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Resumo

A precificação de derivados financeiros é usada por investidores com o objetivo de aumentar os re-
tornos esperados e minimizar o risco associado a um investimento. As opções, em particular, oferecem
benefícios como risco limitado e alavancagem, sendo alvo de muita pesquisa no sentido de desenvolver
modelos que prevejam o preço correto das opções.

O modelo de precificação de opções mais celebrado é o modelo de Black-Scholes, mas sendo re-
duzido à equação do calor, usa algumas hipóteses restritivas, levando a precificações erradas. Assim,
desenvolveram-se extensões do modelo de Black-Scholes, com variação da volatilidade e da taxa de juro.
Nesta tese, revendo a abordagem clássica, com esquemas de diferenças finitas para a equação do calor, apli-
camos depois métodos numéricos para equações diferenciais estocásticas - esquemas de Euler-Maruyama
e Milstein, implementados em simulações de Monte Carlo, que serão o principal foco desta tese.

Começamos por considerar modelos de preços dos ativos em que a volatilidade e a taxa de juro são
coeficientes que dependem do tempo e de seguida consideramos também coeficientes que dependem do
preço do ativo. Verificando-se condições suficientes nos coeficientes, as aproximações numéricas vão con-
vergir no sentido fraco e forte, para o preço das opções europeias. Finalmente, implementamos o modelo
de Heston com volatilidade estocástica, para o qual também obteremos boas taxas de convergência.

Palavras-chave: EDE’s, Euler-Maruyama, Milstein, modelo de Black-Scholes, Monte Carlo, difer-
enças finitas
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Abstract

The pricing of financial derivatives is used to help investors to increase the expected returns and
minimise the risk associated with an investment. Options, in particular, offer benefits such as limited
risk and leverage and for this reason much research has been dedicated to the development of models
that accurately price options. The most celebrated model for option pricing is the Black-Scholes model,
however when reduced to the heat equation, the simplified assumptions lead to the mispricing of options.
Thus, extensions of this model have been developed, that consider a variation of the volatility and of the
interest rate. In this work, we review the classical approach using finite difference schemes for the heat
equation, and then we apply numerical schemes for stochastic differential equations - Euler-Maruyama
and Milstein schemes, using Monte Carlo simulations, which will be the main focus of this thesis.

We start by considering asset models where the volatility and the interest rate are time-dependent
coefficients and then extend these models to coefficients that also depend on the price of the underlying
asset. We will see that as long as sufficient conditions on the coefficients are satisfied, the numerical
approximations will converge in weak and strong sense, to the price of European call options. We
conclude with an implementation of the Heston model for stochastic volatility, showing that will also
present good convergence rates.

Keywords: SDE’s, Euler-Maruyama, Milstein, Black-Scholes model, Monte Carlo, finite differences
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Chapter 1

Introduction

First published by Fischer Black and Myron Scholes in 1973 [4], and developed further by Robert
Merton in the same year [25], the Black-Scholes model remains one of the most widely used models in
option pricing. The Black-Scholes model gives the theoretical value for European call and put options.

Despite its wide use, it relies on several assumptions on the market whose correctness is question-
able. The most delicate of these assumptions is that the stock returns follow a normal distribution with
constant volatility. Empirical studies (see for instance[24], [28]) show that the distribution of the stock
returns have high peeks and longer tails than those of the normal distribution and that volatility is usually
negatively correlated to the price of the underlying stock, tending to increase when asset prices decrease.
In order to overcome these restrictions, several extensions to the Black-Scholes model have been proposed
since.

A popular approach to account for the fact that volatility changes over time is to consider that its
behaviour follows a stochastic process itself. The most celebrated model for stochastic volatility is Hes-
ton’s (1993) [15], however this was not the first stochastic volatility model to be applied in the pricing of
options. Before Heston’s model there were other important works such as the Hull and White model in
1987 [18], Scott [31] or Wiggins [33].

In 1976, Merton was the first to apply a jump-diffusion in option pricing [26] to approximate the
movement of stock prices subject to occasional discontinuous breaks, which addresses the issue of "long
tails". In 2002 Kou [23] proposed a jump-diffusion model with a double exponential distribution which
makes it possible to obtain analytical solutions for many path-dependent options.

Models that relax the assumption of constant interest rate have also been subject of analysis. In 1977,
Vasicek’s model [32] was the first to consider interest rates as mean reverting processes and later Hull
and White [19] extended this model by introducing time-dependent parameters.

For most of these models there is not an analytical solution available and when there is, the formulas
often exhibit integrals that become intractable or are just complicated and difficult to evaluate without
resorting to numerical methods to find the price of the derivatives.

Finite difference methods are a popular approach in option pricing due to their easy implementation
and flexibility. They work by replacing the continuous derivatives in the partial differential equation by
finite differences. They were first used to compute numerical solutions for options by Schwartz [30] in
1987, and further developed by Courtadon [8] in 2002, who proposed a more accurate approximation.
Finite difference methods are specially suitable for low dimension problems, where the payoff depends on
a single underlying asset, such as the one dimensional Black-Scholes model and for the pricing of simple
path-dependent options or early exercise options, like American options. However, the pricing of more
complex path dependent options, multi-dimensional models or models with more complicated features,
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such as time-dependent parameters, is better handled by Monte Carlo simulations.
The Monte Carlo method was first used in the pricing of European options by Boyle [6]. The essence

of this method is to simulate the stochastic differential equation that describes the behaviour of the un-
derlying asset to generate paths for the asset price, compute the payoff of each random path, average the
payoffs and then discount them back to the present. The concept behind this rationale is that, according
to the law of large numbers, the average over a large enough number of samples approximately equals
their mean. One of its main disadvantages is its computational inefficiency when compared to other
numerical methods, as it requires many sample paths to produce accurate results.

In this thesis we study numerical methods to approximate the value of options in extensions of the
Black-Scholes model with time-dependent parameters. We will start by studying the classical Black-
Scholes model and approximate de Black-Scholes PDE with finite difference schemes. Next we follow
Higham [16] and consider numerical methods for SDE’s, in particular the Euler-Maruyama and Milstein
methods, which we will implement using Monte Carlo simulations. For these simulations we will start with
the classical Black-Scholes asset model and later relax the assumption of constant volatility and interest
rate and assume that the underlying asset follows a geometric Brownian motion with time-dependent
coefficients. Finally we will assume stochastic volatility and simulate the Heston model.

More specifically, this work is organised as follows: Chapter 2 starts with the concept of option as
a special case of a financial derivative. It then provides some background on probability theory and
stochastic calculus and introduces the asset model which the Black-Scholes model uses.

In chapter 3 we will look at the classical Black-Scholes model, including the derivation of the Black-
Scholes equation, its transformation into the heat equation and the derivation of an exact solution. We
also provide some insight on the limitations of this model. The chapter concludes with some extensions
to the classical Black-Scholes model that attempt to overcome some of its restrictions.

In chapter 4 we will look at how to solve the Black-Scholes equation using a finite difference approach
by transforming the Black Scholes PDE into the heat equation. We will discuss three different finite
differences schemes and provide the respective algorithms. We close the chapter with a brief discussion
on the restrictions of these methods.

Chapter 5 discusses numerical methods to approximate stochastic differential equations. We will look
at two different discretisation schemes and how to implement them in Monte Carlo simulations. Some
theory about convergence, consistency and stability of the methods will be provided as well.

Chapter 6 shows the results of the implementation of the algorithms described in the two previous
chapters.

Chapter 7 closes this thesis with a summary of the results obtained in the numerical experiments and
gives a brief overview of topics of interest that are out of the scope of this work.

2



Chapter 2

Stochastic differential equations and

asset pricing

2.1 Financial derivatives

As the name suggests, financial derivatives are contracts whose value is derived from the value of one
or several underlying entities. These entities can be assets (cash, bonds, equity, indexes, commodities,
interest rates and exchange rates) or events such as a corporation default, a natural disaster or even
the weather. These contracts agree on the transaction of a specified amount of assets or cash flows at
a previously agreed price or pricing procedure, at a specific date or dates or during specific periods of
time or events. Financial derivatives are used for several purposes including risk management, hedging,
speculation, arbitrage and access to assets or markets that are hard to trade. In this work we will focus on
options (specifically European plain vanilla options), although other common derivatives such as futures
and swaps are also common.

2.1.1 Options

An option is a contract that gives its holder the right, but not the obligation, to buy or sell the
underlying asset S at an agreed price, the strike price K, at a specified time or during a specified
period of time. The time until the expiration date is called the time-to-maturity. The main thing that
distinguishes options from other financial derivatives is that the holder has no obligation of exercising
the option.

Options exist mainly in two forms: call options and put options. A call option gives its holder the
right to buy the underlying asset at a certain price within a specific period of time. A put option gives
the holder the right to sell the underlying asset at a certain price within a specific period of time. We
may have two kinds of positions in an option: a long position or a short position. Long positions are
those that are owned and short positions are those that are owed. Therefore a long call gives the holder
the right to buy whereas a short call gives the seller (or writer) the obligation to sell if the option is
exercised. On the other hand, a long put gives the holder right to sell whereas a short put gives the
writer the obligation to buy the option in case it is exercised.

There are several types of options but the two most commonly traded are American and European
options. American options can be exercised at any time during the specified period of time that goes
from the date of purchase to the expiration of the contract. In the mean time the holder can also choose
between keeping the option and selling it. European options are more restrictive regarding the exercise
date as they can only be exercised at the maturity. But in the mean time the holder can also choose to
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keep the option or to sell it.
The type of options we have described in this section are the simplest, most standard version of options

and are known as vanilla options or plain vanilla options, in analogy with the ice cream flavour vanilla,
which is one of the most common flavours. In short, this term can be used to describe any standard
option.

European Options

In this work we will restrict our attention to European options. We have seen that these options can
only be exercised at the maturity, which means that the value of the option at expiration only depends
on the price of the underlying asset at that date. This is why European options are easier to value than
American options. The value of the option at maturity is called payoff.

For a European call the payoff function is given by

h(S
T

) = max{S
T

�K, 0} (2.1)

where h denotes the payoff of the option, S
T

the stock price at the maturity and K the strike price.
This means that if the price of the underlying asset is higher than the strike price of the option the holder
of the option can make a profit of S �K > 0, therefore he will exercise the option. In this situation we
say that the option is in-the-money. On the other hand, if the price of the underlying asset is below the
strike price it means that the option would be worthless, as the holder would have to pay more than the
market price to exercise the option. Therefore the holder would let the option expire without exercising
it and its payoff would be zero. In this case the option is said to be out-of-the-money. Finally, if the
price of the underlying asset equals the strike price of the option it would not make a difference whether
or not the holder exercises the option and the option is said to be at-the-money.

For a European put the payoff function is given by

h(S
T

) = max{K � S
T

, 0} (2.2)

In this case, if the price of the underlying asset is higher than the strike price of the option, it would
be useless for the holder to exercise the option, as he would be selling the underlying asset at lower price
than the market price. If, however, the price of the underlying asset is below the strike price, the holder
could make a profit of K�S > 0, as he would be selling the underlying asset at a price above the market
price. Again, if the price of the underlying asset and the strike price are equal, it makes no difference
what the holder decides.

2.1.2 Option value

There are several concepts which are crucial to value an option. The first is related with the time
value of money, the idea that a given amount of money available in the present time is more valuable
than the same amount available in future dates due to its potential earning capacity. If money can earn
interest, any amount of money is worth more the sooner it is received, as it can be invested into more
money in future instants.

The second is related with no arbitrage, the concept that assets must be appropriately priced and thus
if a portfolio of assets can be replicated with another portfolio of assets with the same cash flows under
all scenarios, the two portfolios must have the same price. In practice, if two portfolios of assets with
the same value have different prices, the portfolio with the lowest price can be bought and the portfolio
with the highest price can be sold, until both portfolios trade at the same price in the market. As a
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consequence and in the presence of no arbitrage, investors cannot earn risk-free returns without taking
risk.

An illustrative example is an important relationship in finance: the put-call parity that defines the
relationship between the prices of a European call and a European put with the same underlying asset,
strike price and maturity. Indeed, when a European call and a European put share the same underlying
asset, strike price and maturity, the payoffs at maturity of a portfolio A composed by a European call and
a bond with the value of the strike price and portfolio B, composed by a European put and the underlying
stock are the same, that is, C

T

+K = P
T

+ S
T

, Max(S
T

�K, 0) +K = Max(K � S
T

, 0) + S
T

.
As European options cannot be exercised before maturity, the time independent value of both port-

folios must be equal to the discounted value of both portfolios or:

C
t

+Ke�r(T�t)
= P

t

+ S
t

(2.3)

when r, the bond interest rate is assumed constant. Equation (2.3) is called Put-Call-Parity.

We have already discussed some important concepts to value an option, and in the previous section
we had already seen the value of an option at the maturity. But the real goal when valuing an option is
to know its price at the present time, and therefore choosing what rate to use to discount the value to
the present, is an important task. The challenge that this poses has to do with the fact that different
investors have different sensibilities to the risk. This would lead to different discount rates, which would
account for each investor’s preferences but unfortunately these are very hard to quantify. However, it
is possible to derive arguments to overcome this. In this work we will look at two different approaches
for pricing an option, which are equivalent. The first is based on the replication of the underlying asset,
and we will look into it when we derive the classical Black-Scholes equation. The other uses risk neutral
probabilities, which we will discuss when we introduce the Monte Carlo method.

2.2 Stochastic essentials

2.2.1 Basic concepts

In this section we will define some important basic concepts of probability and stochastic calculus.
The following definitions are based on the works [27] and [3].

Definition 2.2.1. (&-field). A &-field F (on ⌦) is a collection of subsets of ⌦ satisfying the following
conditions:

• It is not empty: ; 2 F and ⌦ 2 F

• If A 2 F then Ac 2 F

• If A1, A2, ... 2 F , then [1
i=1Ai

2 F and \1
i=1Ai

2 F .

Definition 2.2.2. (Probability measure). A function that assigns a number P (A) to each set A in the
&-field F is called a probability measure on F , provided that the following conditions are satisfied:

• P (A) � 0, for every A 2 F

• P (⌦) = 1

• If A1, A2, ... are disjoint sets in F then P (A1 [A2 [ ...) = P (A1) + P (A2) + ...

Definition 2.2.3. (Probability space). A probability space is a triplet (⌦,F ,P) where: ⌦ is a set, F is
a &-field of subsets of ⌦, and P is a probability measure on F .
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Definition 2.2.4. (Random variable). A random variable on the probability space (⌦,F , P ) is a real-
valued fuction X such that for all real a and b, the sets {! : a  X(!)  b} are in F .

Definition 2.2.5. (Probability distribution function). The collection of probabilities

F
X

(x) = P (X  x) = P ({! : X(!)  x}), x 2 R = (�1,1)

is the probability distribution function F
X

of X.
Most continuous distributions of interest have a density f

X

:

F
X

(x) =

Z
x

�1
f
X

(y)dy, x 2 R (2.4)

where f
X

(x) � 0 for every x 2 R and
R1
�1 f

X

(y)dy = 1

Definition 2.2.6. (Expectation, variance and moment). The expectation of a random variable X with
density f

X

is given by

µ = E[X] =

Z 1

�1
xf

X

(x)dx (2.5)

The variance of X is defined as

�2
= var(X) = E[(X � µ)2] =

Z 1

�1
(x� µ)2f

X

(x)dx (2.6)

The k-th central moment of X (k > 0) is defined as

E
⇥
(X � µ)k

⇤
=

Z 1

�1
(x� µ)kf

X

(x)dx (2.7)

Definition 2.2.7. (Skewness and kurtosis). The skewness of X is the third standardised central moment
of X

skew(X) = E

"✓
X � µ

�

◆3
#
=

Z 1

�1

(x� µ)3

�3
f
X

(x)dx (2.8)

The kurtosis of X is the fourth standardised central moment of X

kurt(X) = E

"✓
X � µ

�

◆4
#
=

Z 1

�1

(x� µ)4

�4
f
X

(x)dx (2.9)

Definition 2.2.8. (Stochastic process). A stochastic process X is a collection of random variables
(X

t

, t 2 T ) = (X
t

(!), t 2 T,! 2 ⌦), defined on ⌦ and T is an interval if X is accontinuous-time and a
finite coutable set if X is a discrete-time process.
A stochastic process is a function of two variables. For a fixed instant of time t, it is a random variable:
X

t

= X
t

(!), ! 2 ⌦. For a fixed outcome ! 2 ⌦, it is a function of time: X
t

= X
t

(!), t 2 T . This
function is called a sample path of the process X.

Definition 2.2.9. (Conditional expectation). A random variable Z is called the conditional expectation
of X given the &-field F (we write Z = E (X|F)) if

• Z does not contain more information than that contained in F : &(Z) ⇢ F

• Z satisfies the relation E(XI
A

) = E(ZI
A

) for all A 2 F

Definition 2.2.10. (Brownian motion). A stochastic process W = (W
t

, t 2 [0,1]) is called a Brownian
motion or a Wiener process if the following conditions are satisfied:
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1. It starts at zero: W0 = 0 with probability 1

2. it has independent and stationary increments (see [[27], pp. 30] for the definition)

3. W
t

�W
s

⇠ N (0, t� s), for 0  s  t

4. it has continuous sample paths: "no jumps".

Figure 2.1: Discretised Brownian path

Definition 2.2.11. (Geometric Brownian motion). A stochastic process X
t

is said to follow a geometric
Brownian motion if it satisfies the following stochastic differential equation1

dX
t

= µX
t

dt+ �X
t

dW
t

(2.10)

where µ and � are constants and W
t

is a Brownian motion. The coefficients µX
t

and �X
t

are called the
drift and diffusion coefficients, respectively.

Theorem 2.2.1. (Strong law of large numbers). Let R1, R2, ... be independent random variables on a
given probability space. Assume uniformly bounded fourth central moments, that is, for some positive
real number M , E[|R

i

� E(R
i

)|4]  M , for all i. Let S
n

= R1 + ...+R
n

. Then2

S
n

� E(S
n

)

n

a.s.��! 0 as n ! 1

In particular, if E(R
i

) = m for all i, then E(S
n

) = nm; hence

S
n

n

a.s.��! m

Theorem 2.2.2. (Central limit theorem). For each n, let R1, R2, ..., Rn

be independent random variables
on a given probability space. Assume that the R

i

all have the same density function f with finite mean
m and and finite variance �2 > 0, and finite third moment as well. Let S

n

= R1 + ...+R
n

and

T
n

=

S
n

� E(S
n

)

�(S
n

)

(where �(S
n

) is the standard deviation of S
n

) so that T
n

has mean 0 and variance 1. Then T1, T2, ...

converge in distribution to a random variable that is normal with mean 0 and variance 1.
1
The definition of stochastic differential equation is introduced in the next section

2
a.s. stands for almost surely
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Definition 2.2.12. (Filtration). Let (F
t

, t � 0) be a collection of &-fields on ⌦. (F
t

, t � 0) is called a
filtration if F

s

⇢ F
t

for all 0  s  t.

Definition 2.2.13. (Adapted process). The stochastic process {Y
t

, t � 0} is said to be adapted to the
filtration (F

t

, t � 0) if &(X
t

) ⇢ F
t

for all t � 0.

Definition 2.2.14. (Martingale). A stochastic process (X
t

, t � 0) is called a continuous-time martingale
with respect to the filtration (F

t

, t � 0), if

1. E|X
t

| < 1, for all t � 0

2. X is adapted to (F
t

)

3. E(X
t

|F
s

) = X
s

for all 0  s < t

The following definition is based on [21].

Definition 2.2.15. (Risk neutral measure). Given a probability space (⌦,F ,P), with filtration {F
t

, t =

0, 1, ..., T}, a probability measure Q is said to be risk neutral if

1. Q is equivalent to P, that is, P(A) > 0 if and only if Q(A) > 0, 8A 2 F
t

2. The price of every security in the market (using the risk free rate as numeraire) is a martingale
with respect to probability measure Q

2.2.2 Stochastic integration

In order to understand Stochastic differential equations we must first introduce the notion of Ito
integral. This is important because in this work we will define the SDE’s in terms of this integral,
altough they can also be defined using Stratonovich integral (see remark 2.2.3).

Consider the following integral with respect to the Brownian motion W
s

I(X) =

Z
T

0
X(s)dW

s

(2.11)

where X(s) is a function or a stochastic process defined on [0, T ].

We have seen that the sample paths of a Brownian motion are continuous but almost surely nowhere
differentiable, which means that the integral defined in (2.11) cannot be a Riemann or Lebesgue integral
because there is no process W 0

t

=

dWt

dt

. Moreover, as the sample paths are not of bounded variation3 it
cannot be interpreted as a Riemann–Stieltjes integral either. Althout we cannot define the integral (2.11)
on a path-by-path basis in the Riemann-Stieltjes sense we can definite it as the limit of a sequence of
Riemann-Stieltjes sums. This leads us to concept of Itô integral.

Definition 2.2.16. (Itô’s integral). Let X be a stochastic process locally square-integrable, i.e.
R
T

0 E[X2
t

]dt < 1 and adapted to the filtration generated by the Brownian motion W
t

in [0, T ]. If
0 = t0 < ... < t

n

= T is a partition of the interval [0, T ], the Itô integral can be defined as

Z
T

0
X

t

dW
t

= lim

n!1

nX

i=1

X
t

i�1(Wt

i

�W
t

i�1) (2.12)

3
Note that a deterministic function f is of bounded variation if it can be expressed as the difference between two

non-decreasing functions, i.e. sup⌧ =
Pn

i=1 |f(ti)� f(ti�1)| < 1
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The idea behind this definition is that by requiring X
t

to be an adapted process, at time t X only
depends on information up to that instant. Because of this the Itô integral must always be evaluated at
the left end point of the interval, while in Riemann integrals one can choose from any point of the interval.

Remark 2.2.3. It is also possible to use another definition of stochastic integral, introduced by Stratonovich
(see [27]). The definition can be found in appendix A. However, in this work we will only consider the
Itô integral definition as it is more intuitive from a financial point of view. As we will see in the next
chapter, the Black-Scholes model assumes that there are no arbitrage opportunities and this property is
satisfied as the Itô integral is a martingale.

Now that we have introduced the Itô integral we can introduce the stochastic chain rule, which is very
useful to derive solutions of SDE’s. The following lemma can be found in [5].

Lemma 2.2.4. (Itô’s lemma. Univariate case). If X(t) is a stochastic process that satisfies dX
t

=

µ(t,X
t

)dt+ �(t,X
t

)dW
t

and f 2 C2, then Y (t) = f(X(t)) is also a stochastic process that satisfies

df(t,X
t

) =

✓
@f

@t
+ µ(t,X

t

)

@f

@X
+

1

2

�2
(t,X

t

)

@2f

@X2

◆
dt+ �(t,X

t

)

@f

@X
dW (2.13)

where all the partial derivatives of f are evaluated at (t,X
t

).

2.2.3 Stochastic differential equations

Stochastic differential equations are differential equations that have at least one term that is a
stochastic process. If we consider an ordinary differential equation

dX(t)

dt
= a(t,X(t)), X(0) = X0 (2.14)

the easiest way to introduce randomness is to consider the initial codition as a random process.
Then the solution of equation (2.14) would become a stochastic process (X

t

, t 2 [0, T ]). These types of
equations are called random differential equations and can be solved as deterministic differential equations.
However, we are interested in another way of introducing randomness in equation (2.14). This is achieved
by adding a random noise term. Equation (2.14) then becomes

dX(t,!) = a(t,X(t,!))dt+ b(t,X(t,!))dW (t), X(0,!) = X0 (2.15)

where ! denotes that X = X(t,!) is a random variable, a and b are deterministic functions and
W = (W

t

, t � 0) is a Brownian motion. Therefore the randomness of the solution X is due both to the
randomness in the initial condition and the Brownian motion. From now on we will drop the ! from the
notation and will write equation (2.15) as

dX
t

= a(t,X
t

)dt+ b(t,X
t

)dW
t

, X(0) = X0 (2.16)

Equation (2.16) is the differential form of the equation

X
t

= X0 +

Z
t

0
a(s,X

s

)ds+

Z
t

0
b(s,X

s

)dW
s

, 0  t  T (2.17)

where the first integral on the right-hand side is a Riemann integral, and the second one is an Itô
stochastic integral.
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There are two main types of solutions to a SDE, weak and strong solutions. In this work we will focus
on the second type and provide a theorem for the existence and uniqueness of a strong solution to a SDE,
which can be found in Kloeden and Platen [22].

Theorem 2.2.5. (Existence and uniqueness). Let a and b be two functions defined on Rn ⇥ [t0, T ] that
satisfy the following conditions

1. (Measurability): a = a(t, x) and b = b(t, x) are jointly L2-measurable in (t, x) 2 [t0, T ]⇥ R

2. (Lipschitz condition): There exists a constant K > 0 such that |a(t, x) � a(t, y)|  K|x � y| and
|b(t, x)� b(t, y)|  K|x� y|, for all t 2 [t0, T ] and x, y 2 R

3. (Linear growth bound): There exists a constant K > 0 such that |a(t, x)2|  K2
(1 + |x|2) and

|b(t, x)2|  K2
(1 + |x|2), for all t 2 [t0, T ] and x, y 2 R

4. (Initial condition): X
t0 is F-measurable with E

�
|X

t0 |2
�
< 1

Then the stochastic differential equation (2.16) has a pathwise unique strong solution X
t

on [t0, T ] with

sup

t0tT

E
�
|X

t

t

|2
�
< 1

.

2.3 Asset price model

In this section we will look at the stochastic differential equation that describes the price movement
of an asset that is based on a Brownian motion. The asset price is the price of the underlying stock. We
will consider the model suggested by Samuelson and later used by Black and Scholes. In this model the
stock price S

t

evolves according to the stochastic differential equation:

dS
t

= µS
t

dt+ �S
t

dW
t

(2.18)

which is called a geometric Brownian motion and where µ is the constant expected return on the
stock, and � > 0 is the constant volatility of the stock.

Usually instead of the stock price itself we consider the stock return, which can be defined as the
change in the price divided by the stock original value, i.e. dS

S

. Equation (2.18) can be written in terms
of the stock return as:

dS
t

S
t

= µdt+ �dW
t

(2.19)

Figure 2.2 shows a sample path of a geometric Brownian motion over [0, 1] with N = 5000 and time
step �t = 1

N

described by equation (2.22).
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Figure 2.2: A sample path of a geometric Brownian Motion defined by the stochastic differential
equation (2.22) with S0 = 50, µ = 0.02 and � = 0.25

The idea behind this model is that there are two parts responsible for the evolution of the stock
return. One is a deterministic component that contributes µdt in time dt. The other accounts for the
random changes in the asset prices which is the component �dW

t

.

It is possible to derive an explicit solution to equation (2.19). We compute d logS
t

by applying lemma
2.2.4. with f(t, S) = logS, µ(t, S) = µS and �(t, S) = �S:

d logS
t

=

✓
µ� 1

2

�2

◆
dt+ �dW

t

(2.20)

Integrating with respect to t yields

logS
t

� logS0 =

✓
µ� 1

2

�2

◆
t+ �W

t

(2.21)

The stock price is then given explicitly by

S
t

= S0e
(

µ� 1
2�

2
)

t+�W

t (2.22)

which means that the return has a lognormal distribution or the logarithm of return has a normal
distribution

log

✓
S
t

S0

◆
⇠ N

✓
µ� 1

2

�2

◆
t,�2t

�
(2.23)
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Chapter 3

Black-Scholes model

The Black-Scholes model is one of the most popular models for pricing European call and put options.
In this chapter we will look at this model in its original formulation, key assumptions, limitations and
extensions.

3.1 Classic Black-Scholes equation

The Black-Scholes equation was first introduced by Fischer Black and Myron Scholes in the early
1970’s and describes the price evolution of financial instruments such as stocks, which can be used to
determine the price of European call and put options.

3.1.1 Assumptions

In order to derive the Black-Scholes equation we first have to look at some assumptions:

1. The price of the underlying asset follows a lognormal distribution, with a constant expected return
and volatility, which arises from equation (2.18)

2. Short-selling is possible

3. There are no transaction costs regarding the purchase or selling of the underlying asset or the option

4. The underlying asset pays no dividend.

5. There are no riskless arbitrage opportunities

6. Trading of the underlying stock is continuous

7. The risk-free interest rate is constant during the entire period

3.1.2 Derivation of the Black-Scholes equation

We start by considering the classical Black-Scholes formulation as described for instance in Hull [17].
The following notation concerns the Black-Scholes model with constant parameters:
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Table 3.1: Notation for the classical Black Scholes model

S
t

stock price at time t
µ expected return of the stock
� stock’s volatility
W Brownian motion
r risk free rate
K strike price

For this derivation we follow the steps in [13] using the approach based on the concept of delta
hedging, that is, on the idea of eliminating (or reducing) a portfolio’s exposure to the price of an underling
asset. Before deriving the equation we will first see the argument behind the Black-Scholes equation. In
order to do this there are some important financial concepts we must first introduce.

In [13] a portfolio is defined as a pair (a
t

, b
t

) of adapted processes specifying the number of units held
at time t of the underlying asset and the riskless bond, respectively. Furthermore, if we let B

t

be the
value of the bond at time t and S

t

be the value of the stock at time t, the value of the portfolio at time
t is

⇧

t

= a
t

S
t

+ b
t

B
t

(3.1)

Now, if we construct the portfolio such that its value at the maturity almost surely equals the payoff
h(S

T

) of the derivative
a
T

S
T

+ b
T

B
T

= h(S
T

) (3.2)

the portfolio is said to be a replicating portfolio, because it replicates the value of the derivative at time
T .

Moreover, we can say that a portfolio is a self-financing portfolio if its changes in value are due only to
changes in stock and bond prices. This means that there are no cash flows coming in or out, for example
in order to buy more units of stock we would have to sell bonds to pay for it. In differential form this is
expressed as

d⇧
t

= a
t

dS
t

+ b
t

dB
t

(3.3)

Having been through the essential financial concepts we can now derive the Black-Scholes equation.
The goal is to find a self-financing portfolio (a

t

, b
t

) that replicates the payoff of a derivative in order to
hedge the risk. Here our derivative is a European option with payoff function h(S

t

). At this point it is
not necessary to specify whether it is a call or a put option. We will denote the price of the option by
V (S

t

, t). Despite not knowing if it is even possible to find such a function V (S
t

, t) we will assume that the
second order derivative of V with respect to S and the first order derivative of V with respect to t must
be continuous in the domain D

V

= {(S, t) : S � 0, 0  t  T}, so that we can apply the Itô lemma.
Furthermore, in order to eliminate the possibility of arbitrage opportunities we must require that

a
T

S
T

+ b
T

B
T

= V (S
t

, t) (3.4)

holds for all 0  t  T .
Assume now that the portfolio consists of N

t

short positions of the option, with price V (S
t

, t), which
we will simply denote by V

t

, and a
t

units of the underlying stock. The change in the value of the portfolio
is then a

t

dS
t

�N
t

dV
t

. In order for the portfolio to be riskless, its change must be equal to the change in

13



a riskless asset, that is

a
t

dS
t

�N
t

dV
t

= r(a
t

S
t

�N
t

V
t

)dt (3.5)

Recall that the Black-Scholes model assumes that the price of the underlying stock follows a geometric
Brownian motion like (2.18). Since V (S

t

, t) is a function of S
t

we can apply lemma 2.2.4, Itô’s lemma,
with Y (t) = V (S

t

, t), to find the value of dV in terms of r and �. This yields

dV =

✓
@V

@t
+ rS

@V

@S
+

�2

2

S2 @
2V

@S2

◆
dt+ �S

@V

@S
dW (3.6)

where r and � are constant parameters and W is a Wiener process.
Substituting equations (3.6) and (2.18) into equation (3.5) we get

a
t

(µS
t

dt+ �S
t

dW
t

)�N
t

✓
@V

@t
+ µS

t

@V

@S
+

1

2

�2S2
t

@2V

@S2

◆
dt+ �S

t

@V

@S
dW

t

�
=

= r(a
t

S
t

�N
t

V
t

)dt

(3.7)

Since we want the portfolio to be riskless, the terms containing dW
t

must vanish from the equation.

Proposition 1. Setting the coefficients of dW
t

to zero yields

a
t

= N
t

@V

@S
(3.8)

and
a
t

S
t

(µ� r) + rN
t

V
t

= N
t

✓
@V

@t
+ µS

t

@V

@S
+

1

2

�2S2
t

@2V

@S2

◆
(3.9)

Proof. Regarding (3.8), we set

a
t

�S
t

dW
t

�N
t

�S
t

@V

@S
dW

t

= 0

Rearranging

a
t

�S
t

dW
t

= N
t

�S
t

@V

@S
dW

t

Dividing by �S
t

dW
t

leads to (3.8).
Regarding (3.9), when the dW

t

terms are eliminated we get

a
t

µS
t

dt�N
t

✓
@V

@t
+ µS

t

@V

@S
+

1

2

�2S2
t

@2V

@S2

◆
dt = ra

t

S
t

dt� rN
t

V
t

dt

Dividing by dt and rearranging we get equation (3.9).

Proposition 2. Substituting equation (3.8) into equation (3.9) we obtain the Black-Scholes PDE

@V

@t
+ rS

@V

@S
+

1

2

�2S2 @
2V

@S2
� rV = 0 (3.10)

Proof.

N
t

@V

@S
S
t

(µ� r) + rN
t

V
t

= N
t

✓
@V

@t
+ µS

t

@V

@S
+

1

2

�2S2
t

@2V

@S2

◆
, (3.11)

N
t

µS
t

@V

@S
�N

t

rS
t

@V

@S
+ rN

t

V
t

�N
t

µS
t

@V

@S
= N

t

✓
@V

@t
+

1

2

�2S2
t

@2V

@S2

◆
(3.12)
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Dividing by N
t

and rearranging gives

µS
t

@V

@S
� µS

t

@V

@S
=

@V

@t
+

1

2

�2S2
t

@2V

@S2
+ rS

t

@V

@S
� rV

t

Noticing that the terms that have µ vanish and rearranging again leads to equation (3.10).

Note that this choice of portfolio, made only of options and units of stocks, allows us to eliminate the
risk to determine the price V of the option and the ratio a

t

N

t

. In fact, equation (3.8) is called Delta, and
gives the number of units of the underlying asset that must be used to replicate the option. Hence the
strategy name, delta hedging.

It is also worth mentioning that the fact that the terms containing µ are eliminated during the
derivation and therefore the Black-Scholes PDE does not contain any µ, means that the price of the
options is independent of the investor’s attitude towards risk. Since the price of the derivative does not
depend on the risk preferences we can therefore use any set of risk preferences to value the option. In
particular, we can assume that all investors are risk neutral, that is, that they always demand only the
risk free rate of interest as the average expected return on investment and do not require a risk premium.
This allows to take µ = r. The argument for this is that as long as we can find a replicating portfolio for
the option we can eliminate all the risk.

3.1.3 Boundary and final conditions for European options

In the previous section we showed how to derive the Black-Scholes PDE. Without any further con-
ditions this equation has many different solutions. In option pricing it is essential that the price of the
option is unique, otherwise arbitrage opportunities would be possible. In order to find a unique solution
for the equation we must now define some boundary conditions. The conditions presented in this section
are for vanilla European options. Through this work, whenever it is not necessary to specify whether
the option is a call or a put we will use V to designate the value of the option. When a distinction is
necessary we will use C for the value of a call option and P for the value of a put option.

We have already seen that the final condition for a call or a put option is just its payoff at the maturity.
Hence the terminal value of a European call is given by

C(S, T ) = max{S �K, 0} (3.13)

Moreover, the value of a right to buy an asset worth 0 is also 0, so we have the following boundary
condition

C(0, t) = 0 (3.14)

However, as the value of the asset becomes larger, the option is more likely to be exercised, and the
value of the strike price becomes less important until it can actually be neglected. This gives us

C(S, t) ! S as S ! 1 (3.15)

For a put option, recall that its value at the maturity is given by

P (S, T ) = max{K � S, 0} (3.16)

Furthermore, when the value of the underlying asset is 0, the final payoff of a put will be equal to
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the strike price K. So, to know the value of the put at time t we just need to discount K to the present,
which yields

P (0, t) = Ke�r(T�t) (3.17)

Finally, as the value of the stock increases the option is less likely to be exercised, which means that
it will expire worthless

P (S, t) ! 0 as S ! 1 (3.18)

3.1.4 Black-Scholes transformation to the heat equation

The Black-Scholes equation can be transformed into the heat equation by simply making a change
of variables. This can be very convenient as the heat equation and its solution have been subject of deep
study. Therefore, one may want to transform the heat equation solution back to get the solution to the
Black-Scholes equation. In what follows we will consider a European call only, because the results for a
put option can be easily derived using put-call-parity.

Consider again the Black-Scholes PDE, given in (3.10). Since now we are considering the specific case
of a European call, we will denote the price of the call by C, instead of V . This yields

@C

@t
+ rS

@C

@S
+

1

2

�2S2 @
2C

@S2
� rC = 0 (3.19)

Note that the domain of C is D
C

= {(S, t) : S > 0, 0  t  T}.

Further, consider the following change of variables

S = Kex, t = T � 2⌧

�2
, C(S, t) = Kv(x, ⌧)

This change of variables ensures that the domain of the new variable v(x, ⌧) is D
v

= {(x, ⌧) : �1 <

x < 1, 0  ⌧  �2
2 T}, and using the chain rule we can obtain the partial derivatives of C

@C

@t
= K

@v

@⌧

@⌧

@t
= �1

2

�2K
@v

@⌧
(3.20)

@C

@S
= K

@v

@x

@x

@S
=

K

S

@v

@x
(3.21)

@2C

@S2
=

@

@S

✓
K

S

@v

@x

◆
= �K

S2

@v

@x
+

K

S

@2v

@x2

1

S
=

K

S2

✓
@2v

@x2
� @v

@x

◆
(3.22)

Substituting the partial derivatives (3.20) through (3.22) into equation (3.19) gives

�1

2

�2 @v

@⌧
+ rS

K

S

@v

@x
+

1

2

�2S2 K

S2

✓
@2v

@x
� @v

@x

◆
� rKv = 0 (3.23)

Dividing equation (3.23) by K and setting c = 2r
�

2 we get the following equation

@v

@⌧
=

@2v

@x2
+ (c� 1)

@v

@x
� cv (3.24)

We now need an initial condition for the problem. Under this change of variables the initial condition
corresponds to the terminal condition before the transformation, because at t = T we have ⌧ = 0. The
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initial condition (3.13) under the transformation of variables becomes

v(x, 0) = max{ex � 1, 0} (3.25)

In order for equation (3.24) to look more like the heat equation, the terms @v

@x

and v must vanish from
the equation. This can be achieved by a change of variables. We set

v(x, ⌧) = e↵x+�⌧u(x, ⌧) (3.26)

for some constants ↵ and � that we will have to determine. Substituting equation (3.26) into equation
(3.24) and dividing by e↵x+�⌧u(x, ⌧) yields

�u+

@u

@⌧
= ↵2u+ 2↵

@u

@x
+

@2u

@x2
+ (c� 1)

✓
↵u+

@u

@x

◆
(3.27)

To eliminate u from equation (3.27) we just have to set � = ↵2
+ (c� 1)↵� c and to eliminate @u

@x

we
set 0 = 2↵+ (c� 1). This yields

↵ = �1

2

(c� 1) (3.28)

� = �1

4

(c+ 1)

2 (3.29)

Substituting equation (3.28) and (3.29) into equation (3.26) leads to

v(x, ⌧) = e�
1
2 (c�1)x� 1

4 (c+1)2⌧u(x, ⌧) (3.30)

where u(x, ⌧) satisfies the heat equation

@u

@⌧
=

@2u

@x2
, �1 < x < 1 and ⌧ 2 [0, T ] (3.31)

with the initial condition

u(x, 0) = u0(x) = max{e 1
2 (c+1)x � e

1
2 (c�1)x, 0} (3.32)

Note that the domain of u is D
v

, which is a more restrictive domain than the usual domain of the
heat equation: x 2 R and ⌧ � 0. However, as the time of the option ends at the maturity T it is only
natural that ⌧ is bounded as well. On the other hand, despite S being positive, the domain of x is the
whole real axis.

Earlier in this chapter, we have defined the boundary and final conditions for European call and put
options. We will now define them again under this change of variables.

Proposition 3. The initial and boundary conditions for a European call option are given by

u(x, 0) = max{e 1
2 (c+1)x � e

1
2 (c�1)x, 0}

lim

x!�1
u(x, ⌧) = 0

lim

x!+1
u(x, ⌧)� e

1
2 (c+1)x+ 1

4 (c+1)2⌧
= 0

(3.33)
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Proof. We start by noting that C(S, t) = Kv(x, ⌧) so, plugging in equation (3.30), it yields

C(S, t) = Ke�
1
2 (c�1)x� 1

4 (c+1)2⌧u(x, ⌧) (3.34)

For the initial condition, considering (3.13), we get

C(S, T ) = max{Kex �K, 0} = Ke�
1
2 (c�1)xu(x, 0) ,

u(x, 0) = max{e 1
2 (c+1)x � e

1
2 (c�1)x, 0}

For the first boundary condition note that C = 0 , u = 0, so it is imediate that

lim

x!�1
u(x, ⌧) = 0

For the other boundary condition we have that C(S, t)� S ! 0 as S ! +1 is equivalent to

Ke�
1
2 (c�1)x� 1

4 (c+1)2⌧u(x, ⌧)�Kex ! 0 as ex ! +1

. Rearranging we get

lim

x!+1
u(x, ⌧)� e

1
2 (c+1)x+ 1

4 (c+1)2⌧
= 0

Proposition 4. The initial and boundary conditions for a European put option are given by

u(x, 0) = max{e 1
2 (c�1)x � e

1
2 (c+1)x, 0}

lim

x!�1
u(x, ⌧)� e

1
2 (c�1)x+ 1

4 (c�1)2⌧
= 0

lim

x!+1
u(x, ⌧) = 0

(3.35)

Proof. Similarly to the previous proof, we start by noticing that

P (S, t) = Ke�
1
2 (c�1)x� 1

4 (c+1)2⌧u(x, ⌧) (3.36)

Considering (3.16), the initial condition becomes

P (S, T ) = max{K �Kex} = Ke�
1
2 (c�1)xu(x, 0) ,

, u(x, 0) = max{e 1
2 (c�1)x � e

1
2 (c+1)x}

For the first boundary condition, using (3.17) and (3.36) leads to

lim

x!�1
Ke�

1
2 (c�1)x� 1

4 (c+1)2⌧u(x, ⌧) = Ke�r(T�t)

Dividing by K and rearranging equation (3.37) we get

lim

x!�1
u(x, ⌧) = e�r(T�t)+ 1

2 (c�1)x+ 1
4 (c+1)2⌧ (3.37)

Noting that (T � t) = 2⌧
�

2 and recalling that c = 2r
�

2 leads to

lim

x!�1
u(x, ⌧) = e�⌧c+ 1

2 (c�1)x+ 1
4 (c+1)2⌧
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Finally, rearranging the square leads to the result we wanted to prove.

For the other boundary condition note that P = 0 , u = 0, so it is immediate that

lim

x!+1
u(x, ⌧) = 0

3.1.5 Exact solution to the Black-Scholes equation

For European call and put options it is possible to compute the exact solution to the Black-Scholes
formula. There is more then one way to arrive at this solution. One approach is to solve equation (3.10)
subjected to the boundary conditions derived in the previous section. Another way is to use risk-neutral
valuation. In this work we will present the proof for a European call using the first approach and we will
follow [34].

Proposition 5. For a European call the exact solution is given by

C(S, t) = N (d1)S �N (d2)Ke�r(T�t) (3.38)

where N (x) =
1p
2⇡

R
x

�1 e
�z

2

2 dz is the normal cumulative distribution function and

d1 =

log(S/K) + (r + �2/2)(T � t)

�
p
(T � t)

(3.39)

d2 =

log(S/K) + (r � �2/2)(T � t)

�
p
(T � t)

(3.40)

Proof. Recall that the solution to the heat equation @u

@t

=

@

2
u

@x

2 with �1 < x < +1, ⌧ > 0 and initial
condition u(x, 0) = u0(x) is given by

u(x, ⌧) =

Z 1

�1
u0(s)f(x� s, ⌧)ds (3.41)

where f(x� s, ⌧) = e�(x�s)2/4⌧ is the heat kernel. We can write equation (3.41) as

u(x, ⌧) =
1

2

p
⇡⌧

Z 1

�1
u0(s)e

�(x�s)2/4⌧ds (3.42)

where u0(x) is given by (3.32).
To evaluate the integral we use the transformation of variables y =

(s�x)p
2⌧

which means that dy =⇣
1p
2⌧

⌘
ds. Making this substitution, equation (3.42) becomes

u(x, ⌧) =
1p
2⇡

Z 1

�1
u0

⇣
y
p
2⌧ + x

⌘
e�

y

2

2 dy (3.43)

Notice that the function u0 is strictly positive when the argument is also strictly positive and zero
otherwise. Since we are interested in evaluating the integral when u0 > 0 we must require that y > � xp

2⌧
.

Equation (3.43) becomes

u(x, ⌧) =
1p
2⇡

Z 1

�x/

p
2⌧

e
1
2 (c+1)(x+y

p
2⌧)e

�y

2

2 dy � 1p
2⇡

Z 1

�x/

p
2⌧

e
1
2 (c�1)(x+y

p
2⌧)e

�y

2

2 dy (3.44)
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We denote the first and second integrals I1 and I2, respectively, and we will evaluate them separately.
To evaluate I1 we start by completing the square in the exponent. The exponent is

I1 =

1p
2⇡

Z 1

�x/

p
2⌧

e
1
2 (c+1)(x+y

p
2⌧)e

�y

2

2 dy

=

e
1
2 (c+1)x

p
2⇡

Z 1

�x/

p
2⌧

e
1
4 (c+1)2⌧e�

1
2 (y�

1
2 (c+1)

p
2⌧
)

2

dy

=

e
1
2 (c+1)x+ 1

4 (c+1)2⌧p
2⇡

Z 1

�x/

p
2⌧

e�
1
2 (y�

1
2 (c+1)

p
2⌧
)

2

dy

(3.45)

Now we make another change of variables with z = y � 1
2 (c + 1)

p
2⌧ , which means that dz = dy.

Substituting in 3.45 yields

I1 =

e
1
2 (c+1)x+ 1

4 (c+1)2⌧p
2⇡

Z 1

�x/

p
2⌧� 1

2 (c+1)
p
2⌧

e�
1
2 z

2

dz (3.46)

Finally, using the symmetry of the integral, equation (3.46) can be expressed as the cumulative
distribution function for the normal distribution. If we denote

d1 =

xp
2⌧

+

1

2

(c+ 1)

p
2⌧ (3.47)

we can write (3.46) as
I1 = e

1
2 (c+1)x+ 1

4 (c+1)2⌧N (d1) (3.48)

where

N (d1) =
1p
2⇡

Z
d1

�1
e�

1
2 z

2

dz (3.49)

is the cumulative distribution function for the normal distribution.
The evaluation of I2 is identical except that (c+ 1) is replaced by (c� 1) throughout.
Going back to equation (3.44) we get

u(x, ⌧) = e
1
2 (c+1)x+ 1

4 (c+1)2⌧N (d1)� e
1
2 (c�1)x+ 1

4 (c�1)2⌧N (d2) (3.50)

where d1 is given as in (3.47) and d2 =

xp
2⌧

+

1
2 (c�1)

p
2⌧ . Now we must transform back the variables

using x = log

�
S

K

�
, ⌧ =

1
2�

2
(T � t) and C(S, t) = Kv(x, ⌧). Plugging this change of variables in equation

(3.50) yields

C(S, t) = N (d1)S �N (d2)Ke�r(T�t)

where d1 and d2 are give in (3.39) and (3.40), respectively.

Proposition 6. For a European put the exact solution is given by

P (S, t) = N (�d2)Ke�r(T�t) �N (�d1)S (3.51)

where d1 and d2 are given by (3.39) and (3.40), respectively.

Proof. The proof is straightforward using the put-call-parity (2.3).
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P (S, t) = C(S, t)� S +Ke�r(T�t)
=

= N (d1)S � S +Ke�r(T�t) �N (d2)Ke�r(T�t)
=

= �(1�N (d1))S + (N (d2))Ke�r(T�t)
=

= �N (�d1)S +N (�d2)Ke�r(T�t)
=

= N (�d2)Ke�r(T�t) �N (�d1)S

3.1.6 Black-Scholes model limitations

We have seen that the Black-Scholes model is based on several assumptions, which do not hold in the
real world. The model assumes that the stock returns follow a normal distribution, which is the same as
saying that the stock prices themselves follow a lognormal distribution. However, in reality this is never
the case. Real world distributions exhibit skewness and kurtosis, i.e. have heavier tails than those of
the normal distribution. This means that extreme market movements are more likely to occur than as
suggested by the normal distribution, which leads to the Black-Scholes model underpricing or overpricing
an option.

Another implication of the Brownian motion is that volatility should be known and constant in time.
This, however, does not happen in practice, and in fact volatility is the only parameter in the Black-
Scholes model that cannot be directly observed from the market. The most common way to estimate
volatility for a given underlying asset is to plug in the market price of the options and other observed
parameters in Black-Scholes model to get the implied volatility. The implied volatility is the volatility
of the underlying asset that when substituted in the Black-Scholes option pricing equation would equate
the market option price. For a call option, it can be written as

C(S
t

,K, ⌧, r,�
imp

(K, ⌧)) = C⇤
t

(K, ⌧) (3.52)

where C(S
t

,K, ⌧, r,�
imp

(K, ⌧)) is the Black-Scholes call price and C⇤
t

(K, ⌧) is the market option price
at time t.

If volatility were constant, as assumed in the Black-Scholes model, then for a fixed maturity, implied
volatility should be constant regardless of the strike price. What happens in reality is that most markets
have persistent patterns of volatilities varying by strike price. In some markets, like currency markets,
when plotting the implied volatilities against the strike prices we get an U-shaped curve which resembles
a smile, hence this particular pattern is called volatility smile. In equity markets (options on stock),
the pattern is usually downward sloping and referred to as volatility skew. In this case options out-
of-the-money have lower implied volatilities than options at-the-money. Furthermore, if we consider
the dynamics between the implied volatility and the stock price, empirical studies show that they are
negatively correlated.

Another unrealistic assumption is that of the interest rate being constant. The interest rate plays an
important role in the pricing of the option as it is used to discount the payoff of the option to the present
so it is crucial to take into account the behaviour of the interest rate when building an option pricing
model.
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3.2 Extensions to the Black-Scholes model

In order to overcome the Black-Scholes model limitations, many models have been proposed over
time. As it is not possible to capture every aspect of the markets in a single model, we will focus on some
important constraints. We will start by relaxing the Black-Scholes assumption of constant volatility and
interest rate by allowing them to be time-varying deterministic functions. Later we will also consider
that volatility follows its own stochastic process, using the model developed by Heston.

3.2.1 Time-dependent parameters

We will start by assuming that both the volatility and the expected return on the stock are continuous
deterministic functions of time. The stock price dynamics are similar to the ones of the Black-Scholes
model but now the stock price follows the stochastic differential equation

dS
t

= µ(t)S
t

dt+ �(t)S
t

dW
t

(3.53)

where � and µ are continuous deterministic functions.

To obtain the explicit solution to equation (3.53) we proceed as in the previous sections. Here we
compute d logS

t

by applying lemma 2.2.4. with f(t, S) = logS, µ(t, S) = µ(t)S and �(t, S) = �(t)S:
The stock price is then given explicitly by

S
T

= S
t

e
R

T

t

(µ(x)� 1
2�

2(x))dx+
R

T

t

�(x)dW
x (3.54)

which means that even when both the interest rate and volatility are functions of time, the log of the
stock returns has a normal distribution

log

✓
S
T

S
t

◆
⇠ N

✓
µ̄� 1

2

�̄2

◆
(T � t), �̄2

(T � t)

�
(3.55)

where µ̄ =

1
T�t

R
T

t

µ(x)dx and �̄2
=

1
T�t

R
T

t

�2
(x)dx.

Like in the time-dependent volatility model, the derivation of the Black-Scholes equation is similar to
the one with constant parameters. The following result can be found in Wilmott [34].

Proposition 7.
@V

@t
+ r(t)S

@V

@S
+

1

2

�2
(t)S2 @

2V

@S2
� r(t)V = 0 (3.56)

Proof. Again we assume that the portfolio consists of N
t

short positions of the option, with price V (t, S
t

),
which we will simply denote by V

t

, and a
t

units of the underlying stock. The change in the value of the
portfolio is then a

t

dS
t

�N
t

dV
t

. In order to the portfolio to be riskless, its change must be equal to the
change in a riskless asset, that is

a
t

dS
t

�N
t

dV
t

= r(t)(a
t

S
t

�N
t

V
t

)dt (3.57)

Note that equation (3.57) is the same equation as (3.5) exept that now r is a function of time. Indeed,
the crucial step in this derivation is to notice that the expected return on the stock, µ is a function of
the risk-free rate, plus a component that depends on the investor’s sensivity to risk, both of which are
not constant in the real world. So, if we assume that the expected return on stock is time-dependent we
also have to assume that the risk-free rate is time-dependent, hence the result above.

Since V (t, S
t

) is a function of S
t

and S
t

follows the geometric Brownian motion described by equation
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(3.54), we are still in the conditions of lemma 2.2.4, which allows for the coefficients to be functions of
time. Therefore we can apply lemma 2.2.4, Itô’s lemma with Y (t) = V (t, S

t

), to find the value of dV in
terms of µ(t) and �(t). This yields

dV =

✓
@V

@t
+ µ(t)S

@V

@S
+

�2
(t)

2

S2 @
2V

@S2

◆
dt+ �(t)S

@V

@S
dW (3.58)

where µ and � are time-dependent functions and W is a Wiener process. Substituting equations (3.58)
and (3.53) into equation (3.57) we get

a
t

(µ(t)S
t

dt+ �(t)S
t

dW
t

)�N
t

✓
@V

@t
+ µ(t)S

t

@V

@S
+

1

2

�2
(t)S2

t

@2V

@S2

◆
dt+ �(t)S

t

@V

@S
dW

t

�
=

= r(t)(a
t

S
t

�N
t

V
t

)dt

(3.59)

Since we want the portfolio to be riskless, dW
t

must be set to zero. Setting dW
t

= 0 yields

a
t

= N
t

@V

@S
(3.60)

and
a
t

S
t

[µ(t)� r(t)] + r(t)N
t

V
t

= N
t

✓
@V

@t
+ µ(t)S

t

@V

@S
+

1

2

�2
(t)S2

t

@2V

@S2

◆
(3.61)

just like in the case of constant parameters. Finally, substituting equation (3.60) into equation (3.61) we
obtain the Black-Scholes PDE for time-dependent coefficients

@V

@t
+ r(t)S

@V

@S
+

1

2

�2
(t)S2 @

2V

@S2
� r(t)V = 0 (3.62)

Remark 3.2.1. Note that in this model, when pricing a put option, we must account for the fact that
r appears explicitly in equation (3.17). So, when r is a function of time, the correct condition is

P (0, t) = Ke�
R

T

t

r(⌧)d⌧ (3.63)

Having seen that by considering a geometric Brownian motion with continuous time-dependent coeffi-
cients we can derive similar results to those with constant parameters we are now interested in analysing
the case where the coefficients have jump discontinuities. This is of interest because in the real world
there are often jumps in the volatility or interest rate of the stock, which are not accounted for in the
classical Black-Scholes model.

Consider again equation (3.53) but now assume that r(t) and �(t) may have some discontinuity points,
which correspond to the jumps, and are continuous elsewhere. We can see from theorem 2.2.5 that without
Lipschitz continuous coefficients we cannot guarantee the existence and uniqueness of a solution to the
SDE.

3.2.2 Stochastic Volatility - Heston model

We now consider the case where the variance of the stochastic process is a random variable itself.
Although there are several models for stochastic volatility, in this work we will focus exclusively on the
Heston model.

The Heston model extends the Black-Scholes model as it assumes that volatility is a mean-reverting

23



stochastic process. This is an important assumption because in financial markets volatility will tend to
move to the average volatility over time, otherwise we could have assets with volatility going near zero
or tending to infinity. This model also accounts for the fact that the stock returns follow a non-Gaussian
distribution and for the leverage effect, i.e. negative correlation between asset prices and volatility. For
these reasons, the Heston model has become a benchmark among the stochastic volatility models for pric-
ing options. Its popularity also comes from the fact that it is possible to compute a closed form solution
of a European call which is easy to evaluate except for an integral, which has to be numerically evaluated.

The price dynamics of the Heston model are similar to those of the Black-Scholes model but they also
include a stochastic behaviour for the volatility process. The price and variance dynamics are given by

dS
t

= µS
t

dt+
p
⌫
t

S
t

dWS

t

(3.64)

d⌫
t

= k(✓ � ⌫
t

)dt+ ⇠
p
⌫
t

dW ⌫

t

(3.65)

dWS

t

dW ⌫

t

= ⇢dt (3.66)

where the parameters are shown in table 3.2.

Table 3.2: Notation for the Heston model

S(t) stock price at time t
⌫(t) instantaneous variance
µ rate of return of the asset
✓ long-run mean
k rate at which V

t

reverts to ✓

⇠ volatility of volatility

and WS

t

and W ⌫

t

are Wiener processes with correlation ⇢.

As we did for the Black-Scholes model, we will now derive the partial differential equation of the
Heston model. This derivation is based on the derivations done in [13] and [29]. The derivation of
the Black Scholes PDE is similar to the one for the constant parameters. However, in order to have a
riskless portfolio we now need another derivative asset written on the same underlying asset to account
for the new source of randomness introduced by the stochastic volatility. The two derivatives differ by
the maturity date or the strike price.

Consider a portfolio ⇧ consisting of one short position of option V , a
t

shares of the stock S and M
t

long positions of the other option U . The value of the portfolio is

⇧

t

= a
t

S
t

+M
t

U � V (3.67)

Assuming that the portfolio is self-financing, the change in the portfolio value is

d⇧
t

= a
t

dS +M
t

dU � dV (3.68)

Again we want a riskless portfolio, so the change in its value must equal the change in a riskless asset,
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that is

a
t

dS +M
t

dU � dV = r(a
t

S +M
t

U � V )dt (3.69)

Note that V (S
t

, t, ⌫
t

) and U(t, S
t

, ⌫
t

) are functions of S
t

and ⌫
t

, both of which follow a geomet-
ric Brownian motion. Therefore we can apply lemma A.0.1, Itô’s lemma for the bivariate case with
f(X(t), Y (t)) = V (S(t), ⌫(t)), X(t) = S(t) and Y (t) = ⌫(t). Also, recall that the drift coefficient of d⌫ is
given by k(✓ � ⌫

t

). For simplicity, and also because it will eventually vanish from the equations, we will
denote the drift of d⌫, µ

⌫

in what follows.
This leads to the following expression for dV

dV =

✓
@V

@t
+ µS

@V

@S
+ µ

⌫

@V

@⌫
+

1

2

⌫2S2 @
2V

@S2
+

1

2

⇠2⌫2
@2V

@⌫2
+ ⇢⌫⇠S

@2V

@S@⌫

◆
dt+

+ ⌫S
@V

@S
dW

S

+ ⇠⌫
@V

@⌫
dW

⌫

(3.70)

Applying Itô’s lemma to dU leads to the same expression as (3.70), but in U . Substituting (3.70), the
respective expression for dU and (3.64) into equation (3.69) and rearranging the left-hand side, yields

d⇧
t

= a
t

dS +M
t

dU � dV = r(a
t

S +M
t

U � V )dt ,

,
"
a
t

µS +M
t

✓
@U

@t
+ µS

@U

@S
+ µ

⌫

@U

@⌫
+

1

2

⌫2S2 @
2U

@S2
+

1

2

⇠2⌫2
@2U

@⌫2
+ ⇢⌫⇠S

@2U

@S@⌫

◆
�

�
✓
@V

@t
+ µS

@V

@S
+ µ

⌫

@V

@⌫
+

1

2

⌫2S2 @
2V

@S2
+

1

2

⇠2⌫2
@2V

@⌫2
+ ⇢⌫⇠S

@2V

@S@⌫

◆#
dt+

+


a
t

⌫S +M
t

⌫S
@U

@S
� ⌫S

@V

@S

�
dWS

+


M

t

⇠⌫
@U

@⌫
� ⇠⌫

@V

@⌫

�
dW ⌫

=

= r(a
t

S +M
t

U � V )dt

(3.71)

In order to eliminate the risk caused by movements in the stock and volatility, the terms containing
dWS and dW ⌫ must vanish from equation (3.71). So we set the coefficients of dWS and dW ⌫ to zero.
This leads to

@V

@S
= a

t

+M
t

@U

@S
(3.72)

and
@V

@⌫
= M

t

@U

@⌫
(3.73)

Proposition 8. Substituing a
t

and M
t

, given in (3.72) and (3.73), respectively, into equation (3.71) and
rearranging it yields

@V

@t

+ rS @V

@S

+

1
2⌫S

2 @

2
V

@S

2 + ⇢⇠⌫S @

2
V

@S@⌫

+

1
2⇠
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2
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@⌫

2 � rV
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@⌫

=
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@U
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+ rS @U
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+

1
2⌫S

2 @

2
U

@S

2 + ⇢⇠⌫S @

2
U

@S@⌫

+

1
2⇠

2⌫ @

2
U

@⌫

2 � rU
@U

@⌫

(3.74)
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Proof. We start by substituting a
t

into (3.69) because its expression depends on M
t

d⇧
t

=

✓
@V

@S
�M

t

@U

@S

◆
µSdt+

+M
t

✓
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@t
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@S
+ µ

⌫

@U

@⌫
+

1

2
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@2V

@S@⌫

◆
dt =

= r
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@S
�M

t

@U

@S

◆
S +M

t

U � V

�
dt

Now that we have substituted a
t

we can replace M
t

. We also divide by dt.
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Now we separate the terms that depend on @V

@⌫

/@U

@⌫

, from those that do not:
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� U

�
(3.75)

Finally, arranging the equation so that the left-hand side only depends on V and the right-hand side only
depends on U and noticing that the terms that depend on µ vanish, leads to (3.74).

In the above equation (3.75), the left-hand side is a function of V only and the right-hand side becomes
a function of U only. This implies that both sides of the equation can be written as a function f , of the
independent variables S, ⌫ and t. Following [29] that follows Heston [15], we specify this function as

f(S, ⌫, t) = �k(✓ � ⌫) + �(S, ⌫, t) (3.76)

where �(S, ⌫, t) is the price of volatility risk. Substituting f(S, ⌫, t) into the right-hand side of equation
(3.74), we get

@V
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+ rS @V

@S
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1
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2 @
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@S

2 + ⇢⇠⌫S @
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2 � rV
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@⌫

= �k(✓ � ⌫) + �(S, ⌫, t) (3.77)

re-arranging it produces the Heston PDE

@V

@t
+

1
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⌫S2 @V

@S2
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@2V

@⌫@S
+
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@2V

@⌫2
� rV + rS

@V

@S
+ [k(✓ � ⌫)� �(S, ⌫, t)]

@V

@⌫
= 0 (3.78)
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Chapter 4

The finite difference method for the

Black-Scholes equation

In this chapter we will use finite difference schemes to approximate the Black-Scholes partial dif-
ferential equation when reduced to the heat equation, as we have seen in section 3.1.4. The idea in
finite difference methods is to find a solution for the differential equation by approximating every partial
derivative numerically. We will follow [34] and [1]

4.1 General concepts

4.1.1 Definitions

Consider the following initial-boundary value problem with homogeneous Dirichlet boundary condi-
tion for the heat equation

@u

@⌧
(x, ⌧) =

@2u

@x2
(x, ⌧)

where u(x, ⌧) is defined in �1 < x < 1 and 0  ⌧  1
2�

2T

8
>>>>>><

>>>>>>:

@u

@⌧
(x, ⌧) =

@2u

@x2
(x, ⌧) (x, ⌧) 2 (x

N

� , x
N

+
)⇥ (⌧0, ⌧M )

u(x, 0) = u0(x) x 2 (x
N

� , x
N

+
)

u(x
N

� , ⌧) = 0 ⌧ 2 (⌧0, ⌧M )

u(x
N

+ , ⌧) = 0 ⌧ 2 (⌧0, ⌧M )

(4.1)

Where the first equation is the heat equation, and the other equations correspond to the boundary
conditions.

For the finite difference approximation we need to define a rectangular region in the domain of u and
partition it to form a mesh of equally spaced points. The discretisation steps �x and �⌧ are defined as

�x =

x
n

� x
N

�

n
, n = 0, 1, ..., N � 1, N

�⌧ =

⌧
m

� ⌧0
m

, m = 0, 1, ...,M � 1,M

where ⌧0 = 0, x0 = x
N

� and x
N

= x
N

+ .
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4.2 Numerical methods

4.2.1 ✓ schemes

A ✓ scheme is a convex combination of an explicit and an implicit scheme, which takes the form
✓scheme = (1 � ✓)explicit + ✓implicit, where ✓ is a parameter in [0,1]. Therefore, for the value ✓ = 0

we recover the explicit scheme, for ✓ = 1 the fully implicit scheme and for ✓ =

1
2 we recover the Crank-

Nicolson scheme. Moreover, when ✓ 6= 0 we have an implicit scheme.
For the explicit scheme we consider forward differences in time and second order central differences

in space

@
⌧

u(x
n

, ⌧
m

) =

u
n,m+1 � u

n,m

�⌧
+O(�⌧) (4.2)

@
x

u(x
n

, ⌧
m

) =

u
n+1,m � 2u

n,m

+ u
n�1,m

(�x)2
+O((�x)2) (4.3)

Substituting equations (4.2) and (4.3) into the heat equation and ignoring the terms O(�⌧) and
O((�x)2) we obtain the explicit scheme

u
n,m

= �u
n+1,m + (1� 2�)u

n,m

+ �u
n�1,m, � =

�⌧

(�x)2
(4.4)

For the fully implicit scheme we also use forward differences in time and second order central differences
in space

@
⌧

u(x
n

, ⌧
m+1) =

u
n,m+1 � u

n,m

�⌧
+O(�⌧) (4.5)

@
x

u(x
n

, ⌧
m+1) =

u
n+1,m+1 � 2u

n,m+1 + u
n�1,m+1

(�x)2
+O((�x)2) (4.6)

Substituting equations (4.5) and (4.6) into the heat equation and ignoring the terms O(�⌧) and
O((�x)2) we obtain the fully implicit scheme

u
n,m+1 = ��u

n+1,m+1 + (1 + 2�)u
n,m+1 � �u

n�1,m+1, � =

�⌧

(�x)2
(4.7)

As the Crank-Nicolson scheme is a weighted average of an explicit scheme and an implicit scheme,
the time and space differences are given by

@
⌧

u(x
n

, ⌧
m+ 1

2
) =

u
n,m+1 � u

n,m

�⌧
+O((�⌧)2) (4.8)

@
x

u(x
n

, ⌧
m+ 1

2
) =

u
n+1,m � 2u

n,m

+ u
n�1,m + u

n+1,m+1 � 2u
n,m+1 + u

n�1,m+1

2(�x)2
+O((�x)2) (4.9)

Substituting equations (4.8) and (4.9) into the heat equation and ignoring the terms O((�⌧)2) and
O((�x)2) we obtain the Cranck-Nicolson scheme

u
n,m+1 �

1

2

�(u
n+1,m+1 � 2u

n,m+1) = u
n,m

+

1

2

�(u
n+1,m � 2u

n,m

+ u
n�1,m), � =

�⌧

(�x)2
(4.10)
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We can write the above finite difference schemes in matrix form

M
I,1�✓

u
m+1 = M

E,✓

u
m

+ b
m+✓

where

M
I,1�✓

=

2

666666664

1 + 2�✓ �✓� 0 · · · 0

�✓�
. . . . . . . . .

...

0

. . . . . . . . .
0

...
. . . . . . . . . �✓�

0 · · · 0 �✓� 1 + 2�✓

3

777777775

M
E,✓

=

2
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1� 2�(1� ✓) (1� ✓)� 0 · · · 0

(1� ✓)�
. . . . . . . . .

...

0

. . . . . . . . .
0

...
. . . . . . . . .

(1� ✓)�

0 · · · 0 (1� ✓)� 1� 2�(1� ✓)

3

777777775

u
m
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2

666666664

u
N

�+1,m

...
u0,m

...
u
N

+�1,m

3

777777775

b
m+✓

=

2

66666664

�(1� ✓)u
N

�
,m

+ �✓u
N

�
,m+1

0

...
0

�(1� ✓)u
N

+
,m

+ �✓u
N

+
,m+1

3

77777775

b
m+✓

is the vector with the boundary conditions.
In this work we consider three ✓ schemes which correspond to the values 0,12 ,1 of ✓.

Convergence, consistency and stability of the ✓ methods

It can be shown [1] that a scheme is unconditionally stable for ✓ � 1
2 and for ✓ < 1

2 it is stable if
(1 � 2✓)�  1

2 holds, where � =

�⌧

(�x)2 . Furthermore, a scheme is consistent of order 2 when ✓ =

1
2 and

consistent of order 1 in the other cases (✓ = 0 and ✓ = 1), which implies convergence of the same order
as long as the scheme is stable as well.

4.3 Numerical experiments

Implementation

In this section we discuss the algorithms used to carry out the experiments in this chapter and chap-
ter 6. Although the algorithms were implemented using Matlab, these are generic algorithms that can
be implemented in other programming languages such as Fortran, and therefore are not optimised for a
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particular language.
We divide the space interval [0, x] in N subintervals of equal length �x and divide the time interval

[0, ⌧ ] in M subintervals of equal length �⌧ . This results in a grid of (N + 1) ⇥ (M + 1) points. Recall
that u(x, ⌧) is defined on �1 < x < 1 and 0  ⌧  1

2�
2T , which means that we have to choose some

endpoints, x
N

� and x
N

+ , to limit the x domain. There is no criterion for choosing these points, however
a price range too small will result in a poor approximation at the boundaries and a range too large will
lead to unecessary computations.

In the end we wish to have the value of the option V at t = 0 and S = S0, so it is convenient to keep
track of these points throughout the computations. For that purpose we define x0 = log

�
S0
K

�
and N�

and N+ as the number of points to the left and to the right of x0, respectively.
For the implementation of the algorithms we considered a matrix U of dimensions (2N+1)⇥ (M+1),

where we stored the values of u(x, ⌧) for each of the mesh points. As Matlab does not allow for an index
i = 0 we start our indexes at 1.

The explicit scheme is quite straightforward, to compute the unknown values of u
m+1(x, ⌧) we only

need to use known values of u
m

, which does not require solving a system of equations. Algorithm 1 shows
the implementation of this scheme. However, in the implicit schemes we need to solve a linear system
of equations at each time step. The matrix M

I,1�✓

is positive definite, thus it is invertible, nevertheless
inverting a matrix is computationally costly so a more efficient method to solve the system is to factorise
the matrix using for instance LU decomposition. This decomposition is unique if we require that the
diagonal of L or U consists of ones. Matlab has a built in routine that implements this factorisation with
the diagonal of L consisting of ones which we used in our implementation. In order to avoid mistaking
matrix U from the heat equation for the matrix U from the LU decomposition, we named the latter as
Up. Algorithms 2 and 3 show the implementation of the fully implicit scheme and the Crank-Nicolson
scheme, respectively.

It is also worth mentioning that in our experiments we compute the relative error by using equations
(3.38) and (3.51) for the true value of call and put options, respectively.

Algorithm 1 Explicit scheme for option pricing

1. Define r, �, T , S0, K, �⌧ , �x, N�, N+

2. Set ⌧
max

=

1
2�

2T , M =

⌧

max

�⌧

, N = N�
+N+, x0 = log

�
S0
K

�
, x

N

�
= x0�N�

�x, x
N

+
= x0+N+

�x,
� =

�⌧

�x

2 , c = 2r
�

2 , ↵ = � 1
2 (c� 1), � = � 1

4 (c+ 1)

2

3. Define boundary conditions in x and in ⌧

1: for j = 1 : M do
2: for i = 2 : N do
3: U(i, j + 1) = �U(i+ 1, j) + (1� 2�)U(i, j) + �U(i� 1, j)

4: end for
5: end for

4. Transform the equation back to V , at time 0: V (S0, t0) = KU(N�
+ 1,M + 1)e↵x0+�⌧

max
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Algorithm 2 Implicit scheme for option pricing

1. Define r, �, T , S0, K, �⌧ , �x, N�, N+

2. Set ⌧
max

=

1
2�

2T , M =

⌧

max

�⌧

, N = N�
+N+, x0 = log

�
S0
K

�
, x

N

�
= x0�N�

�x, x
N

+
= x0+N+

�x,
� =

�⌧

�x

2 , c = 2r
�

2 , ↵ = � 1
2 (c� 1), � = � 1

4 (c+ 1)

2

3. Define boundary conditions in x and in ⌧

4. Construct matrix M
I,0, as defined in section 4.2

5. LU decomposition of matrix M
I,0

1: for j = 2 : M + 1 do
2: Solve Ly = M

E,0um

+ b
m+1:

3: Substitute first interior node:
4: U(2, j) = U(2, j � 1) + �U(1, j)

5: for i = 3 : N � 1 do
6: Substitute the next interior nodes until N � 2:
7: U(i, j) = U(i, j � 1)� L(i� 1, 1 : i� 2)U(2 : i� 1, j)

8: end for
9: Substitute last interior node:

10: U(N, j) = U(N, j � 1) + �U(N + 1, j)L(N � 1, 1 : N � 2)U(2 : N � 1, j)

11: Solve Upu
m+1 = y:

12: Substitute last interior node:
13: U(N, j) = U(N,j)

Up(N�1,N�1)

14: for i = N : 2 do
15: Substitute the remaining nodes:
16: U(i, j) = U(i,j)�Up(i�1,i:N�1)U(i+1:N,j)

Up(i�1,i�1)

17: end for
18: end for

6. Transform the equation back to V , at time 0: V (S0, t0) = KU(N�
+ 1,M + 1)e↵x0+�⌧

max
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Algorithm 3 Crank-Nicolson scheme for option pricing

1. Define r, �, T , S0, K, �⌧ , �x, N�, N+

2. Set ⌧
max

=

1
2�

2T , M =

⌧

max

�⌧

, N = N�
+N+, x0 = log

�
S0
K

�
, x

N

�
= x0�N�

�x, x
N

+
= x0+N+

�x,
� =

�⌧

�x

2 , c = 2r
�

2 , ↵ = � 1
2 (c� 1), � = � 1

4 (c+ 1)

2

3. Define boundary conditions in x and in ⌧

4. Construct matrix M
I,

1
2
, as defined in section 4.2

5. LU decomposition of matrix M
I,

1
2

1: for j = 2 : M + 1 do
2: Solve Ly = M

E,

1
2
u
m

+ b
m+ 1

2
:

3: Substitute first interior node:
4: U(2, j) = U(2, j � 1) +

1
2� [U(3, j � 1)� 2U(2, j � 1) + U(1, j � 1)] +

1
2�U(1, j)

5: for i = 3 : N � 1 do
6: Substitute the next interior nodes until N � 2:
7: U(i, j) = U(i, j � 1) +

1
2� [U(i+ 1, j � 1)� 2U(i, j � 1) + U(i� 1, j � 1)] � L(i � 1, 1 : i �

2)U(2 : i� 1, j)

8: end for
9: Substitute last interior node:

10: U(N + 1, j) = U(N + 1, j � 1) +

1
2� [U(N + 2, j � 1)� 2U(N + 1, j � 1) + U(N, j � 1)] +

1
2�U(N + 2, j)� L(N, 1 : N � 1)U(2 : N, j)

11: Solve Upu
m+1 = y:

12: Substitute last interior node:
13: U(N + 1, j) = U(N+1,j)

Up(N,N)

14: for i = N : 2 do
15: Substitute the remaining nodes:
16: U(i, j) = U(i,j)�Up(i�1,i:N)U(i+1:N+1,j)

Up(i�1,i�1)

17: end for
18: end for

6. Transform the equation back to V , at time 0: V (S0, t0) = KU(N�
+ 1,M + 1)e↵x0+�⌧

max

Stability condition for the explicit method

In order for the explicit method to be stable it must verify the stability condition: �  1
2 .

Figure 3.1 compares the approximation of the value of a call option using the explicit scheme when
the stability condition is verified and when it is not.
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(a) Stable explicit method (b) Unstable explicit method

Figure 4.1: Approximation of V(S,t) with a stable and an unstable explicit scheme

In this experiment we fixed �x = 0.05 and used �⌧ = 0.001 to have a stable scheme. To break the
stability condition we set �⌧ = 0.0013.

Convergence as we increase the mesh spacing

As we have seen in the previous section, the fully implicit and explicit schemes have an order
of convergence of O(�⌧) + O(�x2

), while the Crank-Nicolson scheme has an order of convergence of
O(�⌧2) + O(�x2

). This means that for small values of �⌧2 the error in Crank-Nicolson scheme will
be similar to the error in the explicit scheme because the dominant term will be O(�x2

) as well. For
this reason, there is no great advantage in using implicit schemes when imposing the stability condition
�⌧

�x2
 1

2 . However, in order to compare the schemes, we imposed the condition in all off the schemes in
the numerical experiences carried out in chapter 5.

Furthermore, if we fix �x and increase �⌧ , we see that the Crank-Nicolson scheme will have quadratic
convergence and the implicit scheme will have linear convergence, as the terms O(�⌧2) and O(�⌧) will
dominate in each method, respectively. Usually when studying the error in the approximations we should
consider all the points in the domain, however, in this work we will only look at the error in the point
V (S0, t0). We do this not only because the goal of option pricing is to know the present value of the
option and hence the point V (S0, t0) is the point we are interested in, but also because the function
V (S, t) takes both null values and very large values, which could cause oscillations in the error.

Figure 4.2 shows the evolution of the relative error of V at the point (S0, t0) for the fully implicit
scheme and the Crank-Nicolson scheme. To obtain those results we set �x = 0.05 and increased �⌧ by
a factor of 2, starting with �⌧ = 0.01.
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(a) Linear convergence for the implicit method (b) Quadratic convergence for the Crank-Nicolson

method

Figure 4.2: Evolution of the relative error for the fully implicit scheme and the Crank-Nicolson scheme

4.3.1 Limitations of finite difference schemes for PDE’s in option pricing

Finite difference methods for PDE’s are widely used in option pricing. They are easy to implement
and are a competitive choice for low dimension problems, such as the one-dimension Black-Scholes model
presented in this chapter. The pricing of early exercise options, like American options, is also well handled
by these methods.

Despite their many advantages, they also have several drawbacks. The most obvious one is that they
can only be used when it is possible to derive a PDE for the model. This is for instance the case of models
that are based on the Brownian motion. However, if we want to depart from the assumption that the
underlying asset follows a geometric Brownian motion we will have models for which there is no PDE.
We have seen in chapter 3 some extensions to the classical Black-Scholes model, for all of which it is
possible to derive a PDE. However, the introduction of time-dependent parameters or even dependence
on the underlying asset makes the models more complex. When the coefficients of the model are constant
or depend only on time, it is possible to reduce the PDE to the heat equation and even find an exact
solution but when the coefficients also depend on the underlying asset this no longer possible. In this
case the Black-Sholes equation must be solved directly. In 2011, Cen and Le [7] proposed a robust and
accurate finite difference method for this case but results on this topic is still scarce. For some stochastic
volatility models, like the Heston model, it is possible to derive a PDE, as we have seen, and there is
extensive work on the approximation of this PDE by finite difference schemes. For jump diffusion models
it is also possible to derive a partial integro-differential equation, which can be approximated by finite
difference schemes, see for instance Duffy [9].

Nonetheless, for complex models the Monte Carlo method seems a more suitable choice as it can
easily accommodate changes on the asset model. In this sense, the next chapter will present numerical
methods for SDE’s and show how to implement them using a Monte Carlo approach.
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Chapter 5

Numerical methods for stochastic

differential equations

This chapter follows partially the article An Algorithmic Introduction to Numerical Simulation of
Stochastic Differential Equations by J. Higham [16].

5.1 Euler-Maruyama method

The Euler-Maruyama method is a generalisation of the Euler method for ordinary differential equa-
tions to stochastic differential equations and may be applied to an equation of the form

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), X(0) = X0, 0  t  T. (5.1)

where a and b are scalar functions and the initial condition X(0) is a random variable.

Equation (5.1) is a way of representing the integral equation

X(t) = X(0) +

Z
T

0
a(s,X(s))ds+

Z
T

0
b(s,X(s))dW

s

(5.2)

where the solution X(t) is a random variable for each t and the last integral is an Itô integral.

To find an approximate solution on the interval [0, T ] we discretise it into L equal subintervals of
width �t and approximate X values

X0 < X1 < ... < X
L

at the respective t points
0 = ⌧0 < ⌧1 < ⌧2 < ... < ⌧

L

= T

The explicit method takes the form

X
j

= X
j�1 + a(⌧

j�1, Xj�1)�t+ b(⌧
j�1, Xj�1)�W

j

j = 1, 2, ..., L (5.3)

where X
j

denotes our approximation, �t = T

L

and �W
j

= W (⌧
j

)�W (⌧
j�1).

We can rewrite equation (5.3) as

X
j

= X
j�1 +

Z
⌧

j

⌧

j�1

a(s,X(s))ds+

Z
⌧

j

⌧

j�1

b(s,X(s))dW (s) (5.4)
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by applying the Euler-Maruyama method to equation (5.2). In this form we can easily see that the
integrals are discretised at the left end points. This is an essential detail because, as we have seen in
chapter 2, when we introduced the stochastic integration, Itô’s integral is only defined at the left end
points. In addition, notice that if b ⌘ 0 then we have the Euler method for ODE’s.

Like in the case of ODE’s, it is also possible to define implicit schemes. These are required for stiff
SDE’s, that is, for SDE’s that are unstable for some numerical methods. The fully implicit scheme is
defined as

X
j

= X
j�1 + a(⌧

j

, X
j

)�t+ b(⌧
j

, X
j

)�W
j

j = 1, 2, ..., L (5.5)

However, this scheme has unbounded random variables because of the implicitness in the diffusion
term. This gives rise to some issues when applying fully implicit schemes to obtain strong approximations
of solutions of SDE’s because finite absolute moments generally will not exist for fully implicit strong
approximations and therefore it would not make sense to make a strong convergence analysis. For further
details refer to [22].

For this reason, in this thesis we will only consider semi-implicit schemes, that is, schemes in which
only the non-random coefficients are implicit.

Consider now the semi-implicit Euler scheme

X
j

= X
j�1 + a(⌧

j

, X
j

)�t+ b(⌧
j�1, Xj�1)�W

j

j = 1, 2, ..., L (5.6)

Like in the deterministic case, we can also define a family of semi-implicit Euler schemes for SDE’s

X
j

= X
j�1 + [✓a(⌧

j

, X
j

) + (1� ✓)a(⌧
j�1, Xj�1)]�t+ b(⌧

j�1, Xj�1)�W
j

j = 1, 2, ..., L (5.7)

where ✓ 2 [0, 1] represents the degree of implicitness. When ✓ = 0 we have the explicit scheme (5.3),
when ✓ = 1 we recover the fully semi-implicit scheme (5.6) and when 1

2 we have a generalisation of the
deterministic trapezoidal method.

We now address one crucial question in numerical methods for SDE’s, that is how to discretise the
Brownian motion.

Discretised Brownian motion

Since we are in discrete time we also need to consider discretised Brownian motion in [0, T ]. We
divide the interval in N subintervals of equal spacing �t, where �t = T

N

. Also, represent by N (0, 1) the
standard normal distribution. Each �W

j

is a random variable of the form

�W
j

= z
i

p
�t (5.8)

where z
i

is sampled from N (0, 1).
Note that we have different timesteps for the Brownian motion and the numerical method. In fact we

will set �t = R�t, where R is an integer � 1, to study the strong order of convergence in our numerical
experiments. Otherwise, if we increased both the Brownian motion and the numerical method time step,
the coarse approximation of the Brownian motion would reflect on the error as well and it would not be
possible to clearly see how the change in time step affects the strong convergence of the method. On
the other hand, as we only need the mean of the solution to study weak convergence it is not important
which time step we use to sample the Brownian motion. For this reason in our numerical experiments
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we will use the same time step for the numerical approximation and for the Brownian motion.

5.2 Convergence and consistency

Now that we have introduced the Euler-Maruyama scheme for SDE’s we want to determine if the
method converges to the true solution, that is, if as we decrease the mesh spacing the numerical solution
approaches the exact solution. The definition of convergence of numerical methods for SDE’s is very
similar to that of ODE’s. However, because of the random component we have more than one way
of analysing convergence. In the first one we are interested in computing the difference between the
approximate and exact solutions at specific mesh points, therefore this type of convergence is path
dependent. In the second we are only interest in convergence in distribution, that is, in approximating
the expectations of the Ito process. In this section we will follow Higham [16] and Kloeden and Platen
[22].

5.2.1 Strong convergence and consistency

The strong order of convergence gives the rate at which the mean of the errors decreases as the time
step tends to zero. In our numerical experiences we are interested in the error only at maturity, T .

Definition 5.2.1. (Strong convergence). A general time discrete approximation converges strongly to
the solution at time T if

lim

�t!0
E[|X(T )� ˜X(T )|] = 0 (5.9)

where E denotes the expected value and ˜X(T ) is the approximation of X(t) at time t = T computed
with constant step �t.

Further, we denote the error at final time T in the strong sense as

estrong

�t

:= E[|X(T )� ˜X(T )|] (5.10)

In order to be able to compare the accuracy of different numerical schemes we must introduce the
concept of rate of convergence, which is similar to the concept for ODE’s.

Definition 5.2.2. (Strong order of convergence). A general time discrete approximation is said to
strongly converge with order � at time T if there exists a constant C such that

estrong

�t

 C�t� (5.11)

Note that when the diffusion coefficient is zero and the initial value is deterministic, the above defi-
nition is reduced to convergence criterion for ODE’s. In fact the convergence criterion for SDE’s is just
a generalisation of the convergence criterion for ODE’s.

It can be show that under conditions of theorem 2.2.5 on a and b , the family of Euler schemes has a
strong order of convergence of 1

2 .

Now that we have studied the accuracy of the numerical schemes, we wish to study the consistency
of the schemes, just like we would for ODE’s, that is, we want to know if the truncation errors vanish as
the time step goes to zero.

Definition 5.2.3. (Strong consistency). A discrete time approximation ˜X corresponding to a time
discretisation (⌧)�t

= {⌧
j

: j = 0, 1, ...} with constant step size �t is strongly consistent if there exists a
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non-negative function c = c(�t) with
lim

�t!0
c(�t) = 0 (5.12)

such that

E

2

4
�����E
 

˜X
j+1 � ˜X

j

�t

����F⌧

j

!
� a(⌧

j

, ˜X
j

)

�����

2
3

5  c(�t) (5.13)

and

E

 
1

�t

���� ˜Xj+1 � ˜X
j

� E
⇣
˜X
j+1 � ˜X

j

��F
⌧

j

⌘
� b(⌧

j

, ˜X
j

�W
j

)

����
2
!

 c(�t) (5.14)

for all fixed values ˜X
j

= x and j = 0, 1, ... and where {F
⌧

, ⌧ � 0} is a preassigned increasing family of
&-fields.

Condition (5.13) requires that the difference between the mean of the increment of the approximation
and that of the Ito process converge to zero. In fact, when the random coefficient is zero, this is equivalent
to the definition of consistency in the deterministic case. Condition (5.14) says that the variance of the
difference between the random parts of the approximation and the Itô process should also converge to
zero. This means that strong consistency gives an indication of the pathwise closeness.

5.2.2 Weak convergence and consistency

The strong order of convergence is quite demanding to implement, as it requires that the whole path
is known. However, we do not always need that much information, if we are interested, for instance, in
just knowing the probability distribution of the solution X(t). In this case it would suffice to know the
rate the at which error of the means decreases, as the time step tends to zero.

Definition 5.2.4. (Weak convergence). A method has weak convergence at time T if

lim

�t!0
|E(f(X(T )))� E(f( ˜X(T )))| = 0 (5.15)

for all functions f in the polynomial class. Moreover, f needs to be smooth and display polynomial
growth.

Like we did for the strong convergence we define the error at the final time T as

eWeak

�t

:= |E[f(X(T ))]� E[f( ˜X(T ))]| (5.16)

Definition 5.2.5. (Weak order of convergence). A method is said to weakly converge with order � at
time T if there exists a constant C such that

eWeak

�t

 C�t� (5.17)

It can be shown that the family of Euler methods has weak order of convergence 1, if the conditions
on a and b, of theorem 2.2.5, are met.

As we did in the strong case, we now give a definition of weak consistency.

Definition 5.2.6. (Weak consistency). A discrete time approximation ˜X corresponding to a time dis-
cretisation (⌧�t

= {⌧
j

: j = 0, 1, ...}) with constant step size �t is weakly consistent if there exists a
non-negative function c = c(�t) with

lim

�t!0
c(�t) = 0 (5.18)
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such that

E

2

4
�����E
 

˜X
j+1 � ˜X

j

�t

���F
⌧

j

!
� a(⌧

j

, ˜X
j

)

�����

2
3

5  c(�t) (5.19)

and

E

0

@
�����E
✓

1

�t
(

˜X
j+1 � ˜X

j

)(

˜X
j+1 � ˜X

j

)

>
����F⌧

j

◆
� b(⌧

j

, ˜X
j

)b(⌧
j

, ˜X
j

)

>

�����

2
1

A  c(�t) (5.20)

for all fixed values ˜X
j

= x and j = 0, 1, ... and where {F
⌧

, ⌧ � 0} is a preassigned increasing family of
&-fields and where > denotes the transpose of the vector.

It is worth noting that condition (5.19) is the same as condition (5.13) in the definition of strong con-
sistency. However, condition (5.20) is different from condition (5.14) as it only requires the variance of the
increment of the approximation to be close to the variance of the Itô process, while the definition of strong
consistency required that the variance of the difference between the increments of the approximation and
the Itô process vanish.

5.3 Milstein method

The Milstein’s method uses Itô’s lemma to add the second order term to the Euler-Maruyama scheme
and increase the approximation’s accuracy to 1. It has both strong and weak order of convergence equal
to 1, under the usual assumptions on a and b, which means that it will converge to the true solution
faster than the Euler-Maruyama method, as the time step goes to zero.

The Milstein’s method is also applied to an equation of the form (5.1). The method takes the form

X
j

= X
j�1 + a(⌧

j�1, Xj�1)�t+ b(⌧
j�1, Xj�1)�W

j

+

1

2

b(⌧
j�1, Xj�1)b

0
(⌧

j�1, Xj�1)
⇥
�W 2

j

��t
⇤

(5.21)

where b0 =
@b

@X

In practice the Milstein scheme is just a variation of the Euler-Maruyama method in which we add the
term 1

2bb
0
[�

2W
j

��t]. And like we had for the Euler-Maruyama we can also have an implicit Milstein
scheme. However, for the same reasons, we will only consider a semi-implicit scheme.

X
j

= X
j�1 + a(⌧

j

, X
j

)�t+ b(⌧
j�1, Xj�1)�W

j

+

+

1

2

b(⌧
j�1, Xj�1)b

0
(⌧

j�1, Xj�1)
⇥
�W 2

j

��t
⇤ (5.22)

where b0 =
@b

@X
.

As with the Euler-Maruyama schemes we can also define a family of semi-implicit Milstein schemes

X
j

= X
j�1 + [(1� ✓)a(⌧

j

, X
j

) + ✓a(⌧
j�1, Xj�1)]�t+ b(⌧

j�1, Xj�1)�W
j

+

+

1

2

b(⌧
j�1, Xj�1)b

0
(⌧

j�1, Xj�1)
⇥
�W 2

j

��t
⇤ (5.23)

where again ✓ 2 [0, 1] is the degree of implicitness. When ✓ = 0 we recover the explicit scheme (5.21),
when ✓ = 1 we obtain the fully semi-implicit scheme (5.22) and when ✓ =

1
2 we obtain the generalisation

of the deterministic trapezoidal method.
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5.4 Numerical stability

So far we have seen the accuracy of the Euler-Maruyama and Milstein schemes. Now we are interested
in seeing the solution behaviour in the long term as well as its sensitivity to small changes in the initial
values. Recall that usually, when we talk about stability, we talk about the stability of an equilibrium
position, i.e. X(t) ⌘ 0. Following Higham [16] we will define two types of stability and we will restrict
our attention to the linear SDE

dX(t) = aX(t)dt+ bX(t)dW (t) (5.24)

where a and b are allowed to be complex.
For X0 6= 0 with probability 1, we define mean square stability as

lim

t!1
E
⇥
X(t)2

⇤
= 0 (5.25)

Note that the solution of equation (5.24) is given by

X(t) = X(0)e(a�
1
2 b

2
)

t+bW (t) (5.26)

So, it is easy to verify that for the linear test equation (5.24), (5.25) is equivalent to saying that a

and b of equation (5.24) satisfy Re(a) + 1
2 |b|

2 < 0.
For X0 6= 0 with probability 1 we define asymptotic stability as

lim

t!1
|X(t)2| = 0, with probability 1 (5.27)

Similarly, considering the linear test equation (5.24), (5.27) is equivalent to saying that the solution
of equation (5.24) satisfies Re

�
a� 1

2b
2
�
< 0.

Further, by looking at both definitions, (5.25) and (5.27), it is straightforward that mean-square sta-
bility implies asymptotic stability, but not the other way around.

Now that we have seen what conditions are necessary for equation (5.24) to be mean-square stable
and asymptotic stable, we are interested in finding conditions that ensure that the numerical methods
are also stable. Since explicit methods are usually more unstable than implicit methods, we will focus
on the stability analysis of the explicit methods only. Recall from ODE’s that in order to a numerical
scheme to be stable, both the differential equation and the numerical scheme have to be stable. The
same applies for SDE’s. So, now we assume that a and b are such that the solution of (5.24) is mean-
square and asymptotic stable. Applying the explicit Euler-Maruyama scheme (5.3) to equation (5.24)
and using simple properties of the expected value we get the following condition on a and b, for which
the Euler-Method is mean-square stable

lim

j!1
E
⇥
X2

j

⇤
= 0 , |1 + a�t|2 + |b|2�t < 1 (5.28)

Finding the conditions for which the Euler-Maruyama method is asymptotic stable requires the appli-
cation of the strong law of large numbers and the law of iterated logarithm, which leads to the following
condition

lim

j!1
|X2

j

| = 0, with probability 1 , E
h
log |1 + a�t+ b

p
�tN (0, 1)|

i
< 0 (5.29)

For a more detailed explanation on how to derive the above condition, see Higham [?]. Now we derive
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conditions for the stability of the Milstein method. Similarly to what we did for the Euler-Maruyama
scheme, we apply the explicit Milstein method (5.21) to equation (5.24) and using simple properties of
the expected value we get

lim

j!1
E
⇥
X2

j

⇤
= 0 , |1 + a�t|2 + |b|2�t < 1 (5.30)

which is the same condition as in the Euler-Maruyama scheme. In order to the Milstein scheme to be
asymptotic stable, the following condition has to hold

lim

j!1
|X2

j

| = 0, with probability 1 , E


log |1 + a�t+ b

p
�tN (0, 1) +

1

2

b2
p
�tN (0, 1)|

�
< 0 (5.31)

5.5 Numerical experiments

In this section we apply the Euler-Maruyama (5.3) and Milstein (5.21) methods to the Black-Scholes
asset model equation (2.18).

The matlab codes used for the numerical experiments carried out in this section are based on the ones
used in Higham [16] but modified for the Black-Scholes equation. The Brownian motion was discretised
as discussed in 5.1, i.e. �W =

p
�tz

i

. The variables z
i

were computed using the pseudorandom generator
randn from Matlab, which produces an independent pseudorandom number from the standard normal
distribution. To generate the random paths we created an array with dimensions 1⇥N using randn(1, N)

and scaled by
p
�t. In order to be able to repeat the experiments, Matlab allows to set the initial state of

the random number generator. This means that by using the same initial state, the same pseudorandom
sequence is generated.

Figure 5.1 shows the true and the approximate solution of equation (2.18) using the Euler-Maruyama
and Milstein methods. The Brownian motion is sampled on the interval [0, 1] and has a time step of
�t = 2

�8, while the time step for the approximations is �t = 2

�7. The values of the parameters are
µ = 0.06, � = 0.25 and S0 = 50.

(a) True solution and Euler-Maruyama approximation (b) True solution and Milstein approximation

Figure 5.1: True solution (in red) and approximations (in blue) using Euler-Maruyama and Milstein
methods.
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5.5.1 Order of convergence

Now our goal is to experimentally confirm the order of convergence of these numerical methods.
To test strong convergence, we fix the spacing intervals for the Brownian motion and use eight different

time steps �t = 2

p�1�t for the numerical methods, with p ranging from 1 to 8. The Brownian motion is
sampled on the interval [0, 1] and has a time step of �t = 2

�11. The values of the parameters we used
are µ = 0.06, � = 0.25, S0 = 50 and K = 100. Because it is computationally heavy to compute the
strong convergence, as it has to store the whole path and not just the end point, we only sample over
5000 paths, which we denote by M .

The errors were computed as in (5.10). For the true solution we used equation (2.22), and computed
it for each random path.

Table 5.1 clearly shows a strong order of convergence of 1
2 for the Euler-Maruyama and an order of

1 for the Milstein method. In fact, Euler-Maruyama requires cutting the time step by a factor of 4 to
reduce the error to half whereas Milstein only requires cutting it by a factor of 2.

Table 5.1: Strong convergence of Euler-Maruyama and Milstein schemes for µ = 0.06, � = 0.25,
S0 = 50, T = 1 and M = 5000

�t Error values Error values
Euler-Maruyama Milstein

2

�4 0.466616 0.041683
2

�5 0.336610 0.021142
2

�6 0.236714 0.010645
2

�7 0.167614 0.005340
2

�8 0.117789 0.002685
2

�9 0.083629 0.001338
2

�10 0.058646 0.000673
2

�11 0.041627 0.000334

To test weak convergence we only need the end points of the sample paths, so we compute them all
simultaneously. We compute 500 000 paths.

Since weak convergence only requires the average of the solution, one way to compute the average of
the true solution would be to simply use the fact that E[S(T )] = S0e

rT , where E denotes the expected
value, which is the approach used by Higham in [16]. However, in our experiments we chose to compute
the true solution, by using equation (2.22), for each random path (simultaneously), and then take the
average. The reason for this was the fact that using E[S(T )] = S0e

rT required a larger number of sample
paths to obtain convergence than computing the average of the true solution, which increased the com-
putational time.

In table 5.2 we can see that both Euler-Maruyama and Milstein have an experimental weak order of
convergence of 1. Indeed, to reduce the error by half we need to cut the time step by a factor of 2. The
errors were computed as in (5.16) with f(X) = X.
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Table 5.2: Weak convergence of Euler-Maruyama and Milstein schemes for µ = 0.06, � = 0.25, S0 = 50,
T = 1 and M = 500 000

�t Error values Error values
Euler-Maruyama Milstein

2

�4 0.007110 0.006015
2

�5 0.003127 0.003020
2

�6 0.001713 0.001492
2

�7 0.001467 0.000746
2

�8 0.000812 0.000382
2

�9 0.000396 0.000189
2

�10 0.000107 0.000093
2

�11 0.000033 0.000047

Figure 5.2 displays the plotted data of tables 5.1 and 5.2 on a loglog scale. If we consider (5.11) and
(5.17) and the inequalities hold with approximate equality, we can take the logs and obtain, respectively

log(eStrong

�t

) ⇡ log(C) +

1

2

log(�t) (5.32)

log(eWeak

�t

) ⇡ log(C) + log(�t) (5.33)

Expressions (5.32) and (5.33) are represented by the blue asterik. Further, assuming that for some
constants C and q the relations eStrong

�t

= C�tq and eWeak

�t

= C�tq hold, such that

log(eStrong

�t

) = log(C) + q log(�t) (5.34)

and

log(eWeak

�t

) = log(C) + q log(�t) (5.35)

we can build a linear regression using a least squares fit for log(C) and q. These regressions are
represented by the red dashed lines. The green dashed line is a reference slope with the theoretical order
of convergence, which is 1

2 for the strong convergence of the Euler-Maruyama method and 1 in the other
cases.
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(a) Strong convergence - Euler-Maruyama

(q = 0.5003)
(b) Weak convergence - Euler-Maruyama

(q = 1.0217)

(c) Strong convergence - Milstein

(q = 0.9949)
(d) Weak convergence - Milstein

(q = 1.0007)

Figure 5.2: Strong and weak convergence for the Euler-Maruyama and Milstein methods. The green
dashed lines represent the reference slope and the red dashed lines represent the least squares regression.

From the estimated regressions we can further confirm that both the experimental strong (q = 0.5003)
and weak (q = 1.0217) orders of convergence of the Euler-Maruyama method agree with the theoretically
predicted values. Moreover, the Milstein scheme also has both experimental strong (q = 0.9949 and weak
(q = 1.0007) orders of convergence in good accordance with the theoretical values.

5.5.2 Numerical stability

We now want to experimentally test the numerical stability of the explicit Euler-Maruyama and
Milstein schemes. For our test equation we will use

dS
t

= µS
t

dt+ �S
t

dW
t

(5.36)

where µ and � are constant real parameters. As we have seen in section 5.4, the equilibrium solution
of the SDE is asymptotically stable if

µ� 1

2

�2 < 0 (5.37)

which allows µ to be positive. However, the equilibrium solution is only stable in the mean-square sense
if

µ+

1

2

�2 < 0 (5.38)
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For this reason we will verify the stability of the schemes using µ > 0 for the asymptotic sta-
bility and µ < 0 to test mean-square stability. Further, in order to the explicit Euler-Maruyama
scheme to be stable, in addition to the above mentioned conditions, the parameters have to verify
E
h
log |1 + a�t+ b

p
�tN (0, 1)|

i
< 0 for asymptotic stability and |1 + a�t|2 + |b|2�t < 1 for mean-

square stability.
Following Higham [16], to test mean-square stability we solve equation (5.36) with a constant initial

value S0 = 1 over T = [0, 20]. For parameters we chose µ = �2 and � = 0.45, which clearly satisfy con-
dition (5.38). We apply Euler-Maruyama (5.3) to equation (5.36) and sample through 500 000 random
paths using three different step sizes �t = {1, 1

2 ,
1
4}. To test asymptotic stability we chose µ = 0.01 and

� = 0.45, which satisfy condition (5.37) but not (5.38). Since asymptotic stability concerns a probability
1 event we consider only one random path on T = [0, 1000] and used the same three time steps for the
mean-square stability.

Figure 5.3 shows the test of mean-square and asymptotic stability for the explicit Euler-Maruyama
method.

Figure 5.3: Test for mean-square and asymptotic stability of explicit Euler-Maruyama method

From figure 5.3 it is clear that condition (5.28) is only satisfied for the smaller time steps, so the
Euler-Maruyama method is only stable in the mean square sense for �t 2 { 1

2 ,
1
4}. On the other hand, all

the time steps seem to satisfy condition (5.29), so the solution seems to approach zero for all the time
steps.

To test the stability of the Milstein scheme we chose the same test parameters and initial condition.
As the condition for asymptotic stability of the scheme is the same as that of Euler-Maruyama scheme,
it is only natural that for the same choice of parameters, the method is stable as well. In what concerns
asymptotic stability, the Milstein scheme is also stable for all the time steps.
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Figure 5.4: Test for mean-square and asymptotic stability of explicit Milstein method

5.6 Monte Carlo method for European option pricing

The idea of the Monte Carlo method when used in option pricing is to estimate the value of an option
by simulating a large number of sample values of S

T

, calculate the payoffs and find the estimated option
price as the average of the discounted simulated payoffs. In fact, according to the law of large numbers
this average will converge to the exact option value. To approximate the price of the underlying asset at
maturity, S

T

, we will implement Euler-Maruyama and Milstein schemes.

In option pricing, the Monte Carlo method uses the risk neutral valuation, that is, uses µ = r. We
have already discussed an argument using replicating strategies, however this involves many calculations
so now we will see a simpler approach in which we use a change in probability measure to make the stock
earn the risk-free rate in mean. It is worth noticing that in this approach we do not assume that the
investors are risk neutral, here the idea is that risk premium adjustments are reflected in the differences
between the risk-neutral probabilities and the "real world" probabilities. Actually, Girsanov’s theorem
A.0.2 allows us to account for the risk premiums of the investors in the Brownian motion process itself
and see this as a new Brownian motion under the change of probability measure. We denote by P the
probability measure of the "real" world and by Q the risk neutral probability measure. Therefore, under
the risk neutral measure, the value of an option at time t is given by

V (S
t

, t) = e�r(T�t)EQ
[h(S

T

, T )] (5.39)

where h(S
T

, T ) is the expected payoff of the option. Under the new probability measure the dis-
counted price of the option is a martingale, which is why it is also called equivalent martingale measure.

It is worth noting that the way (5.39) is defined, is only valid when interest rates are independent of
the price of the underlying asset, because when they are dependent they must be estimated as well, and
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therefore equation (5.39) should be

V (S
t

, t) = EQ
[h(S0, 0)] (5.40)

where EQ
[h(S0, 0)] is the expected discounted payoff under the risk neutral measure. In fact, equations

(5.39) and (5.40) are equivalent when the interest rate is constant or depends only on time.

5.6.1 Constant parameters

We start by introducing Monte Carlo simulations for the classic Black-Scholes asset model, in which
the drift and diffusion coefficients are constant, although we will later simulate models with time and
asset price dependent coefficients. Further, we will restrict our attention to vanilla European call options
only, as the results for put options can be easily derived using the put-call-parity (2.3).

Consider the asset price model defined by the following stochastic differential equation

dS
t

= rS
t

dt+ �S
t

dW
t

(5.41)

where r is the constant expected return on the asset under the risk neutral valuation, � is the constant
volatility and W is a Brownian motion.

We have just seen that the value of a call option at time t, with constant interest rate, is just its
payoff at the maturity discounted to time t under the risk neutral measure. So, it suffices to know the
value of the option at its expiration and discount that value with the factor e�r(T�t) to obtain the price
of the option. In this work we are interested in knowing the price of the option at the present, that is,
for t = 0, so expression (5.39) simplifies to

V (S0, 0) = e�rTEQ
[max{S(T )�K, 0}] (5.42)

where EQ
[max{S(T )�K, 0}] is the expected payoff of the call under the risk neutral measure.

To estimate the expected payoff of the option at the maturity we take the arithmetic mean

¯h(S
T

, T ) =
1

M

MX

i=1

h(Si,L

T

, T ) (5.43)

where h is the payoff of the option and Si,L

T

is the approximate value of S
T

over the i-th sample path
using L time steps.

In this thesis the Monte Carlo algorithm for simulating the price of a European call option uses Euler-
Maruyama or Milstein methods to approximate the price of the underlying stock. Before presenting
the algorithm we will first consider the discretisation of equation (5.41). Applying the Euler-Maruyama
scheme (5.3) to equation (5.41), we get the following discretisation

S
j

= S
j�1 + rS

j�1�t+ �S
j�1

p
�tz

i

, j = 1, 2, ..., L and i = 1, ...,M (5.44)

where z
i

is a random variable sampled from N (0, 1), L is the number of time steps and M is the
number of sample paths.

Applying the Milstein scheme (5.21) to equation (5.41) the discretisation is as follows

S
j

= S
j�1 + rS

j�1�t+ �S
j�1

p
�tz

i

+

1

2

�2S
j�1

h
(

p
�tz

i

)

2 ��t
i
, j = 1, 2, ..., L and i = 1, ...,M

(5.45)
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Algorithm 4 is a Monte Carlo algorithm to simulate the price of a vanilla European call, assuming
that the behaviour of the asset price is described by equation (5.41). For the approximation of the asset
price at each time step we can use equation (5.44) or (5.48).

Algorithm 4 Monte Carlo for European option pricing with constant volatility and interest rate

1. Define r, �, T , L, S0, �t, K

1: for j = 1 : L do
2: Compute M random paths of a Brownian motion
3: Implement Euler-Maruyama or Milstein methods to approximate the values S

i

(T ),
4: i = 1, 2...,M , for each random path
5: end for

2. Compute the payoff of the option at the maturity h
i

(Si

T

, T ) = max{Si

T

� K, 0} for each random
path i = 1, 2, ...,M

3. Approximate the expected value of h(S
T

, T ) by calculating the average as in equation (5.43)

4. Calculate the present value of the estimator of step 3 to obtain the price V of the option: ¯V (S0, T ) =

e�rT

¯h(S
T

, T )

Error and rate of convergence

The estimator given in equation (5.43) has two types of error associated with it: a statistical error
and a discretisation error. The first one is a consequence of the central limit theorem and decreases at
the rate O(1/

p
M) (see [14]). In fact, the standard error of the simulation estimator is �/

p
M , where �

is the standard deviation of the stock price. The second error comes from the fact that we are discretis-
ing a continuous time process. Since we are pricing European options and these are path independent,
because the price for the buyer depends exclusively on the terminal price, we are only interested in weak
error estimates, which are given by |E[V (S

T

)] � E[V (Si,n

T

)]|. Hence, the Monte Carlo method using
Euler-Maruyama or Milstein methods with weak order of convergence, has an order of convergence of
O(1/

p
M) +O(�t), where �t is the time step used in the discretisation scheme.

We run algorithm 4 for different values of M in order to experimentally verify that the standard error
of the simulation estimator �/

p
M decreases at the rate of O(1/

p
M). Table 5.3 displays the values of

the call options obtained by the Euler-Maruyama and Milstein methods and the standard error, for the
different values of M . The values of the parameters used are � = 0.3, r = 0.07, S0 = 80, K = 100 and
T = 1. For the time step we used 2

�10.
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Table 5.3: Monte Carlo method convergence rate

M Euler-Maruyama Weak error Milstein Weak error �p
M

100 7.8484 0.0003343 7.8487 0.0000304 0.03000
400 6.1288 0.0017259 6.1305 0.0000230 0.01500
1600 5.7885 0.0006906 5.7892 0.0000229 0.00750
6400 5.3594 0.0003690 5.3597 0.0000220 0.00375
25600 5.0497 0.0000647 5.0497 0.0000212 0.00188
102400 4.9466 0.0000329 4.9466 0.0000210 0.00094
409600 5.0088 0.0000572 5.0089 0.0000213 0.00047
1638400 5.0172 0.0000341 5.0172 0.0000214 0.00023

where the standard error is given by �/
p
M .

It is clear that when we multiply M by 4, �/
p
M decreases by half, which is theoretically correct.

5.6.2 Time-dependent parameters

The Monte Carlo method described in the previous section for constant parameters can be easily
extended to time-dependent parameters. In fact, the algorithm is very similar and for this reason it is
not shown here. The main difference is that as the interest rate and the volatility are functions of time,
we need to compute them at each time step. It is also worth noting that in order to discount the option
price to the present we must use as discount factor e

R
T

0 r(x)dx and therefore we need to solve the integral
in the exponent. The present value of the option is therefore given by

V (S0, 0) = e�
R

T

0 r(x)dxEQ
[h(S

T

, T )] (5.46)

where EQ
[h(S

T

, T )] is approximated as (5.43). Note that the integral in exponent does not depend
on S so we do not need to compute its expected value.

The time-dependent asset model is described by the following equation

dS
t

= r
t

S
t

dt+ �
t

S
t

dW
t

(5.47)

where r
t

and �
t

are deterministic, continuous functions of time. Applying the Euler-Maruyama scheme
(5.3) to equation (5.47) we obtain the following discretisation

S
j

= S
j�1 + r

j�1Sj�1�t+ �
j�1Sj�1

p
�tz

i

, j = 1, 2, ..., L and i = 1, ...,M (5.48)

where z
i

is a random variable sampled from N (0, 1), L is the number of time steps, M is the number
of sample paths, r

j

= r(t
j

) and �
j

= �(t
j

).
Applying the Milstein scheme (5.21) to equation (5.47) the discretisation is as follows

S
j

= S
j�1 + r

j�1Sj�1�t+ �
j�1Sj�1

p
�tz

i

+

1

2

�2
j�1Sj�1

h
(

p
�tz

i

)

2 ��t
i
,

j = 1, 2, ..., L and i = 1, ...,M (5.49)

Recall that we concluded section 3.2.1 by discussing why would it be interesting to consider time-
dependent parameters with jump discontinuities and that the general theory for SDE’s would not apply
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in that case. In fact, we have seen in section 2.2.3 that the drift and diffusion coefficients have to be
globally Lipschitz, which clearly is not the case when we allow these functions to be discontinuous. As
this condition is not satisfied, we cannot guarantee that the Euler and Milstein schemes will converge.
Nonetheless we will see this experimentally in section 6.2.3. Although the algorithm is not included, it is
important to explain how the price of the option is discounted to the present when we consider coefficients
with a jump discontinuity. Since a jump discontinuity in the drift coefficient means that we will have two
different values for the interest rate, we will have to discount the price in two steps, that is,

V (S0, 0) =

2Y

n=1

e�r

n

(t
n

�t

n�1)EQ
[h(S

T

, T )] (5.50)

5.6.3 Time and asset price dependent parameters

We now consider a more complex model, where both the expected rate on return and the volatility
depend on time and on the price of the underlying stock. The asset model that describes the dynamics
of the underlying asset is the following

dS
t

= r(t, S
t

)S
t

dt+ �(t, S
t

)S
t

dW
t

(5.51)

where r(t, S
t

) and �(t, S
t

) are continuous, deterministic functions of time and of the underlying asset
price.

We will approach this equation in two different ways. We will start by discretising it using explicit
Euler-Maruyama and Milstein schemes and after we will use semi-implicit schemes with ✓ =

1
2 .

Applying the Euler-Maruyama scheme (5.3) to equation (5.51) we obtain the following discretisation

S
j

= S
j�1 + r(⌧

j�1, Sj�1)Sj�1�t+ �(⌧
j�1, Sj�1)Sj�1

p
�tz

i

, j = 1, 2, ..., L and i = 1, ...,M (5.52)

where z
i

is a random variable sampled from N (0, 1), L is the number of time steps and M is the
number of sample paths.

Applying the Milstein scheme (5.21) to equation (5.51) the discretisation is as follows

S
j

= S
j�1 + r(⌧

j�1, Sj�1)Sj�1�t+ �(⌧
j�1, Sj�1)Sj�1

p
�tz

i

+

+

1

2

�(⌧
j�1, Sj�1)

@�

@S
S
j�1

h
(

p
�tz

i

)

2 ��t
i
, j = 1, 2, ..., L and i = 1, ...,M

(5.53)

Now that the interest rate and the volatility depend on the price of the underlying asset, we will have
different values for the interest rate and for the volatility at each time step and for each different sample
path. As we have previously discussed, this means that it is no longer equivalent to compute the present
value of the option as the discounted expected payoffs or as the expectation of the discounted payoffs,
because the discount rate has to be estimated as well. Therefore in this model, we compute the present
value of the option as the expected value of the discounted payoffs, that is

V (S0, 0) = EQ
[h(S0, 0)] (5.54)

We will now see how we can approximate the expected value in (5.54).
We start by computing the payoff of the option for each sample path

h(Si

T

, T ) = max{Si

T

�K, 0}, i = 1, 2, ...,M (5.55)

50



where M is the number of sample paths.
Since the discount rates will be different for each sample path we need to discount the payoff for each

sample path one at time, using the corresponding discount rate for each time interval. The payoffs are
discounted to the present in the following way

h(Si

0, 0) =

L�1Y

n=0

e�r

n

(t
n+1�t

n

)h(Si,L

T

, T ), i = 1, 2, ...,M (5.56)

where L is the number of time steps. Only when the payoff of the option is discounted to the present,
for each sample path, can we take the mean, yielding

V (S0, 0) =
1

M

MX

i=1

h(Si,L

0 , 0) (5.57)

where Si,L

T

is the approximate value of S
T

over the i-th sample path using L time steps. Note that
this is a different estimator from the estimator (5.43) introduced in section 5.6.1.

We now consider the semi-implicit schemes. Recall that when there is implicitness in the coefficients
it requires to solve an additional equation at each time step, which is computationally heavier. One
approach is to use a predictor-corrector scheme. We start by defining the predictor, which is the solution
of an explicit scheme at level n, which in our case is the explicit Euler-Maruyama scheme (5.3). Applying
this scheme to equation (5.51) leads to the following discretisation

¯S
j

= S
j�1 + r(⌧

j

, S
j

)S
j

�t+ �(⌧
j�1, Sj�1)Sj�1

p
�tz

i

(5.58)

For the corrector scheme we use the generalisation of the deterministic trapezoidal method, which is
the scheme (5.7) with ✓ =

1
2 . Applying it to equation (5.51) yields

S
j

= S
j�1 +

1

2

⇥
r(⌧

j

, ¯S
j

)

¯S
j

+ r(⌧
j�1, Sj�1)Sj�1

⇤
�t+ �(⌧

j�1, Sj�1)Sj�1

p
�tz

i

(5.59)

In our experiments we will also apply the predictor-corrector method using the explicit Milstein
method and the corresponding generalisation of the deterministic trapezoidal method.

Applying the explicit Milstein scheme (5.21) to equation (5.51) we get the predictor scheme

¯S
j

= S
j�1 + r(⌧

j�1, Sj�1)Sj�1�t+ �(⌧
j�1, Sj�1)Sj�1

p
�tz

i

+

+

1

2

�(⌧
j�1, Sj�1)

@�

@S
S
j�1

h
(

p
�tz

i

)

2 ��t
i (5.60)

and applying the family of semi-implicit Milstein schemes (5.23) with ✓ =

1
2 we get the corrector

scheme

S
j

= S
j�1 +

1

2

⇥
r(⌧

j

, ¯S
j

)

¯S
j

+ r(⌧
j�1, Sj

� 1)S
j�1

⇤
�t+ �(⌧

j�1, Sj�1)Sj�1

p
�tz

i

+

+

1

2

�(⌧
j�1, Sj�1)

@�

@S
S
j�1

h
(

p
�tz

i

)

2 ��t
i (5.61)

Algorithm 5 is Monte Carlo algorithm to simulate the price of a vanilla European call, using Euler or
Milstein predictor-corrector scheme to approximate the value of the underlying asset at each time step.
Here function f is used to designate the predictor scheme, which can be (5.58) or (5.60), and function g

designates the respective corrector schemes (5.59) and (5.61).
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Algorithm 5 Monte Carlo for option pricing when r(t, S
t

) and �(t, S
t

) are deterministic functions of
time and of the stock price

1. Define T , L, S0, �t, K, M

1: for i = 1 : M do
2: Define dW =

p
�tz

i

3: Initialize t = 0, W = 0, Si

temp

= S0, �0 = �(S0, t0) and r0 = r(S0), t0

4: for j = 1 : L do
5: Define t = t+�t, W = W+dW , ¯Si

j

= f(Si

temp

), Si

j

= g( ¯Si

j

, Si

temp

), abserror=| ¯Si

j

�Si

j

| > ✏

6: while abserror> ✏ do
7: �

j

= �( ¯Si

j

, t), r
j

= r( ¯Si

j

, t)

8:

¯Si

j

= Si

j

, Si

j

= g( ¯Si

j

, Si

temp

), abserror=| ¯Si

j

� Si

j

|
9: end while

10: Si

temp

= Si

j

11: end for
12: Compute the payoff of the option, h

i

(

˜Si

T

, T ) = max{ ˜Si

T

�K, 0} for each sample path
13: Discount h

i

(

˜Si

T

, T ) at each time step, using the corresponding value of r for that time step,
until the present time.

14: end for

2. Take the mean of the discounted payoffs to get the price V of the option : ¯V (S0, 0) =

1
M

P
M

i=1 h(S
i,n

0 , 0)

5.6.4 Heston model

In the Heston model we need to discretise not only the stochastic process {S
t

}
t�0 but also the

stochastic process {⌫
t

}
t�0.

Applying the Euler-Maruyama scheme (5.3) to equations equations (3.64) and (3.65) we get the
following discretisations

S
t

= S
t�1 + rS

t�1�t+
p
⌫
t�1St�1

p
�tZs

t

(5.62)

⌫
t

= ⌫
t�1 + k(✓ � ⌫

t�1)�t+ ⇠
p
⌫
t�1

p
�tZ⌫

t

(5.63)

where {Zs

t

}
t�0 and {Z⌫

t

}
t�0 are standard normal random variables with correlation ⇢. These variables

can be expressed as a function of independent standard random variables

Zs

t

= Z1
t

(5.64)

Z⌫

t

= ⇢Z1
t

+

p
1� ⇢2Z2

t

(5.65)

where {Z1
t

}
t�0 and {Z2

t

}
t�0 are two independent standard normal random variables. Writing the

variables in this form will be useful in the implementations of the schemes.

52



Applying the Milstein scheme (5.21) to equations (3.64) and (3.65) we get the following discretisations

S
t

= S
t�1 + rS

t�1�t+
p
⌫
t�1St�1

p
�tZs

t

+

1

2

⌫
t�1St�1�t

⇥
(Zs

t

)

2 � 1

⇤
(5.66)
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⇥
(Z⌫

t

)

2 � 1

⇤
(5.67)

The discretisation of the Heston model gives rise to several issues. First, when simulating the bivariate
process (S

t

, ⌫
t

), as ⌫
t

follows a Cox–Ingersoll–Ross (CIR) process (see [17]), the use of discretisation
schemes such as Euler and Milstein, might generate negative values of ⌫

t

. The fullfilement of the condition

2k✓

⇠2
> 1 (5.68)

known as the Feller condition, ensures that ⌫ is strictly positive. This condition is essential to obtain
good discretisations, however, in practice it is rarely satisfied because ⇠ usually takes large values [?].
One approach to overcome this problem is to fix the negative values of ⌫ as they arise. There are at least
two ways to do this: the absorption assumption, where if ⌫ < 0 then ⌫ = 0 or the reflection assumption,
where if ⌫ < 0 then ⌫ = |⌫|. The drawback to the first approach is that it creates zero variances, which
is not realistic. The drawback to the second approach is that it transforms low volatilities into high
volatilities. Nonetheless, in our experiments we will adopt the second approach.

Another issue that arises when we discretise the Heston Model is that it also violates the Lipschitz
condition due to the square root in the diffusion coefficient, which means that the convergence of the
numerical schemes is not guaranteed.

Algorithm 6 provides the basic steps to approximate the price of a European call option using the
Heston model discretised with the Euler-Maruyama or the Milstein schemes.

Algorithm 6 Monte Carlo for option pricing - Heston model

1. Define T , L, S0, �t, K, ⌫0, ✓, k, ⇠, r

1: for j = 1 : L do
2: Compute M random paths of a Brownian motion
3: Generate two independent random variables Z1 and Z2 and define Zs

t

= Z1
t

and Z⌫

t

= ⇢Z1
t

+p
1� ⇢2Z2

t

4: Implement Euler-Maruyama or Milstein methods to approximate the values ⌫
i

(T ) for each
random path

5: Replace ⌫
t

by |⌫
t

| to avoid negative volatilities
6: Implement Euler-Maruyama or Milstein methods to approximate the values S

i

(T ), i =

1, 2...,M , for each random path
7: end for

2. Compute the payoff of the option h
i

(Si

T

, T ) = max{Si

T

�K, 0} for each random path i = 1, 2, ...,M

3. Approximate the expected value h(S
T

, T ) by calculating the average as in equation (5.43)

4. Calculate the present value of the estimator of step 3 to get the price V of the option: ¯V (S0, T ) =

e�rT

¯h(S
T

, T )
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Chapter 6

Numerical experiments

6.1 Finite difference methods for PDE’s

In this section we approximate the Black-Scholes formula in the heat equation form, as described
in section 3.1.4. The idea is to approximate the function u(x, ⌧) and then convert it back to V (S, t) to
recover the price of the option and compute the relative error at t = t = 0. Again, we will only compute
the relative error at the point V (S0, t0).

We start by replicating the numerical experiments carried out in M.M. Fernandes thesis [12, p. 36]
and compare the results, which are displayed on table 6.1. Next we repeat the same experiments for
different values of the parameters. Those results will be later compared to the results obtained using
numerical methods for stochastic differential equations to approximate the price of the underlying asset.

Table 6.1 shows the approximate price of call and put European options as well as the relative errors
at the point V (S0, t0). The values of the parameters are: S0 = 1000, T = 10, r = 0.1, � = 0.4 and
K = 500, 1000 and 1500, which are the same values as the ones used in [12].

The results presented in this section were obtained by implementing the algorithms described in sec-
tion 4.3. Note that the results were not computed by using the put-call-parity (2.3).

In order to be able to compare the three schemes we consider the same mesh spacing for all the
methods, taking into account that the stability condition of the explicit method requires that �  1

2 . In
[12] the steps used were �x = 0.08 and �⌧ = 0.0032 but in this work we considered �x = 0.05 and
�⌧ = 0.001, which might explain the slightly better results.

Like in [12], the best results are the ones obtained with the Crank-Nicolson and explicit schemes,
which is theoretically correct. As discussed in section 4.2, imposing the condition �  1

2 on the implicit
methods is not advantageous because the error in the Crank-Nicolson method will be close to that of the
explicit method.
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Table 6.1: Relative errors in the approximation of the function V using finite differences, for S0 = 1000,
T = 10, r = 0.1, � = 0.4 and K = {500, 1000, 1500}

Scheme Strike Approx. True Relative Approx. True Relative
price call price call price error put price put price error

Explicit
500

835.48443
835.8561

0.000445 19.79759
19.7958

0.000090
Implicit 836.75167 0.001071 19.78241 0.000677

C-Nicolson 836.11744 0.000313 19.79000 0.000294

Explicit
1000

715.19723
715.5869

0.000545 83.45011
83.4664

0.000195
Implicit 716.45353 0.001211 83.42401 0.000507

C-Nicolson 715.82478 0.000332 83.43707 0.000351

Explicit
1500

624.18058
624.5655

0.000616 176.3732
176.3847

0.000065
Implicit 625.45168 0.001418 176.36190 0.000129

C-Nicolson 624.81552 0.000400 176.36753 0.000097

Table 6.2 displays the approximate prices for European call and put options as well as the relative
errors, at the point V (S0, t0). The values of the parameters are the same as the ones used in the next
section to allow comparisons between finite difference schemes and Monte Carlo simulations. In our
choice of parameters we always use T = 1 to allow faster computations, especially when doing Monte
Carlo simulations. For the time and space steps we chose again �⌧ = 0.001 and �x = 0.05, respectively.
Also note that in this second experiment we vary the initial stock price instead of the strike price.

Table 6.2: Relative errors in the approximation of the function V using finite differences, for T = 1,
r = 0.07, � = 0.3, K = 100, and S0 = {80, 100, 120}

Scheme Initial Approx. True Relative Approx. True Relative
stock price call price call price error put price put price error

Explicit
80

5.02058
5.01263

0.001585 18.26275
18.25201

0.000588
Implicit 5.02862 0.003189 18.26121 0.000504

C-Nicolson 5.02441 0.002350 18.26180 0.000536

Explicit
100

15.19732
15.21050

0.000866 8.44019
8.44988

0.001147
Implicit 15.15414 0.003706 8.38503 0.007675

C-Nicolson 15.17587 0.002277 8.41275 0.004394

Explicit
120

30.29774
30.28288

0.000491 3.54131
3.522260

0.005380
Implicit 30.27447 0.000278 3.50365 0.005282

C-Nicolson 30.28600 0.000103 3.52239 0.000036

It is worth noticing that when comparing the relative errors from table 6.1 with those from table 6.2,
we see that, despite the space and time steps being the same, the results from table 6.1 are slightly better.
This has to do with the fact that in table 6.2 we used an expiration date of one year, while on table 6.1
we used 10 years. Since the domain of ⌧ is limited, this means that for the approximations on table 6.2
the maximum number of time steps were only 45, while in table 6.1 we were able to compute 800 time
steps.
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6.2 Monte Carlo simulations

6.2.1 Constant parameters

In this section we implement Euler-Maruyama and Milstein methods as Monte Carlo methods to
approximate the price V of a European option, using the algorithm 4 described in section 5.6.1.

Since the payoff of a European option does not depend on the path by which the strike prices are
reached, this type of options are path independent. This means that we are only interested in the value of
the stock at the maturity. This allows us to compute all the sample paths simultaneously and store only
the last value of S, for each path. For this reason it was possible to run 500 000 sample paths without it
being too computationally costly.

The Brownian motion was discretised as in 5.1, i.e. �W =

p
�tz

i

and the variables z
i

were computed
as discussed in 5.5.1, except that in the experiments carried out in this chapter we used the arbitrarily
chosen initial state 10 but we could have used any other state.

Table 6.3 displays the prices of call and put European options approximated using the Euler-Maruyama
(5.3) and the Milstein (5.21) schemes. The weak relative errors are computed as

|E[h(S0, 0)]� E[h( ˜S0, 0)]|
|E[h(S0, 0)]|

(6.1)

where h( ˜S0, 0) is the discounted payoff of the approximated prices of the underlying asset and h(S0, 0)

is the payoff of the exact prices, computed using the exact solution to (5.41) which is given by (2.22). It is
worth noting that we chose to compute the weak errors only, because in order to compute the strong errors,
due to computational costs, we would have to use less sample paths in the approximation of the call. This
would then lead to higher errors and we could wrongly conclude that the finite difference schemes for
the Black-Scholes PDE would produce more accurate results than the Monte Carlo simulations, whereas
with a higher number of sample paths the accuracy of the Monte Carlo simulations would increase.

The values of the parameters are the same as the ones used in section 6.1. Here we are also interested
in analysing how the initial stock price influences the approximation, so we chose three different values
for S0 and fixed the strike price. For the discretisation schemes we used a time step �t = 2

�7.

Table 6.3: Relative errors in the approximation of the function V , for T = 1, r = 0.07, � = 0.3,
K = 100, S0 = {80, 100, 120} and M = 500 000

Scheme Initial Approx True Relative Approx True Relative
stock price call price call price error put price put price error

Euler-M
80

5.02412
5.03275

0.001716 18.2234
18.2289

0.000303
Milstein 5.02731 0.001082 18.2250 0.000215

Euler-M
100

15.23101
15.23283

0.000119 8.4203
8.4182

0.000245
Milstein 15.22552 0.000480 8.4128 0.000642

Euler-M
120

30.32419
30.32099

0.000105 3.5034
3.4956

0.002247
Milstein 30.31428 0.000221 3.4911 0.001265

We observe that the Euler-Maruyama and the Milstein schemes have similar performances. It is also
worth noting that in the approximation of a call option, a smaller initial stock price leads to greater
relative errors, and for a put option the inverse situation happens. We compute the relative error because
it should not be sensitive to the magnitude of the exact solution. Indeed, notice that for a call, a lower
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initial stock price means a lower true value of the option and for a put a lower initial stock price means
a higher true value of the option. Recall that the payoff of a call option is given by (2.1), which means
that for values of S

T

lower than K the option is worthless. Therefore, for a call, the lower the initial
stock price, the more difficult is to profit from the option and hence the option price is lower.

6.2.2 Comparison of results

In this section we compare the results obtained with the finite difference schemes for the Black-Scholes
PDE with the ones obtained with Monte Carlo simulations. These results are displayed in tables 6.2 and
6.3 respectively.

The finite difference schemes and the Monte Carlo methods have similar performances, although the
statistical results from the Monte Carlo simulations seem slightly better. In fact, we used 500 000 sample
paths in the Monte Carlo simulations, which suggests that the error associated with the standard error
should be in the order of 10

�3 and the one associated with the discretisation should be in the order
of 10

�3 as we used a time step of 0.0078. On the other hand, in the finite difference schemes, as we
used a time step of 0.001 and a space step of 0.05, the errors should be in the order of 10�3, even for
the Crank-Nicolson scheme, as the time term becomes too small. However, the Monte Carlo method
converges rather slowly and needs a high number of paths to produce good results. Nonetheless, it allows
to relax some assumptions, such as the constant parameters, as we will see in the next section.

6.2.3 Time-dependent parameters

In this section we drop the Black-Scholes assumption that the parameters are constant. We start
with the simplest model, where we assume that the volatility is a positive deterministic function of time
and then extend this assumption to the interest rate.

Time-dependent volatility

This asset model is a particular case of model (3.53) that we have seen in section 3.2.1. In this model,
however, the stock price follows a stochastic differential equation of the form

dS
t

= rS
t

dt+ �(t)S
t

dW
t

(6.2)

whose explicit solution is given by S
T

= S
t

er(T�t)� 1
2

R
T

t

�

2(x)dx+
R

T

t

�(x)dW
x . As the explict solution de-

pends itself on stochastic integrals, in our numerical experiments we will study the convergence of the
numerical schemes by using an approximation of the true solution with a small time step.

We start by considering a sinusoidal function because market volatility tends to exhibit oscillatory
behaviour. We chose as function �(t) = 0.1 + 0.3t + 0.03 sin(30t) to have 0.1  �  0.3704, which are
reasonable values for the volatility.

Tables 6.4 and 6.5 show the strong and weak errors, respectively, in the approximation of the value
V (S0, t0) of a call option at time t0 = 0, with initial stock price S0 = 80, strike price K = 100 and maturity
T = 1. The approximations were computed for seven different time steps using Monte Carlo simulations
with 5000 sample paths in table 6.4 and 500 000 sample paths in table 6.5. The implementation is carried
out as discussed in section 5.6.2. To approximate the price of the stock at each time step we used the
explicit Euler-Maruyama (5.3) and Milstein (5.21) methods applied to equation (6.2). The first and third
columns show the price of the call computed using each of these methods, respectively.
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As the exact solution is not known, to compute the strong and weak errors we used an approximation
of the true solution using a small time step of 2�11 as the reference solution. The strong error was then
computed as the expectation of the absolute value of the difference of the discounted payoffs for an ap-
proximation with a time step 2

�11 and approximations with time steps �t, where �t = {2�3, 2�4, ..., 2�9}
that is

estrong = E[|h( ˜S0, 0)� h( ˜S0, 0)
�t

]| (6.3)

where h( ˜S0, 0) is the discounted payoff computed using the reference time step of 2�11.
The reference values for the true solution are 3.9247 and 3.9252 for the strong convergence and 4.0065

and 4.0066 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.

As strong convergence is computationally costlier we only sampled through 5000 sample paths. The
weak error was computed over 500 000 sample paths, by taking the absolute value of the difference
between the expected values of the discounted payoffs, for an approximation with a time step 2

�11 and
approximations with time steps �t, where �t = {2�3, 2�4, ..., 2�9}, i.e.

eweak

= |E[h( ˜S0, 0)]� E[h( ˜S0, 0)]
�t| (6.4)

Table 6.4: Strong errors in the approximation of the function V , for T = 1, r = 0.07,
� = 0.1 + 0.3t+ 0.03 sin(30t), S0 = 80 K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 4.1579 0.888660 4.2479 0.823665
2

�4 4.0273 0.556461 4.0738 0.472084
2

�5 3.9720 0.327195 3.9904 0.251241
2

�6 3.9467 0.204558 3.9636 0.127581
2

�7 3.9322 0.127688 3.9429 0.062061
2

�8 3.9270 0.076604 3.9327 0.029086
2

�9 3.9257 0.047783 3.9283 0.013087

Table 6.5: Weak errors in the approximation of the function V , for T = 1, r = 0.07,
� = 0.1 + 0.3t+ 0.03 sin(30t), S0 = 80 K = 100, M = 500 000

Time Euler Weak
Milstein

Weak
step Maruyama error error
2

�3 4.2827 0.276142 4.3480 0.341385
2

�4 4.1499 0.143376 4.1804 0.173759
2

�5 4.0577 0.051156 4.0726 0.065942
2

�6 4.0218 0.015275 4.0295 0.022842
2

�7 4.0120 0.005427 4.0161 0.009499
2

�8 4.0252 0.018716 4.0276 0.021013
2

�9 4.0050 0.001500 4.0058 0.000796

By studying the strong error in table 6.4, we see that the Euler-Maruyama exhibits an experimental
strong order of convergence above 1

2 , because when we cut the time step by a factor of 4 the error reduces
to more than half. On the other hand, in order to reduce the error by half in the Milstein method
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we only need to cut the time step by a factor of 2, which means that the experimental strong order of
convergence of the Milstein method is 1. From table 6.5, an analysis of the weak error suggests that both
the Euler-Maruyama and the Milstein methods also exhibit a weak order of convergence of 1, so both
orders of convergence of the Euler-Maruyama and the Milstein methods agree with the theory.

Figure 6.1 shows the plotted values of the strong and weak errors for the Euler-Maruyama and Milstein
methods on tables 6.4 and 6.5, and an estimated regression using a least squares fit.

(a) Strong convergence - Euler-Maruyama

(q = 0.7047)
(b) Weak convergence - Euler-Maruyama

(q = 1.1315)

(c) Strong convergence - Milstein

(q = 0.9995)
(d) Weak convergence - Milstein

(q = 1.2544)

Figure 6.1: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.4 and 6.5. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

As expected, the estimated regression for the strong convergence of the Euler-Maruyama scheme
has a slope q = 0.7047, which is above the theoretically predicted value and for the Milstein scheme is
q = 0.9995. Furthermore, the estimated regression for weak convergence of the Milstein scheme is also
close to the reference value, with a slope q = 1.2544 slightly above the theoretical value. Moreover, the
estimated regression for the weak convergence of the Euler-Maruyama scheme has a slope q = 1.1315,
which suggests that the experimental weak order of convergence of the method is also slightly above the
theoretical value of 1. Overall, we see that the Milstein method converges faster than the Euler-Maruyama
in both weak and strong sense.

Time-dependent risk-free rate and volatility

We now introduce in the model a new time-dependent parameter, the risk-free rate. In section 3.2.1.
we have seen that in this model the price of the underlying stock follows a stochastic differential equation
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of the form dS
t

= r(t)S
t

dt+�(t)S
t

dW
t

, and that its explicit solution also depends on stochastic integrals.
So, we will once again study the convergence of the numerical methods by using an approximation of the
true solution with a small time step.

We start by considering r(t) and �(t) continuous functions. We used the same function for the volatility
as in the previous model and for the interest rate we also chose a sinusoidal function because the interest
rate can also exhibit oscillatory behaviour. We chose the function r(t) = 0.01 + 0.03t+ 0.03 sin(60t), to
have 0.01  r  0.0309, which are reasonable values for the risk free rate.

Tables 6.6 and 6.7 show the strong and weak errors, repectively, in the approximation of the price
V (S0, t0) of a call option at time t0 = 0, with initial stock value S0 = 80, strike price K = 100 and
maturity T = 1. The approximations were computed for seven different time steps using a Monte Carlo
simulation with 5000 sample paths in table 6.6 and 500 000 sample paths in table 6.7 just like in the
previous model. The price of the underlying asset is also approximated using explicit Euler-Maruyama
and Milstein schemes, that is, using discretisations (5.48) and (5.49), which we discussed in section 5.6.2.
The strong and weak errors are computed as in the previous model.

The reference values for the true solution are 3.0264 and 3.0265 for the strong convergence and 3.0873
and 3.0876 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.

Table 6.6: Strong errors in the approximation of the function V , for T = 1,
r = 0.01 + 0.03t+ 0.03 sin(60t), � = 0.1 + 0.3t+ 0.03 sin(30t), S0 = 80 K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 3.3863 0.799844 3.5017 0.766539
2

�4 3.1081 0.462963 3.1652 0.396126
2

�5 3.0736 0.269586 3.0954 0.213058
2

�6 3.0497 0.171053 3.0676 0.108745
2

�7 3.0354 0.105628 3.0463 0.052480
2

�8 3.0298 0.062341 3.0351 0.024700
2

�9 3.0278 0.039143 3.0300 0.011073

Table 6.7: Weak errors in the approximation of the function V , for T = 1,
r = 0.01 + 0.03t+ 0.03 sin(60t), � = 0.1 + 0.3t+ 0.03 sin(30t), S0 = 80 K = 100, M = 500 000

Time Euler Weak
Milstein

Weak
step Maruyama error error
2

�3 2.6417 0.445632 2.7320 0.355596
2

�4 2.8055 0.281786 2.8480 0.239561
2

�5 2.9468 0.140531 2.9674 0.120144
2

�6 3.0179 0.069379 3.0283 0.059306
2

�7 3.0604 0.026856 3.0661 0.021514
2

�8 3.0968 0.009478 3.0998 0.012216
2

�9 3.0922 0.004896 3.0933 0.005684

Table 6.6 shows an experimental strong order of convergence above the theoretical value 1
2 for the

Euler-Maruyama scheme. On the other hand, the experimental weak order of convergence for the Milstein
method is in good accordance with the theoretical value. From table 6.7 we see that both schemes also
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converge in the weak sense with good accordance with the theoretically predicted values.
The strong and weak errors in tables 6.6 and 6.7, respectively, are plotted in figure 6.2 on a loglog

scale along with a linear regression estimated using a least squares fit, which is represented by the red
dashed line.

(a) Strong convergence - Euler-Maruyama

(q = 0.7213)
(b) Weak convergence - Euler-Maruyama

(q = 1.1321)

(c) Strong convergence - Milstein

(q = 1.0131)
(d) Weak convergence - Milstein

(q = 1.0346)

Figure 6.2: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.6 and 6.7. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

Figure 6.2 further confirms that the experimental strong order of convergence of the Euler-Maruyama
scheme is above the value predicted by theory and that the strong order of convergence for the Mislstein
scheme is as predicted by theory. Indeed, the slope of the estimated linear regression for the strong con-
vergence is q = 0.7213 for the Euler-Maruyama scheme and q = 01.0131 for the Milstein scheme. Further,
the slope of the estimated linear regression, which gives the experimental weak order of convergence, is
q = 1.1321 for the Euler-Maruyama scheme and q = 1.0346 for the Milstein scheme. This means that,
for both schemes, the experimental orders of convergence are in good accordance with the theory.

We now assume that both r and � have a jump discontinuity at t = 0.3.

r(t) =

8
<

:
0.04 t < 0.3

0.03 t � 0.3
(6.5)

�(t) =

8
<

:
0.2 t < 0.3

0.3 t � 0.3
(6.6)
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Tables 6.8 and 6.9 display the strong and weak errors, respectively, in the approximation of the price
V (S0, t0) of a call option at time t0 = 0, with initial stock value S0 = 80, strike price K = 100 and
maturity T = 1. The approximations were computed for seven different time steps using a Monte Carlo
simulation with 5000 sample paths in table 6.6 and 500 000 sample paths in table 6.7 just like in the
previous models. The price of the underlying asset is also approximated using explicit Euler-Maruyama
and Milstein schemes, that is, using discretisations (5.48) and (5.49), which we discussed in section 5.6.2.
The strong and weak errors are computed as in (6.3) and (6.4), respectively.

The reference values for the true solution are 2.7032 and 2.7036 for the strong convergence and 3.4279
and 3.4281 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.

Table 6.8: Strong errors in the approximation of the function V , for T = 1 , S0 = 80 K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 2.5401 0.354397 2.6222 0.255246
2

�4 2.5927 0.315582 2.6361 0.252661
2

�5 2.6278 0.281531 2.6431 0.251627
2

�6 2.6744 0.183233 2.6849 0.155290
2

�7 2.6942 0.092611 2.7010 0.061147
2

�8 2.6992 0.075368 2.7019 0.061106
2

�9 2.7004 0.066978 2.7024 0.061096

Table 6.9: Weak errors in the approximation of the function V , for T = 1 , S0 = 80 K = 100,
M = 500 000

Time Euler Weak
Milstein

Weak
step Maruyama error error
2

�3 3.1713 0.256658 3.2370 0.191150
2

�4 3.3705 0.057423 3.4014 0.026699
2

�5 3.3818 0.046191 3.3976 0.030497
2

�6 3.3869 0.041042 3.3948 0.033365
2

�7 3.4225 0.005486 3.4269 0.001259
2

�8 3.4479 0.019969 3.4502 0.022103
2

�9 3.4466 0.018628 3.4475 0.019328

As discussed in section 3.2.1, with the interest rate and the volatility as discontinuous functions, there
is no guarantee that the discretisation methods will converge. In fact, by looking at the results of tables
6.8 and 6.9, even when we consider smaller time steps, the methods do not seem to converge in the weak
sense nor in the strong sense, except for the weak convergence in the Euler-Maruyama method. The
strong and weak errors are plotted on Figure 6.3, as well as the usual estimated linear regression, which
further supports this conclusion. Besides the results shown in this work, we also tested the convergence
for different initial states of the random number generator to be sure that the methods did not fail to
converge only for a specific random sequence.

Figure 6.2 shows the plotted strong and weak errors in tables 6.6 and 6.7, respectively, on a loglog
scale along with a linear regression estimated using a least squares fit, which is represented by the red
dashed line.
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(a) Strong convergence - Euler-Maruyama

(q = 0.4624)
(b) Weak convergence - Euler-Maruyama

(q = 0.6241)

(c) Strong convergence - Milstein

(q = 0.5379)
(d) Weak convergence - Milstein

(q = 0.4402)

Figure 6.3: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.6 and 6.7. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

As expected, the experimental weak order of convergence is q = 0.6241 for the Euler-Maruyama
method and q = 0.4402 for the Milstein method, which means that in both schemes the strong orders
of convergence are far below the theoretically predicted values. Moreover, the experimental strong order
of convergence is q = 0.4624 for the Euler-Maruyama scheme and q = 0.5379 for the Milstein scheme.
Although the experimental weak order of convergence of the Euler-Maruyama scheme does not seem too
far from the value predicted by theory the result is not significant. The fact that neither of the methods
converges in weak or strong sense is not unexpected, as the convergence of the schemes is not guaranteed
for non-Lipschitz coefficients.

6.2.4 Time and asset price dependent parameters

We now look at a model where the expected rate on return and the volatility depend both on time
and on the price of the underlying asset.

Consider the following function for the interest rate

r(t, S
t

) =

0.05

1 + t
+

0.05

1 + S
t

(6.7)

�(t, S
t

) =

0.2

1 + t
+

0.2

1 + S
t

(6.8)

The choice for the volatility and interest rate functions comes from the fact that both the volatility
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and the interest rate are usually negatively correlated with the price of the undelying asset.
We will start by implementing the model using explicit schemes.

Tables 6.10 and 6.11 show the strong and weak errors, respectively, in the approximation of the price
V (S0, t0) of a call option at time t0 = 0, with initial stock value S0 = 80, strike price K = 100 and
maturity T = 1. The approximations were computed for seven different time steps using a Monte Carlo
simulation with 5000 sample paths in table 6.10 and 50 000 sample paths in table 6.11. Recall that for
models in which the coefficients also depend on the price of the underlying asset, we need to compute
one sample path at time. For this reason it becomes too computationally costly to sample through a
large number of samples paths, hence here we only sample through 50 000 paths when we study the weak
convergence. To approximate the price of the stock at each time step we used the discretisations (5.52)
and (5.53) and the strong and weak errors are computed as in (6.3) and (6.4), respectively.

The reference values for the true solution are 0.5812 and 0.5814 for the strong convergence and 0.5533
and 0.5534 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.

Table 6.10: Strong errors in the approximation of the function V , for T = 1, r(t, S
t

) =

0.05
(1+t) +

0.05
(1+S

t

)

�(t, S
t

) =

0.2
(1+t) +

0.2
(1+S

t

) , S0 = 80 K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 0.4461 0.135291 0.4718 0.109656
2

�4 0.5120 0.069598 0.5258 0.055687
2

�5 0.5473 0.035530 0.5536 0.027803
2

�6 0.5642 0.019697 0.5673 0.014140
2

�7 0.5729 0.011897 0.5746 0.006803
2

�8 0.5773 0.007135 0.5783 0.003175
2

�9 0.5796 0.004276 0.5801 0.001373

Table 6.11: Weak errors in the approximation of the function V , for T = 1, r(t, S
t

) =

0.05
(1+t) +

0.05
(1+S

t

)

�(t, S
t

) =

0.2
(1+t) +

0.2
(1+S

t

) , S0 = 80 K = 100, M = 50 000

Time Euler Weak
Milstein

Weak
step Maruyama error error
2

�3 0.4250 0.128244 0.4482 0.105190
2

�4 0.4865 0.066814 0.4991 0.054281
2

�5 0.5194 0.033924 0.5257 0.027656
2

�6 0.5364 0.016864 0.5397 0.013664
2

�7 0.5451 0.008144 0.5467 0.006650
2

�8 0.5497 0.003639 0.5503 0.003095
2

�9 0.5518 0.001522 0.5520 0.001341

From the analysis of the weak errors in table 6.11 we see that if we cut the time step by a factor of
2 the weak error reduces to half, so both numerical approximations have an experimental weak order of
convergence of 1. The same happens for the strong error in the Milstein scheme. Furthermore, in table
6.10, if we cut the time step by a factor of 4, the strong error decreases to more than half, therefore the
experimental strong order of convergence of the Euler-Maruyama method is above the theoretical value
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of 1
2 . This means that both experimental strong and weak orders of convergence agree with or are above

the theoretically predicted values.
Figure 6.4 displays the strong and weak errors on tables 6.10 and 6.11, respectively, and a linear

regression on a loglog scale, estimated by a least squares fit. As the estimated regressions seem to have
the same slope as the reference lines, it further supports the above observation.

(a) Strong convergence - Euler-Maruyama

(q = 0.8251)
(b) Weak convergence - Euler-Maruyama

(q = 1.0588)

(c) Strong convergence - Milstein

(q = 1.0448)
(d) Weak convergence - Milstein

(q = 1.0430)

Figure 6.4: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.10 and 6.11. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

In fact, the estimated regression for the strong convergence in the Euler-Maruyama method has a
slope of q = 0.8251, which is above the theoretically predicted value and for the Milstein scheme it is
q = 1.0448, which is in good accordance with the theoretical value. Moreover, the slope of the estimated
regression for the weak convergence in the Euler-Maruyama scheme is q = 1.0588 and 1.0448 for the
Milstein scheme, which means that the experimental weak order of convergence of both schemes agrees
with the theoretical order of convergence.

Table 6.12 displays the strong and weak errors in the approximation of the value V (S0, t0) of a call
option at time t0 = 0, with initial stock price S0 = 80, strike price K = 100 and maturity T = 1. The
approximations were computed for seven different time steps using a Monte Carlo simulation with 500

sample paths. The reason why we only sampled through 500 sample paths is that implicit models have
to solve an additional equation at each time step, which is computationally costlier. To approximate the
price of the stock at each time step we used the predictor-corrector method described in section 5.6.3, with
the explicit Euler-Maruyama method (5.58) and the explicit Milstein method (5.60) as the predictors and

65



the generalisation of the deterministic trapezoidal method (5.59) and (5.61) as the corrector methods.
The strong and weak errors were computed as in (6.3) and (6.4), respectively.

The reference values for the true solution are 0.6126 using the Euler-Maruyama scheme and 0.6125
using the Milstein scheme. Note that since we used the same number of sample paths for the weak and
strong convergence, the reference values for the exact solution are the same for both types of convergence.

Table 6.12: Strong and weak errors in the approximation of the function V , for T = 1,
r(t, S

t

) =

0.05
(1+t) +

0.05
(1+S

t

) �(t, S
t

) =

0.2
(1+t) +

0.2
(1+S

t

) , S0 = 80 K = 100, M = 500

Time Euler Strong Weak
Milstein

Strong Weak
step Maruyama error error error error
2

�3 0.4885 0.126005 0.124054 0.5096 0.103027 0.102956
2

�4 0.5477 0.065455 0.064821 0.5602 0.052290 0.052290
2

�5 0.5757 0.038474 0.036897 0.5839 0.028630 0.028630
2

�6 0.5960 0.019681 0.016564 0.5988 0.013755 0.013755
2

�7 0.6054 0.011222 0.007166 0.6056 0.006864 0.006864
2

�8 0.6094 0.008346 0.003130 0.6094 0.003130 0.003130
2

�9 0.6113 0.004456 0.001274 0.6112 0.001330 0.001330

The weak errors in table 6.12 approximately reduce to half when we cut the time step by a factor
of two, which suggests that the weak order of convergence of the numerical methods should be close
to one. The strong errors in the Euler-Maruyama predictor-corrector scheme seem to decrease to more
than half when we cut the time step by a factor of 4, which means that the experimental strong order of
convergence should be above the theoretical value of 1

2 . For the Milstein predictor-corrector method the
strong order of convergence seems to correspond to the theoretical value of 1.

Figure 6.5 plots the strong and weak errors on table 6.12 on a loglog scale and a linear regression
estimated using a least squares fit.
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(a) Strong convergence - Euler-Maruyama

(q = 0.8166)
(b) Weak convergence - Euler-Maruyama

(q = 1.1044)

(c) Strong convergence - Misltein

(q = 1.0361)
(d) Weak convergence - Milstein

(q = 1.0360)

Figure 6.5: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
table 6.12. The green dashed lines represent the reference slope and the red dashed lines represent the

least squares regression.

As suggested by table 6.12, the Euler-Maruyama predictor-corrector method has an experimental
strong order of convergence of q = 0.8166 and an experimental weak order of convergence of q = 1.1044

while the Milstein predictor-corrector method has an experimental strong order of convergence q = 1.0361

and an experimental weak order of convergence of q = 1.0360. So, we can conclude that the orders of
convergence of both numerical schemes are in good accordance with the theory.

6.2.5 Heston Model

In this section we implement the Heston model using algorithm 6 with the discretisations (5.62) and
(5.63) for the stock price and the volatility, respectively.

One of the difficulties of the Heston model is how to choose the parameters, as they influence the shape
of the volatility smile and can induce skewness in the distribution of the stock returns. Furthermore,
the prices approximated by the model are quite parameter sensitive, so small changes in the parameters
values lead to considerably different results. For this reason, as we will consider two scenarios, one when
the Feller condition is fulfilled and another when it is not, we will only change ✓ and k to keep the two
scenarios as comparable as possible. We start by considering a scenario in which the parameters satisfy
the Feller condition.

Table 6.14 shows the value V (S0, t0) of a call option at time t0 = 0, with initial stock price S0 = 100,
strike price K = 100 and maturity T = 1, computed for seven different time steps using a Monte Carlo

67



simulation with 500 000 sample paths, like we discussed in section 5.6.4. To approximate the price of
the stock at each time step we used the discretisations (5.62) and (5.63), which are the result of the
application of explicit Euler-Maruyama (5.3) and Milstein (5.21) methods to equations (3.64) and (3.65).
As in the previous models, the first and third columns show the price of the call computed using each
of these methods. The strong and weak errors were computed as before, that is, as in (6.3) and (6.4),
respectively.

The reference values for the true solution are 1.0512 and 0.1019 for the strong convergence and 1.0526
and 1.0705 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.

Recall that as strong convergence is more computationally costly we only sampled through 5000 sample
paths, while the weak error was computed over 500 000 sample paths. With our choice of parameters,
the Feller condition is 1.2245, so it is fulfilled.

Table 6.13: Strong errors in the approximation of the function V , for T = 1, r = 0.0015, ⌫0 = 0.2,
✓ = 0.2, ⇠ = 1.4, k = 6, ⇢ = �0.7, S0 = 100, K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 9.3276 8.334688 6.6323 6.53033
2

�4 4.4870 3.535108 2.9038 2.815030
2

�5 2.4350 1.577938 1.2346 1.142377
2

�6 1.5922 0.848310 0.5842 0.482255
2

�7 1.2390 0.456420 0.3036 0.202031
2

�8 1.1111 0.305791 0.1791 0.089278
2

�9 1.0657 0.193762 0.1435 0.046574

Table 6.14: Weak errors in the approximation of the function V , for T = 1, r = 0.0015, ⌫0 = 0.2,
✓ = 0.2, ⇠ = 1.4, k = 6, ⇢ = �0.7, S0 = 100, K = 100, M = 500 000

Time Euler Weak
Milstein

Strong
step Maruyama error error
2

�3 9.1101 8.057556 5.7480 4.677503
2

�4 4.5196 3.467014 2.7992 1.728769
2

�5 2.4691 1.416493 1.8662 0.795762
2

�6 1.6123 0.559762 1.4836 0.413119
2

�7 1.2716 0.219021 1.2866 0.216124
2

�8 1.1382 0.085663 1.1826 0.112093
2

�9 1.0857 0.033121 1.1253 0.054868

Although there is no guarantee that the discretisation schemes will converge, as discussed in section
5.6.4, both schemes converge in strong and weak sense. In fact, the Euler-Maruyama strong and weak
orders of convergence are above the value predicted by theory. On the other hand, the Milstein strong
and weak order of convergence seems to be in good accordance with the theoretical value. In the previous
models we have already seen that in what concerns weak convergence, the Euler-Maruyama and Milstein
schemes have similar performances, although Milstein usually produces slightly better results. For the
Heston model, not only is this true, but it is also worth noticing that Milstein scheme seems to generate
significantly better results than the Euler-Maruyama for bigger time steps.
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Figure 6.6 shows the plotted strong and weak errors of tables 6.13 and 6.14, respectively on a loglog
scale, as well as the estimated linear regression using a least squares fit.

(a) Strong convergence - Euler-Maruyama

(q = 0.8976)
(b) Weak convergence - Euler-Maruyama

(q = 1.3267)

(c) Strong convergence - Milstein

(q = 1.2090)
(d) Weak convergence - Milstein

(q = 1.0363)

Figure 6.6: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.13 and 6.14. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

The estimated linear regression for the strong convergence rate of Euler-Maruyama has a slope of
q = 0.8976 and the estimated linear regression for the weak convergence rate is q = 1.3267, which
confirms that this method converges with a higher order of convergence than as predicted by theory.
On the other hand, the Milstein scheme has an experimental strong order of convergence q = 1.2090

and an experimental weak order of convergence q = 1.0363, which are in good accordance with theory.
In fact, a closer analysis of table 6.14 shows that the Euler-Maruyama scheme performs poorly for big-
ger time steps than the Milstein scheme, but has greater accuracy when the discretisation is more refined.

As discussed in 5.6.4, in the real world the Feller condition is rarely met, so now we test the conver-
gence of the numerical schemes for the Heston model when the Feller condition is not fulfilled. In order
to have the Feller condition not met we only change the values of k, and ✓. With the new choice of
parameters the Feller condition does not hold with the value 0.0612. The results on tables 6.15 and 6.16
were computed in the same way as the ones on the previous table, with the same parameters expect for
the three parameters mentioned above.

The reference values for the true solution are 0.0623 and 0.0543 for the strong convergence and 0.0775
and 0.0682 for the weak convergence, using the Euler-Maruyama and Milstein schemes, respectively.
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Table 6.15: Strong errors in the approximation of the function V , for T = 1, r = 0.0015, ⌫0 = 0.2,
✓ = 0.02, ⇠ = 1.4, k = 3, ⇢ = �0.7, S0 = 100, K = 100, M = 5000

Time Euler Strong
Milstein

Strong
step Maruyama error error
2

�3 10.5482 10.496545 11.6831 11.640063
2

�4 5.3910 5.342973 6.8751 6.834755
2

�5 2.6581 2.613339 3.8451 3.804123
2

�6 1.1919 1.144334 2.0245 1.984052
2

�7 0.5735 0.523174 1.0146 0.970061
2

�8 0.2781 0.221038 0.5214 0.480544
2

�9 0.1601 0.106036 0.2511 0.208773

Table 6.16: Weak errors in the approximation of the function V , for T = 1, r = 0.0015, ⌫0 = 0.2,
✓ = 0.02, ⇠ = 1.4, k = 3, ⇢ = �0.7, S0 = 100, K = 100, M = 500 000

Time Euler Weak
Milstein

Weak
step Maruyama error error
2

�3 10.4822 10.404665 7.3695 7.301245
2

�4 5.3590 5.281528 3.1849 3.116695
2

�5 2.6186 2.541109 1.4282 1.359932
2

�6 1.2402 1.162676 0.6740 0.605755
2

�7 0.5997 0.522204 0.3432 0.274940
2

�8 0.3059 0.228430 0.1949 0.126657
2

�9 0.1732 0.095724 0.1251 0.056838

From tables 6.15 and 6.16 it is clear that both methods converge in weak and strong sense with an
experimental order of 1.

Figure 6.7 shows the plotted errors of tables 6.15 and 6.16 and an estimated linear regression on a
loglog scale using a least squares fit.
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(a) Strong convergence - Euler-Maruyama

(q = 1.1214)
(b) Weak convergence - Euler-Maruyama

(q = 1.1299)

(c) Strong convergence - Milstein

(q = 0.9655)
(d) Weak convergence - Milstein

(q = 1.1630)

Figure 6.7: Strong and weak convergence for the errors of Euler-Maruyama and Milstein methods on
tables 6.15 and 6.16. The green dashed lines represent the reference slope and the red dashed lines

represent the least squares regression.

The estimated linear regression for the strong convergence rate of Euler-Maruyama has a slope of
q = 1.1214 and the estimated linear regression for the weak convergence rate is q = 1.1299. Comparing
with results when the Feller condition was met, now the strong order of convergence is even higher and
the weak order of convergence is slightly lower. The Milstein method has an experimental strong order
of convergence q = 0.9655 and weak order q = 1.1630, which are both higher than the results when
the Feller condition was met. So, overall the methods converge with the order theoretically predicted,
except for the Euler-Maruyama that has a much higher weak order of convergence. This is not surprising
though, because when the Feller condition is not met, the variance can take negative values and we
fix that by reflecting that value, which induces positive bias in the pricing of European options. Since
the Euler-Maruyama discretisation usually produces more negative values of variance than the Milstein
scheme [29], this has more influence on the performance of the Euler discretisation. Also in this case it is
clear that the Milstein method is considerably more accurate than the Euler-Maruyama for larger time
steps.
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Chapter 7

Conclusions

The objective of this thesis was to approximate the price of European vanilla options by finite dif-
ference schemes for PDE’s and by numerical methods for SDE’s in Monte Carlo simulations. In the first
approach, we transformed the Black-Scholes partial differential equation into the heat equation and used
the Crank-Nicolson scheme and the forward and backward Euler schemes. In the second approach we
studied several extensions to the Black-Scholes asset model and used the Euler-Maruyama and Milstein
schemes to approximate the price of the underlying asset.

The approximations via finite difference schemes for PDE’s were used to approximate the classical
Black-Scholes equation, where the volatility and interest rate were constant parameters. The obtained
results have good accuracy, with relative errors in the order of 10�3. Moreover, the computation time was
less than one second, even for the implicit schemes. However, the use of constant volatility and interest
rate is not realistic and the relaxation of these assumptions is better handled by numerical methods for
SDE’s in Monte Carlo simulations than by finite difference schemes for PDE’s.

We started our Monte Carlo simulations with the classical Black-Scholes asset model, with constant
coefficients. When compared to the finite difference schemes the accuracy of the methods were very
similar, although slightly better in the Monte Carlo simulations. This is not surprising, however, because
we used half a million sample paths in our simulations. On the other hand the Monte Carlo simulations
are very inefficient when compared to finite difference schemes, as it took almost one minute to run the
algorithm and the results are not significantly better.

For the models without constant coefficients we did not have an explicit solution so we compared the
orders of convergence using an approximation of the exact solution with a small time step. The model
with volatility and interest rate as sinusoidal functions of time had a good accuracy when using the Euler-
Maruyama and the Milstein methods, as the weak and strong orders of convergence were as predicted
by the theory or above the theoretical values. However, when we tested the model with coefficients with
jump discontinuities, both methods failed to converge as the coefficients were not Lipschitz continuous.

To test time and asset price dependency we used first explicit schemes and then predictor-corrector
schemes. Both approaches had strong and weak orders of convergence in good accordance with the the-
oretically predicted values. However, it is worth emphasising that for the predictor-corrector schemes
we only sampled through 500 sample paths, which is low number of sample paths for a Monte Carlo
simulation. Nonetheless, the results were as good as those of the explicit schemes, which were sampled
through 50 000 paths for the weak convergence and 5000 for the strong convergence.

Finally we tested the stochastic volatility model, the Heston model, using two different scenarios: one
where the Feller condition was met and another when it was not met. In both scenarios we had good
convergence results, but we actually obtained better results when the Feller condition was not met, which
might be caused by the positive bias induced when reflecting negative variance values. Nonetheless, in
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both scenarios, the convergence orders of the Euler-Maruyama scheme were considerably above the the-
oretically predicted values. However, the Heston model is rather sensitive to changes in the parameters
and requires calibration to obtain more realistic results.

Overall, it is worth noticing that in all of the asset models the Euler-Maruyama and the Milstein
methods produced similar results in what concerns weak convergence. For this reason it is natural to
choose the Euler-Maruyama scheme for smaller time steps, as it simpler to implement and less burden-
some and the Milstein scheme could be used for larger time steps. When it comes to strong convergence,
the Milstein scheme is usually the first choice.

An important issue with the models that we presented in this work is that the computational cost
increases both with the number of time steps and the number of sample paths used. And as the con-
vergence rate of the Monte Carlo method is O(1/

p
M), it requires a large number of trials to produce

accurate results, which makes this method very inefficient. This might not represent a problem in the
pricing of path-independent options, such as the vanilla European options studied in this work, and when
only weak convergence of the numerical approximations is required, but we have seen that in order to
study strong convergence, sampling through more than 5000 random paths becomes too computationally
demanding. Duffie and Glynn [11] propose an optimal allocation between the number of time steps and
the number of Monte Carlo trials, where the number of time steps should be chosen proportional to the
square-root of the number of sample paths for first order methods. With this allocation the convergence
rate of the error, using the Euler-Maruyama discretisation is O(M� 1

3
). However, the proportional con-

stant is difficult to estimate. Another way to overcome the low convergence rate of Monte Carlo methods
that has been gaining importance in the financial industry is to use variance control techniques, such as
the use Quasi-Monte Carlo methods, which have a convergence rate of O(1/M), see [10], but it also has
several drawbacks.

Although the results obtained in the simulation of the extensions to the Black-Scholes model were
good and the functions used for the interest rate and volatility are realistic, in order to have more accurate
results the models should be calibrated to the market values. Moreover, it would also be interesting to
develop new SDE’s theory to account for non-Lipschitz drift and diffusion coefficients, as this would allow
more flexibility in the choice of the functions. Research has been carried out in this sense, such as [2],
which considers that the drift and diffusion coefficients of the SDE can have discontinuities but are still
regular enough to guarantee the existence of a unique weak solution and uses an Exit method to deal
with the possibility of a path hitting a point of discontinuity. Hutzenthaler, Jentzen and Kloeden [20]
propose a modified explicit Euler method (tamed Euler) to deal with SDE’s with non-globally Lipschitz
continuous coefficients but assume that the drift coefficient is globally one-sided Lipschitz continuous and
has an at most polynomially growing derivative and that the diffusion coefficient is Lipschitz continuous.
Both these works rely on several assumptions on the coefficients, as do most of the works carried out so
far, which leaves this subject open to improvement.
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Appendix A

Lemma A.0.1. (Itô’s lemma. Bivariate case). Let X(t) and Y (t) be two stochastic processes that satisfy
dX

t

= µ
x

(t,X
t

)dt + �
x

(t,X
t

)dW x

t

and dY
t

= µ
y

(t,X
t

)dt + �
y

(t,X
t

)dW y

t

, where W x and W y are two
Wiener processes with correlation ⇢ . Further, let f 2 C2, then A(t) = f(X(t), Y (t)) is also a stochastic
process and is given by
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(A.1)

where all the partial derivatives of f are evaluated at (t,X
t

, Y
t

).

Definition A.0.1. (Stratonovich integral). Let X be a stochastic process locally square-integrable,
i.e.

R
T

0 E[X2
t

]dt < 1 and adapted to the filtration generated by the Brownian motion W
t

in [0, T ]. If
0 = t0 < ... < t

n

= T is a partition of the interval [0, T ], the Stratonovich integral can be defined as the
unique mean square limit of the Riemann-Stieltjes sums, i.e.:

Z
T

0
X

t

� dW
t

= lim

n!1

nX

i=1

X
t

i

+X
t

i�1

2

(W
t

i

�W
t

i�1)

Theorem A.0.2. (Girsanov’s theorem). The following statements hold:

• The stochastic process
M

t

= e�qW

t

� 1
2 q

2
t, t 2 [0, T ]

(where q is a constant) is a martingale with respect to the natural Brownian filtration F
t

=

�(W
s

, s  t), t 2 [0, T ], under the probability measure P.

• The relation
Q(A) =

Z

A

M
t

(!)dP(!), A 2 F

defines a probability measure Q on F , which is equivalent to P.

• Under the probability measure Q, the process ˜W defined by ˜W
t

= W
t

+ qt, t 2 [0, T ], is a standard
Brownian motion.

• The process ˜W is adapted to the filtration F
t
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The probability measure Q is called an equivalent martingale measure.
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