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Abstract

This work focuses on the development of a tracked mobile robot capable of performing Simul-
taneous Localisation and Mapping (SLAM). The robot’s kinematics model was approximated by a
differential-drive one, and its odometry estimate was experimentally calibrated. There is also focus on
state estimation before SLAM by fusing odometry and inertial measurement unit (IMU) data with an
Extended Kalman Filter (EKF). Both the calibrated odometry estimate and the EKF pose estimate
are compared to motion-captured data in simple and complex trajectories. The EKF estimate is a
considerable improvement on the odometry estimate. The SLAM part of the work focuses on two
existing open-source graph-based algorithms, one for 2D mapping and the other for 3D mapping. The
performance of both SLAM algorithms is reviewed by comparing their map and trajectory estimates
with motion-captured data in a custom-made map. Both algorithms tested show more accurate
localisation estimates compared to the EKF pose estimate when performing complex trajectories. The
map obtained, although congruent with the real map geometry, showed significant noise, especially the
3D mapping algorithm, due to hardware limitations.
Keywords: SLAM, Odometry, Tracked-Drive, Extended Kalman Filter, Robotics

1. Introduction

A modern definition of a robot can be found in [1]:
”A robot is a complex mechatronic system enabled
with electronics, sensors, actuators, and software,
performing tasks with a certain degree of autonomy.
It may be pre-programmed, teleoperated, or per-
forming computations to make decisions”. Robotics
is modernly defined as the science that studies the
intelligent connection between perception and ac-
tion [2]. If the robot needs to move through its real
world environment to perform a task, then it must
be mobile. This means that the system should be
able move using its own locomotion apparatus.

The highest complexity tool for localisation es-
timation in robotics is Simultaneous Localisation
and Mapping (SLAM). The SLAM problem asks
whether it is possible for a mobile robot to be placed
at an unknown location in an unknown environment
and for the robot to incrementally build a map of
this environment while simultaneously determining
its location within this map [3].

Mobile robotics and, more specifically, SLAM
capable mobile robotics is a dynamic and ever-
growing area of research steadily gaining popularity
since the beginning of the millennium. Nowadays,
SLAM algorithms can run on inexpensive hardware.

Several publicly available data-sets1 and a myriad
of open source algorithms2 contribute to the accessi-
bility of the applicability of SLAM on any platform.
There are also plug-and-play solutions in Robotic
Operating System (ROS/ROS2) package format3

that are widely used in industry with promising re-
sults [4].

This work focuses on the construction and devel-
opment of a tracked mobile robot with SLAM capa-
bilities using either a 2D laser rangefinder or a depth
camera. The main objectives of this work are three-
fold: i) the creation of a ROS2-based tracked mobile
robot equipped with LiDAR and RGB-D sensors;
ii) the overcoming of the irregular nature of tracked
movement for state estimation before SLAM algo-
rithms; and iii) performing localisation and map-
ping with 2D and 3D SLAM algorithms.

2. Background
2.1. Differential-Drive Forward Kinematics
The pose of the robot in a plane is defined by its
state vector

ξg(t) =
[
x(t) y(t) φ(t)

]T
(1)

1https://sites.google.com/view/

awesome-slam-datasets/
2https://openslam-org.github.io/
3https://index.ros.org/search/?term=slam
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where x and y represent the robot coordinates in a
global coordinate frame (Xg , Yg). A moving frame
(Xm , Ym) is attached to the robot’s body centred
on the drive-wheels’ common axis. This informa-
tion is schematised in Figure 1.

Figure 1: Schematic of differential-drive kinematics
[5].

The relation between the global and the moving
frame is defined by the translation vector [x , y]

T

and a rotation about φ:

R (φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (2)

For the kinematics model of a wheeled mobile
robot to be applicable, one has to make the fol-
lowing assumptions: the plane of the wheels always
remains vertical, and that in all cases there is one
single point of contact between each wheel and the
ground plate; there is no sliding at this single point
of contact. There is also a need to assume that the
motion speed and friction are low enough for the dy-
namics to not affect the accuracy of the kinematics
model.
The differential-drive mechanism consists of two

drive wheels mounted on a common axis. Each of
these wheels can be independently driven forward or
backward. Usually, there is a third wheel, a castor-
wheel, or a spherical wheel, to support and balance
the chassis. This enables the differential-drive robot
to move forward or backward if both wheels spin in
accordance with the same speed, and to rotate if
both wheels spin in opposite directions or in accor-
dance with different speeds. According to [5–7] a
differential-drive robot’s linear velocity is propor-
tional to the sum of each of its drive-wheels’ linear
velocity:

v (t) =
vR (t) + vL (t)

2
(3)

where vR and vL are the linear velocities of the right
and left drive-wheels, respectively. Its rotational
velocity is proportional to the difference between
its drive-wheels’ linear velocity:

φ̇ (t) =
vR (t)− vL (t)

b
(4)

where b is the robot’s wheelbase, the distance be-
tween both drive wheels’ centre.

Since perfect friction is assumed and, therefore,
no slippage between wheels and the ground, a drive-
wheel’s linear velocity will match its tangential ve-
locity. This allows for the expression of the robot’s
linear and angular velocity of (3) and (4) in order
of each drive-wheel’s speed:

ξ̇g(t) =

cosφ (t) 0
sinφ (t) 0

0 1

[
rR/2 rL/2
rR/b −rL/b

] [
ωR (t)
ωL (t)

]
(5)

where ωi is wheel i’s rotational speed and ri its
radius.

2.2. Differential-Drive Inverse Kinematics
If there are desired moving frame linear velocity v̇c

and yaw velocity φ̇c, the necessary wheel speed in-
puts to reach them can be calculated by:

ωL (t) =
vc (t)− φ̇c (t) · b

2
rL

(6)

ωR (t) =
vc (t) + φ̇c (t) · b

2
rR

(7)

2.3. Tracked-Drive Kinematics
The kinematics of the tracked-drive can be ap-
proximately described by the differential-drive’s
kinematics. However, the no slippage condition
assumed for the differential-drive is significantly
weaker for tracked motion. The tracked-drive has
a larger contact surface between its tracks and the
ground and requires slippage to turn. The amount
of slippage between the track and the ground is also
not constant, it depends on ground contact. Odom-
etry on a tracked vehicle is much less reliable than
that of a differential-drive one.

2.4. Odometry
Odometry is the use of data from motion sensors
to estimate the change in position over time. In
the case of wheeled mobile robotics, odometry con-
sists of estimating the distance travelled by each
wheel and translating it into a robot position es-
timate. Odometry provides good short-term accu-
racy, is inexpensive, and allows for very high sam-
pling rates. However, the basic idea of integrating
incremental motion information over time leads to
error accumulation. In particular, accumulation of
orientation errors will cause the odometric position
estimation to drift from the actual robot position
proportionally to the distance travelled.

The kinematics model of (5) can be integrated
at some time t to obtain the robot pose which can
be written in discrete form using Euler’s numerical
integration approximation or Trapezoidal numeri-
cal approximation and evaluated at discrete time
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instants t = kTs , k ∈ Z+ where Ts is the sam-
pling interval between the two consecutive time-
steps. However, the practical problem that arises
from integrating the kinematics model to obtain the
robot pose estimation is its dependence on accu-
rate wheel speed values. Most applications do not
include a sensor that directly measures the speed
of the wheels. Most estimate wheel speeds from
encoder ticks by performing numerical differentia-
tion. This introduces noisy wheel speed values into
the kinematics model, which in turn will be numeri-
cally integrated to obtain a pose estimate. One way
around the problem is to take advantage of the ide-
alised geometric properties of the differential-drive
robot and derive an incremental model only reliant
on the distance travelled by each wheel between
each time-step, as illustrated in Figure 2. This
way, there is no numerical differentiation step, only
an inherent numerical integration step. Since slip-

Figure 2: Illustration of the geometric properties of
differential-drive motion.

page between the wheel and the floor is not consid-
ered, all wheel rotation is converted to robot mo-
tion. Therefore, given wheel i’s increase/decrease
in encoder ticks between time-steps ∆ni, the dis-
tance travelled can be calculated as:

∆si =
2π

N
(∆ni · ri) (8)

where N is the number of encoder ticks per wheel
revolution.
Figure 2 shows the distance travelled by each

wheel between two consecutive time-steps as arcs
for simplicity and ease of understanding. In re-
ality, the system will be running at smaller time-
steps, and the arcs will be much closer to straight
lines. Nevertheless, following Figure 2’s depiction,
the distance travelled by each wheel is an arc length;
finding the corresponding arc angle and centre arc
length is a trivial geometric matter:

∆s =
(∆sR +∆sL)

2
=

π

N
(∆nR · rR +∆nL · rL)

(9)

∆φ =
(∆sR −∆sL)

b
=

2π

N · b (∆nR · rR −∆nL · rL)
(10)

The global coordinate frame pose estimate is then
calculated incrementally:

x(k) = x(k − 1) + ∆s cos(φ(k))

y(k) = y(k − 1) + ∆s sin(φ(k))

φ(k) = φ(k − 1) + ∆φ

(11)

2.5. Odometry Calibration
The odometry model is ever as reliable as the as-
sumptions behind it. Assumptions such as no slip-
page between wheels and floor do not hold in real
applications. In reality, there will always be some
slippage. This means that some amount of wheel
revolution will not result in robot movement. The
previously determined odometry model will not be
able to discern between wheel revolutions that re-
sult in movement and those that do not. Borenstein
et al. [8] divided odometry errors into systematic
and non-systematic errors and focused most of their
work on generalised methods to reduce the effect of
both types of errors on odometric pose estimation
[9]. Their work in differential-drive odometry cali-
bration focused on two types of systematic errors:
errors due to unequal wheel diameters and errors
due to uncertainty about the wheelbase. To quan-
tify these errors, Borenstein and Feng [9] defined
two ratios. The experimental ratio between the ra-
dius of both drive-wheels (12) and the experimental
ratio between the actual wheelbase and the assumed
one (13):

Ed =
rR
rL

(12)

Eb =
bactual

b
(13)

With these ratios, (9) and (10) can be rewritten as:

∆s =
π · rL
N

(∆nR · Ed +∆nL) (14)

∆φ =
2π · rL

N · Eb · b
(∆nR · Ed −∆nL) (15)

The values of Eb and Ed can be experimentally
determined following the University of Michigan
benchmark (UMBmark), also known as the bidi-
rectional square path method [8, 9]. The method
consists of making the robot perform a square of
an arbitrary edge length LBor both clockwise and
counterclockwise and measuring where the robot
ends its trajectory. If the odometry model was
perfectly in accordance with the actual robot hard-
ware, then both the odometric estimation and the
actual trajectory followed would end at the start-
ing point. However, in real-world applications, this
will not be the case. Borenstein and Feng took ad-
vantage of the geometric properties of the intended
trajectory - a square - and the kinematics proper-
ties of the differential-drive robot to ultimately find
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an experimental methodology to determine values
for Eb and Ed as a balance between the clockwise
and counter-clockwise performance to improve the
odometry estimation.

2.6. Direct Current Motors

The term ”Direct Current Motor” (DC motor) is
used to refer to any rotary electrical machine that
converts direct current electrical energy into me-
chanical energy. The governing equations of a DC
motor can be derived from Kirchhoff’s voltage law
and Newton’s second law. Assuming that the volt-
age drop due to the inductance is negligible, the
governing differential equation of the DC motor can
be solved in order of the rotational velocity of the
motor’s output-shaft θ̇:

θ̇(t) =
a1
a2

(1− exp (−a2 · t)) (16)

where a1 =
K · V (t)−R · T

R · J
a2 =

K2 +R ·B
R · J

where J is the motor moment of inertia, K the
current-developed torque conversion factor, R the
resistor, T the static friction factor, B the viscous
friction factor and V the voltage supplied to the
motor.

2.7. Extended Kalman Filter

The Kalman Filter is an algorithm or optimal esti-
mator that assumes that the process it is estimating
is subject to perturbations and that the sensor mea-
surements on the process are corrupted by noise. It
also assumes that both the process noise and the
measurement noise can be modelled as stochastic
white noise, are independent, and that they have a
Gaussian distribution at each time step. The ”fil-
ter” part refers to the process of filtering out this
noise and optimally estimating the state at each
time-step. The filter has two steps: the prediction
and the correction steps. The prediction step es-
timates/predicts the next state and the covariance
of this estimate given the previous state and cur-
rent input. The correction step rectifies the pre-
diction given the current measurements. The algo-
rithm assumes the system to be linear; however,
most real-world systems are not. The Extended
Kalman Filter (EKF) is the modification of the orig-
inal Kalman Filter to work with non-linear systems.
Instead of working with linear dynamics and mea-
surement model functions, the EKF deals with non-
linear model functions by linearising them at each
time-step and working with their jacobians. The
equations of the first- and second-order Taylor se-
ries approximation for the EKF are deduced and
shown in [10].

2.8. Simultaneous Localisation and Mapping
The main motivation behind the SLAM problem
is the following: starting from an arbitrary initial
point, a mobile robot should be able to explore au-
tonomously the environment with its on-board sen-
sors, gain knowledge about it, interpret the scene,
build an appropriate map, and localise itself relative
to this map [6].

The localisation part of SLAM is the problem
of estimating the robot position and even its en-
tire previous trajectory given a map of the environ-
ment. The mapping part is the construction of the
map of the environment knowing the robot’s tra-
jectory. From the sensor data collected, the SLAM
algorithms should recover both the robot path and
the environment map. Sensors that acquire infor-
mation about the environment are called exterocep-
tive sensors, and sensors that collect information
about the internal state of the robot are proprio-
ceptive sensors [6]. The most commonly used exte-
roceptive sensors for SLAM are laser rangefinders,
ultrasonic sensors, and cameras. SLAM algorithms
should balance the odometric estimation calculated
from proprioceptive sensors and the flow of features
extracted from the environment from the exterocep-
tive data to converge into a more precise pose esti-
mate and a feasible environment map. However, the
problem is the fact that the sensors are subject to
noise. This means that a measurement’s informa-
tion cannot be taken as truth but as the most likely
(not taking into account outliers). This makes the
problem significantly harder to solve and requires
the adoption of a probabilistic framework for the
estimation process.

If the pose of the robot at time t is defined by xt.
The path of the robot is given as:

XT = {x0 , x1 , ... , xT } (17)

In most SLAM algorithms, it is assumed that the
initial location of the robot x0 is known. Let ut

denote the robot motion between the previous time
step t−1 and the current t. This can be propriocep-
tive sensor data or control inputs given to the sys-
tem. The sequence of relative motion of the robot
can then be written as follows:

UT = {u0 , u1 , ... , uT } (18)

Let M denote the true map of the environment:

M = {m0 , m1 , ... , mn−1} (19)

where mi , i = 0 ... n − 1 are vectors composed of
the true positions of landmarks or characteristics
extracted from the environment. Finally, assuming
that the robot takes one measurement at each time
step, the sequence of landmarks or extracted envi-
ronment features in the sensor’s reference frame can
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be denoted as:

ZT = {z0 , z1 , ... , zT } (20)

The online SLAM problem derives only the latest
robot pose, while the full SLAM problem derives the
entire sequence of robot poses [11] . With this nota-
tion, the full SLAM problem can now be described
as the estimation of the joint posterior probability
over XT and M from the data [6]:

p (XT ,M | ZT , UT ) (21)

In real applications, calculating the full posterior is
usually infeasible. This is due to the high dimen-
sionality of the continuous parameter space and the
large number of discrete correspondence variables.
Thus, practical SLAM algorithms rely on approx-
imations to deal with the correspondence problem
[11].

2.9. GraphSLAM
GraphSLAM, as its name implies, is a graph-based
SLAM algorithm. These types of algorithms at-
tempt to solve the full SLAM problem. Graph-
based SLAM is born from the intuition that the
SLAM problem can be interpreted as a sparse graph
of nodes and constraints between nodes [6]. A node
represents a robot pose. Any two nodes are con-
nected by a soft spatial constraint, an edge. ”Soft”
because it is by relaxing these constraints in a
strategic/optimal way that the most likely robot
path and the environment map can be estimated
[6]. These constraints can be motion constraints be-
tween two successive robot poses and measurement
constraints between a robot pose and a feature in
the environment. More precisely, each link in the
graph is a nonlinear quadratic constraint. The tar-
get function of the GraphSLAM is the sum of these
constraints. Minimising it produces the most likely
map and the most likely robot path [11]. Another
more physical way of interpreting the algorithm is
that graph-based SLAM represents robot poses and
map features as the nodes of an elastic net, the stiff-
ness of each spring being related with the degree of
uncertainty of the motion and measurement models
for that observation. The complete SLAM solution
can then be found by computing the minimal energy
state of this net [6].
The mathematical deduction, algorithm break-

down, and practical considerations on the Graph-
SLAM algorithm and many other SLAM algorithms
can be studied in depth in the work of Thrun et al.
[11].

2.10. ROS2 and micro-ROS
The Robot Operating System (ROS) is a set of
software libraries and tools for building robot ap-
plications. ROS2 [12] is the improved version of

ROS. It is a communication system, a framework
for building and managing dependencies, a tool for
visualisation and simulation, recording, and play-
ing data streams, and an ecosystem with hardware
drivers and libraries. It includes several open-source
libraries for navigation, control, motion planning,
vision, simulation, and any other robotics-related
area.

micro-ROS4 is the framework that bridges the
gap between larger processing units and resource-
constrained robotic applications. micro-ROS allows
for the integration of microcontrollers such as the
ESP32 and many others into ROS2-based applica-
tions. Compatible microcontrollers with their in-
tended algorithms adapted for the micro-ROS li-
brary can communicate directly with ROS/ROS2
applications either through serial or remote com-
munication by running a micro-ROS agent in the
main processing unit, which interprets the informa-
tion being relayed by the microcontroller and pub-
lishes it in ROS-message form.

2.11. Robot Localisation Package
The Robot Localisation ROS package [13] is a col-
lection of state estimation nodes, each of which is
an implementation of a nonlinear state estimator for
robots moving in 3D space. It contains two state es-
timation nodes, an EKF and an Unscented Kalman
Filter. Both state estimation nodes track the 15-
dimensional state of the robot: its linear position,
velocity, and acceleration, and its angular attitude
(roll, pitch, and yaw) and velocity.

2.12. SLAM Toolbox Package
SLAM Toolbox [4] is a set of open-source tools and
capabilities for 2D SLAM from laser scans for ROS-
based systems. Its main features are its lifelong
mapping capability, which enables the user to load a
previously saved pose-graph and continue mapping.
It offers synchronous and asynchronous modes of
mapping and kinematic map merging. Lifelong
mapping is the concept of being able to map a space,
completely or partially, and, over time, refine and
update that map with continuous interaction with
the space by strategically serialising and deserialis-
ing map information.

2.13. RTAB-Map Package
RTAB-Map (real-time appearance-based mapping)
is a RGB-D, stereo and LiDAR graph-based SLAM
approach based on an incremental appearance-
based loop closure detector. The loop closure de-
tector uses a bag-of-words approach to determinate
how likely a new image represents a new, and there-
fore unseen, scene or not. A detailed breakdown of
the RTAB-Map algorithm is presented in the work
of Labbé and Michau [14].

4https://micro.ros.org/
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3. TIR-ANT

The developed robot was named TIR-ANT from
Tracked Inspired Robot - Autonomous Navigation
Tool. The letter ”T” might also double forTraxter,
the name of the robot that donated its tracks to
TIR-ANT. The ”ANT” part of the name is com-
monplace to mobile robots developed in the Labo-
ratório de Controlo, Automação e Robótica of the
Department of Mechanical Engineering of Instituto
Superior Técnico. Access to all the developed soft-
ware, how-to-guides about TIR-ANT and media of
the robot, including videos of it functioning, are
made available in the robot’s Github repository [15].

3.1. Robot Overview

The final assembled robot can be seen in Figure 3
and its components breakdown can be consulted in
the accompanying Table 1.

(a) Top View (b) Right-side View

(c) Front View (d) Bottom View

Figure 3: The TIR-ANT. Identifier breakdown in
Table 1.

3.2. Software Integration

Figure 4 contains the schematic of the entire ROS2
framework that runs on the TIR-ANT. The entire
software codebase was developed for ROS2 Humble
Hawksbill. The operating system running on the
8GB Raspberry Pi 4B equipped with a 32GB SD-
card is Ubuntu 22.04 Jammy Jellyfish. Starting at
the low-level, the algorithm running on the ESP32
microcontroller is recognised as lowlevel node. This
algorithm is responsible for receiving wheel speed
commands and mapping them to appropriate mo-
tor commands. It is also tasked with publishing
encoder tick and IMU information at a 50Hz rate.
This mapping between wheel speed command and

Table 1: Figure 3’s accompanying table with the
components breakdown.

Identifier Component Name
1 Raspberry Pi 4B
2 USB Hub
3 Adafruit’s BNO055
4 Reflective Marker
5 Right Track
6 Right Track Mount
7 Intel RealSense D435
8 Hokuyo URG-04LX-UG01
9 Low-level On/Off Switch
10 LiPo Battery 11.1V/2200mAh
11 10A Fuse
12 25W Buck Converter
13 ESP32 DevKit-C
14 MD25 Motor Controller
15 EMG30 DC Motor

motor command is deduced from combining (16)
and the work of Gonçalves et al [16], who modelled
the EMG30 motors for simulation. Considering the
motors fast enough so that their transient response
is dispensable, leaving only its stationary response
t −→ +∞, and forcing a 1rad/s deadzone, the es-
timated mapping between wheel speed and motor
command u is:

u (t) = − 66.814 (|ωc(t)|+1.0691)
Vmax(t)

ωc (t) < −1rad/s

u (t) = 66.293 (|ωc(t)|+1.0691)
Vmax(t)

ωc (t) > 1rad/s

u (t) = 0 otherwise

(22)
where Vmax is the available battery voltage.

Communication between the low-level and the
main computing Raspberry Pi is made through
USB-serial. The micro-ROS library takes care of
the transport and synchronisation tasks. The inter-
preter between the Raspberry and the low-level is
the micro-ROS agent, which codifies and decodifies
the messages going through the serial communica-
tion appropriately.

The data streams from the RealSense camera,
the Hokuyo rangefinder and the PS3 controller
enter the ROS2 framework directly through the
realsense ros5, urg node6 and teleop twist joy7 li-
braries, respectively.

The imu interpreter node receives the BNO055’s
attitude estimate, angular velocity and accelera-
tion data and publishes it in the appropriate ROS-

5https://github.com/IntelRealSense/realsense-ros/

tree/ros2
6https://github.com/ros-drivers/urg_node/tree/

ros2-devel
7https://github.com/ros2/teleop_twist_joy/tree/

humble
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Figure 4: Schematic of developed software pipeline.

message type together with the covariance associ-
ated with the measurement.
The TIR-ANT is a tracked mobile robot. It is not

a differential-drive robot. It has much more ground
contact than a normal wheeled differential-drive.
The main approximation done in this work is to ap-
ply a differential-drive model to the TIR-ANT for
odometry and pose estimation. This model is then
calibrated using the UMBmark method proposed
by Borenstein et al. [9]. Essentially, this calibration
will find the closest differential-drive properties that
model the TIR-ANT. For the TIR-ANT’s wheel-
base, the perpendicular distance between the centre
of each side’s tracks is considered. For the supposed
radius of the drive-wheels, the distance between the
centre of the track mount and the ground was con-
sidered. The main kinematics properties measured
for the nominal differential-drive model of the TIR-
ANT can be seen in Table 2.

Table 2: Measured kinematics properties for the
TIR-ANT.

Property Value
Wheelbase b 0.225m

Approximate Wheel Radius rR , rL 0.0355m
Same Side Wheel Distance 0.15m

Track Width 0.03m

odom node takes the encoder tick data and con-
verts it into an odometric pose estimate applying
the model from (14) and (15) with the kinemat-
ics properties of Table 2 and Eb, Ed calculated ex-
perimentally. Before calibration, these values are
considered unity. It publishes this pose estimate,
together with a body frame velocity estimate, in an
appropriate ROS-message type together with the
covariance associated with these estimates.

The EKF of the robot localization8 package
then fuses the information from odom node and
imu interpreter and publishes an improved pose
estimate at a 45Hz rate.

The command interpreter node takes the de-
sired body frame velocity and rotation from the PS3
controller, applies (6) and (7) and sends the wheel
speed commands to the low-level.

For the 2D mapping SLAM algorithm
slam toolbox package9 only the laser scan data
from the Hokuyo rangefinder is necessary. These
scans are published at 10Hz. The 3D mapping
algorithm is the one from rtabmap ros package10,
requiring both the laser scan and the RealSense
camera data. Both SLAM algorithms will take the
EKF pose estimate and the exteroceptive sensors’
data to perform map building and localisation and
publish results at 5Hz.

4. Experimental Results

The experimental trials were conducted in the
Robotics Arena of the Laboratório de Controlo, Au-
tomação e Robótica of the Department of Mechan-
ical Engineering of Instituto Superior Técnico, Fig-
ure 5, which is equipped with a 3D infrared tracking
system. The motion of a body can be tracked by
associating a unique configuration of markers with
it. This motion capture system is accurate enough
(the maximum expected absolute error is 5mm) to
be used as reference. The arena’s motion capture
system was used to track the robot motion and to
determine the placement of objects when testing
mapping capabilities of the SLAM algorithms.

8https://github.com/cra-ros-pkg/robot_

localization
9https://github.com/SteveMacenski/slam_toolbox

10https://github.com/introlab/rtabmap_ros
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Figure 5: Robotics Arena of the Laboratório de
Controlo, Automação e Robótica of the Depart-
ment of Mechanical Engineering of Instituto Supe-
rior Técnico.

4.1. Low-Level Validation
The validation of the low-level control consists of
comparing the wheel speed commands sent and the
resulting wheel speed estimate using the encoder
ticks. The typical results of this comparison when
performing the square trajectory of the UMBmark
can be seen in Figure 6. The wheel speed estimation
was done through numerical differentiation, which
introduces noise. Despite this fact, it is clear that
the low-level control works as intended. The ap-
proximation made by not taking into account the
motor’s transient response indicates reasonable.
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Figure 6: Comparison between wheel speed com-
mand and estimated wheel speed obtained.

4.2. Odometry Calibration
For the calibration of the odometry, the described
UMBmark method (Section 2.4) was applied. The
robot was made to follow a square trajectory with a
1.9m side in both clockwise and counter-clockwise
directions. To ensure repeatability, the intended
path was marked on the floor of the arena - Fig-
ure 7. The robot’s trajectory was motion-captured.
Performing the UMBmark trajectory and using the
uncalibrated odometry model from (11), typical tra-
jectory estimates obtained compared to the actual
trajectory performed can be seen in Figure 8. After
several trials of the UMBmark, the experimentally
found calibration coefficients can be found in Table
3. The uncalibrated clockwise runs showed the most

Figure 7: UMBmark’s square trajectory marked on
the floor of the arena.

variance and the worst overall error when compared
to the uncalibrated counter-clockwise runs. The un-
calibrated model overestimated the amount of rota-
tion by as much as 50%. Ed < 1 means that radius
of the left wheel must be greater than the radius
of the right wheel on the model used in software to
get accurate trajectory estimation.
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Figure 8: Comparison between actual trajectory
followed and uncalibrated odometry estimation.

Table 3: UMBmark results for uncalibrated odom-
etry.

Ed Eb Emax

0.984 1.452 2.227

After applying the calibration coefficients from
Table 3 to the odometry model, the odometric
pose estimate performing the UMBmark trajectory
is now much closer to reality - Figure 9. How-
ever, there seems to be an overestimation of the
actual distance travelled. This is again due to slip-
page of the tracks on the floor. There is wasted
wheel rotation that does not result in motion. The
counter-clockwise calibrated estimation is signifi-
cantly worse than in clockwise runs. This might
be due to the tracks not being equally stretched
on assembly, which enables different ground contact
behaviour from each track.

4.3. Extended Kalman Filter Valdiation
By fusing the calibrated odometry estimate and the
robot’s IMU data, the EKF is able to improve on
the odometry estimation and maintain acceptable
accuracy in small- to medium-scale trajectories. An
example of the performance of the EKF compared
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Figure 9: Comparison between actual trajectory
followed and calibrated odometry estimation.

to the calibrated odometry on a complex trajectory
is shown in Figure 10. The EKF estimated the end
point of the trajectory about 0.4m away from the
actual end point, which is a 2% deviation in a tra-
jectory that spans roughly 20m in length.
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Figure 10: Comparison between actual trajectory
followed, calibrated odometry and EKF estimate.

4.4. SLAM Validation
For the validation of the SLAM algorithms, several
obstacles were placed in the arena and the robot
was made to explore it. The motion capture cam-
era system was used to measure the obstacle lo-
cation - Figure 11. The cameras were also used
to capture the robot’s motion for localisation per-
formance comparison. Both the slam toolbox algo-
rithm and the rtabmap ros algorithms were tested
on this map. The results for the slam toolbox can
be seen in Figure 12, the rtabmap ros results in Fig-
ures 13 and 14.
The slam toolbox algorithm works as intended;

The estimated map’s geometry is congruent with
the real geometry; Due to the noisy nature of the
rangefinder and the significant shakiness of the en-
tire robot when moving, the SLAM algorithm is un-
certain of where to fill cells that represent a simple
line, drawing ”thick” walls; The rtabmap ros algo-
rithm works not as well as the slam toolbox one;
The generated maps are considerably noisy. De-
spite the main geometric properties of the true map
still being present, there is wrong geometry; The

(a) Map
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Figure 11: Map built and its 2D representation.
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Figure 12: Comparison between motion-captured
data and the slam toolbox estimate.
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Figure 13: Comparison between motion-captured
data and the rtabmap ros estimate.

Figure 14: rtabmap ros map estimate.

shaking during the tracked motion seems to dam-
age camera performance. Sensor data had already
been significantly downgraded to allow fast process-
ing which works together with the shaking motion
to disturb the loop closure and data association of
the algorithm.

5. Conclusions
All the objectives described in Section 1 were
achieved. A functional robot equipped with LiDAR
and depth camera sensors was built and developed.
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This robot is capable of localising itself from its pro-
prioceptive sensors alone with acceptable accuracy.
An EKF was successfully applied to the platform,
which enables the robot to estimate its position
accurately in small- to medium-sized trajectories.
The robot is also SLAM capable. This means that
it is capable of generating 2D or 3D map estimates
- depending on the chosen algorithm - of its un-
known environment. The implemented 2D SLAM
algorithm works robustly and estimates 2D maps
accurately. The 3D SLAM algorithm implemented
does not work as well as the 2D algorithm and es-
timates noisy maps. However, the environment’s
main geometry is still present in these maps and,
as such, for localisation purposes, both algorithms
perform acceptably.
The developed robotic platform is proven robust,

having travelled roughly 1.5km in recorded experi-
mental trials and having recorded more than 100GB
of data during these trials.
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