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Abstract

Super-resolution fluorescence microscopy techniques such as single-molecule localization microscopy

(SMLM) enable imaging biological structures at nanoscale resolutions with unprecedented accuracy.

However, analysing the large, complex datasets generated by SMLM experiments remains computa-

tionally demanding, hindering analysis throughput. In addition, the ability of SMLM localisation algo-

rithms to accurately resolve high densities of fluorescent emitters represents a fundamental limitation.

This thesis tackles these challenges through the development of optimised computational tools, ana-

lytical approaches and experimentation. First, a Python framework entitled NanoPyx is introduced to

accelerate super-resolution image analysis on modern computing hardware. This is done by generat-

ing multiple implementations of a task and dynamically predicting the fastest for specific devices and

input data. NanoPyx encompasses several methods that can be combined in a full super-resolution

image analysis workflow. Next, simulations built within NanoPyx are used to systematically evaluate the

counting accuracy of common SMLM localisation algorithms under varying known densities. Results

reveal a density limit of ∼1 molecule/µm2 for reliable quantification. Building on these simulations, an

innovative competitive antibody binding strategy is devised to experimentally control labelling densities

in a predictable linear fashion. By tuning the ratio of labelled and unlabelled antibodies targetting micro-

tubules, the density-dependent performance of algorithms is characterised with real datasets. Together,

these contributions in computational optimisation, simulation, and controlled experimentation aim to en-

hance the speed, reliability, and quantitative insights obtainable from single-molecule super-resolution

imaging.
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super-resolution | single-molecule localization microscopy | bioimage analysis | high-performance
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Resumo

Técnicas de microscopia de fluorescência de super-resolução, como microscopia de localização de

moléculas únicas (SMLM), permitem a visualização de estruturas biológicas com resoluções na or-

dem de nanómetros com alta fidelidade. Contudo, analisar os extensos datasets adquiridos por estes

métodos exige uma grande capacidade computacional. Adicionalmente, a capacidade dos algoritmos

de localização de SMLM de resolver estruturas com elevadas densidades de fluoróforos com precisão

representa uma limitação fundamental. Esta tese aborda estes desafios através do desenvolvimento

de ferramentas computacionais otimizadas, abordagens analíticas e experimentais. Em primeiro lu-

gar, é introduzida uma biblioteca em Python - NanoPyx - desenvolvida para acelerar computação para

análise de imagem em super-resolução. Esta optimização é feita através da geração de múltiplas im-

plementações de métodos e com a seleção dinâmica da mais rápida para cada hardware e dataset.

Em segundo lugar, foram desenvolvidas simulações realistas de SMLM na biblioteca NanoPyx para

sistematicamente avaliar a capacidade de quantificação de moléculas dos algoritmos de localização,

revelando um limite de fidelidade de ∼1 molécula/µm2. Em último lugar, foi desenvolvida uma estratégia

experimental envolvendo competição de anticorpos para controlar linearmente a densidade de molécu-

las com fluoróforos. Variando o rácio de moléculas com e sem fluoróforos, a fidelidade dos algoritmos

em contar moléculas pode ser caracterizada para diferentes condições de densidade, em experiênciais

reais. O trabalho desenvolvido em otimização computacional, simulação e experiências contribui para

um melhoramento na velocidade, fidelidade e caracterização quantitativa de técnicas de microscopia

de super-resolução.

Palavras Chave

super-resolução | microscopia de localização de moléculas únicas | análise de bioimagem
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1.1 Theoretical Background

1.1.1 Fluorescence Principles

Fluorescence is the phenomenon from which molecules - fluorophores - emit photons upon the absorp-

tion of photons from a light source [1]. This process is the result of the transitions between different

energy states of the molecule.

Typically, when a molecule is in its lowest energy state (ground state), its valence electrons are in a

singlet electronic state (S0). If the molecule absorbs photons with energy that is equal to or greater than

the energy difference between two electronic states, there is a non-zero probability that an electron is

excited to a higher energy state, a locally excited state (Sn, n ̸= 0).

Once an electron is in an excited state, it can decay to the first excited state S1 through a non-radiative

process. From S1, a series of energy release processes might occur depending on the molecular envi-

ronment and structure. The electron can return to the ground state S0 through a radiative decay, emitting

fluorescence [2,3]. In addition, the electron might cross to an excited triplet state T1, through Intersystem

Crossing (ISC), as seen in Figure 1.1. This results in the formation of a longer-lived metastable dark

state, as the reactions that follow the triplet state transition occur on much longer timescales (from 10-6s

to 10s) in comparison to the fluorescence lifetime ( 10-9s). Canonically, the photons emitted by fluores-

cent molecules have longer wavelengths than the absorbed photons, due to an energy loss.

Figure 1.1: Simplified Perrin-Jablonski diagram [4] for molecular energy states and transitions. The electronic
ground state S0 and first excited singlet state and triplet states (S1 and T1) are represented. The
radiative decay process of fluorescence (S1 → S0) and inter-system crossing (ISC) (S1 → T1) are also
depicted. When ISC occurs, the electron transits to a metastable dark state.

Photoswitching is the stochastic phenomenon in which fluorophores switch between a metastable ON

(bright) state, where they emit fluorescence, and a metastable OFF (dark) state, by a process commonly

termed ’blinking’ [5]. As explained above, the OFF state can be caused by ISC to a triplet state (see

Figure 1.1). The rate at which photoswitching occurs can be controlled by adjusting the intensity of

3



the illuminating light. Tipically, increasing the intensity of the light source results in a higher number of

transitions between the ground and singlet state, increasing the likelihood of triplet state-induced dark

states. Due to this behaviour, the photoswitching properties of fluorophores are regularly used in several

fluorescence microscopy methods [6,7].

1.1.2 Fluorescence Microscopy

Fluorescence microscopy is revolutionizing microscopic exploration by enabling scientists to observe and

analyze intricate physiological processes within cells under both fixed and live cell conditions [8,9]. This

technology takes advantage of the use of fluorophores to precisely label distinct cellular components in

a sample.

An epifluorescence microscope is mainly composed of a light source, an excitation filter, a dichroic

mirror, an emission filter, an objective and a detector [2,7], as illustrated in Figure 1.2.

Figure 1.2: Illustration of an epi-fluorescence microscope. Adapted from Henry Mühlpfordt under CC BY-SA 3.0.

The light source used for excitation can be a laser, a lamp or a light-emitting diode (LED). The

excitation filter selects specific wavelengths from the light source to be absorbed by the fluorophores in

the sample. A dichroic mirror separates the excitation light that travels to the sample from the emitted

light that travels from the sample to the detector. The mirror is placed at a 45-degree angle from the

path of the light source, causing it to be reflected to the sample. Additionally, the dichroic mirror only

allows the fluorescence emitted from the sample to pass through to the detector [7,9]. These processes

are possible due to the different wavelengths in the absorbed and emitted light. Since back-scattered

excitation light can occasionally pass through the dichroic mirror, these microscopes are also equipped
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with an emission filter to select only the emitted fluorescence from the specimen.

The light emitted by the fluorescent molecules in the sample is detected by a camera, which converts

the photons into an electric signal through the use of a photosensitive element. The camera sensor, an

array of pixels, captures photons and generates electric charges within each pixel. The stored charges

are then moved to a readout circuit, where they are converted into an electric signal. The resulting digital

data is then processed to form an image. Different cameras have varying levels of quantum efficiency

and noise. Quantum efficiency refers to the proportion of photons that are converted into electrons by

the pixels in the sensor. Camera noise, on the other hand, can come from several sources, such as shot

noise, readout noise, and optical background noise [10,11].

Shot noise is caused by the random, statistical nature of the arrival of photons at the detector, and is

not dependent on the type of camera used.

Readout noise is caused by electronic noise in the circuits used to read out the signal from the sen-

sor. Two commonly used detectors that reduce readout noise are Electron Multiplying Charge-Coupled

Device (EMCCD) cameras and Scientific Complementary Metal-Oxide-Semiconductor (sCMOS) cam-

eras [1,10].

Optical background noise is the unwanted light that is present in the environment and reaches the

detector, and it is a common issue in fluorescence microscopy. To tackle this, Total Internal Reflection

Fluorescence (TIRF) microscopy was developed to improve the signal-to-noise ratio [12]. This technique

takes advantage of the optical phenomenon of total internal reflection, which occurs when light strikes the

interface of materials with a higher refractive index at a sufficiently high angle (above the critical angle).

In these conditions, the incident light gets entirely reflected to the first medium. In TIRF microscopy, the

excitation light gets internally reflected in the interface between the coverglass and the liquid medium

generating an electromagnetic field with the same frequency as the excitation light. This evanescent

wave possesses an exponentially decaying intensity and is able to excite the fluorophores in the sample

that are closer to the interface, up to 200 nm from the coverslip [13, 14]. This ultimately results in very

low background fluorescence, making TIRF the preferred microscopy technique for visualising single

emitters in a sample.

1.1.3 Overcoming the diffraction limit

Resolution can be defined as the minimum distance between two distinguishable signals. In light mi-

croscopy, the resolution can be improved with better design and manufacturing of the optical system

until a fundamental physical limit is reached. This is called the Abbe’s diffraction limit [7,14,15].

Diffraction causes light waves to "spread out" when they encounter a discrete slit or aperture. In an

optical microscope, the lens will act as a circular aperture, which causes the emitted light to undergo

diffraction, causing a diffraction pattern to be observed upon reaching the camera [2, 16]. This pattern
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is called the Point Spread Function (PSF), which is shaped by a series of concentric disks, also referred

to as the "Airy Disk pattern", as seen in Figure 1.3. The Airy pattern of the PSF can be mathematically

described as follows (equation 1.1).

PSF (r) =

(
2J1(αr)

αr

)2

, α =
2πNA

λ
(1.1)

Here, PSF (r) represents the intensity of light at a distance r from the center; J1 is the Bessel function

of the first kind, describing the oscillatory behaviour of the PSF [17]; NA is the numerical aperture of the

objective; and λ is the wavelength of light used for imaging.

The resolving power of a microscope is related to the minimum distinguishable distance d between

the peaks of the PSFs [3,7] and is commonly quantified following Abbe’s principle and Rayleigh’s criteria,

which define the limits of optical resolution [14], and is expressed through Equation 1.2.

Figure 1.3: Airy disk pattern of a point spread function (top) and corresponding intensity profiles (bottom). The
distance between the peaks of PSFs d determines the resolution.

d =
0.61λ

NA
(1.2)

Given that NA typically takes values between 0.1 and 1.4, depending on the objective and presence

of an immersion medium, the best achievable resolution of a fluorescent microscope is around 200 to

300 nm [2,7].

This historical limit severely hampers the insight into biological architecture such as cellular structures

and protein complexes, whose size ranges from a few to tens of nanometers.

This barrier forced the development of new microscopy methods. Electron Microscopy (EM), for

instance, uses the wavelike properties of electrons, characterised by smaller wavelengths compared to

light waves, to reveal structures within specially treated samples [16,18].

EM can reach impressive resolutions below 0.2 nm, surpassing conventional optical microscopy by

several orders of magnitude. Nevertheless, while offering exceptional resolution, electron microscopy
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is not currently compatible with live cell imaging, and its molecular specificity falls short of fluorescence

microscopy techniques. This means that dynamic biological interactions and mechanisms cannot be

observed via EM, which is a major limiting factor in biological research [16].

Super-Resolution Microscopy (SRM) is a set of optical techniques that emerged in the 2000s that can

overcome the light’s diffraction limit and resolve sub-cellular architecture down to tens of nanometers.

This breakthrough not only retains the molecular specificity inherent to fluorescence microscopy but

also elevates compatibility with live-cell imaging, when compared to other high-resolution microscopy

methods such as EM [8]. Among the available SRM techniques, Single-Molecule Localization Mi-

croscopy (SMLM) can achieve one of the finest precisions [15].

1.1.4 Single-Molecule Localization Microscopy

SMLM is a set of imaging techniques that computationally detect and localise individual fluorescent

molecules from diffraction-limited image sequences, generating a super-resolved sub-diffraction im-

age [14]. SMLM methods include Photoactivated Localization Microscopy (PALM) [19,20] and Stochastic

Optical Reconstruction Microscopy (STORM) [21]. Essentially, single-molecule localization is achieved

by controlling the photoswitching rates of fluorophores in the sample. By forcing the majority of fluores-

cent molecules in an image frame into reversible OFF states, only a sparse subset of fluorophores are

emitting light in that frame. If their PSFs are spatially separated at distances higher than the diffrac-

tion limit, i.e, if the PSFs don’t overlap, it is possible to precisely detect and localise their position with

computational algorithms. By repeating this cycle of photoactivations and readouts to a sufficiently high

number of time frames, an image stack of thousands of images with individually resolvable molecules

localisation is recorded. By stacking all the images together, a super-resolved sub-diffraction image is

reconstructed [15,22]. The framework of SMLM is illustrated in Figure 1.4.

SMLM has achieved impressive resolutions of sub-20 nanometers [14], well below the diffraction

limit. An example of a diffraction-limited image and its reconstruction via SMLM can be seen in Figure

1.5.
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Figure 1.4: Single-molecule localization microscopy framework. SMLM imaging techniques promote stochastic
blinking of fluorophores in a sample, with the consequent imaging of thousands of time frames with
spatially separated emitters. For each obtained image frame, a computational framework performs
detection and localisation of individual molecules, by fitting a PSF into the location of each fluorophore.
Finally, by aggregating all the localisations from all the frames, a super-resolved image is reconstructed.
The illustrated data is realistically simulated.

The forthcoming sections will provide a more detailed insight into the execution of typical SMLM

experiments, encompassing the entire process from sample preparation to image analysis. Further-

more, an in-depth exploration of the present constraints and limitations inherent to SMLM will also be

undertaken.
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Figure 1.5: Diffraction-limited image of microtubules (A) and STORM image of the same area (B). (C, E) are the
conventional and (D, F) are the STORM images corresponding to the cropped sections in (A). [23]

Data acquisition

Imaging fixed samples for SMLM commonly requires immunolabelling. These methods involve the use

of antibodies to specifically target and label the molecules of interest in a sample followed by acquisition

using fluorescence microscopy. Immunolabelling is a technique that can be executed in two ways: direct

or indirect. The direct method involves attaching a primary antibody to a fluorophore directly. In contrast,

indirect immunolabelling does not involve the primary antibody carrying a fluorescent label. Instead, it

binds to a secondary antibody that is bound to the fluorescent molecule [15,24].

The interaction between an epitope and an antibody plays a crucial role in successful immunola-

belling. The binding affinity between these two entities is instrumental in determining the specificity and

accuracy of labelling. To ensure comprehensive labelling and minimise incompleteness in the observed

structure, saturating antibody concentrations are employed. This strategy helps ensure that all available

binding sites on the target epitope are occupied, enhancing the chances of successful labelling.

The probability of an epitope being labelled can be quantitatively described using the Hill-Langmuir

equation [25], as follows.

P (labelled) =
[Ab]n

[Ab]n +Kd
(1.3)

Whereas [Ab] is the antibody concentration, Kd is the dissociation constant and n is the Hill coeffi-

cient.

In the realm of SMLM experiments, microtubules have emerged as a widely used biological structure

9



for labelling and method validation due to their well-characterised filamentous nature. These slender,

tube-like structures are integral components of a cell’s cytoskeleton and possess a distinctive tubular

structure with a diameter of approximately 25 nanometers. Microtubules consist of 13 protofilaments ar-

ranged in a circular configuration around a hollow core. Each protofilament generally comprises alternat-

ing α-tubulin and β-tubulin monomers, and the width of each α-tubulin/β-tubulin dimer is approximately

8 nm [26].

In microtubule immunolabelling, primary antibodies against either α-tubulin or β-tubulin epitopes are

employed to target the respective tubulin subunits. In the case of indirect immunolabelling, secondary

antibodies are used to bind to the primary antibodies. Among the commonly used labels for SMLM

studies, the photoswitchable dye Alexa Fluor 647 [27] stands out due to its exceptional photostability,

brightness and inducible photoswitching properties.

A 2-dimensional representation of microtubule immunolabelling, considering the dimensions of the

molecules involved, can be seen in Figure 1.6.

Figure 1.6: 2-dimensional representation of the microtubule structure with indirect immunolabelling in one protein.
The yellow and blue monomers represent the α-tubulin and β-tubulin, respectively. Indirect immunola-
belling is represented for one of the monomers.

Following the completion of immunolabelling experiments targeting the structure of interest, the next

step involves the imaging of the samples. To achieve high-quality super-resolution images of immuno-

labelled specimens, it’s crucial to employ an appropriate imaging buffer that effectively regulates the

photoswitching behavior of fluorophores. These buffers should include reducing agents, such as MEA

or DTT, which facilitate the occurrence of the desired longer dark states in the fluorophores. Additionally,

an oxygen scavenger system should be included to eliminate molecular oxygen from the solution [15,28].

O2 exists in a triplet state in its ground state, and the chemical reactivity of fluorophores in triplet states

can lead to the formation of singlet state oxygen—a highly reactive species that can induce photo-

bleaching in fluorescent molecules. This photobleaching renders the molecules permanently unable

to emit fluorescence. A commonly employed oxygen scavenger system uses a glucose oxidase and

catalase enzymatic combination [15].

A crucial aspect of SMLM techniques revolves around the precise imaging conditions under which
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data is gathered. One frequently used approach for imaging fixed cells involves employing TIRF mi-

croscopy, due to its ability to provide high Signal-to-Noise Ratio (SNR)s, coupled with EMCCD or sCMOS

cameras. Central to this acquisition methodology is the laser power used to excite the fluorophores in

the sample. The laser power is adjusted to promote a desired photoswitching ratio, ensuring it is suffi-

ciently high to induce photoswitching in the fluorescent molecules. The photoswitching ratio, expressed

as r = koff/kon [29], describes the connection between the rates of transition from the ON-state (kon)

to the OFF-state (koff ) of the fluorophores. A common target is a ratio of 1000, indicating the prefer-

ence for fluorophores to spend 1000 times longer in the OFF-state than in the ON-state. To accomplish

this, powerful laser settings are applied, typically falling within the range of 2 to 10 kW/cm2 [30]. This

excitation occurs with a relatively short exposure time of approximately 10 milliseconds per frame. This

timing is chosen to align with the approximate duration of the fluorophores’ ON-state [14]. This allows

for efficient capture of the fluorescence emission while the fluorophores are in their active state. Sub-

sequently, a substantial sequence of image frames is captured, often ranging from thousands to tens of

thousands. This extensive frame acquisition guarantees that all emitters are imaged in their ON-state

at least once. This accumulation of frames results in a diffraction-limited image stack where individual

emitters are distributed sparsely across each frame. This controlled distribution is essential for accurate

localisation of each emitter and subsequent super-resolution image reconstruction.

Single-molecule detection and localisation

In SMLM, a computational framework is followed to process the acquired diffraction-limited image stack.

The first step in generating a super-resolved reconstruction is to detect the most likely position of

molecules in each frame. This is usually done by extracting pixels with the highest intensity values within

a pixel neighbourhood equivalent to the size of the PSF via a local maximum filter algorithm [14, 15].

Theoretically, higher intensities in a pixel correspond to a higher number of photons detected.

Following the detection of an approximate emitter position in each frame, each molecule is precisely

localised with localisation algorithms. Achieving sub-diffraction-level localisation for each molecule in-

volves fitting a model of the PSF within the detected pixel window [17]. As mentioned in section 1.1.3,

the PSF of a fluorescence microscope can be described by an Airy pattern. Nevertheless, studies have

shown that a two-dimensional Gaussian shape serves as a suitable approximation for the fluorescent mi-

croscope’s PSF [31], providing the benefit of simplifying subsequent analyses. The commonly employed

2D Gaussian function for approximating the PSF is defined as:

PSF (x, y) =
1

2πσ2
0

exp− ((x− x0)
2 + (y − y0)

2)

2σ2
0

(1.4)

Where σ0 is the standard deviation of the Gaussian function, and x0 and y0 are the coordinates of
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the molecule’s position. Given that the detectors used in acquisition focus the incoming light into a two-

dimensional pixel array, it is necessary to modify the continuous distribution of the PSF to a discrete,

pixelised profile [17, 32]. For this, each pixel is assumed to be rectangular and the expected number of

photons in that pixel can be calculated by the integral of the Gaussian profile mentioned above 1.4 over

the pixel area. This yields the following.

µk(x, y) = I0∆Ex(x, y)∆Ey(x, y) + b0 (1.5)

Where µk is the expected number of photons in the pixel k, I0 is the expected total number of photon

counts, and b0 is the background. ∆Ex and ∆Ey can be given by the following [17,32].

∆Ex(x, y) =
1

2
(erf(

x− x0 +
1
2√

2σ0

)− erf(
x− x0 − 1

2√
2σ0

))

∆Ey(x, y) =
1

2
(erf(

y − y0 +
1
2√

2σ0

)− erf(
y − y0 − 1

2√
2σ0

))

(1.6)

Where x0, y0 is the position of the emitter, and erf is the error function [33]. Fitting can then be

achieved with several algorithms, and the most commonly used are the Maximum likelihood estimation

(MLE) and the Weighted Least Squares (WLS) [34–36].

MLE is a statistical method that aims to find the parameters that maximise the probability of the model

matching the real values. MLE maximises the likelihood function (or its logarithm). Given that observed

discrete counts (represented as dk) can be assumed to draw a Poisson distribution, the likelihood can

be represented by a Poisson process [35]. Thus, localising a specific emitter means finding which

parameters maximise the following likelihood function.

L(θ|D) =
∏
k

µk(x, y)
dk exp−µk

dk!

θML = argmax
θ

L(x|θ)
(1.7)

The parameters θ correspond to the emitter positions ((xi, yi), i = 1...N ) and the background b0.

To find these parameters, it is common to perform iterative approaches, such as the Newton-Raphson

method [17].

WLS minimises the sum of the squared differences between the model and the actual pixel values,

and it’s parameter estimation is given by the following [37].

θWLS = argmin
θ

ϵ2(x|θ) (1.8)

Where ϵ is the difference between the model (prediction) and the real pixel values.

It is important to highlight that the imaging model (µk) only considers a single emitter within the
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specified pixel area. This limitation can lead to challenges in precisely determining the emitter’s position,

particularly if other molecules are situated closely to or partially inside this pixel area. To tackle this, an

enhancement of the model has been proposed, involving a technique known as multiemitter fitting [32].

In this approach, it is assumed that for a given pixel k, each emitter contributes independently to the

expected photon counts. Therefore, in pixel k, the expected number of counts produced by N emitters

can be calculated as follows.

µk(x, y) =

N∑
i

I0∆Exi
(x, y)∆Eyi

(x, y) + b0 (1.9)

A disadvantage of using multi-emitter fitting is that it is a computationally intensive method, limitting

their practical use to process large biological datasets [38].

Several software packages that encapsulate these algorithms have been made available to re-

searchers. One of the most widely adopted is ThunderSTORM [39], a plugin from ImageJ [40]/ FIJI [41].

With ThunderSTORM, users are required to provide their acquired diffraction-limited image stack and

then select the desired reconstruction parameters. These parameters encompass critical aspects such

as the magnification factor, pixel size, the choice of PSF model (with the default being the above men-

tioned integrated Gaussians), the detection method (typically defaulting to the local maxima approach),

and the localisation algorithm – with options such as the MLE or WLS, with the additional possibility of

multi-emitter fitting.

Single-molecule localization microscopy limitations and requirements

Many factors influence the precision and accuracy of molecule localisation in SMLM [8, 15, 24]. Ulti-

mately, these factors can be categorised into three domains related to the sample preparation, acquisi-

tion and analysis [42].

• Sample-related factors encompass attributes inherent to the biological sample and its prepara-

tion, which can significantly impact the acquisition and consequent accuracy of the reconstruction

process [43]. These include the following.

– Fixation: chemical cell fixation of biological samples can produce significant changes on cel-

lular structures, subsequently impacting antibody binding. Optimised fixation protocols are

needed to preserve the target structure as close to its native state as possible [44].

– Labelling specificity: Nonspecific binding of antibodies conjugated with fluorophores can intro-

duce background noise and unwanted signal contributions. Proper washing steps and control

experiments help minimise this [45].

– Artifact sources: autofluorescence or contaminants in the sample can contribute to unwanted
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background signal. Additionally, some fixative agents introduce unwanted autofluorescence

that needs to be quenched. Thorough washing and stringent controls help identify and trou-

bleshoot these [46,47].

– Biological structure: naturally denser structures can lead to substantial overlap of PSFs, pos-

ing challenges in distinguishing individual molecules. Even within a single structure, localised

densities can vary, as seen in overlapping structures, requiring careful considerations during

the reconstruction process [48,49].

– Choice of fluorophores: only certain fluorophores exhibit the necessary photoswitching prop-

erties for SMLM, with specific switching kinetics and high photostability. Additionally, the flu-

orophore’s quantum yield, i.e, the efficiency with which it emits photons upon excitation, also

plays a vital role. Moreover, some fluorescent molecules are more prone to photobleaching

than others, which affects the total photon yield over the acquisition time [50,51]. Commonly

used fluorophores include Alexa Fluor 647 [27], Alexa Fluor 568 [52], CF 680 [53] and Atto

488 [54] [15].

– Blinking buffer: mounting the sample with an appropriate blinking buffer is crucial to ensure

the desired photoswitching behaviour of fluorophores. As previously stated, this buffer should

contain a reducing agent to promote longer dark states and an oxygen scavenger system to

eliminate molecular oxygen from the solution [55].

• Acquisition-related factors include the hardware used to acquire the data and the physical limits

imposed by the imaging system. These encompass the following.

– Camera characteristics: the pixel size should be ≤ 1/2 the width of the PSF to avoid under-

sampling errors (i.e, pixel sizes should be 100-150 nm); the quantum efficiency should be

high to maximise the number of detected photons (≥ 70%); the readout noise should be low

(less than 1 electron per pixel); the frame rate should be high to capture the fast blinking

dynamics of the fluorophores (≥ 50 fps) [14,56].

– Optics: The numerical aperture of the objective influences the PSF width and shape. Higher

numerical apertures yield smaller, more symmetric PSFs, which aid precision [57].

– Excitation intensity: as previously mentioned, high laser powers (2-10 kW/cm2) are required

to promote photoswitching, to spatially separate the emitters measured PSFs [30]. Yet, ex-

cessively high laser power leads to photobleaching, constraining the overall photon yield over

time.

– Stage drift: Sample drift during acquisition causes blurring and localisation errors. Post-

processing drift correction techniques help compensate for this [58].
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– Out-of-focus light: Background fluorescence from above/below focal plane contributes noise

and degrades precision. Optical sectioning techniques like TIRF mitigate this [13].

In fact, given the nature of the acquired signal, there is a fundamental limit as to how precisely

each emitter can be localised. Assuming that the dominant source of noise in the acquired

signal is photon shot noise (see section 1.1.2), the following expression shows the uncertainty

of the location of an emitter [14,59].

∆x =

√
σ2 + a2/12

N
(1.10)

Where σ is the standard deviation of the PSF, a is the pixel size and N is the number of

photons collected by the detector. This means that the higher the number of photons, the

better the precision (lower uncertainty). This quantitative notion is defined as the Cramér-

Rao Lower Bound (CRLB) limit [60], and it is widely used to compare localisation algorithms,

given they should obey this theoretical limitation.

• Analysis-related factors entail the computational framework used to process the acquired data.

– Localisation algorithms. Common algorithms like MLE and WLS differ in how they fit a model

PSF to determine the molecule’s position. MLE generally provides highest precision. How-

ever, all localisation algorithms have fundamental limits in accuracy and precision when deal-

ing with overlapping PSFs due to high local emitter densities high local emitter densities. In

such cases, algorithms cannot reliably distinguish nearby emitters, leading to undercounting

of molecules and localisation errors [58, 61, 62]. This sets an upper density limit for reliable

quantification and super-resolution imaging. Approaches like multi-emitter fitting aim to push

this density limit higher, but the problem remains a key challenge in SMLM.

– Post-processing: drift correction, registration, and other post-processing steps can help im-

prove precision and accuracy [58].

The various factors taken into account in SMLM demonstrate the extensive complexities involved

in hardware design and optimisation to achieve super-resolution reconstructions from single molecule

signals with high precision and accuracy. State-of-the-art cameras, objectives, lasers, and mechanical

stability are essential to maximise photon collection and minimise noise and artifacts. At the same

time, consideration of the sample characteristics, labeling strategies, acquisition modes, and analysis

algorithms all aim to promote low densities of active fluorophores in each frame. This mitigates issues

with overlapping PSFs that fundamentally limit localisation precision and accuracy at high densities.

To tackle this, alternative computational techniques to generate super-resolution images have emerged,

attempting to deal with higher-density data.
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1.1.5 Fluctuation-based Super-Resolution algorithms

The dependence of SMLM techniques on the existence of long dark states by fluorophores motivated

the development of computational methods based on statistically independent blinking patterns of flu-

orophores [63]. The developed algorithms exploit the small intensity fluctuations of the fluorescence

signal in the time-series. Therefore, contrarily to SMLM, these techniques reconstruct a super-resolved

image directly from the image data, not from precisely detecting and localising each fluorophore’s posi-

tion [2,3].

One of the most widely adopted fluctuation-based super-resolution algorithm is Super-Resolution

Radial Fluctuations (SRRF) [64]. SRRF takes advantage of the fact that acquired PSFs exhibit approxi-

mate radial symmetry in the image plane. SRRF magnifies each pixel of a diffraction-limited image frame

into subpixels (via a Catmull-Rom interpolation [65]) and assigns a radiality value to each subpixel, rep-

resenting a probability of an emitter being present in that location. This value is a measurement of the

intensity gradient convergence [64]. Theoretically, the intensity gradient in a given position will point

towards the centre of the fluorophore originating the PSF [66]. In addition to the spatial analysis, per-

formed over all the frames of the diffraction-limited image stack, the SRRF algorithm performs temporal

analysis of the acquired stack. This is done by applying temporal correlations between frames: radiality

peaks caused by noise are not correlated over time (causing their temporal correlation to be close to

zero), and the highest degree of correlation in time is located at the centre of radiality peaks produced

by the real emitters [64]. An illustration of the SRRF algorithm can be seen in Figure 1.7.

Experimentally, SRRF showed to achieve resolutions down to 40 nm, and is currently one of the most

widely used non-localisation-based methods by the super-resolution community. It is available to users

as a plugin for ImageJ [40]/ FIJI [41].

More recently, an enhancement of the SRRF algorithm, named enhanced Super-Resolution Radial

Fluctuations (eSRRF) [67] was developed, which improves the image fidelity and resolution of the pre-

viously described algorithm SRRF. There are some key differences in the spatial analysis of eSRRF,

when compared to the original SRRF. To subpixelise the original images, eSRRF uses a Fast Hart-

ley Transform (FHT) [68], as oposed to a Catmull-Rom interpolation, which was proven to minimise

macro-pixel patterning artifacts in the reconstruction. Most importantly, the mathematical model used

to calculate the radiliaty value, now referred to as Radial Gradient Convergence (RGC), was improved:

it now considers the weighted influence of the intensities of all subpixels surrounding each potential

emitter, in the continuos space. This allows a better estimation of the environment around the pixel of

interest, and ultimately permits enhanced image fidelity and resolutions. The performed spatial analysis

outputs several RGC maps, one for each frame of the acquired image stack. These maps are then

correlated in time to generate a super-resolved image.

A comprehensive mathematical description of the eSRRF algorithm is provided in Appendix A.1.
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Figure 1.7: a) Left: illustration of the obtained diffraction-limited PSF in 3D. Middle: surface plot of the gradient
field of a PSF. The arrows indicate the direction of the gradient vectors, which are pointing towards
the centre of the gradient field due to its radial symmetry. Right: illustration of the obtained radiality
(degree of convergence of the intensity gradient vectors) in 3D. b) Left: simulation of a diffraction-
limited image stack of 100 frames with two emitting fluorophores separated by a distance of 135 nm,
smaller than the diffraction limit. The true positions of the fluorophores are indicated in red. Middle:
obtained radiality maps for each frame after applying the SRRF algorithm. Right: output SRRF image
acquired by temporal analysis of the stack of radiality maps. Scale bar: 500 nm [64].

1.1.6 Image analysis tools for super-resolution microscopy

Most super-resolution approaches rely on analytical steps to process the acquired data. These encom-

pass image registration techniques, resolution enhancement - accomplished through SMLM algorithms

or fluctuation-based approaches like SRRF and eSRRF - and the quantification of features of the ac-

quired data such as quality and resolution.

Image registration techniques encompass two essential components: drift correction and channel

registration [69]. Drift correction entails aligning the image stack to compensate for sample drift during

acquisition. This is frequently accomplished through cross-correlations between frames. Meanwhile,

channel registration focuses on aligning distinct channels in multi-channel acquisitions, to mitigate chro-

matic aberrations [70].

Performing quantitative quality control of the generated data is essential to both validate and compare

different methods. One widely used method to assess the quality of super-resolved images is Super-

Resolution Quantitative Image Rating and Reporting of Error Locations (SQUIRREL) [71]. SQUIRREL

generates a quantitative error map of super-resolution defects by comparing the original diffraction-

limited data to a simulated diffraction-limited version of the super-resolved reconstruction.
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The super-resolved image is convolved with a Resolution Scaled Function (RSF), optimised to

match the microscope’s PSF, to generate the simulated diffraction-limited image for comparison. The

pixel-wise error between this and the original diffraction-limited data produces a map of defects in the

super-resolution image. In addition, SQUIRREL calculates two quantitative global image metrics: the

Resolution-Scaled Error (RSE), representing the root-mean-square error between the reference and

resolution-scaled image; and the Resolution-Scaled Pearson Correlation (RSP) coefficient. An example

of an error map obtained can be seen in Figure 1.8.

Besides assessing the quality of a super-resolved image, it is essential to calculate the achieved

resolution. A popular method for quantifying the resolution of a reconstruction is with Fourier Ring Cor-

relation (FRC) [72]. It works by splitting the localisation data into two subsets, generating separate

images from each subset, then calculating the correlation between the Fourier transforms of these im-

ages along concentric rings of increasing spatial frequency. The FRC curve plots this correlation as a

function of frequency. The resolution is defined as the inverse of the frequency at which the FRC corre-

lation falls below a chosen threshold. This transition indicates where the subset images lose correlation,

defining the achievable resolution limit. An example of an obtained FRC maps can be seen in Figure

1.8.

Figure 1.8: (a) SMLM reconstructed image (microtubule immunolabelling with Alexa Fluor-647). (b) Correspondent
TIRF image. (c) Error map of (a) using (b) as a reference. (d) Local map of FRC values for the super-
resolution image (a). [71]

An alternative approach to calculate image resolution is with Decorrelation analysis [73]. This method
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directly computes the spatial correlation between the subset localizations as a function of distance. Here

the resolution is defined as the distance where this spatial correlation plot decays below a set threshold

value. By quantifying the distance or frequency at which random subsets decorrelate, both FRC and

decorrelation analysis provide quantitative metrics to characterize super-resolution image resolution.

However, the subjective choice of threshold impacts the absolute resolution value reported.

Most of the methods mentioned above find their implementation within the framework of NanoJ [69],

a widely adopted ecosystem of ImageJ plugins for super-resolution microscopy. NanoJ includes NanoJ-

Core, implementing image registration methods and acting as a library to be used by the other plugins;

NanoJ-SRRF and -eSRRF, incorporating the methods SRRF and eSRRF; NanoJ-SQUIRREL, with the

SQUIRREL Error map and the resolution metric FRC for quality control.

These techniques involve processing large image stacks and iterative optimisations, which is very

computationally demanding. To accelerate processing, NanoJ leverages OpenCL [74] parallel program-

ming. With OpenCL, algorithms are written in a C-like language with additional commands to launch

parallel compute kernels. OpenCL handles distributing the workload across available compute units,

enabling the harnessing of powerful parallel hardware like Graphics Processing Unit (GPU)s for large

performance gains.

Python for bioimage analysis workflows

In recent years, Python has become the favored programming language within the microscopy image

analysis community. One of the reasons for it is the abundance of specialised libraries and frameworks

designed for bioimage analysis. Being a high-level language, Python prioritises readability and user-

friendliness, liberating developers from concerns about low-level memory management and machine-

specific optimisations. As a result, developers can fully concentrate on implementing their desired algo-

rithms. The versatility of Python is another advantage, as it can be seamlessly executed across various

platforms, including diverse operating systems and hardware configurations. The surge in deep learn-

ing techniques has further propelled Python’s popularity, particularly in the realm of bioimage analysis.

Researchers now frequently implement cutting-edge deep learning methods in Python, leveraging the

support of specific libraries tailored to this domain. The availability of these tools has enabled ground-

breaking advancements in bioimage analysis, strenghtening Python’s position as an ideal choice for

creating advanced frameworks in this area.

However, standalone Python is an inherently slow programming language. Two of the factors con-

tributing to this are 1) the fact that Python is an interpreted language and 2) the Global Interpreter

Lock (GIL). Being an interpreted language means that Python is not directly executed by the computer,

but rather by an interpreter. This makes Python code slower than compiled languages, such as C or
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C++. In addition, Python has a GIL, which prevents the code to be ran on more than one thread (a unit

of code execution) of the computer Central Processing Unit (CPU). This means that pure Python code

cannot be executed in parallel, which is a problem for computationally intensive tasks.

Achieving Computational Acceleration in Python

There are several methods to accelerate Python code by bypassing the GIL and compilation to ma-

chine code. Three popular approaches are Cython, PyOpenCL and Numba:

• Cython [75] is a static compiler that converts Python code into optimised C/C++ code that can be

compiled into a Python extension module. It provides Python-like syntax while supporting calling

C functions and declaring C types. Cython code runs significantly faster than Python because it

bypasses the GIL to allow multi-threading (with the use of prange) and performs low-level optimi-

sations like loop unrolling. One limitation is that Cython requires explicit type declarations, which

removes some of Python’s dynamism.

• PyOpenCL [76] allows Python code to execute parallel computations on GPUs through the OpenCL

[74] framework. Computational tasks are offloaded to the GPU, which has thousands of tiny

processing cores suited for data-parallel operations. PyOpenCL translates Python functions into

OpenCL kernels that run efficiently on GPUs. This offers massive parallelism and speedup com-

pared to Python limited by single-CPU core execution. Despite PyOpenCL not requiring a physical

GPU to run, the best and easiest performance improvement requires one, which can be a limiting

factor for some users.

• Numba [77] is a just-in-time (JIT) compiler that converts Python functions into optimised machine

code. It is designed to accelerate numerical workloads using NumPy arrays and math opera-

tions. Numba-compiled code avoids interpreter overhead (i.e., excess computation time) and lever-

ages vectorisation, loop-unrolling and parallel execution on multicore CPUs. One disadvantage of

Numba is that it has compilation overhead on first run.
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1.2 Problem Statement

Super-resolution microscopy techniques have become vital tools for biological studies. However, analysing

the large, complex datasets acquired by these methodologies poses major challenges. Existing image

analysis methods suffer from computational performance bottlenecks that hinder processing of massive

modern datasets. Moreover, SMLM techniques face fundamental limitations in accurately localising and

quantifying high densities of emitters. At high densities, overlapping PSFs lead to undercounting arti-

facts. However, systematically characterising this density-dependent behaviour is inherently difficult in

real experimental conditions due to challenges in precisely controlling labelling densities.

Together, these issues of computational scalability and characterisation of localisation errors under

high density imaging conditions represent problems this thesis seeks to address through the develop-

ment of optimised tools and analytical approaches.

1.3 Project Objectives

The scope of this project falls in the development of optimised computational tools and systematic char-

acterisation of SMLM localisation algorithms on both synthetic and real data. The thesis is subdivided

into three chapters, each addressing a specific aim (see Figure 1.9).

Figure 1.9: Project Aims. These include 1), the development of an adaptive library for super-resolution image
processing; 2) the implementation of simulations and modelling to assess SMLM algorithms and 3) the
development of a new experimental framework to evaluate algorithm performance.

Aim 1: Develop a high-performance and adaptive image analysis library to accelerate processing of

large super-resolution datasets, incorporating super-resolution tools.

Aim 2: Implement simulations into the previous framework to systematically evaluate the perfor-

mance of SMLM localisation algorithms under varying density conditions.

Aim 3: Develop experimental strategies to control molecular density and use these to evaluate real-

world algorithm performance across a range of densities.

Together these computational and analytical advancements aim to enhance the accessibility, relia-

bility, and biological insights obtainable from single-molecule super-resolution imaging.
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NanoPyx: adaptive bioimage analysis
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This chapter focuses on the development of NanoPyx, a Python library specifically designed for

super-resolution image analysis with high-speed processing.

Contributions

The NanoPyx framework was developed by the author of this thesis, Inês Martins Cunha, along with

Bruno Saraiva and António Brito, with contributions from Robert Haase and Guillaume Jacquemet. In

specific, the core of the NanoPyx framework - the Liquid Engine - was co-developed by Inês Cunha,

Bruno Saraiva and António Brito. The image registration methods, including drift correction and channel

registration, were implemented mainly by Bruno Saraiva; The implementation of super-resolution gen-

eration methods, including SRRF and eSRRF, was led by Inês Cunha; The quality control metric (Error

Map of SQUIRREL) was the responsibility of Inês Cunha. The other quality control metrics, including

FRC and Decorrelation analysis, were implemented by Bruno Saraiva. The single-molecule simula-

tions were the responsibility of Inês Cunha, and described in detail in the next chapter. Raquel Portela

prepared samples to showcase the NanoPyx framework, and Inês Cunha acquired and processed the

data. Gautier Follain carried out additional experiments and acquisitions. Gautier Follain, Robert Haase,

Pedro Pereira and Guillaume Jacquemet provided feedback, testing and guidance. Inês Cunha, Bruno

Saraiva and António Brito further tested, documented and created user interfaces for NanoPyx. The

entire endeavor was supervised by Ricardo Henriques.

Code availability

The NanoPyx Python library can be found in the Github repository: https://github.com/HenriquesLab/

NanoPyx.

Manuscript Publication

The developed work has been published as a Preprint in https://doi.org/10.1101/2023.08.13.

553080 [78]. In the first two weeks of becoming available, it reached over 700 downloads and is on

the top 3% of all research outputs scored by Altmetric.
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2.1 Introduction

Super-resolution microscopy has revolutionised cell biology by enabling fluorescence imaging at an un-

precedented resolution [79–82]. However, the data collected from super-resolution experiments requires

specific analytical methods, such as drift correction, channel alignment, resolution enhancement, and

quantifying data quality and resolution. To execute these tasks effectively, various open-source image

analysis software tools are commonly employed. Notably, platforms such as ImageJ [40] or Fiji [41] play

a pivotal role, providing a wide range of tools such as ThunderSTORM [83], Picasso [84], FairSIM [85],

Fourier Ring Correlations (FRC) [72], and Decorrelation Analysis [73].

However, as the adoption of super-resolution microscopy continues to expand, the tools used for

image analysis become increasingly intricate. At the same time, the acquired datasets for these tech-

niques are growing in terms of number, size, and complexity. The computational performance of existing

methodologies has become a significant bottleneck, hindering the high-throughput analysis of these ex-

tensive datasets. This highlights the need for a shift towards a more performance-centric approach for

super-resolution image analysis.

Furthermore, as explained in 1.1.6, there are multiple ways to obtain computational acceleration for

an algorithm. In fact, an algorithm can potentially be ran in the computer CPU, either in a single core or

with multiple cores, or in the GPU. Choosing the fastest implementation to run a specific computational

task is not trivial. The reason for this is that, in theory, the fastest way of running a method will depend on

several factors, such as 1) the method itself (how computationally intensive it is), 2) the specific device

used to run it (the number of cores in the CPU, the type of GPU, etc) and 3) the data used as input (the

size of the image(s)). In addition, it is important to note that some of the implementations might not be

available to a user.

To tackle this, NanoPyx was developed: a high-performance and adaptive bioimage analysis frame-

work. At the core of NanoPyx is the Liquid Engine, an agent-based machine-learning system that pre-

dicts acceleration strategies for image analysis tasks. The Liquid Engine uses multiple implementations

of the same algorithm to perform a specific task. Although these implementations provide numerically

identical outputs for the same input, their computational performance differs by exploiting different com-

putational strategies. The Liquid Engine can then predict the optimal combination of implementations

based on the user’s specific hardware device and input datasets.

NanoPyx offers a variety of bioimage analysis methods, specifically tailored to super-resolution mi-

croscopy. These include categories available from the widely used NanoJ [69] plugin, such as Image

Registration (drift correction and channel alignment [69]), Super-Resolution Generation (SRRF [64] and

eSRRF [67]), and Quality Control (Error Map [71], FRC [72], and a new implementation of Decorrelation

Analysis [73]) (see Figure 2.1). Bringing the adaptability of the Liquid Engine into these methods allows

NanoPyx to overcome many limitations of NanoJ and other modern bioimage analysis packages. By
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providing a flexible framework accessibility of both new and old image analysis pipelines is assured,

regardless of the user hardware, without sacrificing performance. Furthermore, this flexibility can be

leveraged and used in conjunction with other Python libraries and tools. This is particularly valuable as

many methods increasingly rely on Python-based deep learning techniques, making the use of current

analysis frameworks (such as NanoJ) prohibitive in specific scenarios.

To make NanoPyx accessible to users with different levels of coding expertise, it is offered through

three separate platforms - as a Python library for developers with the skills to create their workflow

scripts, as Jupyter Notebooks [86] that can be executed either on a local machine or on a cloud-based

service like Google Colaboratory, and as a plugin for napari [87], a Python based image viewer, for

users without programming experience. By distributing NanoPyx in this manner, the needs of a wider

audience are catered, ensuring users of varying coding expertise have easy access and can effectively

utilise NanoPyx for their bioimage analysis needs.

Figure 2.1: Schematic representation of the NanoPyx framework. NanoPyx is a Python framework for super-
resolution microscopy images. It uses the Liquid Engine for self-tuning high performance. Currently,
NanoPyx offers methods for Image Registration [69], Radial Fluctuations [88], and Quality Control [71]
categories.
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2.2 Methodology

This section covers specific methodology used to develop and test NanoPyx. It includes how the data

used to showcase NanoPyx was acquired; how the Liquid Engine’s agent was implemented; and which

computational setups and dataset sizes were used to run benchmarks and comparisons.

Mammalian cell culture

A549 cells (The European Collection of Authenticated Cell Cultures (ECACC)) were cultured in phenol

red-free high-glucose, L-Glutamine containing Dulbecco’s modified Eagle’s medium (DMEM; Thermo

Fisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS; Sigma), 1% (v/v) penicillin/strep-

tomycin (Thermo Fisher Scientific) at 37 °C in a 5% CO2 incubator.

Sample preparation for microscopy

A549 cells were seeded on a glass bottom µ-slide 8 well (ibidi) at a 0.05 - 0.1 x 106 cells/cm2 density.

After 24 h incubation at 37 °C in a 5% CO2 incubator, cells were washed once using phosphate-buffer

saline (PBS) and fixed for 20 min at 23 °C using 4 % paraformaldehyde (PFA, in PBS). After fixation,

cells were washed three times using PBS (5 min each time), quenched for 10 min using a solution of

300 mM Glycine (in PBS), and permeabilised using a solution of 0.2% Triton-X (in PBS) for 20 min at 23

°C. After three washes (5 min each) in washing buffer (0.05% Tween 20 in PBS), cells were blocked for

30 min in blocking buffer (5% BSA, 0.05% Tween-20 in PBS). Samples were then incubated with a mix

of anti-α-tubulin (1 µg/mL of clone DM1A, Sigma; 2 µg/mL of clone 10D8, Biolegend; 2 µg/mL of clone

AA10, Biolegend) and anti-septin 7 (1 µg/mL of #18991, IBL) antibodies for 16 h at 4 °C in blocking

buffer. After three washes (5 min each) using the washing buffer, cells were incubated with an Alexa

Fluor™ 647 conjugated goat anti-mouse IgG and an Alexa Fluor™ 555 conjugated goat anti-rabbit IgG

(6 µg/mL in blocking buffer) for 1 h at 23 °C. Cells were then washed thrice (5 min each) in washing

buffer and once in 1X PBS for 10 min. Finally, cells were mounted with a GLOX-MEA buffer (50 mM Tris,

10 mM NaCl, pH 8.0, supplemented with 50 mM MEA, 10% [w/v] glucose, 0.5 mg/ml glucose oxidase,

and 40 µg/ml catalase).

Image acquisition

Data acquisition was performed with the Nanoimager microscope (Oxford Nanoimaging; ONI) equipped

with a 100 x oil-immersion objective (Olympus 100x NA 1.45) Imaging was performed using 405-nm,

488-nm, and 640-nm lasers for Hoechst-33342, AlexaFluor555 and AlexaFluor647 excitation, respec-

tively. Fluorescence was detected using a sCMOS camera (ORCA Flash, 16 bit). For channel 0, a
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dichroic filter with the bands of 498-551 nm and 576-620 nm was used; for channel 1, a 665-705 nm

dichroic filter was used. The sequential multicolor acquisition was performed for AlexaFluor647, Alex-

aFluor555 and Hoechst-33342. Using an EPI-fluorescence illumination, a pulse of high laser power

(90%) of the 640-nm laser was used, and 10 000 frames were immediately acquired. Then, the sample

was excited with the 488-nm laser (13.7% laser power), whereas 500 frames were acquired, followed

by the 405-nm laser excitation (40% laser power), with an acquisition of another 500 frames. For all

acquisitions, an exposure time of 10 ms was used.

Liquid Engine’s agent

Run times of methods implemented in NanoPyx through the Liquid Engine are locally stored on users’

computers and are associated with the used hardware. For OpenCL implementations, the agent also

stores an identification of the device and is capable of detecting hardware changes. Whenever a method

is run through the Liquid Engine, the overseeing agent splits the 50 most recent recorded runtimes into

2 halves: one with the 25 fastest run times (fast average, FastAvg) and one with the 25 lowest (slow

average, SlowAvg). Then it calculates the average of the 25 fastest run times for each implementation

and selects the implementation with the lowest average runtime. Once the method finishes running,

the agent checks whether there was a delay (Delay), which is defined by the last runtime being higher

than the previously recorded average runtime of the fastest runs (Expected) plus two times the standard

deviation (Std) of the fastest runs (Equation 2.1). If a delay is detected (Supplementary Figure A.4), the

agent will also calculate the delay factor (DelayFactor, Equation 2.2) and will activate a probabilistic ap-

proach that stochastically selects which method to run. This is performed by using a Logistic Regression

model to calculate the probability of the delay (Pdelay) being present on the next run and adjusting the

expected runtime of the delayed implementation according to Equation 2.3, while still using the fast av-

erage for all non-delayed implementations. Then, the agent picks which implementation to use based on

probabilities assigned to each implementation (Pselecting) using 1 over the squared normalised expected

runtime (Equation 2.4). This stochastic approach ensures that the agent will still run the delayed imple-

mentation from time to time to check whether that delay is still present. The agent decides that the delay

is over (Delayend) once the last runtime becomes smaller than the slow average minus the standard

deviation of the slowest runs or higher than the fast average plus the standard deviation of the fastest

runs (Equation 2.5). Once the delay is over, the agent will go back to selecting which implementation to

use based only on the fast average of each implementation (Supplementary Figure 2.8).

Delay = Measured > (Expected+ 2× Std) (2.1)

DelayFactor =
Measured

Expected
(2.2)
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Adjusted = FastAvg × (1− Pdelay) + FastAvg ×DelayFactor × Pdelay (2.3)

Pselecting =
1

(ExpectedRuntime)2
(2.4)

Delayend = Measured < (SlowAvg − Std∨ > FastAvg + Std) (2.5)

Run times Benchmark

For the laptop benchmarks a MacBook Air M1 Pro with 16Gb of RAM and a 512Gb SSD was used. For

the professional workstation, a custom-made desktop computer was used containing an Intel i9-13900K,

a NVIDIA RTX 4090 with 24Gb of dedicated video memory, a 1TB SSD and 128Gb of DDR5 RAM. The

first benchmark performed (Figure 2.2 and Supplementary Figure A.2) was a 5 times up sampling of

the input data, using a catmull-rom [89] interpolator. Benchmarks were performed on 3 different input

images with shapes 10x10x10, 10, 10x300x300 and 500x300x300 (time-points, height, width). The

second benchmarks (Supplementary Figure 2-4) were 2D convolutions using a kernel filled with 1s with

varying sizes (1, 5, 9, 13, 17, 21) on images with varying size (100, 500, 1000, 2500, 5000, 7500, 10000,

15000 or 20000 pixels for both dimensions).

NanoPyx comparison with NanoJ

Run times of eSRRF image processing, both in NanoPyx and NanoJ, were measured using a MacBook

Air M1 with 16Gb of RAM and a 512Gb SSD. The parameters used for the analysis where the same for

both NanoPyx and NanoJ: magnification – 5; radius – 1.5; sensitivity – 2; number of frames for eSRRF

– 1. The input image was a stack with 283 by 283 pixels and 10 000 frames. For the final image output

an average reconstruction was performed.

To assess the implementation of eSRRF into NanoPyx, it was used the publicly available dataset [90],

an image stack with a Field-of-View (FOV) of 128 by 128 pixels and 500 frames. All analysis were

performed with a MacBook Pro M1 with 16Gb of RAM and a 512Gb SSD.
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2.3 Results

This section provides details into the development of NanoPyx, including its core platform (the Liquid

Engine) and the methods integrated into NanoPyx. The implementation of the eSRRF method was

explained in detail in Appendix A.2.2.

2.3.1 The Liquid Engine

At the core of NanoPyx resides the Liquid Engine. The Liquid Engine is a system that is able to predict

the fastest implementations for image analysis tasks, tailored to each user device and input data.

It was found that identifying the most efficient implementation for a computational task significantly

relies on the input data and available hardware, as depicted in Figure 2.2.
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Figure 2.2: Comparative run times of multiple implementations of an algorithm, ran on either a consumer-grade
laptop or a professional workstation. The fastest (rabbit) and slowest (snail) implementations depend
on the dimensions of the input data and the user device. The underlying task carried out is a 5x frame-
wise Catmull-Rom [89] upscaling. Different implementations are represented as processing chips with
different colours. The implementation of both threaded (blue chip) and unthreaded (white chip with
orange core)CPU uses optimised Cython code, while the implementation for GPUs (pink chip) is done
through OpenCL.

As seen in Figure 2.2, for a small time-sequence image of 10 time-points with a size of 10 by 10

pixels, the fastest implementation of the example task on a consumer laptop is running in parallel on

the CPU, with the slowest being using an OpenCL implementation running on the GPU. By increasing

the image size to 300 by 300 pixels but keeping the same number of time-points, the fastest option in a

consumer laptop is the OpenCL implementation, whilst the slowest is a single-thread implementation on

the CPU. On the professional workstation, although the slowest is the same as in the laptop, the fastest

implementation is still a parallelised CPU implementation. When increasing the number of timepoints to

500 and the size to 300 by 300 pixels, then the fastest in both devices becomes the GPU implementation.

Further quantitative studies were undertaken to comprehensively examine the performance char-

acteristics of various implementations across diverse input datasets and parameter configurations on
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different hardware setups. The following Figure 2.3 depicts an obtained heatmap illustrating the runtime

ratio for a 2D convolution performed using two distinct devices.

A BLaptop Professional workstation
Threaded
CPU
faster

GPU
faster

Threaded
CPU
faster

GPU
faster

Figure 2.3: Ratio between the run times of a 2D convolution. Run times were measured across multiple input
data sizes and kernel sizes using either a MacBook Air M1 (A) or a Professional Workstation (B). Areas
within dashed lines correspond to kernel and image sizes where OpenCL is faster than threaded CPU.

The benchmark used features a 2D convolution with varying kernel sizes. The professional work-

station results align with expectations - OpenCL implementation was markedly faster as input image

size and kernel size increased. However, this was not mirrored on a laptop device. Laptop perfor-

mance showed that while larger kernel sizes boosted OpenCL’s relative efficiency against CPU thread-

ing, expanding image size beyond a certain threshold made the parallelised CPU approach faster again.

Notably, this outcome likely ties to the test laptop (MacBook Air M1) lacking a dedicated GPU, demon-

strating how closely run times are tied to specific user hardware. This apparent disparity in results

underlines how reliance on one implementation can prove restrictive; for instance, choosing OpenCL

implementation for lower-sized images could escalate the run time by up to 300 times compared to CPU

processing. Similarly, threaded CPU processing for larger-sized images performed up to 10x slower

than GPU processing on professional workstations.

Furthermore, an analogous investigation was replicated in Supplementary Figure 2.3, this time em-

ploying a Catmull-Rom [89] interpolator to upscale images by a factor of 5. The analysis encompassed

the same laptop, the professional workstation, and also extended to Google Collaboratory to assess

performance behaviour in a cloud-based environment. In contrast to the 2D convolution scenario, the

Catmull-Rom interpolation task exhibited heightened computational demands. Consequently, the lap-

top’s OpenCL implementation was faster compared to its CPU-based counterpart for data sizes that

had previously favoured the CPU in the convolution task. Moreover, Google Collaboratory displayed a

performance pattern similar to the laptop.

The following Figure 2.4 further elucidates the previous observations by plotting the run time of a
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2D convolution task implemented in Cython unthreaded (single core CPU), Cython threaded (multi core

CPU) with multiple schedulers, and PyOpenCL (GPU) across multiple image sizes, in the laptop and

professional workstation.

LaptopA B Professional workstation

Figure 2.4: Run time of each implementation is highly dependent on the shape of input data. A 2D convolu-
tion was performed on images with increasing size using either a MacBook Air M1 (A) or a professional
workstation (B). A 21 by 21 kernel was used in all operations.

Figure 2.4, particularly the zoomed-in regions, demonstrate the points in input image sizes from

which the fastest implementation changes. For instance, in the laptop, the PyOpenCL implementation

is the fastest until 125MB, after which the Cython threaded implementations become significantly faster.

In the professional workstation, while unthreaded is virtually always the slowest implementation, the

threaded implementations are only the fastest until the size increases to 20MB, after which PyOpenCL

becomes the fastest. A similar study was conducted in Supplementary Figure A.3, where the kernel

size for the convolution task was varied instead of the image size. The obtained results were similar

to the previous analysis, in which unthreaded was virtually always the slowest implementation, and the

threaded implementations were only the fastest until the kernel size increased to 20MB, after which
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PyOpenCL becomes the fastest.

Collectively these findings stress the importance of having an adaptable system that selects the op-

timal implementation based on the image analysis task, input data and also the unique user hardware

configurations.

To address these challenges, the Liquid Engine was introduced into NanoPyx. This machine learning-

based system manages multiple tasks by exploiting various device components and selecting the most

efficient implementation based on input data. The Liquid Engine features three main components: 1)

meta-programming tools for multi-hardware implementation (named tag2tag and c2cl); 2) an automatic

benchmarking system for different implementations; and 3) a supervisor machine learning-based agent

that determines the ideal combination of implementations to maximise performance (see Figure 2.5).

…

GPUCPUCPUCPU

OutputInput

…

Task 1
…

Task 2

…

Task N…

Data Dimensions

RecordAgent Run time

Fastest path

1 1 1
2 2 …

1 1 2
2 3 …

Figure 2.5: NanoPyx achieves optimal performance by exploiting the Liquid Engine self-optimisation capabilities.
The image analysis workflows of NanoPyx are built on top of the Liquid Engine, which automatically
benchmarks all implementations of all tasks in the specific workflow. The Liquid Engine keeps a histor-
ical record of the run times of each task and the shape of the used input, allowing a machine-learning-
based agent to select the fastest combination of implementations. In the case of an unexpected delay,
the agent dynamically adjusts the preferred implementations to ensure optimal performance.
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Meta-programming tools for multi-hardware implementations

Meta-programming is a programming technique where a program can manipulate or generate code

during runtime [91]. In NanoPyx, meta-programming is used to generate multiple implementations of

the same task, which can be run on the device’s GPU orCPU. The Liquid Engine uses two meta-

programming tools: tag2tag and c2cl (see Figure 2.6).

Figure 2.6: Meta-programming tools of the Liquid Engine. The tag2tag tool enables developers to generateCPU-
based implementations. The c2cl tool generates GPU-based implementations using OpenCL.

The tag2tag tool enables developers to generate multiple implementations of the same algorithm

written as C or Python code snippets. Effectively, tag2tag transcribes these snippets into single-threaded

and multi-threaded versions of the code, generally then called by Cython.

Specifically, developers can write a single version of the code and delimit the "tag" to be propagated

to the other implementations (e.g. a function). The tag2tag tool is able to read the content of the file,

identify the tags, and store them in a dictionary, where the tag name is the key, and the associated

code snippet is the value. After choosing the "tag", in the same script, the developer can create a tag

- copy, where they specify what part of the original tag should be replaced, and what to replace it for.

Tag2tag will identify the tag placeholders, and apply the specified replace commands to the associated

tag code. It then replaces the tag placeholder in the file with the modified tag code. This tool is intended

for use with Python (.py), Cython (.pyx), and OpenCL (.cl) files. In practice, for most tasks implemented

in the Liquid Engine, a single-threaded version of the code was used as the original tag, and created

multi-threaded versions of the code by replacing the range in the for loops with prange. Additionally,

implementations with different schedulers for the parallelisation in the CPU were added.

This allows the developer to easily create as many code variations as they find necessary. This

approach streamlines the process of maintaining consistency across various code implementations, as

altering the code in one version ensures that the modification is seamlessly and consistently applied to all
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other relevant versions. As a result, developers can effectively manage code updates and improvements,

as these are propagated into the other implementations effortlessly, reducing redundancy and enhancing

code maintainability.

Another meta-programming tool used in the Liquid Engine is the c2cl tool. c2cl is able to interpret

the structure of functions, including the limits of the function (where it starts and where it ends) and its

variables. It then is capable of writing a header for the functions and replacing the type of variables into

a type that is compatible with the GPU. This allows the extraction of C functions and propagation into .cl

files, so the C functions can be used in OpenCL kernels.

The Liquid Engine also supports Numba as an alternative performance-boosting option for Python

code snippets. With all these implementations, NanoPyx can be run and used by users with diverse

hardware configurations.

Automatic benchmarking system

The Liquid Engine is capable of automatically benchmarking all implementations of the same task for

the user’s input. When benchmarking, the Liquid Engine runs the task using all available implemen-

tations and records the run times for each of them. It then automatically creates a hidden file in the

user’s device, where it stores both the run times and the dimensions of the used data. The automatic

benchmarking system facilitates future comparisons and aids decision-making in selecting the optimal

implementation. The following Figure 2.7 shows an example of the output of benchmarking a task (left),

and an example of part of the information that a hidden file contains (right).

Figure 2.7: Example of benchmarks by the Liquid Engine. (Left) Output of benchmarking a specific task with a
specific data input. (Right) Example of hidden file locally stored, containing the shape of the data used
as input, and the run times of a specific run type (implementation).

Selection of fastest implementations

A typical bioimage analysis workflow is composed of multiple methods, such as drift correction,

quality control, among others. A full workflow can then be integrated into the Liquid Engine, where

individual tasks are ran sequentially. The selection of the fastest implementations for each task of a
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workflow is managed by a machine learning-based agent, where the agent predicts what are the optimal

implementations of each task of the workflow.

1 WF = Workflow(task1(input), task2(output_task1), task3(output_task1, output_task2))

The Workflow class in the Liquid Engine is designed to facilitate seamless integration of new tasks

within the framework. Each task within the workflow was configured to accept inputs derived from the

outputs of previous tasks, the original input data, or a combination of both. This modular architecture

allows for efficient data flow and ensures that each task can use the required information generated by

preceding tasks.

When queried by the workflow, the agent picks the fastest implementation for each task, sequentially.

Through automatic benchmarking of each implementation, the Liquid Engine keeps an historic record of

runtimes for each implementation. Whenever a workflow is scheduled to be run, the supervisor agent is

responsible to select the optimal implementation based on the previous recorded run times. The agent

can adapt to unexpected delays in any implementation. A schematic representation on how the agent’s

delay management works is depicted in Supplementary Figure A.4. In case a severe delay is detected,

reaching a level where it could potentially lead to a different implementation becoming faster, the agent

predicts if the optimal implementation has changed. For that, the agent predicts the likelihood of the

delay being repeated in the future and then assigns a probability for each implementation that depends

on an estimation of the expected run time that each one might take.

For instance, if the fastest implementation for a method uses OpenCL and the GPU is under heavy

load, resulting in an abnormally prolonged run time that is longer than the second fastest, the agent

activates its delay management. All available implementations are now assigned a probability that is a

function of their expected run time, as given by the average values measured in the past. The expected

run time for the delayed implementation is adjusted based upon the probability that the delay is main-

tained and the magnitude of the measured delay itself (see the Methods section for the mathematical

description). Therefore, in this example, the probability the agent chooses to run using OpenCL is low,

especially if the delay is continuously maintained. However, the delayed implementation should always

have a bigger than zero probability to be chosen. Due to this probabilistic approach, the agent will still

select and use the delayed implementation from time to time. This ensures that it can detect when the

delay is over. Once it detects that the delay is over, the agent goes back to selecting implementations

based only on the fastest average run time. Figure 2.8 shows resulting data from the agent’s delay

management system, obtained with an artificial delay induced by overloading the GPU with superfluous

calculations in a separate Python interpreter.

36



eSRRF

2D Convolution

Device injury

Device injury

A

B

1.8x faster

1.5x faster

Figure 2.8: Example of delay management by the Liquid engine. Multiple 2D convolutions (A) and eSRRF
analysis (B) were run sequentially in a professional workstation. Starting from two initial benchmarks,
the agent is responsible to inform the Liquid Engine is what is the best probable implementation. Runs
between red dashed lines represent the timeline where an artificial delay was induced.

Figure 2.8 shows that the Liquid Engine was able to detect an artificial delay that slowed down

the OpenCL implementation. During the delay, the OpenCL implementation was used less times, but

stochasticity allowed the Engine to detect the end of the delay. In this example, over the course of several

sequential runs of the same method, it was shown that delay management improved the average run

time by a factor of 1.8 for a 2D convolution and 1.5 for an eSRRF analysis.

Users can also manually initiate benchmarking, prompting the Liquid Engine to profile the execution

of each implementation, using either multiple automatically generated data loads or using their own

input, and identify the fastest one. This benchmarking is performed per task, allowing the Liquid Engine
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to adapt to the user’s hardware configuration and progressively optimise the chosen combination of

implementations to reduce the total run time. The system analyses similar benchmarked examples from

the user’s past data, using fuzzy logic [92] to identify the benchmarked example with the most similar

input properties, utilising it as a baseline for the expected execution time. This system enables NanoPyx

to immediately make adaptive decisions based on an initially limited set of benchmarked examples,

progressively learning, and improving its performance as more data is processed.

2.3.2 The NanoPyx Framework

NanoPyx provides multiple bioimage analysis methods that can be combined into a comprehensive

bioimage analysis framework for super-resolution microscopy. Figure 2.9 contains the results of applying

NanoPyx implemented methods to the obtained dataset.

NanoPyx offers image registration methods, such as channel registration, which is used to align

different channels of the same image, and drift correction, to correct any chromatic aberration and drift

that might occur during image acquisition. These are both based on the Java implementations from

NanoJ, and are currently implemented in Cython.

Then, NanoPyx implements fluctuation-based methods to generate super-resolution images: SRRF

and eSRRF. Both of these methods are fully implemented into the Liquid Engine. In particular, the

implementation of eSRRF is described in detail in the Annex A.2.2.

To ensure the fidelity of the reconstructions, rigorous quality control tools were introduced into

NanoPyx. These include the Error Map of SQUIRREL to quantitatively assess errors introduced by

the reconstruction algorithm, and FRC and Decorrelation Analysis (as in [73]) to determine image reso-

lution. The implementations from the Error Map and the FRC are based on the NanoJ implementations.

Currently, these methods are only implemented in Cython.

NanoPyx distribution

NanoPyx was developed with the primary objective of ensuring accessibility and ease of use for end

users. To achieve this goal, three distinct interfaces were made available, through which users can

interact with and utilise NanoPyx. Firstly, NanoPyx is accessible as a Python library, which can be

conveniently accessed and installed via the GitHub repository for the latest development versions or

through PyPI (Python Package Index) for stable releases. The Python library primarily targets develop-

ers seeking to incorporate NanoPyx’s methodologies into their workflows. Secondly, "codeless" Jupyter

notebooks were provided through the GitHub repository. These notebooks offer separate implementa-

tions of each method as individual notebooks. The term "codeless" denotes that users are not required

to interact with any code directly: by sequentially executing cells, a graphical user interface (GUI) is
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Figure 2.9: Microscopy image processing workflow using NanoPyx methods. NanoPyx implements several meth-
ods of super-resolution image generation and processing. Through NanoPyx, users can correct drift
that occurred during image acquisition, generate a super-resolved image using enhanced radiality fluc-
tuations (eSRRF) [67], assess the resolution of the generated image using Fourier Ring Correlation
(FRC) [72] or Image Decorrelation Analysis [73], perform artifact detection using the error map and
then perform channel registration in multi-channel images. NanoPyx methods are made available as a
Python library, a napari [87] plugin, and Jupyter Notebooks that can be ran locally or through Google
Colaboratory. Scale bars: 10 µm.

generated, enabling users to fine-tune the parameters for each step easily. Consequently, these note-

books are specifically designed for users with limited coding expertise. Lastly, for users desiring a more

interactive approach, it is being developed a plugin for napari, a Python image viewer, granting access to

all currently implemented NanoPyx methods. By offering these three diverse user interfaces, NanoPyx

can be readily used by users irrespective of their coding proficiency level.
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2.4 Discussion and Future Perspectives

NanoPyx introduces a novel approach to optimise performance for bioimage analysis through its ma-

chine learning-powered Liquid Engine. This enables dynamic switching between implementations to

maximise speed based on data and hardware. By selecting the optimal implementation, NanoPyx

achieves over 10 times faster processing (as observed in Figure 2.2). This has significant implications

given the rapidly expanding scale of microscopy image datasets.

The Liquid Engine’s optimisation strategy diverges from traditional approaches of relying on single

algorithmic implementations. Alternative Python tools like Transonic [93] and Dask [94] that accelerate

workflows through just-in-time compilation or parallelism do not adapt implementations based on context.

In contrast, the Liquid Engine continually benchmarks and collects runtime metrics to train its decision-

making model. It is this tight feedback loop that empowers dynamic optimisation in NanoPyx.

Beyond performance, NanoPyx provides an accessible yet extensible framework covering key anal-

ysis steps for super-resolution data. Workflows integrate essential functions like drift correction, re-

construction, and resolution assessment. NanoPyx builds upon proven ImageJ plugins while migrating

implementations to Python. The modular architecture simplifies integrating components into new or ex-

isting pipelines. Currently, the only methods fully implemented into the Liquid Engine are the spatial

analysis of SRRF and eSRRF.

The implementation of eSRRF as a Liquid Engine workflow has been comprehensively elucidated

and evaluated in Appendix A.2.2. In this regard, the choice to integrate eSRRF as a single task within the

Liquid Engine stems from the recognition of a substantial overhead when the GPU serves as the fastest

execution platform. Specifically, splitting each simple step as an individual task within the workflow would

introduce considerable overhead due to the necessary data transfer between the CPU and GPU. This

highlights the necessity for a delicate balance between the dynamic switch between implementations

and the associated overhead linked to CPU-GPU data exchange. Currently, based on initial assess-

ments conducted on specific machines, the decision was taken to consolidate complex full methods (like

SRRF and eSRRF) into single tasks. This choice aims to mitigate the significant overhead encountered.

However, it’s important to emphasise that this decision was influenced by a certain bias, as the tests

were performed on computers with access to OpenCL, which might not be a universal condition across

all laptops. Looking ahead, the plan is to integrate the remaining NanoPyx methods (drift correction,

channel alignment, error mapping, FRC, and decorrelation analysis) as individual tasks within the Liquid

Engine for the same aforementioned reasons. This approach offers the advantage of seamless inte-

gration of all of these tasks into a Liquid Engine workflow, thereby forming a complete super-resolution

analysis pipeline. Users can simply select the methods to be executed on the input image, build them

into a workflow, and execute them. The Liquid Engine will then dynamically determine the most efficient

execution strategy for each method.
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A noteworthy future strategy to further explore performance enhancement via the Liquid Engine

involves a departure from the sequential execution of tasks within a workflow. Instead, an innovative

approach could involve running an entire workflow in parallel, capitalising on the combined processing

powers of both the computer’s GPU and CPU. This approach envisions scenarios where distinct tasks

operate concurrently, with some tasks using the GPU’s capabilities while others leverage the CPU’s

resources. By embracing this strategy, the computational potential of the user’s device can be maximally

harnessed, potentially leading to substantial efficiency gains.

In summary, NanoPyx offers an innovative technique to enhance the efficiency of bioimage anal-

ysis while maintaining a modular and user-friendly design. This optimisation strategy with the Liquid

Engine could have applications beyond microscopy, addressing other complex computational tasks. As

data scales expand, NanoPyx offers researchers an actively improving platform to execute demanding

microscopy workflows.
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This chapter provides a comprehensive explanation of the developed simulations implemented in

NanoPyx. In addition, this chapter focuses on the use of the employed simulations to comprehensively

explore some of the state-of-the-art localisation algorithms in SMLM. Finally, the chapter presents a

conceptual analysis of the the innovative experimental approach for SMLM introduced in the following

chapter.

The outcomes stemming from the simulations concerning the performance of the SMLM algorithms

are meticulously analysed. The insights gained from the simulations and models are then leveraged in

the subsequent chapter, which is dedicated to experimental work.

Contributions

Inês Cunha, the thesis author, developed the particle simulations, their use for assessing the localisation

algorithms performance, and the formulation of the immunolabelling process model. Furthermore, Inês

Cunha conducted comprehensive discussions on the resultant findings.

Code availability

All the developed simulations can be found in the NanoPyx github repository https://github.com/

HenriquesLab/NanoPyx.
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3.1 Introduction and Objectives

SMLM is a powerful technique that surpasses the diffraction limit and is widely employed in biological

studies. In SMLM imaging experiments, fluorophores undergo transient stochastic activation, followed by

individual imaging and localisation [14]. This is achieved by fitting a PSF to each emitter using algorithms

such as WLS or the MLE [95,96].

Simulations play a pivotal role within the field of SMLM, aiding researchers in the meticulous design

of experimental frameworks [97]. Furthermore, simulations provide valuable perspectives on localisation

algorithms, creating controlled settings with known ground truth positions. This allows for thorough as-

sessments of algorithm performance, error identification, and even facilitates the comparison of various

algorithms or software solutions [34,98].

Over the years, several software have emerged to address the diverse simulation requisites of the

SMLM community. These include packages or plugins such as SureSim [99], SMeagol [100], Teststorm

[101], and FluoSim [102].

In essence, these simulators follow a consistent sequence of steps: 1) create a ground truth of the

structure to be simulated; 2) randomly distribute particles across the structure, with a greater probabil-

ity of alignment with the previously established ground truth; 3) convolve the particles with a PSF; 4)

generate N frames with the activation of the photoswitching of the particles [97,98].

In particular, the particle positioning step can be done in several ways. A possible approach to do this

is by using a Monte Carlo method [103], which uses randomness in a system to evolve and approximate

specific quantities, without the need to find an analytical solution for the system. In the context of SMLM

simulations, this method is particularly useful for generating particles according to a Probability Density

Function (PDF), equivalent to the ground truth. The algorithm can randomly distribute particles and

assign higher probabilities to positions that closely match the expected PDF. It then can iteratively

adjust particle positions based on the assigned probabilities and the introduced randomness. As the

Monte Carlo simulation progresses, particle positions should gradually converge towards a configuration

that closely approximates the desired ground truth arrangement. [104,105].

The development of a particle simulator within the context of this project holds significant impor-

tance. As outlined in Section 1.1.4, the accuracy of SMLM fitting algorithms in counting molecules faces

challenges when dealing with high local emitter densities [29, 62]. This phenomenon arises from the

overlapping PSF of neighbouring emitters, causing the localisation algorithm to merge them and intro-

duce "merging artifacts". Previous simulations have demonstrated that these algorithms can reliably

recover molecule positions up to a density of around 1 molecule per squared micrometer [29]. To extend

this limit, more robust algorithms like multi-emitter fitting have been introduced, theoretically capable of

accurately counting molecules up to densities of 10 molecules per squared micrometer [106]. Simula-

tions have been instrumental in evaluating these algorithms, enabling the quantification of the maximum
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molecular density that the localisation algorithm can handle before merging artifacts occur. Considering

the forthcoming experimental characterisation of localisation algorithms in the next chapter, it becomes

crucial to perform simulations under matching reconstruction parameters and conditions. This not only

holds the potential to provide more nuanced quantitative insights but also offers assistance in select-

ing the most suitable algorithm for subsequent experimental data analysis. Additionally, integrating the

simulator into the NanoPyx platform enhances its accessibility and usability within bioimage analysis

workflows, benefiting the wider scientific community.

Moreover, the upcoming chapter 4 will introduce a novel experimental setup designed explicitly to

control the density of emitters per image, thereby facilitating the experimental characterisation of the

SMLM reconstruction algorithms. This methodology is rooted in the concept of competitive labelling,

which holds the potential to offer a linear means of controlling labelling densities. It is important to es-

tablish a comprehensive conceptual understanding of whether this new approach yields effective control

and how it compares to the conventional approach of serial dilution, involving variations in the concen-

tration of labelled antibodies. Therefore, a dedicated section within this chapter will delve into a thorough

exploration of competitive labelling, elucidating its principles and drawing comparisons with conventional

labelling strategies.

Hence, the upcoming sections will cover the development of a particle simulator for SMLM within the

NanoPyx platform. It will then be be applied to quantitatively estimate the accurate counting abilities

of various localisation algorithms (MLE, WLS and with multi-emitter fitting). Additionally, a study on the

immunolabelling process will be conducted, involving a comparative analysis between the conventional

and competitive labelling methods in terms of their efficacy in controlling labelling densities within a sam-

ple. These insights will be comprehensively discussed and leveraged into the subsequent experimental

chapter.
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3.2 Methodology

3.2.1 Particle simulator

A particle simulator was developed within the NanoPyx framework using the Monte Carlo method for

particle placement based on a user-defined PDF. The simulator accepts any 2D image as the input

PDF representing the ground truth structure. It has adjustable parameters including maximum number

of particles, minimum distance between particles, maximum number of tries, and mean distance thresh-

old between particles. The devised algorithm randomly generates particle positions with a probability

proportional to the intensity of the input PDF at that location. It iterates, adding more particles and ad-

justing their positions based on the PDF and distance criteria, until stopping conditions are met. These

include reaching the max number of particles, mean distance between particles drops below a threshold,

or max tries is exceeded.

To visualise the particles, a function renders gaussians at the particle positions. It computes the

gaussian integral at each pixel using the error function (erf) and accumulates the values to generate the

final image. The key steps are the following.

• Accept 2D image as input PDF

• Randomly generate particles based on PDF intensity

• Iteratively add and adjust particles based on PDF, distance criteria

• Stop when max particles, distance threshold, or max tries is reached

• Render gaussians at particle positions using erf

The algorithms were coded in C, Cython and Python using Microsoft Visual Studio Code. Testing

was conducted with pytest and nox against Python 3.9, 3.10 and 3.11 on both OSX (ARM64) and Linux

(AMD64 on Ubuntu LTS) to ensure cross-platform compatibility.

3.2.2 Localisation Algorithm Characterisation

To evaluate the particle counting accuracy of SMLM algorithms, the simulator was used in an automated

workflow:

1. Generate random ground truth images with varying molecular densities

2. Simulate particles for each ground truth using the simulator

3. Run simulated images through ThunderSTORM in ImageJ using PyImageJ [107]

4. Extract number of detections by the algorithm

5. Plot mean detections over ground truth molecular density

The algorithms assessed were WLS and MLE fitting, with and without multi-emitter fitting. Parame-

ters matched the experimental chapter:
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• FOV: 20x20 pixels, 14x14 pixel central region

• Pixel size: 100 nm

• Gaussian PSF: sigma 1.5 pixels, amplitude 3

• WLS/MLE: integrated Gaussian PSF, radius 3 pixels, sigma 1.5 pixels

• Multi-emitter: max 3 molecules, p-value 1e-6

This automated workflow generated a quantitative characterisation of the algorithms’ counting accu-

racy across different molecular densities. The results will be leveraged in the next chapter on SMLM

experiments.

All simulations were conducted in a professional workstation with an Intel i9-13900K, a NVIDIA RTX

4090 with 24Gb of dedicated video memory, a 1TB SSD and 128Gb of DDR5 RAM.
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3.3 Results

Several simulations were designed to support the development and optimisation of super-resolution

imaging techniques into the NanoPyx platform. These include a particle simulator, responsible for em-

ulating particle positions atop the ground-truth input; a photoswitching tracks simulator, responsible for

simulating fluorophore blinking through a three-state transition model (on, off, and bleached), thus en-

abling the creation of an image stack that reproduces stochastic particle blinking; and a noise simulator,

tasked with generating Gaussian and Poisson noise for the image stack. This section will delve into

the particle simulator and photoswitching tracks simulator. Furthermore, the particle simulator will be

applied in a comprehensive study on of well-established SMLM algorithms, allowing a quantitative as-

sessment of their performance. This analysis will take into account parameters that mirror those used in

the subsequent chapter, facilitating a direct and comparison between simulation outcomes and experi-

mental results. Moreover, a subsection will be dedicated to the conceptual analysis of the competitive

labelling approach, which will be employed in the subsequent experimental chapter.

3.3.1 Particle Simulations

A Monte Carlo-based algorithm was developed within the NanoPyx platform to simulate two-dimensional

particle fields. This algorithm generates particle positions according to a user-defined input PDF while

considering parameters like particle density and distance thresholds. The algorithm’s iterative nature

and stopping criteria ensure the creation of particle configurations that closely match the input PDF. A

more detailed description of the implemented Monte Carlo-based algorithm can be found in Appendix

A.3.

Upon applying the algorithm to the input PDF, a list of particle positions is produced, serving as

a foundation for subsequent steps. Then, another function is introduced to translate these positions

into a visual image. It uses the error function (erf ) to calculate the Gaussian’s influence for each pixel

within each particle’s vicinity, as the theoretical model elucidated in the introductory chapter (section

1.1.4). This rendering process is conducted along with several input parameters, including the desired

Gaussian profile characteristics, such as the widths (sigma_x and sigma_y) and amplitude.

For clarity, the subsequent code snippet illustrates the process of calculating the Gaussian integral

using the error function and the subsequent accumulation of these calculated values to generate the

final rendered image.
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1 for j in range(y_start, y_end):

2 Ey = 0.5 * (erf((j + 0.5 - yp) / sigma_y**2) - erf((j - 0.5 - yp) / sigma_y**2))

3 for i in range(x_start, x_end):

4 Ex = 0.5 * (erf((i + 0.5 - xp) / sigma_x**2) - erf((i - 0.5 - xp) / sigma_x**2))

5 image[j,i] += amplitude * Ex * Ey

In addition to spatial positioning, a temporal photoswitching model was implemented to simulate flu-

orophore blinking kinetics in SMLM. A function was written to model a 3-state system of fluorophore

states: ON, transient OFF, and permanent OFF (representing fluorophore bleaching). It accepts param-

eters including number of particles, how many timepoints (number of frames), and transition probabilities

between states. Particles are initialised and then randomly transition between states over time based on

the provided probabilities. An array of integer states is returned indicating each particle’s state at each

timepoint. This photoswitching tracks simulator can then be combined with the previous spatial posi-

tioning of particles. For this, an function was developed to render particle gaussians with tracks, which

accepts the state array and renders a particle at a given timepoint if its state is ON. All other particles

will be invisible for that frame.

This provides a comprehensive framework for generating simulated SMLM data encompassing both

the spatial distribution and temporal dynamics of single molecules. By tuning parameters like transi-

tion probabilities, a wide range of fluorophore blinking behaviours can be replicated. The developed

simulations can then be leveraged in several in silico investigations of SMLM systems.

Furthermore, the subsequent analysis covers a rigorous quantitative assessment of the effectiveness

of super-resolution single-molecule localisation algorithms. This study will exclusively use the developed

particle positioning simulator, disregarding the temporal dynamics of fluorophores. This is because the

localisation algorithms’ performance is primarily affected by the spatial distribution of particles, and not

by their temporal dynamics. The outcomes of this analysis are elaborated in the following section.

Localisation algorithms characterisation

The developed simulator was seamlessly integrated into an automated workflow, generating data on

the detected molecule count by the localisation algorithms relative to the number of molecules in the

ground truth. This framework was detailed in the Methodology section.

The following Figure 3.1 illustrates instances of randomly generated ground-truth structures, ac-

companied by their corresponding rendered simulated particle images and subsequent reconstruction

achieved through fitting a PSF using the MLE algorithm.
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Figure 3.1: Example of particle simulation and consequent localisation. (top) Ground truth images at varying
molecular densities (0.5 molecules per µm2, 5.6 molecules per µm2 and 24 molecules per µm2); (mid-
dle) correspondent Simulated particle images, (bottom) Subsequent localisations achieved through
fitting a PSF using the MLE algorithm. Scale bar: 500 nm.

Observing Figure 3.1, it becomes evident that the localisation algorithm accurately localised molecules

within ground truths characterised by very low molecular densities (0.5 molecules per µm2). However, as

the molecular density increases, exemplified by a density of 5.6 molecules per µm2, specific regions ex-

hibiting a locally higher density pose challenges for the fitting algorithm in pinpointing individual emitters.

This challenge often leads to the fusion of multiple molecules into one, causing merging artifacts. This is

particularly pronounced in the ground truth scenario with 24 molecules per µm2, where the localisation

algorithm detects only a total of 3 molecules, a count even lower than the detection achieved in the case

of the 5.6 molecules per µm2 density.

A systematic approach involving the creation of ground truths, particle simulation, and subsequent

reconstruction (outlined in the methods section) facilitated a comprehensive quantitative assessment

of the algorithms. This assessment allowed for the depiction of detection counts achieved by various

localisation algorithms in relation to the real number of molecules in the ground truth. The localisation

algorithms studied were the WLS and MLE - with and without multi-emitter fitting. The localisation

counts were normalised to represent values per squared micrometer. The Figures 3.2 and 3.3 present

the localisation outcomes with the WLS and MLE, respectively.
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Figure 3.2: Number of detections with Weighted Least Squares. (Left) The average count of detections achieved
through WLS fitting across 100 images is displayed, covering a range of 50 molecular densities (from
0.5 to 25 molecules per µm2). The standard deviation corresponding to each density is also depicted.
(Right) Zoomed-in view on densities between 0.5 and 5.6 molecules per µm2 (a range of 10 densities)
from the broader graph on the left.

Figure 3.3: Number of detections with Maximum Likelihood Estimator. (Left) The average count of detections
achieved through WLS fitting across 100 images is displayed, covering a range of 50 molecular densities
(from 0.5 to 25 molecules per µm2). The standard deviation corresponding to each density is also
depicted. (Right) Zoomed-in view on densities between 0.5 and 5.6 molecules per µm2 (a range of 10
densities) from the broader graph on the left.

From the observed patterns in the mean number of detections obtained through the fitting process

for both algorithms (depicted in the left graphs of both Figures 3.2 and 3.3), a noticeable trend emerges.

Initially, at very low molecular densities, there appears to be a proportional relationship between the

number of detections and the number of molecules present in the ground truth. However, this linear

relationship reaches its peak, undergoes a slight decrease, and subsequently levels off, resulting in a
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plateau.

The observed elevated standard deviations stem from the inherent randomness of the generated

ground truths, representing molecules across the field of view (FOV). This randomness introduces the

possibility of certain regions exhibiting higher local densities compared to others, or molecules being

distributed uniformly throughout the FOV. Consequently, variations in merging occurrences emerge,

leading to fluctuations in the number of detections. Remarkably, the algorithms reached a peak detection

capacity of approximately 2.5 molecules per µm2.

For a deeper insight into the graphs behaviour, a closer examination is offered through magnified

views in the graphs on the right. These reveal additional subtleties, highlighting that the slope of the

graph tends towards 1 for the lowest molecule count. As the real molecular count incrementally in-

creases, the slope diminishes gradually, accompanied by a simultaneous increase in the standard devi-

ation.

Specifically, up to a molecular density of approximately 1 molecule per µm2, the number of detections

showcases a linear correlation with the molecular count, and a comparatively lower standard deviation.

Conversely, as molecular density surpasses this threshold, the slope of the number of detections starts

descending, indicating a progressive decline in reconstruction accuracy.

Furthermore, the same study was conducted with the MLE algorithm, with multi-emitter fitting en-

abled. The results are depicted in Figure 3.4.

Figure 3.4: Number of detections with Multi-emitter fitting. (Left) The average count of detections achieved through
MLE fitting with multi-emitter fitting across 100 images is displayed, covering a range of 50 molecular
densities (from 0.5 to 25 molecules per µm2). The standard deviation corresponding to each density is
also depicted. (Right) Zoomed-in view on densities between 0.5 and 5.6 molecules per µm2 (a range
of 10 densities) from the broader graph on the left.

The results obtained from Figure 3.4 exhibit a comparable trend to the reconstruction outcomes

achieved without employing multi-emitter fitting. The plot demonstrates a linear increase for very low
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labelling densities, followed by a peak that transitions into a plateau. Notably, the multi-emitter fit-

ting algorithm showcases an enhanced detection capacity, reaching a maximum detection count at 3

molecules per µm2. In the zoomed-in section of the plot, a proportional correlation between the number

of molecules and detections is apparent (slope approximate to 1) up to 1.5 molecules per µm2. This

underscores the capability of multi-emitter fitting to accurately detect molecules within a broader density

range, surpassing the performance of the non-multi-emitter fitting approach.

To better compare the behaviour between WLS, MLE and multi-emitter fitting, the mean detections

of all three algorithms were plotted in the following Figure 3.5.

Figure 3.5: Mean detections achieved with WLS, MLE and multi-emitter (ME) fitting.

Figure 3.5 offers a clearer comparison of the tendencies of the studied algorithms. Notably, the WLS

and MLE algorithms demonstrate visually identical tendencies. The cumulative error stemming from a

comparison between the WLS and MLE algorithms was determined by quantifying the total number of

differing detections between the two and dividing it by the overall number of detections. This calculation

yielded an 8% error, highlighting the closely aligned performance of these algorithms. Between WLS

and MLE, the latter displays a higher number of detections. Furthermore, when these algorithms are

contrasted with the multi-emitter approach, it becomes evident that enabling multi-emitter fitting permits a

superior detection capacity. However, while the multi-emitter approach achieves a higher peak detection

count, this count eventually converges with the counts of the other algorithms as the molecule count

increases.

Furthermore, an assessment of computational performance was conducted alongside this investi-

gation. The WLS algorithm outperformed the MLE algorithm by 1.5 times in terms of speed. Notably,

the introduction of the multi-emitter fitting approach resulted in a 3-fold increase in computation time
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compared to the MLE algorithm.

3.3.2 Conceptual Competitive Labelling

In section 1.1.4 of the general introduction, it was introduced the concept of antibody-antigen binding

particularly for the case of indirect immunolabelling. As previously stated, the epitope - antibody binding

is related to the antibody concentration according to the Hill-Langmuir equation, where the fraction of

bound antibodies is given by the following equation 3.1.

P (labelled) =
[Ab]

[Ab] +Kd
(3.1)

Whereas [Ab] is the antibody concentration and Kd is the dissociation constant.

A central goal of this project is to experimentally characterise the precision of SMLM algorithms in

counting molecules. This requires a linear control over the molecular density in the sample, enabling the

quantification of algorithmic detections across specific density levels. Such analysis aids in determining

the algorithm’s upper limit for accurate counting. However, achieving precise control over emitter density

is an intricate task. This complexity arises from the non-linear relationship between the binding proba-

bility of epitopes to labelled antibodies and the antibody concentration. Consequently, traditional serial

dilution of antibody concentration does not yield a linear variation in the number of labelled molecules

within the structure, as governed by the previous equation 3.1 (see Figure 3.6).

Figure 3.6: Labelling probability with typical immunolabelling. With serial dillution, the probability of the epitope
being bound to the labelled antibody does not vary linearly with the antibody concentration. It depends
on the dissociation constant Kd. For this graph, it was used a Kd of 0.1.

To overcome this, an alternative immunolabelling approach can be employed to attain a linear control
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over the molecular density in a sample. This novel strategy, entitled competitive labelling, involves using

an unlabelled antibody as a competitor alongside the labelled antibody, as depicted in Figure 3.7.

Figure 3.7: Visual comparison between typical and competitive immunolabelling. (Left) In typical immunolabelling,
the epitope of the protein of interest is targeted by the antibodies conjugated with the fluorophores
(labels), yielding 2 possible states: S = 1 (unbound epitope) and S = 2 (bound epitope). (Right) In
competitive labelling, there are three possible states: S = 1 (unbound epitope), S = 2 (bound epitope
with unlabelled antibody) and S = 3 (bound epitope with labelled antibody).

Observing Figure 3.7, in theory, when the total concentration of antibodies (both labelled and un-

labelled) remains constant and sufficiently high to saturate the entire structure, the state in which no

antibodies are bound to the epitope (S = 1) becomes negligible. The unlabelled and labelled antibodies

naturally compete for binding to the protein of interest’s epitope. Consequently, the modelled system

should encompass two viable states: S = 2, representing epitope binding with the unlabelled antibody,

and S = 3, signifying epitope binding with the labelled antibody. Assuming equal binding probabilities for

both antibodies, the probability of epitope binding with the labelled antibody will be the following.

P (labelled) =
[Ablabelled]

[Abunlabelled]
(3.2)

Whereas [Ablabelled] and [Abunlabelled] are the concentrations of labelled and unlabelled antibodies,

respectively. Effectively, this implies that manipulating the ratio between the concentrations of labelled

and unlabelled antibodies will inherently lead to a proportional variation in the probability of the epitope

binding to the labelled antibody. This correlation is visually illustrated in Figure 3.8.
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Figure 3.8: Labelling probability with competitive immunolabelling. With competitive labelling, the probability of an
epitope being bound by the labelled antibody varies linearly with the ratio between the concentrations
of labelled and unlabelled antibodies.

Ultimately, a novel approach for controlling the label density within a sample has been conceptu-

alised, involving the manipulation of the labelled/unlabelled antibody ratio.
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3.4 Discussion and Future Perspectives

The particle simulations developed within the NanoPyx framework use the Monte Carlo method to gen-

erate particles, given a user-defined PDF. Notably, these simulations were designed to be easily acces-

sible to the broader scientific community through the NanoPyx platform, allowing their integration into

various bioimage analysis workflows for various applications. A significant innovation lies in the simula-

tor’s flexibility, as it does not impose any constraints on the choice of ground truth—unlike most existing

simulators that either impose predefined ground truths or require users to create specific ones within

the simulator’s framework. This distinctive feature empowers users to input any image of their choosing,

thereby expanding the potential applications of these simulations. For instance, users could employ real

experimental PDF data as input and subsequently simulate multiple experimental scenarios based on

that input image. This offers the potential for a more accurate and realistic representation of experi-

mental conditions. Consequently, researchers can gain enhanced insights into specific parameters they

intend to fine-tune for their experiments.

Subsequently, the developed simulator was employed to conduct a quantitative analysis of algorithms

in the context of SMLM. While it is not unprecedented to use simulations for this purpose, the distinct

contribution of this study lies in the valuable quantitative insights it offers. These insights are anticipated

to play a pivotal role in the forthcoming experimental chapter, where the same reconstruction parameters

will be employed.

The results yielded from the analysis of the MLE and WLS (Figures 3.3 and 3.2) fitting algorithms

revealed results in line with the expectations. The algorithms exhibit accurate performance at sparse

molecular densities, corresponding to a linear regime; yet, as density increases, the algorithms begin to

merge molecules, leading to the observed saturation effect. Both algorithms show very similar perfor-

mances, as evidenced by the cumulative error of 8% between the two. This similarity can be attributed

to their shared objective of optimising the fitting of the same designated PSF to the data, despite their

distinct mathematical underpinnings. Furthermore, the linear operational range within which these al-

gorithms can reliably count molecules aligns with a molecular density of approximately 1 molecule per

µm2. This is consistent with the established theoretical limit.

The analysis was extended to encompass MLE fitting in combination with the multi-emitter fitting

option, tailored to enhance reconstructions for elevated molecular densities. The results exhibited the

expected trend: the algorithm’s labelling density threshold for accurate reconstruction surpassed that of

the non-multi-emitter variant. This demonstrates the outperformance of the multi-emitter fitting approach

in terms of detection capacity. Nevertheless, even with this enhancement, the algorithm demonstrated a

linear regime (slope of approximately 1) for accurate detection up to 1.5 molecules per µm2. This goes

against the theoretical value of 10 molecules per µm2, possibly due to the parameters chosen for the

reconstruction. Furthermore, as the molecular density increases, its detection count converged with that
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of the non-multi-emitter algorithms, as depicted in Figure 3.5.

This analysis distinctly reveals the labelling density points at which the reconstruction algorithms

begin to exhibit limitations, thereby enriching the quantitative comprehension of their operational bound-

aries. Notably, it’s crucial to highlight that the quantifiable insights extracted from these simulations are

dependent on various factors, such as the chosen reconstruction parameters, the simulated PSF de-

fined by integrated Gaussians (including its dimensions), among others. Importantly, these parameters

were tailored to match the conditions expected for application in the forthcoming experimental chapter,

as opposed to being optimised to determine conditions that would yield optimal algorithm performance.

Furthermore, an evaluation of the computational time required for the execution of these algorithms

within the simulation framework was conducted. This study holds particular relevance due to its ap-

plicability in the subsequent analysis of experimental data. Notably, the scale of experimental data

is considerably larger than that of the simulated data, thereby enhancing the computational demands

in the context of dataset size and algorithmic complexity. This escalation in computational demands

reinforces the significance of computational efficiency in the context of bioimage analysis workflows,

highlighted in the previous chapter. The results demonstrated that the WLS algorithm exhibited the

fastest computational performance compared to the MLE counterpart. Enabling multi-emitter fitting sig-

nificantly increased the computational time (by a factor of 3), as expected due to the inherent complexity

of the algorithm. Although the multi-emitter fitting approach exhibited the best performance, its com-

putational requirements render it less practical for integration into the experimental chapter. Given the

closely matched quantitative results between WLS and MLE fitting, the decision was made to employ

the WLS algorithm without multi-emitter fitting in the experimental phase, primarily due to its superior

computational efficiency.

Moreover, a simple conceptual model was developed to illustrate the concept of competitive labelling.

Using competitive labelling is anticipated to enable precise control over labelling densities within a sam-

ple by manipulating the molar ratio between labelled and unlabelled antibodies. This newfound control

promises to facilitate analogous analyses of localisation algorithms within experimental setups, a task

that has posed challenges in the past. It is important to highlight that this study operates on two under-

lying assumptions: 1) the total concentration of the antibodies is sufficiently high to saturate the entire

structure, and 2) the binding probabilities of the labelled and unlabelled antibodies are equal. These

assumptions will be taken into account during the analysis of results in the next chapter.
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4
Competitive Labelling Experiments
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This chapter introduces a novel methodology for biochemically controlling labelling densities in SMLM

experiments. It covers sample preparation, image acquisition, and data analysis methods. The obtained

results, both qualitative and quantitative, are discussed in detail, offering insights into the methodology’s

efficacy. The implications of these findings are explored, along with potential future directions for re-

search in this field.

Contributions:

The author of the thesis, Inês Cunha, conducted all the experiments and subsequent analyses described

in the following sections.

60



4.1 Introduction and Objectives

It has been shown that localisation algorithms face challenges in accurately determining the positions of

emitters when their local density becomes too high [29,62]. In particular, as demonstrated by simulations

in the preceding chapter, both the commonly employed MLE and WLS algorithms exhibited a threshold

for the maximum density of concurrently active fluorophores in an image frame, which was found to be

around 1 emitter per square micrometer. This aligns with established findings in the literature [95].

Evaluating the performance of these algorithms is a relatively straightforward task within simulated

scenarios, as the real molecule count is known in the ground-truth [108]. However, characterising the

behaviour of these algorithms within real experimental setups represents a substantial obstacle, primar-

ily due to the inability of linearly controlling the density of emitters within the sample [14,48]. This makes

it inherently challenging to accurately quantify the number of molecules within a given structure.

Quantifying the practical density threshold at which these algorithms effectively operate within real

experimental scenarios could provide valuable insights for optimal imaging conditions and ensuring the

accurate quantification of molecular counts [109].

Previous studies have successfully manipulated the labelling densities within samples to assess the

resulting quality of super-resolved images. For example, Gibbs et al. (2015) [110] employed a method

wherein they mixed conjugated and unconjugated antibodies (with and without fluorescent labels) at

varying molar ratios, thus enabling precise control over labelling density. However, their study primarily

focused on comparative analyses of the final reconstructions, without providing any quantitative insights.

Moreover, Gibbs et al. (2016) [111] adjusted emitter density by tuning the imaging buffer for several

photoswitching dyes, but did not quantify the number of detected molecules. Furthermore, Cox et al.

(2017) [48] developed an analytical tool for identifying reconstruction artifacts stemming from high emitter

density. However, their work didn’t directly determine the reliable density limit at which SMLM algorithms

perform in real experiments. They manipulated labelling densities in the sample through illumination,

a common approach to control emitter numbers [61], showcasing qualitative artifact formation at high

densities. Nevertheless, this method lacks linear control, as laser intensities don’t exhibit proportional

relationships with photoswitching rates of commonly used fluorophores [51]. In addition, Manley et

al. (2018) [112] introduced an autonomous illumination control system capable of evaluating excessive

density of photoswitching molecules and subsequently adjusting the illumination accordingly. Yet, they

do not directly characterise the limitations of the SMLM algorithm. Alternative methods involve adjusting

the number of acquired time frames ( [109]) to assess algorithm detections. However, this relies on

fluorophore photobleaching rates rather than achieving varying densities within a single image frame.

Although these studies show promising strategies of controlling the number of activated molecules

in experimental settings, these do not directly characterise the algorithmic limits within which precise

molecule counting can be achieved. This leads to the objectives of this chapter.
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This chapter presents an innovative approach designed to achieve precise control over labelling

densities in SMLM experiments, with the primary goal of comprehensively characterising localisation

algorithms using real data. The proposed method employs competitive labelling, a concept described in

the previous chapter (section 3.3.2). With this novel methodology, a mixture of labelled and unlabelled

molecules are used to compete for available binding sites within the sample. The number of labelled

molecules in the sample is then dictated by the ratio of labelled and unlabelled antibodies (depicted in

Figure 4.1). This technique is applied to fixed cells, leveraging the well-defined microtubule structure as

the cellular framework. The labelled antibodies are tagged with the widely employed fluorophore Alexa

Fluor 647, while the unlabelled antibodies act as competitors. Subsequently, a thorough assessment of

the localisation algorithm’s performance is carried out across a range of emitter density conditions using

the experimental dataset. This assessment encompasses various metrics, including the quantification

of localisations, evaluation of error mapping for artifacts, and measurement of the super-resolved image

resolution. The resulting data is subjected to comprehensive analysis, leading to a detailed exploration

of the implications derived from these observations. Furthermore, this discussion explores potential

avenues for future research in this specific field.

Figure 4.1: Competitive Labelling System Overview. a) Schematic of the competitive labelling concept, where a
mixture of labelled and unlabelled antibodies competes to bind to tubulin. Notably, the illustration por-
trays direct immunolabelling, while the actual procedure employed indirect immunolabelling. b) Graph-
ical depiction of the trend of labelled molecule count in a sample under varying ratios of labelled/unla-
belled antibodies.

62



4.2 Methodology

This section outlines the methodology used to acquire the competitive labelling data and explains the

subsequent data analysis approach.

4.2.1 Sample Preparation

The objective of these experiments was to perform immunolabelling of microtubules in fixed COS-7 cells.

COS-7 Cell Culture and Fixation Protocol

COS-7 cells were cultured in phenol red-free high-glucose, L-Glutamine containing Dulbecco’s modi-

fied Eagle’s medium (DMEM; Thermo Fisher Scientific) supplemented with 10% (v/v) fetal bovine serum

(FBS; Sigma), 1% (v/v) penicillin/streptomycin (Thermo Fisher Scientific) at 37 °C in a 5% CO2 incuba-

tor. Cells were seeded on clean µ-slide 8 well glass bottom: 1.5H (170 µm +/- 5 µm) D 263 M Schott

glass (IBIDI) at a density of 30 000 cells per well. A volume of 300 µL was occupied in each well. Cells

were grown for 24 hours before fixation.

Prior to the immunolabelling process, several buffers were prepared and stored appropriately. The

buffers used during the immunolabelling procedure are described in the following tables.

Table 4.1: CB Buffer recipe

Volume Reagents MW [g/mol] [Stock] [Final]
90 ml ddH2O 5x 1.25x
195.2 mg MES 195.24 10 mM
876.6 mg NaCl 58.44 150 mM
190.2 mg EGTA 380.35 5 mM
90.1 mg Glucose 180.2 5 mM
101.7 mg MgCl2 203.3 5 mM
100 ml Final Volume

After preparing the CB buffer with the specified reagents, the pH was adjusted to 6.1 using NaOH

pellets, and the solution was filtered through Millipore "Stericup" 0.22 µm. 10 ml aliquots of the CB buffer

were stored in 15 ml Falcon tubes at -20°C.

Table 4.2: Washing buffer recipe

Volume Reagents MW [g/mol] [Stock] [Final]
9.9 ml PBS 1x 1x
100 ul Tween 20 10 % 0.1 %
10 ml Final Volume

The washing buffer was then stored at 4ºC.
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Table 4.3: Cell Blocking buffer recipe

Volume Reagents MW [g/mol] [Stock] [Final]
0.5 g Bovine Serum Albinum 5 %
10 ml PBS 1x 1x
10 ml Final Volume

The cell blocking buffer was then stored at 4ºC.

Immediately before starting the cell fixation process, two CB buffer-derived solutions were prepared.

The first solution, CB buffer 1, was prepared by adding 120 µl of glutaraldehyde (25% (v/v)) and 250 µl

of Triton X-100 (10% (v/v)) to 9630 µl of CB buffer. The second solution, CB buffer 2, was prepared by

adding 400 µl of glutaraldehyde (25% (v/v)) to 4600 µl of CB buffer. Both solutions were heated to 37ºC

in a waterbath before use.

After completing the incubation period, the cells were carefully removed from the incubator and the

media was delicately removed. Cells were then incubated for 2 minutes in CB buffer 1, followed by a

10-minute incubation with CB buffer 2. During the incubation period, a fresh 0.5% NaBH4 solution was

prepared by adding 25 mg of NaBH4 to 5 ml of PBS. After the incubation period, the cells were quenched

with 0.5% NaBH4 for 7 minutes, and the solution was refreshed thrice during quenching. The cells were

then washed three times with 1x PBS for 1 minute, 5 minutes and 10 minutes, respectively.

Antibody Staining

The cells were blocked with the previously prepared Cell Blocking buffer for 30 minutes. They were

then incubated with mouse anti-β-tubulin primary antibodies in blocking buffer (5 µl of 2 mg/ml stock of

primary antibody to 1 mL of blocking buffer) for 1 hour at room temperature. After the primary antibody

incubation, the cells were washed twice with 10% Tween-20 for 5 minutes each and then twice with 1x

PBS for 1 minute each.

The next step was to incubate cells with the secondary antibodies. A distinct combination of sec-

ondary antibodies was used for every set of three wells of the chambers. Specifically, the unlabelled

F(ab’)2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody (1.2 mg/mL stock) and F(ab’)2-

Goat anti-Mouse IgG (H+L) Cross-Adsorbed labelled with Alexa Fluor 647 (2 mg/mL stock) were em-

ployed during this incubation process, with varying molar ratios between them.

The volume required for the labelled and unlabelled antibodies was calculated based on the la-

belled/unlabelled ratio using the following equation:

ratio × 5 µL (labelled) + (1 - ratio)× 2 mg/mL
1.2 mg/mL

× x µL (unlabelled) + Blocking buffer = 1 mL

64



A total of 10 different ratios were tested, ranging from 10% to 100% with increments of 10%. The

following Table 4.4 shows the concentrations of labelled secondary antibodies (with AF647), unlabelled

antibodies and blocking buffer used in each competitive labelling experiment.

Table 4.4: Concentrations of labelled secondary antibodies (with AF647), unlabelled antibodies and blocking buffer
used in each competitive labelling experiment.

Competition Ratio Labelled AB (µL) Unlabelled AB (µL) Blocking Buffer (µL)
10 % 0.5 7.47 992.03
20 % 1 6.64 992.36
30 % 1.5 5.81 992.69
40 % 2 4.98 993.02
50 % 2.5 4.15 993.35
60 % 3 3.32 993.68
70 % 3.5 2.49 994.01
80 % 4 1.66 994.34
90 % 4.5 0.83 994.67

100 % 2.5 - 497.5

Following the secondary antibody incubation, the cells were washed with 0.1% Tween-20 for 1 minute

and then twice for 5 minutes each. Finally, they were washed twice with 1x PBS for 5 minutes each.

Post fixation

For post fixation, the cells were fixed for 10 minutes using 4% paraformaldehyde in PBS. After fixation,

they were washed three times for 10 minutes each using the previously prepared washing buffer.

The 8 well-chambers were then stored at 4ºC in 1x PBS until imaging.

4.2.2 Image Acquisition

For each chamber, cells were mounted with a GLOX-MEA buffer (50 mM Tris, 10 mM NaCl, pH 8.0,

supplemented with 50 mM MEA, 10% [w/v] glucose, 0.5 mg/ml glucose oxidase, and 40 µg/ml catalase).

Data acquisition was performed with the Nanoimager microscope (Oxford Nanoimaging; ONI) equipped

with a 100 x oil-immersion objective (Olympus 100x NA 1.45). The FOV has a size of Fluorescence

illumination was performed using the 640 nm laser in TIRF illumination at an angle of 53.7º to minimise

background fluorescence.

With 3 % of the total laser power ON, adequate fields-of-view containing cells with a lower density of

microtubules were selected for imaging. First, a TIRF image was taken, where 5 frames were acquired

with an exposure time of 50 ms. Then, 100% of the laser power was used to promote blinking of the

fluorophores in the sample. This corresponds to an approximate irradiance of 7.5 kW/cm2 at the sample

plane. The exposure time was set to 10 ms, and a total of 20 000 frames were acquired for each field of

view. The pixel size of the images is 117 nm.
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For each labelled/ unlabelled ratio, five cells (five fields-of-view) were imaged. Therefore, a total of 5

(cells) x 10 (ratios) = 50 image stacks were acquired and analysed.

4.2.3 Data Analysis

Following the data acquisition, each image stack was reconstructed into a super-resolved image and

post-processed using the Fiji plugin ThunderSTORM. Due to the extensive nature of the acquired

datasets, consisting of 20 000 frames for a single image, the manual processing times were prolonged.

In fact, performing the PSF fitting and post-processing took approximately 1 hour per image stack. To

streamline the process, automation was implemented by creating a macro in Fiji. The macro was built

to process an entire folder of image stacks, performing all the specified steps and saving each output in

another folder, automatically. This enabled the generation of super-resolved reconstructions efficiently.

The macro consisted of the following steps:

1. Open the image stack from the specified folder.

2. Crop the image stack to a 200 x 200 pixels region of interest centered within the FOV. This not

only reduces processing time but also ensures a more consistent excitation across the entire FOV,

given the Gaussian illumination profile of the laser used.

3. Run the analysis of the ThunderSTORM plugin for the 20000x200x200 image to reconstruct the

stack into a super-resolved image. The camera setup was adjusted to a pixel size of 117 nm, and

a base level of 200 counts to remove the background noise. Image filtering was performed with

a wavelet filter (B-Spline) with an order of 3 and a scale of 2.0. To detect approximate molecule

positions, the local maximum method was used with a peak intensity threshold of three times the

standard deviation of the wave (3*std(Wave.F1)), and an 8-neighbourhood connectivity. For the

subpixel localisation of the emitters, it was employed a PSF fitting with an integrated gaussian,

with a fitting radius of 3 pixels and an initial sigma of 1.5 pixels. The used fitting method was the

WLS, as it is one of the fastest methods available and offers a similar accuracy to the MLE [96].

Multi-emitter fitting was not enabled, due to its slow processing time. The results were presented

as Average Shifted Histograms, and a 5 x magnification was chosen for the resulting images.

4. Apply drift correction to the super-resolved reconstruction, using the cross-correlation method.

5. Save the localisations table in a .csv file in the specified folder, along with the resulting super-

resolved image.

Given the significant variation in the number of detections for each image stack in this study, the sub-

sequent post-processing steps required manual intervention. This approach was necessary to ensure

that no biases or errors were introduced during the process.
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For each image, histograms of intensity, uncertainty, and sigma distribution of localizations were

plotted. These histograms were thoroughly analysed, allowing for the identification of localisations with

unrealistic parameters. Specifically, localizations with an intensity below 1000 or above 30000 (as de-

picted in Figure 4.2) were removed, along with those having an uncertainty exceeding 2 nm. Additionally,

the sigma distribution plot (in nm) of the localizations was examined to identify any potential grid artifacts.

Grid artifacts may manifest as spikes or peaks in the sigma plot, indicating systematic errors introduced

during the imaging process.

Figure 4.2: Intensity distribution example in ThunderSTORM. The yellow region of interest represents the region
of interest in the intensity histogram applied to the data.

It is important to emphasise that the filtering steps applied during the post-processing of the data

were solely intended to remove unrealistic values and artifacts, ensuring the reliability of the final results.

Careful consideration was given to striking the right balance in filtering to prevent over-removal of data

points, which could potentially impact the results and introduce unintended biases. As such, options like

density filtering were not used to avoid any distortion in the number of detections, which is the primary

variable of interest in this study.

After completing the post-processing of all images, the study aimed to compare the number of detec-

tions between the processed images, i.e, with different labelling densities (varying labelled/ unlabelled

ratios). Due to the inherent variability in the number of microtubules present in each cell, directly compar-

ing the total number of detections between images would not provide meaningful results. To overcome

this, for each super-resolved image with a specific ratio, the number of detections was analysed along a

precisely measured 1 micrometer segment of a microtubule. To achieve this, a Region of Interest (ROI)

was manually drawn (with the segmented line tool in ImageJ) along a microtubule, with a width of 8

subpixels to ensure accurate coverage and minimal background inclusion (see Figure 4.3).
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Figure 4.3: Selection of a specific area (with 1 µm in length) as the ROI in a super-resolved image of microtubules.
By using the ThunderSTORM plugin, it is possible to assess the number of detections for this ROI.

The length of the hand-drawn segment was assessed, and the number of detections in this segment

was then divided by the measured length to obtain the exact number of detections per micrometer.

To ensure a more robust analysis, the SNR of the number of detections was considered instead of just

the raw detections count. This accounted for potential noise and detections resulting from nonspecific

binding within the selected ROI in the microtubule. A squared micrometer area of noise (without any

microtubules) close to the selected microtubule was considered. The number of detections in this noise

area was used to divide the number of detections obtained in the microtubule area.

For each labelling density, a total of 3 cells was considered, and for each cell, 3 different microtubules

were analysed, along with 3 different areas of noise. Thus, for each competitor ratio, a total of 3 x 3 = 9

measurements of detections (SNR) per micrometer were taken.

All computational analysis were conducted in a Macbook M1 Pro, with 16Gb of RAM and a 512Gb

SSD.
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4.3 Results

After conducting the immunolabelling experiments with varying competition ratios (ranging from 0.1 to

1.0 with increments of 0.1), the acquired data underwent post-processing and analysis, as detailed in

the previous section. For analysis, a total of 3 different cells were considered for each ratio, meaning a

total of 30 fields-of-view were analysed.

The following Figures show three of the acquired super-resolved images obtained for three specific

ratios: 0.1 (10% labelled secondary antibodies and 90% unlabelled antibodies) (Figure 4.4), 0.5 (50%

labelled antibodies and 50% unlabelled antibodies) (Figure 4.5), and 1.0 (100% labelled antibodies)

(Figure 4.6).

It is important to note that the brightness and contrast of the images shown were adjusted to enhance

the visualisation of the microtubule structures. These adjustments varied according to the intensity

of each image, as reconstructions with higher percentages of labelled molecules exhibited a higher

intensity compared to those with more unlabelled antibodies. However, all analytical procedures were

carried out with unaltered data.

Figure 4.4: Obtained super-resolved reconstruction with a competition ratio of 0.1 (10% labelled secondary anti-
bodies with Alexa Fluor 647, and 90% unlabelled antibodies). On the right, a zoomed-in region of the
image is shown. Scale bar: 1 µm.

The super-resolved images obtained with a paired competitor ratio of 0.1 (Figure 4.4) demonstrated

that the microtubule structure was not fully sampled, as anticipated, considering that only 10% of the
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secondary antibodies were labelled with Alexa Fluor 647. However, qualitatively, there is an absence

in merging artifacts (i.e., "blurred areas" where neighbouring molecules were merged together) in the

image, possibly indicating a higher accuracy of the algorithm used for localising individual emitters.

Using a labelling ratio of 0.1 forces a lower density of emitters in each frame, which might have implied

that the PSF of individual emitters did not significantly overlap. As a consequence, the localisation

algorithm could accurately fit an integrated Gaussian to each individual emitter, without causing any

visible merging artifacts.

Figure 4.5: Obtained super-resolved reconstruction with a competition ratio of 0.5 (50% labelled secondary anti-
bodies with Alexa Fluor 647, and 50% unlabelled antibodies).On the right, a zoomed-in region of the
image is shown. Scale bar: 1 µm.

The super-resolved images obtained with a paired competitor ratio of 0.5 (Figure 4.5) showcased

a clear visualisation of the microtubule structure. However, it was observed that in certain areas, the

microtubules were still undersampled, indicating that the density of labelled molecules was not sufficient

to fully capture the intricacies of the entire microtubule network. Despite some undersampling, the

absence of visible merging artifacts in these images provides further evidence of the high fidelity of the

algorithm used for localising individual molecules.
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Figure 4.6: Obtained super-resolved reconstruction with a competition ratio of 1.0 (100% labelled secondary anti-
bodies with Alexa Fluor 647).On the right, a zoomed-in region of the image is shown. Scale bar: 1 µm.

The results from Figure 4.6, depicting the super-resolved image obtained with 100% labelled anti-

bodies, show no qualitative signs of undersampling in the microtubule structure. This indicates that the

labelling density was sufficient to adequately capture the details of the microtubule network. However, a

notable observation is the presence of merging artifacts in the image, particularly evident in the zoomed-

in region. This suggests that the labelling density in each frame was too high for the employed algorithm

to accurately and individually localise the molecules. As a consequence, some of the fluorescent emit-

ters merged together, leading to the observed merging artifacts.

These results qualitatively show that there is a labelling density trade-off between adequately sam-

pling the structure and avoiding merging artifacts.

In the subsequent analysis, the primary objective was to quantitatively determine the labelling density

breaking point of the algorithms. In practice, this corresponds to finding the paired competitor ratio from

which the number of detections per frame does not increase with the number of labelled molecules. For

this, as explained in the previous section, the SNR of the number of detections along 1 micrometer of a

microtubule was considered, for 3 different cells for each ratio.

A comprehensive explanation of the efficient calculation of Signal-to-Noise Ratio (SNR) for each

ratio, along with all acquired detections in both microtubules and noise regions, is available in Appendix

A.4.

With the obtained data from the Tables provided in the Appendix (A.1 and A.2), it is possible to plot
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the mean SNR for each paired competition ratio, along with the standard deviation (Figure 4.7).

Figure 4.7: Mean SNR for each paired competition ratio. The error bars represent the standard deviation.

The obtained Figure 4.7 reveals insights into the relationship between labelling densities and the

number of detected molecules in the conducted experiments. As the competition ratio increases, indi-

cating a higher proportion of labelled molecules relative to unlabelled ones, it is observed a rise in the

number of detected molecules (SNR) until a certain point. Beyond this critical threshold, the number of

detections reaches a plateau and starts to decrease, which was expected. Moreover, the plot presents a

slightly nuanced behaviour. For very low labelling densities (ratios of 0.1 to 0.2), it is observed a linear in-

crease in the number of detections, approximately with a slope of 1. As the number of labelled molecules

increases further, the slope of the plot diminishes, indicating a reduced rate of detection growth. This

observation suggests that the algorithm might already be introducing merging artifacts for ratios of 0.3,

0.4, and so on, as the slope consistently decreases for higher ratios. Eventually, the slope approaches

zero, reaching a plateau at a ratio of approximately 0.8. The sharp linearity between the SNR and the

ratio is only evident at densities of 0.1 and 0.2, which lead to undersampling of the microtubule structure.

This highlights a trade-off between the molecular undercounting by the algorithm and the undersampling

of the biological architecture.

Precisely determining the optimal trade-off point from the graph alone becomes inherently complex,

due the continuous decrease in the slope of the plot. Without further metrics, the results could be

interpreted in two ways: either the ideal density point is at a lower ratio of 0.2, which coincides with

undersampling of the microtubule structure but with algorithmic linearity; or at a ratio of 0.8, where the

slope levels off, corresponding to the point from which algorithms are no longer counting additional

molecules, and with no visual undersampling of the structure.

To address this subjective aspect and gain deeper insights, it was adopted an additional approach by
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assessing other metrics directly within the obtained super-resolved images. The objective was to obtain

quantitative measures that could aid in identifying potential artifacts or undersampling more objectively.

For this, the Error Map method available in NanoPyx was used, which provides two essential metrics:

the RSE and the RSP. These metrics could potentially offer valuable quantitative insights into the per-

formance of the super-resolution algorithm at different labelling densities. Additionally, the decorrelation

analysis was employed, also implemented in NanoPyx, to assess the resolution of the super-resolved

images. The error and Pearson’s correlation metrics from the error map should reveal empirical knowl-

edge into artifact creation, whereas the decorrelation analysis could potentially provide information about

whether the resolution of the image is affected by the labelling density.

The obtained super-resolved reconstructions of the same 3 cells for each ratio were used in the study.

For the error mapping of the images, it was used the obtained TIRF image for each reconstruction as

the reference image. An example error map and the corresponding blurred super-resolved image are

shown in Figure 4.8.

Figure 4.8: Example of an error map (left), the corresponding blurred super-resolved image (middle) and the
reference TIRF image (right). The error map is obtained by comparing the blurred super-resolved
image with the obtained TIRF image.

To streamline the process of calculating the error map and resolution metrics, a Python script was

developed within the NanoPyx platform, facilitating the automation of plotting the relevant metrics for

each ratio. The mean and standard deviation of the RSE, RSP and resolution were calculated for each

density, and the results are presented in Figure 4.9.
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Figure 4.9: Mean RSE (left), RSP (middle) and resolution (right) for each paired competition ratio. The error bars
represent the standard deviation.

From the results obtained from the mean RSE and RSP metrics (Figure 4.9, left and middle plots),

extracting precise and definitive quantitative information from these metrics was challenging. This is due

to the presence of very high standard deviations of this metrics in the acquired data.

Despite the variability introduced by the standard deviations, it is possible to discern a subtle pattern

when examining the trends of RSE and RSP values. With an increase in the labelled/unlabelled ratio, a

slight upward trend in the RSE is observed, along with a simultaneous downward trend in the RSP. This

observation suggests that as the labelling density increases, the potential for artifact creation also rises,

leading to a decrease in the precision of the super-resolved reconstructions.

Upon observing the resolution obtained from the decorrelation analysis (Figure 4.9, right plot), the

same challenge is present - the presence of exceptionally high standard deviations. This factor hampers

the ability to draw reliable quantitative conclusions from the data.
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4.4 Discussion and Future Perspectives

The results from the competitive labelling experiments suggest that using the paired competition ratio

could be an effective method of experimentally controlling the number of labelled molecules. The key

supporting evidence for this lies in the plot showing the number of detections over the labelled/ unla-

belled ratio (Figure 4.7). Although it is not possible to definitively ascertain whether the real molecular

count is linearly controlled by the paired competition ratio experimentally (as the real number of labelled

molecules cannot be measured), the observed shape of the plot aligns with the obtained results through

the simulations (see zommed-in region of Figure 3.2): a linear increase in the number of localisations

with an increasing ratio, followed by a plateau and a subsequent decrease in detections. This implies

that controlling the number of labelled molecules experimentally was successful.

However, it is essential to acknowledge certain unexpected nuances that might contribute to the

variability observed in the number of detections (SNR) between experiments. Factors such as natural

cell-to-cell variability and uncontrollable experimental conditions could introduce variations. For instance,

the use of TIRF imaging exposes microtubules closer to the coverslip to more illumination, leading to

potential differences in the number of detections within the same field of view. Additionally, the laser

illumination is higher at the centre of the field of view, resulting in potentially varying levels of illumination

for microtubules in the central versus peripheral regions. These factors could account for the variability

observed in the results, clearly observed in Tables A.1 and A.2.

The competitive labelling technique employed to control molecular counts may introduce some po-

tential limitations and important biochemical considerations when combining labelled and unlabelled

antibodies. One crucial assumption is that both labelled and unlabelled antibodies exhibit the same

affinity for the tubulin epitope, implying equal binding probabilities. However, in reality, their interactions

might not be identical, as they could have different binding characteristics. This discrepancy in binding

interactions could lead to variations in the labelling efficiency and detection of molecules. If the labelled

and unlabelled antibodies differ in their binding affinities, it may affect the competition dynamics between

them. This, in turn, could result in unexpected variations in the number of labelled molecules detected,

influencing the overall reliability and accuracy of the results. Therefore, while the paired competition

ratio method provides a useful strategy of controlling the number of labelled molecules, researchers

should be mindful of these potential shortcomings and the complexities arising from antibody-antigen

interactions. Considering these factors in the experimental design by adjusting the concentrations of the

antibodies according to the binding probabilities of both antibodies could help mitigate these issues.

The results obtained from the error map metrics (RSE and RSP) did not yield clear and quantitatively

meaningful outcomes due to high standard deviations, making it challenging to discern any consistent

pattern. Several factors could contribute to this outcome. Firstly, the error map is sensitive to false posi-

tive localisations, which can occur randomly and affect the results. Moreover, in the more undersampled
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regions with low density, the error map might assign greater significance to noise, as the SNR was poor.

Additionally, and more importantly, the variability observed from cell to cell can significantly influence the

analysis. Unlike simulations where conditions are precisely controlled, the uncontrolled factors involved

in these experiments can contribute to the error map variations. To address this issue in future studies,

one potential approach could involve using a very small fraction of the FOV for the error map analysis.

However, implementing this method introduces subjectivity, as researchers may choose regions with or

without merging artifacts based on local density. Balancing the need for more localised analysis while

avoiding subjective bias remains a challenge that requires careful consideration in future studies.

Another aspect of the analysis involved the resolution assessment using the decorrelation analysis.

However, similar to the error map metrics, the obtained results also presented high fluctuations in res-

olution for the same ratio but different cells. This variability is likely attributed to the same reasons as

observed in the error map analysis. The decorrelation analysis, like the error map metrics, is sensitive to

uncontrolled variability between cells, making it challenging to draw meaningful conclusions. The original

intention behind using the decorrelation analysis as an additional metric was to gain insight into whether

the microtubule structure was being accurately sampled. The hypothesis was that a decrease in the

number of labelled molecules might lead to a deterioration in resolution due to undersampling. However,

this interpretation might not hold true because the decorrelation analysis calculates resolution using the

entire image and involves blurring. As a result, it does not provide a localised assessment of resolution,

which is crucial when dealing with varying labelling densities in different regions of the sample. Hence,

this limitation might explain the lack of informative results obtained from the decorrelation analysis.

The key insight gained from this study is the ability to assess the performance of the localisation

algorithms using real experimental data. By understanding how the algorithms behave under different

labelling densities, one can determine the optimal point at which accurate molecule counting is feasi-

ble. The investigation indicates that the WLS fitting algorithm is in a linear detection regime up to a

20% labelling ratio of molecules. However, at this density, there is a noticeable visual undersampling

of the microtubule structure. Furthermore, the detection plot’s slope diminishes gradually until 80% of

labelled molecules, suggesting a degree of undercounting and consequent merging artifact creation by

the algorithm. Yet, it still counts new molecules until the 80% labeling threshold, and no visible merg-

ing artifacts or undersampling are present, which suggests that this point might represent an optimal

trade-off equilibrium. This understanding is useful to optimise imaging conditions to achieve high-quality

results in a shorter time frame. By biochemically introducing a lower density of labelled molecules, the

stringent imaging conditions required to achieve low labelling densities per frame can be eased. This

means using lower laser powers and acquiring fewer frames, making the imaging process more efficient.

This optimisation is particularly relevant for high throughput imaging scenarios, where a large number of

images need to be acquired and analysed, and computational costs can be significant.
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An important limitation of this methodology and analysis lies in the difficulty of quantifying the under-

sampling of biological structures. In this study, microtubules were used as the biological structure, and

their continuous nature allowed to easily infer whether they were accurately sampled or undersampled.

However, most biological structures of interest in SMLM are unknown and challenging to assess. For

instance, when investigating protein aggregates, which typically consist of a small number of molecules,

determining whether they are undersampled in super-resolved images becomes intricate. This raises

the question of whether the competitive labelling approach is applicable to other structures and how it

can be leveraged effectively.

In theory, the competitive labelling method could be extended to diverse biological structures, since

the primary antibodies would be the only component that needed be altered. This means that it should

be possible to gain insights into whether the localisation algorithm is accurately counting molecules.

However, even if a plateau is identified in the number of detections by the algorithm, and it is still oper-

ating in a linear regime with the number of labels, it is not possible to determine if the structure is being

undersampled. The reason is the lack of information from the unlabelled antibodies in the structure.

To potentially address this limitation, a future improvement to this method would be to use two dif-

ferent competing labels instead of one labelled and one unlabelled antibody. By using two colours, it

should be possible to extract information from one colour (in one channel) and cross-reference it with the

other channel, potentially revealing if the biological structure is being undersampled. However, finding

two fluorophores that exhibit optimal blinking behavior in the same buffer is not a trivial task. Most dyes

suited for SMLM are often in the far-red spectra (e.g., AF647, CF680), whose emission spectra overlap,

complicating the unambiguous separation of information from each dye. One potential solution involves

employing spectral demixing, a technique that can effectively disentangle information from two dyes with

overlapping emission spectra. Although this approach introduces additional complexity, it might pro-

vide valuable insights into finding the optimal trade-off between the creation of merging artifacts by the

localisation algorithm and the undersampling of the structure, for a wider range of biological structures.

Another potential improvement to this methodology involves exploring the performance of various

localisation algorithms under different labelling densities. As demonstrated in the simulations presented

in the previous chapter, the labelling densities can affect the behaviour of these algorithms differently.

In this study, it was used the WLS with an Integrated Gaussian PSFfitting. However, investigating other

algorithms, such as the MLE and the multi-emitter fitting approach, could offer valuable insights into their

effectiveness at counting molecules in different labelling densities for experimental setups.

To conclude, the experimental tools and analysis methods developed in this study represent initial

efforts towards accurately estimating the ability of algorithms to count molecules in real experimental

data, enhancing the throughput and efficiency of SMLM imaging and analysis.
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5
Conclusion
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Super-resolution fluorescence microscopy techniques such as SMLM have become indispensable

tools for cell biology, enabling researchers to visualise nanoscale cellular organisation and dynamics with

high molecular specificity. However, reaching the full potential of these methods poses both computa-

tional and analytical challenges. This work strides towards overcoming key obstacles in single-molecule

super-resolution imaging through advances in computational optimisation, simulation, and experimental

design.

The NanoPyx framework introduced in Chapter 2 exemplifies an innovative approach to acceler-

ate super-resolution data processing. Its core agent-based system, the Liquid Engine, dynamically

selects optimal analysis implementations for each user device and input data. This adaptive optimisa-

tion enabled NanoPyx to achieve order-of-magnitude speedups for specific analysis tasks, promising

to alleviate growing computational bottlenecks as super-resolution datasets expand. The adaptive per-

formance strategy behind the Liquid Engine could inspire analogous advances in other domains facing

rising computational demands.

Complementing these computational contributions, Chapters 3 and 4 address fundamental limita-

tions in accurately resolving and counting molecules in SMLM. The Monte Carlo particle simulator

devised in Chapter 3 offers versatile applications for investigating SMLM systems. Simulations with

specific parameters were used to systematically assess SMLM localisation algorithm’s performance un-

der controlled conditions. Using this framework, an upper limit of ∼1 molecule/µm2 for reliable particle

counting was found employing standard Gaussian integral fitting approaches (MLE and WLS).

Moreover, Chapter 4 demonstrated a competitive labelling experimental strategy for SMLM algorithm

characterisation. The detected molecular trend, in tune with the simulations, revealed the feasibility of

controlling labelling densities in SMLM experiments. This system provided insights into a trade-off be-

tween inaccurate molecular counting by the localisation algorithms and undersampling of the biological

structure. At 80% of labelled molecules, the point beyond which no additional molecules were detected,

the reconstructions showed no visual merging artifacts or undersampling. Limitations in quantitatively

confirming linearity and adequate sampling still remain. Overall, competitive labelling represents an im-

portant step towards characterising algorithm performance using real SMLM data across controlled den-

sity ranges. Ongoing refinement of the technique will enable more rigorous algorithm assessment and

aid researchers in optimising workflows for their specific biological questions and imaging constraints.

In summary, this thesis advances single-molecule super-resolution imaging and analysis through in-

terlinked progress in computational performance, simulation design, and experimental control. Translat-

ing these proof-of-concept achievements into robust tools and workflows will require continuous method

development and system optimisation. Exciting frontiers remain open for exploration as researchers

relentlessly seek to extract quantitative insights from data at ever-finer scales. Ultimately, this work

provides a foundation for pushing the envelope of optical nanoscopy.
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A
Appendix

A.1 eSRRF Algorithm

Given an input of a diffraction-limited image stack, the eSRRF method consists of a spatial analysis of

each image frame, followed by a temporal analysis of the spatially transformed image stack.

Firstly, eSRRF performs a FHT interpolation to the diffraction-limited image stack to upsample the

images, which minimises macro-pixel artifacts. Then, for a user defined area which contains the size

of the PSF, and for each subpixel of that area, the intensity gradients in the x and y direction are

calculated, and the subpixels are attributed a specific weight, in which subpixels further from the centre

have an inferior weight than the ones at the centre of the pixel of interest. This allows a better estimation

of the environment around the pixel of interest. The workflow of eSRRF can be seen in Figure A.1.
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Figure A.1: a) Left: Acquired raw image stack. Middle: Obtained diffraction-limited image, via a wide-field micro-
scope. Right: eSSRF! (eSSRF!) reconstruction. b) Workflow of eSSRF!. The selected diffraction-
limited window from the raw image frames undergoes a Fourier Transform interpolation for upsampling
(subpixelization). From the magnified window, the gradients in the horizontal and vertical directions
and the weight map are calculated. Based on this, the RGC is calculated for each pixel to calculate
the RGC map. Then, via temporal correlations, the RGC stack is compressed into a super-resolved
image [67].

A more detailed explanation of the eSRRF algorithm (spatial and temporal analysis) can be found in

the following sections.

Spatial Transformation: Radial Gradient Convergence

The raw image is first interpolated spatially by a user-defined magnification factor mag, typically ranging

from 2 to 5, using Fourier Interpolation via FHT. This reduces macro-pixel patterning effects.

The vertical and horizontal image gradients Gx and Gy are calculated using Roberts cross method:

Ga(i+ 0.5, j + 0.5) = I(i, j)− I(i+ 1, j + 1) (A.1)

Gb(i+ 0.5, j + 0.5) = I(i, j + 1)− I(i+ 1, j) (A.2)

Where Ga and Gb are the diagonal gradients. These are then rotated to align with image axes.

The pixel radius R represents the PSF Full Width at Half Maximum (FWHM), so σ = R
2.355 estimates

the PSF standard deviation [113].

For each pixel (i0, j0), the RGC is computed over a local disk ∆ of radius 2σ + 1 as:
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RGC(i0, j0) =
∑

(i,j)∈∆

W (i0, j0, i, j) ·Dk(i0, j0, i, j) (A.3)

Where the weighting factor W based on Gaussian derivative is:

W (d) =

[
d · e−

d2

2σ2

]4
(A.4)

And the gradient convergence Dk is:

Dk = 1− |Gy(i, j) · (i− i0)−Gx(i, j) · (j − j0)|

d
√
G2

x +G2
y

(A.5)

Where d is the distance between (i, j) and (i0, j0).

Temporal Analysis

The RGC stacks are combined over time via temporal average (AVG), variance (VAR) or 2nd order

autocumulant (TAC2).

AV G(i0, j0) = ⟨RGCt(i0, j0)⟩t (A.6)

V AR(i0, j0) = ⟨δRGCt(i0, j0) · δRGCt(i0, j0)⟩t (A.7)

TAC2(i0, j0) = ⟨δRGCt(i0, j0) · δRGCt+δt(i0, j0)⟩t (A.8)

Where δRGCt = RGCt − ⟨RGCt⟩t
This exploits temporal fluctuations to further improve resolution and image fidelity.
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A.2 NanoPyx Supplementary Information

A.2.1 NanoPyx Supplementary Figures

Google Colab

Professional WorkstationA Laptop
Comparing
run type
faster

GPU
faster

B
Comparing
run type
faster

GPU
faster

C
Comparing
run type
faster

GPU
faster

Figure A.2: Ratio between the run times of OpenCL and other implemented run types. Run times of a 5x
Catmull-rom [89] interpolation were measured across multiple input data sizes using either a MacBook
Air M1 (A), a Professional Workstation (B) or Google Collaboratory (C). Area within dashed lines cor-
respond to kernel and image sizes where OpenCL is faster than other implementations.
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LaptopA B Professional workstation

Figure A.3: Kernel size impacts which implementation is the fastest. A 2D convolution was performed on
images with varying kernel sizes, ranging from 1 to 21 (every 4) using either a MacBook Air M1 (A)
or a professional workstation (B). A 21 by 21 kernel was used in all operations. While unthreaded is
virtually always the slowest implementation, the threaded implementations are only the fastest until the
size increases to 20MB, after which PyOpenCL becomes the fastest. Bottom panels correspond to
zoomed in windows of top panels, indicated by dotted boxes.
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Figure A.4: Schematic of the agent decision making for delay management.
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Figure A.5: NanoPyx is available to users independently or their coding expertise. Besides the using
NanoPyx as a Python library, users also have access to Jupyter notebooks [86] (A) that can either
be run locally or through Google Collaboratory and a napari [87] plugin (B).
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A.2.2 NanoPyx eSRRF implementation

As stated in section 1.1.5, eSRRF performs a spatial and temporal analysis of an input diffraction-limited

stack, and outputs a super-resolved reconstruction. The full implementation of eSRRF into the Liquid

Engine and its comparison against NanoJ-eSRRF is the focus of this section. The inputs of the eSRRF

algorithm are a diffraction-limited image stack, a magnification factor, a radius in pixels, a sensitivity

value and a boolean value on whether or not to perform intensity weighting. The following Figure A.6

shows the stepwise eSRRF workflow developed, given an input of an an artificially created PSF.

Figure A.6 provides clear evidence of the successful implementation of every stage in the workflow.

The intensity gradient calculation’s outcomes align with expectations: regions in the artificial PSF that

correspond to edges exhibit higher values, mirroring the higher intensity variation in the initial image.

Conversely, areas with similar intensities yield lower values in the gradient images. The interpolation

steps are notably evident in their clear upsampling effect on the images. Moreover, the RGC maps

corroborate anticipated results by showcasing a resolution enhancement relative to the original input.

This is demonstrated by the emergence of a "smaller" PSF discernibly centered in the image, indicative

of an improved resolving capability.
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Figure A.6: Illustration of eSRRF workflow. Given an input of a diffraction-limited image stack, step 0 is a pre-
interpolation step, where each frame is upsampled by a user-defined magnification factor (in this ex-
ample, magnification = 5), if the boolean condition of doing intensity weighting is set to True. Using the
original image stack, step 1 is to calculate the pixelwise intensity gradients in the horizontal and vertical
direction of each frame of the stack. The illustrated gradient in the Figure is the gradient magnitude.
Step 2 is to upsample the obtained horizontal and vertical gradients by a factor of 2 x the user-input
magnification. Given the interpolated gradients in both directions, step 3 is then to calculate the Radial
Gradient Convergence maps. Finally, step 4 is to calculate temporal correlations between the obtained
maps to generate the final super-resolved image. For this example, it was used the mean between the
frames.

For a more realistic assessment and for a direct comparison to the original method implemented

in NanoJ, Figure A.7 shows the reconstruction of microtubules from the dataset [90] using NanoJ and

NanoPyx. The same interpolation type (Catmull-Rom) and parameters were used.
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Figure A.7: Given the same input dataset (from [90]) (left), NanoJ and NanoPyx (middle) reconstructions were
performed. Each reconstruction shows a zoomed-in region for easier visual comparison. The same
interpolation type (Catmull-Rom) and parameters were used. It was chosen an inverted colormap for
easier visualisation of potential artifacts. On the right, it is shown the image subtraction between both
reconstructions.

The resultant reconstructions exhibit distinct characteristics, although they maintain a degree of sim-

ilarity. This expected resemblance is due to the shared mathematical foundation underpinning both

implementations. However, the differences shown might be attributed to subtle variations in numerical

computations and precision handling, inherently different in both programming languages. However,

there is a clear presence of macro-pixel patterning in the NanoJ reconstruction, which is absent in

NanoPyx. The direct subtraction of one reconstruction from the other underscores the variations be-

tween them. The highlighted microtubule structure, which arises from a pixel shift between the two, is

the most notable difference. Importantly, the lack of substantial differences further reinforces confidence

in the method’s precise implementation

The following analysis delves into the implementations of each step involved in eSRRF: Catmull

Rom interpolations, Roberts cross gradient calculation and RGC map calculation. Each of them was

implemented as a Liquid Engine task, using the NanoPyx metaprogramming system for the generation

of multiple code variations.
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Interpolations

The selection and application of the interpolation technique influence the reconstruction outcome, po-

tentially giving rise to artifacts. In the context of the NanoJ-eSRRF implementation, the user is given the

choice of either using the Catmull-Rom interpolation (used in the previous SRRF), or the FHT interpola-

tion, for image upsampling. This choice was prompted by the observed macro-pixel artifacts arising from

the use of Catmull-Rom interpolation (visible in Figure A.7). The reason why the FHT is not universally

chosen is because it introduces a significant overhead in execution speed, as it is a more computa-

tionally complex task. In NanoPyx, in initial experiments, the Catmull-Rom interpolation was used, and

surprisingly, the macro-pixel patterning was not visible in the final reconstruction (Figure A.7). This com-

parison led to the determination that the Catmull-Rom interpolation should be uniformly adopted for all

interpolation steps within the NanoPyx implementation.

The Catmull-Rom interpolation was implemented in the Liquid Engine, where a lower-level C function

was created to interpolate each pixel of the image. It then uses for in range loops to iterate over the

image pixels and apply the interpolation function to each pixel. The CPU-based implementations were

created by using the tag2tag meta-programming tool, as described in section 2.5. The implementation

initially written was with a single core of the CPU, and then the tag2tag tool was used to generate the

parallelised code, in which automatically substituted the location of the "range" with "prange", allowing

multi-threading. The following snippet illustrates part of a run function of the Catmull-Rom interpolation

in the Liquid Engine, with the parallelisation applied in the rows of the image.

1 for f in range(nFrames):

2 for j in prange(height_magnified, schedule=schedule_type):

3 col = j / magnification

4 for i in range(width_magnified):

5 row = i / magnification

6 image_out[f,i,j] = _c_interpolate(image_in, row, col)

The tag2tag tool allowed the propagation of 5 CPU-based implementations (for a single-core, and

multi-core with the four different schedulers static, dynamic, guided and auto). In addition, a GPU-

based implementation was created, where a pyOpenCL kernel was built.
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Gradient Calculation

Another crucial step in eSRRF is to calculate the intensity gradients of the input image. This was done

by using the Roberts Cross operator. The Roberts Cross operator is a 2x2 convolution diagonal kernel

(in both diagonal directions), and it was implemented as a pure C function and applied to all the pixels

in each image frame. The resulting images were rotated by 45º in order to obtain the horizontal (Gx)

and vertical (Gy) intensity gradients, which are the output of this step. The gradient calculation task was

implemented in the Liquid Engine, where a similar approach was used as in the Catmull-Rom interpo-

lation. The CPU-based implementations were created by using the tag2tag tool, and the parallelisation

was done in the calculation of individual frames, as follows.

1 for n in prange(nFrames, schedule=schedule_type):

2 _c_gradient_roberts_cross(image)

Moreover, similarly to the interpolations, 5 CPU-based implementations generated and 1 GPU-based

implementation was created.

Radial Gradient Convergence Map Calculation

The last step of the eSRRF spatial analysis is the calculation of the RGC maps, based on the interpo-

lated gradients stacks. A C function was built to calculate the radial gradient convergence per subpixel. It

outputs the RGC value, calculated as described in 1.1.5. Then, each calculated RGC value is assigned

to the corresponding pixel in the output image (the RGC map).

This step was also implemented into the Liquid Engine, where the parallelisation for the CPU-based

implementations is done in the rows of the image, as follows.

1 for f in range(nFrames):

2 for j in prange(height_magnified, schedule=schedule_type):

3 for i in range(width_magnified):

4 RGC_map[f, j, i] = _c_calculate_rgc(interp_grad_x, interp_grad_y)

Following the same pattern as the preceding stages, a set of 5 CPU-based implementations and 1

GPU-based implementation were generated.

The aforementioned steps constitute the spatial analysis undertaken by the eSRRF algorithm. These

steps have been seamlessly integrated into a workflow, as previously outlined in A.2.2. However, the

temporal analysis between the reconstructed images has yet to be addressed. In the NanoJ version,

this involves three potential correlations: the mean, variance, and 2nd order autocorrelation function.
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It was determined that these correlations would be implemented separately from the spatial analysis.

Presently, these temporal analyses are not incorporated within the Liquid Engine framework. This deci-

sion was influenced by the use of the numpy Python library for these computations, employing functions

such as numpy.mean and numpy.var, along with a straightforward Python function for calculating the

2nd order autocorrelation function. Notably, rigorous testing indicated that even for extensive datasets,

such as the one featured in Figure 2.9, these operations did not introduce any notable overhead. This

efficiency can be attributed to the optimization features inherent to the numpy library.

Integration on a Liquid Engine Workflow

In NanoPyx, eSRRF was implemented as a single task of a Liquid Engine workflow, meaning that once

eSRRF is ran, the same run type is used for all its individual steps.

1 eSRRF_WF = Workflow(eSRRF(image, magnification, sensitivity, do_intensity_weighting))

The choice of consolidating eSRRF as a single task within the Liquid Engine stems from a practical

consideration related to GPU use. In scenarios where the GPU is identified as the fastest option, a

series of performance benchmarks revealed that the cumulative overhead associated with individually

executing each step of the eSRRF method on the GPU is substantial. This is attributed to the repeated

data transfers between the CPU and GPU during these steps. Surprisingly, the time spent on moving

data back and forth between the CPU and GPU during each step becomes a more significant perfor-

mance bottleneck than the actual computational workload of those steps. Consequently, an alternative

approach was devised: by maintaining eSRRF as a unified task, the impact of data transfer overhead

can be mitigated. In this configuration, if the GPU is determined as the optimal choice, the data is

initially transferred to the GPU, all eSRRF steps are executed on the GPU, and the results are eventu-

ally transferred back to the CPU. In order to illustrate this, a benchmarking analysis was conducted that

compared two scenarios: one where individual steps of eSRRF were executed as tasks within the Liquid

Engine, and another where the entire eSRRF process was treated as a single task. The results revealed

a significant speedup of 11 times, reducing the processing time from 31 seconds to 1.9 seconds (in a

500x128x128 image).

The following listing shows the structure of the eSRRF task, containing all the previously described

spatial analysis steps.
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1 run_type = X

2 crsm = CatmullRomInterpolation()

3 robx = GradientRobertsCross()

4 rgc = RadialGradientConvergence()

5

6 magnified_image = crsm.run(image, magnification, run_type)

7 gradient_x, gradient_y = robx.run(image, run_type)

8 gradient_x_interp = crsm.run(gradient_x, 2* magnification, run_type)

9 gradient_y_interp = crsm.run(gradient_y, 2* magnification, run_type)

10 rgc_map = rgc.run(gradient_x_interp, gradient_y_interp, magnified_image, runtype)

Extensive testing of all implemented steps was conducted using both simulated and real data, as

illustrated in Figures 2.9, A.6, and A.7. After being fully integrated as a Liquid Engine workflow, the

NanoPyx eSRRF method was employed not only to validate the decision-making process of the Liquid

Engine agent (see Supplementary Figure 2.8) but also to compare its computational efficiency with the

NanoJ version. With the same parameters and interpolation techniques, the results revealed a significant

2.5 times speedup on the dataset employed within the demonstrated NanoPyx framework (Figure 2.9).

A.3 Monte Carlo Particle Simulation

Within the NanoPyx platform, an algorithm was developed to simulate a two-dimensional particle field

based on a user-defined input PDF, as outlined in Algorithm A.1.

It was designed to accept any two-dimensional image as a potential ground truth and offers ad-

justable default parameters, including the maximum number of particles for simulation, minimum dis-

tance between particles, maximum number of tries, and the mean distance threshold between particles.

The devised algorithm is rooted in the principles of the Monte Carlo method. It randomly gener-

ates particles and places them in locations with a probability that is proportional to the intensity of

the input PDF at that specific location. Once a list of particle positions is generated, various stopping

criteria are evaluated. These criteria involve conditions like reaching the maximum number of particles

(max_particles), achieving a mean distance between particles below the set threshold (mean_distance_threshold),

or exhausting the maximum of tries for the simulation (nb_tries). If any of these conditions are satisfied,

the algorithm terminates and returns the list of particle positions. Otherwise, it proceeds to the subse-

quent iteration, introducing more particles placed randomly and proportionally to the input PDF.
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Algorithm A.1: Simulate 2D Particle Field
Input : Ground-truth image (probability density function)
Output: Particle positions (x, y)

1 while true do
2 particles_not_set → list of indexes of non set particles
3 for p in particles_not_set do
4 get_particle_candidate → returns 0 or 1 whether a particle was placed, with a

probability proportional to the sampled PDF
5 particles_set → list of indexes of set particles
6 for p in particles_set do
7 get_closest_distance(x[p], y[p], x, y) → calculates closest distance between set

particles
8 if closest_distance < _min_distance then
9 Kick particles x[p] and y[p] out (they were found too close)

10 else
11 n_particles += 1 → calculate number of set particles

12 if n_particles = previous_n_particles then
13 nb_tries += 1 → increment number of tries if no new particles were set

14 else
15 nb_tries = 0 → reset number of tries if new particles were set

16 if n_particles = max_particles or tries = max_tries then
17 break

18 if mean_distance_threshold > 0 and n_particles > min_particles and mean_closest_distance
< mean_distance_threshold then

19 break

20 x = x[particles_set]
21 y = y[particles_set]
22 return np.array([x, y]) → array of final set particle positions

Upon the application of the algorithm to the input ground truth, a list of particle positions is generated

as output.

A.4 Competitive Labelling Molecular Counts

To normalise the number of detections in both the microtubule and noise regions, the areas of these

regions were measured and considered in the calculation of the SNR. The noise region had a fixed area

of 1 µm2, whereas the length of the microtubule region was adjusted to be 1 µm after being divided by its

measured length. The width of the microtubule region was determined to be 187 nm, calculated from 8

subpixels, each with a size of 23.4 nm (corresponding to 117 nm pixel divided by the used magnification

of 5). Therefore, the area of the microtubule region was (measured length) µm x 0.187 µm. This was

considered and accounted for in the calculation of the SNR, ensuring a fair and equitable comparison

between different labelling conditions. For this study, it is assumed the SNR is calculated as follows.
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SNR =
Nb detections microtubule / area microtubule

Nb detections noise / area noise
=

Nb detections microtubule / (length x 0.187)
Nb detections in noise / 1

The results of the number of detections along microtubules, including their measured lengths, and the

number of detections in a squared micrometer noise area for each paired competition ratio are depicted

in Table A.1 and Table A.2.

For each paired competition ratio, the analysis included a total of 9 measurements of the number of

detections per micrometer. This was achieved by analysing 3 cells for each ratio, and within each cell,

3 microtubules were considered. However, when calculating the SNR, only 3 of these measurements

were taken into account. Specifically, the measurements were chosen from areas in the sample with

lower local microtubule density, meaning regions where fewer microtubules were present nearby. This

was done to ensure that the number of detections in the microtubule region was not influenced by the

presence of neighbouring microtubules, which could potentially introduce bias in the results.
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Table A.1: Obtained results for the labelled/ unlabelled ratios of 0.1, 0.2, 0.3, 0.4 and 0.5. For each ratio, 3 cells
were considered, and in turn, for each cell 3 microtubule (MT) and noise areas were selected. The
number of detections per microtubule and noise are shown, including the measured lengths and areas
for normalisation. The calculated mean SNR and standard deviation are presented in the right column.

Ratio Cell MT detections / length Noise detections Mean SNR ± StdDev

0.1

1
991 / 2.109 683

2.452 ± 0.148

1502 / 1.643 864
1321 / 1.791 1123

2
835 / 1.085 1762
884 / 1.228 793
489 / 1.023 961

3
898 / 1.269 1331
1025 / 0.985 1185
333 / 0.927 815

0.2

1
1867 / 1.319 707

6.323 ± 0.069

902 / 1.084 857
1401 / 1.320 2331

2
2373 / 1.370 1487
1788 / 1.432 1054
1533 / 1.019 1258

3
1079 / 1.001 806
768 / 1.143 197
1399 / 1.162 323

0.3

1
1910 / 1.511 1151

8.068 ± 0.322

2308 / 1.402 1039
3434 / 1.288 1855

2
2383 / 1.097 1446
1449 / 1.049 438
1172 / 1.557 612

3
1681 / 1.471 1519
2409 / 1.130 1740
1501 / 1.268 1991

0.4

1
2716 / 1.662 921

10.143 ± 0.663

2896 / 1.458 693
2147 / 1.456 597

2
2721 / 1.171 1258
2869 / 1.177 2002
3806 / 1.254 1469

3
3040 / 1.276 1230
2620 / 1.389 1870
2940 / 1.564 1243

0.5

1
8263 /1.795 1390

11.380 ± 0.506

5785 / 1.574 1680
7439 / 1.696 1597

2
7635 / 1.345 2580
6821 / 1.550 4810

12218 / 1.630 4304

3
4283 / 1.919 712
2279 / 1.197 955
1268 / 1.429 847
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Table A.2: Obtained results for the labelled/ unlabelled ratios of 0.6, 0.7, 0.8, 0.9 and 1.0. For each ratio, 3 cells
were considered, and in turn, for each cell 3 microtubule (MT) and noise areas were selected. The
number of detections per microtubule and noise are shown, including the measured lengths and areas
for normalisation.

Ratio Cell MT detections / length Noise detections Mean SNR +- StdDev

0.6

1
4707 /1.843 1097

11.964 ± 0.385

2367 / 1.341 580
2735 /1.434 886

2
2840 / 1.372 929
2459 / 1.435 850
3590 / 1.568 990

3
3469 / 1.456 1021
2201 / 1.134 850
2876 / 1.238 922

0.7

1
8324 / 2.115 1703

12.651 ± 0.213

4202 / 1.759 1005
5690 / 1.944 1238

2
1743 / 1.592 455
1934 / 1.485 439
2948 / 1.658 560

3
3280 / 1.249 850
4570 / 2.008 984
3847 / 1.547 842

0.8

1
4925 / 1.489 1374

13.070 ± 0.142

5910 / 1.746 1370
6023 / 1.804 1451

2
1917 / 1.664 470
2209 / 1.703 495
1993 / 1.605 341

3
4509 / 1.869 982
4203 / 1.923 1103
2980 / 1.170 879

0.9

1
3271 / 1.476 728

13.154 ± 0.476

2226 / 1.691 744
2759 / 1.738 618

2
3426 / 1.433 1017
3149 / 1.464 1126
4355 / 1.493 478

3
6298 / 1.826 1404
4376 / 1.317 1491
3376 / 1.281 1810

1.0

1
6367 / 1.672 1023

12.855 ± 0.833

9545 / 1.997 1918
7263 / 1.647 1032

2
7205 / 1.519 3571
7502 / 1.811 3830

10301 / 1.604 1509

3
4212 / 1.182 1407
6263 / 1.394 2715
9572 / 1.516 2891
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