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Resumo

A reconstrução tri-dimensional de eventos capturados em imagem, e a sua repre-
sentação a partir de um ponto de vista escolhido pelo utilizador, são desafios nas
áreas de computação gráfica e visão computacional. Ao lidar com dados de v́ıdeo,
esse problema é intitulado ”Śıntese de gráficos baseada em v́ıdeo”. As técnicas pro-
postas em sistemas de televisão com ponto de vista livre possibilitam o movimento
da câmera somente através de pontos de vista previamente definidos; consequente-
mente não contemplando a estrutura tri-dimensional e temporal dos componentes
reconstrúıdos. Esta tese pretende avançar a investigação e o desenvolvimento de
técnicas que permitam que um utilizador possa assistir a um evento a partir de um
ponto de vista à sua escolha em tempo real, numa reconstrução tri-dimensional de-
talhada da realidade capturada em v́ıdeo. A reconstrução tri-dimensional de dados
de v́ıdeo e a sua codificação numa representação eficiente para posterior reprodução,
continuam a ser problemas de investigação por resolver. Um sistema completo foi
desenvolvido para responder estes problemas, chamado de ”Sistema de Flashback
3D”. Três diferentes aplicações no domı́nio das artes performativas e dança foram
desenvolvidas para validar a aproximação proposta.

A principal contribuição desta tese de doutoramento é uma nova representação de
dados para v́ıdeos de nuvens de pontos, que também pode ser usada em cenários
complexos de śıntese de gráficos baseada em imagem; ”Multiview Layered Depth
Image”.
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Abstract

Three-dimensional reconstruction of events recorded on images and their representa-
tion from a user-chosen viewpoint are a challenge in the fields of computer graphics
and computer vision. When dealing with video data, this problem is called video-
based rendering. The techniques proposed on free viewpoint television systems
enable camera movement based only on the prerecorded viewpoints, thus not prop-
erly contemplating the 3D structure and temporal component reconstruction. This
thesis aims to go further on research and development of techniques that allows
users to watch events and select the desired viewpoint in real time of a detailed 3D
reconstruction of the video-captured reality. Three-dimensional reconstruction of
captured data on a temporal sequence and its codification on an efficient represen-
tation for posterior reproduction still poses as a research challenge to be solved. A
complete framework was developed to address these issues, named the 3D flashback
framework. Three different applications in the field of performance arts and dance
were developed to validate the proposed approach.

The main contribution of this PhD Thesis is a novel data-representation for point
cloud videos, which can also be used in complex image-based rendering scenarios, the
Multiview Layered Depth Image.
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1
Introduction

For a long time video has been used in our daily lives as the media that more closely

recreates an event as we live it in the real world. The recent popularization of per-

sonal video cameras and video content distribution has been pushing the scientific

community to expand the traditional video format beyond its classical restrictions

such as reproduction speed, which gave birth to slow motion videos, and most re-

cently the viewpoint restriction. The process that uses video as input in order to

create novel rendered content is generally defined as video-based rendering (VBR).

This field shares goals and challenges with Image-based rendering, while having the

extra time dimension that is non-existent in its counterpart. By analyzing the visual

content of these images, one tries to extract enough data to add processed informa-

tion to the existing content or to create novel views that extrapolate the original

experience.

The most popular goal on the field is known as three-dimensional television (3DTV)).

Not to be confused with stereoscopic displays that are commercially available nowa-

days, 3DTV aims to allow the user to navigate three-dimensionally around the

watched point of view, transforming the content to be correctly displayed accord-

ingly to the new perspective. One early public example of the potential of this

technique was the EyeVision (Kitahara et al., 2001) setup used on the Super Bowl

XXXV. New viewpoints were not generated by this approach, but the user would get

1
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the natural feel of rotating around an object going from one camera view to another.

The field has developed in this direction (Kilner et al., 2007)(Goorts et al., 2013)

but without achieving the final goal of 3DTV with no positional restrictions.

When a complete 3D reconstruction of a recorded event is performed, this viewpoint

restriction ceases to be a problem given the fact that we have enough information

to render the scene from any arbitrary viewpoint. This type of media which we

call three-dimensional video can be useful in several types of applications such as

security, immersive teleconference and in the chosen test case scenario for this thesis;

recording of dance performances. The recent appearing of specified acquisition and

visualization hardware allows for an easier capturing process of this data. Without

the need for disparity estimation more capturing setups are possible and different

types of applications can be developed.

Although advances on reconstruction processes and visualization need to be made,

the core limitation for this type of data is the data representation. Currently there

is no clear cut best data representation format for video-based rendering (VBR).

With such a large array of different applications to fall under this definition and

each one having very different requirements, several different approaches have been

taken. However, none of them perform efficiently on a wide baseline setup three-

dimensional video, which is the goal of this thesis proposal

Our objective is the development of a process that creates this type of media with

video-based rendering applications in sight, focusing on an efficient data representa-

tion that allows us to capture encode and reproduce such content seamlessly. In this

document we refer to this process as the 3D Flashback framework, described in

Section 4.1

1.1. Motivation: BlackBox Project
BlackBox 1 is an interdisciplinary project between arts, cognition, and computer

science hosted at FCSH-UNL and led by Prof. Carla Fernandes, in the context of

which this PhD thesis is being developed. This project aims to develop a model

for a web-based collaborative platform dedicated to documenting the compositional

process used by choreographers on contemporary dance and theatre.

Dance and other performing arts are classically taught by example or scores. How-

1BlackBox- Arts and Cognition: http://blackbox.fcsh.unl.pt/
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ever, creating a defined vocabulary of all possible moves on certain emergent dance

movements is an ill posed task, due to the increased creative liberty that the chore-

ographers have. Without a limited number of possible steps, scoring becomes im-

possible. In these scenarios, if one cannot be taught by example personally, video

recordings of performances and rehearsals have been used. Also, for the sake of

knowledge preservation and cultural heritage, lengthy video documentation pro-

cesses have been performed in order to register the more intricate aspects of certain

works or movements.

Even when enhancing these videos with contextualized annotations (Wittenburg

et al., 2006; Kipp, 2010; ChoreoPro, 2014), the loss of the third dimension and

the single-viewpoint limitation is greatly felt. The sense of space and proximity

between objects is perceived differently through video when compared to the real

world, depending on framing, field of view, and placement of the captured subjects.

Moreover, two-dimensional videos are prone to suffer from occlusions, and even when

multiview captures are used, mentally combining different viewpoints to recreate a

movement in its entirety is not an easy task.

Current approaches for capture and documentation are not capable of properly

registering a performance for later visualization, and the same problems apply to

the creative process. A great quantity of work is done before a play is presented

to the public, and documenting such information is not efficient with the current

means which either lose the visual impact of a video, or the structural coherence of

a 3D based system.

Allowing one to three-dimensionally capture an event such as a dance performance,

process and enhance with meta-information is not only a great documenting tool

but can also be a powerful teaching tool. Our proposed wide-baseline 3D Flashback

framework allows one to freely navigate three-dimensional data, correctly perceiving

the three-dimensional space and relationship between different subjects and objects

in a piece. Also, combining the different capture streams into a unified 3D represen-

tation takes us one step closer to the in-loco experience that has been the standard

for teaching dance and performing arts.

Specially in this scenario lightweight representation is crucial. When performances

can be an hour long, and include several moving elements at the same time, using a

naive data representation makes it impossible to not only store such data, but also

integrate it within interactive applications.

During the development of this thesis, we worked with two different contemporary

Portuguese choreographers, accompanying the creation of their most recent work.
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With João Fiadeiro, who works with conceptual dance, we focused on following

workshops related to his composition method (CTR: Composição em Tempo Real,

Section 5.3), where we were able to have more insight on the pre-stage work. We

recorded two different sessions that lasted approximately three hours each, where

shorter improvisation sessions of approximately 20 minutes each would happen with

breaks for discussion in between. Part of the data captured in these sessions was

used for the work presented in Sections 5.3 and 5.1. The data captured in these

section is geometrically complex and naturally creates a lot of occlusions due to the

fact that the performers use several props and objects while dancing. Temporally

they are simpler, since the performers move slowly.

More recently, we followed the creation of the play ”Quinze Bailarinos e Tempo

Incerto” by Rui Lopes Graça, a contemporary choreographer usually referred to

as neo-classical. Together with the rest of the BlackBox team, we observed and

recorded the creative process from the beginning to the end following specifically

two dancers: Miyu Matsui and Killian Souc. We captured data during the rehearsals

where big groups were visible, but due to the fact we were constrained to where we

could place the sensors, we scheduled specific capture sessions where we recorded

minute-long solo or duo performances of their material from this play. This data

was used for the work described in Sections 3.2, 3.3 and 5.2. While the data is

geometrically simpler in a single frame, due to the fact that they contain mostly

one or two performers that can be clearly segmented, it is temporally complex since

they are constantly moving at high speed.

We applied our proposed solution to different use-case scenarios related to dance

and performance arts, as described in Chapter 5.

1.2. Goals
The process of creating three-dimensional videos can be segmented in three stages:

reconstruction, representation, and visualization. We believe the key factor to

create an efficient VBR system lies on the chosen data representation, which allows

us to encode sufficient information to visualize a scene from an arbitrary point of

view while having minimal loss of data.

Based on previous work on data representation for VBR (Section 2.5.2) we aim to

develop a system that captures data using depth plus color cameras, creates an

adaptation of the Layered-depth video data format, and renders it as a sequence of
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point clouds on an interactive system. This choice of representation will be discussed

in Section 4.2 Although our main research focus will be on the data representation,

a system that correctly creates and uses it are essential to prove the viability of the

chosen representation for a VBR system.

Our research hypothesis arguments that creating layered depth videos by warping

different layers of three-dimensional data into chosen viewpoints will allow us to

achieve higher compression rates, while maintaining visual quality. The best suited

viewpoint will be chosen according to an efficiency criteria. Developing such data

representation and choosing the correct viewpoints is the main focus of this PhD

thesis.

Our main research goals can be summarized by the following topics:

• Reconstruction: Capturing and encoding three-dimensional data of time vary-

ing scenes, avoiding classical problems of mutual element occlusion and noise.

• Representation: Encoding time varying sequence of point clouds into a layered

representation with optimized points of view for each layer

• Visualization: Development of point cloud visualization techniques and alter-

native visual representations

• Development of novel applications with the 3D Flashback framework, specifi-

cally in the context of dance performance and arts.

1.3. Contributions
Our main contribution is a novel image-based representation and encoding algo-

rithm: the Multiview Layered Depth Image (MVLDI) , described in Section 3.2.

Comparing to previous approaches, Multiview+Depth (MVD) and the Layered

Depth Image (LDI), the MVLDI has better redundancy detection and a smaller

number of generated layers. Also, it supports wide-baseline scenarios, which was

only possible using MVD and no redundancy estimation. We achieved higher com-

pression rates than the alternatives (MVD, LDI) without discarding necessary data.

MVLDI provides a more efficient representation for a single frame and is applicable

to video scenarios.

The viewpoint selection problem for MVLDI was also thoroughly explored, resulting

in a detailed study of different alternative approaches (Section 3.3). Search-based
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approaches were shown to be overall effective, however, using the average normal

vectors of the biggest clusters allowed us to achieve better results in more complex

scenarios. Also, we present a synthetic viewpoint generation algorithm for MVLDI,

which can be applicable to image-based rendering (IBR) scenarios and complex point

cloud visualization and representation.

Regarding other challenges in the 3D Flashback framework, our next big contri-

bution was Stroke-based Splatting (Section 4.3.2), a novel rendering technique to

visualize point clouds, that is easily applied to a free-camera navigation VBR appli-

cation. We are able to offer equal or better visual quality than other rendering tech-

niques (splatting, meshes), specially when dealing with noisy data or low-resolution

clouds. The Householder formula was used to calculate tangential vectors, coher-

ently orienting the surface aligned splats. When compared to the standard method

used in splatting (covariance matrix), it is more resilient to noise, and creates a less

variable tangential field, while still representing relevant details of the data.

We also introduced three different applications that use the 3D Flashback framework

in the context of contemporary dance teaching and digital cultural heritage (Section

5). We presented a 2D-3D annotation system, and a Virtual reality approach, which

allow choreographers and users to enhance recorded data of a dance performance

with localized temporal annotations. Also, we presented a case study of a study

made on the work of the portuguese choreographer João Fiadeiro, using a 3D video

as the media used to register the concepts present in his work.

Other implementation questions to the 3D Flashback framework were also intro-

duced and discussed, such as a segmentation and synchronization (Section 4.2), and

a calibration toolkit (published in Sousa et al. (2017)).

1.4. Publications
This section only lists those publications directly related to my thesis topic.

1. Creepy Tracker Toolkit for Context-aware Interfaces. M Sousa, D Mendes, RK

dos Anjos, D Medeiros, A Raposo, A Ferreira, J Pereira and J Jorge. ACM

Interactive Surfaces and Spaces (ISS), 2017

2. Multiview Layered Depth Image. RK dos Anjos, JM Pereira, JA Gaspar, C

Fernandes. Journal of WSCG 25(2), 115, 2017

3. Stroke-based splatting: an efficient multi-resolution point cloud visualization
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technique. RK dos Anjos, CS Ribeiro, DS Lopes, JM Pereira. The Visual

Computer, 1-15, 2017

4. Capturing and Documenting Creative Processes in Contemporary Dance. CS

Ribeiro, RK dos Anjos, C Fernandes. Proceedings of the 4th International

Conference on Movement Computing, 7, 2017

5. 3D Flashback: An Informative Application for Dance. RK dos Anjos, JM

Pereira, C Fernandes. ERCIM News 108 (108), 45, 2017

6. 3d annotation in contemporary dance: enhancing the creation-tool video an-

notator. C Ribeiro, RK dos Anjos, C Fernandes, JM Pereira. Proceedings of

the 3rd International Symposium on Movement and Computing, 41, 2016

7. Creepy Tracker Toolkit for Context-aware Interfaces. M Sousa, D Mendes, RK

dos Anjos, D Medeiros, A Ferreira, A Raposo, JM Pereira, and J Jorge. In

Proceedings of the 2017 ACM International Conference on Interactive Surfaces

and Spaces (ISS ’17). 2017.

8. Virtual Reality Annotator: A Tool to Annotate Dancers in a Virtual Envi-

ronment. CS Ribeiro, RK Anjos, C Fernandes. Part of the Lecture Notes in

Computer Science book series (LNCS, volume 10605)

1.5. Dissertation Outline
We will start with a general overview of video-based rendering, related techniques,

and a classification of different lines of research based on the user interaction paradigm

used by the applications (Chapter 2). A brief discussion is presented together with

the classification, highlighting current problems that need to be solved in order to

implement the 3D Flashback framework.

Following, we will describe our proposal for the main research question of this PhD

Thesis, data representation (Chapter 3). Initial experiments are presented, followed

by the description of the Multiview Layered Depth Image, and view generation

algorithms. We also discuss the results of temporal compression in this data.

Next, a full description of the 3D Flashback framework is given (Chapter 4), ap-

proaching the reconstruction and visualization problems and sub-topics, and stroke-

based splatting, the novel algorithm for point cloud visualization.

We then list three case-study scenarios in the form of applications developed in the
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context of the BlackBox project (Chapter 5), and that are concrete examples of

wide-baseline VBR applications which use our presented framework.

Lastly, a summarized list of conclusions is given, focusing on the contributions and

limitations of the presented work, presenting clear guidelines for future work.



2
Related Work

2.1. Introduction
Video-based rendering is a topic that combines computer graphics and computer

vision; competences from both areas of knowledge are needed. A great effort is

made by each community to build the bridge between the two areas. Video-based

rendering is without a doubt a challenging field of work.

Different paradigms of user interaction have been proposed for VBR applications,

creating widely varying lines of work and methodologies to be followed. Each group

of applications face different problems, and apply different methodologies and steps

on each level of the typical VBR pipeline (Section 2.1.3). A classification scheme

based on these internal decisions is very sparse and does not have clearly identifiable

classes of techniques and methodologies.

This chapter reviews and classifies VBR works in different groups with the most

high level classification parameter being the user interaction paradigm, while giv-

ing insight on the chosen methodologies, data representation, and techniques in the

VBR pipeline. What are the lower level requirements for higher level techniques and

applications? And more specifically for our research goal: How current data rep-

resentation methods be expanded and developed to push applications into different

9
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objectives?

This chapter will start by defining video-based rendering, the taxonomy to be used

in this thesis, and the VBR pipeline. A review of image-processing techniques

related to VBR will be presented, following by the state of the art report on Video-

based rendering applications and data representation, comparing the most popular

trends and grouping similar techniques in general categories. Finally, conclusions

and insight will be given on what is the current trend of research, which guided the

research goals for this thesis.

2.1.1. Video-based Rendering Definition
Video-based rendering is a term that has been applied to a wide range of techniques,

sometimes in a more broad way than it usually is, and other times focused on only

a specific type of application. So it is important to establish the definition that will

be used on this chapter. The term was firstly used on the article bySchödl et al.

(2000) referring to image-based rendering techniques extrapolated to the temporal

domain, using two-dimensional images of a scene to generate a three-dimensional

model and render novel views of the scene.

The book from Magnor (2005) defines video-based rendering as the process of fusing

image-based rendering with motion capture in order to generate a novel view. Borgo

et al. (2012) on their more broad survey classifies at a top level the techniques under

the definition of video-based graphics (a more generalist definition for VBR), focused

on creating new content (other videos or 3D reconstructions) based on video input,

and video visualization that would encompass the attempts of allowing the user to

see video from new/synthetic points of view not previously recorded.

The survey from Stoykova et al. (2007) focused only on 3D time-varying reconstruc-

tion, more in line with the classical definition of Magnor (2005), and would be only

a subset of the previous classification, as also Szeliski (2005) who stays with the

classical definition.

The common ground among all different definitions made at different points in time

is the shared goal of creating novel viewpoints of a certain scene, not necessar-

ily sharing a methodology as suggested by Magnor, or a specific type of input, as

suggested by Borgo et al. We also consider scenarios where depth information or

three-dimensional models are used combined with videos, since the goal of view syn-

thesis is still shared. Considering this, we define VBR as the process generating
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(a) Head-face parallax (b) Navigation through viewpoints (c) Free virtual camera

Figure 2.1: Different user interaction paradigms for VBR, which are the basis for
our classification.

novel views of a recorded event on video.

2.1.2. User Interaction Based Classification

The chosen definition accommodates a large group of works which have considerable

differences among them. Not only different devices are used for input, but also pro-

cessing techniques, and type of data representation will differ considerably from one

work to another. Due to this fact, defining clear groups of applications considering

every applied technique is not viable. Few attempts of classifying VBR techniques

as a whole have been made, with surveys commonly focusing on classifying each

type of application or lower level techniques.

Authors have classified techniques according to taxonomies based on external aspects

of the application such as level of automation, type of output and input information

(Borgo et al., 2012), or had to focus on a more specific domain of applications where

classification is simpler (Stoykova et al., 2007).

We found that the chosen user interaction paradigm for a VBR application is ulti-

mately the deciding factor on three key aspects of a VBR technique: View genera-

tion methodology, capture setup, and data representation. Figure 2.1 shows

the different paradigms found on the reviewed literature, which will be analyzed in

depth in section 2.5.3. Figure 2.2 shows the choices for each one of these aspects

according to the user interaction paradigm of the application. By classifying the

techniques according to the five possible combinations of choices that can be made,

we have clear different classes of works that one can easily identify and apply to

different real world problems. Each one of the described aspects and grouping of

applications will be described in Section 2.5.
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Figure 2.2: Diagram showing the used classification scheme for this survey. User
interaction paradigm defines what capture setup is needed, which relates closely to
view generation methodologies and data representations.

2.1.3. Video-based Rendering Pipeline
Although VBR techniques are highly varying on the required steps to achieve its

objectives, one can assume a typical pipeline operations that are performed on a

typical VBR process. Not all of the steps are essential depending on the application

objective or input devices, and each one uses different techniques on the different

steps. The different classes presented previously (Section 2.1.2) will typically use

the same building blocks in their methodologies.

This VBR pipeline is implicit across all surveyed works, and also referred on the

Survey from Borgo et al. (2012). Figure 2.3 shows all of these steps, including the

more popular techniques in each step that were applied to the VBR works reviewed

in this survey. This pipeline consists of the following steps:

Capture: acquiring the data that will serve as input for the process, which can be

performed using different setups and devices.

Low-level processing: processing the raw input from each input source and adding

low-level meta-information to these.

High-level processing: combining images and/or low level meta-information in

order to achieve a higher goal that is not yet a VBR application on itself.

VBR Application: An application that can be used to generate novel views through
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Figure 2.3: Diagram showing each level of the typical VBR pipeline, and the re-
viewed group of associated techniques in this survey. VBR Applications may use
different methodologies and representations, but share the same goal.

different methodologies, and specialized data representations, and can be used

by a common user.

Understanding of the techniques that are applied in a VBR process is essential to

describe the available methodologies, and the existing challenges in each one of them.

For this matter, Sections 2.2 to 2.4 will give insight on each step of this pipeline,

reviewing and comparing techniques.

2.2. Data Capture
Capturing images to be used in a VBR system implies choosing the input devices

and the physical setup in accordance with the task at hand. Input data including

or not depth, field of view, scene occlusions, calibration and synchronization are

examples of aspects to consider for video-based rendering applications.

Besides conventional color cameras, color-depth, laser scanners, and mixed inputs

have been used on VBR and IBR applications.
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2.2.1. Color Cameras
Main efforts in image and video-based applications are focused on capturing im-

ages with conventional color cameras (Goorts et al., 2013; Hauswiesner et al., 2011;

Furukawa and Ponce, 2010; Carranza et al., 2003; Vogiatzis and Hernández, 2011),

not only due to the lower cost of the devices, but the popularity of the developed

methodologies (code publicly available) and the amount of data already available

that could be used for applications such as showed on the work of Ballan et al.

(2010). Besides being a bigger challenge than using more complex and informative

data, it is of great interest to be able to use raw images for a VBR process. For

information on what type of camera should be used for VBR, we refer to the book

from Magnor (2005) which gives insight into this matter.

2.2.2. Color Depth Cameras
Another input device that has been recently popularized on VBR applications is

the color depth camera. Asus Xtion Pro, Intel RealSense, and most popularly

The Microsoft Kinect Sensor have been used due to their real time nature and

low-cost. Depth sensors were already an option on the past (Curless and Levoy,

1996) but recently they were made more accessible and complete with other built-in

functions. Differently from traditional laser scanners, these devices try to operate

in real time, making them suited for VBR, unlike traditional scanners (Koutsoudis

et al., 2014; Huang et al., 2013; Besl, 1988) which deliver high quality results, but

have long capture times. Color-Depth cameras have been applied for stereo view

generation (Arieli et al., 2012) using a single device as input. They are not set back

by textureless regions as image-based stereo methods (Lee and Ho, 2011), but might

suffer from interference from sunlight in outdoor scenarios.

2.2.3. Hybrid Input
Duan et al. (2012) showed that is possible to perform fusion between depth maps

from stereo cameras and Kinect sensors in real time, having an overall better result

than using a single device. The work from Goesele et al. (2006) is an example of

another type mixed input that combines the raw images with an estimated bounding

box for the object to be scanned. Also Ballan et al. (2010) take other information as

input such as available 3D models for a prior reconstruction of the scenery and better
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(a) Narrow setup with color
cameras for stereo matching

(b) Wide baseline of a low-cost
setup for a 360 degrees capture
of a subject.

(c) Semi-Wide baseline setup for
Sports

Figure 2.4: Different capturing setups for VBR with different input devices.

positioning of the cameras, since the input videos are not calibrated by default. The

3D model input does not always guarantee a better result, but having an initial

geometry estimate does improve with the efficiency of the technique, as shown by

the image-based rendering review from Shum and Kang (2000).

2.2.4. Baseline of the Data Acquisition Setup
Multi input setups are the typical scenario for VBR. Devices can be placed in a

narrow, wide, or semi wide-baseline setup as seen on Figure 2.4. On the first, the

cameras are placed closer to each other with little disparity between adjacent views,

usually with each device parallel to each other. A wide setup typically aims to

capture a scene or object from all different perspectives, having the cameras placed

further away from each other, where disparity between views is now desired, not

avoided. The semi-wide scenario would be a step in between where disparity is

avoided but different viewpoints are desired. The relation between these decisions

and the applications, and alternative setups will be further described in Section

2.5.3

On multi-streams approaches there is also the need of extrinsic calibration for the

cameras, i.e. know the relative positions between them. In controlled environments

this can be done by using markers detected by the camera (Sturm and Maybank,

1999; Carranza et al., 2003), but on dynamic environments the most common ap-

proach is to track features using structure from motion (Ballan et al., 2010; Izadi

et al., 2011; Newcombe et al., 2015), providing a reliable position calibration for the

camera. A parallel problem to this is the stream synchronization problem, which

can be solved by an external centralized trigger on controlled scenarios (Carranza

et al., 2003; Goorts et al., 2013). Audio stream aligned can be used on uncontrolled
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scenarios (Duan et al., 2012; Ballan et al., 2010).

2.3. Low-level Processing
This section describes the techniques that work directly on an unprocessed image

or video with the purpose of attaching meaning to the analyzed content, working

at the lowest level possible. Techniques such as Object detection that might use

multiple low-level techniques will be described in Section 2.4. In this section we

will approach block matching, optical flow estimation, feature detection and image

segmentation.

2.3.1. Image segmentation
The process of image segmentation; identifying and grouping pixels that share a cer-

tain meaning, is one with a generic purpose, that must be fine tuned and trained to

solve each desired problem. Image segmentation plays a major role in several appli-

cations since usually the focus of the applications is to enhance the visualization of a

single object that can be considered in the foreground (Ballan et al., 2010; Carranza

et al., 2003; Liu et al., 2010), and also to extract silhouettes for reconstruction.

A general review on Image segmentation methods is given by Pal and Pal (1993),

and specifically foreground detection by Bouwmans et al. (2010).

Supervised methods: These methods are used on controlled environments, or

rely on some degree of user input. The simplest method for image segmentation

is Chroma-key (Belmares-Sarabia and Chayka, 1989), where the background is al-

ready colored in a specific color before previously to the recording (Liu et al., 2010;

Hauswiesner et al., 2011) , being easily identified in post processing. Ning et al.

(2010) use user input in a more flexible scenario. On a first step a simple segmenta-

tion process such as mean-shift (Cheng, 1995) is used, then user input is requested

to insert two distinct simple markers on a foreground object and on a background

object. Regions containing each of the distinct markers are tagged as being fore-

ground and background, and then a merging process is performed to achieve the

real desired segmentation.

Unsupervised methods: We highlight three different unsupervised approaches

found in the VBR related literature. Contour detection and merging (Arbelaez
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et al., 2011; Del Bue and Agapito, 2006), which is efficient in scenarios with low

frequency images. A probabilistic approach (Alpert et al., 2012), where where pixels

are grouped bottom-up considering not only intensity values, but likelihood of having

the same texture, appropriate for higher frequency images. And a higher level

approach, which uses SIFT features matching and clustering to detect the same

object in different situations (Joulin et al., 2010; Lowe, 2004)

Video techniques: Change detection, is the video-exclusive image segmentation

approach. The simple yet popular approach of image differentiation (Rosin and

Ioannidis, 2003) works by simply thresholding the difference between two images at a

global level. There are also more complex techniques such as Change vector analysis

(Bruzzone and Prieto, 2000) and Image ratioing (Di Stefano et al., 2003). Although

popular, these techniques suffer with noise and illumination variation (Brutzer et al.,

2011). A more detailed description and several references for each class can be seen

on the article by Radke et al. (2005).

2.3.2. Keypoint extraction
Keypoint extraction is a classical low-level image processing challenge which consists

on finding and describing interest points or regions on a certain image. Keypoint

detectors usually look for patches with image points with high spatial directional

derivatives i. e. the so called image corners. Classical approaches that are still

applied are (Harris and Stephens, 1988) corner and edge detectors and Lindeberg

(1998) difference of gaussians.

Global Keypoint analyze the image as a whole and provide us with information on a

general level, such as illumination and color. Since they are unable to provide us with

precise object information, their use in Video-based rendering is limited. Therefore

we will be focusing our description on Local Keypoint descriptors. The main use of

these techniques in video or image based rendering is to detect specific points of an

object of interest, in order for it to be identified on a different image or on a future

frame of a video sequence. A more detailed view on detectors and descriptors for

image-based applications, refer to the survey from Moreels and Perona (2007) and

the comparative work from Boyer et al. (2011).

Classical approaches: After detecting key features, descriptors are created to

characterize the image around the location pointed by a detector. Scale Invariant

Feature Transforms (SIFT) (Lowe, 2004), are the most popular ones, calculating

the descriptor on different scales and rotations, being able to be matched against a
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Figure 2.5: Output of a flow analysis algorithm Xu et al. (2012) Different colors
show the amount of movement between frames.

large database of images of the same object in different scales and positions. Other

popular approaches are shape descriptors (Belongie et al., 2002) and Speeded-Up

Robust Features (SURF) (Bay et al., 2008), the latter being faster to calculate than

SIFT. An extension for SIFT applied for face meshes resulting from face scans has

been developed (Maes et al., 2010), showing how adaptive SIFT descriptors can

be.

Video techniques: Specifically for videos, some approaches extend the SIFT idea

to adding a temporal dimension to it. Scovanner et al. (2007) use it for action

recognition, using a sequence of sift descriptors to represent each action. Ben Ahmad

et al. (2011) accomplish a similar goal using an accordion representation, that tries

to place pixels with high temporal correlation in adjacent spaces. Moving points are

detected after background removal and motion detection, so it is better suited for

single object tracking. The recent work from Tang et al. (2014) on Bold Features

is also well suited for video scenarios where light variance and blurred images are a

common issue. On these specific scenarios its performance was better than SIFT or

SURF features.

2.3.3. Optical Flow estimation

Optical flow is a velocity field in the image which transforms one image into the

next image in a sequence (Horn and Schunck, 1981) (Figure 2.5). It is mainly

used by View interpolation in VBR techniques (Section 2.5.1.2). In this section,

differential methods (local and global) are discussed. For a more detailed discussion

on alternative approaches, please refer to the survey from Barron et al. (1994) or the

more recent technique comparison by Del Bue and Agapito (2006) or Philip et al.

(2014) .
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Differential methods are the most common techniques to do flow estimation. As-

suming only small changes between consecutive frames, spatio-temporal derivatives

of the image intensity or other measures are calculated between frames, estimating

the optical flow as velocity vectors. Differential methods can be roughly classified

as local or global.

Global methods: these rely on a smoothness operator or a regularization factor

applied to the whole image. They do not suffer from the aperture problem (Bertero

et al., 1988) of local methods, where motion information can not be estimated since

the indicators of motion of the analyzed object are outside the area looked upon.

This problem is normally noticed on large motions that are covered in the whole

picture. The downside of these operators is that since they are applied to the image

as a whole, they are more sensitive to noise, propagating errors through the whole

image (Bruhn et al., 2005). The most referred global method is the work by Horn

and Schunck (1981) , where the authors claim the apparent velocity of the brightness

pattern varies smoothly through the image.

Local methods: while suffering from the aperture problem, they avoid the error

propagation of global methods as they only calculate the motion flow using local

information from the pixel neighborhood of the patch currently being evaluated. The

most popular local method is the work from Lucas et al. (1981), where the spatial

intensity gradient of the images is used to find a match in the following frames using

Newton Raphson iteration. The result is a more robust but less dense flow field.

More recent implementations such as the work from Bruhn et al. (2005) attempt to

use the best of both algorithms. By cumulatively adding the local contributions to

the histogram, the regions with lowest contribution are detected as the ones with

highest confidence. This measure is then applied to the global smoothing function,

that will have a higher effect on these areas.

2.3.4. Block Matching
Techniques in this category are one of the classical ways of extracting information

from moving pictures. These algorithms consist in dividing a frame into blocks of

size N x N, and matching them against equal sized candidate blocks on the next

frame on an area around the original location. After finding the best matched block,

the difference (Motion Vector) between time t and t+1 is recorded. It is mostly used

in video compression to remove temporal redundancy within frames, detecting what

are the actual differences that need to be transmitted in order to fully reproduce
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the video.

The reference algorithm for the implementation of MPEG4 (Zhu and Ma, 2000)

applies a search strategy called Diamond search that restricts the search space using

a diamond shaped pattern. The results do not equal a full-search, but greatly

outperform its prior strategies such as cross search (Ghanbari, 1990) and three-step

search (Koga, 1981). A more recent work (Cuevas et al., 2013) poses the problem as

an optimization task for the Motion Vector and uses an Artificial Bee Colony (ABC)

algorithm to achieve a fast answer without compromising the result. They claim

their approach does not easily get trapped in local minima due to the non-linear

characteristic of the ABC operators, and that the efficiency is comparable to the

fastest algorithms.

The surveys from Huang et al. (2006) and Yaakob et al. (2013) describe in more

detail the different approaches and provide in depth comparison between them.

2.4. High-level Processing
After obtaining features, image segments, or optical flow, this information can be

used as input for a new processing step that outputs even higher level of information

about the capture, without creating a user-targeted application. These are usually

referred as High-level techniques.

Two popular straightforward techniques are View interpolation (Szeliski, 2005) and

Visual Hull Estimation (Matusik et al., 2000). The first will be described in Section

2.5.1.2. The second one combines silhouettes from different viewpoints to create an

estimate of a 3D shape, and will be discussed in Section 2.5.1.1.

In this section we will review multiview stereo (MVS), Photo-consistency recon-

struction, Object tracking, and structure from motion (SfM) in further detail due

to their widespread use, and existing variations on the specific methodologies.

2.4.1. Multiview stereo and Photo-consistency re-
construction

Multiview stereo (MVS) has been the most standard approach for 3D reconstruction,

seeking to combine images captured from known positions to reconstruct a complete
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3D model of a given scene (Okutomi and Kanade, 1993). The work from Furukawa

and Ponce (2010) is a recent example of classical MVS which introduces a novel

patch-based representation to support the reconstruction task.

Photo-consistency based reconstruction is an alternative approach that can be ap-

plied when a rough estimate of the scene is provided. The recent work from Lafarge

et al. (2013) proposes an iterative improvement approach: the starting point is a

rough estimate of the 3D model that one wants to reconstruct and, interactively, it is

segmented and the extracted primitives are back-projected into the input images to

apply photo-consistency measurements. The process is repeated until no more im-

provements can be made and the back projection closely resembles the input images.

Mixed approaches (Vu et al., 2012) use MVS or a visual-hull algorithms(Esteban and

Schmitt, 2004; Kolmogorov and Zabih, 2002; Fan and Ferrie, 2010; Kopf et al., 2013)

to estimate a model and then apply photo-consistency measurements.

MVS has also been used in video scenarios on video sequences (Liu et al., 2010; Vu

et al., 2012). These works strongly state that classical MVS can be efficiently applied

to videos and deliver good results. For a more detailed insight and classification on

MVS , we refer the survey from Seitz et al. (2006)

2.4.2. Structure from Motion

Structure from motion (SfM) consists of the extraction of a 3D structure from a

set of 2D sequence images based on the motion of the structure. It normally works

under the assumption of having a static environment, so the motion is considered

as a result of camera movements. An example can be seen on Figure 2.6. The work

from Chen and Pinz (2004) performs the classical SfM approach of feature detection

and position tracking, being able to recover a sparse 3D structure from an image

sequence after estimating the camera parameters. SfM is a less costly algorithm

than MVS and it can be used to extract a rough estimate of scene structure before

a more accurate reconstruction step Agarwal et al. (2011). Recent work by Crocco

et al. (2016) uses object detection and tracking to perform SfM instead of feature

matching, producing better results in scenarios with several objects.
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Figure 2.6: Structure from motion. Matches are found along different time stamps
in a moving camera in order to estimate the structure of an object.

2.4.3. Object Recognition and Tracking

Object recognition and tracking are methodological components found in many com-

puter vision and VBR applications. Usually these are real-time solutions (Henriques

et al., 2015). The common approach to perform object detection is based on using a

set of features to identify the object in different scenarios which will be used to train

a classifier such as a decision tree, neural network or support vector machines.

Human Skeleton recognition and tracking has been applied on VBR applications

where the target is a human performer (Gall et al., 2009; Germann et al., 2010). By

tracking subjects positions and bones, specialized data representation can be used,

as will be discussed on section 2.5.2.

Nevertheless challenges remain on untrained scenarios. Work from Cabral et al.

(2015) presents a solution for weakly supervised scenarios, where the labeling process

for training is replaced by semantically tagging the images. The surveys from Yilmaz

et al. (2006) and Prasad (2012) give an insightful look on these techniques and

classifying them accordingly.
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2.5. Video-based rendering applications
As stated in Section 2.1.1, the main objective of VBR applications is the generation

of novel views. We selected thirty two articles from over the last 15 years which

share this objective, yet use different approaches. We started by selecting papers

mentioned in previous surveys, followed by other works in the venues these were

published, and finally more recent work from such authors. We sought to answer a

group of questions for each one of them:

1. What capture device was used?

2. Which lower level techniques were applied?

3. Which higher level techniques were applied?

4. What view generation methodology was used?

5. What was the data representation used for that application?

6. What was the capture setup used?

7. What is the user interaction paradigm applied to this ?

Questions 1-3 give us insight on individual decisions each one of the works make,

but did not reveal clear groups of applications, or informed us about high level

methodologies. This is due to the fact that these decisions are relatively low level,

and techniques are applied with different purposes and in different combinations,

not necessarily defining an approach or application.

Questions 4-6 are higher level decisions which clearly relate to each other and allow

us to classify different works into categories. Methodologies for view generation

(4) were identified in our review, which have strong relations to other of the raised

questions, and also allow different types of application for each one of them. Data

representation (5) will decide what data is stored, and what can be generated in

these novel views. Finally, the capture setup (6) is directly related to the user

interaction paradigm (7) of the application, since it decides the spatial limits of the

interaction. We considered these four aspects to be the most relevant on defining a

VBR application. Nevertheless the user interaction paradigm (7) was found to be

the key deciding factor on what approach is used, as discussed in section 2.5.3.

The following sections (2.5.1 2.5.2 and 2.5.3) will describe the answers to the last

four questions listed before, giving insight on each one of the reviewed works, ex-

plaining its relevancy in a VBR application and the user interaction paradigm in
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hand (Section 2.5.3). Finally a summary of these answers along with a taxonomy

(2.5.4) will be presented.

2.5.1. Novel view generation method
Having captured an event from multiple viewpoints, unrecorded visualizations can

be generated through different processes. The chosen methodology will depend

on the available data (3D information, images, depth values, etc) and the desired

interaction (navigate freely vs. recorded viewpoints).

Older definitions of VBR mentioned on Section 2.1.1 defined VBR through the

used methodology. Schödl et al. (2000) and Magnor (2005) defined it as processes

that necessarily required reconstruction. The fact that the field evolved in different

directions and newer processes and applications were created, we decided to use a

definition based on goal only, and use the methodology as one of the classification

parameters of a certain work.

2.5.1.1. 3D Reconstruction and rendering

The classical definition of VBR was grounded on 3D reconstruction and rendering

procedures to generate views (Schödl et al., 2000) since this resembled the traditional

process to generate novel views in computer graphics. Rendering 3D models into

2D photo-realistic images accordingly to the position and orientation of a virtual

camera is a straightforward task that has been well documented and investigated

by the community. When 3D information about the scene is available, any desired

viewpoint can be rendered through this process. The outline of this process can be

seen in Figure 2.7

In the VBR context, the 3D Reconstruction step poses a challenge because the initial

input of the process does not commonly provide three-dimensional information. The

inclusion of the recent depth sensors in the capture process could fix the problem

but as mentioned in Section 2.2, using such sensors is not always viable, so we must

still consider 3D reconstruction without direct 3D information from the input video

streams.

As we are going to see next, despite of different approaches to provide 3D information

for performing the 3D reconstruction, the novel view creation is accomplished by
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Figure 2.7: Outline of the 3D Reconstruction and rendering view generation method.
Captured data is used to create different types of representations (3D Reconstruc-
tion), which are then used differently to create a 3D visualization (rendering).

executing afterwards the classical rendering process with the available 3D models or

structures that were estimated from the input.

When the focus of the application are human performers (e.g. sports and dance

applications), very simplistic 3D information such as an estimated skeleton can be

sufficient for novel view generation. Players are segmented from the background,

and their skeletons are recognized from the poses captured in video. On the works

of Gall et al. (2009) and Li et al. (2013), a mesh is estimated using a visual hull

for the performer so it can be applied to the tracked skeleton. Stoll et al. (2010)

and Wu et al. (2013) move this task to a pre-processing step where depth sensors

are used to create an animated model of the performer. One mentioned drawback

is that changes in the outfit or hair of the performer are not be supported.

Germann et al. (2010) has a similar but unique approach, where the same process for

estimating the skeleton is used, but instead of applying a 3D mesh to it, segmented

billboards of each body part of the performer are applied to the tracked skeleton,

this approach is not a pure 3D reconstruction case since the applied textures are

view interpolated. We chose to describe it here due to the similarities to the previous

approaches.

Volino and Hilton (2013) and Imber et al. (2013) use a initial capture of the performer

to construct a texture map, which will be applied to the estimated visual hulls in

each frame. A skeleton is not estimated on these works, instead a sequence of visual

hulls is calculated.

Finally, the most straightforward approach to 3D Reconstruction relies on directly

estimating depth information from camera inputs, or depth sensors, creating com-

plex three-dimensional structures that will be used for rendering. Zeng et al. (2013)

and Kuster et al. (2014) use directly the input from the Microsoft Kinect for that
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Figure 2.8: Outline of the View interpolation method. Optical flow between adjacent
viewpoints is estimated, and interpolation is performed to create an intermediate
point of view.

task. Google Tango Google (2014) and the work from Liu et al. (2010) used multi-

view stereo to estimate depth information, and on the latter, a visual hull is used to

define the limits of the human performer that is being captured, refining the MVS

process.

2.5.1.2. View interpolation

When the required novel views are close to a previously recorded video stream, 3D

reconstruction step may not be necessary to perform the rendering operation. Chen

and Williams (1993) described this process on their pioneer work. This approach

introduced in 1993 allowed very complex scenes to be rendered through this process,

since it is not reliant on the complexity of the objects to be rendered. Szeliski on his

survey (Szeliski, 2005) presents this methodology also present in his own research

as one of the basic building blocks for VBR applications.

The scene is captured with an array of aligned cameras, and the relative position

between pixels from different viewpoints is estimated through the optical flow from

one point to another. These vectors are stored in a ”morph map”, a disparity matrix,

which will be used to interpolate the values between each one of the viewpoints and

generate the new images on the unrecorded viewpoints, as seen on Figure 2.8. If the

changes are parallel to the viewing plane, the interpolated result is perfect. Also, as

mentioned before, the closest the images are to the original viewpoints, the better

the estimated results.

One relevant reference is the work from Kanade (Kanade, 2001) about the coverage
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of the Super Bowl XXXV, where the broadcasting team, instead of individual users,

was able to cycle seamlessly through the several cameras set up in the stadium to

give more insightful replays. View interpolation and a rough reconstruction which

is possible due to the playing field being known, are used to create transition frames

between cameras. A similar recent product by Vizrt (Libero, 2014) has been ex-

tending the functionality to allow not only transition between cameras but also to

generate other points of view.

Goorts et al. (2013) uses a similar methodology, but uses MVS to estimate depths

for each point, and render better interpolated images. Similarly, Taguchi et al.

(2008), Wang et al. (2014a), and specially Tanimoto (2012) have used MVS, but

in order to represent the scene in the Ray-space using the plenoptic function.This

representation allows an easier generation of views given the accurate estimation

of this space. Tanimoto (2012) introduced specified devices to quickly create such

representation for small scale objects. Ng et al. (2010) uses the same methodology

but with a more object focused approach, improving the results in object boundary

regions.

One interesting view interpolation work that must be mentioned is the one from Bal-

lan et al. (2010) which applies this methodology for a different purpose: to navigate

between casual uncalibrated captures of the same performance. A rough three-

dimensional reconstruction of the background is performed using SfM to estimate

each camera position. Then view interpolation is used to create transition frames

between one viewpoint to the other. The performer is represented as a billboard nat-

urally changes during transitions, and the background information is interpolated

between viewpoints. This work extends the work from Kanade (Kanade, 2001)

and Libero (2014) to a more casual scenario, where the capture is performed in an

uncontrolled scenario.

2.5.1.3. Depth image-based rendering

This methodology has been acquiring popularity in the recent years since depth data

is easier to be captured or estimated with modern cameras or specified sensors. Novel

views are rendered through warping the Color Depth data into three-dimensional

information, which then can be viewed through chosen viewpoints. This process can

be seen in Figure 2.9. The work from Zitnick et al. (2004) can be considered one

of the precursors of this line of research. In this work depth is estimated through

MVS and used for depth image-based rendering (DIBR). The resulting dancers
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Figure 2.9: Depth image-based rendering. A set of 2.5D depth images is warped to
create a 3D render that can be visualized from a set of positions.

data set has been used as a standard benchmark in the majority of work described

below.

The novel view generation methodology is the same but each group of works has

focused on different aspects of the process. Yoon et al. (2005) and Merkle et al.

(2007) have presented specific data representation for this field (2.5.2), focusing on

compression of data. This line has been followed by several authors (Daribo and

Saito, 2011; Yoon et al., 2007; Kirshanthan et al., 2014; Kim et al., 2015; Merkle

et al., 2016).

Due to the fact that the estimated depth values might not create a complete scene

due to occlusions, or depth discontinuities might exist due to differences in estima-

tion from one viewpoint to the other, other works have focused on in-painting and

hole filling. Daribo and Saito (2011) and Yang et al. (2011) techniques have worked

towards this goal using different data representations.

2.5.2. Data representation
After going through the lower steps of the VBR pipeline, information about the

captured scene is encoded in a suitable format for the chosen rendering process.

We found three types of representation in the surveyed works. Geometry based

representations, where the scene was modeled as a group of three-dimensional objects

along the time. Mixed representations, where part of the scene is modeled through

images, and part through geometry. And image based representations, where the

scene is stored in bi-dimensional matrices with color and optionally depth.

Although it might usually be considered just an implementation detail, the data

representation on a VBR process is tightly related to the chosen methodology for

novel view generation, and also to the desired type of application. Different repre-
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sentations enable the development of alternative methodologies for view generation.

As seen on Section 2.5.1, reconstruction was performed in different ways, all creating

different types of data.

2.5.2.1. Geometry-based

The most straightforward way to represent a scene is through geometric primitives.

It has been the go-to approach in most rendering scenarios. On VBR, they result

from a 3D reconstruction process, and employed in traditional rendering to generate

novel views.

Animated meshes were used in several works (Gall et al., 2009; Stoll et al., 2010;

Li et al., 2013; Wu et al., 2013) where the target of the visualization is one or

more human performers which can be segmented properly in order to estimate the

skeletons. Scenarios with large groups, occlusions, and close interactions pose chal-

lenging issues. When a static mesh has been captured in a previous step for that

single performer (Stoll et al., 2010), this representation is very efficient.

When a skeleton can not be reliably tracked, Surfaces (Liu et al., 2010; Kuster et al.,

2014), point clouds (Google, 2014) and Octrees (Zeng et al., 2013) can be used.

These are classically used for static reconstructions, but can be applied in dynamic

scenarios. Although more flexible and being complete representations (contain full

and precise information about the objects in the scene), they are less efficient for

VBR. Applying temporal compression requires specialized algorithms (Slomp et al.,

2014), while image-based representations can apply video compression, which is

always evolving. Geometry-based representations are usually applied in real-time

applications where storage and compression is not an issue.

2.5.2.2. Image-based

Image-based representations are independent of scene complexity, being well suited

for these scenarios. On the other hand, they are typically discrete, and do not allow

certain rendering effects that require precise geometric information. Specifically for

VBR, they have the advantage of enabling ordinary video compression techniques to

be applied to them, which is not possible with geometry-based representations.

On several View interpolation scenarios (Kanade, 2001; Szeliski, 2005; Taguchi et al.,

2008), ordinary video streams for each recorded viewpoint are the only information
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about the scene in hand. Although effective, further work has shown that depth

information is important not only for view-interpolation and DIBR when pursuing

accurate results. Color plus depth video streams have been used for this matter Zit-

nick et al. (2004); Yang et al. (2011), where depth information is estimated through

MVS or captured with specialized sensors.

Two other image-based representations have been presented as alternatives to RGBD

streams. Multiview+Depth (MVD) by Merkle et al. (2007), and the Layered Depth

Video (LDV) by Yoon et al. (2005). They couple color information with depth at

the moment of encoding, and have been widely applied in VBR, with LDV being

a more compact alternative, but with a lengthier encoding. We will get into more

detail on these representations and their limitations in Section 3.2.1, since they are

closely related with our main research topic.

Finally, Plenoptic Videos (Tanimoto, 2012; Wang et al., 2014a) have been success-

fully employed on view-interpolation. They capture color and depth information

from different viewpoints and represent it as the Plenoptic function (7D) (McMillan

and Bishop, 1995), or the Lumigraph (Gortler et al., 1996), its 4D simplification.

With θ and φ being the azimuth and elevation angle of the rays, and λ the wave-

length, it is calculated at a position (Vx, Vy, Vz) in space, and on the VBR scenario,

the function is 7D due to the time component. So we have the following form to the

function, which can be considered a complete scene description:

p = P (θ, φ, λ, Vx, Vy, Vz, t) (2.1)

Although it is a complete scene description, on a real scenario we cannot capture the

scene from every possible viewpoint. In practice, data is captured with a narrow grid

with several cameras, or cameras based on arrays of micro-lenses. This representa-

tion is used by sampling this function at the eye positions (vx, Vy, Vz) representing

the capture viewpoints, and interpolating the values given by each one of them to

generate intermediate views. Such representation is promising for 3D television, but

is still far from being accessible for research.

2.5.2.3. Mixed

Although MVD and LDI contain geometric information in the form of depth values,

we still consider them as image-based representations due to the fact that they are

stored as images, and warping needs to be performed during rendering to obtain



31 2.5. Video-based rendering applications

(a) Articulated billboards(b) Proxy geometry + Bill-
board

(c) Visual hull + Texture-
maps

Figure 2.10: Mixed representations with part represented by a geometric reconstruc-
tion, and part by sequences of images.

the three-dimensional values. Examples in this category are partly represented by

sequences of images, and partly by geometry.

As mentioned in section 2.5.1.1 Germann et al. (2010) uses articulated billboards

(Figure 2.10a) . Skeleton information (geometry) is stored alongside images which

are interpolated and applied to each skeleton. Also the approaches from Volino and

Hilton (2013) and Imber et al. (2013), which use a simplified mesh through a visual

hull (geometry) combined with sequences of textures (images) that are mapped

into it (Figure 2.10c). Ballan et al. (2010) has a similar approach but keeping the

background geometry static since it is only used to track positions of each viewpoint

in order to generate the transitions (Figure 2.10b).

Finally Ng et al. (2010) use the Plenoptic function representation, but segmented

to individual objects in the scene, which can be considered a mixed representation,

due to the fact that individual objects in the scene are separated from each other,

making the representation more tied to the content of the scene than other image-

based representations.

All of these representations aim to combine advantages from both worlds. Having

a three-dimensional representation allows one to generate novel viewpoints further

away from the original recording points, and using image-based representations, data

compression is considerably easier to be applied, and the representation complexity

is scene independent. It is important to notice though, that in all of the reviewed

works, strong assumptions about the storing content needed to be made. Typically

mixed representations were used to represent human performers in controlled con-

ditions, such as a studio capture setup, or a sports event where the layout and the

captured elements are known.
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2.5.3. Capture Setup and User interaction paradigm
classification

Although the general goal of VBR is the same across applications, each one of them

have different specific goals depending on the type of user interaction desired, as seen

on Figure 2.1. On all reviewed works, we found that the interaction paradigm is

tightly connected to the capture setup. According to the objective of the application,

the setup will be adapted, and all other factors mentioned previously are then a

consequence of this decision. Due to this fact, this section groups each work by the

camera setup, and explain the typical application for each setup, and how it relates

to the previously raised questions.

2.5.3.1. Narrow baseline applications: Head-face parallax

One interaction paradigm associated to a free viewpoint videos consists of a moving

user in front of a screen while having the perception of depth through parallax. By

adjusting the viewpoint to the position of the user’s eyes, this effect is possible.

Since the user performs movements in a parallel plane to the captured scene, novel

views only need to be generated in this domain. For this purpose, a narrow capture

setup parallel to the captured scenario will suffice for the desired results. Figure

2.11 summarizes this application group.

When a narrow capture setup is used, cameras and/or depth sensors are arranged

in a line (Zitnick et al., 2004) or in a grid (Taguchi et al., 2008), according to the

freedom of choice of views provided by the application. This setup is ideal for a

performance type of recording, where the audience is supposed to be facing a stage

from a certain direction.

Methodologies such as view interpolation (VI) and DIBR have good performance

in this scenario due to the small disparity between adjacent viewpoints. 3D recon-

struction will create incomplete results, since only one side of the object is being

captured. VI has been used when depth estimation is not reliable enough for ren-

dering, but used sometimes as an aid to the interpolation process. DIBR have been

used in all other works reviewed in this chapter.

All strategies for this setup have used image-based representations because they are

meant to work on any kind of data with no expected restrictions, and as mentioned

previously, image-based representations are independent of the complexity of the
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Figure 2.11: Head-face parallax application classes

Figure 2.12: Free-camera navigation applications

scene.

2.5.3.2. Wide baseline applications: Free virtual camera

When the created application aims to generate novel views all around the subject

of visualization, and not only on a parallel plane in front of it, a wide setup must be

used. Interaction with the video is usually done indirectly, moving a virtual camera

freely around the point of interest.

This type of setup has been used on scenarios where the focus of the video is a human

performer in a controlled environment (Gall et al., 2009; Stoll et al., 2010; Li et al.,

2013). A wide-baseline setup can be comparable to a single depth sensor moving

widely around a scene for static reconstruction purposes (Liu et al., 2010; Google,

2014), since the camera will end up assuming positions equivalent to a wide-baseline

setup.

Because the viewpoint disparity is too high for view interpolation and DIBR, 3D

reconstruction was the methodology applied in all of the surveyed works. Regard-

ing data representation, when stronger assumptions about the content of the scenes

could be made such as in sports scenarios, or controlled environments, mixed rep-

resentations could be used (Germann et al., 2010; Volino and Hilton, 2013; Imber

et al., 2013). All the remaining papers in this category used different Geometry-

based representations. Figure 2.12 shows the different choices that can be made in

this application group.
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Figure 2.13: Navigation through viewpoints applications

2.5.3.3. Semi-Wide baseline applications: Navigation through
viewpoints

A small subset of works reviewed in this chapter aims a similar experience to wider

setups, where the user can navigate in a full circle around a scene, but the content

of the visualization is more complex than having a single performer. Similarly to

Wide setups with mixed representations, strong assumptions can be made about

the content, but the type of result desired is closer to narrow baseline applications.

Either navigating through camera viewpoints, or generating intermediate viewpoints

but not widely far from the defined grid of visualization. For this sense, a ”less

narrow”, or ”semi-wide” setup is used (Figure 2.13).

Instead of performing 3D reconstruction with view interpolation in some components

such as the work from Volino et. al with articulated billboards (Volino and Hilton,

2013), the preferred approach is view interpolation supported by three-dimensional

information about the scene. On sports scenarios (Kanade, 2001; Ballan et al., 2010;

Libero, 2014), this information has been used to generate transition frames between

viewpoints. Given the fact that the reconstruction is rough, the user never gets to

properly visualize intermediate frames. The remaining works in this category (Ng

et al., 2010; Goorts et al., 2013) create intermediate viewpoints, but use background

geometry information to support this view generation process.

2.5.4. Summary and Comparison
As explained in Section 2.1.2 and seen on Figure 2.2 the different works can be sepa-

rated in a hierarchy according to the aspects reviewed above. Each user interaction

paradigm is closely tied to a camera setup, and to one or two methodologies or data

representations. These two aspects are chosen according to the type of data to be

captured.

Summarizing the reviewed aspects, DIBR and VI have been used in uncontrolled

scenarios, where image-based representations can be applied. When strong assump-

tions can be made about the scene in hand, mixed representations have been used for
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view interpolation or 3D reconstruction. Geometry based representations have been

applied on generic scenarios with low requirements regarding quantity of data, or

when the subject of the free viewpoint video was a human performer in a controlled

environment.

Each application type will apply different techniques on the VBR pipeline intro-

duced in section 2.1.3. The most common associations found between VBR related

techniques and the presented application groups are:

Head-face parallax: feature detection has been used for establishing matches across

views with low disparity, block matching for compression, and optical flow for

view interpolation. On high level processing, MVS for depth estimation, and

view interpolation.

Free virtual camera: Segmentation was the most important low-level technique

applied in these works, due to the common focus on a single performer. Object

tracking and MVS have been used on the high level processing step.

Navigation through viewpoints: Feature detection and segmentation at a low-

level, MVS and SfM at a high level. SfM is relevant here due to the sparse

reconstructions used on these techniques.

2.6. Discussion and Current Research Prob-
lems

The presented classification for VBR groups different approaches not only into

clearly identifiable classes that share methodologies and problems, but also gives

meaningful insight on how they operate on the traditional VBR pipeline. Figure

2.14 organizes the reviewed classes in a straight line according to similarity between

each approach.

Table 2.1 list relevant surveys about every approached topic. We recommend those

works as they provide more detailed investigation on the several covered topics by

our paper, including previous VBR reviews for a more theoretical groundwork on

the field Magnor (2005) or a different take on the same process Stoykova et al.

(2007).

With our user interaction paradigm-based taxonomy, three different classes which

have their own line of research were identified. Despite of the fact that they share
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Figure 2.14: Classes of applications (setup, representation, view generation method-
ology) placed on a straight line according to the similarities between their approaches
regarding to geometry used in their data representation.

similar techniques, each one aims to solve different application requirements.

We have noticed that geometrical information, including depth values, plays an in-

creasingly important role in the three classes. This is justified by the hardware

advances, namely, more powerful graphic cards and low-cost depth sensors avail-

ability. With new ways of interacting with 3D content arising such as Mixed and

Virtual reality and the ubiquity of computers and interactive systems in our daily

lives, the free virtual camera paradigm also increases in relevance. Wider base-

lines have been used due to the combination of these two factors. However, current

data representations presented for these scenarios either need to make strong as-

sumptions about the content (mixed), or are not easily compressed in the temporal

domain (geometry).

DIBR has been a good example of an approach that integrates well the geometric

component, being able to apply image-based representations which can be easily

compressed in the temporal domain for transmission. However, it has only been

applied to narrow-baseline scenarios due to the fact that the proposed image-based

representations (LDI and MVD ) face problems when dealing with wider baselines

(Section 3.2.1).

Considering the current trends, we believe the main research goal in this area is

to develop an image-based representation to be used in the 3D recon-

struction free camera navigation scenario. With the continuously increasing

requirements regarding viewing resolution, complexity of content and capture base-

line, time compression aspects will become more significant.
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Table 2.1: List of relevant surveys about the covered topics in this chapter

Survey topic References

Block matching Huang et al. (2006)Yaakob et al. (2013)

Change detection Radke et al. (2005)

Segmentation Brutzer et al. (2011)Bouwmans et al. (2010)Pal
and Pal (1993)

Optical flow Philip et al. (2014)Baker et al. (2011)

Features Boyer et al. (2011)

Multiview stereo Seitz et al. (2006)

Object detection/tracking Prasad (2012)Swaminathan et al. (2014)Yilmaz
et al. (2006)

Image-based rendering Shum and Kang (2000)

Free viewpoint TV Zhang (2007)

Representation Kobbelt and Botsch (2004)Zhang and Chen (2004)
Smolic et al. (2009)

Video-based rendering Borgo et al. (2012)Stoykova et al. (2007)Szeliski
(2005)Magnor (2005)
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3
Data Representation

As briefly introduced in Chapter 1, the goal of this PhD thesis is to develop tech-

niques which allow users to have a navigation experience of a 3D reconstruction

of a video-captured reality from any point of view. A simplified overview of our

approach can be seen in Figure 3.1. The first step (reconstruction) represents the

capture process and low level operations performed to the stream (filtering, segment-

ing, etc). The second step (representation) is where the raw data is transformed into

a more compact data format. The last step (visualization) contains decompression,

rendering algorithms, and integration with applications.

This chapter describes the second step; representation. As introduced in Section

1.2, it is the central research question of this thesis. Image-based representations

for rendering were initially introduced as more efficient alternatives to render geo-

metrically complex scenarios. But as mentioned in Section 2.5.2, they have been

Figure 3.1: Simplified diagram of the 3D Flashback framework, explained in Section
4.1

39
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tightly connected to video-based rendering (VBR) due to their temporal compres-

sion advantages. In the proposed 3D Flashback framework the data representation

problem is undoubtedly central in enabling the desired type of applications.

The following sections will start by describing the initial experiments with a point-

based representation that were performed to locate the main problems with this data

format, and quantify the advantage obtained with the proposed solution. Following,

our proposed layered representation, and an evaluation of different view generation

algorithms. Lastly, we evaluate the effect of temporal compression in this type of

data comparing to our initial approach.

3.1. Early Results
For the early implementation we opted to use a simplistic representation of data to

have a realistic baseline for comparison on further representation choices. The initial

approach was to reconstruct the data into a separate point cloud for each captured

frame. Each point cloud was saved to a file with (x, y, z) coordinates, and RGB

color values for each reconstructed point. For the Kinect 1 device where the image

resolution is 640 × 480, we have 307200 points, since each depth pixel represents a

3D point.

On Kinect 2, although having better depth precision, the depth image resolution

is lower, standing at 512 × 424, at a total of 217088 points for each frame. Using

the minimal data format possible, which is storing a long for the depth value (4

bytes in C++), and four bytes for the color (RGBA), we need 8 bytes per point,

reaching a total of 1.74MB per frame, a total of 52.1MB per second at 30 frames

per second, 3.13GB per minute of recording data. This is considering one single

viewpoint. On our usual setup of 4+ cameras we have a minimum of 12.5GB of

data per minute. With this large flow of data it is not only unfeasible to read every

frame from disk at real time, but also goes over the amount we can store in RAM

for instant reproduction.

Using the segmentation technique introduced in Section 4.2, we separated the repre-

sentation of the static content from the one human actor in scene, keeping only one

point cloud for the static content. With one person caught in video only, we used

only 16.12% of the original space, with an average of 280KB for each point cloud,

8.40MB per second and 503.92MB a minute per each point of view.

Despite already being a significant improvement to the uncompressed scenario, they
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(a) Layered depth image (b) Multiview plus Depth

Figure 3.2: Two different image-based representations based on depth.

still form a too large flow of data to be handled by personal computers. Assuming

these values would scale linearly with the amount of dynamic elements on the scene,

number of input devices, and also further improvements or processing of the data

that might naturally increase the number of points, even on this best case scenario,

a minute worth of data would use more space than four hours of high quality com-

pressed video on a common codec. Some crucial points and bottlenecks on this

simple representation were identified by these early attempts:

Point information redundancy: This was partially addressed by the simplifica-

tion of the static elements to a single point cloud, but still persists on the dynamic

elements that remain static for a good portion of frames meaning that from frame to

frame there is a big amount of repeated information. This will be addressed through

video compression techniques applied to the image-based streams 3.4.

Multi-stream integration: In order to achieve a representation that does not

scale linearly with the number of sensors we use on the capturing process, we need

to address the redundancy of data that is seen from more than one input stream.

We want quality to improve, but not complexity. Our proposed data representation

proposed in the following sections will address this problem.

3.2. Multiview Layered Depth Images
This work section is based on the work published in the Journal of WSCG Vol. 25(2),

pp. 115, and presented at the WSCG 2017 conference. 1

1Anjos et al. (2017)
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Multiview+Depth (Figure 3.2b) encoding and Layered Depth Image Figure 3.2a)

(Shade et al., 1998) have been the most popular approaches in the VBR scenario,

with LDI being a reportedly less costly representation (Yoon et al., 2005). They are

popular in this scenario due to the fact that they allow incorporating the continuous

advances in video compression algorithms, being image-based.

However, both of the proposed representations are targeted for applications with

a predefined user paradigm (3DTV, head-face parallax), and a preferably narrow-

baseline capture setup. Advances in 3D capturing technology enabled developers

to more accurately represent the real world, enabling less restrictive applications to

emerge (Orts-Escolano et al., 2016) mainly in the fields of virtual and mixed reality.

While recent work has been focused on coding tools for MVD, which can be applied

to these new scenarios, we consider an alternative representation for a single frame,

enabling higher compression from the start of the process.

The key advantage of the LDI representation over its alternatives is the fact that

redundancy between views can be minimized during the encoding process (Kirshan-

than et al., 2014). However, its classical representation of a central + residual

viewpoints establishes a main viewing direction in which data can be optimally vi-

sualized, having disadvantages in a free camera navigation scenario. This has a

direct effect in the redundancy computation, meaning that the sampling rate of the

data is lower in the direction of the optical rays coming from the central viewpoint

(Section 3.2.2.1). Moreover, on wide baseline scenarios where cameras might be

in an opposite direction to the central viewpoint, it might not be possible for all

data to be captured by one chosen central viewpoint (Figure 3.3b), requiring a more

distant virtual viewpoint to be generated which, besides not being a trivial task,

will decrease the sampling rate of the data. Lastly, surfaces that are quasi-parallel

to the central viewpoint optical rays are intersected once in each layer, increasing

the number of low-populated residual layers in order to encode the whole dataset

(Figure 3.3).

We propose a novel image-based representation and encoding algorithm as a way to

successfully answer the mentioned problems: the Multiview Layered Depth Image

(MVLDI), where each layer is encoded according to a different viewpoint among the

several capturing positions. We use a modified view-generation algorithm, which has

better redundancy detection and a smaller number of generated layers, while being

able to correctly encode data for a wide-baseline scenario, which was previously only

possible using MVD and no redundancy estimation. We evaluate our technique with

different datasets and camera setups and redundancy detection techniques.
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(a) Surfaces parallel to an optical ray create low
populated additional layers

(b) Choice of LDI central viewpoint might not
encode part of the data.

Figure 3.3: Problems with the classical LDI representation

The next section reviews related work on MVD and LDI, followed by a description

of the MVLDI generation algorithm and redundancy detection. Finally, results

are presented with an in-depth comparison between our approach and the current

image-based representations.

3.2.1. Related Work
Merkle et al. (2007) and Smolic et al. (2008) introduced Multiview+Depth coding,

where depth data is associated with the video and encoded as a video stream. Al-

though compression artifacts can be found in the rendered results, authors claim

intermediate views are more easily generated just at the user side with full data.

More recent work by Do et al. (2012) propose an inpainting algorithm which has a

fast GPU implementation where holes are filled with the average on a 5x5 neighbor-

hood.

Recent developments in this area have been related to depth coding. How to avoid

the loss of precision due to compression, and how to use inter frame relations between

depth values make better use of predictive frames. The two main strategies are

independent depth coding (Merkle et al., 2009), and texture-assisted (motion and

structure shared) (Lei et al., 2015), which tries to correct misalignments between

depth and color. Kim et al. (2015) propose a method to evaluate how depth coding

influences the quality of the results, which can be used by other authors.

Merkle et al. (2016) introduces a plane fitting approximation to simplify blocks

of data (segmented by contour). This contour-based segmentation can be used to

extract meshes (using Delaunay triangulation on the edges of the contour) and to
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simplify data by simplifying geometric information and have a better encoding of

the data.

Despite allowing effective 3D representations, MVD coding implies dense represen-

tations not considering the redundancy always present when multiple cameras image

the same scenario. The LDI concept has been introduced to allow saving data by

reducing redundancy.

Yoon et al. (2005) applies the LDI concept for VBR, proving to be a more compact

than standard multiview coding. The data size of the multiview video linearly

increases as the number of cameras. Authors propose using the LDI representation

to compress and transmit this data, mainly due to the fact that redundant data

that is seen by more than one point of view is not transmitted. All optimizations

applied to MVD can be applied to LDIs, while not including repeated points, claim

that is supported by Kirshanthan et al. (2014). In their following work (Yoon et al.,

2007), improvements to the LDI representation are proposed (layer aggregation and

layer filling) so temporal coding has a better performance.

Muller et al. (2008) discusses about image-based representations in the context of

3DV systems, and head motion parallax as an interaction paradigm. Authors claim

that for stereo video, V+D is enough. For several views, MVD where only a subset

of views with depth would be transmitted and intermediate views synthesized at

the receiver side. They then introduce a different concept of LDI that is focused on

3DV systems. Instead of transmitting all the views, they transmit a central view

close to the desired by the user, and residual information from side views to correct

errors.

More recent work is focused on proposing better encoding for residual layers. Daribo

and Saito (2011) proposed a different residual layer estimation algorithm which

includes inpainting and hole-filling. Also, Kirshanthan et al. (2014) proposes efficient

encoding for this residual information including pre-processing on the data for easier

layer generation.

We propose a novel image-based representation and encoding algorithm, which varies

the viewpoint among the several capturing positions, in order to allow larger acqui-

sition and visualization baselines.
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3.2.2. Description

The LDI is represented by a set of M layers Lldi = {l1, l2, ..., lM} with each layer

being an image-based representation of the world as seen from the same chosen

”central viewpoint” vc among the set of acquisition viewpoints of the data V =

{v1, v2, ..., vN}.

We propose a different representation, where one MVLDI will consist in a set of M

layers Lmvldi = {l1, l2, ..., lM} where each layer li is represented according to one of

the viewpoints vi in V = {v1, v2, ..., vN}. Each viewpoint vi has its own intrinsic and

extrinsic calibration parameters in order to generate the layer information.

The number of layers M has no direct relation to the N in the case of the LDI,

while on our approach, M is typically equal to N , only being higher in the case of

camera calibration misalignment.

The classical representation for LDI has two disadvantages in wider baseline capture

scenarios, as exemplified in Figure 3.3. Encoding of parallel surfaces to optical rays,

and excluding data from the process due to the central viewpoint choice. This

does not happen in MVD encoding, due to the fact that encoding is performed

according to different points of view. No data is discarded since it is seen at least

once by its original recording viewpoint, and underpopulated layers are not created

by parallel surfaces due to the fact that each subsequent layer will have optical rays in

different directions. Our proposed representation MVLDI combines the advantages

of both approaches, removing redundant data, and correctly encoding wide-baseline

scenarios.

3.2.2.1. Encoding algorithm

Our layer generation process is similar to the traditional LDI algorithm described by

Shade et al. (1998). Recently, different processes have been proposed for this step

(Daribo and Saito, 2011; Kirshanthan et al., 2014), which targeted optimizations

for specific use case scenarios. The proposed hole-filling and in-painting techniques

were targeted to a head-face parallax user interaction paradigm, where corrections

can be made at image space, and assuming all pixels must be filled at all times.

If such assumptions were done about the scenario to be used with MVLDI, these

could be easily incorporated. However, we established a more general scenario, only

assuming depth values were available per pixel, which is common nowadays using
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commodity depth cameras (e.g. MS-Kinect, Asus Xtion Pro, Intel RealSense).

Initially, each of the RGBD frames is transformed into a point cloud using the u, v

image coordinates of each pixel, the depth value d(u, v), and the intrinsic parameters

of the capture device. All resulting clouds are then combined in a single volume

P , using the transformations in the extrinsic matrix. Algorithm 1 describes the

encoding process for a given volume P .

Algorithm 1 MVLDI encoding algorithm

Input: Point Cloud P , Acquisition viewpoints V
Output: MVLDI M
L← set of layers for each viewpoint
R← empty cloud
t← threshold distance
for all point pi ∈ P do
for all layer lj ∈ L do
dij ← worldToImageSpace( pi, lj )
ej ← lj[ dij.u, dij.v ]
if isInside( dij, lj ) then
if isRedundant( dij, ej, t ) then

break
else
if ej is empty then

addToLayer( dij, lj )
break

else
if dij.d < eij.d then

replaceInLayer( dij, ej, lj )
retryPoint( ej )
break

end if
end if

end if
end if

end for
addPoint(R, ej) //not encoded in any layer

end for
if R is not empty then

re run with R
end if
discard empty Layers

We create N data structures, one for each layer lj, where N is the number of cameras

in the capture process. Each one is positioned according to the extrinsic calibration

parameters for each one of the viewpoints, and is sized according to the recording
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resolution of the input devices.

For each input point pi, we try to encode it in a layer lj by projecting it to that layer

image space as a depth pixel dij. If isInside(dij, lj), meaning that (u, v) coordinates

of dij are positive and smaller than the width and height of the layer, we check

for redundancy isRedundant(dij, ej, t) (described in Section 3.2.2.2) where ej is the

depth pixel in layer lj at the (u, v) coordinates of dij. In the case the data point is

redundant, we start processing pi+1, marking pi accordingly, not including it in lj.

Otherwise, the point is encoded if the depth pixel eij is currently empty. If it is not,

and dij has smaller depth than eij, we add dij to lj, and eij is added for re-encoding.

If eij is already filled with a point with smaller depth than dij, we go to the next

layer.

Finally, in the case the point can not be placed in any of the layers, we add it to

a collection R which will be processed with newly created layers. This is only the

case when calibration errors exist. In all of the tested datasets these points were

always encoded to a single layer, and represented less than 0.1% of the original point

cloud.

3.2.2.2. Redundancy detection

In the classical LDI definition, a point Puvd is considered to be redundant if ‖Puvd.d−
Li[u, v].d‖ < t. Due to the fact that a central viewpoint is defined, and only depth

comparisons are made in this particular image-space, sampling of data is not equal

in all directions. When parallel to the viewing plane, pixel distance is evaluated,

which in world coordinates is higher proportionally to the depth value and focal

lenght f . When along the optical rays coming from the LDI viewpoint, a fixed

threshold value t is used.

On a head-face parallax or 3DTV scenario, this was not seen as a problem, due to

the fact that visualization is meant to be parallel to the central viewpoint. The

sampling rate in the viewing direction is not perceived in these scenarios due to

the visualization position restrictions. The lower sampling rate in the background

pixels is also not noticed due to the fact that a parallel movement to the central

viewpoint viewing plane does not change their image-space distance, not revealing

possibly empty pixels.

Algorithm 2 shows our approach to the same problem, and Figure 3.4 illustrates the

algorithm. The first key aspect of our method is using world coordinates to estimate

the distance between the pretended point and the correspondent point in the layer,
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Algorithm 2 Redundancy detection algorithm. n surrounding pixels are checked
in order to properly evaluate all points that might be under the threshold distance
t.
Input: Puvd, Pxyz point to be encoded in image and world coordinates
Output: true or false
L← current Layer
t← threshold distance
f ← focal lenght from intr. matrix
s← Puvd.d

f

n← t
s

for i = Puvd.u− n to i = Puvd.u+ n do
for i = Puvd.v − n to i = Puvd.v + n do
Quvd ← L[i, j]
if ‖Qxyz − Pxyz‖ < t then

return true
end if

end for
end for
return false

Figure 3.4: Global threshold illustrated

opposed to just the depth value. The further away from the central viewpoint of an

LDI, the greater the discrepancy between a depth-based threshold, and one based

in euclidean coordinates.

The second aspect is the fact that we also consider surrounding pixels to Puvd. We

first calculate the world distance s between pixels at that depth by calculating Puvd.d
f

where Puvd.d is the depth value of the point being analysed, and f the focal distance

from the intrinsics matrix. We then calculate the number of pixels to be checked

around the encoded point by dividing the threshold t by s. By doing so, we very

efficiently check every possible point that might be in a distance smaller than t from

the considered point. Further layers do not need to be checked since the order of

layer consideration is the same for each point, so in the case of a point not being
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(a) Simple (b) Occluded (c) Simple #2 (d) Occluded #2

(e) Dancer F (f) Dancer M (g) Sitting (h) Selfie

Figure 3.5: Snapshot of our used datasets. Simple #3 is the same as Simple #2 but
having 3 more cameras.

considered redundant in that layer, we will naturally move to the next one to perform

the same test.

Name # Cameras Baseline Pt. number

Dancer M 3 Wide 68.932

Dancer F 3 Wide 75.146

Simple 4 Narrow 563.315

Simple #2 4 Wide 491.707

Simple #3 7 Wide 828.822

Occluded 4 Narrow 511.161

Occluded #2 4 Wide 505.232

Sitting 4 Narrow 580.736

Selfie 4 Wide 511.161

Table 3.1: Description of the tested datasets.

3.2.3. Results
We tested our approach with varied datasets captured with the Microsoft Kinect 2

sensor, each one holding different properties. Table 3.1 gives a brief description of

each dataset, and Figure 3.5 shows a snapshot of each. These datasets were captured

either in a controlled laboratory scenario, or are single frames of the capturing ses-

sions with Rui Lopes Graça with Killian Souc and Miyu Matsui, described in Section

1.1. We compared MVLDI with LDI using both the proposed global thresholding

algorithm, and the traditional image-based technique in order to individually evalu-

ate the effect of each contribution. MVLDI with global thresholding represents our
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Figure 3.6: Percentage of data detected as redundant from the original cloud.

proposed technique, and LDI with image-based thresholding, the traditional LDI

implementation. Our goal was to minimize the number of generated layers, while

more effectively detecting redundant data.

Both narrow and wide baseline were contemplated in order to validate our claim

of MVLDI having a superior performance than LDI on a wide scenario. Different

numbers of acquisition devices were also tested in order to validate the scalability

of the process, and also validate the claim that redundancy is proportional to the

number of capture devices. Different datasets contained different distribution of

points according to their content. With the used devices (Kinect one), each stream

can contain up to 217088 points. Empty areas in the datasets are typically due to

limited distance where the sensor works (e.g. Simple with 563.315 points, 64% of

the possible total for 4 sensors).

Finally, while most of our datasets were controlled lab scenarios in order to control

the disposition of the objects related to the cameras, we also included data captured

from a realistic dance scenario (Figures 3.5e 3.5f). ”Simple” datasets contained lines

of boxes visible by most of the cameras (Figures 3.5a 3.5c) , ”Occluded” datasets

had a line of boxes occluded in one of the points of view (Figures 3.5b 3.5d). Sitting

and Selfie (Figures 3.5g 3.5h) included a person in a controlled scenario in order to

better evaluate if redundancy detection had a negative effect in the perception of

more delicate shapes.

Dancer M Dancer F Simple Simple #2 Simple #3

0% 0% 19% 48 % 39%

Occluded Occluded #2 Sitting Selfie

19% 46% 20 % 45%

Table 3.2: Percentage of points discarded by the LDI approaches due to being
outside of the frustum of the central viewpoint.
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3.2.3.1. Quantitative Analysis

Figure 3.6 shows the achieved results regarding redundancy detection. The values in

the table are calculated regarding the total number of points considered for encoding.

Table 3.2 shows the percentage of the total dataset that was discarded in the case

of LDI due to being outside the viewing volume of the central viewpoint.

Our approach had a superior performance over LDI in all tested datasets. Notably,

the LDI approach had a high number of low populated layers (over 100 in Simple,

Occluded #2 and Selfie, as seen in table 3.3) This experimentally confirms the

problems exemplified in Figure 3.3a. With a wide-baseline capture setup, surfaces

perpendicular to the central viewpoint viewing plane will create an elevated amount

of created layers. Also, redundancy detection on the wide-baseline scenarios was

lower with the classical approach. This is related to the amount of non-encoded

points (over 40% of in some scenarios (Table 3.2, example in Figure3.3b) which

would include walls and floor sections where typically a lot of redundancy was found,

but also due to the redundancy detection algorithm.

The proposed global thresholding technique performed better in all scenarios. The

difference was smaller in narrow scenarios, since the data was captured and sampled

from the same perspective, so a pixel-based comparison still had an impact, albeit

smaller. The biggest difference was found in wide baseline scenarios, where several

points under the used threshold were located in neighboring pixels but not considered

redundant only considering the depth value.

When comparing solely the difference in the number of points of view, the multi-

view approach had a smaller number of layers in all scenarios, being close or equal

to the baseline for comparison (MVD, where the number of layers is equal to the

number of input devices). The multiview approach did not suffer from the prob-

lem presented in Table 3.2, where big segments of the point cloud were discarded

due to not being visualized by the central viewpoint. This is essential in a free

visualization application through a virtual camera, specially in wide-baseline sce-

narios. Redundancy detection in MVLDI was higher in all scenarios except for the

Dancer scenarios where only three cameras were used, and no data was left out of

the encoding process.

An argument could be made about the choice of the central viewpoint for the LDI,

and considering a virtually generated point of view that would include all of the

data. The main problem with this proposition is the fact that a single viewpoint

that includes all the data would necessarily be placed further away than the existing
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acquisition viewpoints, which certainly increases the problem in Figure 3.3a. The

further the viewpoint is from the data, the more likely the planar surfaces in the

cloud are aligned with the optical rays, increasing the number of low-populated

layers.

Several previous works on LDI have reported higher rates of redundancy detection

than the ones presented in this section (Yoon et al., 2005). The datasets typically

used for benchmark are the breakdancers and ballet sequences from Microsoft Re-

search, which are aimed to a head-face parallax interaction, or 3DTV. Cameras are

separated by approximately 20cm from each other, which is a very narrow baseline.

Also, depth precision is considerably lower, with only 256 values to represent the

whole range of the scene. The depth cameras used in this work have a precision in

the order of milimiters, which is why less values with the same depth are encountered

using the image-based algorithm.

3.2.3.2. Qualitative Analysis

Although we report high redundancy removal in all of the presented scenarios, the

quality of the visualization was not compromised. Figure 3.7 shows a side by side

comparison of the input cloud, the redundant data, and the encoded result. On

the dancer example where 27% redundancy was reported, data from the dancers

back, silhouette, and floor were correctly reported as redundant (Figure 3.7b), not

compromising the final visualization, as seen in Figure 3.7c.

On ”Occluded” where a narrow baseline setup was used, we can clearly see a large

amount of data (42%) consisted of walls, floor, and only the front part of the non-

occluded box as being reported as redundant (Figure 3.7e), with the remaining of

the data, included the boxes behind the front one, being perfectly visible in the

encoded version (Figure 3.7f).

Regarding precision loss during the LDI encoding algorithm, we kept it to a mini-

mum by limiting the depth where the point is considered to be inside the current

layer to the maximum depth where the used cameras give reliable values. This can

be seen in the similarity between the input and output examples seen in Figure

3.7

Also, considerations about the viability of MVLDI on a video scenario can be made.

Our generated layers are less sparse as seen on figure 3.8, and in a smaller number.

We can more easily guarantee coherent matches between frames using block match-

ing algorithms due to having more densely populated regions on the image. Also,
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(a) Original Dancer M (b) Redundant Dancer M (c) Encoded Dancer M

(d) Original Occluded (e) Redundant Occluded (f) Encoded Occluded

Figure 3.7: Result of the encoding process. Original (a, d), redundancy removed (b,
e), and encoded data (c, f) for a wide and a narrow baseline scenario (top vs bottom
row).

our final number of layers is typically equal to the number of acquisition viewpoints,

unlike LDI’s which are inherently dependent on the content of the scene, and might

create uneven distribution of layers per frame, which are less reliable for temporal

matching. When compared to MVD’s, our representation discarded redundant data,

creating more compact frames.

Name LDI Im-
age

MVLDI
Image

LDI
Global

MVLDI
Global

Dancer M 23 4 7 3

Dancer F 20 4 6 3

Simple 10 5 8 4

Simple #2 115 5 11 4

Simple #3 88 11 16 8

Occluded 13 5 12 5

Occluded #2 119 5 10 4

Sitting 17 5 12 5

Selfie 125 5 9 4

Table 3.3: Number of layers generated by each approach. MVLDI with global
thresholding has the overall lower number of layers.
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(a) LDI

(b) MVLDI

Figure 3.8: Comparison between the first 8 LDI layers, and the full 4 MVLDI layers
of the ”Selfie” dataset, with number of points per layer. The silhouette of the
subject, floor and a table in the background generate low populated layers being
parallel to the optical rays.

3.3. MVLDI view generation
Although successful, the proposed MVLDI generation algorithm does not consider

the impact of the evaluation order of the viewpoints. Given that each generated layer

will be compressed into a separate video stream, the ideal output has as few layers

as possible (Figure 3.9), so the decompressing and rendering process is simplified.

Also, more densely populated layers are more easily matched between frames by

block matching algorithms used in video compressors (Zhu and Ma, 2000; Yoon

et al., 2007). Both of these aspects can be negatively impacted by a poor choice in

the viewpoints evaluation order. Figure 3.10 describes these problems in detail.

In Figure 3.10a, if Vp1 is chosen for evaluation before Vp2, the red portion of the

point cloud would not be included in the first layer, forcing a second layer to be

created. This would have been avoided by evaluating Vp2 first. A similar scenario
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Figure 3.9: Sequence of optimal MVLDI layers, colored with the estimated normals

(a) First problem (b) Second problem

Figure 3.10: Problems with poor MVLDI viewpoint selection

can be seen in Figure 3.10b where four non redundant points are being encoded.

While Vp1 can only include two of those points at each time due to its distance, Vp2

can create a single layer with all points.

This section describes and evaluates five different techniques for viewpoint selection

on MVLDI. We implemented and tested five (plus one baseline) different approaches

comparing to two different baselines: a randomized approach and a full complete

search by choosing the best possible order of evaluation according to our set criteria.

Our results show that the greedy search-based approach has the overall edge over

the cluster-based ones, due to the sparsity of the residual data in the last layers

which creates problems for clustering algorithms. However, our results also showed

that normal-based viewpoint selection and generation can be very successful in more

complex wide-baseline scenarios.

A synthetic viewpoint generation approach is presented which can be used not only

when viewpoint information is not available but also showed better results when

increasing the number of input cameras, being applicable in different scenarios than

VBR, where viewpoint information is not available.
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A short review of related work will be presented, followed by the description of the

implemented algorithm, evaluation and results and concluding with guidelines and

future work.

3.3.1. Related Work

Although our work is focused on a specific part of the MVLDI algorithm, there are

several different aspects worthy of attention regarding image-based representations

for VBR. This section will review Point Cloud analysis techniques. For related

work on image-based representations for VBR, please refer to Sections 2.5.2.2 and

3.2.1.

One possibility when considering an informed approach on choosing encoding view-

points for a point cloud is to look for information on the data being encoded. Given

that the point cloud is an unstructured data type, different techniques need to be

applied to extract information from them. Pauly et al. (2003) propose different fea-

tures for point clouds in the shape of feature curves, which are useful for detecting

contours and recognizing repeated objects in a point cloud. Segmentation has been

used as a way to detect surfaces, objects, and regions that share properties.

The survey by Nguyen and Le (2013) describes the different approaches to point

cloud segmentation, discussing their advantages. Notably, Rusu and Cousins (2011b)

have implemented different attribute based methods into the open source project

”Point Cloud Library”. Normal vectors, position, color, and curvature are examples

of attributes used in the segmentation process More complex features as the ones

mentioned above (Pauly et al., 2003) can also be used for segmentation in some

scenarios.

3.3.2. Algorithms

We implemented six different approaches to the viewpoint selection problem, with

one (optimal search) being used as a baseline (together with arbitrary attribution, as

in the original paper). This section will describe each new approach in detail.
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3.3.2.1. Search-based Selection of Viewpoints

Our goal is to create as few layers as possible, while being densely populated. These

approaches take into consideration the layer depth and number of points in order to

find the best order of evaluation.

Optimal

Algorithm 3 describes the process of creating the encoding tree with all possible

combinations. For each viewpoint V , we try to encode all points pi ∈ P , being P

the complete point cloud. A tree node is created with the the number of encoded

points np. If this value is positive, we go deeper in the tree by running the process

again with the non-encoded points R. If this value is zero, we create a ”dead end”

node, representing that the current viewpoint choice did not visualize a single point.

If R is empty, it means a solution was found.

Algorithm 3 Encoding tree creation algorithm for optimal search

Encode Optimal
Input: Point Cloud P , Acquisition viewpoints V
Output: Encoding Tree T
R← empty cloud
T ← empty tree
for all viewpoint vj ∈ V do
for all point pi ∈ P do

Layer l←Create Layer(vj)
if encodePointLayer(pi, l) == false then

addPoint(R, pi)
end if

end for
N ← createTreeNode(np)
if np > 0 then
if R not empty then
N.childNodes← Encode Optimal(R, V )

end if
else
N ←”dead end”

end if
end for

After the encoding tree T is created, we find the minimum depth where a solution

was found, pruning the rest of the tree. Then, we traverse the tree bottom-up

comparing at each level the number of total points (current node + child nodes),

choosing the maximum. After we have the best solution, Algorithm 1 is run with V

populated with the correct order of viewpoints.
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This algorithm is one approach to maximize the set objectives. However, its com-

plexity can be estimated to be O(vd), where v is the number of viewpoints and d

the maximum depth set for the tree creation. This is very high considering that the

number of points to be considered in each encoding step also scales linearly with

v and that this process might be executed several times in a video sequence. On

a scenario with 7 cameras we can go easily beyond a billion nodes in the encoding

tree, with a high cost on creating each one of them.

Greedy

Due to the complexity of the previous approach, we implemented a greedy approach

where instead of creating the full tree at the beginning, we simply choose the best

option at the moment. At each step, the point cloud is encoded to different layers

created according to the viewpoints vj in V . The one that contains the highest

number of points np is added the the result MVLDI. This process is repeated until

no points are left. If at any point a certain viewpoint creates an empty layer, it is

removed from V in order to simplify the following steps. Algorithm 4 shows this

approach in more detail.

Algorithm 4 Greedy encoding approach

Encode Greedy
Input: Point Cloud P , Acquisition viewpoints V
Output: MVLDI M
R← empty cloud
L← list of layers
for all viewpoint vj ∈ V do
lj ← Create Layer(vj)
encodePoints(P, lj)

end for
M ← lj ∈ L with highest np
Remove vj that created empty layers from V
if R is not empty then

Encode Greedy(R, V )
end if

3.3.2.2. Iterative Clustering to Select or Generate viewpoints

Alternatively to selecting viewpoints, as suggested in Section 3.3.2.1, one may con-

sider an informed approach that chooses the next encoding viewpoint according to

the data at hands. In this scenario, we needed to define what attributes would lead

us to a positive result. We chose to base our approach on normal-based clustering
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and segmenting surfaces from the point cloud, and using this average normal value

and center of mass to choose an encoding viewpoint. Looking into the positive re-

sults from the previous approaches, large surfaces with the normal vector pointing

at the camera are typically not occluded, creating dense layers. Also, this will lead

us into a higher probability of including pieces of the same element in a single layer.

This would be advantageous in a temporal compression scenario, i.e. the object will

move as a whole in that layer.

Algorithm 5 Cloud segmentation and parameter estimation

Input: Point Cloud P , Min. cluster size m, Incremental angle α,
Output: Biggest cluster avg. normal vector n and center of mass cm
Cmax ← empty cluster
θ ← 2
while θ < 360 do

Clusters C = SegmentCloudByNormals(P ,θ)
Cmax ← FindBiggestCluster(C)
if Cmax.size > m then

break
else
Cmax ← empty cluster
θ ← θ + α

end if
end while
if Cmax is empty then
Cmax ← P

end if
cm ← estimateCentroid(Cmax)
n← estimateAverageNormal(Cmax)

For all three implemented techniques, we used the same approach to estimate clus-

ters and average normals, which can be seen in Algorithm 5. We define an initial

threshold angle θ on the difference of normals accepted in the cluster (experimental

results started at 2 degrees), and repeatedly apply the segmentation process using

the conditional region growing method in the work of Rusu and Cousins (2011b).

We define the minimum size for a cluster m, based on the type of data and depth

cameras used (for our setup 3% of the size of the total point cloud). If no clusters

biggest than m are found, θ is incremented by a fixed facto α so the clustering

condition is incrementally relaxed, until clusters are made only based on their dis-

tance. If no clusters are found, or the size of the total point cloud is smaller than

m, we define the whole point cloud P as being the biggest cluster. Then, we esti-

mate the center of mass cm for the point cloud, and the average normal vector n

to be used in the following algorithms Finally, Algorithm 6 describes how all of the
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following approaches create an MVLDI, differing only on the chooseViewpoint(P )

method.

Algorithm 6 Encoding algorithm for iterative clustering approaches

Encode Optimal
Input: Point Cloud P
Output: MVLDI M
R← empty cloud
T ← empty tree
while P not empty do
V ← chooseViewpoint(P )
Layer L← encodeToViewpoint(P )
M .add(L)

end while

Best Direction The first algorithm using this information is focused only on the

resulting n vector of Algorithm 5. Our objective is to find the surface that most

directly face a certain vi ∈ V . At each step of the encoding process (Algorithm

6), we calculate n.fvi being fvi the front vector of the viewpoint vi ∈ V . The dot

product represents cosφ being φ the angle between the two vectors, with 0 meaning

the vectors are perpendicular, 1 parallel, and -1 exact opposites. In our system,

we estimated the normals to the point cloud pointing away from its center of mass,

consequentially facing away from the camera that captured that portion of the data.

In that case, we select the viewpoint vi ∈ V which n.fvi produces the higher value.

We also considered a variant of this approach where we use the absolute value

|n.fvi | instead, so on wide-baseline scenario two opposed viewpoint are considered

as equally favorable. These approaches are identified in Section 3.3.3 as best dir for

the first one, and best dir 2way for the second.

Viewpoint Selection and Generation for the Multiview Layered Depth

Image

Using the output information of Algorithm 5, we developed an approach that create

synthetic viewpoints that will try to optimize the concept introduced in the previous

section (viewpoints directly facing a surface). We define a viewpoint vs along the

ray starting in cm following the direction defined by n. For this approach, we wanted

the whole cluster that generated this viewpoint to be seen, thus the majority of its

data would be encoded.

The distance d where the viewpoint vopt is placed can be calculated by size
2 tan fov/2

, as

seen in figure Figure 3.11. By calculating the bounds umax, umin, vmax, vmin of the

cluster on image-space, we fit the camera to the biggest dimension, by calculating
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Figure 3.11: Distance where the synthetic viewpoint is placed on the viewpoint
generation approach.

its respective size in world-coordinates, which will allow us to estimate the distance

d where we want to place the camera in order to see the whole cluster. If no

cluster bigger than the minimum size m is found, the whole cloud is used for this

purpose.

Best Position

This approach follows the same process as the previous (Viewpoint Generation).

However, instead of using the generated viewpoint, its position is used to choose

the closest viewpoints among the original capture viewpoints (using the euclidean

distance).

3.3.3. Evaluation and Results
We evaluated the implemented approaches using the nine different datasets used

in the MVLDI paper (Anjos et al., 2017), which were captured with the Microsoft

Kinect. The datasets were chosen due to the fact that they cover different type of

content (different arrangement of simple objets, and also more complex objects),

baselines and number of input cameras. The details of each point cloud can be seen

in Table 3.1.

We selected the approaches previously described (optimal greedy, best dir, best dir 2way,

generate and best pos) for comparison, setting the optimal approach as one baseline

due to its elevated complexity, and also an arbitrary choice of non repeated view-
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Figure 3.12: Layers generated for each approach/scenario

points as in the original MVLDI algorithm (Anjos et al., 2017) named original in

the figures.

The goal of the experiment was to evaluate each approach according to the number

of generated layers, the distribution of points per layer, and how different baselines

and number of input cameras would impact the performance of each technique.

3.3.3.1. Number of Layers

Figure 3.12 shows the number of created layers for each approach/scenario combi-

nation. The optimal result is highlighted with a green dotted line, while the original

approach with a red dotted line. Ideally, results would be as close as optimal, while

being an improvement from an arbitrary assignment of viewpoints.

When we have a low number of cameras (3), viewpoint selection has a lesser impact

on the number of generated layers, given that there are not a lot of possible combi-

nations. The optimal approach can be considered viable in this scenario, since it is

not as costly to verify all possible orderings. Notably, generate and best dir had an

inferior performance in this scenario due to the fact that less reliable surfaces could

be found.

Overall, optimal greedy was found to be the most consistent approach. However, its

performance was slightly worse in wide-baseline scenarios (such as ”Selfie”, ”Simple

#2” and ”Simple #3). These scenarios are more prone to the existence of residual

data due to occlusions, and this approach is focused in populating highly the first

layers without considering the impact in the next layers.

Cluster-based approaches were all affected by the same problem: when clustering

residual data, the detected surfaces and estimated average normals are not indicative
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of coherent parts of objects and surfaces as in the original data. This forces the

algorithm into making poor decisions.

The approaches best dir2way and best pos have very similar results, with the ap-

proach best dir 2way having the edge on most situations. Both have poor perfor-

mance in wide-baselines, choosing viewpoints targeted at low populated areas due

to normals indicating an opposing direction than expected. Best dir suffered from

the clustering problem, but still presented positive results in some cases, outper-

forming greedy in ”Simple #2” and ”Simple #3”. This confirms the assumption

introduced in Section 5, of choosing viewpoints pointed at big surfaces to create

dense layers.

Generating virtual viewpoints was seen to be more advantageous in wide-baseline

scenarios, but was only seen as the best approach in the ”7-Wide” scenario. It is

important to notice that this approach would typically discard more points due to

redundancy than the others. This is due to the synthetic viewpoint being created fur-

ther away than the original viewpoints, causing more precision loss to happen.

3.3.3.2. Points per layer

Figure 3.13 shows the percentage number of points per layer in a box plot. Whiskers

and in some cases outlier points represent the maximum and minimum percentages,

boxes represent the first and third quartiles, ”X” marks the average, and the interior

line the median value.

In the 3 cameras scenarios 3.13c, ”Dancer F” had similar results for all approaches,

with all of the proposed techniques outperforming the original approach. Notably,

generate had the highest maxima due to sucessful detection of a cluster that was

part of the dancer (Figure 3.14c). On ”Dancer M”, the clustering algorithm was

not as sucessful, making all approaches fall slightly short of optimal, with greedy,

best dir2way and best pos being the best alternatives.

In the narrow baseline scenarios (Figure 3.13a), we can notice that optimal has

higher minimum values than the other approaches. Once more, the optimal greedy

approach has shown positive results, with averages close to the optimal approach

(Figure 3.14a), but also high third quartiles, which show that the second and third

layers are also densely populated. Regarding the cluster-based approaches, min-

imum values and first quartiles were below 2% in all techniques, showing that a

considerable number of low populated residual layers were created, given that they

are not classified as outliers. Notably, best dir had a poor distribution of layers as
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(a) 4 Cameras Narrow baseline

(b) 4 Cameras Wide baseline

(c) 7 and 3 cameras wide baseline.

Figure 3.13: Percentage of points per layer
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seen in the also low third quartiles seen in all three scenarios. This is coherent with

the higher number of layers seen in Figure 3.12.

In the Four cameras wide-baseline datasets (Figure 3.13b, the poor performances

of best dir2way and best pos are once again shown by the high number of outliers

above the third quartile, specially in the ”Simple #2” scenario. A high number of

low populated layers were created in this approach (Figure 3.14b). Best dir and

generate had the best results form the cluster-based techniques, with similar averages

and maximum values than the optimal approach, albeit lower third quartile values,

revealing a less optimal distribution. Optimal greedy had comparable results and

average values to optimal and original, while typically having a higher maximum,

and lower median.

Finally, ”Simple #3” where 7 cameras were used, the optimal approach was not

able to output the best possible distribution due to the high number of operations

required, but only the depth where this solution would be created, so it was excluded

from this comparison. Generate has showed very positive results in comparison to

its alternatives, with no outliers, and higher median, average, first and third quartile

values. Greedy and best dir with similar values overall, with greedy having higher

highs, at the cost of having one more layer Figure 3.12

(a) First two layers of greedy and optimal ap-
proach on ”Sitting”. Highly populated layers,
with complete objects

(b) First two layers of three direction based
approaches on ”Sitting”. Creates highly pop-
ulated layers, but fragments the main object
leaving several outliers.

(c) Generated viewpoint x Optimal original
viewpoint. Synthetic viewpoint is closer to the
object, having higher resolution.

Figure 3.14: Generated layers examples



3. Data Representation 66

3.3.4. Discussion
Combining both of the analyzed results, no technique was able to achieve the re-

sults by the optimal approach in all scenarios. However, optimal greedy showed an

overall more consistent behavior, having an advantage over an arbitrary attribution

in all scenarios, and being near the optimal result in most scenarios. However as

mentioned before, it showed worst results in wider baselines in both aspects, being

specially bad with 7 cameras. On one side, this tells us that a search-based approach

is viable. While creating the full tree is not possible in useful time (such as in the

optimal approach), a greedy search does not consider any alternatives. Either a

more informed heuristic, or allowing the algorithm to explore more than one node

at each level, would possibly avoid overpopulating the first layers, which creates

sparse residual layers.

As mentioned before, the main problem with the cluster-based approaches was the

fact that coherent surfaces cannot be found in the residual layers, pointing the

algorithm in a less optimal direction. An alternative viewpoint estimation method

needs to be developed for residual layers which does not rely on surface detection, or

different clustering conditions need to be used in the last portions of the data.

Even though these problems exist, Best dir and generate outperform both the

original and optimal greedy approach in the wide-baseline scenario with 7 cameras,

making an argument for their scalability in more complex scenarios. As seen in

Figure 3.12, the importance of viewpoint selection increases with the number of

used cameras. With more redundant data from different cameras (as seen in Section

3.2), higher the possibility that a portion of the data might be better encoded in a

different viewpoint than it was originally seen.

When comparing best dir and best dir 2way, the first had the overall better re-

sults, confirming our approach of using the direction of the normal vector on the

biggest clusters to select an encoding viewpoint. An argument for Best pos to

be used can be made on scenarios where the setup has cameras with the same

orientation but different positions. In typical wide or narrow baseline setups, its

performance was sub-par.

Finally, although the view generation approach (generate) was not found to be the

best in all scenarios due to the clustering problems previously mentioned, it allows

one to encode point-clouds into a layered representation without previous infor-

mation of the capture viewpoints. When comparing the number of created layers

with the tests performed with the LDI in the MVLDI article (Anjos et al., 2017),
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where a single central viewpoint was used, the generate approach has a considerably

lower number of layers. This approach can be used with complex static point cloud

scans scenarios in the context of Image-based rendering, specially datasets created

by sweeping scanners, where the other approaches could not be used.

3.4. Video compression
In order to further evaluate our approach and its applicability to the VBR scenario,

we implemented and tested video compression applied to our single frame represen-

tation. This is typically done in VBR works that use an image-based representation,

since as ordinary video, an uncompressed lengthy recording is typically not usable

in video players. Known algorithms with open source implementations were used so

further developments in single-frame representations can easily be compared to our

approach.

Color information was compressed using the h.264 algorithm (Richardson, 2004),

which is implemented in the NVIDIA video codec SDK (NVEnc) 2. This imple-

mentation uses CUDA to speed up the compression process, which compensates

the extra steps taken to generate each frame. More importantly, the faster de-

compression speed allows us to achieve interactive frame-rates during the rendering

process.

In order to more easily apply the rendering process described in Section 4.3.2, we

also compressed the estimated normal vectors from the point cloud into a separate

color stream. We directly map the xyz coordinates in the rgb color space, and use

the a value to keep a bit mask of the signal of each coordinate:

a 0 0 0 0 0 sigx sigy sigz

Finally, the depth stream was encoded using the RVL algorithm proposed by Wilson

(2017).

Wilson’s compression scheme is a combination of run length encoding and variable

length encoding compressing each frame independently using the process described

in the paper. As mentioned by the author, lossy compression techniques are opti-

mized for color images and do not support 13bpp or 16bpp formats. Encoding part

of the depth value in each one of the color channels using a lossy scheme, creates

errors in the channel holding the most significant bits, creating large artifacts in

2https://developer.nvidia.com/nvidia-video-codec-sdk, accessed october 2017
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the reconstructed depth image. Although this approach does not use temporal co-

herence, it was reported by the author that its performance is superior to a similar

approach encoding temporal differences. Another positive aspect of this approach

is its also low encoding and decoding times, which are also an important aspect in

our VBR scenario. The encoder was implemented exactly as described in the paper,

with only slight adaptations to file input and output.

ASCII .ply MVD MVD* LDI* MVLDI*

Size 2.42GB 1.14GB 218.778MB 105.55MB 67.99MB

N. of files 2700 5400 6 80 10

Table 3.4: Video compression results for the Dancer F video dataset. Compressed
streams marked with *

Our experiment can be seen in Table 3.4, where we show the obtained results for

MVLDI compression, compared to different representation and compression meth-

ods; ASCII-based .ply files, which are used in several point visualization applications,

raw uncompressed MVD data, compressed MVD and compressed LDI. The dataset

used was the ”Dancer F”, which one single frame is introduced in Table 3.1, a simple

wide-baseline capture with three sensors.

MVLDI has the overall best results, while removing more redundant data, and not

discarding important data as in an LDI approach (as mentioned in section 3.2). Also,

it generates considerably less layers than the LDI approach, creating less total files

(10 instead of 80). A high number of generated layers represent a higher number of

videos that need to be encoded, and also decoded in real time to be rendered.

While the encoding step can be broken down and performed layer by layer, decom-

pressing and rendering 80 videos in real time is not supported by most available

computers, since the allocated memory necessary to perform this task is high, and

the process considerably heavy. The ASCII uncompressed .ply file representation

shows one of the main drawbacks of a raw point-based representation; a very high

number of input files. For each frame a different file has to be read from the disk,

which makes the rendering process considerably slower.

When compared to the current approach applied to wide baseline scenarios (MVD),

MVLDI occupies 31% of the space, while having comparable video quality, as will

be described in Section 4.3.3. It is important to note that this result was obtained

with a simple three cameras scenario, where the data redundancy detection showed

the lowest advantage (see Section 3.2). The gain on a more complex scenario where

data redundancy is higher is expected to be considerably higher.
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3.5. Summary
We presented MVLDI, an alternative data representation for a single frame of mul-

tiview video that allows wide-baseline VBR applications to take advantage of the

redundancy detection of the LDIs. Moreover, MVLDI is also a more efficient al-

ternative to represent a point cloud for an image-based rendering scenario. An

alternative redundancy detection technique was introduced, which considers points

in a global space opposed to the image-space thresholding of LDI, ensuring a homo-

geneous sampling of the data.Our results showed that the proposed approach creates

a smaller number of layers and detects redundancy at higher rates in both narrow

and wide baseline scenarios, while also showing higher efficiency in scenarios with

more cameras.

The generated Layers are more dense than the typical residual LDI layers. They can

be effectively used for temporal compression on video, and also geometry estimation,

as proposed by Merkle et al. (2016).

We also implemented and evaluated four novel approaches to viewpoint selection for

MVLDI, and one novel approach for viewpoint generation. Our results showed that

search-based approaches are overall more successful, however more research has to

be done regarding heuristics for viewpoint selection, and a quasi-complete search

algorithm needs to be implemented, opposed to both the greedy approach presented

in this paper, and the complete search (optimal) which has a very high complexity

for video scenarios.

Our results also confirmed that selecting a viewpoint directed according to the nor-

mal of the biggest surfaces in the point cloud can be a successful approach, depending

highly on the results of the clustering algorithm applied. Specialized techniques for

detecting surfaces on highly fragmented point clouds need to be developed, or novel

approaches for residual data need to be applied.

Also, a synthetic viewpoint generation approach was presented, being applicable

not only in complex wide-baseline VBR scenarios, but specially in visualization of

complex point-cloud structures. MVLDI with synthetic view generation is a viable

image-based alternative for static point clouds created by sweeping laser scanner

captures, having advantages over a traditional LDI.
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4
3D Flashback

Framework

This chapter will describe the implemented approach for each step of our VBR

system, focusing on the contributions to the state of art.

4.1. Overview
Figure 4.1 describes the overall VBR process we implemented to create three-

dimensional video content, and highlighting on the red checkered boxed the accord-

ing steps of the VBR pipeline introduced in section 2.1.2. Some of the described

steps have well developed solutions on related literature or software packages, allow-

ing us to focus on the main representation question for this PhD thesis.

The reconstruction and representation steps are the offline section of our pipeline,

and are not highly constrained by time. We focus on creating a high-quality data

representation that can be used in real time during the visualization stage. A com-

promise between compression and quality is made. Our goal was to find a repre-

sentation that can provide this 3D Flashback experience on an ordinary computer,

71
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Figure 4.1: Diagram of the Video-based rendering process to obtain three-
dimensional videos.

similarly to what is done with video.

Microsoft Kinect devices were used for data capture, since they couple color and

depth information as described on section 2.2, and provide us with a better qual-

ity for the price of competing sensors. Also, as shown in Figure 4.2 (and also

Wasenmüller and Stricker (2017)) the reconstruction technology has improved sig-

nificantly on the most recent device. Doing so, we produce a set of RGBD videos

that can be easily reconstructed into point clouds following the process described

on section 4.2.

Segmentation between background and foreground is necessary to deal with the

occlusion problem caused by dynamic elements. This can also be important on

certain use case scenarios where the focus of the visualization are the foreground

elements, such as dance performance, or visualization through mixed reality systems.

Also on this step, point clouds are created and filtered in order to have the best

reconstruction quality possible before the encoding step, where we can be subject

to loss of precision due to data thresholding.

The next step uses higher level techniques based on the point cloud data we produced

to create the 3D videos. Initially all the viewpoints are merged and data occlusion

can be handled by completing the point cloud with pieces not captured by one sensor.

After we finish this second step of processing, we compute the MVLDIs (Section

3.2.2, Anjos et al. (2017)) for each frame, and transform them into MVLDVs by
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(a) Kinect 1 male point cloud reconstruction. (b) Kinect 2 male point cloud reconstruction

Figure 4.2: Comparison between 3D reconstruction with the Kinect 1 and 2 devices.
The higher detail and smoother reconstruction is still noticed on a zoomed in view.

applying video compression to each layer.

The final reconstructed data will be rendered through a typical rendering system

such as OpenGL (low-level rendering API), where the user can freely position the

camera and visualize the scene from a freely chosen viewpoint. A specialized point

cloud visualization technique was used in order to overcome the point cloud visual-

ization issues (dos Anjos et al., 2017)

Although data is usually displayed on an ordinary computer display, we integrated

this system with with Virtual Reality output devices (Oculus Rift) (Section 5.2)

providing a more immersive experience of the 3D Flashback application. An alter-

native output device can be a mixed reality headset, where the user is taken to the

same physical place where the data capture was performed, and visualizes only the

foreground data being played overlapped the real world as a backdrop.

4.2. Reconstruction
The task of creating a point cloud from a single RGBD camera is a straightforward

process. The depth image provided contains at each pixel a distance in millimeters

from the camera, and using the pinhole camera model to explain the relationship

between these projected values and the original 3D coordinates we are able to re-

construct a point cloud for each captured frame.

The pin-hole camera model describes a perspective projection of a 3D point Pw =

[X Y Z]T to an image point [x y]T in the image plane. The coordinate system has

the optical axis coincident with the Z-axis, which allows stating an equality based in

the similarity of triangles f/Z = x/X = y/Y , and therefore x = fX/Z, y = fY/Z,
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where f denotes the focal length. Since the origin of the 2D image does not coincide

with where the Z-axis intersects the image, we have to add the proper translation to

each one of the coordinates, u = sxx+ ox and v = syy + oy, and also that the focal

length parameter is not necessarily equal on both axis. Finally one obtains
u

v

1


︸ ︷︷ ︸

Pc

=̇


sxf sθf ox

0 syf oy

0 0 1


︸ ︷︷ ︸

K


X

Y

Z


︸ ︷︷ ︸

Pw

(4.1)

where ox and oy are the pixel coordinates of the image principal point, fsθ is camera

skew, which is usually assumed zero in recent cameras, and =̇ indicates equality up

to a scale factor. Matrix K denotes the intrinsic parameters matrix.

The intrinsic camera parameters can be found through a camera resectioning process.
1 Several images of a checkerboard pattern were captured in different positions and

distances from the camera, the checkerboard corners were detected and tracked on

the different images in order to estimate such transformation. Conversion from

depth to 3D is then simply achieved by the following relation isolating X and Y on

equation 4.1

X = Z (u−ox)
sxf

Y = Z (v−oy)
syf

(4.2)

This simple calculation produces a series of points (cloud) for each frame, which can

also be achieved using the internal SDK functions for the matter, but we chose for

the manual calculations for a more efficient conversion.

A point cloud created from a depth image is limited to represent a single depth

per pixel. Consequently, occlusions are typically found by even small changes of

the viewpoint. Figure 4.3, shows a point cloud obtained from a depth image, and

an occlusion created by a person in front of a wall. Although it is known from the

other frames that there is a wall on the missing data, the unprocessed cloud of points

obtained directly from a depth image will not include that information.

By segmenting the data between foreground and background (Figure 4.2.2) we are

able to overcome this issue. This static data is then rendered as a background, and

the dynamic elements are played over it. Doing so, we managed to address the oc-

1In our system was performed using the OPENCV c++ toolkit.
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(a) Missing data due to occlu-
sion.

(b) Front view of segmentation
approach

(c) Recovered wall data from
segmentation approach

Figure 4.3: Kinect 1 capture scenarios. First approach where there is missing data on
the occluded portion of the wall, and two shots of the solution of reconstructing the
missing information from frames where occlusion does not happen, by segmenting
the captured data into dynamic and static elements.

clusion problem by dynamic elements, since we can recover the missing information

of the static elements from frames where occlusion does not happen. Results can be

seen on Figure 4.3

Regarding the mapping between the color and depth camera, we resort again to

camera calibration, in this case the extrinsic calibration between the IR and RGB

cameras forming a Kinect. This process can also be performed using the internal

SDK functions but with noticeable lower precision. An image point in the IR cam-

era, [ui vi]
T , and the corresponding depth, Z, allow to obtain a 3D point [X Y Z 1]Ti ,

which can be mapped to the RGB camera using a rigid translation and then pro-

jected

[uc vc 1]T =̇ Kc[
cRi

cti][X Y Z 1]Ti (4.3)

where Kc denotes the intrinsic parameters matrix of the RGB camera. Having

obtained the coordinates of the image point in the RGB image, then one has the

color of the 2D/3D point selected in the IR image, i.e. Ii(ui, vi) = Ic(uc, vc), where

I(·) denotes red, green or blue image components.

In addition to the extrinsic parameters linking the IR and the RGB cameras, one

needs also to have the extrinsic parameters connecting different color-depth cam-

eras. In a multi-input scenario, i.e. a scenario composed by multiple color-depth

cameras, one has to obtain the rigid transformations connecting the various IR (or

RGB) cameras, part of the color-depth cameras. In a multi-input scenario, the rigid

transformation, rotation and translation, linking each camera to the reference cam-

era, is applied separately to each one of the output point clouds. The calibration

between the different cameras using pattern and feature matching was found to be

not very precise due to the resolution limitations of the cameras, and the desired
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(a) Missing data due to static element occlu-
sion.

(b) Second kinect stream added, containing
the missing data.

Figure 4.4: Information can be occluded from static elements, and the only solution
is a multi stream capture that contains that information. The example with two
inputs illustrate the issue at hand.

capturing setups we desire to use.

With widely separated cameras precision errors were found to be as high as 24 cen-

timeters. A user-assisted alternative where the user can correct calibration errors has

been implemented for calibration on mobile setups (Described in detail in our article

Sousa et al. (2017)), and sensors were fixated for our laboratorial experiences.

4.2.1. Data synchronization
As mentioned in section 2.2, synchronization is an essential step for VBR systems.

This is an essential question when one has the purpose of combining the data from

different inputs into a single output, where errors can be easily verified and detri-

mental to the desired result. On the context of the distributed virtual environments

PhD course, a network-based solution to this problem was implemented.

A very simple yet effective approach is to connect all input devices to a single external

trigger that can be started manually, as described in the book from Magnor (2005)

about Video-based rendering. However, this approach requires that the input devices

accept external triggers, and that one is working with data captured in a controlled

environment

Wang et al. (2014b) have developed an interactive solution for synchronization of

different streams that match features and pieces of overlapping videos to perform

synchronization. The work from Ballan et al. (2010) uses casually captured videos as

input, making a synchronized start a non viable option, since the capturing process
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is not intentionally started by a single person, but by each individual at a given time.

The process described by Hasler et al. (2009) is applied, where the 90% quieter parts

of the video are silenced, and the rest is aligned. A rough synchronization is achieved,

and some manual adjustments are usually still necessary. Noise synchronization

can be a problem when the sound source is far from the capturing position since

sound travels slower than light, and the main objective is to synchronize the video

track.

On situations where silhouette extraction is possible, Sinha and Pollefeys (2004)

developed a technique that uses that information to perform video synchronization

for an array of cameras. Tuytelaars and Van Gool on the other hand, use feature

detection and tracking to identify five rigid moving objects on each sequence, cal-

culate the trajectories, and match them to the other streams. This approach is

preferred on situations where sound based calibration would fail, and also for mov-

ing cameras. Similar work from Rao et al. (2003) uses also trajectory estimation for

synchronization, providing examples on varied scenarios.

A solution similar to the one from Ahmed and Junejo (2013) was the chosen ap-

proach, using networking to synchronize clocks and simulate a physical trigger which

starts at a user chosen time point. Differences can be found on the clock synchro-

nization method, which averaged over several queries to a remote server on the case

of Ahmed and Junejo, and recording performance. They store the images in memory

before sending them to disk in order to guarantee the steady frame-rate that won’t

be stopped by disk writings, but limiting the amount of captured frames to around

200 pictures.

Given the existing limitations with the Microsoft Kinect sensor being tied to a single

computer at each time and hardware input is not possible, software-based networking

solution is required. Figure 4.5 shows the physical setup used for this solution. A

client and server applications were implemented. Each computer that has a Kinect

works as a server accepting requests to either start a capturing process, stop, or

capture a single snapshot. A client that is connected to the same network is allowed

to message such through the client application that implements the synchronization

protocol, and request one of its services. When a server is taking a request from

a client, it is blocked from attending other requests in order to ensure recording

performance, which would be hindered by extra load on disk writes by different

client requests.

Figure 4.6 shows the synchronization protocol implemented. Server machines wait

for connections, and when a connection request is given, synchronization between
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Figure 4.5: Structure of the capturing system

Figure 4.6: Communication protocol for the synchronization process

the clocks of the server machine to the client is performed using the built-in windows

net time function, which synchronizes the clocks of two different machines using the

Network Time Protocol (NTP) (Mills, 1991). An initial attempt was made with

synchronization to a public time server, but when the computers are located on

different networks a simplification of the protocol is used which only guarantees a

precision within two seconds, which is not useful for our purposes. Ahmed and

Junejo (2013) use this approach to perform synchronization, but use several queries

until a consensus is achieve about what is the current time. Since we have the

objective of performing simultaneous capture on the same physical space, we expect

all the computers to be in the same network, being easier to just use direct queries

in opposed to a global server.
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After finishing this step, the server will read the socket for the specific request,

which is sent by the client right after connection is established. An acknowledgment

message is sent in order for the client not only to know his request was received, but

also to know that the time synchronization step has been performed successfully.

After all server machines have replied, a time stamp in microseconds of a moment

that is a user chosen ∆t from the current time is sent. This value can be chosen

according to the latency of the network, number of servers, or even related to the

nature of the capture performed, such as the client desiring to be present on the

capture and needing time to move to the capturing zone.

A message to initiate capture immediately would not be a proper approach given

the fact that we would be vulnerable to the latency of the network and message

travel times, that is the main reason a delayed approach was chosen, where each

server is aware of the time it should start the process, having a synchronized clock

with the client.

Each server calculates their own ∆t from the moment they receive the message in

order to know when to start the capturing process. The sensor is shut off, and

the process sleeps until the defined time stamp, when the sensor is turned back

on and the recording process is started Video recording is performed locally for

better performance due to the high amount of data that otherwise would need to

be transferred.

Locally, a steady capturing rate of 30 frames per second is kept. On the case a

frame is missed locally due to an unusual delay on the disk writing process, or on

the device itself, a blank frame is written and the counter is advanced in order to

keep synchronization between different servers. The negative effect of such decision

can be minimized through temporal filtering, and interpolating surrounding frames

to estimate the missed content. Capture is stopped by a follow-up request through

the client, going through exactly the same process, in order to ensure the same

number of frames on each point of view. Data is recorded locally, and retrieved by

the client through usual means.

The NTP is very successful on synchronizing clocks on a local network being robust

to latency (Mills, 1991). The expected error for our system, on a worst case scenario,

is close to 0.033 seconds, plus any delays originated from the fact that Windows is

not a real time system. This is due to the fact that the Kinect works at a 30 frames

per second rate, and might ask for a frame right after one has already disposed or

lost by the sensor, making us wait for the following one. Realistically this will most

likely not happen since the sensor is started right before capture is initiated, reducing
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(a) Blinking; Side by side static frames and com-
bined result.

(b) Fast limb movement while
waving with good synchro-
nization.

Figure 4.7: Example scenarios captured to test the synchronization precision. Hard
to evaluate on single images but an effort was made to choose frames where move-
ment was being performed.

(a) Idle position (b) Person walking.

Figure 4.8: One result of a realistic scenario for synchronized VBR capture for
three-dimensional videos. Any imprecision was negligible with such sparse data.

our error only to the operating system related factors mentioned above.

Taking the worst case scenario as an example, for a 10 centimeter dislocation to

be noticed on the capture, also considering our data is discrete and limited by

resolution, the subject would need to be moving at more than 10 kilometers/hour,

which is not so likely on the limited space designated for capture.

Figure 4.7 presents two challenging scenarios where a subject is captured blinking

and waving his hand, closely to the camera on a parallel setup in order to more

precisely see possible differences. The short distance to the camera would precisely

capture and represent misalignments. The three-dimensional video was paused at

critical times to analyze the quality of the synchronization. Artifacts present are only

due to synchronization since camera calibration was performed with static data. The
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found results were very satisfactory with close to perfect synchronization between

frames when analyzed frame by frame, but perfect when visualized at 30 frames

per second. It is important to mention that color information is not precise during

movement due to the capturing conditions, and the Microsoft Kinect automatically

setting a longer exposure time on its color camera, outputting blurred images. This

ends up working in our favor on masking possible errors, and making an argument

that a better synchronization would not be needed given the input device being

used.

Figure 4.8 shows a realistic scenario where a subject stands idly in front of the sensor

and moves naturally on the designed area. Synchronization between different sensors

can be seen, not requiring any further adjustments to any of the streams. It was also

verified that at this distance where data is sparse, errors on the expected magnitude

are negligible and not detrimental to the quality of the final reconstruction.

4.2.2. Data segmentation
As introduced before, foreground and background segmentation is important not

only to address certain visualization scenarios such as dance performance, but also

to tackle the foreground/background occlusion problem. Although we are able to

detect human performers and separate their points in the point cloud to a different

dataset, on scenarios where the whole body is not visible, or the user is holding some

object, this algorithm will fail to identify such elements.

What addresses both mentioned problems is a background subtraction algorithm,

which separates in two different groups of point clouds the dynamic and static

elements of a video stream. On the PhD course of Computer Vision, an algorithm

was developed to address this particular problem on depth video streams.

As mentioned on Section 2.3.1, there are several different approaches to image seg-

mentation, which are chosen accordingly to the scenario where they are applied.

Given the fact that our targeted segmentation classes have to do with movement in

the video, we opted for a change detection approach.

Segmentation on Kinect streams has been performed on certain works such as

Abramov et al. (2012) and Camplani and Salgado (2014) combines both streams into

a 4 dimensional classifier which makes use of the depth information to strengthen

the classification. We opted for a depth based approach given the fact that the

Kinect 2 sensor has different resolutions for each one of the streams and cannot
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properly assign colors to every pixel of the depth image. Edge and change detection

on this noisy stream would not give positive results. We based our approach on

depth change analysis and used color information for disambiguation.

Our approach performs a two pass evaluation on the data, creating a background

model on the first run, and properly classifying each point on the second run. Back-

ground pixels are estimated on the go, since we wanted to be able to support sit-

uations such as opening doors and moving background objects on our interaction

scenarios.

Although we have more stable information on the depth streams, there still a big

amount of high frequency data on edges or areas with interference of other sensors.

Taking a similar approach to the one from Bruhn et al. (2005), our initial step are

spatial and temporal smoothing filters to our depth streams. We experimented with

Gaussian and Median filters for the spatial transforms, and weighted average for the

temporal filters.

The Gaussian spatial filter showed positive results on reducing the noise, but failed

to regularize our surfaces as seen on Figure 4.9c. Weighted averages showed the

best results when it came to regularizing the natural oscillation of the depth value

provided by the Kinect, but did not address the existence of outliers on a temporal

scale. Although this was not a problem on every tested scenario, the results given

by the median spatial and temporal filters reduced drastically the amount of outliers

found on the segmentation results. Figures 4.9a and 4.9b show the difference found

on different filter combinations on the same scene.

After filtering our initial data, the user selects frames where it is known that there

is no movement to calculate the average and standard deviation of depth values

due simply to noise that remained from the filtering process. Average value will be

used as an initial background model for the first pass, and standard deviation as a

threshold for segmentation on that pixel.

Our first pass will evaluate the difference between the current frame and our es-

timated background model, and also assign a tag to each one of the found pixels.

If the distance from the background model is smaller than threshold t (defined by

the standard deviation or a minimum user defined value) , we keep our background

model, updating the color value if the new pixel differs. If the depth difference is

bigger than t but not bigger than 2t, this pixel was previously tagged as background,

and the color difference (on the HSV space) is smaller than a threshold c, we con-

sider it a small change, meaning that our previously estimated background model

is wrong, since this same color pixel has been slightly moved. We invalidate our
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(a) Gaussian and temporal weighted average (b) Spatial and temporal median filters.

(c) Close-up Gaussian filter average (d) Close-up median filter

Figure 4.9: Two different combinations of filters on a static environment. Median fil-
ters handled better the high frequency outliers. Gaussian filter smooths the surfaces
while introducing some irregularities.

background value for that pixel until new information has been uncovered.

If the depth value is found to be bigger than bg + 2t, and is located further away

from the camera (higher depth value), we consider it to be the end of an occlusion,

assigning the new found value to our background model. This value remains until

another small change is detected.

After our background estimation is performed, we run the algorithm a second time

simply comparing values to the color and depth thresholds. Anything that falls

out of our defined thresholds is considered foreground. Color values we found to

be very helpful on situations where there is interaction close to walls, but creates

new outliers on situations where lighting conditions are affected by the dynamic

elements. Fine tuning these parameters to each specific situation is essential for a

better output.

Results can be seen on Figure 4.11, where background data from the hallway could
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(a) Cloud of a contemporary dance improvi-
sation

(b) Result of dynamic elements detection

Figure 4.10: Original and segmented data. Outliers in the background are result of
shadows projected by the group of performers.

(a) Background (b) Foreground + background

Figure 4.11: Scenario where door is opened later on, and the system correctly iden-
tifies it as a dynamic element, keeping the hallway as the real background.

be estimated when the door was opened, and this element was correctly detected

as being dynamic. Shadows produced by the color threshold can also be noticed

on Figure 4.10. Our segmentation results fit better our scenario than the built-in

Kinect functions, and are flexible enough to be adapted to the capture conditions

and elements.

4.3. Visualization

This section will describe the initial experiments performed with existing visualiza-

tion techniques, and the developed algorithm, and also explain the architecture of

the 3D Flashback rendering pipeline. The rendering pipeline was executed using

OpenGL or Unity3D (Game Engine) depending on the interaction scenario.
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4.3.1. Early results

Regarding visualization of each individual frame, when rendering point clouds we

have some visualization issues as pointed out by Katz et al. (2007), which greatly

hinder the user experience specially when zooming in. The distinction between

background and foreground is not clear due to the sparse nature of the reconstructed

points, and the absence of element occlusion.

Experiences performed with triangulation algorithms from the Point Cloud Library

Rusu and Cousins (2011a) on the point clouds were performed to try to address

these issues. Results can be seen on Figure 4.12, where it was noted that on a

relatively distant object the quality was far lower than the desired quality for our

reconstruction, which solves one of the issues, but creates a new one. Using a

different algorithm to estimate the normals Alexa et al. (2003) we achieved a better

reconstruction at a high resolution scenario, but not much difference was noted on

the usual scenario of a complex scene.

A different approach was tested using a 2.5D adaptation to the Delaunay triangula-

tion 2 algorithm and achieved better results as seen on Figure 4.12d. Textures were

easier to apply and results faster and more precise since it is performed using the

2D depth image input. The main limitations to this approach come from the fact

that depth cameras typically display noise in depth discontinuities, (e.g. silhouette

of a subject) which will generate lots of errors in the triangulation. These artifacts

can be seen in Figure 4.12d as white triangles in the silhouette of a subject.

This problem is bigger when a multi-stream capture setup is used, and seams be-

tween different captures from different sensors are seen. The noise coming from the

discontinuity in each different sensor makes the stitching between different points of

view a difficult and time consuming task. Moreover, as seen in the following section,

our proposed approach for point cloud visualization has shown results with com-

parable or superior quality to a mesh reconstruction, while having a considerably

smaller computation time.

2Fade2D - An easy to use Delaunay Triangulation Library for C++.
http://www.geom.at/fade2d/html/
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(a) Geometric reconstruction using Moving
Least Squares algorithm Alexa et al. (2003)

(b) Triangle reconstruction of a face on low
resolution

(c) Close up of higher resolution reconstruc-
tion with MLS

(d) 2.5D Delaunay triangulation implementa-
tion using depth images as input

Figure 4.12: Comparison between point-based representation and triangle recon-
struction. While the foreground/background conflict disappears, smoother surfaces
lose quality on a zoomed in view without proper textures. Best result can be seen
with the Delaunay triangulation

4.3.2. Stroke-Based Splatting: An Efficient Multi-
Resolution Point Cloud Visualization Technique

This section is adapted from the paper published in the ”Visual Computer” Journal

with the same name.3

Point-cloud visualization is a challenging field due to the unstructured nature of the

data and its sparsity. Typical mesh reconstructions can be a time consuming task.

Splats have shown to have a comparable visual appearance to closed surfaces for

visualization uses (Rusinkiewicz and Levoy, 2000; Botsch et al., 2002). However,

this is not verified when visualizing a high resolution scan at a given distance, where

the size of each splat is bigger than a small region of pixels. This is a common and

undesired feature when using low resolution scans or when close-ups are part of the

interaction. The shape and colors of each individual splat closely resemble pixelized

artifacts from a low resolution image.

3dos Anjos et al. (2017)
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This section presents stroke-based splatting (SBS), an alternative visualization tech-

nique which applies concepts from stroke-based rendering to surface aligned splatting

(SAS)). We explore an analogy between art, namely the fin de siécle Impression-

ist movement, and interactive visualization technology. Since users are culturally

trained to interpret this painting metaphor, a higher quality is attributed to point

clouds rendered in this painterly fashion, than to a splatted volume, or a blurred

mesh on a close up. We conducted a user study that corroborates this claim and

also verifies that our approach is perceived as owning a higher quality than state-

of-the-art surface aligned elliptical splats (Botsch et al., 2005; Preiner et al., 2012)

in all scenarios. A similar approach, the Image-Space Non-Photorealistic Rendering

(ISNPR), has been successfully used in the past to visualize scanned volumes (Xu

and Chen, 2004) on an architectural context. However, this class of techniques will

suffer from aspects inherent to a more flexible 3D interaction or noisier data, as seen

in Section 4.3.2.4.

When compared to state-of-the-art point cloud visualization techniques (e.g., surface-

aligned elliptical splats), our work contributes to: 1) application of splats using a

real world metaphor which allows for richer visualizations; 2) splat shape in the

form of brush strokes that allow a clearer perception of the curvature of the object,

generated in real-time by a novel lightweight technique; 3) orient each splat more

accurately, through the application of the Householder formula, informing the user

on the underlying shape of the object; 4) implement an alternative optical splat

blending technique which creates smooth surfaces without compromising the inter-

activity of the system; 5) visualize different size laser-scanned points datasets with

less noise; and 6) estimate efficiently tangent vectors leading to higher interactive

frame-rates.

4.3.2.1. Point Cloud Visualization Techniques

Surface reconstruction has been the standard approach to visualize point cloud data

(Fabio et al., 2003). Several authors have developed successful techniques that

estimate the original surfaces from point sets (Gopi et al., 2000; Kazhdan et al.,

2006), which are capable of estimating missing data from a faulty reconstruction

(Carr et al., 2001) or successfully dealing with noisy input (Kolluri et al., 2004).

However, the quality of the reconstruction still lingers on the resolution of the input

cloud. Detail on a surface can still be wrongfully interpreted as noise in order to

create a smooth output. Given the fact that point clouds naturally require less

storage information than triangular meshes, it is still more efficient to use points for
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Figure 4.13: Overview of the rendering step

visualization purposes.

Several Point-Based Rendering techniques were proposed that vary according to the

primitive chosen to render a point sample as reported by Sainz and Pajarola (2004).

Rendering point clouds with point primitives has several drawbacks when compared

to other techniques (e.g., background/foreground confusion, loss of definition on

close-ups), when confronting a low resolution scenario (Alexa et al., 2003). Katz

et al. (2007) solved the problem of background foreground confusion by estimating

the direct visibility of sets of points. A similar goal was shared by Awano et al.

(2010) for organized point clouds.

Screen-aligned splats (Westover, 1991) have been proposed as a more efficient alter-

native to polygonal mesh rendering (Rusinkiewicz and Levoy, 2000). More recent

solutions combined both approaches (Kawata et al., 2004) to achieve a more efficient

rendering of three-dimensional models keeping the quality compromise. Other tech-

niques will align splats to an estimated surface of the object (Preiner et al., 2012;

Botsch et al., 2005; Zwicker et al., 2004), which creates a better approximation of

the surface. Blending between neighboring patches has been implemented through

Gaussian blur (Preiner et al., 2012), alpha normalization (Pajarola et al., 2004), and

weighted averages between neighboring patches (Ren et al., 2002).

Nevertheless, the same visual fidelity edges of each individual splat are clearly vis-

ible in a close-up interaction, and compromise the quality of the visualized data.

Regarding the content or shape of the rendered splats it has not been thoroughly

explored in order to improve user experience on close-ups.

Non-photorealistic rendering (NPR) techniques are normally applied as post pro-
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cessing effects on a two-dimensional image space, applying brush strokes at a pixel

level (Gooch et al., 2002; Meier, 1996). A wide variety of expressive styles (Curtis

et al., 1997; Majumder and Gopi, 2002; Hertzmann, 1998) have been successfully

applied to convert images in artistic styles such as Impressionism or Pointillism

(Yang and Yang, 2008). The typical NPR scenario aims to process a 2D image to

create a stylized output. Several image aspects are analyzed in order to create more

adequate brush strokes or textures applied to each part of the image. Using this

class of NPR as a tool for point cloud visualization has been explored by Xu and

Chen (2004); Xu et al. (2004). Authors also claim that a stylized visualization is

sometimes preferred by architects when visualizing buildings, which is also achieved

by their NPR technique. Normal vectors and other point information are used to

detect feature points instead of image features in a first step, then brush strokes are

applied in the rendered 2D image space according to the found 3D features. While

this approach might be appropriate to create stylized renderings of images, it has

shortcomings when applied to Point cloud visualization (Section 4.3.2.4).

A different paradigm, which is closer to splat rendering and our proposed approach,

consists of applying brush strokes or other rendering primitives in a 3D space. Previ-

ous work from Runions et al. render point sets as semi-connected ribbons (Runions

et al., 2007), which is a non-photorealistic representation that can be viable in some

scenarios. The best application of this concept comes from an interactive author-

ing system where the user manually applies brush strokes to a three-dimensional

surface, called Overcoat (Schmid et al., 2011). It enforces the idea that using a

3D brush stroke-based technique to render automatically volumes is a viable and

promising alternative visualization providing visually attractive representations of

objects. This is the goal of our proposed approach.

4.3.2.2. Description

With laser scanned data, it can be assumed that the points within a close vicinity are

equally spaced up to an error value ε. By calculating local surface-aligned splats sized

r+ε, r being the estimated local resolution of points, we can use each splat as a small

canvas for our stroke-based technique. These are created according to the estimated

normal (Rusu, 2009) together with associated tangent and bitangent vectors (Lopes

et al., 2013). Here, we render brush strokes with different properties according

to each estimated splat, and apply one of two different blending processes. The

resulting “cloud of brush strokes” creates a painting-like visualization of the data.

Ultimately, our goal is to provide high visual acuity of every element of the point
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(a) Two different clustering
settings, and the original
model

(b) Small cluster on a group
of fruits with two layered
painting

(c) Section of a monastery
scan with clear distinction be-
tween floor and wall resolu-
tions. Splat sizes are cor-
rectly estimated

Figure 4.14: Clustering approach and two different application scenarios

cloud at a low cost. However, through manipulating the rendering parameters, the

user is able to make different aesthetic choices in order to better fit the application

in hand, or simulate a certain painting style.

Our process is divided into two stages: a pre-processing step where parameters are

extracted from the input point cloud, and the multi-pass rendering step where the

stroke-based splatting technique will be applied (Figure 4.13).

Our technique was implemented using OpenGL and GLSL, version 4.5, on an in-

teractive system that allows for free visualization around the captured point cloud.

For the pre-processing stage most of the point cloud manipulation was performed

using the publicly available Point Cloud Library (Rusu and Cousins, 2011a).

Pre-processing

A short offline pre-processing step is required to estimate surface parameters that

will be used in the rendering step. We aim to maintain brush coherence within

each section of the painting, as it is customary in oil painting. This is achieved by

taking into account local aspects of the data when defining splat size, orientation,

and brush texture.

Clustering

We use a color-based region-growing clustering algorithm as described by Zhan et al.

(2009) to group points with positional and color similarities. Clustering parameters

can be fine tuned to have a more fine grained segmentation or not. Figure 4.14a

shows different clustering settings applied to a real world scanned input. Each splat

is sized r + ε where r is the local resolution estimated by the average distance in
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the K nearest neighbors of a given point. The error value ε can be estimated by

the standard deviation of this distance, or set by the user to control the brush size

according to the shape of that cluster. Consequentially, denser regions use smaller

brushes, while background data makes use of larger brushes. Figure 4.14c shows

an example of two different sections of a scan with different resolutions, and the

calculated splats according to the necessary size.

The size of the detected cluster is also used to define brush stroke parameters. Small

clusters that represent a detailed color region apply a two-layered brush stroke.

Although no extra points are added to the data set, the obtained result gives the

impression of a higher resolution as seen in Figure 4.14b. Other aspects such as the

different proportions on each axis of the cluster or the median color can be used to

apply different brush stroke generation parameters to each one of the clusters, in

order to have a more faithful representation of a chosen painting style, or simply

better suited brush strokes to the data in hand.

Normal estimation

Also in the pre-processing step, normal vectors are estimated by taking the point

neighborhood so splats can be aligned to the object at each point. The problem of

estimating normals can be solved by finding the least square fitting plane to a local

surface S (Shakarji, 1998; Rusu, 2009). We apply this method as implemented by

Rusu and Cousins in the Point Cloud Library (Rusu and Cousins, 2011a) to each

one of the extracted clusters, searching on an area of radius 3r, with r being the

estimated cluster resolution.

Rendering

This section describe the tasks performed during the rendering step. Tangential

vectors estimation through the Householder formula, brush stroke generation and

blending were not calculated in pre-processing time due to the lower impact in the

performance when compared to storing the results of an offline calculation.

Tangential vectors calculated with the Householder formula

Similarly to surface aligned splats, we require the determination of an orthogonal

reference system composed by normal, tangent and bitangent vectors. Once the

normal vector is computed during pre-processing there are several techniques to

find orthogonal vectors to the given normal. We chose to use the Householder

(HH) formula (Algorithm 7 after Lopes et al. (2013)), which only requires the three

components of the normal vector to compute the tangent and bitangent vectors
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(a) Eberly (b) Square Plate

(c) Covariance matrix (d) Householder

Figure 4.15: Visual effect of tangential vector computation for the skull dataset. The
images reveal the differences between brush point cloud rendering using different
tangent vector computation techniques. Left column shows direction of splats, and
right column the final visual effect.

to set the splat orientation. Since this formula is deduced from collinearity and

orthogonality conditions between the given normal vector and the column vectors

of the Householder matrix, the resulting tangent vector formulas are, in most of its

domain, continuous and smooth functions that only depend on the normal vector

components.

We compared this approach to three other vector orthogonalization techniques in

order to explore how well does their brush orientation emulate a natural painting flow

features, such as local coherence between brush strokes: 1) the approach described

in Eberly (2016) where an orthonormal set is computed based on the cross-product

between the given vector and the column of the identity matrix EB; 2) the technique

presented in Lopes et al. (2010) where a set of non-collinear vectors is obtained based

on the analogy with a square plate (SQP) mechanism and 3) the covariance matrix

(CM) technique, which has been the standard approach in surface aligned splatting

works (Botsch et al., 2005). Note that HH, EB and SQP only require the three

elements of the normal vector at each point to compute the tangent and bitangent

vectors (to better access the analyticity of these techniques, refer to Tables A.1, A.2,

and A.3 in the Appendix of Lopes et al. (2013)), whereas CM takes the neighboring

points as input to define splat orientation. Consequently, the geometric properties

of the tangent vectors expressed by HH, EB and SQP are non-shape aware (i.e.,

do not depend on point coordinates) and extrinsic (i.e., depend on the embedding
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Euclidean space) as an isometric transformation such as rotation applied to the point

cloud affects the stroke direction. On the other hand, tangents vectors generated by

CM produce shape-aware directions which are rotationally invariant. Therefore, in

contrast to CM, the HH technique leads to stroke directions not determined by the

shape of the point cloud, but by its embedding in space, thus, a rotated version of

the point cloud would display differently directed strokes. Nevertheless, this feature

can be easily surpassed by computing the HH tangent vectors before rotating the

vector field according to the targeted orientation for the point cloud.

Figure 4.15 shows the results for each one of the techniques with the left image

indicating the value for the tangent vector, and the corresponding result at the

right. The results for EB (Figure 4.15a) show that harsh variations in tangent

directions are found in close neighborhoods where similar normal values are to be

expected, causing neighboring brush strokes to not follow the expected painting

flow. SQP created more continuous tangents (Figure 4.15b), but having a globally

similar diagonal direction. These are expected results since EB and SQP do not

provide a direct mathematical formula for the desired vector base. Such techniques

rather consist of geometric processes involving testing for potential singularities and

malformed vectors. Given its analytical nature, the HH formula generates tangential

vectors that explicitly depend on the surface normal, thus providing the continuity

control necessary to represent locally and globally consistent splat orientations.

Both the CM approach and the HH formula generate rich tangent maps, as illus-

trated in Figures 4.15c and 4.15d. The disadvantage of using the CM in this scenario

is that tangent vectors are not consistent in a close neighborhood, where slight nor-

mal vector variations present a larger effect in the calculated tangents. Although

mathematically correct, it does not simulate the painting flow we aimed to achieve

with this step. We found that the HH formula provided an excellent approximation

to this method, while having a higher local continuity. Assuming that the normal

vectors are already estimated, EB, SQP, and outstandingly CM are computationally

more expensive than the HH technique.

The HH formula calculations are performed on the geometry shader, since it is more

effective to calculate tangents in real time than to store three extra vertices for each

point in the dataset. Such calculations are not computational heavy, and on large

datasets the impact of extra storage would be far more noticeable.

Brush Stroke Generation

Previous stroke-based rendering (SBR) techniques in ISNPR typically resort on

the modification of a base brush texture according to image features or user input
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Algorithm 7 Pseudo-code for Householder unit vector orthogonalization (after
Lopes et al. (2013))

1. Evaluate the sign of the first component, i.e., sign(nx);
2. Determine the tangent vector with the following expression:
if nx ≥ 0 then

~t =
[
−ny 1− ny2

nx+1
− nynz
nx+1

]T
else
~t =

[
ny 1 + ny2

nx−1
− nynz
nx−1

]T
end if
3. Determine the binormal vector with the following expression:
if nx ≥ 0 then

~b =
[
−nz − nynz

nx+1
1− nz2

nx+1

]T
else
~b =

[
nz

nynz
nx−1

1 + nz2

nx−1

]T
end if

(Haeberli, 1990; Litwinowicz, 1997; Shiraishi and Yamaguchi, 2000; Healey et al.,

2004) or fitting to an estimated spline (Hertzmann, 1998). Putting together image

analysis with this approach fits to ISNPR, but not to our splatting algorithm as will

be discussed in Section 4.3.2.4. Also, image features are computationally heavy to

estimate in real-time, and using the same texture for every brush stroke becomes a

problem in a close-up inspection (see Section 4.3.2.4)

We define the shape of the brush texture according to a mathematical model based

on a combination of Gaussian functions. We generate brush stroke textures with

transparency which are applied to each surface aligned splat. The user can configure

a set of parameters which are commonly used in SBR techniques, in order to define

the base style of brush strokes to be used. Each Gaussian function is represented by

the following equation where the resulting z is the aplha value in the RGBA color

space:

z = Ae−
1
2
(
greenxθ−x0

σx
)γe−

1
2
(
greenyθ−y0

σx
)γ (4.4)

where,

xθ = cos θ(u− x0)− sin θ(v − y0) + x0

yθ = sinθ(u− x0) + cos θ(v − y0) + y0

and P = (u, v) the texture coordinates of the fragment being evaluated are the free

variables on this equation; A the amplitude of the Gaussian function, which can be

used to control the overall opacity of the resulting texture; P0 = (x0, y0) the center
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of the Gaussian function on the texture space coordinates; σx and σy the Gaussian

function decay according to the x and y axis; λ is the Gaussian shape exponent

which controls the roundness of the function; and θ the orientation of the function

in texture space coordinates.

These values (except θ) are controlled by the user and applied globally to the point

cloud, but as mentioned in Section 4.3.2.2, these are modified by fixed parameters

according to the shape of the detected cluster. An example is adjusting σx, σy to

make longer brushes on longer clusters, or lower γ and similar σ values for rounder

brushes.

Variation between neighboring patches is introduced through a noise function with

the point coordinates and normals n parameters, applied to the θ value and bounded

by user defined values. Figure 4.16 shows an example of how this variation is in-

troduced. From left to right each column of Gaussians share the same θ value, and

subsequent columns have a θ that may not differ more than a fixed value from the

previous column, in order not to create an unnatural stroking direction.

Multiple Gaussian functions allow us to correctly simulate different effects of a paint

brush such as curvature in the painting direction, brush filaments, and uneven con-

centration of paint. The number and disposition of Gaussian functions is a user

chosen parameter. The Gaussians are typically placed in a grid-like disposition,

and the user indirectly defines the various P0 values by controlling the variable dev,

which defines the separation between centers. We found that we are already able to

simulate widely different brush styles using between 6 to 9 Gaussians on a 3x3 grid,

with less having limited expressiveness, and more having diminishing contributions

on our scenario. We are also able to simulate two layers of painting by doubling

these numbers and generating two overlapped textures with slightly altered color

parameters. This was found to have no impact in the performance.

Similarly to splat orientation estimation, this process is performed in realtime, and

was implemented using the geometry and fragment shaders. Brush parameters are

calculated when processing each point in the geometry shader, and passed to the

fragment shader, where the user defined values are also taken into account to paint

the current splat with the chosen brush shape, and store information for blend-

ing.

Blending Regardless of the user wanting to simulate a certain artistic style or not,

blending of neighboring patches was implemented in our system to remove undesired

high frequency noise on the rendered images, located on boundaries of patches.

These visual artifacts can be seen on ordinary splatting techniques, where the edge
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(a) (b) (c) (d)

Figure 4.16: Examples of brush strokes generated automatically using nine Gaussian
functions as seen on 4.16a. 4.16b A = 8, dev = 0.03, λ = 3, σx = 0.114 and σy =
0.0989,4.16c A = 1, dev = 0.38, λ = 2.7, σx = 0.142 and σy = 0.071 and 4.16d with
6 gaussians.A = 2.27, dev = 0.3, λ = 2.4, σx = 0.0989999 and σy = 0.1259.

of each patch can be easily noticed. This is something that is not as apparent

in the real world, which is perceived as continuous. Previously, Phong shading,

(Botsch et al., 2005), global alpha normalization (Pajarola et al., 2004) and local

averaging (Ren et al., 2002) were proposed to perform this step. Phong shading

will be discussed ahead in Section 4.3.2.4. The other two proposed techniques use

the alpha component to perform blending, but do not fit our proposed aesthetic,

since averaging will not allow us to perceive the shape of individual splats, thus

not revealing the curvature of the objects that is displayed through the individual

splats.

As stated on the work from Hertzmann (1998), controlling Gaussian blur allows one

to eliminate undesired high frequency noise. The downside of this approach when

applied to our stroke based rendering technique, is that blurring has little effect

where each individual brush occupies a bigger group of pixels (low-resolution or

close-up, Figure 4.17b), which is the scenario where we want to improve visualization

quality. Although, when applied to a moving object, or during camera navigation,

this technique fills its purpose. A two-pass weighted Gaussian blur was implemented

in our system for these two situations.

We implemented an alternative blending technique which relies on the transparency

component of the generated brush strokes. This is controlled by adjusting the am-

plitude, σx and σy values of the Gaussians. High-frequency noise is removed even

with high amplitude values and low sigma values (opaque brush), since the falloff

is not instantaneous due to the continuity of the Gaussian function. By applying

common alpha blending on the rendered patches (stronger influence for the top-

most patches) we are able to closely simulate the process of tint blending. Figure

4.17 shows an example of a boundary region between two colors, and the different
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(a) Shading (b) Gaussian blur (c) A-Buffer

(d) Shading 2 (e) Gaussian blur 2 (f) A-Buffer 2

Figure 4.17: Three different blending techniques experimented in the giraffe dataset.
A-buffer better simulated the painterly effect, while creating a smooth surface.

techniques applied.

Alpha blending was implemented through the A-Buffer algorithm by using texture

memory on the graphics card. Due to the high complexity of this process which

would compromise the interactive aspect of the system, we opted for an incremental

implementation of the bubble sort algorithm, where its execution is divided across

frames. We chose this specific sorting technique since each iteration of this technique

orders one new fragment. Each new sorted fragment is used to calculate the alpha

blended color, and stored in the last position of the fragment array, simplifying

the color calculation operation to a simple mixing of two colors in each subsequent

frame. Algorithm 8 describes the technique in a high level pseudo-code.

Algorithm 8 Pseudo-code for A-buffering technique

for all pixuv do
if all frags sorted then
cres = aBuffer[n]

else
nsorted= bubbleSortStep(ntotal, nsortedPrev)
c = alphaBlendStep(ntotal, nsortedRes, nsorted)
aBuffer[nsortedRes − 1] = c
cres = c

end if
end for
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The sorted data is only used after a preset amount of iterations, ensuring a minimum

amount of fragments to calculate a blended color of neighboring patches. Gaussian

blur blending with Z-buffer occlusion is performed in the meantime. Each iteration

of bubble-sort operation will enhance the quality of our visualized data, with low

impact to the interactivity of the system.

4.3.2.3. User Study

In order to compare our approach with other existing approaches, a user study was

conducted with the aim of understanding if SBS had better quality in terms of resolu-

tion, surface and shape representation when compared to its alternatives. With this

aim in mind, eleven different datasets were used to generate the images representa-

tive of each rendering approaches, specifically, mesh reconstruction, surface-aligned

splats and our approach. For each technique, different datasets were rendered with

different resolutions, shape complexity and color richness.

The study consisted of an online questionnaire composed by eleven 6-point Likert

scale questions. Each question had two images, one for either mesh reconstruction or

splatting and the other for our approach. The position of each image in each question

was randomized in order not to influence/guide the participant in an aesthetic choice.

Thirty-one participants filled-out the questionnaire anonymously, completing the

required questions. We asked each participant ”to look closely at each image and

comparatively analyze which do you think has superior visual quality in terms of

resolution, surface and shape representation.”

A summary of the obtained results including descriptive as well as inferential statis-

tics are presented in Table 4.1. Since our sample did not follow a normal distribution,

the Wilcoxon signed-rank test was used to assess the statistical significance when

comparing the results between approaches. A thorough analysis of the results and

their implications of the derived conclusions of this work are presented in sub-section

4.3.2.4.

4.3.2.4. Results and Discussion

Our algorithm was tested on a Intel i7-6700MQ at 3.40GHz desktop computer with

16,0GB and an NVIDIA Tesla K40c paired with a NVIDIA GeForce GTX 980 Ti

graphics adapter. The datasets were captured by using the Microsoft Kinect One

device (Camplani et al., 2013), with the exception of publicly available point clouds
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(a) Point rendering 580k (b) Image-space NPR 580k (c) Our approach 580k

(d) Point rendering 40k (e) Image-space NPR 40k (f) Our approach 40k

Figure 4.18: Two different resolutions for the Monastery dataset under different
rendering techniques: 580.062 (top), and 40.363 (bottom). Leftmost pictures contain
pure point rendering with a fixed size to show the density of the dataset.

that were used for benchmarking purposes. Although our main objective was to

test the viability of our technique on lower resolution point clouds, we tested its

scalability on very dense datasets regarding visualization and performance.

Comparison with image-space NPR

We compared our approach with an ISNPR algorithm applied to our Monastery

data set at two different resolutions as seen in the top row of Figure 4.18. The most

relevant works which use this approach for point cloud visualization are the ones by

Xu and Chen (2004); Xu et al. (2004).

In a high resolution dataset viewed at a distance, our rendered result is close to real-

ity green (Figure 4.18c), with just slight differences from the point based rendering.

ISNPR will always create a stylized result (Figure 4.18b), regardless of the distance

of visualization, which may not be desired in a common point cloud visualization

scenario.

When applied to a low resolution dataset (Figure 4.18d), which can be considered

the equivalent to zooming into a certain point cloud, point rendering leaves sparse

holes, which the big brushes applied by ISNPR techniques are not capable of covering

(Figure 4.18e). Our approach creates a closed surface, with only at this lowered

resolution (10 % of the original), showing a more stylized visual representation,
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(a) SAS with Phong shading
Botsch et al. (2005)

(b) Our approach

(c) Elliptical splats (d) Brush strokes

Figure 4.19: In depth comparison between our technique and Surface Aligned Splats

while maintaining coherence in a close-up interaction.

For the goal of point cloud visualization and solving the problems of background/

foreground resolution and filling holes, our approach is superior to ISNPR, which

can only be applied in high resolution datasets, up until a certain distance. For the

goal of creating stylized results using point clouds as input, ISNPR has greater range

of created effects due to the higher flexibility in the applied brush strokes, but still

has the mentioned interaction limitations. Figure 4.18f shows that our approach can

create a stylized result similar to an ISNPR approach with only 10 % of the points,

and no restrictions to the interaction.

Comparison with elliptical surface aligned splats

When comparing our approach to the state of the art visualization technique for

point clouds (i.e., SAS), we acknowledge three main improvements when dealing

with laser scanned point clouds. Firstly, the change between elliptical splats to brush

strokes. Not only can the impressionistic aesthetic be achieved, which aggregates a

higher perceived quality to our results, but curvature can be more clearly perceived

than when using elliptical splats. Figures 4.19c and 4.19d show the same dataset

with different splat shapes oriented in the same direction. Even from a moderate

distance, strokes can be easily perceived, providing better shape perception.



101 4.3. Visualization

Secondly, color blending through alpha values was more adequate to laser scanned

data. This has been previously used through global (Pajarola et al., 2004) and local

averaging techniques (Ren et al., 2002), with positive results. These techniques,

however, aimed to always create the illusion of a single surface, not revealing the

shape and orientation of each single splat, which was one of our goals. Our blending

through the A-buffer is not meant to be seen as a replacement to these techniques,

but it is a better fit to our painting metaphor.

Current state-of-the-art splatting techniques based on shading (Botsch et al., 2005;

Preiner et al., 2012) are more suitable to a scenario where someone wants to replace

his mesh rendering pipeline by a splatting technique for an efficiency and quality

trade-off. When a mesh is the expected input, one shall have strictly defined ma-

terials for each segmented component, and Phong shading can be applied to create

high quality representations. With a laser scanner input only color values repre-

senting the real world lighting conditions are available. The absence of well defined

materials leads to an inadequate aspect for the rendered results, as seen in figures

4.19a and 4.19b.

Finally, splat orientation. CM is considered the standard method to estimate tan-

gent vectors for splat orientation. However, we found that the HH formula presents

several advantages when applied to our specific scenario. For instance, HH tangen-

tial vectors provide an interesting visual effect where “virtual paint brush strokes”

Dataset SBS Mesh SBS Mesh Equal

Giraffe 3 (2,5) 3 (1) 42% 55% 3%

Yoda 4 (2,5) 4 (2) 48% 39% 13%

Shirt 4 (2) 3 (1) 61% 29% 10%

Man* 5 (2) 5 (1) 13% 42% 45%

SBS Splats SBS Splats Equal

Frog 4 (1) 4 (2) 68% 32% 0%

Girl* 5 (1,5) 3 (2) 90% 3% 7%

Monastery* 5 (1,5) 4 (3) 71% 23% 6%

Skull* 4 (1,5) 4 (2) 65% 29% 6%

Veggies* 5 (1) 3 (2) 77% 16% 7%

Blonde 4 (2) 4 (1) 52% 26% 23%

Guitar* 4 (2) 3 (3) 45% 16% 39%

Table 4.1: User tests results: Median (Interquartile Range). * indicates statistical
significance. Also, percentage of user preference for each rendering technique.
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flow smoothly and continuously throughout the point cloud domain, without any

unpleasant rendering artifacts. Even though each point is not locally approximated

by a quadric surface, the HH tangent vectors do carry first order differential infor-

mation of the estimated surface normal plane. This contributes to both local and

global coherence of the splat orientations.

Despite the richness of geometric attributes associated with the CM technique (i.e.,

it provides a full reference frame composed by normal, tangent and bi-tangent vec-

tors oriented along along the local and anisotropic density of points), solving the

eigenvalue and eigenvector problems are computationally costly as it demands the

calculation of the Jacobian matrix and to solve the characteristic polynomial. The

number of FLOPS of the HH formula to compute both tangent and bi-tangent vec-

tors, given a unit vector, sums up to: 1 order operation, 3 summations/subtractions,

10-12 multiplications, and 1 division. This is much less demanding than solving the

eigenvalue problem for a 3x3 matrix. Hence, the HH technique allows for real-time

tangent computation. Note that this advantage holds under the assumption that

the normal vectors have been estimated by a more efficient technique than the CM

method. For this purpose, there are several approaches to estimate surface normals

for point data (Klasing et al., 2009), which must be chosen according to the best

graph structure that represents the neighboring points.

Moreover, the HH formula holds for a wider diversity of input data types, namely,

depth maps, analytical representations such as implicit surfaces, and meshes or point

clouds with high or low quality, while CM is only suitable for good quality meshes

and point clouds.

Contrary to the CM techniques which aligns splats along the local and anisotropic

density of points, the HH formula uses an isotropic radius as it does not consider

point density, only the direction and sense of the local normal vector are used for

tangent calculation. This can be seen as advantage whenever the point cloud is

locally noisy, under sampled or in the presence of holes, which is the ”scenario par

excellence” of our work. As illustrated in Figure 4.15c, with the covariance matrix

technique, the tangent orientation is less locally coherent than the HH formula, as

seen in Figure 4.15d.

Visual perception of point clouds: user test results.

We compared our rendering technique to Meshes and Surface Aligned Splats (Preiner

et al., 2012; Botsch et al., 2005), the two most popular visualization techniques to
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(a) Shirt: 229.779 points (b) Giraffe: 109.606 points (c) Yoda: 34.878 points

(d) 122.950 points (e) 50.799 points (f) 12.221 points

Figure 4.20: Visual perception results. 4.20a 4.20b and 4.20c: comparison between
a unlit mesh rendering (top), and our technique (bottom). SBS has comparable
quality to meshes, with a different type of resolution artifacts. While meshes blur
details, SBS shows individual strokes. 4.20d 4.20e and 4.20f: Same point cloud with
different number of points. On a 10 times smaller cloud, rendering is closer to an
artistic depiction, but still allows for accurate visual perception of shapes

represent three-dimensional data. Our results were validated through the presented

user study (see Table 4.1).

Figures 4.20a, 4.20b and 4.20c show three different data sets comparing our approach

to a mesh. From a distance, similar to splats or point rendering, our technique was

perceived as equal to a mesh. This was confirmed for our technique in the Data set

”Man” on our user study, where both techniques had the same median value, and

the majority (42%) of the test subjects graded both techniques equally. Data sets

Giraffe and Yoda (Figures4.20b and 4.20c) which are slightly closer to the captured

objects, showed no significant difference between approaches. Both median values

and percentage of preference are similar, indicating a similar performance from SBS

to meshes.

Although no statistical significance was found on the zoomed in “Shirt” data set
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.21: Comparison between our approach (bottom row) and most recent sur-
face oriented splats (Preiner et al., 2012). Biggest improvements noticed specially
when fine features should be recognizable, such as 4.21a and 4.21c

results (Table 4.1, and Figure 4.20a), our approach has a higher median value and

user preference, with double the amount of users grading SBS higher than a closed

in mesh. We believe that these results still indicate the adequacy of SBS on closed in

data sets. Meshes display blurred textures due to the loss of resolution when closing

up. Our technique does not display blurred data, but individual brush strokes that

resemble those in an artistic painting. This can also be noted on Figures 4.20d

to 4.20f. A full point cloud, and its 41.3% and 9.9% reduction have comparable

visual results. As the number of points decrease, we simply approximate ourselves

to a more impressionistic depiction of the rendered model, which is not necessarily

perceived as a lower quality one.

Another relevant point comes from the fact that surface reconstruction techniques

(Kazhdan et al., 2006; Alexa et al., 2003) lose details on lower resolution point clouds

in order to obtain a smooth surface. We argue that in this scenario, our visualization

offers a viable alternative to the rendering of a reconstructed surface.

When compared directly to splats, our technique was perceived to have higher qual-

ity by the majority of users in every displayed dataset, including the ones with sim-

ilar median values. Figure 4.21 shows comparisons between surface aligned splats

(Preiner et al., 2012) and our technique on the best performing scenarios.

Although less noticeable than in the screen aligned splats approach, they still distort

the more delicate shapes of objects (Figure 4.21c, top). On this example where a
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familiar shape (human face) is displayed, our approach had the biggest edge over

splats, with a difference of 2 in the median quality value, and a 90% preference by

the users.

Figure 4.21e shows a highly detailed Monastery entrance where SBS allows for clear

perception of individual arches and structures through the orientation of brushes,

while circular splats (Figure 4.21a) do not. Figures 4.21b and 4.21d show a zoomed

out data set where although no artifacts can be visibly noticed, SBS still was per-

ceived to have a statistically significant advantage over splats. Users consistently

identified and referenced our results as paintings in the user study comments, which

we argue to be the reason that they were rated with higher quality.

Data set “Skull” had similar median value results between both techniques. This

is due to the fact that most of the model was white, and neither individual splats

or brushes could be clearly perceived. Similar claims could be made about “Frog”

and “Blonde”, which have large uniformly colored surfaces. Although similar grades

were given, over double the users graded our approach higher than splats in these

three scenarios.

Performance

We performed tests using publicly available models from the Stanford scanning

repository: Dragon (437.645 points), a data set with three Buddha models combined

(1.630.572 points) and Lucy (14.027.872 points). Due to the fact that these models

do not have color information, which is necessary for patch size estimation in our

technique, we included a laser scan of a Monastery with a similar dimension to the

Dragon model. Interaction was always performed on highly interactive frame rates

in a 1920x1080 window. Table 4.2 show the performance results for each dataset.

Median frames-per-second, first and third quartiles.

The complexity of the rendering activity is directly impacted by the used blending

method. When blur is being used, our technique is comparable to pure point cloud

rendering. The extra operations performed by our algorithm are due to the calcula-

tions of the Householder formula applied to each point to create the local patch, and

the combined Gaussian function for the brush strokes at each rendered fragment.

All of the necessary operations for these formulas are atomic on the graphics card

where they are executed. Due to the use of clustering to determine the size of each

brush stroke, the effect of triangle operations such as cutting and z buffering can be

considered negligible since we aim for the least amount of overlap between neighbor-
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Model (points) G.Blur(fps) A-Buffer(fps)

Dragon (566.098) 418 (368:506) 444 (302:642)

3 Buddhas (1.630.572) 254 (247:270) 257 (130:373)

Monastery (580.062) 420 (396:486) 352 (285:505)

Lucy (14.027.872) 67(63:71) 62(56:267)

Table 4.2: Median Frames per second (first : third quartile). Similar median values
between both techniques, but higher Inter quartile range on A-buffer.

ing patches. Blurring was found to have a negligible effect on the frame-rate since

the two-pass implementation is very efficient in the graphics card, minimizing the

amount of texture look-ups through linear filtering.

Alpha blending operations scale with the size of the output screen times the num-

ber of layers on the A-buffer (or the limit of operations placed on the bubble sort

algorithm for each frame), and the size and shape of the chosen brush strokes. The

transparency, shape and size chosen by the user determines the number of fragments

at each pixel array during blending. Although these operations have a harsh effect

on frame rates, seen by the higher difference between the first and third quartiles,

they are only being applied when there is no interaction taking place, and for a short

period of time (first steps of the bubble-sort algorithm), hence the low effect on the

median frame-rates (Table 4.2). We found that although rendering is process inten-

sive according to the varied mentioned factors, it does not interfere on the system’s

interactivity.

Given the fact that the visual acuity of a lower resolution point cloud is comparable

to a denser one while using our technique, we argue that we can use largely simplified

versions of such point clouds without compromising the quality of the interaction.

Moreover this allows for rendering and visualizing of larger but sparser data sets,

offering a richer interactive experience.

Although the pre-processing step has computational heavy operations such as nor-

mal estimation and color-based clustering, which are bound by the KNN algorithm

complexity which is (O(ndk+1logn)), our goal was not to optimize its execution time.

This is justified by the fact that these operations can be performed only once and

then stored on a hard disk. Pre-processing times were found to be short on these

datasets, with 10 seconds for Dragon, 36 seconds for three buddhas, one minute for

Lucy, and 2 minutes 29 seconds for Monastery, due to the higher number of clusters

generated. All low resolution datasets had negligible pre-processing times.
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Other results

We found that the quality and shape of the brush stroke textures greatly affected

the perceived quality of the rendered result. The achieved visual aspect can closely

resemble different painting styles through manipulation of the brush stroke textures

blending and scale factors. Although our initial focus was not on stylizing, the artis-

tic results achieved, especially on lower resolution data sets, open new possibilities

for non photo-realistic rendering techniques (examples in the attached video for this

publication). Additionally, the wide variety of brush textures we are able to gener-

ate through the combination of Gaussians can be applied in two-dimensional NPR,

image processing-related fields or rendering and terrain modeling.

We also applied this technique on time-sequenced point cloud data sets, where we

discovered the brush attribution process to be consistent enough to prevent too

much visual disturbance. Due to the fact that the varying parameters of the brush

generation technique take into account the x and y coordinates of the point in

question, the painting seems still on its non-animated components.

4.3.2.5. Limitations

One current limitation to our technique relates to the size of the A-buffer which

needs to be allocated for proper blending. On more complex data sets, a lot of

memory is inefficiently used to the limit where it might exceed what is available.

Out-of core techniques need to be considered on future work.

Secondly, fragments are sorted for each pixel, not for its original patch. If big

brushes are being used, neighboring patches can intersect each other in an unnatural

way. To stay truthful to our painting metaphor, a different ordering criteria should

be applied, which ensures consistency in the order of application of each brush

stroke.

Our system is currently targeted at scanned colored point clouds. Non-colored

clouds do not work well with our segmentation algorithm, leading to patches with

inadequate sizes, as noticed on the Dragon and Buddha models (as seen in the

attached video for this publication),. This forces us into using bigger patches in the

whole model in order to have closed surfaces, but unnecessarily complicating the

A-buffer sorting operation.
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Figure 4.22: Description of the rendering process using the 3D Flashback framework.

4.3.3. MVLDV decompression and rendering

We implemented a C++ based rendering system developed for the proposed 3D

Flashback framework. An alternative rendering system in C# was made in order

to integrate the framework into Unity3D for easier application development. Figure

4.22 describes the implemented process.

The normal and color streams are decoded normally as video streams (FFPMEG

and NVENC were used in our case), updating pixel buffers at 30fps, which will be

available in texture memory by the vertex shader. Depth data is decoded using the

RVL algorithm (Wilson, 2017), and updated into an array buffer, that is aligned

with UV coordinates in a vertex array that is passed to the vertex shader.

The vertex shader uses the process described in Section 4.2 to reconstruct the 3D

points from the depth values and the camera intrinsics matrix. Then, each point

is multiplied by the extrinsics matrix that represent the viewpoint used to encode

that specific frame/layer combination.

Geometry and fragment shaders are implemented as described in Section 4.3.2, us-

ing Gaussian blur for color blending instead of alpha-blending. Figure 4.23 shows

examples of the obtained output with this dataset.
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(a) Dancer F (b) Dancer M (c) Rehearsal

Figure 4.23: Three examples of the implemented system for Multiview Layered
Depth Video (MVLDV) decompression and rendering.

4.4. Summary
The presented 3D Flashback framework was fully implemented, introducing effective

solutions for the reconstruction step, and novel approaches to both the representa-

tion and visualization steps.

A network based method for a Kinect-based VBR system was presented with preci-

sion that was adequate to the capturing scenarios. A simple protocol that simulates

a delayed physical trigger was implemented with the estimated error being tied to

the used operating system not working in real time, and factors that were proven

not to be detrimental to the captured situations. For scenarios where faster activ-

ities such as sports, more tests will need to be performed, but results enforce the

confidence that a better result with the same input device, and the same type of

output, is very hard to achieve.

An efficient technique for RGBD data segmentation was presented for a Video-

based rendering scenario where the foreground data is the focus of interaction. By

iteratively constructing a background model we are able to correctly classify moving

elements on the background as dynamic elements, allowing interactions with doors

and big objects to have the expected results during visualization.

Combining color and depth values we are able to correctly identify moving objects

near the background elements, and also elements with similar color to the back-

ground but dynamic during the capture. Improvements still have to be made on

noise removal due to lighting variations and shadows projected on the walls. Also

the movement threshold values can be improved to lessen the weight of the user

chosen values.

We also introduced a novel rendering technique that is better suited to nowadays

typical point cloud capture and visualization scenarios. We are able to have equal
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or better visual quality to the alternatives when rendering point clouds with lower

point resolution, while allowing a less restrictive interaction. Stroke-based splatting

was shown to have comparable results when using sub-sampled versions of the point

clouds, which indicates its viability for visualizing large data sets.

Compared to splat rendering, our technique was always perceived as having a higher

visual quality. We improved the direction, content, and color of each individual

splat, while addressing specific problems of point clouds scanned with commodity

depth sensors. When compared to meshes, we provide a stylized rendering at lower

resolutions and close-ups instead of the blurred visualization typical to meshes, while

maintaining visual quality at a higher point count.

A technical contribution of this technique consists of applying Householder formula

to calculate both locally and globally coherent tangential vectors that are used to

orient brush strokes in space. Also, a simple brush stroke generation formula was

presented, allowing for generation of widely varying textures that can be used on non

photo-realistic rendering techniques, image editing applications, terrain modeling,

and others.

On the field of NPR, our technique is a better alternative to generating stylized

visualizations in an interactive scenario, while still being capable of simulating a

wide array of styles, adjusted in real time. Overall, The presented framework can

be used to render and visualize time sequenced point clouds in real time at interactive

rates.



5
Applications

The 3D Flashback framework was used to create different interaction scenarios in the

context of the BlackBox Project. Our focus for the initial case studies was to analyze

the creative process of the choreographers, and create tools that would support this

process. The first presented application is a 2D-3D annotator (Section 5.1 Ribeiro

et al. (2016)), which extends an already existing system of video annotation, using

the 3D Flashback framework to create and render 3D videos instead. Secondly, we

changed the interaction paradigm of the previous application to Virtual Reality 5.2,

allowing new types of annotation to be introduced. Here, 3D flashback was also used

to create and render the videos. Lastly, we present a concrete case study of analysis

on a creative process, where the 3D Flashback framework is intertwined with other

processes applied to the point clouds.

All of the described applications in this chapter have used the fully described 3D

Flashback framework, except for the MVLDI representation that was under develop-

ment during the publishing of such articles. Since its completion, such applications

have adopted the developed representation. Each of the following sections represents

one applied scenario that was published in scientific conferences.

111
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5.1. 2D - 3D video annotator
This section is adapted from a full paper published at the International Workshop

on Movement and Computing (MOCO) in 2016 1

The global performing arts community has the need for innovative systems which:

document, transmit and preserve the unexplored knowledge contained in perfor-

mance composition processes; and assist artists with tools to facilitate their chore-

ographic or dramaturgic practices, preferably on a collaborative basis.

At present, existing digital archives for performing arts mostly function as linear

e-libraries, not allowing higher degrees of interactivity or active user intervention.

One of the reasons for this limitation is related to the reduced abilities offered by

available video annotators. Specifically, current video annotators support a very

limited set of 2D annotation types such as text, audio, marks, hyperlinks and pen

annotations. Some of them offer animation functions, which are only applied to

ballet choreographies where numerous notation systems exist that allow to represent

a very high number of movements and combinations of movements (Moghaddam

et al., 2014). This is not the case for contemporary dance, where the movement is

unpredictable and can change with every execution either during rehearsals or in

live performances.

Previously to the BlackBox project, the Creation-Tool video annotator was devel-

oped to facilitate choreographers in analyzing and improving their work, by record-

ing and annotating a rehearsal or a live performance for later review or for sharing

their notes with the performers (Cabral et al., 2012). Although this tool has pro-

vided significant advances, it still presents the limitations previously described. The

BlackBox project endeavours to fill this gap and create a new paradigm for the doc-

umentation of performance composition by augmenting a 2D video annotator with

3D visualizations of the resulting annotations. This section describes a system that

couples a 2D multi-view performance captured with video and a 3D multi-view cap-

tured with Kinect sensors. The paper was entitled ”3D Annotation in Contemporary

Dance: Enhancing the Creation-Tool Video Annotator”. This system translates the

2D annotations taken on the Creation-Tool to the captured point clouds by using

feature matching and image segmentation. These annotations can be later visual-

ized in a moving point cloud using an arbitrary viewpoint. The main contributions

were the following:

1Ribeiro et al. (2016)
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• a novel system that combines Computer Vision and Visualization techniques

to enhance video annotations with a 3D representation; and

• its application to a live contemporary dance improvisation, demonstrating the

possibilities of exploring this novel form as a means to document and preserve

the implicit knowledge contained in performance composition processes.

5.1.1. Related Work
Traditionally, performing arts such as dance are taught either by example or by

looking at conventional scores on paper. With different dance movements emerging

and the impossibility of creating a controlled vocabulary of movements in order to

compose a score, watching videos of previous performances or of rehearsals is often

the way to learn a specific piece. A common video, though, is not sufficient to

communicate what is envisioned by the choreographer (Guest, 1984).

Video annotation systems have been used in this field in order to shorten the knowl-

edge gap between the choreographer and dancers. Non-specific systems such as

ELAN (Wittenburg et al., 2006) or Anvil (Kipp, 2010) can be used, or software tar-

geted for this purpose such as Dance Designer (ChoreoPro, 2014), ReEnact (James

et al., 2014), Danceforms (Credo Interactive, 2014), Motion Bank Piecemaker2GO

(PM2GO)2 and the Sketch-Based Dance Choreography developed by Moghaddam

et al. (2014).

Dance Designer (ChoreoPro, 2014) allows a choreographer to automatically synchro-

nize several aspects of a dance performance, namely the path dancers took, dancers’

formation, dance counts, notes and video which makes a complete choreographic

score. DanceForms (Credo Interactive, 2014) uses a different approach instead 2-D

video. In particular it contains a set of dance poses and corresponding animations

that can be combined to create a digital choreography. Moreover, the software also

includes common dance sequences, schematic information about dance poses and

also basic compositions of individual poses. Although this software includes 3D,

and several interesting features, the avatars and resulting poses are not realistic

enough, which might be a limitation when using this software to capture nuances

and small details that can characterize a choreographer’s work.

In PM2GO and Dance Designer ChoreoPro (2014), cue and annotation information

appears in its corresponding window and never as an overlay of the video. The

2http://motionbank.org/en
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annotation type supported is text and can be colour-coded according to a user-

defined criteria.

Moghaddam et al. (2014) have developed a sketch-based system that allows the user

to compose a digital choreography by individually sketching each individual dance

pose. The poses can then be combined and re-arranged in a user-specified order.

Each pose corresponds to an animation applied to a 3D avatar shown in two split

screens, one showing a god view and the other a third person view. The user can

also sketch the path the avatar follows when performing the digital choreography.

In contrast with DanceForms, this system does not support any form of annotations

or score information.

James et al. (2014) have also developed a sketch-based system that allows compos-

ing a digital choreography. There are two main differences between these systems.

Firstly, dance poses are presented by video sketches retrieved from the UK Digital

Dance Archives. Secondly, the resulting choreography is a motion graph composed

of these video sketches, which the user can then fine tune on a key frame basis to

achieve the desired final choreography.

One problem they share is the fact that they are limited to a single point of view,

introducing ambiguity in the case of occlusions caused by other dancers or props

included in the performance. The compromise that has to be made when having 3D

representations of the movements is whether to define a subset of movements to be

displayed on a virtual avatar, or to have an unnatural visualization of the result with

sketches or text annotation on synthetic representations of the performers, which

strays away from the traditional experience of watching a performance in order to

learn dance.

5.1.2. Augmenting the Creation-Tool with 3D anno-
tations

Our work tries to combine the best of both existing approaches. We argue that the

best alternative is to have a full three-dimensional reconstruction of the performance

where the user can watch it as a free viewpoint video, with merged annotations from

each one of the recording streams. Capturing three-dimensional data using depth

sensors of a live performance and enhancing it with annotations is our solution for

contemporary dance choreographers to document, analyze, and share their compo-

sitions (see Fig. 5.1).
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Figure 5.1: Schematic representation of the developed system. At the top, the data
input devices: Microsoft Kinect and video camera. In the middle, two modules used
to generate the point clouds (left) and convert 2D annotations into 3D ones (right).
At the bottom, the 3D Annotation Visualizer built over Unity3D.

We use a wide-baseline setup where each different viewpoint is captured by both by

a colour camera and a Kinect sensor. The Kinect sensor is coupled in close prox-

imity with the video camera in order not to introduce a large stereo disparity on

the annotation conversion process. Each viewpoint is positioned in opposite sides

of the room in order to minimize loss of data due to occlusions. Initially a program

was developed which captured the required information using only the Kinect. Nev-

ertheless, initial tests showed that capturing depth maps, colour images and video

simultaneously using solely the Kinect resulted in high frame losses, compromising

the quality of the 3-D data visualization. In order to solve this limitation, a video

camera was attached and aligned to each Kinect used in the final setup (see Fig.

5.2).

Depth streams are synchronized according to the description available in Section

4.2.1 Frame-level synchronization between colour cameras and depth streams is not

essential due to the fact that it will only be used to set the starting time of the

annotations. Therefore, synchronization based on visual cues is enough for this

purpose. Calibration was performed with Creepy Tracker (Sousa et al., 2017), and

OpenCV (Itseez, 2015)

Annotations are made on each one of the 2D videos using the Creation-Tool, which

encodes them on an XML file with the 2-D pixel position and starting times. Another
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Figure 5.2: Representation of the setup used with three Kinects and video cameras
during the case-study done with contemporary choreographer João Fiadeiro and a
group of his dancers.

external developed tool to process the XML file and assign 3D coordinates to the 2-D

annotations so that they can be visualized in the point cloud video. This tool uses

SURF feature detectors (Bay et al., 2008) on the video frame and on the colour frame

from the Kinect sensor. The closest feature to the annotation position is selected,

and its corresponding match on the Kinect frame is used for depth information in

order to calculate the three-dimensional coordinates.

The low resolution and high noise frequency of the Kinect streams reduce the quality

of the matches to a lower level than expected. We found that performing background

subtraction greatly improves the quality of the feature matching process, with the

downside of losing the capability of annotating the static elements of the scene. In

the context of our case study, this is not problematic, since our main focus is on

annotating dancers in movement.

Point clouds are generated using the depth information (Section 2.5.1.1, and all the

streams are integrated in a single point cloud based on the calibration data (position

and rotation) of each viewpoint. Since the MVLDI was not completely developed
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by the time of this publication, so only short moments of each performance at a

time could be visualized, but have now integrated these developments having no

time restriction on the visualized data. We have used Unity3D as a platform for

rendering the recorded datasets, allowing the user to navigate the camera freely

around the performance, as well as to control the playback of the video segment.

Annotations are displayed at the three-dimensional position that best matches the

point clicked on the original video.

5.1.3. Case Study - Real Time Composition
Within the context of the BlackBox project, we have been working with the Por-

tuguese choreographer João Fiadeiro, who has done extensive work to developed

a method for improvisation in contemporary dance, the Composição em Tempo

Real (CTR) method (Fiadeiro, 2007). To understand and analyse his method,

two separate sessions of Composição em Tempo Real (CTR) involving João Fi-

adeiro and seven dancers from his company were recorded using the setup described

above.

Three different point of views were captured during the improvisation sessions. The

space available for the improvisation was delimited on the floor with duct tape to

prevent the dancers from getting out of the space captured by the cameras and the

Kinects. Each improvisation session lasted around three hours including breaks and

feedback discussions related to what was being composed by the group during each

set (or improvisation sub-session).

The collected data was used to generate the corresponding point clouds, which

were annotated using the respective videos in the Creation-Tool. Audio, text and

hyperlink annotations, were supported in the 3D transposition. Ink annotations are

not easily translated from 2D to 3D, and will be discussed in Section 5.2

The results can bee seen in Figures 5.3c 5.3d and 5.3e, which present the same scene

from the three different viewpoints captured with the three video-Kinect pairs.

For link annotations, the visualization is similar to that of text annotations with the

added possibility of opening the respective web page in a browser within Unity3D

(see Figure representing an added bonus to this system.

This 3D environment provides a richer setting to analyze and understand contem-

porary dance, since it allows to observe a particular scene from multiple points

of view and therefore solving the problems of occlusion in 2D video. Moreover,
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(a) First example of the Creation-Tool: text an-
notation regarding the RTC method.

(b) Visualizer interface

(c) (Viewpoint 1) (d) (Viewpoint 2) (e) (Viewpoint 3)

Figure 5.3: Result of the 3D Annotator Visualizer for the annotations depicted in
Figure 5.3a

this representation presents less ambiguity for future researchers studying a partic-

ular performance or dancer on their own, since it preserves the correct locations

of the annotations. And as it allows to capture different points of view, it can

potentially be extended to support collaboration as well, either in real-time or in

post-processing.

5.2. Virtual Reality Annotator
This work section is based on the work presented at the ITN-DCH 2017, and pub-

lished as a book chapter in the Lecture Notes on Computer Science Book Series,

”Digital Cultural Heritage”.

The previous Section introduced our work with further developments in the field

of video annotation. However, annotating in a 2D environment and transposing

the data to 3D presents several limitations. The mapping between views is not a

straightforward task, and the 2D input during annotation limits the possibilities for

other type of annotations that can make use of 3D annotations.

To overcome the limitations of transposing 2D annotations to a 3D environment,
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we have developed the Virtual Reality Annotator that allows users to annotate

specific body parts and movement sequences in a three-dimensional virtual reality

space. The system was implemented in Unity3D3 integrated with the Oculus Rift

V2 development kit, and the interaction with the point cloud and skeleton data is

provided by a wireless mouse.

We start by describing background work related to video annotators and their uses

in the context of dance, following with the Virtual Reality Annotator where we

describe data capture and visualization, the software architecture and interaction,

and a discussion the obtained results.

5.2.1. Related Work
This section only will review related work for Virtual and Augmented reality in the

area of dance performance, and general annotation and visualization through virtual

reality (VR) and augmented reality (AR) systems. For more related work on regular

video annotation, please read Section 5.1.1.

Wearable technology and motion tracking have developed to the point where VR

and AR are usable in a dance context with minimal disruption to its traditional

practice. The article from Gould (2014) discusses “AR art and performance”, and

how the mixture with technology creates a different type of art, putting the “body

at the heart of its becoming”. The displayed content can now depend heavily on the

perspective, gestures, and positions of the body of the one whos visualizing the work.

One given example is the “Eyebeam” project where a dancer is partnered with an

AR avatar which can only be seen through a device. A similar goal is shared by

the WhoLoDance (Camurri et al., 2016), which already uses head mounted display

(HMD) technology.

Both approaches show the importance of embodied systems and presence Sanchez-

Vives and Slater (2005) in the context of dance. This has been used as a different

approach for teaching dance. Kyan et al. (2015) developed a system to train ballet

poses in a cave environment, similarly to previous work from Chan et al. (2011).

However, by not displaying the virtual world through an HMD, the sense of presence

and body ownership is considerably lower.

Annotating through an HMD has been mainly targeted at AR scenarios, where real

world problems can be observed and tagged for later inspection. The survey pa-

3https://unity3d.com
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per from Wither et al. (2009) reviews these types of annotations in great depth.

Virtual reality has not been thoroughly used for video annotation, due to the fact

that free-viewpoint videos and point cloud based data that register real world events

still not being commonplace. Different techniques have been proposed to annotate

static point clouds in an non immersive scenario (Veit and Capobianco, 2014; Bacim

et al., 2014), but have limitations when translating them to HMD, where one cannot

resort to using hand-held devices with an auxiliary screen, or other peripherals such

as keyboard for input. Static inspection (Addison and Gaiani, 2000) and annota-

tion of point clouds (Lubos et al., 2014) has been done using VR, with a focus on

architectural problems and rich environments. Using the advantages of embodied

experiences in dance to annotate captured point cloud videos through a HMD is a

problem that has yet to be addressed.

5.2.2. Description
Data was captured using the described 3D Flashback framework in Section 2.5.1.1,

associated with a skeleton recording module using Creepy Tracker (Sousa et al.,

2017) We used Unity3D as a platform for rendering the recorded datasets, where

the user could freely navigate the camera around the performance scene.

5.2.2.1. Architecture

The Virtual Reality Annotator is a network-based application (see Fig. 5.4) that

integrates several software modules that support tracking, creating and managing

annotations, point cloud and skeleton visualization and finally an interaction module

that processes user inputs.

Users have an abstract body representation created by the skeleton provided by

the ”Creepy Tracker” module Sousa et al. (2017), since their real body is covered

by the HMD. This system works by combining skeleton information from various

Kinect cameras, allowing users to move freely in the capture space. Skeleton data is

received by the application through the network, with users identifying themselves

at the start-up of the application by raising their hand.

The annotation manager module is an aggregated class containing a set of mod-

ules responsible for storing and managing annotation types in the Virtual Reality

environment. Each annotation class has an associated component responsible for
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Figure 5.4: Virtual Reality Annotator modular architect diagram

processing user input and managing the 3D objects related to the annotation. In this

manner extending the current software with new annotation types is straightforward

and involves minimal changes to the code.

The position where the annotation should be created in the virtual world is provided

by the VR Controller module, which receives and processes the skeleton data given

by the Creepy Tracker and the head orientation given by the Oculus Rift. This data

is also used to update the user skeleton data in the VR environment.

The Input Manager receives the mouse clicks (see Fig. 5.5) and hand position. Based

on this data, it toggles the annotation type that is currently active. Moreover, it

is responsible for visualizing and hiding the 3D menu and drawing the contextual

heads-up display attached to the users’ hand.

To interact with the menu, a raycast is drawn starting from the users’ hand position

and, when a collision is detected, the appropriate method is executed enabling or

disabling the appropriate menu option. The 3D menu has five options: highlight

points, speech-to-text, 3D drawing, change color, and delete (see Fig. 5.5).
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(a) Mouse control schema (b) Menu

Figure 5.5: Input and interface elements

(a) 3D drawing (b) Highlight points (c) Contextualized drawing

Figure 5.6: Implemented annotations/functions in our system

5.2.2.2. User interaction paradigm

Interaction with the system is performed by free navigation in the environment, and

mostly based on the position of the users’ dominant hand. Figure 5.5a displays

the input commands of the wireless mouse . Menu interaction is performed by right

clicking to open a menu in the looking direction, and selection of the current function

by pointing and left clicking.

Color selection 5.7b is performed by pointing at the desired color on a RGB spectrum

and left clicking. Annotations are created by holding the left mouse button and

performing the desired action. For 3D drawing 5.6a the hand position is used as

a virtual brush. For cloud highlighting 5.6b the same metaphor is used, except

the user chooses paints the desired points instead of a general area. Finally, text

annotations are created at the users’ hand location.

The duration of an annotation can be adjusted by placing the dominant hand near

the center of the annotation, clicking and scrolling the mouse wheel until the desired

duration is reached. This is then confirmed via a second wheel click. An annotation

can be deleted by a double right-click near the desired annotation.
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(a) Menu Selection (b) Color picker

Figure 5.7: Examples of interaction

5.2.3. Results and Discussion
The implemented system allows users to visualize and annotate temporal point-cloud

data that can be associated with skeletal information. This is particularly important

in the case of highlighting 3D points of a time-sequenced point cloud.

The used datasets were casual captures in a laboratory environment, and the de-

scribed dancer captures with Miyu Matsui in the Rui Lopes Graça study described

in Section 1.1.

Given that there is no temporal relation between 3D points in different frames , we

associate the annotations to the skeleton joints, which are updated every frame and

passed to the shader that will affect the points in the vicinity of that joint. This is

optional for 3D drawing and text annotations.

Some uses for this are to attach a text annotation, like a name of the person, to follow

a certain subject in the video, or to create a note related to a series of actions. The

same applies to drawing, which might be related to a certain body part, or simply

markings on the floor. If annotations are created closer than a certain threshold to

a specific skeleton joint in the frame, they are associated to that body part.

This is one of the advantages of the proposed system over previous attempts, where

we are able to have both static and dynamic annotations, contextual or not, and

affecting unstructured data (point cloud). Moreover, such 3D contextual annotations

are only possible in the immersive VR environment, due to the nonexistent depth

component in more traditional inputs.

As opposed to more complex input solutions, our system has the advantage of using

known metaphors for users (painting with your hand, pointing at something you

want). Also, such an embodied solution allows users to more accurately perceive

and interact with space such as it is perceived in a dance studio. Allowing one
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to freely navigate around the data overcomes the stated limitations of video-based

teaching approaches Guest (1984).

The described system has been applied to both documenting and archiving dance

choreographers’ work Ribeiro et al. (2017) in the context of contemporary dance.

Instead of adding annotations targeted at teaching, scholars could highlight char-

acteristic movements or tendencies of a certain choreographer. This is a crucial

application for enhancing digital cultural heritage archives, where common videos

combined with text-based descriptions are not able to efficiently represent certain

temporal and spatial aspects embedded in an immediate context of the documented

works. An added benefit of this type of annotated data is that it can be used to

develop comparative studies on different genres, styles, or periods of time in the

work of choreographers and dancers.

Some of our current limitations are shared by other VR-based systems. Some users

may experience motion sickness in prolonged interactions with the system, due to the

fact that the markerless tracking solution applied is subject to some noise and delay

as mentioned in Sousa et al. (2017). Also, the tracked space by current VR systems

is limited, which is a problem if the captured area is larger than the VR tracked

space, in that it restricts the users possibility to reach the position where they want

to annotate. This chapter describes each one of the developed applications.

5.3. Capturing and Documenting Creative Pro-
cesses in Contemporary Dance

This section is adapted from a full paper published at the International Workshop

on Movement and Computing (MOCO) in 2017 4

A choreographer’s legacy is both a historical record that resides in an archived form

and a cultural memory or experience that the choreographer envisions to leave be-

hind for future audiences, educators, and scholars (LaFrance, 2011). Historically,

one of the ways in which Western theatrical dances have been preserved is through

the act of score-writing. Despite the efforts of dance-notation practitioners to pre-

serve the art of score-writing, in the latter half of the 20th century, traditional

notation systems have become overshadowed by videos as a mode of documenting

dances. As technological advancements have continued to alter the practice of dance

4Ribeiro et al. (2017)
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preservation, a body of literature has emerged that illuminates alternative forms of

documentation (Grammalidis et al., 2016).

Current practices for documentation and preservation are mostly focused on the

development of an archive that in itself holds a structure that mirrors a choreog-

rapher’s life work. In particular, it takes into account the best practices in photo

and video digitization and the development of appropriate metadata standards to

catalog each component of the archive material. Other relevant considerations are

related to the development of a system that enhances human-computer interaction

between the user and the archive. These are all significant issues that should not

be neglected. Nevertheless, there still is a lack of work that targets specifically the

documentation of creative processes, namely by focusing on the development of a

conceptual framework where the evolution of a choreographer’s imagistic universe,

and how it is translated into his/her aesthetic vocabulary, can be understood.

Inspired by advances in 3D data capture and point cloud visualization techniques,

this section describes how these techniques were used to capture and document the

artistic work of João Fiadeiro, a Portuguese choreographer. Over the course of two

decades, Fiadeiro has been developing a method he calls Composition in Real Time,

Composição em Tempo Real, in Portuguese (CTR), which allows him to transmit

his artistic modus operandi to his collaborators and to teach a series of compo-

sitional principles in international workshops and master classes (Jürgens et al.,

2016). Together with Fiadeiro, we have identified a sub-set of five core concepts of

his method (out of an inventory of 72 terms and expressions), which have then been

used as starting-points of two improvisation sessions involving Fiadeiro’s dancers

and himself. Moreover, those same concepts were also the basis underpinning the

development of new visualization techniques that better illustrate in an interactive

system how these concepts influence the resulting final performance.

5.3.1. Documenting and Preserving Contemporary Dance
In order to better understand and inform the present by richer interpretations of

the past, several actions are being taken at a global level to create affordable and

efficient digital access, documentary methods analysis, and preservation services for

cultural resources.

In the case of the most ephemeral and intangible art forms, such as contemporary

performing arts and dance in particular, the interest in their documentation is even

greater precisely because this ephemeral performative action is the ideal territory for
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working within a fertile nexus of mediations. Each performance brings into play an

extended series of instances: creative, technical, material, and societal. In addition,

they are linked to research and education materials which also produce a vast amount

of associations and may be linked to a myriad of data points. The material generated

and the theoretical conclusions reached allow the exploration of new work based on

existing information systems, infrastructures, and services in order to make that

content available for researchers and educators in a wide range of contexts. As

embodied and ephemeral practices, the performing arts comprise a fusion of cultures

and practices, but their fluidity within and across borders has been characterized by

a dispersed and fractured documented history. Perhaps because, in general, they are

heterogeneous practices where the body is the most complex instrument to ’write

down’, the performing arts have produced very little in what regards ”hard-copy

records of themselves” (Whatley, 2013). However, this is changing enormously, both

concerning the range of methods and systems currently being explored to document

performing arts heritage, and in relation to the newly invigorated, creative industry

initiatives within Europe.

Slightly over the last ten years, performing artists and researchers in Europe, the

USA, and Australia have begun to collaborate in order to explore how digital tech-

nologies can offer new methods for documenting dance, theater, and performance in

general and for increasing access to these more intangible art forms. These collab-

orations have resulted in novel ways to preserve and/or reconstruct existing pieces

and the creative processes behind them. This is an important moment in time for

performing artists in particular: by bringing together different cultures, different

practices, and different disciplines, they have a significant opportunity to shape the

narrative around their works with a view to creating the optimum framework for

its sustainable support into the future. Moreover, recently a number of interna-

tionally known choreographers and institutions (e.g. Wayne McGregor — Random

Dance, Siobhan Davies in the UK; Emio Greco—PC in the Netherlands, Rui Horta

Stage Works in Portugal; the Forsythe Foundation, the Pina Bausch Foundation

and the Digitaler Atlas Tanz initiative in Germany) have been proving that it is

now essential for contemporary dance and performance to worry about its preser-

vation over time. Other art forms are documented and preserved in their own

medium such as painting, sculpture, and film. In the case of music and theatre,

there exist universally readable documents in the form of musical notation scores

and the dramaturgic script. Contemporary dance and performance, on the other

hand, must develop new forms of mediation and produce new types of resources

that make choreographic/compositional ideas more accessible to be studied and un-
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derstood. The varieties of information-rich resources they have created (including

on-line scores, dance digital archives, choreographic software agents and real-time

training simulations) confirm their increasing investment in the digital preservation

of contemporary creations, an interest which was previously absent (Delahunta and

Shaw, 2008).

There have been until now different large-scale initiatives at the European level,

such as Europeana (Eur, 2014 (accessed Jan 3, 2017), ECLAP (ECL, 2011 (ac-

cessed Jan 10, 2017) (an e-library for the performing arts), and some other specific

artist-drive ones, such as the Siobhan Davies company’s ”RePlay Archive” (Sio,

2013 (accessed Jan 10, 2017; Whatley, 2013), where it is possible to navigate online

not only through a life-long career of choreographic pieces, but through a catalog of

early rehearsal footage and, where available, of filmed records of choreographies in

the studio, including original rehearsal materials. The ”Pina Bausch Foundation”,

founded after her death, is also preparing the much expected ”An Invitation from

Pina: The Pina Bausch Archive” (pin, 2013 (accessed Jan 10, 2017), which has

developed rather ground-breaking ideas on what dance and theater documentation

can be about, aside from the foundation’s” more institutional archival initiatives.

Also, the ”K3 Zentrum für Choreographie” (k3, 2017 (Accessed: 2017-04-22) has

an ongoing cooperation project called ”Reflex Europe” which is focused on study-

ing how documenting the creation process can improve learning in the context of

contemporary dance.

To conclude this listing, ”Motion Bank” (mot, 2010 (accessed Jan 12, 2017) was

the newest Forsythe Company project (after their highly successful project ”Syn-

chronous Objects” (syn, 2013 (accessed Jan 12, 2017)), launched in 2013, and having

provided a broad context for research into choreographic practice. Their main focus

was on the creation of on-line digital scores in collaboration with four guest chore-

ographers of broad international projection. However, they do not aim at an open-

ended platform to accommodate inter-relations and collaborative resources between

performing artists in general, as accomplished with the ”Transmedia Knowledge-

Base for performing arts (tbk, 2010 (accessed Jan 20, 2017), developed between

2011 and 2013, and officially launched online in June 2016.

Technologies developed for the purpose of analyzing and archiving movement in

creative areas such as dance and performance are opening up new ways of exploring

and reactivating specialist gestural knowledges from the past (Norman, 2016). In

this manner, contextualized simulations and re-enactments of corporeal movement

are providing insights into gestural skills that are otherwise being rapidly subsumed

and forgotten in the wake of technological developments - notably those involving
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digitization and manual or semi-automatic video annotations.

5.3.2. Composition in Real Time
Since 1995, Fiadeiro has continued to develop his Composition in Real Time (CTR)

method. At first, the system was established to collaborate with fellow artists to

successfully create coherent stage works. As the method was systematized over the

years, not only an increasing number of artists were engaging with the CTR, but

non-performers as well, such as theoreticians, academics, and researchers from such

diverse fields as the social sciences (philosophy, anthropology, ethnology), economics,

complex system theory, and neurosciences. The dialogue with these experts in turn

helped to enrich the CTR into a full fledged compositional system, which principles

can be applied in different artistic and scientific processes.

At the heart of the CTR lies a novel approach to the decision-making process. Fi-

adeiro observed early on in dance improvisation that performers would not dedicate

as much time to evaluating their possibilities to act in a certain set of circumstances.

The CTR method suggests to suspend the impulse to act immediately upon the sit-

uation one finds oneself in. Instead the performer takes the time needed to better

understand the properties and possibilities inherent to the situation to make an in-

formed decision. This decision results in an (performative) action, which is called

a ’position’ in the CTR. Another performer will subsequently perform the next ac-

tion (or position), also using the time during suspension to make a decision which

relates to the action (or position) of the performer before. In other words, a relation

between the two positions (actions) is created. The third action taken by the next

performer should relate to the relation established by the two actions before, so

that a clear direction for the improvisation is proposed. During the cycle of vitality

this direction is explored, until the improvisation comes to a natural end that all

performers agree upon.

To put it simply, all participants in an emerging compositional process act collabo-

ratively, building something by relating to each others’ actions. By working in this

interrelated way, it becomes evident for the participants that many possibilities ex-

ist at each moment of decision, which can be seen as ”possible futures” (and pasts,

for that matter). Whenever a decision has been made, the past is retroactively

rewritten, that is, interpreted in a new way. Particularly this latter concept has

been attracting much attention by researchers from the above-mentioned scientific

domains.
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5.3.3. Case Study

The main aim of our case study was to capture and visually represent a sub-set of

the most representative concepts of the Real-Time Composition method. In order

to do so, we captured two improvisation sessions with João Fiadeiro and seven of his

dancers in two separate days. Each session had an approximate duration of three

hours, and each improvisation started with the same position.

5.3.3.1. Composition in Real Time Concepts

Fiadeiro has devised a system representing his own creative process in which the

underlying fundamental concepts are not static; they are organic and evolve as

Fiadeiro himself transforms his own choreographic perspectives and practices based

on new experiences and projects. He has also devised a version of his game to be

practiced by people not accustomed to using their bodies in the same way as dancers,

where objects are used on a table instead of bodies on a dance floor. In order to

acquire sufficient knowledge of his method, we actively and passively participated in

several workshops, including table versions and more specialized workshops targeted

at expert dancers.

Following these sessions, it was important to understand how these core concepts

of the CTR method related to the CTR system, as well as to the final result of an

improvisation session. In particular, we wanted to understand if it were possible to

visually represent his concepts using improvisation sequences from Fiadeiro’s current

works. With this aim, we conducted several unstructured interviews with Fiadeiro

where we first focused on identifying a set of core concepts. From these interviews

resulted the selection of five concepts described in Table 5.1.

The next stage focused on observing videos of Fiadeiro’s past works, including re-

hearsals, performances, and workshops, and identifying a set of video sequences

corresponding to each concept. This allowed us to have both a conceptual under-

standing as well as a visual representation of the concepts. We have then together

with Fiadeiro developed a set of possible visualization effects for each concept. Final

results are described in Section 5.3.5.
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CTR Concept Description

Position Any performed act/ A performative act. Example:
a performer lifts a chair.

Relationship Performing a position which relates to another po-
sition. Example: another performer also lifts up a
chair.

Suspension The time a performer takes to make a decision and
suspends any action.

Cycle of Vitality The time or duration of an improvisation exploring
a specific idea.

Possible Futures and Pasts At each moment in the improvisation, a performer
can choose from several possibilities of how to pro-
ceed (= futures), which will shape reinterpreta-
tions of past understandings of positions.

Table 5.1: Summary of five core Composition in Real Time concepts.

5.3.4. Motion Capture and Point Cloud Visualiza-
tion

From the participation and observation of Fiadeiro’s workshops, it was clear that

space was a limitation, meaning we had to considered how many Microsoft Kinects

would be necessary, and what was the ideal setup to guarantee data quality. To guar-

antee the capturing of the complete improvisation session, a wide-baseline setup was

used, where each view was captured by a Kinect sensor. Each view was positioned

on opposite sides of the room in order to minimize loss of data due to occlusion (see

Fig. 5.8). The capture process used the framework described in Section 2.5.1.1

The remaining of the process follows the data flow presented in Figure 5.9, regarding

the different parts of the 3D Flashback framework. First the color images and depth

maps are converted into point cloud data. This type of data are simple Cartesian

coordinates and their respective color information, therefore there is no contextual

information about what is actually represented in the point cloud. At this stage, it

is not yet possible to manipulate individual elements of the point clouds, such as

people or objects.

The Point Cloud Library Rusu and Cousins (2011a) Euclidean Cluster Extraction

algorithm was used to separate the point cloud into clusters. This algorithm basically

separates unorganized point clouds into separate clusters (sets of points) based on
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Figure 5.8: Representation of the setup used with three Kinects and three video cam-
eras during the case-study done with João Fiadeiro and his contemporary dancers.

Figure 5.9: Flowchart of the application regarding to the 3D Flashback framework.
It uses all the steps of the framework with some differences in the representation
step, where the goal was to identify different clusters.

their distances. After the initial tests it became obvious that this information was

not enough to clearly separate point clouds into clusters. Specifically, in certain

situations the dancers were all concentrated in the same position (e.g. while holding

the same object) and only moved slightly, tricking the algorithm to assume they

became a different cluster.

To improve cluster detection we adapted the original algorithm by adding another

condition to be considered besides distance. First we considered only the first frame,

and for each cluster we calculated the AABB box and respective center. We then

processed the remaining frames using the distance between points and also verified

that the distance to the center of the AABB box of the frame before is below a

certain threshold determined during the testing phase.
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There are also challenges related to point cloud visualization such as loss of defini-

tion on close-ups, foreground/background confusion, and depth perception due to

the absence of occlusions between the rendered points. These issues are specially

noticeable on low resolution scans or background objects.

Finally, we developed a point cloud visualizer using Unity3D 5 with a simplified

version of the visualization technique described in Section 4.3.2 Within this visual-

izer we implemented scripts which automatically apply the intended effects on to

the point cloud clusters according to annotation data for the concepts of position,

relation, and cycle of vitality. The remaining two concepts were implemented as

different scenes in Unity3D, since they had to be manually crafted to adapt the

contents of the improvisation sessions.

5.3.5. Results
In order to illustrate each one of the concepts, short sections of data from the

improvisation sessions which clearly demonstrated the selected base concepts from

CTR were selected.

Since some concepts could only be well perceived by the external users through

long periods of time, we combined different subsections in order to offer a shorter

but sequenced visualization. To visualize the data we used a point cloud visualizer

previously implemented in Unity3D. Each data set used to illustrate a particular

concept was post-processed, as explained in the previous section, and then read

offline by the point cloud visualizer. The software also includes a basic graphical

user interface which allows the user to interact with the point cloud, specifically

to navigate freely within the 3D scene, fast forward, or view each frame step by

step.

The most relevant CTR core concepts, position, was represented through assign-

ing different colors to elements introduced in a certain position, so that users can

keep track of the development of the improvisation session. In our chosen segment,

each participant entering the stage has created a new position. We have identified

each different body through a color-based clustering algorithm, combined with video

annotations Ribeiro et al. (2016), which would connect each player to a different po-

sition and an assigned color.

An example can be seen in Figure 5.10a, where the third position is being introduced.

5https://unity3d.com
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(a) Two shots of the position example. Each
participant represents a consecutive position

(b) Relation: The second participant
slowly assimilates the color of the first as
they establish a relation

Figure 5.10: Color-based representation of CTR concepts.

The participant in red entered the space holding a table in the air (first position)

followed by the one in blue, who was holding a table in the air (second position), and

by the one in green (third position) with a cup that is held above the table.

Relations formed by different elements introduced in the composition were also

identified by the same color. The elements introduced in a new position may create

a relation with some or all of the elements from previous positions in the scene.

The establishment of newer relations was represented as a gradual assimilation of

colors, as seen in Figure 5.10b. This example only contains a single relation between

two elements: the participant holding a chair and the one holding the table, which

creates a clearly identifiable relation coming from the real world. In a more complex

scenario, several separate relations may co-exist at any given time. Changes in

relations and positions can go by unnoticed by novices to this method, specially

in longer scenarios, with more performers, or in a faster paced sequence of actions.

Albeit a simple solution, color coding can clearly contribute to identifying these

concepts without adding visual pollution to the actual recorded content.

The Cycle of vitality, i.e. the time frame during which the composition is pro-

gressing, is exemplified through the loss and gain of color. Following the CTR

rationale, the end should always be postponed by allowing the creation of new rela-

tions through new positions. We selected a long sequence of a session performed by

two participants, where we were able to see the prolongation of the cycle of vitality

through several positions, as well as its approach to an end, when no new positions

were being introduced (see Figure 5.11b). In this particular example, one participant

decides to leave the scene as he hurts himself during the performance. The cycle was

coming to an end, but another performer introduces a new position by inviting him

back to the stage, using the accident as an element of their improvisation, therefore

starting a new cycle of vitality from that relation.

The three-dimensional aspect of the captured data allows a better representation
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(a) Suspension: Sequence of instances in the visualization where the concept of possible future
appears in the background, and the camera navigates in that direction when the suspension ends.

(b) Cycle of vitality: The cycle ends as a performer leaves the stage. Saturation gradually comes
back when another performer starts a new position.

(c) Possible futures and pasts: Possibilities are unveiled through the sides of the cube, where possi-
bilities are organized in a three-dimensional space.

Figure 5.11: Sequences of the generated visualizations for CTR concepts.

of the concept of Suspension, which is used in the decision making process. By

spatially separating present and future possible positions and manipulating the re-

production speed of a segment, we exemplify the suspension of time in which one

participant is examining the current situation with her personal time being discon-

nected from the real time. Figure 5.11a shows our visualization of this concept. In

this particular sequence, each position would add objects to the objects pile carried

by the participant who had the table in the first position. At a certain moment, a

critical point is reached, where it should be considered to finish the current sequence

of positions, due to the fact that the first participant was not able to carry more ob-

jects. Here a suspension is exemplified, with the reproduction speed of the ”present”

(participant holding objects) slowed down, to represent the disconnect between real

time and the time as perceived by the outermost participant, representing the de-

sired decision making process in CTR. The most likely future possibility can be

contemplated in the background, and when that future is ”accepted” (each partici-

pant implicitly decides this is the course of action to be taken), the camera navigates
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into the new present scene.

One remarkable feature of Fiadeiro’s work is the concept of rewriting the past by

changing the future, i.e. by creating new relations. Our last example shows possible

futures and pasts. We recorded different improvisation sessions always repeating

the first position and giving freedom to the performers from then onwards. We

spatially organize the possible futures in a three-dimensional space. The performer

is placed inside a cube, in which he has a possible future in each one of the sides of

the cube. We navigate the camera through each one of the possible futures for new

relations. In reality, there are countless possible futures for each position. We display

all the different outcomes from starting at the same first position to exemplify this

concept.

5.3.6. Discussion
Capturing and documenting contemporary dance is in no way a trivial task. This is

due to the ephemeral nature of dance, which constitutes a challenge when trying to

understand which dance objects are valuable resources for the research community,

choreographers and dancers, and the general public. Even though it is currently

common practice for choreographers or foundations/institutes to maintain some sort

of archive of their works (typically comprised of photos, interviews, and videos),

the same is not true when considering the documentation of creative processes.

Moreover, photos and videos are static content which impose the vision of the person

who photographed/recorded and edited the material. Therefore, showing but one

perspective of the complex system that composes a choreographic work. These kind

of static material also limits the ability to interact, experiment and explore the

creative dimensions underlying a choreographic process.

Capturing dance in three dimensions supporting a viewpoint-free visualization opens

up a vast range of possibilities. Primarily, dance is about movement, specifically

about expression through movement. Having an interactive digital representation

of movement allows us to closely observe subtle particularities that characterize

a particular aesthetic language and, in this manner, preserve choreographic works

within the creative context where they had been created. 3D data is a composition of

graphical primitives that can be manipulated and changed to serve diverse purposes.

By manipulating this kind of data it is possible to provide different viewpoints which

can open up new future perspectives related to a choreographer’s piece. This was

the ultimate goal of our work: to provide an alternative and interactive visualization
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so that future generations can create their own stories when experiencing Fiadeiros’

conceptual work.

Although the proposed visualizations are specific to Fiadeiro’s creative process, the

methodology used to create them can be applied to other contexts. Annotating

three-dimensional point cloud data is a flexible-enough basis to build different ef-

fects upon. Among the presented results, the color manipulation effects (Position,

Relation, Cycle of vitality) may have a direct application in scenarios with different

sets of concepts. Spatial organization of selected parts of a performance can also

be used to demonstrate its development or evolution over longer periods of time,

comparisons between similar segments, or other types of relevant concepts to the

work at hand.

We should add that in this study we have only taken into account the participation of

the choreographer in the design and evaluation of the system, and not the dancers’.

In other words, we did not focus on the possible feedback that could be given by the

dancers to improve the system, as our main focus was on the process of composition

in itself, namely on the particular method of ”Composition in Real Time” and not

on the usability of the visualizer we have developed.

This technique has its own challenges and limitations which have to be mentioned.

In particular, it is necessary to understand how a performance can be enhanced

through the use of technology without compromising the dance object. Also, how

this type of data can be used in a virtual environment and providing a way for the

user to intuitively understand the inspiration and motivations behind that dance

object.Although several affordable motion capture systems exist, their use is not

at all straightforward.It is still necessary to develop specialized software to deal

with this kind of data, which requires software engineers. Moreover, maintaining

digitized archives requires specific maintenance and specific hardware that can often

be costly.

5.4. Summary
Three different applications built upon the 3D Flashback framework were presented.

Firstly, an extension to an existing 2D video annotation system has been developed,

adding depth streams to multiple recording points of view of a dance performance.

Each 2D video is annotated separately and, after being processed by the developed

system, all annotations are combined on a single point-cloud based three-dimensional
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video that allows the user to visualize the performance and its annotations from any

arbitrary point of view.

We also described the Virtual Reality Annotator, which is a software tool that allows

a user to visualize and annotate dynamically point cloud and skeleton data. Cur-

rently, is supports three types of annotations, namely highlight points, speech-to-text

and 3D Drawing. Our tool supports dynamic annotations which is an improvement

on previous existing systems.

Also, we have presented an alternative approach to archiving and visualizing the

choreographic work of a performing artist, by using the work of João Fiadeiro as a

case study. Not only we enable a better spatial perception of the work, but have

also developed meaningful visualizations to illustrate core concepts of Fiadeiro’s

Composition in Real Time method.





6
Conclusions and

Future Work

6.1. Conclusions

The proposed 3D Flashback framework and applications had several key aspects that

needed to be solved in order to be viably used in interactive applications. All of the

proposed steps were successfully implemented and described in this document. Over

all the tackled problems, we focused on the single-layer data representation issue.

The MVLDI showed better redundancy detection and number of generated layers

in both wide-baseline and narrow baseline scenarios (Anjos et al., 2017). When

compared to MV+D, we were able to save up to 49% space in a single frame on

our most complex scenario, just from removing redundant data that had no impact

in the visual quality of the cloud. The more input cameras are used, the higher

the advantage the proposed representation brings. And the more accessible depth

information is, the more relevant the MVLDI will become. These advantages were

carried on to the temporal scenario, where we saw that the MVLDV saved 69% space

on a simple scenario. When compared to the LDI, our approach can support wide

baselines while not discarding important data, generates considerably less layers,

139
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and is still more compact in the video scenario due to not only higher redundancy

detection, but also having denser layers, which leads block matching algorithms used

in video compression algorithms into better results.

Within the representation problem, we evaluated the viewpoint selection and gener-

ation problem, which creates guidelines for future research in MVLDI. One impor-

tant contribution of this research was a synthetic viewpoint generation algorithm

for MVLDI, which can efficiently represent any complex point cloud into images,

even if the input dataset is in a point-based representation. This algorithm allows

researchers to use the advantages of image-based representations in these scenarios,

having access to simpler and more efficient rendering algorithms.

Stroke-based Splatting was also introduced as a novel rendering technique to visual-

ize point clouds (dos Anjos et al., 2017). Not only it allows one to visualize this type

of data with a comparable or higher visual quality than other approaches (splats,

meshes), but it also applies a more efficient tangential vector estimation technique

(Householder formula) which allows us to only save normal information when deal-

ing with a video scenario, since tangents can be estimated in real time. It is also

more resilient to noise, creating a less variable tangential field which can be noticed

in temporal sequences.

We created a Kinect-based calibration toolkit (Sousa et al., 2017) which can be used

in widely different capture scenarios, or for data streaming on interactive systems.

Also, software for data capture including synchronization and segmentation were

also implemented and described. Finally, compression, decompression, rendering,

and integration with applications was discussed in detail, enabling future researchers

to replicate and further develop the presented pipeline.

We also introduced three different applications that use the 3D Flashback frame-

work in the context of contemporary dance teaching and digital cultural heritage.

(Ribeiro et al., 2017, 2016) Using this alternative data type, we were able to go

forward not only in the realism and complexity of the stored data, but also cre-

ated richer interactive experiences which help choreographers and dance students to

communicate about core concepts of their craft. Using virtual reality to annotate

dance allows users to be in the performance space at all times, and closely inter-

act with the visualized data. We believe this presented framework can be used to

support richer interactive applications not only in dance and performing arts, but

also sports, entertainment, culture, and other scenarios where spatial perception

and three-dimensional data is important.
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6.2. Future Work
Regarding data representation, our research on viewpoint evaluation order still needs

to be improved. The impact of this step increases with the number of input cameras

used. Our results showed that search-based approaches are overall more successful,

however more research has to be done regarding heuristics for viewpoint selection,

and a quasi-complete search algorithm needs to be implemented, opposed to both

the greedy approach presented in this paper, and the complete search (optimal)

which has a very high complexity for video scenarios. Our results also confirmed

that selecting a viewpoint directed according to the normal of the biggest surfaces in

the point cloud can be a successful approach, depending highly on the results of the

clustering algorithm applied. Specialized techniques for detecting surfaces on highly

fragmented point clouds need to be developed, or novel approaches for residual data

need to be applied.

Also, the impact of different viewpoint selection approaches in video compression

has to be evaluated. Two main questions can be raised related to this topic.

• What are the advantages of constantly re-evaluating a better viewpoint for

each layer over only performing this process at certain points of the stream?

• Should different viewpoints be encoded in the same temporal compressed layer,

or keeping separate layers for each viewpoint is the best approach?

Correctly answering these questions will further solidify the MVLDI as a compact

and efficient representation for multiview videos. Finally, approaches for automatic

estimation of the redundancy threshold can be researched for scenarios where the

desired sampling of the data needs to adapt to the content.

Several improvements to the Stroke-Based Splatting technique can be introduced in

the context of rendering video data. Namely, estimating normal vectors from the

depth images in real time can decrease even further the amount of data necessary

for rendering. This can be done by calculating the derivatives from neighboring

pixels in the depth component of individual layers of the MVLDI. Moreover, an

alternative color blending algorithm has to be developed in order to be applied in a

video context, where A-buffering is too heavy.

One future research line will be exploring hole filling algorithms for surface com-

pletion using the MVLDV representation. We believe we are able to more easily

identify plain surfaces on the scene on image-space, treating them on a simplified
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two-dimensional space. By encoding surfaces with similar normal values into the

same layers, we can more easily detect holes and find boundaries to work upon.

Integrating the 3D Flashback framework in different output devices such as aug-

mented reality glasses will also help us create novel applications, and solve different

real world problems. Overall, we believe our contributions to the VBR field will

allow researchers to develop novel wide-baseline applications and experiences in a

world where depth information is more and more accessible.
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M Gopi, Shankar Krishnan, and Cláudio T Silva. Surface reconstruction based on lower

dimensional localized delaunay triangulation. In Computer Graphics Forum, volume 19,

pages 467–478, 2000.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-

graph. In Proceedings of the 23rd Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH ’96, pages 43–54, New York, NY, USA, 1996. ACM.

ISBN 0-89791-746-4. doi: 10.1145/237170.237200. URL http://doi.acm.org/10.

1145/237170.237200.

Amanda Starling Gould. Invisible visualities: Augmented reality art and the contemporary

media ecology. Convergence, 20(1):25–32, 2014.

N Grammalidis, K Dimitropoulos, F Tsalakanidou, A Kitsikidis, P Roussel, B Denby,

P Chawah, L Buchman, S Dupont, S Laraba, et al. The i-treasures intangible cultural

heritage dataset. In Proceedings of the 3rd International Symposium on Movement and

Computing, page 23. ACM, 2016.

Ann Hutchinson Guest. Dance notation: The process of recording movement on paper.

New York: Dance Horizons, 1984.

Paul Haeberli. Paint by numbers: Abstract image representations. SIGGRAPH Comput.

Graph., 24(4):207–214, September 1990. ISSN 0097-8930. doi: 10.1145/97880.97902.

Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc. of

Fourth Alvey Vision Conference, volume 15, page 50. Manchester, UK, 1988.

N. Hasler, B. Rosenhahn, T. Thormahlen, M. Wand, J. Gall, and H.-P. Seidel. Markerless

motion capture with unsynchronized moving cameras. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 224–231, June 2009. doi:

10.1109/CVPR.2009.5206859.

Stefan Hauswiesner, Matthias Straka, and Gerhard Reitmayr. Coherent image-based ren-

dering of real-world objects. In Symposium on Interactive 3D Graphics and Games, I3D

’11, pages 183–190, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0565-5. doi:

10.1145/1944745.1944776. URL http://doi.acm.org/10.1145/1944745.1944776.

Christopher G. Healey, Laura Tateosian, James T. Enns, and Mark Remple. Perceptually

based brush strokes for nonphotorealistic visualization. ACM Trans. Graph., 23(1):

64–96, January 2004. ISSN 0730-0301. doi: 10.1145/966131.966135.

http://doi.acm.org/10.1145/237170.237200
http://doi.acm.org/10.1145/237170.237200
http://doi.acm.org/10.1145/1944745.1944776


151 BIBLIOGRAPHY

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernelized

correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, March 2015. ISSN 0162-8828. doi: 10.1109/TPAMI.2014.2345390.

Aaron Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In Pro-

ceedings of the 25th Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’98, pages 453–460, New York, NY, USA, 1998. ACM. ISBN

0-89791-999-8. doi: 10.1145/280814.280951.

Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. ARTIFICAL

INTELLIGENCE, 17:185–203, 1981.

Hai Huang, Claus Brenner, and Monika Sester. A generative statistical approach to au-

tomatic 3d building roof reconstruction from laser scanning data. {ISPRS} Journal

of Photogrammetry and Remote Sensing, 79(0):29 – 43, 2013. ISSN 0924-2716. doi:

http://dx.doi.org/10.1016/j.isprsjprs.2013.02.004.

Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen, and Liang-Gee Chen.

Survey on block matching motion estimation algorithms and architectures with new

results. Journal of VLSI signal processing systems for signal, image and video tech-

nology, 42(3):297–320, 2006. ISSN 0922-5773. doi: 10.1007/s11265-006-4190-4. URL

http://dx.doi.org/10.1007/s11265-006-4190-4.

James Imber, Marco Volino, Jean-Yves Guillemaut, Simon Fenney, and Adrian Hilton.

Free-viewpoint video rendering for mobile devices. In Proceedings of the 6th Interna-

tional Conference on Computer Vision / Computer Graphics Collaboration Techniques

and Applications, MIRAGE ’13, pages 11:1–11:8, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-2023-8. doi: 10.1145/2466715.2466726. URL http://doi.acm.org/

10.1145/2466715.2466726.

Itseez. Open source computer vision library. https://github.com/itseez/opencv, 2015.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Push-

meet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and

Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and interaction us-

ing a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on

User Interface Software and Technology, UIST ’11, pages 559–568, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0716-1. doi: 10.1145/2047196.2047270. URL

http://doi.acm.org/10.1145/2047196.2047270.

Stuart James, Manuel J. Fonseca, and John Collomosse. Reenact: Sketch based chore-

ographic design from archival dance footage. In Proceedings of International Con-

ference on Multimedia Retrieval, ICMR ’14, pages 313:313–313:320, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2782-4. doi: 10.1145/2578726.2578766. URL

http://doi.acm.org/10.1145/2578726.2578766.

http://dx.doi.org/10.1007/s11265-006-4190-4
http://doi.acm.org/10.1145/2466715.2466726
http://doi.acm.org/10.1145/2466715.2466726
https://github.com/itseez/opencv
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2578726.2578766


BIBLIOGRAPHY 152

A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages

1943–1950, June 2010. doi: 10.1109/CVPR.2010.5539868.

Stephan Jürgens, Francisco Henriques, and Carla Fernandes. Re-constructing the chore-

ographic studio of joão fiadeiro through animated infographic films. PARtake: The

Journal of Performance as Research, 1(1):3, 2016.

T. Kanade. Carnegie mellon goes to the super bowl.

http://www.ri.cmu.edu/events/sb35/tksuperbowl.html., 2001.

Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of point sets. ACM Trans.

Graph., 26(3), July 2007. ISSN 0730-0301. doi: 10.1145/1276377.1276407. URL http:

//doi.acm.org/10.1145/1276377.1276407.

Hiroaki Kawata, Alexandre Gouaillard, and Takashi Kanai. Interactive point-based

painterly rendering. In Proceedings of the 2004 International Conference on Cyber-

worlds, CW ’04, pages 293–299, Washington, DC, USA, 2004. IEEE Computer Society.

ISBN 0-7695-2140-1. doi: 10.1109/CW.2004.42.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In

Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06,

pages 61–70, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

ISBN 3-905673-36-3.

J. Kilner, J. Starck, A. Hilton, and O. Graii. Dual-mode deformable models for free-

viewpoint video of sports events. In 3-D Digital Imaging and Modeling, 2007. 3DIM

’07. Sixth International Conference on, pages 177 –184, aug. 2007. doi: 10.1109/3DIM.

2007.22.

W. S. Kim, A. Ortega, P. Lai, and D. Tian. Depth map coding optimization using rendered

view distortion for 3d video coding. IEEE Transactions on Image Processing, 24(11):

3534–3545, Nov 2015. ISSN 1057-7149. doi: 10.1109/TIP.2015.2447737.

Michael Kipp. Anvil: The video annotation research tool. Handbook of Corpus Phonology.

Oxford University Press, Oxford (to appear, 2011), 2010.

S. Kirshanthan, L. Lajanugen, P.N.D. Panagoda, L.P. Wijesinghe, D.V.S.X. De Silva, and

A.A. Pasqual. Layered depth image based hevc multi-view codec. In George Bebis,

Richard Boyle, Bahram Parvin, Darko Koracin, Ryan McMahan, Jason Jerald, Hui

Zhang, StevenM. Drucker, Chandra Kambhamettu, Maha El Choubassi, Zhigang Deng,

and Mark Carlson, editors, Advances in Visual Computing, volume 8888 of Lecture

Notes in Computer Science, pages 376–385. Springer International Publishing, 2014.

ISBN 978-3-319-14363-7. doi: 10.1007/978-3-319-14364-4 36. URL http://dx.doi.

org/10.1007/978-3-319-14364-4_36.

http://doi.acm.org/10.1145/1276377.1276407
http://doi.acm.org/10.1145/1276377.1276407
http://dx.doi.org/10.1007/978-3-319-14364-4_36
http://dx.doi.org/10.1007/978-3-319-14364-4_36


153 BIBLIOGRAPHY

ITARU Kitahara, HIDEO Saito, Shinji Akimichi, Tooru Ono, Yuichi Ohta, and Takeo

Kanade. Large-scale virtualized reality. Computer Vision and Pattern Recognition,

Technical Sketches, 2001.

K. Klasing, D. Althoff, D. Wollherr, and M. Buss. Comparison of surface normal estimation

methods for range sensing applications. In Robotics and Automation, 2009. ICRA ’09.

IEEE International Conference on, pages 3206–3211, May 2009. doi: 10.1109/ROBOT.

2009.5152493.

Leif Kobbelt and Mario Botsch. A survey of point-based techniques in computer graphics.

Comput. Graph., 28(6):801–814, December 2004. ISSN 0097-8493. doi: 10.1016/j.cag.

2004.08.009. URL http://dx.doi.org/10.1016/j.cag.2004.08.009.

T Koga. Motion-compensated interframe coding for video conferencing. In Proc. NTC’81,

pages 5–3, 1981.

Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O’Brien. Spectral surface

reconstruction from noisy point clouds. In Proceedings of the 2004 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing, SGP ’04, pages 11–21, New York,

NY, USA, 2004. ACM. ISBN 3-905673-13-4. doi: 10.1145/1057432.1057434.

Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via graph

cuts. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors,

Computer Vision — ECCV 2002, volume 2352 of Lecture Notes in Computer Science,

pages 82–96. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43746-8. doi: 10.1007/

3-540-47977-5 6. URL http://dx.doi.org/10.1007/3-540-47977-5_6.

Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael Goe-

sele. Image-based rendering in the gradient domain. ACM Transactions on Graphics

(Proceedings of SIGGRAPH Asia 2013), 32(6):to appear, 2013.
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