B.2)

Substituting B = c ( k× E)/ω obtained from the Faraday laws to Ampere’s equa-
tion, gives v× B/c = v× (k× E) = k(v · E)/ω - E(k · v)/ω leading to

−k× (k× E1) =
ω2

c2 E1 +
4π

c2
∂J1

∂t
(B.3)

Combining the Eq. B.2 and B.3 and using the induced current (J1=Σjqjnj0
∫

d3vv f j).
This gives

k2E1 − k · E1 −
ω2

c2 E1 + Σj
ω2

pj

c2 E1 − Σj
ω2

pj

c2

∫
d3vv

ωE1 + v · E1k− v · kE1

ω− v · k ·
∂ f j0

∂v
= 0

(B.4)
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where ωj0 = 4πnj0e2/m is the plasma frequency. Integrating by parts
∫

d3vvE1 ·
∇v f j0 = −E1

k2E1 − k · E1 −
ω2

c2 E1 + Σj
ω2

pj

c2 E1 − Σj
ω2

pj

c2

∫
d3vv

v · E1k
ω− v · k ·

∂ f j0

∂v
= 0 (B.5)

We examine the x component of this equation which is the perpendicula compo-
nents to k = ky. The integrate over an odd function in vx therefore the perpendicular
component of electric component can be dropped out. We evaluate the integrate over
an even function in vy and obtained a dispersion relation in the terms of longitudinal
component Ex1 terms

ω2 − k2c2 − Σjω
2
pj − Σjω

2
pj

∫
d3v

kv2
x∂ f j0/∂vy

kvy −ω
= 0 (B.6)

Now, we solve the integrals by parts Ix, Iy and Iz

∫
d3v

kv2
x∂ f j0/∂vy

kvy −ω
=
∫

d3v
v2

x f j0

(vy −ω/k)2 = Ix, Iy, Iz (B.7)

We chose a Maxwellian distribution function f = (m/2πTx)1/2(m/2πT)
exp[−(m/2πTx)v2

x − (m/2πT)(v2
y + v2

z)] to solve the integral Ix, Iy Iz

Ix =
∫

dvxv2
x

(
m

2πTx

)1/2

exp
(
− m

2πTx
v2

x

)
=

Tx

m
(B.8)

Iy =
∫

dvy

( m
2πT

)1/2 1
(vy −ω/k)2 exp

(
− m

2πT
v2

y

)
=

m
T
[1 + ζZ(ζ)] (B.9)

Iz =
∫

dvz

( m
2πT

)1/2
exp

(
− m

2πT
v2

z

)
=

T
m

(B.10)

where ζ = ω/k
√

2T/m and Z(ζ)= 1/
√

π
∫ ∞
−∞ exp(−x2)dx/(x − ζ)is the plasma dis-

persion relation. After substituting the integral, one arrives at the following dispersion
relation

ω2 − k2c2 −ω2
p + ω2

p

(
Tjx

Tj

)
[1 + ζZ(ζ)] = 0 (B.11)

We now examine the conditions where ζ � 1 and ζ � 1
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(A) WHEN ζ � 1 THE PLASMA DISPERSION RELATION IS Z(ζ) ≈
i
√

π

This yields the dispersion relations:

−k2c2 −ω2
p

(
1−

Tjx

Tj

)
+ i
√

πω2
p

ω2

k2c2

(
1−

Tjx

Tj

)
= 0 (B.12)

For ω/kc� ζ, one can neglect ζ2 and ω2 as compared to k2c2 which gives

ω = − ik√
π

(
Tjx

Tj

)(
k2c2

ω2
p
+ 1−

Tjx

Tj

)
(B.13)

where A =
(

1− Tjx
Tj

)
is anisotropy. If Tjx > Tj, one hence obtained Imω > 0 for small

enough k, so there exists an instability.

(B) WHEN ζ � 1 THE PLASMA DISPERSION RELATION IS Z(ζ) ≈
−1/ζ − 1/2ζ3, SO 1 + ζZ(ζ) ≈ −k2c2/2ω2

This yields the dispersion relations:

ω4 − (k2c2 + ω2
p)ω

2 −ω2
pk2 (B.14)

B.1 RELATIVISTIC WEIBEL INSTABILITY

The case of the Weibel instability with the ultra-relativistic electron streams (ve/c
∼ 1) was investigated by Yoon and Davidson [160]. The dispersion relation was de-
rived in a relativistic anisotropic plasma by considering the Waterbag model

f (p2
⊥, p‖) =

δ(p⊥ − p⊥0)

2πp⊥

Θ(p2
‖a− p2

‖0)

2p‖0
(B.15)

The dispersion reads:

1− c2k2

ω2 −
ω2

p

γω2

(
G(β‖ −

1
2

β⊥
1− β2

‖

ω2 − c2k2

ω2 − c2k2β2
‖
)

)
(B.16)

where Gβ‖ = 1/2β‖ln[(1 + β‖)/(1− β‖)] and γ = 1/(1− β⊥2 − β‖2).

For marginal instability, we simply set ω = 0
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c2k2 =
ω2

p

γω2 (
β2
⊥

2β2
‖

1
1− β2

‖
− G(β‖)) (B.17)

the condition for instability to occur

β2
⊥

2β2
‖
> (1− β2

‖)G(β‖) (B.18)

the maximum growth rate as

FIGURE B.1: Normalized growth rate Im ω[ωp/γ1/2] vs ckz/[ωp/γ1/2] for γ = 9 and several

values of β2
⊥

2β2
‖

Γ =
ωpe

γ1/2 , (B.19)

where A = β2
⊥/2β2

‖ is the anisotropy factor. The instabilities are capable to generate
transverse magnetic field. When the size and spacing are order of ∼ c/ωp, the insta-
bility saturates. We did not mention here the magnetic field instability due to colliding
electron clouds and Filamentation instability, since the free-energy sources in the latter
drive purely growing magnetic fields which ought to be somehow saturated to depict
the desired magnetic fields that could be associated with the observed magnetic fields
in cosmic and laboratory plasmas.



APPENDIX C

THE OBLIQUE INSTABILITY

Interaction of a relativistic beam with a plasma drives the plasma instability con-
verting the kinetic energy of electrons beam into plasma thermal energy and electro-
magnetic field. Two-stream and Weibel instability are unstable to k‖ and k⊥. How-
ever, Oblique mode is intermediate between two-stream and Weibel instability. We
will look into a derivation of the instability based one from

To derived the dispersion relation for Oblique instability, we consider a relativis-
tic electron beam propagating through a cold unmagnetized plasmas by ignoring the
ion mass. The relevant equations to begin the derivation are the Maxwell’s equation,
continuity and Lorentz equations.

∇× E1 = −1
c

∂B1

∂t
;∇× B1 =

1
c

∂E1

∂t
+−4π

c
J1. (C.1)

and

∂nj

∂t
+∇ · njvj = 0 (C.2)

and

∂Pj

∂t
= − e

m

(
E +

v× B
c

)
(C.3)

where J = qΣjnjvj − qnb0vb0 is current density and Pj = γmvj is the relativistic
momentum, and j = p, b is for plasma and beam electrons.

The density perturbation can be evaluated by linearizing the relativistic continuity
equations

n1 =
nj0k · v1

ω− k · vj0
(C.4)
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the variation of particle velocity can be derived

q
(

E +
v× B

c

)
= q

[
I +

1
ω
(k j − vjk)

]
· E (C.5)

where I is the identity tensor.

∂Pj

∂t
= γm

∂vj

∂t
+ mvj

∂γ

∂t
= γm

(
∂vj

∂t
+ vj · ∇vj

)
+ mvj

∂γ

∂t
(C.6)

Linearizing equation (C.6) results in

∂Pj

∂t
= γ0m

(
∂vj1

∂t
+ vj0 · ∇vj1

)
+ mvj0

∂γ

∂t
(C.7)

The last term can be rewritten in terms of relativistic energy

mvj0
∂γ

∂t
=

vj0

c2
dγmc2

dt
=

vj0

c2
dW
dt

(C.8)

dW
dt

= F · v = q
(

E +
v× B

c

)
· v (C.9)

mvj0
∂γ

∂t
=

vj0

c2 qE · vj0 (C.10)

∂Pj1

∂t
= γ0m

(
∂vj1

∂t
+ vj0∇ · vj1

)
+ q

vj0

c2 vj0 · E (C.11)

∂Pj1

∂t
= γ0m(iωvj1 + vj0k · vj1) + q

vj0

c2 vj0 · E (C.12)

where γj0 is the unperturbed Lorentz factor. Neglecting second-order terms one
can write

∂Pj1

∂t
u q

[
I +

1
ω
(kvj0 − vj0k)

]
· E (C.13)

Perturbations in the plasma electron and beam velocity can be obtained by com-
bining equ. (C.12, C.13)

vb1 =
qi

γ0m(ω− k · vb0)

[
(ω− k · vb0)

ω
+

kvb0

ω
− vb0

c2 vb0

]
· E (C.14)

and
vp1 =

qi
γ0mω

E (C.15)
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J1 =
c2

4iπω

[(
k2 − ω2

c2

)
I − kk

]
· E (C.16)

J1 = −e[np0vp1 + nb0vb0 + nb1vb0] (C.17)

combining equ. C.16 and C.17, which give rise to

c2i
4eπω

[(
k2 − ω2

c2

)
I − kk

]
· E = e

[
np0vp1 + nb0

(
I + vb0

k
(ω− k · vb0)

)
· vb1

]
(C.18)

or,

{c2kk−ω2 − k2c2 −ω2
p −

ω2
b

γ0
−

ω2
b

(ω− k · vb0)2

[
(ω− k · vb0)(kvb0 + vb0k) +

(
k2 − ω2

c2

)
vb0vb0

]
} · E = 0 (C.19)

where ωb is the beam frequency. The dispersion relation can be found setting
up determinant to zero by using the following convention for the wavenumber k =

k⊥ êx + kz êz and velocity vectors vb0 = vb0êz, results in

A · E = 0 (C.20)

or,

A =

A11 0 A13

0 A22 0
A31 0 A33

 where

A11 = c2k2
⊥ −ω2 + k2c2 (C.21)

A13 = A31 = c2k⊥kz −
ω2

bk⊥vb0

γ0(ω2 + k2c2)
(C.22)

A22 = ω2 − k2c2 −ω2
p −

ω2
b

γ0
(C.23)

A33 = ω2 − k2
⊥c2 −ω2

p −
ω2

bω2

γ3
0(ω− k · vb0)2

−
v2

b0k2
⊥ω2

b

γ3
0(ω− k · vb0)2

(C.24)

|A| = A11A33 − A2
13 = 0 (C.25)
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Substituting C.21, C.22 and C.24, the dispersion relation can then be rewritten as

(
1−

ω2
p

ω2 −
ω2

b

γ3
0(ω− k · vb0)2

)(
1 +

k2c2

ω2 −
ω2

p

ω2 −
ω2

b
γ0ω2

)
= −

v2
b0k2
⊥ω2

pω2
b

ω4γ0(ω− k · vb0)2

(C.26)
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