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1 Introduction 

Requirements imposed by new legislation and regulation acts, such as internal control 

requirements in Sarbanes-Oxley (Zhang, 2007) or risk management requirements in 

Basel II (Porter, 2003), are increasing the pressure on companies to ensure that some 

of their key business processes are either being performed according to plan or adhere 

to common practices set by industry standards. The Information Technology 

Infrastructure Library (ITIL) (van Bon et al, 2005) sets standard best practices for IT 

Service Management, ranging from service level and capacity management to incident 

management, and to configuration, release and change management. However, these 

best practices are defined as a set of processes that are intentionally non-prescriptive 

in order to fit into many different kinds of organizations. This flexibility makes ITIL 

difficult to assess, as some ITIL processes are difficult to translate to operational 

models (Brenner, 2006). 

 

Checking whether an existing process is a correct and complete implementation of 

ITIL guidelines will be easier if that process is clearly defined. But in practice, many 

IT service management processes rely on one or more supporting systems which 

happen to be used without careful guidance or control, allowing for inconsistent 

content and incoherent behaviour from different users. Such is the case study 

presented in this paper, where the main supporting system for incident management 

allows users to handle incidents and populate the system database freely according to 

their own needs, practices and workarounds.  



To assess processes such as this one, it is necessary to study their run-time behaviour. 

Whereas in the past capturing business processes would require time-consuming 

interviews with possibly unreliable results, recent developments in the field of process 

mining (van der Aalst et al, 2003) provide specialized techniques to automatically 

discover process behaviour from system logs. These techniques are only limited by 

the type and amount of data that is possible to collect from the underlying support 

systems. 

 

In section 2 we introduce ITIL with a special emphasis on the Incident Management 

process, which will be the focus of the case study. In section 3 we provide a brief 

overview of process mining techniques. Section 4 introduces the case study, and 

section 5 presents the main results. Section 6 concludes by reinterpreting the results in 

terms of ITIL Incident Management. 

 

2 The ITIL framework 

ITIL offers a framework for managing most of the operational activities of an IT 

service provider. ITIL divides these activities into processes and describes how these 

processes can be optimized based on industry best practices (van Bon et al, 2005). 

According to the literature, ITIL offers a number of benefits: the provision of IT 

services becomes more customer-focused, the relationship between IT provider and 

customer is improved, the services are better described, and the quality, availability, 

reliability, and cost of the services are better managed. 

 

Unfortunately, implementing ITIL by following the recommendations has proved to 

be a difficult challenge for many IT organizations (Mendel et al, 2004). Most 

organizations have reported a long time and significant effort and cost; others claim 

that services were not improved or cost was not reduced after introducing ITIL; and 

some departments that introduced ITIL were then left alone by other departments that 

decided not to introduce ITIL. It is therefore desirable to begin an ITIL 

implementation by assessing existing processes. 

 



2.1 ITIL Assessment 

When an IT department decides to implement ITIL, the existing IT activities should 

be assessed (or evaluated) in order to identify the gaps between the current processes 

– i.e. the way IT management is currently performed – and the processes as described 

by ITIL (Litten, 2005). These gaps should then be used to identify requirements for 

the ITIL implementation project. Gaps may exist in a number of areas, including 

process, people, technology, services supplied by third parties, or any combination of 

these. For example, a gap exists if not all incidents are recorded. Another exists if 

incidents are not classified. 

 

For the purpose of this paper, as ITIL is mainly based on processes, the assessment 

will concentrate on the design of existing processes. In particular, the existing 

processes should be compared to processes as proposed by ITIL. If they are different, 

the ITIL implementation project should focus on closing those gaps.  

 

Unfortunately, capturing an existing process can become unexpectedly difficult. The 

processes may have been formally defined based on ITIL but, in practice, no one 

follows the definition; or there may be a tool to support those processes, but IT 

managers use the tool “in their own way”. We have seen these and other problems in 

real-world scenarios. 

 

Process mining can help discover business processes based on actual run-time data 

and, as such, it can provide valuable input to ITIL assessment. Once the true 

behaviour is discovered, then it becomes easier to identify the gaps between the 

current process and the ITIL guidelines. Ahead we will illustrate this potential in a 

case study focusing on Incident Management. 

 

2.2 Incident Management 

An incident is any event which is not part of the standard operation of a service and 

which may cause an interruption or reduction in the quality of that service. The 

purpose of Incident Management is to return to the normal service level as soon as 

possible by mitigating or eliminating the effects of disturbances in IT services. 

Incident Management provides immediate benefits, and is sometimes proposed as the 



first process to be implemented (Mendel, 2004). The process itself comprises the 

following main steps:  

1. Recording: upon reception, the incident must be recorded.  

2. Classification: the incident is characterized in terms of type, impact and 

urgency, leading to a certain priority class.  

3. Matching: a solution may already exist if the incident matches a known 

problem or error condition. 

4. Diagnosis: all available information about the incident is gathered in order to 

investigate and determine a solution or workaround. 

5. Resolution: the solution is applied in order to restore normal service or system 

operation. 

6. Closure: the incident is closed once the service has been restored.  

   

During incident diagnosis, successive levels of service support may be invoked until a 

solution or workaround is found. This behaviour is known as escalation – if the 

current support level is unable to find a solution, then the incident escalates to the next 

(higher) support level.  

 

If, despite going through all support levels, the incident cannot be solved – such is the 

case if there is a defect in an underlying component or infrastructure, for example – 

then the incident may have to be handled within the scope of other ITIL processes, 

such as Problem Management or Change Management. In such cases the goal is not 

merely to restore normal service, but to identify and correct the underlying causes for 

one or more incidents. The solution for such problems may require bug fixes or 

system upgrades, for example.  

   

Incident Management may therefore be the entry point for other ITIL processes. That 

is precisely the scenario in the case study presented ahead. In that scenario, the 

purpose of the existing process is to handle product issues detected by end users. 

Some of these can be solved immediately, while others may go to the point of 

requiring product changes. In both cases, issues follow basically the same process. 

The difficulty is to find out whether that process complies with Incident Management, 

and it is in this context that process mining techniques become extremely useful. 

 



3 Process Mining and Conformance 

Current transactional information systems – such as ERP (Enterprise Resource 

Planning), SCM (Supply Chain Management), CRM (Customer Relationship 

Management) and even BPM (Business Process Management) systems – are able to 

record large amounts of run-time activity, and there is an enormous potential in using 

that recorded information to derive meaningful conclusions about the behaviour of 

business processes. Such analysis may be conducted to check that certain business 

processes are actually being performed according to plan, to detect anomalous and 

exceptional behaviour, or even to capture business processes that have never been 

explicitly designed.  

 

The tools required for such analysis are being studied and developed within the field 

of process mining (van der Aalst & Weijters, 2004). Currently, these tools are able to 

extract control-flow models (van der Aalst et al, 2003), data dependencies (Rozinat et 

al, 2006), and even social network models (van der Aalst et al, 2005). Process mining 

is an active and promising research field, and already includes a number of different 

techniques. 

 

3.1 Process mining techniques 

In general, all process mining techniques take an event log as the starting point for the 

discovery of processes behaviour. The event log is a list of records resulting from the 

execution of some process, where each record contains information about the activity 

that was executed, the process instance that it belongs to, and the time of execution. 

With this information different techniques may be applied, namely:  

• Directed acyclic graphs (Agrawal et al, 1998) – a technique that is able to 

generate a dependency graph from an event log.  

• Inductive workflow acquisition (Herbst & Karagiannis, 1998) – an approach in 

which the goal is to find a hidden Markov model (HMM) that best represents 

the structure of the original process.  

• The α-algorithm (van der Aalst et al, 2004) – a technique that is able to re-

create a Petri-net model from the ordering relations found in an event log.  

• Instance graphs (van Dongen & van der Aalst, 2004) – an approach that aims 

at portraying a graphical representation of process executions, especially using 

Event-Driven Process Chains (EPCs).  



• Hierarchical clustering (Greco et al, 2005) – an algorithm that, given a large 

set of execution traces of a single process, separates them into clusters and 

finds the dependency graph separately for each cluster.  

• Genetic algorithms (Medeiros et al, 2007) – a technique in which several 

candidate solutions are evaluated by a fitness function that determines how 

consistent each solution is with the log.  

• Sequence clustering (Ferreira et al, 2007) – a technique that automatically 

groups sequences into different clusters in order to identify typical behavioural 

patterns.  

• Negative events (Goedertier et al, 2008) – an approach in which the original 

log is complemented with negative events in order to enable the use of first-

order machine learning techniques.  

   

Some of these techniques rely on finding causal relations in the log: task A can be 

considered to be the cause of task B only if B follows A, but A never follows B. Such 

techniques are sensitive to noise (van der Aalst et al, 2004). The need to cope with 

noise has drawn some attention to other techniques such as sequence clustering 

(Ferreira et al, 2007).  

 

In the case study presented below, we have used the Microsoft Sequence Clustering 

algorithm (Tang & MacLennan, 2005). Each cluster is represented as a first-order 

Markov chain, where the current state depends only on the previous state. The 

probability that an observed sequence belongs to a given cluster is the probability that 

the observed sequence was produced by the Markov chain associated with that cluster. 

The algorithm itself is an iterative expectation-maximization procedure (Cadez et al, 

2003) that assigns traces to clusters and re-estimates the cluster parameters until they 

converge. The end result is a set of clusters that represents different behavioural 

patterns. 

 

3.2 From process mining to process conformance 

Besides facilitating the discovery of business processes, the above techniques can also 

be used to check the conformance of run-time behaviour with respect to a given 

process model. Conformance can be checked by using metrics (Rozinat & van der 



Aalst, 2008) to determine the extent to which the behaviour observed in the event log 

complies with the control flow specified by the process model. Such analysis is 

performed by establishing a one-to-one mapping between log entries and activities in 

the process model, and then checking if the process model would allow each recorded 

trace to occur. 

 

In our case study, the amount of noise and ad-hoc behaviour, together with the fact 

that the process model for Incident Management is not rigorously defined, did not 

allow us to perform such conformance analysis. Nevertheless, by finding the typical 

behaviour and matching that behaviour to the ITIL guidelines it was possible to draw 

meaningful conclusions about the conformance of the observed process. 

 

4 Case Study 

Our case study is an IT company that offers an advanced platform to facilitate and 

accelerate the development of custom software applications. The platform is being 

improved continuously by successive release versions that add new functionality, 

improve existing features, and correct bugs. Besides extensive manual and automated 

in-house testing, end users also have an active role in pointing out desired 

improvements and problems to be solved. 

 

To keep track of all these issues and to handle them appropriately, the company 

developed a custom solution using its own software platform. The system – called 

Issue Manager – was developed mainly as a two-tier application having a Web-based 

interface and a back-end database, where it stores information regarding each issue 

(such as date, description, submitter, status, priority, risk, severity, etc.) along with all 

product versions where the issue was detected, as well as the relationships to other 

recorded issues. Most of these data can be filled with whatever the support team finds 

appropriate, except for the status field which is allowed to have one of a limited set of 

possible states.   

 

During handling, the issue goes through a number of different states. Some of these 

states may actually be skipped for issues that can be solved immediately, while other 

issues may get to the point of generating a request for change, which will then trigger 



a separate development process. Issue handling is, in itself, a process with all the 

characteristics of Incident Management, including connections to other processes that 

resemble Problem and Change Management. The goal is to determine how far the 

behaviour recorded by Issue Manager actually complies with Incident Management. 

 

4.1 Available data 

In the database we found that an issue can be in one of 15 possible states: Approved, 

Assigned, Closed, Discarded, Duplicated, NeedsApproval, NeedsSpecification, 

NeedsVerification, New, NotApproved, NotResolved, Open, Postponed, Resolved, 

Waiting. At the start of analysis, the semantics of these states were unknown, 

although their names provided some indication of their meaning. We also found that 

the database contained many interrelated tables that aimed at supporting a wide range 

of functionalities. An analysis of both the database schema and content revealed that 

there were two tables of interest:  

• Table issue – contains general information about an issue such as a unique 

identifier, name, description, product version and date of submission, but also 

about the priority, severity, present state and who is currently assigned to 

handle the issue. There were 14,982 issues in the database.  

• Table history – keeps track of all events where an event is a change of some 

sort, including change of assignment, change of priority, and change of state; 

may also contain an explanatory comment about the issue or about the changes 

made to an issue. There were 143,220 events in the database, roughly ten 

times as much as the number of issues.  

   

With the data contained in the history table it was possible to build a useful data set 

for analysis. Basically, each sequence corresponds to the time-ordered list of state 

changes recorded for a given issue. The fact that the system allowed just about any 

kind of change to be freely made to an issue (not only state changes but also any other 

field change) means that the sequences obtained in this way displayed an arbitrary 

repetition of states when the changes were being made to other fields. For this reason, 

the sequence length was often longer than it would have been obtained if only the 

change in the state would be considered. These and other preprocessing steps were 

done before applying sequence clustering to the data set. 



 

Figure 1 shows that sequence length varies widely, from issues with a single recorded 

event to issues with over 50 events. In fact, the longest sequence had 75 events, most 

of which were just a repetition of the “Waiting” status. Figure 1 also shows that most 

issues had sequence lengths between one and 15.   

 

 

Figure 1. Number of issues vs. sequence length found in the history table 

 

4.2 Preprocessing 

The following preprocessing steps were applied to the data set:  

1. Drop events with low support – Figure 2 shows the number of occurrences of 

each state in the history table. The states in the bottom of Figure 2 have low 

support since they occur only very rarely. Therefore, all events labelled as 

“NeedsSpecification” and “NotApproved” were discarded.   

2. Drop consecutively repeated events – since many consecutive events were 

created by changes to fields other than state, they could be considered as a 

single event for our purposes. Around 63% of all events were eliminated in 

this step. The average sequence length also decreased dramatically, and there 

was an increase in the number of sequences with length between one and five.   

3. Drop sequences with either insufficient or excessive length – Figure 1 shows 

that many sequences are actually non-sequences as they comprise a single 

event, so these sequences were removed. About 1,000 sequences were 

eliminated in this step.   

4. Drop sequences with repeated events – a sequence that contains a (non-

consecutive) repetition in a state represents a case where the handling of an 



issue had to recede to a previous state. Sequences with such repetitions display 

a mixture of behaviour, which makes them difficult to assign correctly to a 

single cluster. About 2,500 sequences were eliminated in this step. 

5. Drop unique, one-of-a-kind sequences – sequences that are unrepeatable are 

not interesting for the purpose of identifying typical behaviour. About 300 

unique sequences were removed from the data set.   

After these steps, 11,085 sequences remained, with a total of 35,778 events.  

 

 

Figure 2. Number of occurrences of each status value in the history table 

 

5 Results 

A key parameter when applying the sequence clustering algorithm – or, for that 

matter, any kind of clustering algorithm – is the number of clusters to be used. For the 

Microsoft Sequence Clustering algorithm, this number of clusters can be specified 

either manually (i.e. by the user) or found automatically; in this case, the algorithm 

will make use of heuristics to find the ideal number of clusters for the given data.  

 

Judging by the kind of sequences found in the input data set, a number of about 12 

clusters seemed to be a good initial guess. After setting the parameters and running 

the algorithm on the data set, 14 clusters were created, but some of them displayed 

very similar behaviour. Running it again with different settings, the algorithm 

produced nine clusters, but still similar behaviour was observed in different clusters.  

 



Figure 3 shows the most common sequences (top 5) in each of the nine clusters found; 

cluster 9 shows less sequences because it has only two types of sequences. The top 

sequences in clusters 3, 4, 6 and 8 are clearly related, and other sequences within 

different clusters were also found to be similar. The results suggested than the number 

of clusters should be decreased further.   

 

Figure 3. Top sequences for a model with 9 clusters 

   

By setting the number of clusters to automatic, a surprising result emerged. Even 

though there was a lot of heterogeneous behaviour in the input data set, the algorithm 

produced just two clusters as shown in Figure 4. The behaviour in each cluster was 

rearranged to show events and transitions with higher support on top. Given that these 

are roughly the same events and transitions in both clusters, there is actually not much 

variation in the input set. In fact, the most frequent behaviour of cluster 1 in Figure 4 

is similar to the behaviour of clusters 6 and 8 in Figure 3, while the most frequent 

behaviour of cluster 2 in Figure 4 resembles the behaviour of cluster 7 in Figure 3. 



 

Figure 4. Sequential behaviour obtained for a model with 2 clusters 

  

The fact that the algorithm ended up separating the input sequences in just two 

clusters (one cluster would not be clustering) is an indication that it is difficult to 

divide the input behaviour in several clearly distinguishable groups. And yet, the data 

set does contain very different sequences, as can be seen by simple manual inspection. 

These results suggest that the observed behaviour, despite being quite heterogeneous, 

is evenly distributed in such a way that it is difficult to identify clearly distinct 

patterns. 

 

5.1 Global behavioural model 

If behaviour cannot be separated into different clusters, then a single global model 

derived from the input data should suffice to identify typical behaviour. Figure 5 

depicts such model. Rather than transition probabilities, state and transition counts are 

shown, providing an indication of the most frequent states as well as the most 

occurring transitions in absolute terms. To improve readability, node shading and line 

weight were made proportional to the state and transition counts, respectively. It is 

easy to see, for example, that “New” is the most recurring state, and that in most 

sequences the following state is “Assigned”.  



 

Figure 5. Global model for the preprocessed data set with absolute status and transition counts. 

 

However, some care must be taken when drawing conclusions about the most 

common sequences, as subsequent transitions may refer to different issues. Figure 6 

shows the actual most common sequences for the entire preprocessed data set. 

 

Figure 6. Top sequences in the preprocessed data set 

 

6 Analysis 

When the company was presented with a detailed account of the results above, they 

found that the conclusions agreed with what they expected. Basically, whatever the 

channel an issue comes from, it will be recorded in the system as “New”. Then 

someone will look at it and check whether it is a duplicate issue, whether it is 

relevant, what priority level it should be assigned, whether there is enough 



information for the issue to be handled, whether there are other issues that could be 

related to this one, etc. 

 

In some cases, the issue may end up being “Discarded” or being labelled as 

“Duplicated”. In most cases, it will follow the regular handling process. The issue 

may be “Assigned” either to a specific person, or collectively to the support team. The 

state will be changed to “Open” when someone is actively working on that issue. At 

this point, it will generally be a matter of time until the issue becomes “Resolved”. A 

few issues may end up in a “NotResolved” state but this result is, in general, not to be 

expected. Issues are automatically “Closed” when a new product release that includes 

its resolution is made available.  

   

This description clearly resembles the ITIL Incident Management process described 

earlier: recording, classification, matching, diagnosis, resolution and closure are all 

present. In this case, classification and matching are being done in a single step 

between “New” and “Assigned”; diagnosis takes place when the issue is “Open”; 

resolution and closure are signalled by appropriate states as well. The difficulty is that 

the database contains much more behaviour than this description is able to account 

for. This is due to a number of reasons, including:  

• Some states are no longer being used. For example, in the past it was common 

to make new issues go through an approval process, and some of that 

behaviour is still present in the database, as can be seen in Figure 5 in the 

transition from "New" to "Approved". Today, that approval is implicit when 

the issue changes from "New" to "Assigned".  

• The support team members usually skip steps when the solution to the issue is 

obvious. For example, the team member who opens the issue may immediately 

recognise the problem and solve it, jumping directly to the "Open" state. 

• The state transitions may appear to be reversed as the result of arbitrary loops. 

For example, an issue may be assigned to, and opened by, a team member, just 

to find that it should have been assigned to someone else; in this case, a 

transition from "Open" to "Assigned" will be recorded. The same behaviour 

can be observed in ITIL when there is escalation to a higher support level.  



• The classification of an issue as a duplicate, or the decision to discard it, may 

come later in the process when more data is available about the issue. 

These special but frequent cases explain most of the behaviour shown in Figure 5. The 

overall behaviour is definitely close to the Incident Management process. The analysis 

could now proceed, for example, by checking criteria such as those defined in 

(Brenner et al, 2002) or by measuring KPIs (Bartolini et al, 2006). 

 

7 Conclusion 

ITIL assessment is a laborious task that requires business processes to be monitored 

and reinterpreted in terms of ITIL guidelines. Process mining techniques can greatly 

simplify such analysis by being able to extract behaviour from large volumes of run-

time data. In the case study, these techniques provided compelling reason to believe 

that the issue handling process indeed resembled the Incident Management process.  

 

More importantly, the case study shows that process mining is a valuable tool for 

assessing this ITIL process and, as a result, potentially other ITIL processes as well. 

Such potential depends of course on the extent to which the existing process is 

supported by information systems that can provide useful data for analysis. In this 

study the analysis was conducted mainly on a behavioural perspective, but other 

perspectives – such as functional, informational, organizational, etc. (Schmidt, 2006) 

– could be considered as well, which provide a broad ground for future work. 
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