
USING PROCESS MINING FOR ITIL

ASSESSMENT: A CASE STUDY WITH

INCIDENT MANAGEMENT

Diogo R. Ferreira
1,2
, Miguel Mira da Silva

1,3

1
IST – Technical University of Lisbon, Portugal

2
Organizational Engineering Center, INESC-INOV

3
Information Systems Group, INESC-ID

Email: {diogo.ferreira, mms}@ist.utl.pt

Abstract
The ITIL framework is the best known set of best practices for managing IT services. In this paper we

introduce process mining as a useful technique for assessing whether a business process is

implemented according to ITIL guidelines. We evaluated our approach using a real-world case study

in an IT vendor developing a complex software platform. The company receives thousands of requests

(including bug reports) that can be treated as ITIL incidents. Using process mining, it was possible to

extract the behaviour of the existing process and compare it with ITIL Incident Management.

Keywords: ITIL Assessment, Process Mining, Incident Management

Main Author: Diogo R. Ferreira

Address: Instituto Superior Tecnico

Avenida Prof. Dr. Cavaco Silva

2780-990 Porto Salvo

Portugal

Phone: +351 21 423 35 52

Fax: +351 21 423 32 68

E-mail: diogo.ferreira@ist.utl.pt

Presenting Author: Miguel Mira da Silva

Address: INESC

Rua Alves Redol, 9

1000-029 Lisboa

Phone: +351 91 967 14 25

E-mail: mms@ist.utl.pt

Word Count: ca. 5000 (max.8000)

No. pages: 16 (max.16)

USING PROCESS MINING FOR ITIL

ASSESSMENT: A CASE STUDY WITH

INCIDENT MANAGEMENT

Abstract
The ITIL framework is the best known set of best practices for managing IT services. In this paper we

introduce process mining as a useful technique for assessing whether a business process is

implemented according to ITIL guidelines. We evaluated our approach using a real-world case study

in an IT vendor developing a complex software platform. The company receives thousands of requests

(including bug reports) that can be treated as ITIL incidents. Using process mining, it was possible to

extract the behaviour of the existing process and compare it with ITIL Incident Management.

Keywords: ITIL Assessment, Process Mining, Incident Management

1 Introduction

Requirements imposed by new legislation and regulation acts, such as internal control

requirements in Sarbanes-Oxley (Zhang, 2007) or risk management requirements in

Basel II (Porter, 2003), are increasing the pressure on companies to ensure that some

of their key business processes are either being performed according to plan or adhere

to common practices set by industry standards. The Information Technology

Infrastructure Library (ITIL) (van Bon et al, 2005) sets standard best practices for IT

Service Management, ranging from service level and capacity management to incident

management, and to configuration, release and change management. However, these

best practices are defined as a set of processes that are intentionally non-prescriptive

in order to fit into many different kinds of organizations. This flexibility makes ITIL

difficult to assess, as some ITIL processes are difficult to translate to operational

models (Brenner, 2006).

Checking whether an existing process is a correct and complete implementation of

ITIL guidelines will be easier if that process is clearly defined. But in practice, many

IT service management processes rely on one or more supporting systems which

happen to be used without careful guidance or control, allowing for inconsistent

content and incoherent behaviour from different users. Such is the case study

presented in this paper, where the main supporting system for incident management

allows users to handle incidents and populate the system database freely according to

their own needs, practices and workarounds.

To assess processes such as this one, it is necessary to study their run-time behaviour.

Whereas in the past capturing business processes would require time-consuming

interviews with possibly unreliable results, recent developments in the field of process

mining (van der Aalst et al, 2003) provide specialized techniques to automatically

discover process behaviour from system logs. These techniques are only limited by

the type and amount of data that is possible to collect from the underlying support

systems.

In section 2 we introduce ITIL with a special emphasis on the Incident Management

process, which will be the focus of the case study. In section 3 we provide a brief

overview of process mining techniques. Section 4 introduces the case study, and

section 5 presents the main results. Section 6 concludes by reinterpreting the results in

terms of ITIL Incident Management.

2 The ITIL framework

ITIL offers a framework for managing most of the operational activities of an IT

service provider. ITIL divides these activities into processes and describes how these

processes can be optimized based on industry best practices (van Bon et al, 2005).

According to the literature, ITIL offers a number of benefits: the provision of IT

services becomes more customer-focused, the relationship between IT provider and

customer is improved, the services are better described, and the quality, availability,

reliability, and cost of the services are better managed.

Unfortunately, implementing ITIL by following the recommendations has proved to

be a difficult challenge for many IT organizations (Mendel et al, 2004). Most

organizations have reported a long time and significant effort and cost; others claim

that services were not improved or cost was not reduced after introducing ITIL; and

some departments that introduced ITIL were then left alone by other departments that

decided not to introduce ITIL. It is therefore desirable to begin an ITIL

implementation by assessing existing processes.

2.1 ITIL Assessment

When an IT department decides to implement ITIL, the existing IT activities should

be assessed (or evaluated) in order to identify the gaps between the current processes

– i.e. the way IT management is currently performed – and the processes as described

by ITIL (Litten, 2005). These gaps should then be used to identify requirements for

the ITIL implementation project. Gaps may exist in a number of areas, including

process, people, technology, services supplied by third parties, or any combination of

these. For example, a gap exists if not all incidents are recorded. Another exists if

incidents are not classified.

For the purpose of this paper, as ITIL is mainly based on processes, the assessment

will concentrate on the design of existing processes. In particular, the existing

processes should be compared to processes as proposed by ITIL. If they are different,

the ITIL implementation project should focus on closing those gaps.

Unfortunately, capturing an existing process can become unexpectedly difficult. The

processes may have been formally defined based on ITIL but, in practice, no one

follows the definition; or there may be a tool to support those processes, but IT

managers use the tool “in their own way”. We have seen these and other problems in

real-world scenarios.

Process mining can help discover business processes based on actual run-time data

and, as such, it can provide valuable input to ITIL assessment. Once the true

behaviour is discovered, then it becomes easier to identify the gaps between the

current process and the ITIL guidelines. Ahead we will illustrate this potential in a

case study focusing on Incident Management.

2.2 Incident Management

An incident is any event which is not part of the standard operation of a service and

which may cause an interruption or reduction in the quality of that service. The

purpose of Incident Management is to return to the normal service level as soon as

possible by mitigating or eliminating the effects of disturbances in IT services.

Incident Management provides immediate benefits, and is sometimes proposed as the

first process to be implemented (Mendel, 2004). The process itself comprises the

following main steps:

1. Recording: upon reception, the incident must be recorded.

2. Classification: the incident is characterized in terms of type, impact and

urgency, leading to a certain priority class.

3. Matching: a solution may already exist if the incident matches a known

problem or error condition.

4. Diagnosis: all available information about the incident is gathered in order to

investigate and determine a solution or workaround.

5. Resolution: the solution is applied in order to restore normal service or system

operation.

6. Closure: the incident is closed once the service has been restored.

During incident diagnosis, successive levels of service support may be invoked until a

solution or workaround is found. This behaviour is known as escalation – if the

current support level is unable to find a solution, then the incident escalates to the next

(higher) support level.

If, despite going through all support levels, the incident cannot be solved – such is the

case if there is a defect in an underlying component or infrastructure, for example –

then the incident may have to be handled within the scope of other ITIL processes,

such as Problem Management or Change Management. In such cases the goal is not

merely to restore normal service, but to identify and correct the underlying causes for

one or more incidents. The solution for such problems may require bug fixes or

system upgrades, for example.

Incident Management may therefore be the entry point for other ITIL processes. That

is precisely the scenario in the case study presented ahead. In that scenario, the

purpose of the existing process is to handle product issues detected by end users.

Some of these can be solved immediately, while others may go to the point of

requiring product changes. In both cases, issues follow basically the same process.

The difficulty is to find out whether that process complies with Incident Management,

and it is in this context that process mining techniques become extremely useful.

3 Process Mining and Conformance

Current transactional information systems – such as ERP (Enterprise Resource

Planning), SCM (Supply Chain Management), CRM (Customer Relationship

Management) and even BPM (Business Process Management) systems – are able to

record large amounts of run-time activity, and there is an enormous potential in using

that recorded information to derive meaningful conclusions about the behaviour of

business processes. Such analysis may be conducted to check that certain business

processes are actually being performed according to plan, to detect anomalous and

exceptional behaviour, or even to capture business processes that have never been

explicitly designed.

The tools required for such analysis are being studied and developed within the field

of process mining (van der Aalst & Weijters, 2004). Currently, these tools are able to

extract control-flow models (van der Aalst et al, 2003), data dependencies (Rozinat et

al, 2006), and even social network models (van der Aalst et al, 2005). Process mining

is an active and promising research field, and already includes a number of different

techniques.

3.1 Process mining techniques

In general, all process mining techniques take an event log as the starting point for the

discovery of processes behaviour. The event log is a list of records resulting from the

execution of some process, where each record contains information about the activity

that was executed, the process instance that it belongs to, and the time of execution.

With this information different techniques may be applied, namely:

• Directed acyclic graphs (Agrawal et al, 1998) – a technique that is able to

generate a dependency graph from an event log.

• Inductive workflow acquisition (Herbst & Karagiannis, 1998) – an approach in

which the goal is to find a hidden Markov model (HMM) that best represents

the structure of the original process.

• The α-algorithm (van der Aalst et al, 2004) – a technique that is able to re-

create a Petri-net model from the ordering relations found in an event log.

• Instance graphs (van Dongen & van der Aalst, 2004) – an approach that aims

at portraying a graphical representation of process executions, especially using

Event-Driven Process Chains (EPCs).

• Hierarchical clustering (Greco et al, 2005) – an algorithm that, given a large

set of execution traces of a single process, separates them into clusters and

finds the dependency graph separately for each cluster.

• Genetic algorithms (Medeiros et al, 2007) – a technique in which several

candidate solutions are evaluated by a fitness function that determines how

consistent each solution is with the log.

• Sequence clustering (Ferreira et al, 2007) – a technique that automatically

groups sequences into different clusters in order to identify typical behavioural

patterns.

• Negative events (Goedertier et al, 2008) – an approach in which the original

log is complemented with negative events in order to enable the use of first-

order machine learning techniques.

Some of these techniques rely on finding causal relations in the log: task A can be

considered to be the cause of task B only if B follows A, but A never follows B. Such

techniques are sensitive to noise (van der Aalst et al, 2004). The need to cope with

noise has drawn some attention to other techniques such as sequence clustering

(Ferreira et al, 2007).

In the case study presented below, we have used the Microsoft Sequence Clustering

algorithm (Tang & MacLennan, 2005). Each cluster is represented as a first-order

Markov chain, where the current state depends only on the previous state. The

probability that an observed sequence belongs to a given cluster is the probability that

the observed sequence was produced by the Markov chain associated with that cluster.

The algorithm itself is an iterative expectation-maximization procedure (Cadez et al,

2003) that assigns traces to clusters and re-estimates the cluster parameters until they

converge. The end result is a set of clusters that represents different behavioural

patterns.

3.2 From process mining to process conformance

Besides facilitating the discovery of business processes, the above techniques can also

be used to check the conformance of run-time behaviour with respect to a given

process model. Conformance can be checked by using metrics (Rozinat & van der

Aalst, 2008) to determine the extent to which the behaviour observed in the event log

complies with the control flow specified by the process model. Such analysis is

performed by establishing a one-to-one mapping between log entries and activities in

the process model, and then checking if the process model would allow each recorded

trace to occur.

In our case study, the amount of noise and ad-hoc behaviour, together with the fact

that the process model for Incident Management is not rigorously defined, did not

allow us to perform such conformance analysis. Nevertheless, by finding the typical

behaviour and matching that behaviour to the ITIL guidelines it was possible to draw

meaningful conclusions about the conformance of the observed process.

4 Case Study

Our case study is an IT company that offers an advanced platform to facilitate and

accelerate the development of custom software applications. The platform is being

improved continuously by successive release versions that add new functionality,

improve existing features, and correct bugs. Besides extensive manual and automated

in-house testing, end users also have an active role in pointing out desired

improvements and problems to be solved.

To keep track of all these issues and to handle them appropriately, the company

developed a custom solution using its own software platform. The system – called

Issue Manager – was developed mainly as a two-tier application having a Web-based

interface and a back-end database, where it stores information regarding each issue

(such as date, description, submitter, status, priority, risk, severity, etc.) along with all

product versions where the issue was detected, as well as the relationships to other

recorded issues. Most of these data can be filled with whatever the support team finds

appropriate, except for the status field which is allowed to have one of a limited set of

possible states.

During handling, the issue goes through a number of different states. Some of these

states may actually be skipped for issues that can be solved immediately, while other

issues may get to the point of generating a request for change, which will then trigger

a separate development process. Issue handling is, in itself, a process with all the

characteristics of Incident Management, including connections to other processes that

resemble Problem and Change Management. The goal is to determine how far the

behaviour recorded by Issue Manager actually complies with Incident Management.

4.1 Available data

In the database we found that an issue can be in one of 15 possible states: Approved,

Assigned, Closed, Discarded, Duplicated, NeedsApproval, NeedsSpecification,

NeedsVerification, New, NotApproved, NotResolved, Open, Postponed, Resolved,

Waiting. At the start of analysis, the semantics of these states were unknown,

although their names provided some indication of their meaning. We also found that

the database contained many interrelated tables that aimed at supporting a wide range

of functionalities. An analysis of both the database schema and content revealed that

there were two tables of interest:

• Table issue – contains general information about an issue such as a unique

identifier, name, description, product version and date of submission, but also

about the priority, severity, present state and who is currently assigned to

handle the issue. There were 14,982 issues in the database.

• Table history – keeps track of all events where an event is a change of some

sort, including change of assignment, change of priority, and change of state;

may also contain an explanatory comment about the issue or about the changes

made to an issue. There were 143,220 events in the database, roughly ten

times as much as the number of issues.

With the data contained in the history table it was possible to build a useful data set

for analysis. Basically, each sequence corresponds to the time-ordered list of state

changes recorded for a given issue. The fact that the system allowed just about any

kind of change to be freely made to an issue (not only state changes but also any other

field change) means that the sequences obtained in this way displayed an arbitrary

repetition of states when the changes were being made to other fields. For this reason,

the sequence length was often longer than it would have been obtained if only the

change in the state would be considered. These and other preprocessing steps were

done before applying sequence clustering to the data set.

Figure 1 shows that sequence length varies widely, from issues with a single recorded

event to issues with over 50 events. In fact, the longest sequence had 75 events, most

of which were just a repetition of the “Waiting” status. Figure 1 also shows that most

issues had sequence lengths between one and 15.

Figure 1. Number of issues vs. sequence length found in the history table

4.2 Preprocessing

The following preprocessing steps were applied to the data set:

1. Drop events with low support – Figure 2 shows the number of occurrences of

each state in the history table. The states in the bottom of Figure 2 have low

support since they occur only very rarely. Therefore, all events labelled as

“NeedsSpecification” and “NotApproved” were discarded.

2. Drop consecutively repeated events – since many consecutive events were

created by changes to fields other than state, they could be considered as a

single event for our purposes. Around 63% of all events were eliminated in

this step. The average sequence length also decreased dramatically, and there

was an increase in the number of sequences with length between one and five.

3. Drop sequences with either insufficient or excessive length – Figure 1 shows

that many sequences are actually non-sequences as they comprise a single

event, so these sequences were removed. About 1,000 sequences were

eliminated in this step.

4. Drop sequences with repeated events – a sequence that contains a (non-

consecutive) repetition in a state represents a case where the handling of an

issue had to recede to a previous state. Sequences with such repetitions display

a mixture of behaviour, which makes them difficult to assign correctly to a

single cluster. About 2,500 sequences were eliminated in this step.

5. Drop unique, one-of-a-kind sequences – sequences that are unrepeatable are

not interesting for the purpose of identifying typical behaviour. About 300

unique sequences were removed from the data set.

After these steps, 11,085 sequences remained, with a total of 35,778 events.

Figure 2. Number of occurrences of each status value in the history table

5 Results

A key parameter when applying the sequence clustering algorithm – or, for that

matter, any kind of clustering algorithm – is the number of clusters to be used. For the

Microsoft Sequence Clustering algorithm, this number of clusters can be specified

either manually (i.e. by the user) or found automatically; in this case, the algorithm

will make use of heuristics to find the ideal number of clusters for the given data.

Judging by the kind of sequences found in the input data set, a number of about 12

clusters seemed to be a good initial guess. After setting the parameters and running

the algorithm on the data set, 14 clusters were created, but some of them displayed

very similar behaviour. Running it again with different settings, the algorithm

produced nine clusters, but still similar behaviour was observed in different clusters.

Figure 3 shows the most common sequences (top 5) in each of the nine clusters found;

cluster 9 shows less sequences because it has only two types of sequences. The top

sequences in clusters 3, 4, 6 and 8 are clearly related, and other sequences within

different clusters were also found to be similar. The results suggested than the number

of clusters should be decreased further.

Figure 3. Top sequences for a model with 9 clusters

By setting the number of clusters to automatic, a surprising result emerged. Even

though there was a lot of heterogeneous behaviour in the input data set, the algorithm

produced just two clusters as shown in Figure 4. The behaviour in each cluster was

rearranged to show events and transitions with higher support on top. Given that these

are roughly the same events and transitions in both clusters, there is actually not much

variation in the input set. In fact, the most frequent behaviour of cluster 1 in Figure 4

is similar to the behaviour of clusters 6 and 8 in Figure 3, while the most frequent

behaviour of cluster 2 in Figure 4 resembles the behaviour of cluster 7 in Figure 3.

Figure 4. Sequential behaviour obtained for a model with 2 clusters

The fact that the algorithm ended up separating the input sequences in just two

clusters (one cluster would not be clustering) is an indication that it is difficult to

divide the input behaviour in several clearly distinguishable groups. And yet, the data

set does contain very different sequences, as can be seen by simple manual inspection.

These results suggest that the observed behaviour, despite being quite heterogeneous,

is evenly distributed in such a way that it is difficult to identify clearly distinct

patterns.

5.1 Global behavioural model

If behaviour cannot be separated into different clusters, then a single global model

derived from the input data should suffice to identify typical behaviour. Figure 5

depicts such model. Rather than transition probabilities, state and transition counts are

shown, providing an indication of the most frequent states as well as the most

occurring transitions in absolute terms. To improve readability, node shading and line

weight were made proportional to the state and transition counts, respectively. It is

easy to see, for example, that “New” is the most recurring state, and that in most

sequences the following state is “Assigned”.

Figure 5. Global model for the preprocessed data set with absolute status and transition counts.

However, some care must be taken when drawing conclusions about the most

common sequences, as subsequent transitions may refer to different issues. Figure 6

shows the actual most common sequences for the entire preprocessed data set.

Figure 6. Top sequences in the preprocessed data set

6 Analysis

When the company was presented with a detailed account of the results above, they

found that the conclusions agreed with what they expected. Basically, whatever the

channel an issue comes from, it will be recorded in the system as “New”. Then

someone will look at it and check whether it is a duplicate issue, whether it is

relevant, what priority level it should be assigned, whether there is enough

information for the issue to be handled, whether there are other issues that could be

related to this one, etc.

In some cases, the issue may end up being “Discarded” or being labelled as

“Duplicated”. In most cases, it will follow the regular handling process. The issue

may be “Assigned” either to a specific person, or collectively to the support team. The

state will be changed to “Open” when someone is actively working on that issue. At

this point, it will generally be a matter of time until the issue becomes “Resolved”. A

few issues may end up in a “NotResolved” state but this result is, in general, not to be

expected. Issues are automatically “Closed” when a new product release that includes

its resolution is made available.

This description clearly resembles the ITIL Incident Management process described

earlier: recording, classification, matching, diagnosis, resolution and closure are all

present. In this case, classification and matching are being done in a single step

between “New” and “Assigned”; diagnosis takes place when the issue is “Open”;

resolution and closure are signalled by appropriate states as well. The difficulty is that

the database contains much more behaviour than this description is able to account

for. This is due to a number of reasons, including:

• Some states are no longer being used. For example, in the past it was common

to make new issues go through an approval process, and some of that

behaviour is still present in the database, as can be seen in Figure 5 in the

transition from "New" to "Approved". Today, that approval is implicit when

the issue changes from "New" to "Assigned".

• The support team members usually skip steps when the solution to the issue is

obvious. For example, the team member who opens the issue may immediately

recognise the problem and solve it, jumping directly to the "Open" state.

• The state transitions may appear to be reversed as the result of arbitrary loops.

For example, an issue may be assigned to, and opened by, a team member, just

to find that it should have been assigned to someone else; in this case, a

transition from "Open" to "Assigned" will be recorded. The same behaviour

can be observed in ITIL when there is escalation to a higher support level.

• The classification of an issue as a duplicate, or the decision to discard it, may

come later in the process when more data is available about the issue.

These special but frequent cases explain most of the behaviour shown in Figure 5. The

overall behaviour is definitely close to the Incident Management process. The analysis

could now proceed, for example, by checking criteria such as those defined in

(Brenner et al, 2002) or by measuring KPIs (Bartolini et al, 2006).

7 Conclusion

ITIL assessment is a laborious task that requires business processes to be monitored

and reinterpreted in terms of ITIL guidelines. Process mining techniques can greatly

simplify such analysis by being able to extract behaviour from large volumes of run-

time data. In the case study, these techniques provided compelling reason to believe

that the issue handling process indeed resembled the Incident Management process.

More importantly, the case study shows that process mining is a valuable tool for

assessing this ITIL process and, as a result, potentially other ITIL processes as well.

Such potential depends of course on the extent to which the existing process is

supported by information systems that can provide useful data for analysis. In this

study the analysis was conducted mainly on a behavioural perspective, but other

perspectives – such as functional, informational, organizational, etc. (Schmidt, 2006)

– could be considered as well, which provide a broad ground for future work.

References

van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.

(2003) Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge

Engineering. 47(2). 237-267.

van der Aalst, W., Reijers, H., Song, M. (2005) Discovering Social Networks from Event

Logs. Computer Supported Cooperative Work. 14(6). 549-593.

van der Aalst, W., Weijters, A. (2004) Process Mining: A Research Agenda. Computers in

Industry. 53(3). 231-244.

van der Aalst, W., Weijters, T., Maruster, L. (2004) Workflow mining: discovering process

models from event logs. Transactions on Knowledge and Data Engineering. 16(9). 1128-

1142.

Agrawal, R., Gunopulos, D., Leymann, F. (1998) Mining Process Models from Workflow

Logs. 6th Intl. Conf. on Extending Database Technology: Advances in Database Technology.

LNCS 1377. 469-483. Springer.

Bartolini, C., Salle, M., Trastour, D. (2006) IT Service Management driven by Business

Objectives: An Application to Incident Management. 10th IEEE/IFIP Network Operations

and Management Symposium. 45-55.

van Bon, J., Pieper, M., van der Veen, A. (2005) Foundations of IT Service Management

Based on ITIL. Van Haren Publishing.

Brenner, M. (2006) Classifying ITIL Processes: A Taxonomy under Tool Support Aspects.

First IEEE/IFIP Intl. Workshop on Business-Driven IT Management 2006 (BDIM'06). 19-28.

Brenner, M., Radisic, I., Schollmeyer, M. (2002) A Criteria Catalog Based Methodology for

Analyzing Service Management Processes. 13th IFIP/IEEE Intl. Workshop on Distributed

Systems: Operations and Management (DSOM 2002). LNCS 2506. Springer.

Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S. (2003) Model-Based Clustering and

Visualization of Navigation Patterns on a Web Site. Data Mining and Knowledge Discovery.

7(4). 399-424.

van Dongen, B., van der Aalst, W. (2004) Multi-Phase Process Mining: Building Instance

Graphs. Intl. Conf. on Conceptual Modeling. LNCS 3288. 362-376. Springer.

Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P. (2007) Approaching Process Mining

with Sequence Clustering: Experiments and Findings. 5th Intl. Conf. on Business Process

Management (BPM 2007). LNCS 4714. 360-374. Springer.

Girolami, M., Kabán, A. (2005) Sequential Activity Profiling: Latent Dirichlet Allocation of

Markov Chains. Data Mining and Knowledge Discovery. 10(3). 175-196.

Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen, J. (2008) Process Mining as

First-Order Classification Learning on Logs with Negative Events. 3rd Workshop on Business

Processes Intelligence (BPI'07). LNCS 4928. Springer.

Greco, G., Guzzo, A., Pontieri, L. (2005) Mining Hierarchies of Models: From Abstract

Views to Concrete Specifications. 3rd Intl. Conf. on Business Process Management, BPM

2005. 32-47.

Herbst, J., Karagiannis, D. (1998) Integrating Machine Learning and Workflow Management

to Support Acquisition and Adaptation of Workflow Models. 9th Intl. Workshop on Database

and Expert Systems Applications. 745-752.

Litten, K. (2005) Five Steps to Implementing ITIL. International Network Services. BT INS.

Medeiros, A., Weijters, A., van der Aalst, W. (2007) Genetic Process Mining: An

Experimental Evaluation. Data Mining and Knowledge Discovery. 14(2). 245-304.

Mendel, T., Garbani, J.-P., Ostergaard, B., van Veen, N. (2004) Implementing ITIL: How To

Get Started. Forrester Research

Porter, D. (2003) BASEL II: Heralding the Rise of Operational Risk. Computer Fraud &

Security. 2003(7). 9-12.

Rozinat, A., van der Aalst, W. (2008) Conformance checking of processes based on

monitoring real behavior. Information Systems. 33(1). 64-95.

Rozinat, A., Mans, R., van der Aalst, W. (2006) Mining CPN Models: Discovering Process

Models with Data from Event Logs. Seventh Workshop on the Practical Use of Coloured

Petri Nets and CPN Tools (CPN 2006). Aarhus, Denmark.

Schmidt, R. (2006) Flexibility in Service Processes. CAISE'06 Workshop on Business Process

Modelling, Development, and Support (BPMDS'06). Luxemburg. June 5-9.

Tang, Z., MacLennan, J. (2005) Data Mining with SQL Server 2005. Wiley.

Zhang, I. (2007) Economic consequences of the Sarbanes–Oxley Act of 2002. Journal of

Accounting and Economics. 44(1-2). 74-115.

