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I 

Resumo  

Modelos moleculares estruturais das proteínas ajudam a dar uma visão detalhada 
sobre as suas funções, especialmente quando combinadas com as características das 
sequências. Atualmente modelos 3D estão disponíveis para diversas proteínas, contudo 
na prática é complexo encontrar os modelos apropriados e visualizá-los conjuntamente 
com as características da sequência.  

 
Tendo isto em mente foi desenvolvido o Aquária, um novo recurso que fornece 46 

milhões modelos estruturais pré-calculados através da utilização de homologia entre 
sequências e estruturas – 10 vezes mais do que atualmente disponibilizado por outros 
recursos. Fornece também, pelo menos um modelo para 87% de todas as proteínas da 
Swiss-Prot com uma média de 35 modelos por proteína. Através do Aquária foi 
analisado o proteoma conhecido ou “visível”. Contudo, o seu complementar, o 
proteoma dark ou desconhecido, - i.e., regiões das proteínas que permanecem 
teimosamente inacessíveis quer por determinação estrutural experimental quer por 
modelação – também foi pesquisado, armazenado e indexado na Dark Proteome 
Database.  

 
Usando os dois sistemas indicados acima, foi feito o estudo mais exaustivo sobre 

modelação estrutural cobrindo 546,000 proteínas pertencentes a vários organismos, 
onde se concluiu que 44–54% do proteoma das eucarióticas e dos vírus são dark, 
comparado com 14% do proteoma das arqueas e das bactérias. Surpreendentemente 
mais de metade do proteoma dark não pode ser explicado pelos argumentos habituais 
tais como desordem intrínseca, regiões trans-membranares ou viés composicional. 
Aproximadamente metade do proteoma dark é composto por proteínas dark, em que a 
sequência total não tem semelhança com as estruturas conhecidas. As proteínas dark 
possuem uma série de funções, mas um subconjunto largo e distinto destas mostraram 
características inesperadas tais como associação com secreções, presença em tecidos 
específicos, como o retículo endoplasmático e clivagem proteolítica. As proteínas dark 
são também mais curtas ao nível da sequência, têm pouca reutilização evolucionária e 
poucas interações conhecidas com outras proteínas. Esta tese sugere ainda, a existência 
de regiões trans-menbranares que são indetectáveis pelos métodos correntes de 
predição.  

 
Desta forma, esta tese sugere novas direções de investigação em biologia estrutural 

e computacional. Este trabalho vai ajudar, certamente, a concentrar esforços futuros 
sobre a investigação do restante proteoma dark, potencialmente revelando processos 
moleculares da vida que são atualmente desconhecidos.  

 
 
 
 
 
 
 
 
 

Palavras-chave: Big Data; Bases de Dados; Homologia; Proteínas; Estrutura.  
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Abstract 

Molecular models of a protein’s structure can give detailed insight into mechanisms 
underlying its function, especially when viewed in combination with sequence features. 
In theory, 3D structural models are now available for many proteins, however in 
practice it is often complex to find all appropriate models and view them with sequence 
features.  

Thus, we developed Aquaria, a new web resource that provides 46 million pre-
calculated structural models using homology from sequence to structure – 10 times 
more than currently available from other resources, resulting in at least one matching 
structure for 87% of Swiss-Prot proteins and a median of 35 structures per protein Using 
Aquaria, we surveyed the known or visible proteome. Its complement, the ‘unknown’ 
or ‘dark’ proteome, i.e., regions of proteins that remain stubbornly inaccessible to both 
experimental structure determination and modeling, was scanned, stored and indexed 
into the Dark Proteome Database.  

Using the above systems, it was performed the most recent structural modeling study 
covering 546,000 proteins across many organisms, where it was found 44–54% of the 
proteome in eukaryotes and viruses is dark, compared with only 14% for archaea and 
bacteria. Surprisingly, most of the dark proteome could not be accounted for by 
conventional explanations, such as intrinsic disorder, transmembrane regions or 
compositional bias. Nearly half of the dark proteome comprised dark proteins, in which 
the entire sequence lacked similarity to any known structure. Dark proteins fulfill a 
wide variety of functions, but a subset showed distinct and largely unexpected features, 
such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide 
bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low 
evolutionary reuse, and few known interactions with other proteins. This thesis also 
suggests the existence of transmembrane regions undetected by current prediction 
methods.  

Therefore, our work suggests several new directions for research in structural and 
computational biology. This work surely will help focus the efforts of future research 
to shed light on the remaining dark proteome thus potentially revealing molecular 
processes of life that are currently unknown.  
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The determination of biomolecular 3D structures at atomic-resolution has provided 

fundamental insights that have revolutionized our understanding of the molecular 

machinery of life. Probably the most spectacular example so far has been the 

elucidation of DNA’s structure and the insight this provided into the mechanism 

through which genetic information is stored and inherited. There are thousands of other 

examples, including broad categories such as the use of structural insight in rational 

drug design, as well as in antibody engineering. 

1.1. The Visible Protein 3D Structures (The Bright Side) 

Methods for the experimental determination of structure have improved 

continuously, as evidenced by the steady growth of PDB (Berman et al., 2000), which 

collects essentially all known biomolecular structures and that has reached more than 

120,250 total of entries in 2016. As often noted, there is a rapidly increasing gap 

between this and the rate at which DNA and protein sequence information is being 

acquired – less than 0.1% of UniProt (Consortium, 2014) proteins contain a matching 

PDB structure for part of their sequence (statistics from UniProt website). However, 

evolution tends to conserve structure more than sequence, e.g., the human proteome has 

well over 100,000 distinct protein sequences believed to adopt only around a few 

thousand distinct folds. This understanding has led to several large-scale computational 

modelling initiatives e.g., ModBase (Pieper et al., 2014), SWISS-MODEL (Kiefer et 

al, 2009) and CSPM (Stroud et al., 2009). The models from many of these initiatives 

are consolidated in the Protein Model Portal (PMP) (Haas et al., 2013). Together, these 

currently provide some structural information for about 9.2% of all UniProt proteins; 

in most cases however, this does not cover the full length sequence, so in total structural 

information can be inferred for 6.7% of all UniProt (statistics from PMP website). Since 

protein sequence can be predicted quite accurately from genomic sequences, these 

advances mean that structural biology now scales with the very rapid advance of 

genomic sequencing (Mardis, 2011) by first predicting protein sequence from genomes. 

While decades ago atomic resolution structures were relatively rare and were not 

available for most of the proteins, RNAs, or protein-DNA complexes studied by 

biologists. In the present, there is a considerable amount of structural information for 

the majority of known protein sequences, which provides a wealth of detailed insight 

into biological functions - far beyond what is accessible from sequence alone. 
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However, members of the structural biology community have expressed the 

concern that structures are under-utilized by life scientists (O'Donoghue et al., 2015). 

Why would such potentially useful and insightful data be underutilized? There are 

several contributing factors: 

(1) Data volume. Now that millions of sequences and thousands of structural models 

are available, we are facing the classic problem of Big Data – where knowledge can 

easily be lost in the sea of data. Overcoming this requires careful designed strategies to 

enable effective navigation and use of such large databases. 

(2) Data complexity. The amount of information conveyed in a macromolecular 

structure is intrinsically much more complex than, for example, the information 

conveyed in the corresponding protein, RNA or DNA sequences. Thus, relatively 

complex software user interfaces are required for both in order to find this information 

and to use it for deriving insight into biological function. Using such interfaces and 

interpreting the data requires some specialization in structural biology. In addition, the 

PDB website itself addresses the needs of the structural biologists, as they are, after all, 

the people who created the database. However, for many of the remaining biologists 

who are not experts in macromolecular structures, PDB’s organization and websites 

can be confusing. Thus, other websites that provide a different view of this data have 

emerged. 

(3) Tailored views for non-specialists. Many of the web resources that disseminate 

structure data have been created by and for the structural biology community. Now that 

structural models are available for a significant fraction of all protein sequences, this 

data becomes more interesting to a broader group of life scientists, many of which have 

less experience in molecular graphic’s methods or in concepts required to interpret 

macromolecular structures. Related to this point, we believe there is one important and 

useful structural data view that is currently missing, one that would provide a concise 

visual summary of all related structural information for any given protein. 

In the attempt of finding answers to the above points, Aquaria is developed (Chapter 

4). Besides visualizing all the information concerning a protein, Aquaria also 

reorganizes all PDB/Swiss-Prot. Using Protein Sequence-to-Structure Homologies 

(PSSH2) (O'Donoghue et al., 2015) by systematically comparing 546,000 Swiss-Prot 

sequences against 100,326 PDB proteins structures, i.e., an alignment between all well-

described protein sequences across all range of known structures is established. This 

comparison resulted in 46 million sequence-to-structure alignments (O'Donoghue et al., 
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2015), which represents a depth not available from other resources, increasing the 

structural knowledge for sequences that didn’t possess this information by default.  

1.2. The Dark Side 

The Dark Side of the Proteome is the core of this thesis. Aquaria was used to map 

and integrate all the structural information from PDB using homology into the Swiss-

Prot sequences (The ‘Bright’ Side). This was the purpose of Aquaria, but after 

observing so many dark regions through homology, it was decided to map and 

characterize these dark regions, i.e., regions of protein sequence, or whole sequences, 

stubbornly inaccessible to either experimental structure determination or modeling, and 

hence where 3D conformation is completely unknown (Chapters 5 and 6). The dark 

proteome has often been overlooked so far, but after this mapping and the unexpected 

features obtained (Perdigão et al., 2015) that raised so many questions, that dark 

proteome initiatives started to appear.  

Scientists have long speculated about the nature of the dark proteome, the area of 

proteins that are completely unknown. Having mapped the boundaries of these dark 

regions, bring us one step closer to discovering the complete structure and function of 

all proteins, because knowing what we do not know has provided to the scientific 

community a new roadmap to focus future research. 

From the reactions of the scientific community (scientific media) as well as, private 

communications of a couple of noted scientists, this survey of the unknown using 

computational methodology will set future research directions, as dark matter has done 

in physics (Bertone et al., 2005). 

1.3. Contributions  

This thesis has four main contributions using Big Data. Big data is a term for data 

sets that are so large or complex that traditional data processing applications are 

inadequate. Challenges include analysis, capture, data curation, search, sharing, 

storage, transfer, visualization, querying, updating and information privacy (Hilbert & 

López, 2011). 

      Aquaria 

A new, powerful and publicly available web resource providing quick and extensive 

insight into the 3D structure of proteins is developed to help life scientists better 

understand diseases and develop new medicines.  
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When scientists discuss proteins, they are talking about the many thousands of 

molecules that act as the essential building blocks of life as we know it. Because 

proteins are so important to constructing life, researchers need a way to visualize the 

3D structures of proteins and the exact ways in which they fit together, so as fully 

understand their functions – in our bodies and elsewhere in nature. 

In the past, the search for protein structures was very tedious and required expert 

knowledge. In Aquaria, all data is already processed for 46 million models using 

homology, because Aquaria calculates the structure of most proteins based on Protein 

Data Bank (PDB) an online resource that houses more than 100.326 known protein 

structures for 546.000 Swiss-Prot protein sequences. The PDB is a fantastic resource 

containing a wealth of details about the molecular processes of life but we are aware 

that few biologists take full advantages of it. Therefore, we created Aquaria to make 

this valuable information more accessible and easier to use for discovery purposes.  

Freely and publicly accessible, Aquaria will be useful to a broad range of life 

scientists, from medical researchers to those studying agriculture, biosecurity, ecology 

and nutrition. It can help them streamline their discovery process and gain new insight 

into protein structures. Aquaria is available at http://aquaria.ws. 

 

Dark Proteome Database 

The complete map of the Dark Proteome lives in this database and it was made for 

the first time. This database was the main resource for the work published at the 

Proceedings of the National Academy of Sciences of United States of America 

(Perdigão et al., 2015). 

A valuable resource for scientists that wish to join us in the discovering of the Dark 

Proteome and its frontiers. The Dark Proteome Database is available at 

http://darkproteome.ws. 

 

Dark Proteome 

The full and complete map of the Dark Proteome and it’s characterization is made 

for the first time. As knowledge of three-dimensional protein structures continues to 

expand (also with the help of the first contribution above), we can identify regions 

within each protein that are different to any region where structure has been determined 

experimentally, coining the 'dark proteome' term. 
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These dark regions are unlike any known structure, so they cannot be predicted, so 

identifying these areas is very exciting, as we now have a map to focus research efforts. 

Our map defined the boundaries right at the edge of protein knowledge. 

The research has yielded some surprising results, including that nearly half of the 

proteome in eukaryotes is dark and has unexpected features, including an association 

with secretory tissues, low evolutionary conservation, and very few known interactions 

with other proteins. 

This work will help future research by shedding light on the remaining dark 

proteome, revealing molecular processes of life that are currently unknown. It will also 

provide insight into dark proteins based illnesses like cancer, type 2 diabetes, and many 

neurodegenerative diseases, such as Parkinson's disease and Alzheimer's. The dark 

proteome undoubtedly plays a key role in human health, as well as many other areas of 

life science. We believe that studying the dark proteome will clarify future research 

directions, as studies of dark matter have done in physics. 

 

Dark Proteome Autonomy 

Through the build of the Dark Autonomy Database, another unexpected result 

comes out, that was the fact that dark proteins have less protein-protein iterations, and 

therefore we could conclude that they are mostly autonomous.  

 

Therefore, I can clearly state that this thesis has identified new and exciting 

scientific mysteries that will set directions for future research. 

 

1.4. Organization 

This dissertation has five Parts holding eight Chapters. The first Part (Motivation) 

holds Chapter 1 consisting of an introduction, a light overview and text outlook.  

The second Part (Context) of the thesis contains two introductory Chapters that 

describe its application spectrum. The second Chapter consist of a brief explanation 

about Life, describes the existent cell types, as well as its organelles, and how genes 

generate proteins that are necessary for living organisms to operate and live. The third 

Chapter presents a small fraction of the Protein Universe where protein structure levels 

will be introduced, followed by the protein types and some actual protein databases 
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together with the type of information they hold. To conclude the chapter, it will be 

briefly described some protein homology concepts, and its corresponding databases. 

The third Part (Methods) contains the chapters of the tools used to obtain the results 

of this thesis. Starting with Aquaria (Chapter 4) it will be explained why it is currently 

the best tool to explore the ‘Bright Side’ (i.e., the visible protein universe) as well as its 

advantages in regards to others systems. Chapter 5 represents the entry into the ‘Dark 

Side’, i.e., where the ‘Dark Matter’ of the Proteome or the ‘Dark’ Proteome will be 

mapped using the Dark Proteome Database tool.  

The fourth Part (Results) exposes the results obtained with the previous described 

tools. This Part holds Chapter 6 and it’s the core of the thesis and can be summarized 

as “the unstructured proteome that Aquaria didn’t detected but we know that exists”. 

This “unknown” structural proteome is the reason for our use of the Dark Matter 

metaphor in Physics. This chapter is the most important because mapped the complete 

Dark Proteome based on Swiss-Prot data of 2014, which is something that no one ever 

achieved before. Besides the mapping,  unexpected results arose from this work caused 

considerable discussion in the scientific community. It also motivated the creation of 

Dark Proteome initiatives as consequence of the published results (Perdigão et al., 

2015) that contradicted the mind-set of the structural biology community until then.  

The last results chapter presents the Dark Proteome Autonomy (Chapter 7) where it 

shows that dark proteins appear to be more autonomous than non-dark proteins. 

 Finally, the fifth Part (Conclusions) holds Chapter 8 (General Discussion), which 

assembles the different strands of this thesis into a discussion involving the Dark 

Proteome and its impact on biology and computer science. 
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2. Life 
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What is life? This is probably the most common inner question that people asks 

themselves through their existence. Through history, civilizations and cultures the 

above question is made, but also about life origins, where it lays and how it works. 

Preceding the philosophers of ancient Greece, the concept of vital forces that were 

mysterious, divine, and which keep organisms functional and alive. Still, despite the 

numerous scientific breakthroughs and revelations of the last century in several 

scientific areas, the above concept advocating the metaphysical uniqueness of living 

matter enjoyed wide acceptance one century ago in the scientific community   

(Lagerkvist, 2005).  

The above shift started around 200 years ago, through the dissemination of 

mechanical theories concerning physiology and nature  (Nurse, 2003). Those theories 

suggested that all life-related phenomena could be explained by the same physical and 

chemical principles that were applied to the non-living world  (Komdeur et al., 2009). 

Louis Pasteur (1822–1895), made an important breakthrough on this approach by 

demonstrating that the fermentation (i.e., a chemical process) of converting sugar to 

alcohol resulted in the growth of microorganisms. By doing this, Pasteur discovered the 

missing link between life processes and chemical reactions. That is, fermentation could 

be reproduced in the absence of the microorganism, by using substances extracted from 

it. Although at first the chemical nature of these substances was unclear, it was proved 

later on to be proteins (Chapter 3). These proteins therefore accelerated chemical 

reactions within cells without changing their main nature i.e., they acted as catalysts. 

From this moment on, life was no longer seen as a mysterious and/or divine 

phenomena acting on organisms, but instead the result of several chemical processes 

performed by the proteins. This conscience became the basilar rock for modern 

biochemistry and molecular biology. Besides protein catalysts, (called later on 

enzymes), many other functional and relevant proteins have been found since then, 

where the most well-known example is hemoglobin, a protein that carry the oxygen 

from the lungs to body organs and tissues, and carry carbon oxide back to the lungs.  

The genetic revolution that occurred in the second half of the previous century with 

the decoding of DNA (Deoxyribonucleic Acid) structure, and its genetic code, has 

proved that proteins are more than just molecular machinery that lives within the cells; 

they are also genes primary products, among other things. 
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2.1. Domains of Life 

Our planet holds an enormous variety of organisms; This variety is manifested in 

the way they look, how they behave, their diet, reproduction mode, and how long they 

live, but there is one universal characteristic common to all of them; they are all made 

of cells (Nurse, 2003; Koshland, 2002). It is usual to separate the population of 

biological cells, as well as the organisms they form, into two principal types: cells 

without a nucleus and cells with a nucleus. Cells with no nucleus are prokaryotic. 

Prokaryotic cells are further classified into two groups: bacteria and archaea. Cells that 

have a nucleus are called eukaryotic. All the cells above have cell membranes, 

organelles, cytoplasm, and DNA. 

2.1.1. Prokaryotic Cells 

Prokaryotes are small (~10–6 m), and lacks any visible internal organization. 

Prokaryotic cells are made of a lipid membrane (the plasma membrane) engulfing an 

inner aqueous environment (the cytoplasm). The cytoplasm is where all life processes 

take place and it is separated from the external environment of the cell by the plasma 

membrane. Escherichia coli, the biochemically most well-characterized organism, is a 

typical prokaryote. Bacteria and archaea are prokaryotes which are single-celled 

organisms that do not have a nucleus or membrane-bound organelles. 

2.1.1.1. Bacteria	

Bacteria are the most common prokaryotes, and they are the smallest cells known. 

These tiny organisms are present in almost everywhere. They do not have a nucleus, 

but they do have DNA (nucleoid region). A bacteria’s DNA is a long, circular molecule, 

shaped like a twisted rubber band. Bacteria have no membrane-covered organelles, but 

they do have ribosomes. Ribosomes are tiny, round organelles made of proteins and 

other material.  

Bacteria also have a strong, web-like exterior cell wall. This wall helps the cell 

retain its shape. A bacterium’s cell membrane is just inside the cell wall. Together, the 

cell wall and cell membrane allow materials into and out of the cell.  

Some bacteria live in the soil and water. Others live in, or on, other organisms. For 

example, you have bacteria living on your skin and teeth. You also have bacteria living 

in your digestive system. These bacteria help the process of digestion. A typical 

bacterial cell is shown in Figure 2.1. 



 
 
 

39 

 

Figure 2.1: Bacterial structure. Bacterial cells lack membrane-bound organelles but have a 
variety of cell structures (Wikipedia site). 

2.1.1.2. Archaea	

The second kind of prokaryote are the archaea. Archaea are similar to bacteria in 

some ways. For example, both are single-celled organisms. Both have ribosomes, a cell 

membrane, and circular DNA. Both lack a nucleus and membrane-bound organelles, 

but archaea differ from bacteria in some way, too. For example, archaeal ribosomes are 

different from bacterial ribosomes.  

Archaea are similar to eukaryotic cells in some ways, too. For example, archaeal 

ribosomes are more like the ribosomes of eukaryotic cells, but archaea also have some 

features that no other cells have. For example, the cell walls and cell membranes of 

archaea are different from the cell walls of other organisms. Some archaea live in places 

where no other organisms could live.  

Three types of archaea are heat-loving, salt-loving, and methane-making. Heat-

loving and salt-loving archaea are sometimes called extremophiles. Extremophiles live 

in places where conditions are extreme. They live in very hot water, such as in hot 

springs, or where the water is extremely salty.  

2.1.2. Eukaryotic Cells 

Eukaryotic cells are the largest cells. Most eukaryotic cells are still microscopic, 

but they are about 10 times larger than most bacterial cells.  
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All living things that are not bacteria or archaea are made of one or more eukaryotic 

cells. Organisms made of eukaryotic cells are called eukaryotes. Eukaryotes are 

multicellular. Multicellular means “many cells”. Multicellular organisms are usually 

larger than single-cell organisms. Most organisms you see with your naked eye are 

eukaryotes. Eukaryotes have enormous morphological diversity on the cellular as well 

as on the organismal level. They are classified into four kingdoms: Protista, Plantae, 

Fungi, and Animalia (including Human). Fungi are organisms such as mushrooms or 

yeasts. Mushrooms are multicellular eukaryotes. Yeasts are single-celled eukaryotes.  

Unlike bacteria and archaea, eukaryotic cells have a nucleus. The nucleus is one 

kind of membrane-bound organelle. A cell’s nucleus holds the cell’s DNA. Eukaryotic 

cells have other membrane-bound organelles as well. Organelles are like the different 

organs in your body. Each kind of organelle has a specific job in the cell. Together, 

organelles perform all the processes necessary for life (Fig. 2.2). 

 

 

Figure 2.2: Eukaryote organelle schema (Pearson Education site). 

 
Eukaryotic cells, which are far more complex than those of prokaryotes, are 

characterized by having numerous membrane-enclosed organelles. The most 

conspicuous of these is the nucleus, which contains the cell’s chromosomes, and the 

nucleolus, where ribosomes are assembled. The endoplasmic reticulum is the site of 
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synthesis of lipids and of proteins that are destined for secretion. Further processing of 

these products occurs in the Golgi apparatus. The mitochondria, wherein oxidative 

metabolism occurs, are thought to have evolved from a symbiotic relationship between 

an aerobic bacterium and a primitive eukaryote. Other eukaryotic organelles include 

the lysosome, which functions as an intracellular digestive chamber, and the 

peroxisome, which contains a variety of oxidative enzymes. The eukaryotic cytoplasm 

is pervaded by a cytoskeleton whose components include microtubules, which consist 

of tubulin; microfilaments, which are composed of actin; and intermediate filaments, 

which are made of different proteins in different types of cells.  

2.2. Central Dogma of Molecular Biology 

The central dogma of molecular biology explains that DNA codes for RNA, which 

codes for proteins and it was first stated by Francis Crick in 1956 (Crick, 1956, 1958) 

and re-stated in a Nature paper in 1970 (Crick, 1970). 

In this thesis, I will only focus in the simplified version of Central Dogma i.e., 

“DNA → RNA → Protein” (Fig. 2.3).  

 

 

Figure 2.3: The Central Dogma of Molecular Biology (Wikipedia site). 

 

DNA is the molecule of heredity that passes from parents to offspring. It contains 

the instructions for building RNA and proteins, which make up the structure of the body 

and carry out most of its functions. 

Inside the cells, tiny molecular machines are constantly reading the information in 

DNA and using it to build proteins. In Figure 2.4 you can see all the three types of RNA 

that are essential to this process: messenger RNA (mRNA), transfer RNA (tRNA), and 

ribosomal RNA (rRNA). 
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Figure 2.4: Simplified Central Dogma of Molecular Biology that can be described as “DNA 
makes RNA and RNA makes Protein” (Thomson Learning site). 

 

Transcription is the process (Fig. 2.5) by which the information contained in a 

section of DNA is replicated in the form of a newly assembled piece of mRNA. In 

eukaryotic cells, the primary transcript is (pre-mRNA). Pre-mRNA must be processed 

for translation to proceed. Processing includes the addition of a 5’ cap and a 3’ tail to 

the pre-mRNA chain, followed by splicing. Alternative Splicing may occur broaden the 

diversity of the proteins that any single mRNA can generate. The product of the entire 

transcription process that began with the production of the pre-mRNA chain, is a mature 

mRNA chain, and they carry information from the genome to the ribosome (the cell’s 
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protein synthesis instrument). The tRNA molecules are untranslated RNA that transport 

amino acids, the building blocks of proteins, to the ribosome. Last, but not least rRNA 

molecules are the untranslated RNA components of ribosomes, which are complexes 

of protein and RNA. The rRNAs play a role in anchoring the mRNA to the ribosomes. 

 

 

Figure 2.5: Transcription process (Wikipedia site). 

 
Translation is the process by which the information contained in a section of all the 

three RNA’s is used to form proteins (Figs. 2.6 and 2.7).  

The mature mRNA finds its way to a ribosome, where it is translated. In prokaryotic 

cells, which have no nuclear compartment, the processes of transcription and translation 

may be linked together without clear separation. In eukaryotic cells, the site of 

transcription (the cell nucleus) is usually separated from the site of translation (the 

cytoplasm), so the mRNA must be transported out of the nucleus into the cytoplasm, 

where it can be bound by ribosomes. The ribosome reads the mRNA triplet codons, 

usually beginning with an AUG (adenine−uracil−guanine), or initiator methionine 

(Met) codon downstream of the ribosome binding site. Complexes of initiation factors 

and elongation factors bring aminoacylated transfer RNAs (tRNAs) into the ribosome-

mRNA complex, matching the codon in the mRNA to the anti-codon on the tRNA. 

Each tRNA bears the appropriate amino acid residue to add to the polypeptide chain 

being synthesized. As the amino acids get linked into the growing peptide chain, the 

chain begins folding into the correct conformation. Translation ends with a stop codon, 

which may be a UAA, UGA, or UAG triplet. 

The mRNA does not contain all the information for specifying the nature of the 

mature protein. The nascent polypeptide chain released from the ribosome commonly 

requires additional processing before the final product emerges. The correct folding 

process is complex and vitally important but is beyond the scope of this thesis.  
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Figure 2.6: Genetic code for translating each nucleotide triplet in mRNA into an amino acid or a 
termination signal in a nascent protein (National Institutes of Health site).  

 

 

Figure 2.7: Translation process (OpenStax College site). 
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3. Proteins  
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The main idea of this chapter is to stress the importance of protein level structures 

that exist, as well as protein types, keeping in mind the sequence → structure → 

function paradigm (Fig. 3.1). In short, we need to know the structure of a protein to 

understand its function. Therefore, the ideal case would be to obtain all the proteins 

structures to understand all their functions consequently. 

 

 

Figure 3.1: Sequence → Structure →  Function paradigm (Griffith University site). 

 

I start with the introduction of some very basic knowledge about the physics and 

chemistry of protein structures followed by its types. There are highly recommendable 

textbooks in molecular biology that give introduction to protein science from many 

different perspectives, in this chapter we followed the ‘Encyclopedia of Molecular 

Biology’ (Meyers, 2005). Concerning the buildup to protein backbone by elementary 

atomic constituents there are only a few rules to learn and therefore it is very easy to 

acquire the basic knowledge about the assembly of a realistic, plastic toy model. These 

rules are derived from quantum chemistry.  

Proteins are long chain polymers of amino acids. They are linear, non-branched 

similar to polyethylene or polystyrene but with a much more versatile nature than the 

latter due to the many different types of amino acids involved. 

3.1. Proteins Structure 
 

3.1.1. Primary Structure 

The sequence of the different amino acids is called the primary structure of the 

peptide or protein. Counting of residues always starts at the N-terminal end (NH2-

group), which is the end where the amino group is not involved in a peptide bond. The 

gene corresponding to the protein determines its primary structure. A specific sequence 

of nucleotides in DNA is transcribed into mRNA, which is read by the ribosome in a 
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process called translation. The sequence of a protein is unique to that protein, and 

defines the structure and function of the protein. The sequence of a protein can be 

determined by methods such as tandem mass spectrometry. Often however, it is read 

directly from the sequence of the gene using the genetic code.  

The 20 different amino acids (Fig. 3.2) consists of four chemical groups: a nitrogen 

containing amino group, a carboxyl group, a central or “alpha” carbon in common, but 

each with a different/variable radical (the side-chain) attached to a carbon atom termed 

the Cα atom (Fig. 3.3).  

 
 One-letter-code Three-letter-code Name Hydrophobic 

1 A Ala Alanine yes 

2 C Cys Cysteine yes 

3 D Asp Aspartic Acid no 

4 E Glu Glutamic Acid yes 

5 F Phe Phenylalaline yes 

6 G Gly Glycine no 

7 H His Histine no 

8 I Ile Isoleucine yes 

9 K Lys Lysine no 

10 L Leu Leucine yes 

11 M Met Methionine yes 

12 N Asn Asparagine no 

13 P Pro Proline yes 

14 Q Gln Glutamine no 

15 R Arg Arginine no 

16 S Ser Serine no 

17 T Thr Threonine no 

18 V Val Valine yes 

19 W Trp Tryptophan yes 

20 Y Tyr Tyrosine no 

Figure 3.2: The twenty amino acids commonly found in proteins. 
 

 

Figure 3.3: Schematic of amino acids (Hunter, 2009). 
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The amino, or more often called the peptide, links are connected to each other in a 

linear fashion such that the carbonyl end of one link is connected to the amino end of 

the next link and so that the resulting polypeptide chain (the protein without the side-

chains) has a clear orientation. 

Thus a protein molecule has a fairly simple structure with respect to its atomic 

constituents being first a nitrogen atom followed by a carbon atom with a side-chain (1 

out of 20) attached to it and then finally followed by another carbon atom with an 

oxygen attached to it (Fig. 3.4) 

The remaining sites are occupied by hydrogen atoms. This peptide unit is repeated 

typically several hundred times (for an average size protein) but mostly with a different 

side-chain attached to the Cα atom. The link between each amino acid connecting the 

carbonyl end with the next amino end has a partial double bonded nature that makes 

the peptide chain fairly rigid. 

 

 

 

Figure 3.4: The polypeptide chains of proteins have a main chain of constant structure and 
sidechains that vary in sequence. Here R1 and R2 represent side chains. The side chains may be 

chosen, independently, from the set of 20 standard amino acids (Hunter, 2009). 

 
 

Some parts of this polypeptide chain are flexible. Most bonds have a narrow range 

of angles that are energetically favorable, so the shapes of molecules containing them 

are effectively fixed, but there are three places where the bond angles are free to rotate. 

Most important, the two dihedral angles between adjacent amino acids (F and Y) can 

rotate freely, as shown in Figure 3.5. 

 



 

50 

 

Figure 3.5: A schematic showing the three places in a polypeptide where the bonds are free to 
rotate (Hunter, 2009). 

 
The chemical activity of this polypeptide chain is for the most parts controlled by 

the electrostatic nature of the different side-chains. These 20 common amino acids can 

be derived into polar and non-polar where the polar ones can be either charged positive 

(basic hydrophilic) or negative (acidic hydrophilic) or neutral. The non-polar amino 

acids are to a higher or lesser degree hydrophobic. The role of being hydrophilic or 

hydrophobic (turning towards into or away from water molecules) becomes, an 

important factor in the folding process when the protein is attaining its “native” active 

structure.  

3.1.2. Secondary Structure 

As we saw from the last section there appears a universal pattern in the ‘local’ 

structure of almost all proteins known up to now. The fact is that there appear distinct 

substructures in each protein that can be classified to be either helical, sheet or coil (this 

last class include single loops or turns). These distinct substructures are stabilized by 

hydrogen bonds giving rise to the usual classifying criteria for the substructures. 

The most frequently occurring helical structure is the α-helix with 3.8 residues per 

turn and that is the mostly found to be right handed. The fractional number of residues 

per winding is because it provides the helical element with maximal stability since the 

hydrogen bonds appear asymmetrical in that case (with respect to the cylindrical 

symmetry).  

In Fig. 3.6 the α-helix and the β-sheets are shown. The last ones can occur both as 

parallel or anti-parallel patterns and are the dominant substructures in immuneglobin 

and most proteases. These substructures are called the secondary structures because 

they occur on the second hierarchical level of organization, the first level being the 

sequence and the third level being the tertiary structures, the end product of the folding 

process. There are been an extensive effort in the field to produce prediction schemes 
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that could determine the occurrence of these structures from sequence information. 

These secondary structures will again arrange themselves into tertiary, or sometimes 

even into quaternary structures (protein-protein interactions). 

 

Figure 3.6: Standard secondary structures of proteins α-helix (above) β-sheet (below)  
(Lesk, 2002). 

 

3.1.3. Tertiary Structure 

The elements of secondary structure are usually folded into a compact shape using 

a variety of loops and turns, i.e., the information about the precise position of every 

atom (or, equivalently, every F/Y and sidechain angles) is called the tertiary structure 

of the protein. The formation of tertiary structure is usually driven by the burial of 

hydrophobic residues, but other interactions such as hydrogen bonding, ionic 

interactions can also stabilize the tertiary structure (Fig. 3.7). The tertiary structure 

encompasses all the non-covalent interactions that are not considered secondary 

structure, and is what defines the overall fold of the protein, and is usually indispensable 

for the function of the protein. 
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3.1.4. Quaternary Structure 

The quaternary structure is the interaction between several chains of peptide bonds 

(Figs. 3.7). The individual chains are called subunits. The individual subunits are 

usually not covalently connected, but might be connected by a disulfide bond. Not all 

proteins have quaternary structure, since they might be functional as monomers. The 

quaternary structure is stabilized by the same range of interactions as the tertiary 

structure. Complexes of two or more polypeptides (i.e. multiple subunits or chains) are 

called multimers. Specifically, it would be called a dimer if it contains two subunits, a 

trimer if it contains three subunits, and a tetramer if it contains four subunits. The 

subunits are usually related to one another by symmetry axes, such as a 2-fold axis in a 

dimer. Multimers made up of identical subunits may be referred to with a prefix of 

"homo-" (e.g. a homotetramer) and those made up of different subunits may be referred 

to with a prefix of "hetero-" (e.g. a heterotetramer, such as the two α and two β chains 

of hemoglobin) (Fig. 3.9). 

 

 

Figure 3.7: Primary, secondary, tertiary and quaternary structures of proteins (Lesk, 2002). 
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3.2. Proteins Types 

Exist four main types of proteins: fibrous, globular, membrane and disordered 

(Meyers, 2005). These types will be briefly introduced in this chapter. 

3.2.1. Fibrous Proteins 

Fibrous proteins are extremely elongated molecules whose secondary structures are 

their dominant structural motifs such as α-helixes and β-sheets (Fig. 3.8). There are 

many fibrous proteins such as those of skin, tendon, and bone, function as structural 

materials having a connective, supportive or protective role in organisms. Others have 

motive functions, such as muscle. The structural simplicity of these proteins relative to 

globular proteins makes them particularly conformable to understanding how their 

structures suit them to their biological roles. 

Fibrous molecules rarely crystallize and hence are usually not subject to structural 

determination by single-crystal X-ray structure analysis. Therefore, solid state Nuclear 

Magnetic Resonance (NMR) became a very useful as an alternative means to fiber X-

ray diffraction (Parry & Squire, 1998). 

 

 
Figure 3.8: Fibrous protein structure – triple α-helix collagen (Wikipedia site). 

 

3.2.2. Globular Proteins 

Globular proteins are somewhat water-soluble, unlike the fibrous or membrane 

proteins (Figs. 3.9). 

Comprise a highly diverse group of substances that, in their native states, exist as 

compact spheroidal molecules (globular or coiled shape). The spherical structure of 

these proteins is induced by the protein's tertiary structure or quaternary (when chains 

are involved). Enzymes are globular proteins, as are receptor and transport proteins. 

 Most of their detailed structural knowledge of these proteins, and also a large extent 

their function, has resulted from X-ray crystal structure determinations of globular 
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proteins and, more recently, from their nuclear magnetic resonance (NMR) structure 

determination (Travaglini-Allocatelli et al., 2009). 

 

 

Figure 3.9: Globular protein structure – human hemoglobin heterotetramer (Wikipedia site). 

 

3.2.3. Membrane Proteins 

Membrane proteins are operationally classified according to how tightly they are 

associated with membranes (Fig. 3.10):  

a) Integral or intrinsic proteins are permanently bound to membranes and can only 

be separated from them by treatment with agents that disrupt membranes. These 

include organic solvents and detergents. It has been shown that some integral 

proteins are exposed only to a specific surface of a membrane, whereas others, 

known as transmembrane proteins, span the membrane. Transmembrane 

proteins may have different transmembrane topology such as: 1) a single pass 

α-helix protein; 2) a multi pass transmembrane α-helical protein; 3) and finally 

multi pass transmembrane β-sheet protein. 
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b) Peripheral or extrinsic proteins are dissociated from membranes by relatively 

soft procedures that leave the membrane intact, such as exposure to high salt 

solutions, or high pH values. Peripheral proteins are stable in aqueous solution 

and do not bind to lipids. They associate with a membrane by binding at its 1) 

surface to its lipid head groups and/or 2) its integral proteins through hydrogen 

bonding and electrostatic interactions.  

 

 

Figure 3.10: Membrane proteins types: a) Integral or intrinsic proteins 1) Single pass α-helix 2) a 
multi pass transmembrane α-helical 3) multi pass transmembrane β-sheet; b) Peripheral or 

extrinsic proteins associate with a membrane by binding at its 1) surface to its lipid head groups 
and/or 2) integral proteins through hydrogen bonding and electrostatic interactions  

(University of Tokyo site). 

 
 

Membrane proteins represent between 20 and 30% of the proteomes of most 

organisms (Krogh et al., 2001), and more than 40% of these transmembrane proteins 

are the target for modern drugs (Overington et al., 2006), and yet very few structures 

of these molecules have been solved by X-ray crystallography or NMR (Carpenter et 

al., 2008). Therefore, the determination of structures for this this type of protein remains 

a challenge in large part due to the hardness in establishing experimental conditions 

where the correct conformation of the protein in isolation from its native environment 

is preserved. 

3.2.4. Intrinsically Disordered Proteins 

Intrinsically Disordered Proteins (IDP’s) lack fixed or ordered tertiary structure 

(Fig. 3.11) and are therefore composed by ensembles of conformations (Dunker et al., 

2001).  

In the first half of the 20th century, protein structures were solved by protein 

crystallography. These initial structures suggested that a fixed 3D structure might be 

required to establish biological functions of proteins (Mirsky & Paulin, 1936; Pauling 
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& Coryell, 1936). These publications solidified the central dogma “sequence → 

structure → function” in proteins.  

During the subsequent decades, however, many large protein regions could not be 

assigned in x-ray datasets, indicating that they occupy multiple positions, which 

average out in electron density maps. Additional techniques for determining protein 

structures, such as NMR, demonstrated the presence of large flexible linkers and 

termini in many solved structural ensembles. This leaded to a theory that stated that 

“proteins must be properly folded in order to perform their functions” (Anfinsen, 1973) 

achieving the Nobel in 1972.  

Around year 2000 it was recognized that not all proteins function in a folded state 

(Wright & Dyson, 1999; Dunker et al., 2001). Some proteins must be unfolded or 

disordered in order to perform their functions, and others bind to some other molecule 

such as a protein, a nucleic acid, or a membrane component (targets), and in doing so 

fold into stable tertiary structures (Bright et al., 2001). These are termed intrinsically 

disordered protein (IDP). 

IDPs therefore, defied the protein structure paradigm, where protein function 

depends on a stable 3D structure. Their most common function appears to be binding 

to specific DNA sequences to facilitate processes like replication, transcription, 

transposition and repair. However, they are also refereed in several other functions 

including intracellular signaling and in aiding other proteins and RNAs to fold to their 

native conformations (Dyson & Wright, 2005; Dunker et al., 2008). 

IDPs have been implicated recently in a number of diseases (Uversky et al., 2008). 

 

 

Figure 3.11: Intrinsically disorder protein (University of Kansas site). 
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3.3. Proteins Databases 

In this section it will be described the most relevant protein databases of sequences 

(1D) and structures (3D) for this thesis. The repositories of proteins detailed here are 

the most commonly used and are a reference by themselves. There are others 

repositories but they are not relevant for the work that will be presented later. 

3.3.1. Sequence Databases 

Swiss-Prot 
The Swiss-Prot (Bairoch & Apweiler, 2000) protein knowledge base is an annotated 

protein sequence database that is maintained collaboratively by the European 

Bioinformatics Institute (EBI) and the Swiss Institute of Bioinformatics (SIB) since 

1986. The database is non-redundant, meaning that many pages of scientific literature 

are condensed in a single entry, being aimed to provide a reliable protein sequences 

associated with high level of annotation through a process of literature-based manual 

curation. This includes descriptions of the function(s) of the protein, post-translational 

modifications, domains, similarities to other proteins (secondary and quaternary 

structure), developmental stages in which the protein is expressed, tissues locations, 

pathways, sequence conflicts and variants. 

Swiss-Prot contains data from a wide variety of organisms: as of July 2016, release 

2016_06 of 06-Jul-16 contained 551,705 annotated sequence entries (Fig. 3.12) from 

almost 13328 different species. Figure 3.13 shows a sequence entry from Swiss-Prot. 

 

 

Figure 3.12: Number of entries in Swiss-Prot over time (UniProt site) 
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ID   4EBP2_HUMAN             Reviewed;         120 AA. 
AC   Q13542; 
DT   19-SEP-2003, integrated into UniProtKB/Swiss-Prot. 
DT   01-NOV-1996, sequence version 1. 
DT   06-JUL-2016, entry version 132. 
DE   RecName: Full=Eukaryotic translation initiation factor 4E-binding protein 2 {PubMed:7935836}; 
DE            Short=4E-BP2 {ECO:0000303|PubMed:7935836}; 
DE            Short=eIF4E-binding protein 2 {ECO:0000303|PubMed:7935836}; 
GN   Name=EIF4EBP2 {ECO:0000312|HGNC:HGNC:3289}; 
OS   Homo sapiens (Human). 
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
OC   Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 
OC   Catarrhini; Hominidae; Homo. 
OX   NCBI_TaxID=9606 {ECO:0000312|EMBL:AAH05057.1}; 
RN   [1] 
RP   NUCLEOTIDE SEQUENCE [MRNA], AND INTERACTION WITH EIF4E. 
RC   TISSUE=Placenta; 
RX   PubMed=7935836; DOI=10.1038/371762a0; 
RA   Pause A., Belsham G.J., Gingras A.-C., Donze O., Lin T.-A., 
RA   Lawrence J.C. Jr., Sonenberg N.; 
RT   "Insulin-dependent stimulation of protein synthesis by phosphorylation 
RT   of a regulator of 5'-cap function."; 
RL   Nature 371:762-767(1994). 
RN   [2] {ECO:0000312|EMBL:AAP35981.1} 
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA]. 
RA   Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S., 
RA   Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y., 
RA   Phelan M., Farmer A.; 
RT   "Cloning of human full-length CDSs in BD Creator(TM) system donor 
RT   vector."; 
RL   Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases. 
RN   [3] {ECO:0000312|EMBL:AAH05057.1} 
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA]. 
RC   TISSUE=Lung {ECO:0000312|EMBL:AAH05057.1}, and 
RC   Uterus {ECO:0000312|EMBL:AAH50633.1}; 
RX   PubMed=15489334; DOI=10.1101/gr.2596504; 
RG   The MGC Project Team; 
RT   "The status, quality, and expansion of the NIH full-length cDNA 
RT   project: the Mammalian Gene Collection (MGC)."; 
RL   Genome Res. 14:2121-2127(2004). 
RN   [4] 
RP   PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-37 AND THR-46, AND 
RP   IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. 
RC   TISSUE=Cervix carcinoma; 
RX   PubMed=18669648; DOI=10.1073/pnas.0805139105; 
RA   Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., 
RA   Elledge S.J., Gygi S.P.; 
RT   "A quantitative atlas of mitotic phosphorylation."; 
RL   Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008). 
RN   [5] 
RP   IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. 
RX   PubMed=19413330; DOI=10.1021/ac9004309; 
RA   Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., 
RA   Mohammed S.; 
RT   "Lys-N and trypsin cover complementary parts of the phosphoproteome in 
RT   a refined SCX-based approach."; 
RL   Anal. Chem. 81:4493-4501(2009). 
RN   [6] 
RP   PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-37, AND IDENTIFICATION 
RP   BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. 
RC   TISSUE=Leukemic T-cell; 
RX   PubMed=19690332; DOI=10.1126/scisignal.2000007; 
RA   Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., 
RA   Rodionov V., Han D.K.; 
RT   "Quantitative phosphoproteomic analysis of T cell receptor signaling 
RT   reveals system-wide modulation of protein-protein interactions."; 
RL   Sci. Signal. 2:RA46-RA46(2009). 
RN   [7] 
RP   IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. 
RC   TISSUE=Erythroleukemia; 
RX   PubMed=23186163; DOI=10.1021/pr300630k; 
RA   Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J., 
RA   Mohammed S.; 
RT   "Toward a comprehensive characterization of a human cancer cell 
RT   phosphoproteome."; 
RL   J. Proteome Res. 12:260-271(2013). 
RN   [8] 
RP   DOMAIN, INTERACTION WITH EIF4E, AND MUTAGENESIS OF 54-TYR--LEU-59. 
RX   PubMed=24207126; DOI=10.1016/j.str.2013.08.030; 
RA   Lukhele S., Bah A., Lin H., Sonenberg N., Forman-Kay J.D.; 
RT   "Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a 
RT   dynamic bipartite interface."; 
RL   Structure 21:2186-2196(2013). 
RN   [9] 
RP   X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 47-65 IN COMPLEX WITH EIF4E, 
RP   INTERACTION WITH EIF4E, AND PHOSPHORYLATION. 
RX   PubMed=21661078; DOI=10.1002/psc.1384; 
 
 

Figure 3.13: Swiss-Prot text file (partial) for protein Q13542  
(to see the full file please consult Supplementary File I) 
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TrEMBL 
The production of a fully curated Swiss-Prot entry is a highly labor-intensive 

process and is the rate-limiting step in the growth of the database. This is because, with 

the increased data flow from genome projects, new sequences are submitted more 

quickly than they can be manually annotated and integrated into the database. To 

address this, a supplement to Swiss-Prot was created in 1996 to fulfill the vital role of 

making new sequences available as quickly as possible while preventing the dilution of 

the high quality annotation found in Swiss-Prot. This supplement, TrEMBL 

(Translation of EMBL nucleotide sequence database) (Bairoch & Apweiler, 2000), 

consists of computer-annotated entries derived from the translation of all coding 

sequences of nucleotide sequence in EMBL (Cochrane et al., 2008) / GenBank (Clark 

et al., 2016) /DNA Data Bank of Japan (DDBJ) (Mashima et al., 2016) databases that 

are not yet included in Swiss-Prot. To ensure completeness, it also contains a number 

of protein sequences extracted from the literature or submitted directly by the user 

community. TrEMBL follows the Swiss-Prot format and conventions as closely as 

possible.  

In July 2016 TrEMBL holds 65.378.749 (Fig 3.14) proteins automatically annotated 

and not reviewed. 

 

 

 

Figure 3.14: Number of entries in TrEMBL over time (UniProt site) 
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PIR-PSD 
The Protein Identification Resource (PIR) Protein Sequence Database (PSD) (Wu 

et al., 2003) is a protein information resource initiated in 1961 by the National 

Biomedical Research Foundation (in USA), the Martinsried Institute for Proteins 

Sequence (in Europe), and the Japan International Protein Information Database (in 

Japan). It compiles comprehensive, non-redundant protein sequence data, organized by 

superfamily and family, and annotated with functional, structural, bibliographic and 

genetic data. The database also contains the name and classification of the protein, the 

name of the organism in which it naturally occurs, literature references, function and 

general characteristics of the protein, sites and regions at the sequence of biological 

interest. In 2002, PIR along with its international partners, EBI and SIB, were awarded 

a grant from National Institutes of Health (NIH) and other five institutions to create 

UniProt, a single worldwide database of protein sequence and function, by unifying the 

PIR-PSD, Swiss-Prot, and TrEMBL databases. 

UniProt 
In 2004 the Swiss-Prot, TrEMBL and PIR databases have  joined forces to form the 

United Protein Databases (UniProt) (Apweiler et al., 2004). UniProt is funded by the 

US National Human Genome Research Institute, National Institutes of Health (NIH), 

European Commission, Swiss Federal Government, cancer Biomedical Informatics 

Grid (caBIG), and the Department of Defense (DOD).  

Generation of genome sequences for many organisms is at peak actually, most 

notably human sequences, attention is now turning to the identification and function of 

proteins encoded by these genomes. A complete and up-to-date protein database is 

essential for the increasingly information dependent biological and biotechnological 

research, especially in proteomics. The long term objective of UniProt is therefore, to 

create, maintain and provide a stable, comprehensive, fully classified, and accurately 

annotated protein sequence knowledge base, with extensive cross-references. 

3.3.2. Structure Databases 

PDB 
Protein Databank (PDB) (Bernstein, 1977) started by the late 1971 at Brookhaven 

National Laboratories, New York, USA. This database keeps experimentally derived 

three-dimensional structures of proteins determined by both X-Ray, Nuclear Magnetic 
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Resonance (NMR) and (more recently) Cryo-Electron Microscopy (cryo-EM) since 

then.  

In 2005 the Research Collaboratory for Structural Bioinformatics (RCSB), the 

Protein Databank (PDB), the European Bioinformatics Institute (EBI) – PDB Europe 

(PDBe), and the Protein Data Bank Japan (PDBj) have formed the worldwide Protein 

Data Bank (wwPDB) (Berman et al., 2007), with the goal of producing a unified 

archive. 

The wwPDB is now managed by RCSB, a distributed organization based at Rutgers 

University, in New Jersey; The San Diego Supercomputer Center in California; and the 

National Institute of Standards and Technology in Maryland, all in the USA. Some 

depositions are done to sites in the UK (PDBe) and Japan (PDBj). A single archive of 

annotated data is managed at RCSB. Mirror sites are available worldwide. Collectively, 

the RCSB provides the central PDB data repository. The other groups contribute to the 

deposition and annotation effort, but the RCSB is the only with “write privileges” for 

the publicly distributed archive, in order to help reduce the chances of creation of 

divergent versions.  

PDB contains in July 2016 the total amount of 120262 biological structures (Fig. 

3.15) and for each protein, a general header is provided followed by a list of all ATOMS 

present in the structure, with three spatial coordinates to indicate their position. Figure 

3.16 displays a small sample of such a file. 

  

  
Figure 3.15: Number of entries in PDB over time (PDB site data) 

 



 

62 

 
Figure 3.16: PDB file for intrinsically disordered protein 2mx4.pdb first 50 ATOM 3D 

coordinates (to see the full file please consult Supplementary File II) 

3.3.3. Homology Databases 

A Multiple Sequence Alignment (MSA) normally is used to detect homology 

structure among sequences based on database homologues search methods like BLAST 

and PSI-BLAST. In this section I’m going to present how these methods can be used 

to reduce the gap size between 3D databases like PDB (too small) in comparison with 

the databases size of known sequence information (1D) that have 1000 times more 

entries altogether like UniProt. 

Usually, many proteins in the database of known sequences are similar in sequence 

to a protein of known structure and this fact can be exploited to close the size gap 

between the two databases. The technique used to close the gap is homology derived. 
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HSSP		

Homology-derived StructureS of Proteins (HSSP) was a derived database merging 

structural (2D/ 3D) and sequence (1D) information. For each protein of known 3D 

structure from the PDB, the database had a text file with a Multiple Sequence 

Alignment (MSA) of all homologues, properly aligned to the PDB protein. Where 

homologues were very likely to have the same 3D structure as the PDB protein to which 

they have been aligned. As a result, the database was not only a database of sequence 

families aligned, but it was also a database of implied secondary and tertiary structures. 

It is confirmed that structural homology can be inferred from the level of sequence 

identity, and that structural homology depends strongly on the length of the alignment 

(Sander and Schneider, 1991). The selection of sequence alignments with significant 

sequence identity (homology) to proteins of know structure leaded to a database of 

homology-derived protein structures several times larger than PDB. The intent of HSSP 

was to reduce the gap size between 3D protein databases like PDB (too small, only 694 

entries in 1991) compared with the 1D database size of known sequences (Swiss-Prot) 

(around 10.000 sequences also in 1991).  

 

Homology Thresholds 

The transfer of structure information to a potentially homologous protein is 

straightforward when the sequence identity is high and extended in length, but the 

assessment of the structural significance can be difficult when sequence identity is weak 

or restricted to a short region. This is the key problem and in short what it says is, the 

shorter the length of the alignment, the higher the level of identity required for structural 

significance. 

To solve this problem, it was needed to calibrate the length dependence of structural 

and sequence identity. Empirically, this can be done by deriving from a database of 

known structures a quantitative description of the relationship between sequence 

identity, structural identity and alignment length. The resulting definition of a length-

dependent homology threshold can provide the basis for reliably deducing the structure 

of globular proteins likelihood down to the size of domains and fragments. Previously, 

the relation between the sequence identity and a three dimensional structure for the 

entire globular proteins was quantified (Chothia & Lesk, 1986). 
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With a clear idea of structural homology importance, we are now in a position to 

define a sequence identity cutoff above which structure homology can be inferred. For 

each alignment length, the cutoff is determined by the inspection of the 

Structure_Identity/Sequence_Identity scatter plot (Fig. 3.17) or histograms (Fig. 3.18), 

where above that sequence identity value (arrow in Fig. 3.18) the alignments are 

structurally homologous. 

 
 

Figure 3.17: Color view. Calibration of the homology threshold is based on this 3D scatter plot of 
sequence identity (Y, range 0-100%), structure identity (Z, range 0-100%) and alignment length 

(X, range 0-150 residues) for pairwise protein sequence alignments (Schneider, 1994). 

 
In Fig. 3.17 each point represents the alignment of two protein fragments, each one 

from a protein of known 3-D structure produced by FASTA (Pearson & Lipman, 1988). 

Red points are not identical pairs in structure (bad pairs), blue points are pairs identical 

in structure (good pairs), and intermediate colors for other values of structural 

agreement. The rectangular blue slice represents good pairs; they occur for almost all 

sequence identity and length values. The absence of (yellow and red) points in the top 

left and front shows that no pairs with sufficiently high sequence identity have low 

structure identity. Sequence identical oligopeptides (5-10 residues long) without 

identical local structure are red points at the front top right. Homologous protein pairs 

with about 150 residues of length are blue points at the back top left (Schneider, 1994). 
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Figure 3.18: Structure identity implied by sequence identity, with dissimilar (red)/similar (green) 

dividing line at 70% identity of secondary structure symbols (A,R,N,...) (Schneider, 1994). 

 

Detailed justification for the particular values of the homology threshold (arrow) is 

provided by histograms projections of Fig. 3.17 data: frequency of structurally 

identical/not identical alignments as a function of identical residues percentage in the 

alignment, for alignments of length 79-150 residues (Fig. 3.18). The threshold is perfect 

if all fragments pairs to the right of the threshold arrow are similar in structure (green 

bars) without intrusion by structurally dissimilar pairs (red bars). The strong mixture of 

red and green bars to the left of the arrow indicates that below the threshold one cannot 

use sequence identity percentage as indicator of structure identity. The particular choice 

of threshold represents an attempt to divide the range of sequence identity values into 

a ‘do not know’ region (left) and a ‘sequence identity implies structure identity’ region 

(right). 

The resulting homology cutoff curve (Fig. 3.19) is a strongly varying function of 

alignment length up to 70-80 residues. For example, for alignment length 30, sequence 

identity has to be at least 43% to infer structural homology. For very long alignment 

lengths 25% sequence identity structural homology cannot be asserted nor excluded – 

the region of weaker sequence identity is a “don’t know” region (mixture of squares 

and crosses under the curve in Fig. 3.19) 
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Figure 3.19: Homology threshold for structurally reliable alignments as a function of alignment 
length. Each data point represents an alignment between two fragments from points of known 

structure. The homology threshold (curved line) divides the graph into a region of safe structural 
homology (upper right) where essentially all fragment pairs are observed to have good structural 
identity (crosses, secondary structure identity above 70%) and a region of homology unknown or 
unlikely (lower left) where some fragment pairs are structurally similar (crosses) and some are 

not (squares, secondary structure identity below 70%) (Sander & Schneider, 1991). 

 

In Homology threshold for structurally reliable alignments as a function of the 

alignment length, each data point represents an alignment between two fragments from 

proteins of known structure. The graph of Fig. 3.19 is a two dimensional projection of 

figure 3.17 onto the plane of sequence identity/alignment length, with structural identity 

collapsed to a one bit yes/no description (crosses/squares). The data points are a subset 

of the data in Figure 3.17. The homology threshold (curved line) divides the graph into 

a region of safe structural homology (upper right) where essentially all fragment pairs 

are observed to have good structural identity (crosses, secondary structure identity 

above 70 %) and a region of unknown or unlikely homology (lower left) where some 

fragment pairs are structurally similar (crosses) and some are not (squares, secondary 

structure identity below 70 %). The histogram of figure 3.18 corresponds to a vertical 

slice of this graph in the length range 79-150 residues, summing all available data points 

in that length range. 

A sequence alignment between two proteins is considered to imply structure 

homology if the sequence identity is equal to or above the homology threshold t in a 
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sequence region of given length L. For example, an alignment with 30% sequence 

identity over a length of 60 residues implies homology while one with 30% sequence 

identity over a length of 40 residues does not. The threshold values t(L) were derived 

from an analysis of thousands of aligned fragment pairs from the PDB and can be 

represented by the formula 

 

𝑡 𝐿 = 	
−,																																							𝐿 < 10	

																290.15	 ∗ 	𝐿	 − 0.562			10 ≤ 	𝐿 ≤ 80						
24.8,																																		𝐿 > 80	

(Equation 3.1) 

 

 

where L is in the range 10-80 residues. For alignments shorter than 10 residues any 

value of sequence identity appears to be consistent with any degree of structure identity. 

Alignments longer than 80 residues have the asymptotic threshold of about 25 % 

identical residues.  

 

Given a safe structural homology threshold, the database of homology derived 

protein structures production can occur, where for each protein of known structure in 

PDB it is performed a search in the sequence database for structurally significant 

alignments.  

 
MaxHom Algorithm 

The two main requirements for a MSA algorithm are 1) the calculation of an optimal 

alignment; 2) with the lowest possible computational expense. In theory, as well as in 

practice, making alignments with these two requirements that are mutually exclusive 

requires a compromise to find the optimal alignment, especially in the computation of 

a MSA of several hundreds or thousands of sequences, a fast alignment algorithm is 

required. 

Next it will be described the MaxHom algorithm for multiple sequence comparison 

(Sander & Schneider, 1991; Schneider, 1994). It is a dynamic programming algorithm 

extended with position-dependent weights applied to identity matrix cell for the amino 

acids in question. 

The commonly used substitution matrices essentially mirror the exchange of amino 

acids. These substitution matrices (Dayhoff et al., 1978) thus give an average 

probability in the "universe" of known protein sequences. The result of a MSA is 
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position dependent information of a protein family. This can be either in the form of a 

consensus sequence or as a measure of preservation. In the conventional methods, this 

information is usually calculated after the alignment. The method described here uses 

this protein family-specific information to build the MSA. The position-dependent 

conservation weights cw(i) are defined as follows: 

 

 

𝑐𝑤 𝑖 = 7 8,9 .:(8<,9<)>
?,@AB

7?,@>
?,@AB

       (Equation 3.2) 

𝑤8,9 = 1 −	 C
CDD

.%𝑖𝑑8,9         (Equation 3.3)  

 

Where: 
      cw(i): conservation weight at position i 

 N: number of alignments 

 k,l: index of sequences in multiple alignment. 

 wk,l: weighing factor of a sequence pair  to correct the unequal distribution in “sequence space”. 

 s(ki,li): similarity value of the amino acid sequences of the pair k and l, at position i 

 

  

In the calculation of the conservation weights are only those alignments that are 

above the derived homology curve, where an additional security area of 5% below is 

used. These conservation weights are updated after each pairwise alignment is 

performed. The formulation of the dynamic programming algorithm is as follows (Fig. 

3.20):  

 

F(i,j) = max[L(i,j), F(i-1,j-1) + cw(i)*s(xi,yj), U(i,j), 0]      (Equation 3.4) 

 
When calculating a multiple sequence alignment, these weights at the beginning of the 

procedure all have the value of 1.0, after each pairwise alignment, they are recalculated 

and they are used for each subsequent pairwise comparison. In the case of the HSSP 

database, there is a sequence whose 3D structure is known. This sequence therefore has 

more information content and it is used as the reference sequence.  

In MaxHom the similarity matrix used was the identity matrix. 
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Figure 3.20: Schematic representation of the MaxHom dynamic programming algorithm for 
pairwise alignment. The upper part is a two sequence comparison using an alignment matrix, the 

bottom is a magnification and shows a detailed description of an iteration. In any step of the 
alignment calculation exists 6 values to be compared (a comparison is represented through an 

arrow). In the figure it is displayed 5 comparisons, the sixth is the comparison with zero. The best 
value of the alignments is set into cell F(i,j). The best values for either horizontal or vertical 

alignments are stored into temporary auxiliary fields L(i,j) and U(i,j) (Schneider, 1994). 
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Figure 3.21 is a schematic representation of the algorithm, where in a first run, 

sequences are sorted by similarity with the reference sequence, and weights are 

updated. To avoid bias in the pairwise alignments, after processing the whole list of 

homologues and fixing weights, a second run is made in which all pairwise alignments 

are compared with the same conservation weights. It is therefore a three-step algorithm:  

• Pairwise alignments of potentially homologous sequences, using the 

conservation weights of the previous pairwise alignments;  

• Fix of the conservation weights and normalize;  

• Repeat all the pairwise alignments with the fixed conservation weights.  

 

 
Figure 3.21: Schematic representation of the MaxHom extended dynamic programming 

algorithm with conservation weights (Schneider, 1994). 
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Figure 3.22 shows the development of position-dependent conservation weights 

during the alignment procedure. It was clear that after about 10 to 15 pairwise 

alignments, the conservation weights stabilization was achieved and positions with a 

high conservation showed high conservation values (weights).  

An important side effect of this procedure was the relative insensitivity concerning 

the order of the sequence list at the beginning. If the list order of a protein family that 

contains around 15-20 sequences was reversed, no major changes were observed in the 

values of the final conservation weights (Schneider, 1994).  

 

 

 
 
 

Figure 3.22: Evolution of conservation weights. The position-dependent conservation weights 
changes during the alignment procedure for the Crambin protein and its homologous sequences. 
At the beginning of the algorithm, each sequence position has a weight of 1.0. After a pairwise 

alignment, new weights are re-calculated and used for the next pairwise alignments. In this 
example, after approximately 10-15 pairwise alignments stable values for the weights were 

achieved. Position weights close to 1.0 indicate protein family positions that are conserved, while 
the ones with low values indicate positions that aren’t conserved (Schneider, 1994). 
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A measure of sequence similarity, called weighted similarity was also introduced. This 

measure was calculated by using the exchange matrix for amino acids (in this case 

identity matrixes, but PAM250 (Dayhoff et al., 1978) or similar were also possible) 

multiplied by the obtained conservation weights (Fig. 3.22).  

 

𝑤𝑠𝑖𝑚 =
I7 J .:(KL,9L)

M
LA<

I7 J .:(KL,,KL)
M
LA<

				(Equation 3.5) 

 
 
Where: 	

wsim: weighted similarity (similar to a weighted alignment);  
p: position in the sequence alignment; 
i: start position alignment with respect to the test sequence;  
j: end position alignment in relation to the test sequence;  
cw(p): conservation weight at the position p;  
t,l: sequences index. The t denotes the test sequence being l the comparison sequence;  
s(tp,lp): similarity value of the amino acid pair at the position p in the sequences t and l; 	
s(tp,tp): similarity value of the amino acid pair at the position p in the test sequence t himself  

 

 

For example, if we have two sequences with an identity of 25% on a length of 100 

alignment positions with as test sequence, and a weighted identity of 35% for the first 

and 14% or lower for the second, it can be assumed that the first sequence belongs to 

the test sequence protein family, while the second sequence for sure is a non-related 

family sequence with the test sequence. The second sequence would have the same 

number of identical amino acid pairs, but these are majority in positions where the 

protein family shows high variability or low conservation. 

Technically the algorithm MaxHom was a kind of a profile implementation. The 

values were calculated in recursive steps of the dynamic programming algorithm 

described with position-dependent values or weights. According with the authors this 

was a very flexible and adaptive algorithm, not only because of the information that 

was used (just sequence information), but where structural information could also be 

included. Widening the concept above it opened the possibility for a novel alignment 

algorithm for comparing two profiles (but was never implemented – Schneider personal 

communication). A schematic representation of the alignment program developed is 

shown in Figure 3.23. 
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Figure 3.23: Schematic representation of the alignment algorithm. The simplest version of a 
program collapses sequence profile of pure sequence information, while other merely has a 

position independent exchange matrix (e.g. identity matrix). All other values are constant, such 
as conservation weights. In this form, simple pairwise sequence comparisons can be carried out 
as well as, profile comparison to a sequence or profile-profile comparisons (never implemented). 

The actual alignment as a square matrix that is shown in the foreground (Schneider, 1994). 

 
 
Database Search with MaxHom 

The database search using MaxHom can be described as follows: Each sequence 

alignment is the result of a pairwise comparison; The end result is a multiple sequence 

alignment; The search performed on protein sequence database can be synthesized in 

several steps. 

(1) Rapid scan of the database using FASTA (Pearson & Lipman, 1988) with 

sufficiently low identity score cutoff yields a list containing all proteins potentially 

homologous to the reference PDB protein. 

(2) A more refined proteins comparison to the ones present in the above list using 

MaxHom and retaining the 5 best distinctly different alignments for each pairwise 

comparison, yields an improved list of candidate alignments (Schneider, 1994).  

(3) Only alignments with identity scores above the significance threshold (Eq. 3.1) 

are retained. 

(4) All alignments are reported and registered relative to a single instance of the 

PDB reference protein. 
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Comment  

In MaxHom/HSSP (Sander & Schneider, 1991; Schneider, 1994) it was performed 

an empirical determination of homology thresholds by studying thousands of sequence 

alignments within the PDB database. Each protein from a selected set of high and low-

resolution protein structures is compared with all others from the set. The threshold for 

structural homology it was used to improve the selection of potential homologues in 

sequence database searches. Search methods like FASTA or BLAST sort the best hits 

on total similarity, careless of length. The suggested homology threshold curve 

presented in (Sander & Schneider, 1991; Schneider, 1994) can be used to order the 

database matches by the extent to which their score exceeds the threshold, in 

appropriate units, introducing more diversity and improving sensitivity in homologue 

selection. 

 
HSSP2 

In the HSSP2 (Rost, 1999) the following main questions were investigated: Do false 

positives increase more rapidly in the twilight zone (20-35% sequence identity)? Was 

the curve defined by (Sander & Schneider, 1991) still valid in 1999 with the increase 

size of the databases? Would using sequence similarity rather than identity improve 

accuracy (as speculated by (Sander & Schneider, 1991))? 

The results of (Rost, 1999) verify, partially, earlier work based on a 1000-fold larger 

data set (Sander & Schneider, 1991). The main novel aspects were: 

(i) A refinement of the threshold for identity (Fig. 3.24); 

(ii) A definition of the threshold for similarity (Fig. 3.25); 

 

Homology Thresholds 

Protein databases are biased towards particular protein families. To reduce this bias, 

analyses are usually restricted to representative data sets (Hobohm et al., 1992). Rost 

chose the maximal set of sequence-unique proteins (792 in total) of known structure 

available in early 1997 (Holm & Sander, 1996). ‘Sequence unique’ was defined as ‘no 

pair in the set falls below the HSSP-curve (Eq. 3.1) by (Sander & Schneider, 1991; 

Schneider, 1994). As a rule-of-thumb, no pair had more than 25% pairwise sequence 

identity. Each of these proteins was aligned against the subset of PDB contained in the 

early 1997 release of the FSSP database of protein structure alignments (Holm & 

Sander, 1997). This subset amounted in total to about 5646 protein chains. Obviously, 
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the second step (792 versus 5646) reintroduced bias into the results. However, aligning 

the 792 sequence-unique pairs against themselves would not have yielded any result for 

most of the twilight zone analyzed there. Thus, 792 versus 5646 was the best 

compromise in reducing bias and monitoring the biased region. The resulting test set 

was the largest possible set of proteins for which structural information was available 

(and thus false and correct hits could be automatically distinguished). 

 

The problems of the original HSSP-curve (Equation 3.1) considering the new and 

larger dataset were: 

i) A threshold of 25% was not reasonable for an alignment length below 150-200 

residues; 

ii) Above, an alignment length of about 100 residues the derivative of the curve 

separating true and false positives should be lower than at lengths below 80. 

Rost attempted to solve these problems by defining a new curve for separating true and 

false positives (Eq. 3.6). 

 

tI(L) = 480 * L -0.32(1+exp(-L/1000)) (Equation 3.6) 

 

where L gave the number of residues aligned between two proteins; tI defined the cutoff 

percentage of identical residues over the L aligned residues. The constraints in visually 

selecting the final curve were: 

i)  to maintain the functional form defined by equation 3.1; 

ii) to hit the 100% mark at alignments that are too short to reveal anything about 

structural similarity (11 residues); 

iii) to saturate at levels around 20% sequence identity (reached for lengths of 300); 

iv) to roughly reflect the observed gradient. Saturation for long alignments was 

realized by the functional form of the exponent (the term exp(–L/1000) resulted 

in an exponential decay). This ‘saturation’ constraint also afflicted the particular 

value of the factor (0.32 rather than 0.562 (Eq. 3.1) as suggested by the 

distribution of the data, Fig. 3.24). 
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Figure 3.24: A) Pairwise sequence identity versus alignment length for true positives. The 
original HSSP-curve (Sander & Schneider, 1991) (triangles, Eq. 3.1) appeared to fit the true 

positives (homologues) better than the false positives B). In contrast, the curve proposed by Rost 
(circles, Eq. 3.6) was more conservative in excluding false positives (Rost, 1999). 

 
Pairwise sequence identity was defined by the percentage of residues identical 

between two aligned sequences, and pairwise sequence similarity was defined by the 

percentage of residues similar between two sequences. Similarity scores depend on the 

particular metric used to capture physicochemical properties of amino acids. 

Consequently, levels of similarity are not directly comparable between different 

matrices. In (Rost, 1999)  it was used the McLachlan metric (Gribskov et al., 1987; 

McLachlan, 1971). 

The original HSSP-curve was derived for sequence identity, not for sequence 

similarity (Sander & Schneider, 1991). The functional dependence between similarity 

and length appeared comparable to the one between identity and length (Rost, 1999). 



 
 
 

77 

This prompted a similar definition for the separation between true and false positives 

based on similarity: 

 

tS(L) = 420 * L -0.335(1+exp(-L/2000)) (Equation 3.7) 

 

where L gave the number of residues aligned between two proteins; tS defined the cutoff 

for the percentage of residue similarity over the L aligned residues (Figure 3.25). 

 

 
 

Figure 3.25:  Pairwise sequence similarity versus alignment length. A) Correctly detected 
structural homologues; B) false positives. Open circles, original HSSP-curve (Sander & 

Schneider, 1991); triangles, Rost-curve (Rost, 1999).  
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The new curves for length-dependent cutoffs in sequence identity (Eq. 3.6) and 

similarity (Eq. 3.7) resulted in clearly lower false positive rates (higher accuracy) than 

the original HSSP curve. Furthermore, at any level of true positives detected, the 

number of false positives was smaller for the new curves (Eqs. 3.6 and 3.7) than for the 

original HSSP curve (Eq. 3.1). 

 

MaxHom2 Algorithm 

MaxHom2 algorithm is the previous MaxHom arranged with the threshold curve 

defined in equation 3.7. 

 

Database Search Algorithm  

MaxHom2 basically uses the multiple alignment method MaxHom (Sander & 

Schneider, 1991; Schneider, 1994) , together with the new homology threshold curves 

proposed by (Rost, 1999) (Figs. 3.24 and 3.25), and other minor improvements. A 

database search using it is outlined below: 

1) For each structure in the PDB, an initial list of sequence hits is generated by 

running BLASTP (protein-protein BLAST) (Altschul, 1990; Altschul et al., 

1997) against SWALL (RostLab internal sequences database). Initially, a 

relatively unrestrictive threshold identity is used, so that even relatively poor 

matches are retrieved. 

2) All matching sequences are aligned with the structure using MaxHom 

alignment, based on the Smith-Waterman algorithm (Smith & Waterman, 

1981), and modified as described by (Sander & Schneider, 1991). Similarity is 

measured using the McLachlan matrix (McLachlan, 1971). 

3) The similarity-based homology threshold of (Rost, 1999) is used to determine 

the sequences that can safely be assumed (with 95% confidence) to have the 

same fold as the structure, within the aligned regions. 

4) Sequences that fall inside the threshold are used to generate a profile based on 

the sequence family. 

5) Steps 2 to 4 are repeated, this time using the generated profile as a reference.  

6) A final list of aligned sequences is obtained; the final alignment incorporates 

information about all related sequences. 

 
 



 
 
 

79 

Comment 

The combination of the MaxHom algorithm with equation 3.7 threshold curve 

(refinement) was denominated MaxHom2 and the resulting database denominated 

HSSP2. 

 

These refinements were done with the intention of introducing more diversity and 

improving sensitivity in homologue selection, where an accurate and sensitive 

distinction between true and false positives is important for automatic database 

searches. The curves shown here (Eqs. 3.6 and 3.7) proved slightly more sensitive 

(higher coverage) and more accurate than the previously proposed curve (Sander & 

Schneider, 1991). The accuracy increased significantly by applying the ‘more-similar-

than-identical’ rule. However, accuracy was gained at the expense of coverage. Which 

is more important? Clearly, the evolutionary information contained in multiple 

alignments was the single most important contribution to improving protein structure 

prediction in the 90’s (Rost & Sander, 1996; Rost & O’Donoghue, 1997). Was the gain 

by increased diversity more important than the loss of accuracy when using alignments 

for structure prediction? The answer depends on the particular prediction goal. For 

example, secondary structure prediction diversity is more important than accuracy 

(cutoff at 25% versus that at 30%), whereas for the prediction of solvent accessibility 

the opposite is true (Schneider personal communication). Furthermore, as databases 

grow coverage may be less important than accuracy. Irrespective of individual 

preferences, the sharper the knife cutting between true and false positives, the better 

(Rost, 1999). 

 

Figure 3.26 illustrates the balance of accuracy and coverage. Using the same data 

set as in Figure 3.25, the MaxHom2 method was compared with other methods, such 

as BLASTP and PSI-BLAST (Altschul et al., 1997). MaxHom2 outperformed PSI-

BLAST for all high accuracy levels. For example, at 95% accuracy, MaxHom2 finds 

about 14% of all possible true positives. By comparison, PSI-BLAST finds only about 

9%. 
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Figure 3.26: Balance of accuracy and coverage (adapted from (Rost, 1999)) 

 
 
PSSH 

The Protein Sequence-to-Structure Homologies (PSSH) database derived from 

HSSP2 database (Rost, 1999), was an improved version of the HSSP database (Dodge 

et al., 1998). Whereas each HSSP entry lists all protein sequences related to a given 3D 

structure, PSSH is the ‘inverse’, with each entry listing all structures related to a given 

sequence. Two other tables were derived at that time: HSSPchain, in which each entry 

lists all sequences related to a given PDB chain, and HSSPalign, in which each entry 

gives details of one sequence aligned onto one PDB chain. That re-organization made 

it easier to navigate from sequence to structure, and mapping sequence features onto 

3D structures (Fig. 3.27). 

In September 2002, PSSH provided structural information for over 400.000 protein 

sequences, covering 48% of SWALL (RostLab internal sequences database) and 61% 

of Swiss-Prot sequences; HSSPchain provided sequence information for over 25000 

PDB chains, and HSSPalign hold it over 14 million sequence-to-structure alignments. 

The databases were accessed via SRS 3D (O’Donoghue et al., 2004), an extension to 

the SRS (Etzold & Argos, 1993) system. 
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Figure 3.27: Schematic representation of the derivation of the PSSH-related databases. For each 
PDB entry, all related sequences in SWALL (RostLab group internal sequences database) are 
aligned using MaxHom2 and the alignment details are stored as one entry in HSSP2. For each 
PDB chain, it was stored additional information in an intermediate database, PDBequiv. Each 
HSSP2 entry was then processed to generate the remaining databases: all sequences that align 
onto one PDB chain were stored as one HSSPchain entry; each individual alignment in HSSP2 

were stored as one entry in HSSPalign, with additional information extracted from PDBequiv. As 
each HSSP2 alignment was read, it was also appended to a separate file named by the sequence 

accession number, hence accumulating the PSSH database (Schafferhans et al., 2003). 

 

Ten years later (in 2012) it was made a comparison between MaxHom2 

(HSSP2/PSSH algorithm), PSI-BLAST (Altschul et al., 1997), PFAM (Punta et al., 

2012) AND HHBlits (Remmert et al., 2011) to evaluate the performance of the former 

over the COPS dataset (Suhrer et al., 2009) and using TOPOFIT (Ilyin et al., 2004) as 

alignment gold-standard applying sensitivity (denotes the number of correct aligned 

columns compared to the structural alignment over the length of the sequence 

alignment) and specificity (denotes the number of correct aligned columns compared 

to the structural alignment over the length of the structural alignment). The conclusion 

was that sensitivity lied only at 5% for MaxHom2/HSSP2 (Fig. 3.28A) (Wellmann, 

2012). Figure 3.28B reveal that in direct comparison MaxHom2/HSSP2 lost its higher 
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specicity to HHblits. These results lead to the conclusion that MaxHom2 filtered out 

the "hard cases" and only "easy cases" remained, which results in an overall high ratio 

of good alignments. Furthermore, the computational overhead of the employed 

MaxHom2 algorithm to compute alignments make the continuation of HSSP2/PSSH 

updates questionable (as a reminder: it was called HSSP, HSSP2 and PSSH databases, 

but in fact, they were databanks of text files).  

This showed that MaxHom2 was clearly outdated and could not be relied on 

anymore. 

 

 

Figure 3.28: A) Sensitivity, B) Specicity of aligned PDB sequences for each alignment method. 
HHblits outperforms other methods, producing more alignments with higher quality based on all 

scores, followed next by Pfam, PSI-BLAST and HSSP2 (Wellmann, 2012). 

 
 

A last and final attempt was made by me to validate the reliability of 

HSSP2/MaxHom2 in the twilight zone using DAPS (Database of Aligned Protein 

Structures) (Mallick et al., 2001).  DAPS is a subset of FSSP (Holm & Sander, 1994) 

which contains alignments from those entries which have a low sequence identity 

percentage (25% or less). The DAPS was composed of 252 homologues pairwise 

alignments, but MaxHom only detected 47 homologues of the 252. PSI-BLAST 

detected 7 more homologues in a total of 54.  

 

Figure 3.29 shows red points (PSI-BLAST pairwise alignments), green points 

(MaxHom alignments), red and green numbers – near to the previous points (that 

identify the DAPS alignment number), and finally color lines (green – MaxHom 

pairwise alignment better compared with PSI-BLAST alignment; red – MaxHom worst 

compared with PSI-BLAST alignment; yellow – Irrelevant according with Schneider, 
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because even MaxHom alignments were better, Schneider wanted an increase in length, 

which didn’t occurred in that cases). 

The DAPS benchmark results performed by me together with the previous ones 

(Wellmann, 2012) certified that MaxHom was not reliable. 

  

 

Figure 3.29:  Displays 47 MaxHom alignments and 47 PSI-BLAST alignments, where: red points 
(PSI-BLAST pairwise alignments); green points (MaxHom alignments); red and green numbers 
(that identify the DAPS alignment number); and finally color lines (green – MaxHom pairwise 
alignment better compared with PSI-BLAST alignment; red – MaxHom worst compared with 

PSI-BLAST alignment; yellow – Irrelevant according with Schneider, because even that the 
MaxHom alignments were better, Schneider wanted a rise in Length, which did not occur in that 

cases). 

 

PSSH/MaxHom2 kept during its existence sequences with significant similarity 

(homology) to proteins of know structure leading to a database of homology-derived of 

protein sequences with structural information several times larger than PDB (Fig. 3.30), 

reducing this way the gap between sequences (Swiss-Prot) and structural (PDB) 

databases.  
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Figure 3.30: Relation between, PDB (bottom), PSSH (middle) and UniProt (top) in 2010 (left) and 
2013 (right). It is notorious the advantage of the existence of PSSH by adding structural 

information in sequences (1D) that had none (figure prepared by Christian Stolte & Sean 
O’Donoghue for poster D05 of VIZBI 2013). 
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4. Aquaria 
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4.1. Summary 

Viewing 3D models of a protein’s molecular structure can give insight into function, 

especially when mapped with sequence features (e.g., domains, SNPs, or post-

translational modifications). Homology-based 3D models are now available for many 

proteins, however it is often difficult to find the most relevant models and to map 

sequence features onto them. Thus we developed Aquaria, a new web resource that 

provides 46 million models (more than double the number previously available) derived 

from a systematic all-against-all comparison of Swiss-Prot (1D) and PDB (3D) 

sequences. Aquaria provides at least one model for 87% of Swiss-Prot proteins, with a 

median of 35 models per protein. Aquaria has been designed for ease of use, so that 

more life scientists can advance their research by taking advantage of the wealth of 

structural data now available. Aquaria is freely available at http://aquaria.ws. 

4.2. Introduction 

Many key insights into the molecular machinery of life have been derived from 

atomic-scale 3D structures (O’Donoghue et al., 2010) some key examples include the 

leap in understanding from the discovery of the DNA double-helix, as well as 

applications such as rational drug design and antibody engineering.  

Structure determination methods have steadily improved, producing over 100,000 

experimentally-derived structures in the Protein Data Bank (PDB) (Berman et al., 

2000). This lags far behind the growth of protein sequence information, with less than 

0.1% of UniProt (Consortium, 2014) proteins linked to a PDB structure. However, the 

understanding that evolution conserves structure more than sequence has led to large-

scale computation of structural models (e.g., ModBase (Pieper et al., 2014) and SWISS-

MODEL (Kiefer et al., 2009). 

Currently, over 21 million models are consolidated in the Protein Model Portal 

(PMP) (Haas et al., 2013), providing structural information for over 5 million proteins, 

covering 80% of all manually annotated (Swiss-Prot) proteins and ~9% of all known 

protein sequences (UniProt) (Consortium, 2014). 

Thus, structural modeling now scales with genomic sequencing, providing 

tremendous amounts of information that can give detailed functional insights, far 

beyond what is accessible from sequence alone. Currently, however, many biologists 

fail to take full advantage of this valuable information; two key reasons for this include: 
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(1) it is not always easy to find the most appropriate model amidst the increasing 

volume of other related information; and (2) 3D structures are intrinsically complex, 

and with existing tools a significant investment in time is needed to navigate through 

these complex data and derive insight. 

Related to point (1), we believe there is one important and useful view of structural 

data that current resources do not provide: a view giving a concise visual summary of 

all related structural information for any specified protein. Such a view was previously 

available in SRS 3D (O’Donoghue et al., 2004), however that service is no longer 

available. PMP currently provides part of such a view, but shows only a small number 

of similar structures. 

Related to point (2), we believe the key issue is that most existing resources 

disseminating 3D structures have been created primarily by and for the structural 

biology community. However, since models are now available for so many proteins, 

these models are of interest and relevance to a much broader group of scientists, many 

of whom are unfamiliar with the rather complex data (atomic structures) and required 

tools (molecular graphics, etc.). 

To address these issues, we have developed Aquaria, a web resource intended to 

augment the ability of biochemists and molecular biologists to derive insight into 

protein function from structural models. Aquaria has been designed to provide a highly 

visual and intuitive user experience. In addition to providing unprecedented ease of 

access to all available structural information for any specified protein, Aquaria makes 

it easy to map sequence features – such as domains, SNPs, or post-translational 

modifications– onto 3D structures. Such feature mapping can be effective in providing 

functional insight (O’Donoghue et al., 2010). 

In contrast to most molecular graphics tools (for example, Astex (Hartshorn, 2002) 

or Chimera (Pettersen et al., 2004)), the user interface of Aquaria is organized primarily 

by protein sequence, not structure (Fig. 4.1). A user starts by specifying a protein of 

interest by name and organism, by identifier or by Uniform Resource Locator (URL) 

(for example, http://aquaria.ws/P04637); Aquaria then generates a concise visual 

summary of all related PDB structures (Figs. 4.1i and 4.1ii), using a pre-calculated all-

against-all comparison of Swiss-Prot and PDB sequences. 

The related structures are grouped first by alignment to the specified sequence and 

second by oligomeric state (Fig. 4.1iii). Structures are then ranked - in both groupings 

- by sequence similarity to the specified protein. Users can quickly review all known 
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structural information for a protein and find the structures most relevant to them (Fig. 

4.1iv).  

Aquaria also allows mapping of UniProt and InterPro (Hunter et al., 2012) sequence 

features (for example, domains, single-nucleotide polymorphisms or posttranslational 

modifications) onto 3D structures: a simple yet effective way to gain insight into 

molecular function (Fig. 4.1v). 

Initially, 3D structures are colored to highlight amino acid differences from the 

specified protein sequence, with bright, saturated colors indicating identical residues 

and with slightly dark and very dark coloring indicating conserved and nonconserved 

substitutions, respectively (Fig. 4.1i). 

Aquaria is designed for biologists; its user interface creates clear and useful default 

views that show only the most relevant structural information tightly integrated with 

sequence, features and text that provide biological context. Aquaria uses a minimal set 

of mouse-based controls that are intuitive yet powerful (O’Donoghue et al., 2004). For 

example, its ‘Autofocus’ feature allows exploration of large complexes by focusing on 

one molecule at a time. Aquaria can also be controlled via hand gestures using the Leap 

Motion (Sabir et al., 2013). Currently, Aquaria contains 46 million pre-calculated 

sequence-to-structure alignments, resulting in at least one matching structure for 87% 

of Swiss-Prot proteins and a median of 35 structures per protein; this provides a depth 

of sequence-to-structure information currently not available from other resources. 

4.3. Data    

Aquaria uses relational databases to display its information in a browser, but several 

steps were taken prior to achieving the current state. The databanks that I worked 

directly with were Swiss-Prot and PDB protein knowledge bases. Their data 

repositories consisted and still consist in a set of flat files (i.e. text files containing 

records with a standardized nomenclature) where within a file record, one can organize 

the data using different types of fields. This organization emulates some of a relational 

database's behaviors (third generation database technology) (Chowdhury, 2004) but it 

isn’t one and therefore generates many problems (inefficient access, security and 

administration problems, no concurrency access and no logical data model).  

My work was centered in converting Swiss-Prot and PDB flat files databanks into 

relational databases (fourth generation database technology) (Chowdhury, 2004). This 

conversion was not easy and several types of exceptions occurred in the parsing process 
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taking months until a complete and reliable parse was obtained. Other problems such 

as memory problems due to the number of files and its dimension also occurred. Finally 

optimization techniques were applied for table size reduction, and for fast data access 

creation of table indexes. To ensure reliability several validation and ‘smoke tests’ were 

performed. 

In sum, the conversion process from flat files to relational databases and its 

corresponding tables (see Database Section) was complex. However, it was a required 

process to obtain all the information concerning each protein subject to a query, in a 

fast and fully detailed manner, especially considering that the goal was for this bulk 

information to be consulted as a whole through a web service. 

 
Figure 4.1: Aquaria page for human tumor suppressor protein p53. i) Initially, the PDB structure 

estimated to be most relevant is shown. Dark and very dark residues indicate conserved and 
nonconserved substitutions, respectively, between the structure and the wild-type p53 sequence. 
ii) Aquaria also shows all related PDB structures, grouped by region of match. iii) Clicking on a 

group loads the top-ranked structure; iv) clicking on a group number shows a tree view of 
structures organized by oligomeric state. InterPro and UniProt features v) can also be mapped 

onto structure (O’Donoghue et al., 2015). 
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4.4. Methods    

At its core, Aquaria relies on aligning sequences of unknown structure (Swiss-Prot) 

onto sequences with known structure (PDB). The previous SRS 3D (O’Donoghue et 

al., 2004) used PSSH (Schafferhans et al, 2003), a database of protein sequence-to-

structure homologies generated with PSI-BLAST (Altschul et al., 1997) and other 

alignment tools (Schafferhans, et al., 2003). PSSH new version - PSSH2 (O’Donoghue 

et al., 2015) – is based on HHblits (Remmert et al., 2011), an alignment method 

employing iterative comparisons of Hidden Markov Models (HMMs). HHblits is the 

key method used in HHpred (Remmert et al., 2011), a fully automated server for 

template-based structure prediction that was ranked best out of 79 similar servers at the 

CASP9 competition in 2009 (http://bit.ly/hhblits-casp9). At the 2011 CASP 

competition, HHpred slipped to 7th rank (http://bit.ly/hhblits-casp10), however all 

higher ranked servers were slower by a factor of 370 or more. Thus, it was selected 

HHblits as it combines both speed and reliable detection of structural templates. 

4.4.1. Sequence to Structure Alignment 

To ensure the highest possible final alignment quality for matches in Aquaria using 

HHblits (Remmert et al., 2011), it was first calculated HMM profiles for each unique 

PDB sequence (PDB_full) and also for each unique Swiss-Prot sequence (Fig. 4.2). For 

both these steps, it was used UniProt20, a database of non-redundant sequence profiles 

distributed with HHblits. UniProt20 is based on an all-against-all UniProt sequence 

comparison that was then clustered using kClust from HH-suite (Hauser et al., 2013), 

resulting in 4.8 million sequence clusters in which the highest pairwise sequence 

identity between clusters is 20%. 

All sequences in each cluster were then incorporated into an HMM, thus creating 

one entry in the UniProt20 database. To create PDB_full, it was first ran HHblits using 

all unique protein sequences in PDB (derived from the PDB SEQRES records) 

searching against UniProt20, producing Multiple Sequence Alignments (MSA). From 

these MSA’s, the PDB_full database files were then created using HH-suite. The 

PDB_full database (March 2014) contains 57,657 protein sequence profiles. It was then 

used the same process to create a database of HMMs for every unique Swiss-Prot 

sequence (540,000). Finally, it was generated PSSH2 using HHblits to find similarities 

between HMMs from Swiss-Prot and HMMs from PDB. This demanding calculation 
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required a computer cluster with sufficient RAM to hold the PDB_full HMM database. 

To reduce the required time, it was restricted the calculation to search only HMMs from 

Swiss-Prot sequences. Selecting only matches with E≤10-10 resulted in a total of 46 

million sequence-to-structure alignments in PSSH2; this provides at least one matching 

structure for 87% of Swiss-Prot entries, with a median of 35 structures per protein. Of 

these, 9.3 million are high confidence sequence-to-structure alignments, covering 28% 

of Swiss-Prot, with a median of 16 per protein. More details about PSSH2 setup (that 

was led by the RostLab in Munich) can be obtained in the Aquaria paper (O’Donoghue 

et al., 2015). 

By comparison, one of the most similar existing resources, the Protein Model Portal 

(PMP) (Haas et al., 2013), contains a total of 22 million protein structure models for 5 

million distinct UniProt sequences, an average of 4.4 models per protein, and covering 

80% of Swiss-Prot. Thus, Aquaria provides more structures per sequences but is 

focused on a smaller set of proteins (Swiss-Prot only). However, a more fundamental 

difference is that Aquaria is based only on sequence-to-structure alignments, while the 

structural models in PMP are calculated using much more laborious comparative 

modeling methods such as SwissModel (Kiefer et al., 2009) and MODELLER (Eswar 

et al., 2007).  

 
 
Figure 4.2: Workflow for generating PSSH2. It was used UniProt20 from HH-suite, a database of 

non-redundant UniProt sequence clusters in which the highest pairwise sequence identity 
between clusters was 20%. It was then used HH-suite to calculate Hidden Markov Model (HMM) 

profiles for each unique PDB sequence (PDB_full) and for each unique Uniprot (Swiss-Prot) 
sequence. Finally, it was generated PSSH2 using HHblits to find similarities between HMMs 

from PDB and HMMs from UniProt (Swiss-Prot) sequences. To save time, it was restricted this 
final step to only search against Uniprot (Swiss-Prot) sequences. In the future, it is planned to 

add to Aquaria the facility to extend PSSH2 to include any sequence on-demand  
(O’Donoghue et al., 2015). 
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4.4.2. Database  

PSSH2 table: After the PDB_full generation, we searched each Uniprot (Swiss-

Prot) sequence against the PDB_full database. From the search output, we created a 

MySQL table storing the PSSH2 (Figs. 4.2 and 4.3 left). Each PSSH2 entry contains 

the following: MD5 sum for the UniProt (Swiss-Prot) sequence; MD5 sum for the PDB 

sequence; E-value, sequence identity; and the alignment with a minimal format 

identifying gapless blocks.  

UniProt (Swiss-Prot) related tables: I created four additional MySQL tables to store 

information related to UniProt (Swiss-Prot) sequences (Fig. 4.3 top). The main table 

(‘protein_sequence’) has one entry per UniProt sequence. While processing UniProt 

(Swiss-Prot) to build this table, we checked the MD5 sum for each sequence against a 

hash containing all UniProt (Swiss-Prot) MD5 sums in PSSH2. If the UniProt (Swiss-

Prot) sequence had a match in PSSH2 all synonyms for the protein name (including 

identifiers) were added to a second table (‘protein_synonyms’), all synonyms for the 

organism were added to a third table (‘organism_synonyms’), and Latin organism 

names were added to a fourth table (‘organism_names’). These synonym tables are then 

used to provide an autocomplete function for protein or organism names in the 

‘SPECIFY A PROTEIN’ input fields (Fig. 4.4a). As a result, when a user looks up a 

protein by synonym, only those with matching structures in PSSH2 will be found.  

PDB-related tables: I created three additional MySQL tables to store information 

related to PDB structures (Fig. 4.3 bottom). The main table (‘PDB’) has one entry per 

PDB entry, while another table (‘PDB_chain’) contains information about each PDB 

chain. The third table stores information about related PubMed articles. During 

processing of each PDB file, protein sequences were extracted from the ATOM records 

and aligned onto the corresponding SEQRES records – this alignment information is 

stored in PDB_chain, and is used on the fly when constructing the views presented in 

the user interface to show where the UniProt (Swiss-Prot) and PDB sequences differ 

(Fig. 4.4c), to map UniProt (Swiss-Prot)  sequence features to PDB structures, and also 

to map PDB secondary structure onto UniProt (Swiss-Prot) sequences (Fig. 4.4e).  

Where present, we also read the first ‘biounit’ file (judged by the PDB to have the 

biologically-relevant assembly, and indicate by the file extension ‘pdb1’) – this 

information is used on the user interface to indicate oligomeric state when displaying 

information on molecular configuration subgroups (Fig. 4.4i). While reading each PDB 
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and biounit file, we calculate a transformation matrix for each chain that aligns the first 

three principle components of the Cα coordinates along the x-, y-, and z-axes, 

respectively. This matrix is then used automatically for the initial view in Aquaria, thus 

reducing occlusion by presenting each chain in a way that minimizes its depth along 

the z-axis 

 

 
	

Figure 4.3: Aquaria database schema. A) PSSH2 table: Repeat_domains counts how often the 
same PDB and protein sequence hash have occurred with different alignments (indicating one 

PDB matching to multiple regions of a Swiss-Prot sequence). B) PDB-related tables. The Matches 
field indicates if the DBREF record of the current chain is identical to that of a previous chain 

from the same PDB entry. Model is only relevant for biounit files, where the same chain can 
occur in multiple model; we create a separate PDB_chain entry for each such case, and 

distinguish them by setting this field to be equal to the model number in which this copy of the 
chain occurs. The Monomer field contains a count of the total number of matching chains in the 
biounit file (or PDB entry, for NMR and cyroEM structures) – this field is used to display the 

oligomeric state for each structure (Fig. 4.4i). The Transform field holds a transformation matrix 
that is applied when this chain is viewed, with the result that the chain is shown centered on the 
screen and the first two principle components (calculated from Cα positions) coincide with the x- 
and y-axes, respectively (Fig. 4.4d). The Type field distinguishes protein, DNA, and RNA chains 
(currently, only proteins are used in Aquaria). The Reject field records if and why a chain was 

rejected (e.g., because there was no SEQRES record for that chain in the PDB file). C) UniProt-
related tables: Source_Field distinguishes Swiss-Prot and TrEMBL sequences. 
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4.4.3. Web Interface 

Aquaria has a novel backend created using free and open source components. The 

Aquaria web server was implemented using Node.js (http://nodejs.org/) to manage 

client-server and server-database communication, and using Express 

(http://expressjs.com/) for serving static files and producing dynamic files through 

template rendering.  

For the 2D Graphics, matching structure groups (Fig. 4.4h) and features (Fig. 4.4l) 

are rendered by the browser as scalable vector graphics (SVG) via a customized 

JavaScript sequence object with single-residue resolution, created using D3.js  (Bostock 

et al., 2011). For coloring of matching structure groups, amino acid substitutions with 

a McLachlan (McLachlan, 1971) score ≥0 were considered conserved, those with < 0 

were non-conserved.  

The tree view that appears upon clicking on a matching structure group (Fig. 4.4d 

and 4.4j) is constructed using a customized version of the standard D3.js tree layout 

library (d3.layout.tree). 

For the 3D molecular graphics, it was used the SRS 3D (O’Donoghue et al., 2004) 

Viewer,  a free and open source molecular graphics system that was designed to be 

intuitive and easy to learn. It uses hardware-accelerated rendering through OpenGL, 

allowing for anti-aliasing, dynamic lighting, rotation, and translation calculations 

without extra load on the CPU or memory. In adapting the SRS 3D Viewer for Aquaria, 

it was made a number of improvements. It is now based on the community maintained 

version of Java3D (1.6 pre 7), which uses pure Java calls to Java OpenGL (JOGL 2.0 

r11) bindings. 

4.5. Results 

An Aquaria user first needs to specify a protein of interest, called hereafter the 

‘specified protein’. This is done either by typing in a protein name and species, or by 

composing a URL with a UniProt primary accession (e.g., http://aquaria.ws/P04637). 

Aquaria then automatically displays the following: synonyms for the specified protein 

(Fig. 4.4a); a summary of its function (Fig. 4.4b); two graphical representations of its 

sequence (Fig. 4.4c); a concise graphical summary of all matching structures in PDB 

(Fig. 4.4h); the PDB structure and chain estimated to be most relevant (Fig. 4.4d); 

finally, the PubMed abstract describing that PDB structure (Fig. 4.4f). 
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The structures shown in Aquaria (Fig. 4.4d) are commonly referred to as template 

models, meaning that the specified protein’s sequence (Fig. 4.4c) has simply been 

mapped onto the unmodified 3D coordinates from the selected PDB file. 

Aquaria’s template models could be used as input to calculate more detailed 

homology models (e.g., using Modeller (Eswar et al., 2007)); however this can require 

a considerable time investment, thus we believe that, for most users who are not expert 

in structure, the template models provided by Aquaria are sufficient and easier to 

interpret. 

Each Aquaria model (Fig. 4.4d) is initially colored to highlight where the specified 

protein’s sequence differs to that of the original PDB structure, with slightly dark and 

very dark coloring indicating conserved and non-conserved amino acid substitutions, 

respectively. Any regions of the currently focused PDB chain that could not be aligned 

to the specified protein (e.g., insertions) are indicated in white coloring, while all other 

chains in the PDB file are initially semi-transparent. The quality of each model is 

primarily communicated by this color scheme, which results in high quality models 

having solid coloring (Fig. 4.4d), while low quality models have dull and mottled 

coloring. Further details about model quality can be accessed from the 3D view title-

bar (Fig. 4.4d). 

By default, only the specified protein’s sequence is shown (Fig. 4.4c); however, the 

sequence of the corresponding PDB chain can also be shown by selecting ‘Show PDB 

Sequence’ from the View menu. The name and organism of the protein used to derive 

this PDB chain is shown in the ‘ABOUT PDB’ section (Fig. 4.4g). By clicking on the 

name of this protein, it will become the new specified protein, thus causing most views 

on the webpage to be updated, including the protein sequence (Fig. 4.4c), synonyms 

(Fig. 4.4a), function (Fig. 4.4b), matching structures (Fig. 4.4h), features (Fig. 4.4k), 

and chain information (Fig. 4.4g). 

Often, the PDB file shown in the 3D view (Fig. 4.4d) contains additional chains, 

initially shown as semi-transparent; clicking on such a chain autofocuses on that chain, 

i.e., the molecule moves such that the chain is centered and becomes the center of 

rotation, while the chain is now shown with solid coloring with all other chains semi-

transparent (autofocus can be disabled from the menu bar, or temporarily by double-

clicking on the background). If this new chain corresponds to a different protein than 

the previous chain, the specified protein changes (to the UniProt protein specified for 

this chain in the PDB file), thus updating most views on the page. 
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This greatly facilitates the exploration of protein binding partners - the user can 

always navigate back to a previously specified protein by clicking on the previously 

focused chain. 

The matching structures section (Fig. 4.4h) is designed to provide a graphical 

summary of all PDB structures with significant sequence similarity to the specified 

protein; these structures are organized into groups based on regions of match to the 

specified protein’s amino acid sequence. These groups often correspond to protein 

domains, although not always, since many PDB structures contain multiple domains. 

This grouping is a key advantage of Aquaria compared to other similar resources; it 

rapidly communicates an overview of structural matches while providing easy access 

to any individual match. 

Each group is colored to show the match in alignment between the specified protein 

and the top-ranked structure in the group (Fig. 4.4h), using the same colors initially 

shown on the 3D structure (Fig. 4.4d). Similar information is also communicated via 

alignment identity scores (Fig. 4.4h, left). As a result, a user can quickly gauge how 

closely the structures match to the specified protein. 

Clicking on the colored portion of any group loads the top-ranked structure into the 

3D view (Fig. 4.4d). To access all other structures within a group, the user can click on 

the gray-background number shown to the right of each group (Fig. 4.4i); member 

structures are then shown, further organized into a ranked list of sub-groups, based on 

oligomeric state, i.e., the names and number of copies of macromolecules present in 

each PDB entry (using the biological assembly judged to be most likely by the PDB). 

Finally, by clicking on the gray-background number attached to the right of each sub-

group, the user can access a ranked list of individual PDB structures within that sub-

group (Fig. 4.4j). In each case above, ranking of structures is based firstly on percentage 

sequence identity to the specified protein, then by the total number of identical residues, 

then by crystallographic resolution, with NMR and cryoEM structures last. 

For each specified protein, clicking on the Features tab (Fig. 4.4k) reveals a set of 

sequence features (Fig. 4.4l) retrieved from InterPro (Hunter et al., 2012) and UniProt 

(Consortium, 2014). 
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Figure 4.4: Aquaria provides access to all related 3D structures for any specified protein. a) 
Input fields used to specify a protein. b) UniProt summary of the specified protein’s function. c) 
Graphical representations of the specified protein’s sequence. d) Initially shows PDB structure 

estimated to be most relevant for the specified protein. Hue is used to indicate secondary 
structure: yellow = strand, blue = helix, and green = coil. Lightness is used to indicate amino acid 

substitutions between the specified protein and PDB structure: slightly dark = conserved, very 
dark = non-conserved, white = insertions, and semi-transparent = other chains. e) Initially shows 

the most likely biological assembly from PDB (http://bit.ly/biounit). f) Information about PDB 
structure. g) Information about currently focused PDB chain. h) Visual summary of all 

structures in PDB matching the specified protein, grouped by region of match. Clicking on a 
group loads the top-ranked structure into the 3D viewer. i) Clicking on a group number shows a 
tree view of structures in the group, organized into subgroups by oligomeric states. j) Clicking on 

a subgroup expands the tree to show individual PDB files. k) Provides access to sequence 
features. l) Shows InterPro and UniProt features for the specified protein; hovering over an 

individual feature reveals its details, while clicking anywhere on a feature lane uses that set of 
features to color the 3D structure. Features of the same type are grouped into a minimal number 

of lanes, avoiding overlap; for example, the specified protein shown (p53) has many sequence 
variants – the layout highlights residues with the largest number of distinct variations 

(O’Donoghue et al., 2015). 
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4.6. Discussion 

Our design goals with Aquaria were quite different to those of comparable 

resources; ease of use was paramount, as was the ability to map sequence features. More 

fundamentally, the user interface has been organized primarily by protein sequence, not 

structure. Each Aquaria webpage essentially provides an interactive review of all 

current structural knowledge for one protein, making it clear which parts of a protein 

do and do not have matching structures (Fig.4.4h). Assembling this information using 

existing tools would take days or weeks of effort; Aquaria reduces this to seconds, 

freeing researchers to focus on the analysis, interpretation and understanding of 

structural data, rather than on the process of assembling it.  

Aquaria also provides millions of new models that will potentially yield significant 

new insights for a wide variety of proteins. These models give an unprecedented depth 

of coverage, with more than double the number of structural models currently available 

from other comparable resources. This, in combination with Aquaria’s ease of use, 

enables researchers to answer new kinds of scientific questions, such as whether an 

insight obtained by examining one model is supported by all other related models - this 

can be invaluable, given the uncertainties of experimental structure determination 

(O’Donoghue et al., 2010). 

4.7. Conclusions 

Since the discovery of the DNA double-helix, biologists have been aware of the 

enduring significance of insight gained from atomic-scale structures. Now that a wealth 

of such structures are available, a key challenge is to benefit from this data deluge, 

without being overwhelmed by it (O’Donoghue et al., 2010). We believe that Aquaria 

will help achieve this and, by making structures easier to access and use, will accelerate 

discovery in the life sciences. 

4.8. Author Contributions 

Nelson assisted in the co-development of two Perl scripts that parsed information 

from UniProt and PDB files into several tables that are part of the Aquaria database 

namely: Protein_sequence, protein_synonyms, organism_names, organism_sinonyms, 

PDB, PDBchain and PubMed. He also contributed to Aquaria user interface with use 

of the 'knockout.js' framework for managing communication between components 
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namely concerning protein identification and fetching of its corresponding info (this 

platform was not used in the final version). Finally, he also contributed through a script, 

in the generation of the circled 2D protein images show in Fig. 4.4i 
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5. Dark Proteome Database 
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5.1. Summary 

In this chapter we will describe the Dark Proteome Database (DPD) and associated web 

interface that provide access to updated information about the dark proteome. The DPD 

provides information on the regions of proteins where 3D molecular conformation is 

currently unknown, either via experimental determination or via homology modelling. 

DPD is assembled from several external web resources (Aquaria, UniProt, Predict Protein, 

and the Protein Model Portal) and stored in a relational database that currently contains 

~10 million entries and occupies ~2 GBytes of disk space. Availability of this database will 

help focus future structural and computational biology efforts to shed light on the 

remaining dark proteome, thus potentially revealing molecular processes of life that are 

currently unknown. The dark proteome database is available at http://darkproteome.ws. 

5.2. Introduction 

We already seen that knowledge of protein three-dimensional (3D) structure and 

function can be highly valuable, and has led to key discoveries in the life sciences. The 

PDB, or Protein Data Bank (Berman et al., 2000), that accumulates experimental structures 

recently past 120,000 entries – a landmark in our understanding of the molecular processes 

of life. This lags far behind the growth in DNA sequencing; however, since evolution 

conserves structure more than sequence (Chothia & Lesk, 1986; Illergård et al., 2009), 

high-throughput computational modeling (Haas et al., 2013; Petrey et al., 2015); can 

leverage the PDB to provide accurate structural predictions for a large fraction of the 

protein sequences inferred from genomic sequencing. Thus structural data now scales with 

sequencing data and can provide a wealth of detail into molecular functions. Aquaria is 

therefore an essential tool to determine possible structures and function to old and new 

protein sequences. 

However, there is another side of the structure, or absence of it, which we called the 

dark proteome, and it’s basically the core of this thesis. In this chapter I will map this dark 

universe (Fig 5.1 Aquaria dark regions) in the most complete and exhaustive way done till 

today. 

5.3. Data 

The starting point for the creation of DPD was the Aquaria Database (PSSH2), 

integrating website information from Swiss-Prot (Consortium, 2014), Predict Protein (PP)  

(Yachdav et al., 2014) and Protein Model Portal (PMP) ) (Berman et al., 2000). 
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Figure 5.1: Dark Regions in Aquaria for protein Q13542. 

 

The process of readying the data faced similar issues of those detected in Aquaria 

database preparation: several and many types of exceptions; information inconsistency 

from the sources mentioned above, when combining them together; generated information 

quantity and dimension originated several computational and memory problems where 

optimization techniques were pointed out as solutions. Several exhaustive validation and 

smoking tests were also made.  

Like in Aquaria, the conversion into a relational database from databanks, as well as 

the  mapping of the dark regions present in PSSH2 to its relational form, were necessary 

steps to perform the analyses and form conclusions. 

Today, I can deduct that the Dark Proteome mapping possibly wasn't performed in the 

past due to the exhaustive, demanding and patient work required to prepare such a volume 

of data both for PSSH2 and DPD. 

5.4. Methods 
 

5.4.1. Database 

DPD is created by a pipeline (Fig. 5.2A) that brings together information from 

Swiss-Prot (Consortium, 2014), the Protein Model Portal (PMP) (Berman et al., 2000), 

Predict Protein (PP)  (Yachdav et al., 2014), and PSSH2 (‘Protein Sequence-to-

Structure Homologies’), the database underlying Aquaria (O’Donoghue et al., 2015).  

In the DPD pipeline, the following three initial steps are used to map the dark regions 

for each protein sequence present in Swiss-Prot (Fig. 5.3A): 
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1. The first step concerns all sequence-to-structure alignments available in PSSH2.  

The complete Aquaria entry for each protein is fetched (e.g., 

http://aquaria.ws/Q13542). This file is then analysed to determine which amino 

acid residues are not matched to any homologous PDB structure. 

2. The second step concerns sequence-to-structure alignments recorded in the 

corresponding ‘database cross-reference’ field of each Swiss-Prot entry. These 

are mappings to PDB entries made using UniProt Consortium criteria (e.g., 

http://www.uniprot.org/uniprot/Q13542). We used this data to identify a small 

fraction of regions that contain sequence-to-structure alignments not detected 

by HHblits (Remmert et al., 2011), the PSSH2 detection algorithm. 

3. Similarly, the third step fetches the corresponding PMP entry  

(e.g. http://www.proteinmodelportal.org/query/up/Q13542) and uses it to 

identify regions that contain sequence-to-structure alignments missed by both 

HHblits and UniProt. 

 

The above information is then used to assemble a MySQL table called 

‘dark_domains’ (Fig. 5.2B). Each entry in this table corresponds to a ‘white’ or ‘dark’ 

region of a protein, defined as follows:  

• White regions indicate a contiguous region of the amino acid sequence in which 

all the residues are aligned to a 3D structure in either PSSH2, UniProt, or PMP 

(Figs. 5.3A and 5.3B);  

• Dark regions are contiguous regions of the amino acid sequence in which no 

residues are aligned to a structure in the previous point (Figs. 5.3A and 5.3B). 

 

Next, I use the ‘dark_domains’ table to create a second table called ‘dark_proteins’ 

(Fig. 5.2B). Each entry in this table corresponds to a protein, which is assigned to be 

either ‘White’, ‘Dark’, or ‘Grey’ as follows (Fig. 5.3C): 

• White, if and only if the entire amino acid sequence of the protein is a single 

white domain; 

• Dark, if and only if the entire amino acid sequence of the protein is a single dark 

domain; 

• Grey, if the protein contains both dark and white domains. 

 



 

108 

 

 

 

Figure 5.2: A) Flux of data into DPD. B) Overview of Aquaria and DPD schema. 

 

Finally, I created a second version of the DPD that uses only Aquaria and UniProt 

data. In this version, the ‘dark_domains’ table is generated as follows:  

• White regions indicate a contiguous region of the amino acid sequence in which 

all the residues are aligned to a 3D structure in either PSSH2 or UniProt;  

• Dark regions are contiguous regions of the amino acid sequence in which no 

residues are aligned to a structure in the previous point. 

 

Similarly, a second ‘dark_proteins’ table is generated based on this ‘dark_domains’ 

table (Figs. 5.4A and 5.4B). 
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The speed of building DPD is mostly limited by internet bandwidth, as the build 

process relies on fetching a very large number of files via HTTP from the source 

services (UniProt, Aquaria, and PMP). Overall the process of fetching and assembling 

data takes around 1 CPU month using a Quad-core i7; however as most of these source 

services have multicore servers, the process can be speed up by parallel data fetching. 

5.4.2. Web Interface 

The database is web-accessible allowing fast access to any Swiss-Prot protein 

information, revealing either the dark and non-dark regions (e.g., 

http://darkproteome.ws/database/domains.php?id=Q13542) (Fig. 5.3.B), or the overall 

percentage of dark residues (e.g., 

http://darkproteome.ws/database/protein.php?id=Q13542) (Fig. 5.3C). The user can 

also choose to see data from either version of the database, thus enabling them to use a 

definition of darkness that either includes (Figs. 5.3B and 5.3C) or excludes PMP (Figs. 

5.4A and 5.4B). 

Some functional analyses are also provided, by comparing annotations between 

dark and non-dark sets in a reliable manner where we applied annotation enrichment 

for the ‘Description’ field of the Swiss-Prot proteins through Fisher exact tests (Fisher, 

1922; Fisher, 1925) with adjustment (Benjamini & Hochberg, 1995; Perdigão et al., 

2015). The results  of the analyses are presented in a Tag Cloud with pagination (Fig. 

5.5) to reveal the most functional terms over- or under-represented in dark-proteins or 

dark-regions (Perdigão et al., 2015b). Spinning wheels are also available and can be 

seen as an alternative visualization method to the Tag Cloud, where the results are 

revealed as sorted lists (Fig. 5.6). 
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Figure 5.3: A) Three step domains fulfilment for human (organism ID number 9606) protein 
Q13542. B) dark_domains table holding colour domains for protein Q13542. C) dark_proteins 

table showing entry for protein Q13542 holding colour Grey for the full protein. 
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Figure 5.4: A) Dark_domains interface holding colour domains for protein Q13542, where PMP 
regions are ignored, i.e., they are considered dark. B) dark protein interface showing entry for 

protein Q13542 holding colour Grey for the full protein. 
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Figure 5.5: Tag-cloud visualization showing subcellular locations over- or under-represented in 
dark eukaryotic proteins (dark and white text, respectively). Text size terms in the tag cloud is 

set to the minus log of significance (score computed by adjusted Fisher’s exact test). Annotations 
are sorted into categories and pages, helping thus making this very large set of annotations more 

manageable. This tool provides insight into a very wide variety of biological questions. 
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Figure 5.6: Spinning wheel visualization showing subcellular locations over- or under-

represented in dark eukaryotic proteins. The order of terms in the spinning wheel is set to the 
minus log of significance (score computed by adjusted Fisher’s exact test). This tool therefore 

also provides insight into a very wide variety of biological questions. 
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5.5. Results 

The current version of DPD (October 2014) was assembled using PSSH2 and 

Swiss-Prot from October 2014, and PMP from October 2014. The complete database 

contains around 10 million entries (including entries both with and without PMP) and 

occupies around 2Gb in disk space.  

The web interface provides users with fast access to individual entries for any 

protein, revealing either the dark and non-dark regions (e.g., 

http://darkproteome.ws/database/domains.php?id=Q13542), or the overall percentage 

of dark residues (e.g., http://darkproteome.ws/database/protein.php?id=Q13542). 

The DPD web interface is built using Apache, PHP, MySQL, JQuery, and 

JQueryUI. On the DPD homepage a client-side AJAX engine initiates HTTP GET 

requests to the server, sending user-selected options. The AJAX engine notifies the user 

that a search has been initiated by displaying an animated ‘throbber’ icon. After the 

server-side PHP script receives the search options from the GET request, it constructs 

and executes the appropriate MySQL query on the database. Once the query has been 

executed, the script builds a JSON object from the result set and returns it to the AJAX 

engine. Upon receiving the JSON response, the AJAX engine parses it, builds the mark-

up for the results and displays it in the browser window. 

5.6. Discussion 

We will see that specific examination of the dark proteome led to some surprising 

results (Chapter 6) (Perdigão et al., 2015) and has challenged some of the current beliefs 

and conceptions, in what concerns the proteome that remain inaccessible to structural 

biology. We believe there are many further discoveries waiting to be made by further 

studding these regions, for example, by exploring the role of the dark proteome in 

specific biological functions or in human health.  

5.7. Conclusion 
This work contribution will consolidate structural knowledge from Aquaria, 

UniProt, Predict Protein, and PMP into an easy-to-use interface that gives users quick 

access to the precise mapping of dark and non-dark regions. Thus, DPD will help focus 

further research shedding light into the remaining dark proteome, revealing molecular 

processes of life that are currently unknown. 
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5.8. Author Contributions 

Nelson Perdigão contributions on this chapter were the coding of all algorithms for 

the generation of the Dark Proteome Database, built of Fisher’s exact tests, Protein 

Model Portal validations, development of Adapted Tag Cloud tool with Pagination and 

corresponding Spinning Wheels, as well as, writing and revision of the corresponding 

paper. 
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6. Dark Proteome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This chapter was partially published in: 
 
“Unexpected Features of the 'Dark' Proteome” 
N. Perdigão, J. Heinrich, C. Stolte , K. S. Sabir , M. Buckley , B. Tabor , B. Signal , B. 
S. Gloss , C. J. Hammang , B. Rost, A. Schafferhans, S. I. O'Donoghue, Proceedings 
of the National Academy of Sciences, vol. 112 no. 52, pp.15898–15903, 2015.  
doi: 10.1073/pnas.1508380112  
http://www.pnas.org/content/112/52/15898 
 



 
 
 

121 

6.1. Summary 

We surveyed the 'dark' proteome – that is, regions of proteins never observed by 

experimental structure determination and inaccessible to homology modeling. For 

546,000 Swiss-Prot proteins, we found that 44 – 54% of the proteome in eukaryotes 

and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, 

most of the dark proteome could not be accounted for by conventional explanations, 

such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome 

comprised dark proteins, in which the entire sequence lacked similarity to any known 

structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct 

and largely unexpected features, such as association with secretion, specific tissues, the 

endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also 

had short sequence length, low evolutionary reuse, and few known interactions with 

other proteins. These results suggest new research directions in structural and 

computational biology. 

6.2. Introduction 

We surveyed what we call the ‘dark’ proteome (Perdigão et al, 2015) i.e., the regions 

of proteins inaccessible to experimental structure determination or modelling. We found 

that most of the dark proteome could not be accounted for by conventional explanations 

(i.e., by intrinsic disorder, transmembrane proteins or compositional bias), and that nearly 

half of the dark proteome comprised dark proteins, in which the entire sequence lacked 

similarity to any known structure.  

A range of previous studies have surveyed the ‘white protein universe’ of available 

information (Chothia, 1992; Holm & Sander, 1996; Levitt, 2009; Nepomnyachiy et al., 

2014), i.e., all proteins from all organisms. From such surveys, we know much of the 

proteome is comprised of evolutionary conserved domains matching a relatively few 3D 

folds (Chothia, 1992; Holm & Sander, 1996). These surveys have focused on the ‘known’ 

and on extrapolating progress towards complete knowledge of all folds in the protein 

universe. Such studies have guided structural genomics initiatives aimed at determining at 

least one PDB structure for each distinct fold (Khafizov et al., 2014). 

This work focuses on the structurally ‘unknown’, i.e., the fraction of the proteome with 

no similarity to any PDB structure, I call this fraction the ‘dark proteome’; I believe that 
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by studding it will clarify future research directions, as studies of dark matter have done in 

physics (Bertone et al., 2005).  

The analogy to dark matter has inspired surveys of other ‘unknown’ properties of 

proteins; for example, Levitt examined ‘orphan’ protein sequences that do not match to 

known sequence profiles, which he termed the ‘dark matter of the protein universe’ (Levitt, 

2009), and Taylor investigated the ‘dark matter of protein fold space’, i.e., theoretically 

plausible folds that have not been observed in native proteins (Taylor et al., 2009).  The 

same analogy has been made to studies of so-called ‘junk DNA’ (Travis, 2002), which 

revealed a ‘hidden layer’ of non-coding RNAs (Mattick, 2003). Could surveying the dark 

proteome also reveal undiscovered biological systems? 

In fact, discoveries have already resulted from studying regions of unknown structure, 

namely intrinsically disordered regions. Long known to confound structure determination 

(Oldfield et al., 2013) – thus forming part of the dark proteome – disorder was largely 

ignored until recently (Dunker & Obradovic, 2001), yet is now known to play key 

functional roles, especially in eukaryotes (Oldfield & Dunker, 2014). Another type of 

‘dark’ regions also have specific biological functions, namely transmembrane segments 

(Carpenter, 2008). Thus both disorder and transmembrane regions are ‘known unknowns’, 

i.e., we know that they are often ‘dark’. Could the dark proteome contain ‘unknown 

unknowns’, i.e., regions with specific functions, that confound structure determination, and 

that we are unaware of? 

To address this question, I needed to map the dark proteome – i.e., to determine all 

protein regions that cannot be modeled onto any PDB structure. Most available modeling 

datasets – collected in the Protein Model Portal (PMP) (Haas et al., 2013) - are not well 

suited as they aim for breadth of coverage, typically providing only a few PDB matches 

per protein. Mapping the dark proteome requires depth of coverage, such as the Khafizov 

survey (Khafizov et al., 2014) – unfortunately however they used only a few model 

organisms.  

Recently, I was involved in Aquaria (Chapter 4) (O’Donoghue et al., 2015) a reported 

resource where it was made the most detailed analysis of this kind by systematically 

comparing 546,000 Swiss-Prot sequences against 100,326 PDB proteins structures,  which 

essentially covers all well-described protein sequences across a wide range of organisms. 

This comparison resulted in 46 million sequence-to-structure alignments (O’Donoghue et 

al., 2015) a depth of structural information currently not available from other resources.   
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In this study (Perdigão et al., 2015), I just focused on the dark regions identified by 

PSSH2 (Chapter 4) with the help of Dark Proteome Database (Chapter 5). By doing so 

(do to the huge number of entries present in the tables, the heterogenic sources of 

information, as well as the huge implicit information present), this became a Big Data 

issue, where the challenges included analysis, capture, data curation, search, storage, 

transfer and visualization. Accuracy in this case leaded to more confident conclusions 

and new breakthroughs as the ones that will be presented next.  

6.3. Data 
The data preparation for this Chapter can be consulted in Dark Proteome Database 

Chapter where a detailed description is given (Chapter 5). 

6.4. Methods 
6.4.1. Mapping Darkness 

For each Swiss-Prot protein, each residue was categorized ‘non-dark’ if it met the 

either of following criteria (Fig. 6.1A):  

 

(a) if the residue was aligned onto the ATOM record of any PDB entry in the 

corresponding Aquaria matching structures entry (e.g., http://aquaria.ws/ Q13542) or; 

(b) if the residue was aligned onto a PDB entry in the corresponding UniProt entry 

(e.g., http://uniprot.org/uniprot/Q13542). 

 
All other residues were considered ‘dark’. I then calculated a ‘darkness’ score D for 

each protein using: 

 

 

 (Equation 6.1) 

 

For most proteins, darkness depends on criterion (a), and hence on the criteria 

Aquaria uses to decide when a given sequence-to-structure alignment is of sufficient 

quality to infer that a sequence is likely to adopt a structure similar to a given PDB 

entry. An advantage of using Aquaria for this task is that it is derived from a systematic, 

all-against-all comparison of Swiss-Prot and PDB sequences; it also uses HHblits 

D =
number of dark residues
total number of residues
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(Remmert et al., 2011), an iterative method that compares Hidden Markov Models 

(HMMs) of sequences and structures, and gave the best combination of speed and 

reliable detection for structural templates when compared to around 70 competing 

methods (http://bit.ly/hhblits-casp9 and http://bit.ly/hhblits-casp10).  

Including criterion (b) above decreased the total fraction of all dark residues in 

Swiss-Prot by only 0.2%; mostly this is accounted for by a small fraction of very short 

and very long sequence-to-structure alignments missed by PSSH2 (O’Donoghue et al., 

2015). In addition, the information contained in UniProt entries sometimes 

overestimates the region that is matched by PDB entries, including some residues that 

do not actually appear in the 3D structure – this has the effect of slightly 

underestimating darkness. 

While this definition of darkness is straightforward, it has the limitation that it does 

not distinguish between strong and weak matches to PDB structures; in addition, we 

use all PDB structures, including those derived from low-resolution crystallography, 

electron microscopy, or NMR spectroscopy. Thus, we do not distinguish weak 

sequence matches to low resolution structures from strong matches to very reliable 

structures – both cases are considered equally non-dark. In Figs. 6.1B and 6.2 this issue 

is symbolically indicated by the white-to-black gradient in grey domains, which is 

suggestive of the variation in the quality of structural knowledge for these regions.  

Note that Aquaria alignments are generated by first aligning to each Swiss-Prot 

sequence onto the PDB ‘SEQRES’ records – i.e., the actual peptides used in the 

experiments underlying each PDB entry. As a second step, we align the SEQRES 

records onto the PDB ATOM records; thus, in cases where a region of sequence is 

always missing in the ATOM records of all related PDB entries (e.g., loop regions 

where electron density is always missing due to large disorder), these residues will be 

counted as ‘dark’.  

Unfortunately, a different standard practice is used in NMR-derived structures; 

when a region lacks experimental data, coordinates for all atoms are still calculated and 

included in the ATOM records, resulting in highly disordered regions. Thus, these 

regions are considered ‘non-dark’ in this work which, again, slightly underestimating 

darkness.  

Note that this definition of darkness is a stringent one, in that it underestimates 

darkness, or equivalently overestimates the state of structural knowledge for the 

proteome. We deliberately chose such a stringent definition as it gives more confidence 
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that the dark regions and dark proteins identified are truly dark, which suits the goals 

of the current work. 

Most dark residues occurred within contiguous dark regions (Fig. 6.1A); when 

these are conserved across many other proteins, we call them dark domains. In some 

cases, a single dark region covers the entire sequence – we call these dark proteins (Fig. 

6.1B). In this chapter we focus primarily on characterizing dark proteins. 

6.4.2. Defining Darkness More Stringently (DPMP) 

To test the robustness of our results, and ensure that our conclusions do not rely 

solely on Aquaria and HHblits, I also calculated a modified darkness score (DPMP) by 

augmenting the above definition of non-dark residues to additionally require that: 

(c) if the residue occurs in any ‘twilight’ or ‘safe’ zone model in the PMP (Haas, et 

al., 2013) (e.g., http://www.proteinmodelportal.org/query/up/Q13542 ). 

 

The models in PMP are aggregated from a range of resources, and hence have been 

calculated by a variety of different methods. I excluded PMP models annotated as 

having very low quality (‘midnight’ zone, i.e., less than 10% of identity (Rost, 1997)), 

as many of these are expected to be inaccurate or to have the wrong fold.  

However, using this more stringent criterion for defining the dark proteome, I saw 

very little difference in the overall distribution of dark regions and proteins across 

various groups of organisms (Fig. 6.1B compared to Fig. 6.2), or in the fraction of dark 

proteins that remain unexplained by disordered or transmembrane proteins (Fig. 6.11 

compared to Fig. 6.13). 

The key difference that I saw was in higher eukaryotes such as human, where dark 

proteins reduced from 4,382 (22%) to 2,267 (11%); similarly, dark proteins in mouse 

reduced from 18% to 9%. This most likely arises from the fact that several of the 

databases that PMP draws its models from have a bias towards modeling proteins from 

higher eukaryotes (Haas et al., 2013). 

6.4.3. Database Biases 

This work is based on Swiss-Prot (Consortium, 2014), a manually annotated 

database of non-redundant protein sequences from 13,110 organisms. Swiss-Prot has a 

bias towards well-studied proteins from model organisms; however, it is arguably the 
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most reliable resource available for defining a set of proteins whose existence is 

supported by experimental evidence. Using Swiss-Prot partly addresses one potential 

explanation for dark proteins – they may not be proteins, but in fact unrecognized long 

non-coding RNA or may arise from pseudogenes. Using Swiss-Prot reduces this 

likelihood. 

The PDB (Berman et al., 2000) also has a similar bias towards model organisms, 

although this is reduced somewhat by structural genomics initiatives  (Marsden et al., 

2007). The effect of bias in the PDB is further reduced by the systematic modeling 

approach in Aquaria, which extends structure information to all detectibly related 

sequences in Swiss-Prot. Ultimately, these biases need to be taken into consideration in 

interpreting the results obtained in this work; essentially, the results document the 

fraction of well-described protein sequences that can be mapped onto any of the known 

3D structures.  

If this approach was extended to include a broader set of proteins and organisms, 

for example by using TrEMBL (Consortium, 2014), the distributions would be 

expected to change – most likely the dark proteome would increase. 

The dark proteome datasets used in this chapter were compiled from Aquaria, PDB, 

Swiss-Prot, Predict Protein, and PMP in October 2014; thus they do not reflect structure 

and sequence entries deposited since then. It is planned to update the online resource 

annually; while many database entries change with each update, over the three years 

that we have studied this dataset we have observed that the key results reported in this 

work have not changed, as would be expected since they are supported by rather large 

sample sizes, with correspondingly small p values. 

6.4.4. Density Plots  

The density plots in Figs. 6.6, 6.7, 6.8 and 6.9 were created using Gaussian kernel 

density estimations (Silverman, 1986), as implemented in the ‘stat_density’ and 

‘stat_density2d’ functions of the ‘ggplot2’ package in R, and using default parameters. 

In these plots, the total proportion of proteins within a specific range on the x-axis can 

be determined by assessing the area under the curve in that range, and divided by the 

area across the full range. This enables direct comparison of the relative frequency of 

dark and non-dark proteins. However, in some cases density plots can be misleading, 

as different kernel bandwidths produce different plots; for example, Fig. 6.9G shows 

that dark proteins have a very high but narrower peak at 𝑥 = 0 (corresponding to 0% 
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transmembrane residues), while the corresponding peak for non-dark proteins is about 

half the height but broader. However, using other kernels and bandwidths for the same 

data gives very similar sized peaks at 𝑥 = 0. 

Note that for the density plots in Figs. 6.6, 6.7, 6.8 and 6.9 the strongest peak occur 

close to x = 0%, and occasionally a secondary peak occurs at x = 100% (Fig. 6.6A). 

Both these situations slightly complicate the interpretation of the area under the curve, 

since the kernel density method used places some of the area at x < 0% and some at 

x > 100% - a range of value that we could not include in Figs. 6.6, 6.7, 6.8 and 

6.9.  However, this minor complication does not detract from the key observation in the 

density plots in Figs. 6.6, 6.7, 6.8 and 6.9, namely that the majority of the density lies 

close to x = 0%. 

For all density plots in this work, the density values (y-axis) are scaled so that the 

total area under the curve equals 1 - as a result, the density values depends on the range 

of values on the x-axis. Therefore, plots that have small range of x values, such as Fig. 

6.6 (which ranges from x = 0 to 1), will have relatively large density values (in this 

case, up to 60). 

6.4.5. Disorder 

The disorder values shown in Figs. 6.6, 6.7, 6.8, and 6.9 were calculated from 

IUPred (Dosztányi et al., 2005), one of the most widely used methods for predicting 

disorder. Residues were defined as disordered if they had an IUPred score ≥ 0.5. As a 

control, it was also calculated a second set of disorder values using MD (Schlessinger 

et al., 2009), a ‘META-Disorder’ machine-learning method that calculates a consensus 

disorder from several orthogonal methods. Re-plotting the density and scatterplots from 

Figs. 6.6, 6.7, 6.8, and 6.9 using MD disorder gave a similar overall pattern, although 

some differences were apparent (Fig. 6.10). MD includes as one of its input methods 

DISOPRED2 (Ward et al., 2004b), which is one of several available methods that are 

optimized to predict residues missing from PDB structures. Methods such as this predict 

a mixture of both darkness and disorder, unlike methods such as IUPred, which focus 

on predicting disorder only. Thus, we considered IUPred to be preferable to MD 

(Schlessinger, 2009) or DISOPRED2 for examining the relationship between darkness 

and disorder, explored in Figs. 6.6, 6.7, 6.8, and 6.9.  
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For a small fraction of proteins there was not MD predictions; to balance the 

comparisons, these proteins were removed from the density and scatterplots in Figs. 

6.6C, 6.7C, 6.8C, and 6.9C – thus reducing the number of proteins to 175.646, 18.999, 

326.945 and 16.316, respectively. 

Intrinsic disorder in proteins is a complex and poorly understood phenomenon; in 

addition to IUPred, many other prediction methods have been developed focusing on a 

range of different aspects of disorder (Ward et al., 2004) (Schlessinger et al., 2009). It 

would certainly be of interest to compare darkness with disorder predictions from a 

range of methods; however, such a detailed comparison of this single property was 

beyond the scope of this thesis. 

6.4.6. Compositional Bias 

In the proteins universe, a compositional bias is understood as a particular amino 

acid or a pattern of residues that are over-represented. An example of such 

compositional bias could be: AAAAAAAAAAAAA. 

 A compositional bias score was calculated (shown in Figs. 6.6E, 6.7E, 6.8E, and 

6.9E) for each Swiss-Prot protein by pooling all residues annotated as compositionally 

biased in the ‘Features’ section of the corresponding UniProt entry; this number was 

then divided by the total number of amino acids. UniProt does not annotate 

compositional bias occurring within known protein domains, so this method partly 

underestimates the total compositional bias;  

6.4.7. Transmembrane 

A transmembrane score was calculated (shown in Figs. 6.6, 6.7, 6.8, and 6.9) for 

each Swiss-Prot protein by pooling all residues annotated as either intra- and 

transmembrane in the ‘Features’ section of the corresponding UniProt entry; this 

number was then divided by the total number of residues. Most of these UniProt 

annotations derive from machine learning methods that are believed to predict 

transmembrane regions with >95% accuracy (Rost et al., 1995). As a control, I also 

calculated a second set of the transmembrane values by running systematic predictions 

for all Swiss-Prot sequences with PROF (Rost et al., 1995) and PROFTMB (Bigelow 

& Rost, 2006), which predict transmembrane helices and beta barrels, respectively. 

Using these values, the re-plotted density and scatterplots gave almost identical patterns 

to that obtained using UniProt annotations (Figs. 6.6F, 6.7F, 6.8F, and 6.9F) and also 
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had the same median values (i.e. zero transmembrane residues for both dark and non-

dark proteins in eukaryotes, bacteria, archaea, viruses). The relatively low percentage 

of transmembrane proteins amongst dark proteins is somewhat surprising (Fig. 6.11); 

this is partly due to the success of ongoing efforts in the structural biology community 

to tackle this difficult class of proteins. An additional explanation is suggested by the 

unexpected trend seen in Figs. 6.6F, 6.7F, 6.8F, and 6.9F, where multi-pass 

transmembrane proteins become unexpectedly rare at ≥ 25% darkness, and where – for 

some groups of proteins – there appears to be a linear inverse relationship between 

darkness and percentage of transmembrane residues. This may be evidence that the 

prediction methods used here to detect transmembrane regions are progressively failing 

with increasing darkness, i.e., that methods such as PROF (Liu & Rost, 2001) have 

lower recall than is currently believed. If correct, this implies the existence of 

transmembrane regions not detectable using current approaches, presumably because 

such regions have novel features that have not been seen in existing structures of 

transmembrane proteins; this may occur either because they simply have not been 

studied or because these putative, novel transmembrane regions make proteins 

currently inaccessible to structure determination. 

6.4.8. 2D Plots 

There was a wide variety in the number of points in each 2D plots (Figs. 6.6, 6.7, 

6.8, and 6.9), from ~17.000 in viruses to ~330,000 in bacteria. Thus for each plot it was, 

manually adjusted the point size and transparency to reveal the 2D distribution as 

clearly as possible. These adjustments should be taken into account when comparing 

different plots. 

6.4.9. Linear Diagrams 

To determine the fraction of dark proteins that could be accounted for by a 

combination of disorder, transmembrane regions, or compositional bias, it was 

categorized each protein as having either a ‘high’ (≥ 25%) or ‘low’ (<25%) value for 

each of the corresponding scores. These results were then displayed in Figs. 6.11, 6.12, 

and 6.13 as linear diagrams (Huntley & Golding, 2002) which can show categorical 

combinations (similar to Euler diagrams) for example in eukaryotes and viruses a 

visible fraction of proteins had both ≥ 25% disorder and ≥ 25% compositional bias. A 
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much smaller fraction of proteins (<<1%) had both ≥ 25% disorder and ≥ 25% 

transmembrane fraction however this was too small to represent in Fig. 6.11. For 

brevity, the fraction of proteins with < 25% for each of these properties is referred to as 

“ordered, globular, and as having low compositional bias”. 

Obviously, many important details will be obscured by the use of such a simplistic 

categorization based on an arbitrarily threshold (25%). Nonetheless, this approach 

enabled us to create a visualization that gives clear insight into the size of the ‘unknown 

unknown’ (Figs. 6.11, 6.12 and 6.13). 

6.4.10. Annotation Enrichment 

For each Swiss-Prot protein I extracted a set of annotations from the ‘Description’ 

field of the corresponding UniProt entry. To compare the annotations from sets of dark 

and non-dark proteins, I used Fisher’s exact test  (Fisher, 1922; Fisher, 1925) (two-

tailed) to identify annotations that were either over- or under-represented in dark 

proteins. I applied the Benjamini-Hochberg false discovery correction (Benjamini & 

Hochberg, 1995) with α, the fraction of false positives considered acceptable, set to 1%, 

and accepting only annotations with an adjusted p value of ≤ 1%, calculated via: 

    (Equation 6.2) 

where p is from Fisher’s test, n is the total of number of annotations in the set, and k is 

the rank of the largest p-value that satisfies the false discovery criteria. This approach 

was then repeatedly applied to compare dark and non-dark proteins across various sets 

of organisms – e.g., one analysis compared all annotations from all eukaryotic proteins 

(Fig. 6.15C). The p values in Figs. 6.15 have been adjusted, as described above. The 

enrichment results are available in Table 6.3. 

6.5. Results 

Mapping the dark proteome. We based our survey on 546,000 Swiss-Prot 

sequences (O’Donoghue et al., 2015). Although smaller than other databases (e.g., > 

50 million sequences in TrEMBL (Bairoch & Apweiler, 2000), Swiss-Prot is 

meticulously curated; each entry has many annotations and a high likelihood that it 

represents a native protein.  

Fig. 6.1A shows how we mapped the dark proteome: for each Swiss-Prot sequence, 

padjusted =Min[p×n / (k +1),1]
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each residue was categorized as ‘non-dark’ if it was aligned to a PDB entry in Aquaria, 

and as ‘dark’ otherwise (see Methods).  

This definition partly underestimates the dark proteome, since Aquaria includes 

very remote homologies using HHblits and uses all PDB entries, including low-quality 

structures from electron microscopy (EM) or nuclear magnetic resonance (NMR) 

spectroscopy. We deliberately chose this stringent definition of darkness so we can be 

confident that the dark proteome has completely unknown structure. 

 

 

 
 

Figure 6.1: Dark proteome overview. A) For 546,000 Swiss-Prot sequences I classified each 
residue into four categories: 1) PDB regions: aligns with exact match to at least one PDB entry, 2) 
Grey regions: aligns with reliable similarity to at least one PDB entry, 3) Dark regions: no reliable 

similarity to any PDB entry, and 4) Dark proteins: where a single dark region spans the entire 
sequence. On average, eukaryotic proteins contain eight dark regions, many very short; some are 
dark domains, i.e., conserved dark regions that evolved independently. B) I pooled sequences by 

organism group and calculated the total fractions of amino acids in the above categories 
(Perdigão et al., 2015). 

 
 
 

Most dark residues occurred in contiguous dark regions (Fig. 6.1); on average, 

eukaryotic proteins contained eight dark regions, many very short. In many cases, a 

single dark region covered the entire sequence; we call these dark proteins (Fig. 6.1B). 

Most non-dark residues also occurred in continuous regions: some, called PDB regions, 

exactly match to a PDB entry – these account for only 2-4% of all Swiss-Prot residues 
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(Fig. 6.1B). The remaining grey regions are detectably similar to at least one PDB entry, 

thus we can predict their 3D structure. 

We calculated a darkness score for each protein, defined as the percentage of dark 

residues (Eq. 6.1). Thus, dark proteins have 100% darkness, while proteins with 0% 

darkness are those where the entire sequence is detectably similar to one or more PDB 

entries. The distribution of darkness scores was strongly bimodal; most proteins had 

either low or 100% darkness (density plots in Figs.  6.6, 6.7, 6.8, and 6.9). For brevity 

in this thesis, we use the term non-dark proteins to refer to those with < 100% darkness 

(noting that a small fraction has a high darkness scores). 

We found that the dark proteome (i.e., the fraction of residues in dark proteins or 

dark regions) for archaea and bacteria was strikingly small (13-14%, Fig. 6.1B), 

implying that structural knowledge for these organisms approaches a level of 

completeness. In contrast, in eukaryotes and viruses about half (44-54%) of the 

proteome is dark (Fig. 6.1B). Of the total dark proteome, about half (34-52%) is 

comprised of dark proteins. We repeated the above analysis using an even more 

stringent definition for darkness – combining PMP with PSSH2 (see Methods) – but 

this had little effect (Figs. 6.2). 

 

 

 

Figure 6.2: Overview of the dark proteome defined using PSSH2 and PMP.  Similar distributions 
are plotted as for Fig. 6.1B, but now defining dark residues to be those with no matching 

structures in either PSSH2 or PMP. Although this definition of ‘darkness’ is more stringent, the 
overall fractions for dark regions and dark proteins are only slightly reduced. The most visible 

change is a very slight reduction in darkness for eukaryotes (Perdigão et al., 2015). 
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Figure 6.3 is what we called a darkness profile (in this case for 178.692 eukaryotes 

proteins) and we are asking how many of these proteins have darkness between 0% and 

100%. 

 

 

Figure 6.3: The distribution of darkness (i.e., the fraction of dark residues per protein) is 
bimodal; where 50% of these proteins have low darkness (≤ 28%), while 20% (36,153) have 

100% darkness (in the rightest pick). 

 
 

Rotating the above darkness profile and analyzing the same 178.692 eukaryotes 

proteins, where for each one of them we measure also a disordered value through 

IUPred (See Methods) we found something very interesting that is most of proteins fall 

above the diagonal and that means that darkness is greater than disorder and also means 

that most of dark regions are not disordered! This for proteins that have less than 100% 

darkness (Fig. 6.4). 

 

 
 

Figure 6.4: Darkness tends to increase with disorder, and the majority of highly disordered 
proteins are dark (Perdigão et al., 2015). 

 
 

If we analyze now only the dark proteins (i.e., the proteins with 100% darkness - 

top right black horizontal line of Fig. 6.4) versus the non-dark proteins (including 

proteins like 99% dark – all the pink area square), we get the surprise that the levels of 
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dark between completely dark proteins and non-dark proteins are relatively similar 

(10% vs 6%) – Fig. 6.5.  

 

 
 

Figure 6.5: The distribution of disorder (i.e., the fraction of disordered residues per protein) 
shows that disorder is slightly more prevalent amongst dark proteins, but most dark proteins 

have low disorder (Perdigão et al., 2015). 

 
 

The full relationship between the previous figures can be observed in Figs. 6.6A, 

6.6B and 6.6C.  The build of the following figures (Figs. 6.6, 6.7, 6.8, and 6.9) follows 

the same above methodology. 

 

Dark Proteome Mostly Not Disordered. Intrinsically disordered regions are 

believed to account for much of the dark proteome, especially in eukaryotes (Oldfield 

et al., 2013). To explore this, for each protein we calculated the percentage of 

disordered residues using IUPred (Dosztányi et al., 2005) (see Methods). Viewing these 

disorder and darkness scores on a 2D scatter plot we see that darkness was greater than 

disorder for almost all eukaryotic proteins (most proteins above the diagonal in Figs. 

6.4 and 6.6C), implying that many dark residues are not disordered or have lows levels 

of disorder. In this 2D plot, dark proteins are difficult to resolve as they cluster on a line 

at the top; thus we made density plots comparing the disorder distribution for dark vs. 

non-dark proteins (Figs. 6.4 and 6.6B). Surprisingly, most dark proteins had low 

disorder (≤ 10%), not greatly different than non-dark proteins (median 6% disorder); 

also, since both these medians were less than half of the median darkness 28% (Figs. 

6.3 and 6.6A), this implies that – in eukaryotes – most of the dark proteome was not 

disordered. 

In bacteria, archaea, and viruses – surprisingly – non-dark proteins had higher 

median disorder than dark proteins (Figs. 6.7B, 6.8B, and 6.9B). However, the median 

darkness was always higher still, implying that in these organisms as well, much of the 

dark proteome was not disordered. 
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For eukaryotic proteins the pattern seen in the 2D plot (Figs. 6.4 and 6.6C) also 

implies that – as expected – most disordered residues were dark. However, a fraction 

of proteins occurs below the diagonal, implying that many disordered residues were not 

dark. In the corresponding plots for bacteria, archaea, and viruses this fraction is even 

larger (Figs. 6.7C, 6.8C, and 6.9C), implying that as much as half of all disordered 

residues were not dark. Many of our colleagues found this last result confusing, often 

because they were unclear about the distinction between disorder and darkness. Thus, 

to clarify, disordered regions are those with evidence of structural heterogeneity 

(Dosztányi et al., 2005) – yet some become well-structured in particular contexts (e.g., 

most of the 536 Swiss-Prot proteins with 100% disorder and 0% darkness were 

ribosomal, and presumably well-structured within the ribosomal complex). To clarify 

darkness: these are regions that do not match any PDB entry – but some PDB entries 

are highly disordered especially those from EM or NMR (Ota et al., 2013), and any 

sequence aligned to them was classified as ‘not dark’ using our stringent definition, 

since some structural information is known. 

 

Dark Proteome Mostly Not Compositionally Biased. Compositional bias is also 

known to confound structure determination (Huntley & Golding, 2002). To explore 

this, for each protein we calculated the percentage of compositionally biased residues 

(see Methods). Viewing these compositional bias and darkness scores on 2D scatter 

plots we see that darkness was greater than compositional bias for almost all proteins 

(Figs. 6.6E, 6.7E, 6.8E, and 6.9E), implying that – as expected – most compositionally 

biased residues were dark. Together with the density plots for compositional bias (Figs. 

6.6D, 6.7D, 6.8D, and 6.9D), it is clear that darkest residues were not compositionally 

biased, and that most dark proteins had very low compositional bias. 

 

Dark Proteome Mostly Not Transmembrane. Transmembrane regions are also 

known to confound structure determination (Oldfield et al., 2013; Carpenter et al., 

2008). To explore this, for each protein we calculated the percentage of transmembrane 

residues (see Methods). Viewing these transmembrane and darkness scores on 2D 

scatter plots we see that a surprisingly large fraction of transmembrane residues was 

not dark (Figs. 6.6F, 6.7F, 6.8F, and 6.9F). From transmembrane density plots 

(Figs. 6.6G, 6.7G, 6.8G, and 6.9G) we also see that most dark proteins had no 

transmembrane residues; zooming these plots shows (as expected) that dark proteins 
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were strongly overrepresented amongst integral transmembrane proteins in bacteria and 

archaea – but (unexpectedly) not so in eukaryotes and viruses.  

Also unexpected was that the transmembrane fraction tended to decrease with 

darkness in eukaryotes and – across all organisms – was unexpectedly low in proteins 

with 75% ≤ darkness < 100% (Fig. 6.14).  

These results suggest that knowledge of eukaryotic transmembrane protein 

structures may be more complete than commonly believed, thanks to an ongoing focus 

on membrane protein structures (Punta et al., 2009). An alternative suggestion is that 

the methods used to predict transmembrane regions in this work progressively fail with 

increasing darkness – i.e., there may be transmembrane regions that are currently 

undetectable via PROF (Rost et al., 1995), PROFTMB (Bigelow & Rost, 2006), and 

other similar methods. 

 

Shorter Sequence Length. Very short or long sequence length can confound 

structure determination (Slabinski et al., 2007). We found that dark proteins had 26-

50% shorter median length (Figs. 6.6I, 6.7I, 6.8I, and 6.9I) and 16% had length < 50 or 

length > 700 amino acids, compared with 11% of non-dark proteins. So, extreme length 

may explain some dark proteins, but not most. 

Since dark proteins are shorter, their abundance is underestimated in Fig. 6.1 which 

is based on the fraction of dark residues. The fractions for dark proteins were: 20% for 

eukaryotes, 7% for bacteria, 8% for archaea, 44% for viruses, and 13% for all Swiss-

Prot proteins. 
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Figure 6.6: Darkness vs. other properties for 178,692 eukaryotic proteins. A) The distribution of 
darkness (i.e., the fraction of dark residues per protein) is bimodal; 50% of proteins have ≤ 28% 

darkness, while 20% (36,153) have 100% darkness. B) The distribution of disorder (i.e., the 
fraction of disordered residues per protein) shows that disorder is slightly more prevalent 

amongst dark proteins, but most dark proteins have low disorder. C) Darkness tends to increase 
with disorder, and the majority of highly disordered proteins are dark. D) Compositional bias is 

low for all proteins, but slightly more prevalent for dark. E) Very few proteins occur in the 
indicated triangular region, suggesting that most compositionally biased regions are dark. F) 

Multi-pass transmembrane proteins become unexpectedly rare at ≥25% darkness. G) 
Proportionally more dark proteins are multi-pass transmembrane proteins (zoomed-in insert); 
however, most dark proteins have no transmembrane regions. H) Darkness tends to increase 

with sequence length (note the log scale). I) In contrast, dark proteins tend to be shorter. 
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Figure 6.7: Darkness of 19,270 archaeal proteins compared to other properties. A) The 
distribution of darkness is strongly bimodal; at least 50% of proteins have ≤ 4% darkness, while 
8% (1,612) have 100% darkness. B) The distribution of disorder shows that – surprisingly – non-

dark proteins have slightly more disorder (1% median) than dark proteins (0% median). 
Overall, almost all dark proteins have low disorder. C) There is no clear relationship between 
darkness and disorder. D and E) Almost all dark proteins have very low compositional bias. F) 

As with eukaryotes, multi-pass transmembrane proteins become unexpectedly rare at more than 
25% darkness. G) Dark proteins are much more prevalent amongst multi-pass transmembrane 
proteins (zoomed-in region); however, most dark proteins have no transmembrane residues. H) 
Darkness tends to increase with sequence length. I) Dark proteins tend to be shorter than non-

dark. 
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Figure 6.8: Darkness of 331,559 bacterial proteins compared to other properties. A) The 

distribution of darkness is strongly bimodal; at least 50% of proteins have ≤ 4% darkness, while 
7% (23,540) have 100% darkness. B) The distribution of disorder shows that - surprisingly - non-

dark proteins have slightly more disorder (3% median) than dark proteins (0% median). C) 
There is a tendency for darkness to increase with disorder, but it is very slight. D) Almost all 

dark proteins have very low compositional bias. E) There is a tendency for darkness to increase 
with compositional bias, but it is only slight. F) As with eukaryotes, multi-pass transmembrane 

proteins become unexpectedly rare at more than 25% darkness, and as the percentage of 
transmembrane residues increases, darkness tends to decrease. G) Dark proteins are much more 
prevalent amongst multi-pass transmembrane proteins (zoomed-in region); however, most dark 

proteins have no transmembrane residues. H) Darkness tends to increase with sequence length. I) 
Dark proteins tend to be slightly shorter than non-dark. 
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Figure 6.9: Darkness of 16,479 viral proteins compared to other properties. A) The distribution 
of darkness is much more evenly distributed than in archaea, bacteria, or eukaryotes, with 44% 

of proteins (7,316) having 100% darkness, and with an overall median of 65% darkness. B) 
Surprisingly, the distribution of disorder is almost identical between dark and non-dark proteins. 

C) There is a tendency for darkness to increase with disorder, but it is very slight. The blue 
rectangle indicates a striking feature that reoccurs several times on the plot, namely groups of 
similar viral protein groups regularly spaced in the horizontal direction. These groups mostly 
consist of proteins from different strains of the same virus – the key difference seen from one 

strain to the other is in the number of disordered residues, accounting for the regular horizontal 
spacing. This is consistent with the observation that the addition of disordered regions is a key 

aspect of viral strategies to hijack cell regulation (Davey et al., 2011). D) Almost all dark proteins 
have very low compositional bias. E) There is a tendency for darkness to increase with 

compositional bias, but it is only slight. F) Multi-pass transmembrane proteins are quite rare, 
and as the percentage of transmembrane residues increases, darkness tends to decrease. G) The 
very few multi-pass transmembrane proteins present seem fairly similarly distributed between 

dark and non-dark proteins. H) Darkness tends to increase with sequence length. I) Dark 
proteins tend to be slightly shorter than non-dark. 
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Figure 6.10: Comparing darkness with disorder defined using MD. Overall, the results are mostly 
similar to those obtained using only IUPred (Figs. 6.6C, 6.7C, 6.8C, and 6.9C). For eukaryotes, 
however, using MD results in a larger fraction of proteins occur close to the diagonal, resulting in 
an approximately linear relationship between disorder and darkness (H), in contrast to the upper 
triangular region seen with IUPred (Fig. 6.6C). However, as previously, most proteins do not show 
this trend. Indeed, the presence of almost as many proteins below this region as above indicates 
that disorder is essentially unrelated to darkness. For viruses (J), the pattern associated with 
disordered linear motifs is even more pronounced (Fig. 6.9C). The density plots (B, D, I, and K) 
show that MD disorder is more evenly distributed than IUPred disorder (Figs. 6.6D, 6.7D, 6.8D, 
and 6.9D, respectively). 
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Dark Proteins Mostly ‘Unknown Unknowns’. To determine the fraction of dark 

proteins that could be accounted for by a combination of disorder, transmembrane 

regions, or compositional bias, we categorized each protein as having either a ‘high’ 

(≥ 25%) or ‘low’ (< 25%) value for each score (Fig. 6.11). Most of the ‘known 

unknown’ (colored fraction) is accounted for by disorder in eukaryotes and viruses, and 

by transmembrane regions in bacteria and archaea (consistent with Figs. 6.6G, 6.7G, 

6.8G, 6.9G and Fig. 6.14). However, a surprisingly large fraction of dark proteins (45-

70%) are ‘unknown unknowns’ (grey fraction) in that they cannot be easily accounted 

for by these conventional explanations (Fig. 6.11). This fraction was largest for viral 

dark proteins, possibly due to their rapid mutation rates (Drake et al., 1998), which 

would tend to increase darkness by undermining the sequence-based structure 

prediction used in this thesis (O’Donoghue et al., 2015; Haas et al., 2013). To further 

characterize ‘unknown’ dark proteins, we next compared them to non-dark proteins that 

were also ordered, globular, and had low compositional bias (i.e., grey fraction, Fig. 

6.12). 

 

 
Figure 6.11: Known vs. unknown dark proteins using PSSH2. Each linear diagram (Tringe & 

Rubin, 2005) shows ‘known’ dark proteins, i.e., those with ≥ 25% of residues disordered 
(magenta), compositionally biased (blue), transmembrane (green), or both disordered and 

compositionally biased (stripes). The remaining fraction (grey) are ‘unknown unknowns’ – i.e., 
dark proteins predominately ordered, globular, and low in compositional bias. A) In eukaryotes, 

high disorder accounted for most of the ‘known’ dark proteins. Most dark proteins with high 
compositional bias were also highly disordered.  B and C) In bacteria and archaea, highly 

transmembrane proteins accounted for most of the ‘known’ dark proteins (consistent with Figs. 
6.7G, 6.8G and Fig. 6.14). D) Viruses had the largest ‘unknown unknown’ fraction and, like 

eukaryotes, had a large fraction of highly disordered dark proteins  
(Perdigão et al., 2015). 
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Figure 6.12: Known vs. unknown non-dark proteins using PSSH2. Disorder, compositional bias, 
and transmembrane fraction for non-dark proteins. Each linear diagram shows the fraction of 
non-dark proteins with ≥ 25% of residues disordered (magenta), compositionally biased (blue), 

transmembrane (green), or both disordered and compositionally biased (stripes). The remaining 
fractions (gray) are non-dark proteins predominately ordered, globular, and low in 

compositional bias. The figure shows data from eukaryotes (A), bacteria (B), archaea (C), and 
viruses (D). Note that in eukaryotic non-dark proteins (A), the difference in gray fraction 

compared with dark proteins (Fig. 6.11A) is smaller than may be expected 

 
 

 

Figure 6.13: Known vs. unknown dark proteins using PSSH2 and PMP. Similar distributions are 
plotted as for Figure 6.11, but now defining dark residues to be those with no matching 

structures in either PSSH2 or PMP. Although this definition of ‘darkness’ is more stringent, the 
overall fractions for dark regions and dark proteins are only slightly reduced.                    

(Perdigão et al., 2015). 
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Figure 6.14: Darkness vs. transmembrane fraction. In each histogram, proteins have been binned 
into six groups according to their darkness score (darkness = 0%, 0% < darkness < 25%, 25% ≤ 
darkness < 50%, 50% ≤ darkness < 75%, 75% ≤ darkness < 100%, and darkness = 100%). We 
then calculated the average fraction of transmembrane residues across all proteins in each bin. 

A) Surprisingly, for eukaryotic proteins, the largest fraction of transmembrane residues was seen 
for proteins with 0% darkness, and the fraction tended to decrease with increasing darkness, 

although rising somewhat for dark proteins (100% darkness). B) Bacterial proteins show nearly 
the opposite behavior: the smallest fraction of transmembrane residues was seen for proteins 
with 0% darkness, and the largest for proteins with 100% darkness. Interestingly, however, 

there was a dip in transmembrane fraction for proteins with 75% ≤ darkness < 100%. C) 
Archaeal proteins show a similar overall pattern to bacteria: the transmembrane fraction tended 

to increase with increasing darkness, although there as a dip in 3 transmembrane fraction for 
proteins with 50% ≤ darkness < 100%. D) Overall, viral proteins have much lower 

transmembrane fraction and relatively little dependency on darkness  
(Perdigão et al., 2015). 
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Subcellular Location of Dark Proteins. For each protein I used UniProt annotations 

to determine its subcellular location; these data were missing for 44% for eukaryotic 

dark proteins compared to 29% of non-dark proteins (consistent with lower 

evolutionary re-use - since location is often inferred via homology) (Perdigão et al., 

2015). The subset of proteins with known location was used in an enrichment analysis 

(see Methods) finding that, unexpectedly, eukaryotic dark proteins were most strongly 

over- represented in the extracellular space followed by the endoplasmic reticulum (Fig. 

6.15B). This partly explains why dark proteins had few interactions (Chapter 7) since 

secreted proteins are often ‘autonomous’ compared with intracellular proteins, fulfilling 

their functions via fewer interactions with other proteins. Interestingly, the only 

subcellular location where dark proteins were under- represented was the cytoplasm 

(Fig. 6.15B), and the only tissue where they were under-represented was cytoplasmic-

rich red blood cells (Fig. 6.15); this suggests that knowledge of cytoplasmic protein 

structures approaches a level of completeness – similar to that of bacterial and archaeal 

proteins (Fig. 6.1), most of which are also cytoplasmic.  

Functions of Dark Proteins. For each protein we extracted functional descriptions 

from the UniProt ‘CC’ annotations; the median length of text in this field was 47% 

shorter for dark proteins, indicating that less is known about them (Fig. 6.15A) (again, 

consistent with lower evolutionary re-use)  (Perdigão et al., 2015). The resulting set of 

242,064 distinct functional annotation terms was used in an enrichment analysis (see 

Methods), finding that only 2,098 were under-represented in dark proteins, while 3,566 

were over-represented (Tables 6.1, 6.2, 6.3, 6.4, and 6.5). This implies that, overall, 

dark proteins fulfill a wide variety of functions but, nevertheless, a subset has distinct 

biological functions.  

Eukaryotic dark proteins were over-represented in specific secretory tissues and 

exterior environments (Fig. 6.15B), consistent with the result that many were secreted 

(Fig. 6.15C). They were also over-represented in disulfide-rich domains and in disulfide 

bonds (Fig. 6.15C; Table 6.3). Additionally, they were over-represented in cleavage 

and other posttranslational modifications known to prepare proteins for harsh 

environments and to confound experimental structure determination (Fig. 6.15C). 
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Figure 6.15: TreeMap (Perdigão et al., 2015) for Dark vs non-Dark proteins in Eukaryotes. A) 
Dark proteins have shorter text describing their function, fewer sequence-specific features, and 

less complete annotation of subcellular location. Enrichment analysis of dark proteins found four 
times more over-represented annotations than under-represented. B) Shows cellular regions 

under- or over-represented in dark proteins. C) TreeMap showing under- (blue) or over-
represented annotations (black); the area of each cell is proportional to , where is 
the probability associated with the annotation in the cell. Dark proteins are under-represented 
only in the ‘Catalytic site’ and ‘Pathway’ subcategories, where annotations generally require 

similarity to a PDB structure. Complete enrichment results are in Table 6.3  
(Perdigão et al., 2015). 
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6.5.1. The Human Dark Proteome  

In this thesis it was specially studied the human proteome, finding that over half of 

it was dark (Fig. 6.16A). Adding that less was known about the function and subcellular 

location of dark proteins, 56% shorter ‘CC’ field; missing location data for 56% 

compared with 22% for non-dark proteins (Fig. 6.16B). Where these data were 

available, we saw again that dark proteins were associated with secretion, 

transmembrane regions, and cleavage; in addition, we saw some association with cancer 

and endogenous retroviral proteins (Fig. 6.17; Table 6.5). 

It was also determined which dark proteins came from sequential genes, finding 

seven ‘dark’ gene clusters. So basically you can take each protein and mapped down to 

the gene where the protein comes from and mapping down to chromosomes, and if we 

do that proteins from these clusters had many features described above as typical for 

dark proteins (Fig. 6.17; Table 6.6). 

 

 
 

Figure 6.16: Dark vs non-dark proteins in human. A) Shows the fractions of amino acids across 
all 20,209 human proteins assigned to PDB domains, grey domains, dark regions, and 4,382 dark 
proteins. B) Dark proteins have shorter functional descriptions, fewer sequence-specific features, 

and less complete annotation about subcellular location and tissue distribution. 
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Figure 6.17: TreeMap (Perdigão et al., 2015) showing all annotations over-represented in dark 
proteins (details are in Table 6.5). ‘Caution’ annotations seen for 215 dark ‘proteins’ indicate 

they may be long non-coding RNA or arise from pseudogenes; further tests suggest only 14 are 
non-coding. 

 
Finally, using Proteomics DB (Wilhelm et al., 2014) I looked at all the proteins 

that were expressed in 70 tissues, where every tissue has a list of expressed proteins 

and a level of abundance. What I have done was inspecting each tissue (like for 

instance, the brain), and observe which proteins where highly expressed and which 

fraction of those proteins were dark, associated with a darkness value, not for each 

protein, but for each tissue (Table 6.7). The tissue that has the highest level of darkness 

is the heart, which is very interesting, since it’s the tissue that is associated with heart 

disease, one of the main cause of death in humans (Table 6.7). 

6.6. Discussion 

Mapping the dark proteome has revealed many unexpected features; however, more 

analyses remain to be done – for example, examining physiochemical properties also 

known to confound structure determination, e.g., isoelectric point, hydrophobicity, or 

irregular secondary structure  (Slabinski et al., 2007). Thus, we provide our data for use 

by others (Tables 6.1, 6.2, 6.3, 6.4, and 6.5; full tables are online at the following URL: 

http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.15

08380112.sd01.xlsx).  

Several insights can be gained from the dark protein features revealed in this thesis:  
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(a) The observation that darkest proteins had low disorder (and many highly 

disordered proteins are not dark) helps clarify the distinction between darkness and 

disorder; this in turn will help further studies into protein intrinsic disorder;  

(b) The observation that transmembrane regions were rare amongst proteins with 

75% ≤ darkness < 100% (especially in eukaryotes) may indicate the existence of 

transmembrane regions undetected by current prediction methods; 

(c) The observation that many dark proteins are secreted and post-translationally 

modified may help focus on the development of experimental and bioinformatics 

methods to better manage such cases. 

 

Mostly, however, dark proteins are a mystery; in addition to unknown structure, 

many have unknown location, unknown function, and no known interactions with other 

proteins (Chapter 7). This is partly accounted for by low evolutionary re-use, since 

annotation is often inferred by homology; it is also partly accounted for by expression 

in specific tissues and developmental stages. Ultimately, many dark proteins are simply 

not as well studied as non-dark proteins; this work will contribute by highlighting them 

for subsequent experimental and bioinformatics studies, which may reveal further 

‘unknown unknowns’. 

The dark proteome is a moving target, changing as the PDB grows. However, as 

sequence databases grow at much faster rates, will the dark proteome expand or 

contract? The current work cannot answer this directly, but previous surveys have 

concluded that the number of folds is ≲	10,000 (Koonin et al, 2002), suggesting that 

the dark proteome will eventually contract if improvements in detection methods (e.g., 

HHblits (Remmert et al., 2011)) keep pace with the rate of new sequence families. 

However, those surveys used databases (PDB, Swiss-Prot, etc.) with historical bias 

towards model organisms; newer experimental approaches are reducing this bias (e.g., 

structural genomics (Khafizov et al., 2014); DNA sequencing of environmental samples 

(Tringe & Rubin, 2005). A recent survey of 8 million protein sequences by Levitt 

(Levitt, 2009) concluded that eventually the number of folds may increase linearly with 

sequences – although uncertainty in this conclusion arose since ~22% of the proteins 

surveyed were ‘uncharacterized’ (i.e., orphans not matching any known sequence 

family) – many may be due to errors in predicting genes from whole genomes. 
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Archaea 
Non-dark	 Dark	 Ratio	 Total	 Fisher's	p	

value	 Adjusted	p	value	 Annotation	Sub-Category	 Annotation	

222	 188	 24.14960798	 410	 4.60E-162	 3.10E-158	 SUBCELLULAR_LOCATION	 Cell	membrane;	Multi-pass	
membrane	protein	(Potential).	

11	 76	 197.0271691	 87	 1.08E-99	 3.64E-96	 CATALYTIC_ACTIVITY	 5-methyl-5,6,7,8-
tetrahydromethanopterin	+	2-
mercaptoethanesulfonate	=	
5,6,7,8-tetrahydromethanopterin	
+	2-(methylthio)ethanesulfonate.	

11	 74	 191.8422436	 85	 7.66E-97	 1.72E-93	 PATHWAY	 One-carbon	metabolism;	
methanogenesis	from	CO(2);	
methyl-coenzyme	M	from	5,10-
methylene-5,6,7,8-
tetrahydromethanopterin:	step	
2/2.	

0	 61	 0	 61	 9.68E-91	 1.63E-87	 FUNCTION	 Part	of	a	complex	that	catalyzes	
the	formation	of	methyl-
coenzyme	M	and	
tetrahydromethanopterin	from	
coenzyme	M	and	methyl-
tetrahydromethanopterin.	This	is	
an	energy-conserving,	sodium-
ion	translocating	step	(By	
similarity).	

10	 68	 193.9162138	 78	 3.70E-89	 4.98E-86	 SUBUNIT	 The	complex	is	composed	of	8	
subunits;	MtrA,	MtrB,	MtrC,	
MtrD,	MtrE,	MtrF,	MtrG	and	
MtrH	(By	similarity).	

0	 58	 0	 58	 2.69E-86	 3.01E-83	 SIMILARITY	 Belongs	to	the	UPF0218	family.	

134	 97	 20.64296833	 231	 3.99E-79	 3.84E-76	 SUBCELLULAR_LOCATION	 Cell	membrane;	Multi-pass	
membrane	protein	(By	
similarity).	

0	 42	 0	 42	 1.25E-62	 1.05E-59	 SIMILARITY	 Belongs	to	the	UPF0179	family.	

31	 53	 48.7550253	 84	 2.29E-56	 1.71E-53	 SUBCELLULAR_LOCATION	 Membrane;	Single-pass	
membrane	protein	(Potential).	

3627	 1	 0.007862446	 3628	 2.95E-54	 1.99E-51	 SUBCELLULAR_LOCATION	 Cytoplasm	(By	similarity).	

0	 34	 0	 34	 8.20E-51	 5.02E-48	 SIMILARITY	 Belongs	to	the	archaeal	flagellin	
family.	

0	 32	 0	 32	 7.35E-48	 4.12E-45	 SIMILARITY	 Belongs	to	the	UPF0212	family.	

0	 29	 0	 29	 1.96E-43	 1.02E-40	 SUBCELLULAR_LOCATION	 Archaeal	flagellum.	

0	 29	 0	 29	 1.96E-43	 9.44E-41	 FUNCTION	 Flagellin	is	the	subunit	protein	
which	polymerizes	to	form	the	
filaments	of	archaeal	flagella.	

0	 28	 0	 28	 5.86E-42	 2.63E-39	 FUNCTION	 Important	for	reducing	fluoride	
concentration	in	the	cell,	thus	
reducing	its	toxicity	(By	
similarity).	

0	 28	 0	 28	 5.86E-42	 2.47E-39	 SIMILARITY	 Belongs	to	the	CrcB	(TC	9.B.71)	
family.	

0	 28	 0	 28	 5.86E-42	 2.32E-39	 SIMILARITY	 Belongs	to	the	UPF0248	family.	

0	 26	 0	 26	 5.23E-39	 1.95E-36	 CATALYTIC_ACTIVITY	 GDP-cobinamide	+	alpha-ribazole	
=	cobalamin	+	GMP.	

0	 26	 0	 26	 5.23E-39	 1.85E-36	 PATHWAY	 Cofactor	biosynthesis;	
adenosylcobalamin	biosynthesis;	
adenosylcobalamin	from	
cob(II)yrinate	a,c-diamide:	step	
7/7.	

0	 26	 0	 26	 5.23E-39	 1.76E-36	 SIMILARITY	 Belongs	to	the	CobS	family.	

Table 6.1:  Annotations enriched in dark proteins from archaea (only the first 20 entries). The 
table documents Swiss-Prot annotations that are over- or underrepresented in dark proteins. The 

annotations are derived from the Swiss-Prot ‘Description’ field, and are divided into 19 
subcategories. The values indicated have been calculated using Fisher’s exact test, then adjusted 
via the false discovery rate method. Each row of the table gives information on all proteins where 
the Swiss-Prot entry contains a match to the annotation specified in the Annotation column. Non-

dark indicates the number of matching proteins that are non-dark, while Dark indicates the 
number that are dark. Ratio indicates the ratio of dark to non-dark, adjusted to account for the 

total numbers of proteins in both categories – i.e., a ratios above 1 indicate an overrepresentation 
of dark proteins, values below 1 indicate underrepresentation. Total indicates the sum of dark 

and non-dark proteins. Fisher’s p value indicates the raw p- value calculated using Fisher’s exact 
test. Adjusted p value indicates the p-value after applying a correction for false discovery. 

Annotation Sub-Category indicates the class of annotation. 
(http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.1508380112.s

d02.xlsx) 
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Bacteria 
 

Non-dark	 Dark	 Ratio	 Total	 Fisher's	p	
value	 Adjusted	p	value	 Annotation	Sub-Category	 Annotation	

0	 449	 0	 449	 0	 0	 CATALYTIC_ACTIVITY	 Acyl-phosphate	+	sn-glycerol	3-
phosphate	=	1-acyl-sn-glycerol	3-
phosphate	+	phosphate.	

0	 561	 0	 561	 0	 0	 FUNCTION	 Catalyzes	the	dephosphorylation	
of	undecaprenyl	diphosphate	
(UPP).	Confers	resistance	to	
bacitracin	(By	similarity).	

0	 483	 0	 483	 0	 0	 FUNCTION	 Transfers	the	N-acyl	diglyceride	
group	on	what	will	become	the	
N-terminal	cysteine	of	
membrane	lipoproteins	(By	
similarity).	

2	 563	 6717.118666	 565	 0	 0	 CATALYTIC_ACTIVITY	 Ditrans,octacis-undecaprenyl	
diphosphate	+	H(2)O	=	
ditrans,octacis-undecaprenyl	
phosphate	+	phosphate.	

3	 453	 3603.143583	 456	 0	 0	 SIMILARITY	 Belongs	to	the	CrcB	(TC	9.B.71)	
family.	

0	 485	 0	 485	 0	 0	 PATHWAY	 Protein	modification;	lipoprotein	
biosynthesis	(diacylglyceryl	
transfer).	

0	 328	 0	 328	 0	 0	 FUNCTION	 Assembles	around	the	rod	to	
form	the	L-ring	and	probably	
protects	the	motor/basal	body	
from	shearing	forces	during	
rotation	(By	similarity).	

0	 466	 0	 466	 0	 0	 SUBUNIT	 Probably	interacts	with	PlsX	(By	
similarity).	

33680	 62	 0.04392626	 33742	 0	 0	 SUBUNIT	 Homodimer	(By	similarity).	

0	 411	 0	 411	 0	 0	 SIMILARITY	 Belongs	to	the	peptidase	A8	
family.	

0	 309	 0	 309	 0	 0	 SIMILARITY	 Belongs	to	the	UPF0246	family.	

7440	 3556	 11.40495138	 10996	 0	 0	 SUBCELLULAR_LOCATION	 Cell	inner	membrane;	Multi-pass	
membrane	protein	(By	
similarity).	

1975	 1970	 23.80146821	 3945	 0	 0	 SUBCELLULAR_LOCATION	 Cell	membrane;	Multi-pass	
membrane	protein	(Potential).	

0	 331	 0	 331	 0	 0	 SUBUNIT	 The	basal	body	constitutes	a	
major	portion	of	the	flagellar	
organelle	and	consists	of	four	
rings	(L,P,S,	and	M)	mounted	on	
a	central	rod	(By	similarity).	

0	 263	 0	 263	 0	 0	 SIMILARITY	 Belongs	to	the	UPF0178	family.	

0	 247	 0	 247	 0	 0	 SIMILARITY	 Belongs	to	the	UPF0061	(SELO)	
family.	

0	 405	 0	 405	 0	 0	 PATHWAY	 Protein	modification;	lipoprotein	
biosynthesis	(signal	peptide	
cleavage).	

3	 453	 3603.143583	 456	 0	 0	 FUNCTION	 Important	for	reducing	fluoride	
concentration	in	the	cell,	thus	
reducing	its	toxicity	(By	
similarity).	

0	 448	 0	 448	 0	 0	 FUNCTION	 Catalyzes	the	transfer	of	an	acyl	
group	from	acyl-phosphate	(acyl-
PO(4))	to	glycerol-3-phosphate	
(G3P)	to	form	lysophosphatidic	
acid	(LPA).	This	enzyme	utilizes	
acyl-phosphate	as	fatty	acyl	
donor,	but	not	acyl-CoA	or	acyl-
ACP	(By	similarity).	

0	 466	 0	 466	 0	 0	 SIMILARITY	 Belongs	to	the	PlsY	family.	

 

Table 6.2:  Annotations enriched in dark proteins from bacteria (only the first 20 entries). The 
table documents Swiss-Prot annotations that are over- or under-represented in dark proteins.  

(http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.1508380112.s
d02.xlsx) 

 
 
 
 
 
 



 

152 

Eukaryota 
 

Non-dark	 Dark	 Ratio	 Total	 Fisher's	p	
value	 Adjusted	p	value	 Annotation	Sub-Category	 Annotation	

0	 363	 0	 363	 0	 0	 SIMILARITY	 Belongs	to	the	Casparian	strip	
membrane	proteins	(CASP)	
family.	

6886	 3518	 4.220125639	 10404	 0	 0	 SUBCELLULAR_LOCATION	 Secreted.	

166	 498	 24.78094242	 664	 0	 0	 TISSUE_SPECIFICITY	 Expressed	by	the	skin	glands.	

1588	 1154	 6.002772367	 2742	 0	 0	 SUBCELLULAR_LOCATION	 Membrane;	Multi-pass	
membrane	protein	(Potential).	

222	 802	 29.84131505	 1024	 0	 0	 TISSUE_SPECIFICITY	 Expressed	by	the	venom	duct.	

0	 361	 0	 361	 0	 0	 SUBUNIT	 Homodimer	and	heterodimers	
(By	similarity).	

516	 591	 9.460941197	 1107	 1.07E-267	 3.58E-263	 SUBCELLULAR_LOCATION	 Cell	membrane;	Multi-pass	
membrane	protein	(By	
similarity).	

0	 257	 0	 257	 2.65E-249	 7.77E-245	 SIMILARITY	 Belongs	to	the	periviscerokinin	
family.	

24	 267	 91.89599482	 291	 3.02E-225	 7.86E-221	 DOMAIN	 The	presence	of	a	'disulfide	
through	disulfide	knot'	
structurally	defines	this	protein	
as	a	knottin	(By	similarity).	

4120	 1443	 2.89311488	 5563	 8.77E-221	 2.05E-216	 SUBCELLULAR_LOCATION	 Secreted	(By	similarity).	

0	 202	 0	 202	 4.44E-196	 9.44E-192	 FUNCTION	 Mediates	visceral	muscle	
contractile	activity	(myotropic	
activity).	

0	 196	 0	 196	 2.83E-190	 5.53E-186	 SIMILARITY	 Belongs	to	the	PsbN	family.	

0	 195	 0	 195	 2.63E-189	 4.74E-185	 CAUTION	 Based	on	experiments	in	
Thermosynechococcus	vulcanus	
this	is	probably	not	a	component	
of	photosystem	II.	

53	 250	 38.96374595	 303	 2.36E-185	 3.94E-181	 TISSUE_SPECIFICITY	 Testis.	

482	 455	 7.797599449	 937	 1.86E-184	 2.90E-180	 SUBCELLULAR_LOCATION	 Endoplasmic	reticulum	
membrane;	Multi-pass	
membrane	protein	(By	
similarity).	

0	 174	 0	 174	 5.46E-169	 7.99E-165	 SIMILARITY	 Belongs	to	the	pyrokinin	family.	

36	 203	 46.57899363	 239	 5.65E-156	 7.78E-152	 SIMILARITY	 Belongs	to	the	conotoxin	O1	
superfamily.	

3539	 1133	 2.644514248	 4672	 2.67E-150	 3.47E-146	 TISSUE_SPECIFICITY	 Expressed	by	the	venom	gland.	

0	 153	 0	 153	 1.13E-148	 1.39E-144	 SIMILARITY	 Belongs	to	the	FARP	
(FMRFamide	related	peptide)	
family.	

1	 154	 1272.088378	 155	 1.68E-147	 1.97E-143	 SIMILARITY	 Belongs	to	the	protamine	P1	
family.	

 

Table 6.3:  Annotations enriched in dark proteins from eukaryotes (only the first 20 entries). 
(http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.1508380112.s

d02.xlsx) 
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Viruses 
 

Non-dark	 Dark	 Ratio	 Total	 Fisher's	p	
value	

Adjusted	p	value	 Annotation	Sub-Category	 Annotation	

40	 221	 15.49995482	 261	 2.45E-87	 2.90E-83	 SUBCELLULAR_LOCATION	 Host	membrane;	Single-pass	
membrane	protein	(Potential).	

45	 154	 9.600776439	 199	 3.40E-51	 2.01E-47	 FUNCTION	 Plays	a	role	in	virus	cell	tropism,	
and	may	be	required	for	efficient	
virus	replication	in	macrophages	
(By	similarity).	

1	 68	 190.7686747	 69	 1.56E-38	 6.14E-35	 PTM	 Phosphorylated	(By	similarity).	

47	 122	 7.282158421	 169	 1.37E-35	 4.04E-32	 SUBCELLULAR_LOCATION	 Host	membrane;	Multi-pass	
membrane	protein	(Potential).	

6	 72	 33.66506024	 78	 6.13E-35	 1.45E-31	 SUBUNIT	 Interacts	with	major	capsid	
protein	L1	(By	similarity).	
Interacts	with	host	importins	(By	
similarity).	

7	 72	 28.85576592	 79	 5.13E-34	 7.57E-31	 FUNCTION	 Minor	protein	of	the	capsid	that	
localizes	along	the	inner	surface	
of	the	virion,	within	the	central	
cavities	beneath	the	L1	
pentamers..	….	(By	similarity).	

7	 72	 28.85576592	 79	 5.13E-34	 8.66E-31	 SIMILARITY	 Belongs	to	the	papillomaviridae	
L2	protein	family.	

0	 57	 0	 57	 7.63E-34	 1.00E-30	 SIMILARITY	 Belongs	to	the	asfivirus	MGF	360	
family.	

7	 72	 28.85576592	 79	 5.13E-34	 1.01E-30	 PTM	 Highly	phosphorylated	
(Potential).	

0	 53	 0	 53	 1.62E-31	 1.91E-28	 SUBUNIT	 Homomultimer.	Interacts	with	
envelope	E	protein	in	the	
budding	compartment	of	the	
host	cell,	which	is	located	
between	endoplasmic	reticulum	
and	the	Golgi	complex.	...	This	
interaction	probably	participates	
in	RNA	packaging	into	the	virus	
(By	similarity).	

1	 52	 145.8819277	 53	 2.43E-29	 2.61E-26	 SIMILARITY	 Belongs	to	the	coronaviruses	M	
protein	family.	

0	 48	 0	 48	 1.31E-28	 1.29E-25	 SIMILARITY	 Belongs	to	the	asfivirus	MGF	110	
family.	

209	 0	 0	 209	 4.08E-28	 3.71E-25	 SIMILARITY	 Belongs	to	the	influenza	viruses	
hemagglutinin	family.	

2	 52	 72.94096386	 54	 4.88E-28	 4.11E-25	 SIMILARITY	 Belongs	to	the	
orthohepadnavirus	protein	X	
family.	

207	 0	 0	 207	 6.13E-28	 4.83E-25	 PTM	 In	natural	infection,	inactive	HA	
is	matured	into	HA1	and	HA2	
outside	the	cell	by	one	or	more	
trypsin-like,	arginine-specific	
endoprotease	secreted	by	the	
bronchial	epithelial	cells.	….(By	
similarity).		

0	 46	 0	 46	 1.90E-27	 1.40E-24	 SUBCELLULAR_LOCATION	 Host	cytoplasm.	Note=Found	in	
spherical	cytoplasmic	structures,	
called	virus	factories,	that	appear	
early	after	infection	and	are	the	
site	of	viral	replication	and	
packaging	(By	similarity).	

1	 47	 131.8548193	 48	 1.78E-26	 1.24E-23	 FUNCTION	 Component	of	the	viral	envelope	
that	plays	a	central	role	in	virus	
morphogenesis	and	assembly	via	
its	interactions	with	other	viral	
proteins	(By	similarity).	

1	 45	 126.2439759	 46	 2.48E-25	 1.63E-22	 SUBCELLULAR_LOCATION	 Virion	membrane;	Multi-pass	
membrane	protein	(Potential).	
Host	Golgi	apparatus	membrane;	
Multi-pass	membrane	protein	
(Potential).	Note=Largely	
embedded	in	the	lipid	bilayer	(By	
similarity).	

183	 0	 0	 183	 8.36E-25	 5.20E-22	 CATALYTIC_ACTIVITY	 Hydrolysis	of	alpha-(2->3)-,	
alpha-(2->6)-,	alpha-(2->8)-	
glycosidic	linkages	of	terminal	
sialic	acid	residues	in	
oligosaccharides,	glycoproteins,	
glycolipids,	colominic	acid	and	
synthetic	substrates.	

27	 78	 8.104551539	 105	 1.27E-24	 7.49E-22	 SUBCELLULAR_LOCATION	 Membrane;	Single-pass	
membrane	protein	(Potential).	

 
Table 6.4:  Annotations enriched in dark proteins from viruses (only the first 20 entries). 

(http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.1508380112.s
d02.xlsx) 
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Human 
          

Non-dark	 Dark	 Ratio	 Total	 Fisher's	p	
value	

Adjusted	p	
value	

Annotation	Sub-Category	 Annotation	

124	 28	 18,485372	 152	 9,71E-25	 6,65E-20	 SUBCELLULAR_LOCATION	 Membrane;	Single-pass	membrane	
protein	(Potential).	

0	 11	 0	 11	 7,55E-22	 2,59E-17	 CAUTION	 Product	of	a	dubious	CDS	prediction.	
May	be	a	non-coding	RNA.	

162	 27	 13,643965	 189	 7,11E-21	 1,62E-16	 CAUTION	 Could	be	the	product	of	a	
pseudogene.	

5	 12	 196,47309
6	

17	 5,29E-20	 9,05E-16	 CAUTION	 Product	of	a	dubious	CDS	prediction.	

0	 9	 0	 9	 5,27E-18	 6,01E-14	 SIMILARITY	 Belongs	to	the	beta	type-B	retroviral	
envelope	protein	family.	HERV	class-II	
K(HML-2)	env	subfamily.	

0	 9	 0	 9	 5,27E-18	 7,22E-14	 MISCELLANEOUS	 Encoded	by	one	of	the	numerous	
copies	of	NBPF	genes	clustered	in	the	
p36,	p12	and	q21	region	of	the	
chromosome	1.	

0	 8	 0	 8	 4,39E-16	 3,76E-12	 SUBUNIT	 Forms	homodimers,	homotrimers,	and	
homotetramers	via	a	C-terminal	
domain.	Associates	with	XPO1	and	
with	ZNF145	(By	similarity).	

0	 8	 0	 8	 4,39E-16	 4,30E-12	 FUNCTION	 Retroviral	replication	requires	the	
nuclear	export	and	translation	of	
unspliced,	singly-spliced	and	multiply-
spliced	derivatives	of	the	initial	
genomic	transcript.	Rec	interacts	with	
a	highly	structured	RNA	element	
(RcRE)	present	in	the	viral	3'LTR	and	
recruits	the	cellular	nuclear	export	
machinery.	This	permits	export	to	the	
cytoplasm	of	unspliced	genomic	or	
incompletely	spliced	subgenomic	viral	
transcripts	(By	similarity).	

1	 8	 654,91032
1	

9	 3,91E-15	 2,98E-11	 PTM	 Specific	enzymatic	cleavages	in	vivo	
yield	the	mature	SU	and	TM	proteins	
(By	similarity).	

0	 7	 0	 7	 3,66E-14	 2,51E-10	 SUBCELLULAR_LOCATION	 Cytoplasm	(By	similarity).	Nucleus,	
nucleolus	(By	similarity).	
Note=Shuttles	between	the	nucleus	
and	the	cytoplasm.	When	in	the	
nucleus,	resides	in	the	nucleolus	(By	
similarity).	

3	 8	 218,30344	 11	 7,02E-14	 4,37E-10	 SUBUNIT	 The	surface	(SU)	and	transmembrane	
(TM)	proteins	form	a	heterodimer.	SU	
and	TM	are	attached	by	noncovalent	
interactions	or	by	a	labile	interchain	
disulfide	bond	(By	similarity).	

218	 21	 7,8859614
4	

239	 2,55E-12	 1,46E-08	 SUBCELLULAR_LOCATION	 Membrane;	Multi-pass	membrane	
protein	(Potential).	

0	 5	 0	 5	 2,54E-10	 1,16E-06	 CAUTION	 Product	of	a	dubious	CDS	prediction.	
Probable	non-coding	RNA.	

0	 5	 0	 5	 2,54E-10	 1,24E-06	 SIMILARITY	 Belongs	to	the	BAGE	family.	

0	 5	 0	 5	 2,54E-10	 1,34E-06	 MISCELLANEOUS	 The	ancestral	BAGE	gene	was	
generated	by	juxtacentromeric	
reshuffling	of	the	KMT2C/MLL3	gene.	
The	BAGE	family	was	expanded	by	
juxtacentromeric	movement	and/or	
acrocentric	exchanges.	BAGE	family	is	
composed	of	expressed	genes	that	
map	to	the	juxtacentromeric	regions	
of	chromosomes	13	and	21	and	of	
unexpressed	gene	fragments	that	
scattered	in	the	juxtacentromeric	
regions	of	several	chromosomes,	
including	chromosomes	9,	13,	18	and	
21.	

215	 17	 6,4729508
5	

232	 4,87E-09	 2,09E-05	 SUBCELLULAR_LOCATION	 Secreted	(Potential).	

2	 5	 204,65947
5	

7	 5,22E-09	 2,10E-05	 FUNCTION	 Retroviral	envelope	proteins	mediate	
receptor	recognition	and	membrane	
fusion	during	early	infection.	
Endogenous	envelope	proteins	may	
have	kept,	lost	or	modified	their	
original	function	during	evolution.	
This	endogenous	envelope	protein	has	
lost	its	original	fusogenic	properties.		

3	 5	 136,43965	 8	 1,38E-08	 5,25E-05	 SUBUNIT	 Complex	I	is	composed	of	45	different	
subunits.	

0	 4	 0	 4	 2,11E-08	 6,88E-05	 FUNCTION	 Unknown.	Candidate	gene	encoding	
tumor	antigens.	

0	 4	 0	 4	 2,11E-08	 7,23E-05	 SIMILARITY	 Belongs	to	the	Speedy/Ringo	family.	

Table 6.5:  Annotations enriched in dark proteins from human (only the first 20 entries). 
(http://www.pnas.org/content/suppl/2015/11/17/1508380112.DCSupplemental/pnas.1508380112.s

d02.xlsx) 
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    Gene Protein Length Binds Bias      Gene Protein Length Binds Bias 

Chromosome 1 (q21.3): PQCK-rich, keratinocyte proteins  Chromosome 17 (q21.2): CS-rich, keratin associated proteins 
    LCE5A Late cornified envelope 5A 118 3 21      KRTAP3-3 Keratin associated protein 3-3 98  19 
    CRCT1 Cysteine-rich C-terminal 1 99 2 25      KRTAP3-2 Keratin associated protein 3-2 98  19 
    LCE3E Late cornified envelope 3E 92 2 16      KRTAP3-1 Keratin associated protein 3-1 98  18 
    LCE3E Late cornified envelope 3E 92 2 17      KRTAP3-1 Keratin associated protein 3-1 98  24 
    LCE3D Late cornified envelope 3D 92 2 19      KRTAP1-5 Keratin associated protein 1-5 174  25 
    LCE3C Late cornified envelope 3C 94 4 19      KRTAP1-1 Keratin associated protein 1-1 177  27 
    LCE3B Late cornified envelope 3B 95 2 24      KRTAP2-1 Keratin associated protein 2-1 128  27 
    LCE3A Late cornified envelope 3A 89 1 21      KRTAP2-1 Keratin associated protein 2-1 128  35 
    LCE2D Late cornified envelope 2D 110 1 20      KRTAP4-11 Keratin associated protein 4-11 195  37 
    LCE2C Late cornified envelope 2C 110  21      KRTAP4-12 Keratin associated protein 4-12 201  37 
    LCE2B Late cornified envelope 2B 110  22      KRTAP4-4 Keratin associated protein 4-4 166  36 
    LCE2A Late cornified envelope 2A 106 1 20      KRTAP4-3 Keratin associated protein 4-3 195  35 
    LCE4A Late cornified envelope 4A 99 3 18      KRTAP4-2 Keratin associated protein 4-2 136  34 
    KPRP Keratinocyte proline-rich protein 579 1 20      KRTAP4-1 Keratin associated protein 4-1 146  36 
    LCE1F Late cornified envelope 1F 118  22      KRTAP17-1 Keratin associated protein 17-1 105  19 
    LCE1E Late cornified envelope 1E 118 1 22  Chromosome 21 (q22.11): GYSC-rich, keratin-associated proteins 
    LCE1D Late cornified envelope 1D 114 1 22      CLDN17 Claudin 17 224 1 14 
    LCE1C Late cornified envelope 1C 118 1 21      CLDN8 Claudin 8 225 1 10 
    LCE1B Late cornified envelope 1B 118  20      KRTAP24-1 Keratin associated protein 24-1 254 2 19 
    LCE1A Late cornified envelope 1A 110 1 14      KRTAP25-1 Keratin associated protein 25-1 102  21 
    LCE6A Late cornified envelope 6A 80  17      KRTAP26-1 Keratin associated protein 26-1 210 2 18 
    SMCP Sperm mitochondria-associated  116  29      KRTAP27-1 Keratin associated protein 27-1 207 2 16 
    SPRR4 Small proline-rich protein 4 79  22      KRTAP23-1 Keratin associated protein 23-1 65 2 20 
    SPRR3 Small proline-rich protein 3 169  29      KRTAP13-2 Keratin associated protein 13-6, pseudogene 175  23 
    SPRR1B Small proline-rich protein 1B 89  38      KRTAP13-1 Keratin associated protein 13-1 172  23 
    SPRR2D Small proline-rich protein 2D 72  38      KRTAP13-3 Keratin associated protein 13-3 172  22 
    SPRR2A Small proline-rich protein 2A 72 1 39      KRTAP13-4 Keratin associated protein 13-4 160  21 
    SPRR2B Small proline-rich protein 2B 72 1 39      KRTAP19-1 Keratin associated protein 19-1 90  42 
    SPRR2E Small proline-rich protein 2E 72  36      KRTAP19-2 Keratin associated protein 19-2 52  27 
    SPRR2F Small proline-rich protein 2F 72  40      KRTAP19-3 Keratin associated protein 19-3 81  43 
    SPRR2G Small proline-rich protein 2G 73  26      KRTAP19-4 Keratin associated protein 19-4 84  27 
    LELP1 Late cornified envelope-like 98  21      KRTAP19-5 Keratin associated protein 19-5 72  39 
Chromosome 4 (q13.3): P-rich, mouth and digestive secreted proteins      KRTAP19-7 Keratin associated protein 19-7 63 2 33 
    CSN1S1 Casein alpha s1 185 2 11      KRTAP6-2 Keratin associated protein 6-2 62  32 
    CSN2 Casein beta 226 2 17      KRTAP6-1 Keratin associated protein 6-1 71  38 
    STATH Statherin 62 2 11      KRTAP20-1 Keratin associated protein 20-1 56  36 
    HTN3 Histatin 3 51 1 14      KRTAP20-2 Keratin associated protein 20-2 65  37 
    HTN1 Histatin 1 57 2 12      KRTAP20-3 Keratin associated protein 20-3 44 4 25 
    C4orf40 Proline-rich protein 27 219  21      KRTAP21-1 Keratin associated protein 21-1 79 2 35 
    ODAM Odontogenic, ameloblast asssociated 279  15      KRTAP8-1 Keratin associated protein 8-1 63  24 
    C4orf7 Follicular dendritic cell secreted 85  19      KRTAP11-1 Keratin associated protein 11-1 163  15 
    CSN3 Casein kappa 182 2 16      KRTAP19-8 Keratin associated protein 19-8 63 4 35 
    SMR3B Salivary gland androgen regulated 79 1 39  Chromosome X (p11.23): EPG-rich, GAGE and PAGE family proteins 
    MUC7 Mucin 7, secreted 377 4 20      GAGE10 G antigen 10 116  17 
    AMTN Amelotin 209 1 15      GAGE12J G antigen 12J 117  16 
    AMBN Enamel matrix protein 447 1 15      GAGE12F G antigen 6 117  17 
    IGJ Immunoglobulin J chain 159 1 9      GAGE13 G antigen 13 117  17 
    UTP3 Processome component 479 1 13      GAGE2E G antigen 8 116  17 
Chromosome 11 (q12.1-q12.2): LS-rich, transmembrane complex members      GAGE2D G antigen 8 116  16 
    MS4A3 Member 3 214  13      GAGE2C G antigen 2C 116  18 
    MS4A2 Member 2, receptor for 244  12      GAGE12B G antigen 12B 117  17 
    MS4A6A Member 6A 248 2 14      GAGE2A G antigen 2A 116  17 
    MS4A4E Putative member 4E 132 2 11      GAGE1 G antigen 6 139  14 
    MS4A4A Member 4 239 1 11      GAGE4 Cancer/testis antigen 4.4 117  17 
    MS4A6E Member 6E 147 2 16      PAGE1 P antigen family, member 1 146  18 
    MS4A7 Member 7 240 1 15      PAGE4 P antigen family, member 4 102  15 
    MS4A5 Member 5 200  13  Chromosome X (p11.22): EP-rich; contains XAGE family proteins 
          XAGE2B X antigen family, member 2B 111  13 
          XAGE1B G antigen member; Cancer/testis antigen 12.1 81  15 
          SSX7 Synovial sarcoma, X breakpoint 7 188  12 
          SSX2B Synovial sarcoma, X breakpoint 2B 188  12 
          SPANXN5 SPANX family, member N5 72  14 
          XAGE5 X antigen family, member 5 108  12 
          XAGE3 X antigen family, member 3 111  15 
          FAM156A Family with sequence similarity 156, member B 213  12 

Table 6.6: Human gene clusters containing dark proteins. Length indicates the number of amino acids; ‘Binds’ indicates 
the number of known binding partners in the same cluster from STRING (Franceschini et al., 2013)(Chapter 7); ‘Bias’ 

indicates the largest single amino acid composition (e.g., a value of ‘42%’ indicates that one amino acid accounts for 42% 
of the entire sequence) – the most frequently occurring amino acids are given for each cluster (e.g., ‘CS-rich’ indicates 

Cys is the most common, followed by Ser). The proteins arising from these gene clusters exhibit typical characteristics of 
dark proteins: they tend to be short, have few known interactions, have atypical amino acid composition, and are often 

secreted, transmembrane, or skin-associated. The 1q21.3 cluster arises from gene duplication (Rost et al., 1995); it 
contains many skin proteins with significant compositional bias. The 4q13.3 cluster does not appear to have been 

previously characterized; it contains proteins related to the mouth, salivary glands, and secretion, implying that these 
genes share related functions. The 11q12 cluster arises from gene duplication during vertebrate evolution (Bigelow & 

Rost, 2006); it contains proteins that all have a 4-pass membrane-spanning region and are components of a multimeric 
receptor complexes. The 17q21.2 and 21q22.11 clusters have also been previously identified (Cedano et al., 1997; Drake et 

al., 1998); they contain hair-associated proteins. The Xp11.23 and Xp11.22 clusters are both very recent evolutionary 
developments (Andrade et al., 1998); they contain proteins that are expressed only in testis and in cancer - some are also 

unique to human 
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Table 6.7:  Tissues with the highest levels of darkness (only the first 25 entries). 

 

In the current survey of half a million carefully curated Swiss-Prot sequences we 

found that ~13% are dark proteins; while many were not orphans (just hard to determine 

folds), most were, as evidenced by low evolutionary re-use scores. Although we used a 

very different approach to Levitt (a focus on structure versus sequence, and very 

different methods, thresholds, and cut-off values), both our studies are in broad 

agreement. Thus, our results suggest that many of the uncharacterized orphan sequences 

reported by Levitt (or the ‘dark matter of the protein universe’) are indeed proteins; this 

strengthens the suggestion that folds will eventually increase linearly with sequences 

(Levitt, 2009), and implies that dark proteins may remain a sizeable and irreducible 

feature of the protein universe. 

Rank	 Tissue	 Ratio	Dark	Residues	
1	 Heart	 50%	
2	 Cervical	Mucosa	 50%	
3	 Natural	Killer	Cell	 50%	
4	 Lung	 49%	
5	 Testis	 49%	
6	 Rectum	 49%	
7	 Proximal	Fluid	Coronary	Sinus	 49%	
8	 Pancreas	 49%	
9	 B.	Lymphocyte	 49%	
10	 Colon	Muscle	 49%	
11	 Bone	Marrow	Stromal	Cell	 48%	
12	 Hair	Follicle	 48%	
13	 Cytotoxic	T	Lymphocyte	 48%	
14	 Helper	T	Lymphocyte	 48%	
15	 Colon	 48%	
16	 Ovary	 48%	
17	 Stomach	 48%	
18	 Spinal	Cord	 47%	
19	 Placenta	 47%	
20	 Vitreous	Humor			 47%	
21	 Blood	Platelet	 47%	
22	 Prostate	Gland	 47%	
23	 Retina	 47%	
24	 Salivary	Gland	 47%	
25	 Uterus	 46%	



 
 
 

157 

6.7. Conclusion 

The dark proteome is a key remaining frontier in the understanding of biological 

systems. We believe the current work will help focus future structural genomics and 

computational biology efforts to shed light on the remaining dark proteome, thus 

revealing currently unknown molecular processes of life. 

 

6.8. Author Contributions 
 

Nelson Perdigão contributions on this chapter were the writing of all algorithms for 

generation of Dark Proteome Database and the database itself from where the results 

were obtained, built of Fisher’s exact tests, Protein Model Portal validations, writing 

and revision of the corresponding paper. 
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7.  Dark Autonomy 
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7.1. Summary 

Recently we developed the Dark Proteome Database (DPD). This chapter exposes 

an add on to DPD, namely the so-called ‘autonomy’ tables. These tables were added to 

analyze Protein-Protein Interactions (PPI’s) for dark and non-dark proteins, where we 

are especially interested in the capability of dark proteins to perform their biological 

tasks or functions alone i.e., having no interactions with surrounding proteins. I applied 

the data resources known as STRING (Franceschini et al., 2013) and HIPPIE (Schaefer 

et al., 2012), the later only for the human organism; these provide data on the protein-

protein interaction networks obtained from experimentally-based quality scores. The 

results show clear evidence that - independently of the organism evaluated - dark 

proteins have significantly fewer interactions with other proteins, in comparison with 

non-dark proteins. 

7.2.  Introduction 

Till today does not exist a comprehensive map of all relevant functionally for PPI’s 

in simple or complex organisms. The existence of this map is of crucial importance to 

understand cellular behavior.  

Several databases started to flourish helping in construction of this global protein 

interactions map. Some databases are dedicated to register interaction experiments such 

physical binding detection among proteins (Bader et al., 2008; Christensen et al., 2007; 

Devos & Russell, 2007; Hu et al., 2007); others are centered on specific model 

organisms (Kerrien et al., 2012; Smedley et al., 2014; Szklarczyk et al., 2011).  

However, there are two difficulties: the first is the “tsunami” of genome and 

proteome sequencing information that must be processed putting the above map in 

standby; The second difficulty is in the way how proteins interact i.e., they also interact 

through indirect associations such as shared pathways which are not registered in 

interaction databases, but instead are registered in pathway databases (Chatr-

Aryamontri et al., 2013; Prasad et al., 2009). This is my contribution to the above map 

specially to its dark side. 

7.3. Data 

To perform this study, the usage of the Dark Proteome Database (Chapter 5) was 

essential to identify dark and non-dark proteins. It was also used STRING (Search Tool 
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for the Retrieval of Interacting Genes/Proteins), and HIPPIE (integrating protein 

interaction networks with experiment based quality scores) databases/sites. The most 

reliable is the former (as explained below); the later was used for comparison purposes 

only in the human organism.  

7.3.1. STRING 

STRING is a database of known and predicted PPI’s and contains information from 

several sources like experimental data, computational prediction methods (Salwinski et 

al., 2004; Alfarano et al., 2005; Licata et al., 2011). STRING imports knowledge not 

only from databases of physical interactions, but also from databases of curated 

biological pathway knowledge, like DIP (Salwinski et al., 2004), BIND (Alfarano et 

al., 2005), Reactome (Vastrik et al., 2007), KEGG (Kanehisa et al., 2008), HPRD 

(Prasad et al., 2009), EcoCyc (Keseler et al., 2011), MINT (Licata et al., 2011), IntAct 

(Kerrien et al., 2012), BioGRID (Chatr-Aryamontri et al., 2013), NCI-Nature Pathway 

Interaction Database and Gene Ontology (GO) protein complexes. This set is also 

complemented by predicted computational interactions, using algorithms like 

(Harrington et al., 2008; Skrabanek et al., 2008). 

The STRING scheme classifies its functional link confidence into three different 

scores: low (<400), medium (400< score <700) and high (>700) confidence  (Skrabanek 

et al., 2008) scores measuring the confidence in pair-wise functional interactions of the 

networks produced. Even assuming that sequence data is accurate computational tools 

can introduce noise when generation sequence similarity data occurs. Taking this noise 

into account, it is suggested to set a cut-off score above which an interaction is highly 

probable. In terms of functional classification accuracy what matters is high confidence 

score (=> 700) (Mazandu & Mulder, 2011), however low and medium confidence is 

also shown for comparison purposes. 

7.3.2. HIPPIE 

HIPPIE is a dataset of experimentally measured human protein-protein interactions 

(PPI) derived from several publicly available PPI datasets. For reference HIPPIE 

consists of 72,916 interactions  (Harrington et al., 2008; Schaefer et al., 2012), which 

was used in this manuscript for several descriptive analyses. The live version of HIPPIE 

is monthly updated, which allows the automatically retrieve of the newest interaction 

data from most of the manually curated source databases like DIP (Salwinski et al., 
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2004), BIND (Alfarano et al., 2005), MINT (Licata et al., 2011), IntAct (Kerrien et al., 

2012), BioGRID (Chatr-Aryamontri et al., 2013) and integrate the new interactions and 

updated evidence records into HIPPIE.  

7.4. Methods  
7.4.1. Mapping Autonomy  

For each Swiss-Prot protein, I categorized its autonomy as: 

𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦	𝑆𝑐𝑜𝑟𝑒 = 	 1 − 0.𝑁	𝑖𝑓	𝑚𝑁 = 0	𝑎𝑛𝑑	0 ≤ 𝑁 ≤ 900
						0	𝑖𝑓	𝑚𝑁	 ≠ 0	𝑎𝑛𝑑	𝑁 > 900  (Equation 7.1) 

Where mN indicate the number of matches that occur for link score of N. This means 

if the protein that have m0 equal to zero matches, then the protein is fully autonomous 

because at the lowest quality cut-off score no interactions occur between it and other 

proteins. On the other side, if at the highest cut-off score still exists interactions with 

other proteins (i.e., m900 is not zero) then it can be concluded that the protein is 

completely non-autonomous.  

7.4.2. Density Plots  
The density plots in Figs. 7.2, 7.3, 7.4, 7.5 and 7.6 (like in Chapter 6) were created 

using Gaussian kernel density estimations (Silverman, 1986), as implemented in the 

‘stat_density’ and ‘stat_density2d’ functions of the ‘ggplot2’ package in R, and using 

default parameters like performed in Chapter 6 (Density Plots).  

7.5. Results 
In this section, it will be presented results obtained using the STRING database to 

study protein-proteins interactions for dark and non-dark proteins; each interaction is 

classified as either low, medium or high confidence (which indicate the most important 

interactions). The organisms benchmarked were archaea, bacteria, eukaryotes and 

human. For the last case (human) results from HIPPIE will also be presented (Fig. 7.1). 

For each protein, the number of interaction partners was determined using STRING 

interactions (Franceschini et al., 2013) that have high quality (700) or greater 

(http://bit.ly/1x0D8k6); this retrieves only interactions that are considered to be of high 

confidence. For comparison, low quality (score 300) and medium quality (score 500) 

interaction counts were also computed. 
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The lower number of interactions seen for dark proteins is quite striking (Figs. 7.2, 

7.3, 7.4 and 7.5) – at first it may seem that this arises simply because dark proteins have 

not been as well studied; however, STRING’s annotation process aggregates multiple 

types of evidence for interactions, primarily high-throughput experimental studies as 

well as text mining, and in some cases interaction is inferred via homology. This would 

reduce potential study bias. Each of the interaction profiles (Figs. 7.2, 7.3, 7.4 and 7.5) 

also shows a prominent peak at around 100-120 interactions; most likely, this arises 

from the ribosome complex, a common and well-studied feature for which STRING 

provides interaction information across many organisms. Note that, using this high 

confidence threshold, lack of known interactions does not necessarily imply that a 

protein has no interactions -  rather it implies that all known evidence for interaction 

with other proteins is rather weak. 

 
Figure 7.1: Dark Autonomy database with Archaea, Bacteria, Eukaryota and Human  tables 

using STRING with 0, 100, 300, 500, 700 and 900 score thresholds. For Human, the HIPPIE table 
with the same thresholds is also included. 

Figure 7.2 shows the results of protein-protein interactions for dark and non-dark 

proteins of Archaea for the three levels of quality. For high quality confidence, it is 

observed that dark proteins have much less interactions compared with non-dark 

proteins. 

Concerning Bacteria Figure 7.3 shows the results of protein-protein interactions for 

dark and non-dark proteins for the three levels of quality. Again, for high quality 

confidence it is observed that dark proteins have much less interactions compared with 

non-dark proteins. 

In the Eukaryotes case Figure 7.4 shows the results of protein-protein interactions 

for dark and non-dark proteins for the three levels of quality. For high quality 

confidence it is observed that dark proteins have much less interactions compared with 

non-dark proteins. The pattern repeats itself. Note also that I did not calculate the profile 

of interaction partners for Viral proteins since STRING provides no information for 

them. 
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Figure 7.2: Protein-protein interactions for Archaea using STRING. A) For low quality it was 
observed that dark proteins have fewer interactions (median = 52) compared to non-dark 

proteins (median = 72); B) For medium quality, dark proteins have even fewer interactions with 
other proteins (median = 24), compared to non-dark proteins (median = 64); C) For high quality 
dark proteins have even less interactions with other proteins (median = 6), compared to non-dark 

proteins (median = 52). 
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Figure 7.3: Protein-protein interactions for Bacteria using STRING.  A) For low quality it was 
observed that dark proteins have fewer interactions (median = 52) compared to non-dark 

proteins (median = 72); B) For medium quality dark proteins have even fewer interactions with 
other proteins (median = 38), compared to non-dark proteins (median = 62); C) For high quality 

dark proteins have even less interactions with other proteins (median = 12), compared to non-
dark proteins (median = 48). 
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Figure 7.4: Protein-protein interactions for Eukaryotes using STRING. A) For low quality its 
observed that dark proteins have fewer interactions (median = 34) compared to non-dark 
proteins (median = 52); B) For medium quality its observed that dark proteins have fewer 

interactions (median = 14) compared to non-dark proteins (median = 26); C) For high 
quality dark proteins have no interactions with other proteins (median = 0), compared to 

non-dark proteins (median = 10). 
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7.5.1. The Human Dark Autonomy 

As stated previously, I also made a special case study for the Human organism 

where Figure 7.5 shows the results of protein-protein interactions for dark and non-dark 

proteins for the three levels of quality. Similarly, human dark proteins have fewer 

interactions with others proteins and are associated with secretion, transmembrane 

regions, and cleavage (Table 5.5); 

 

Figure 7.5: Protein-proteins interactions for Human using STRING. A) For low quality it was 
observed that dark proteins have fewer interactions (median = 34) compared to non-dark 

proteins (median = 52); B) For medium quality, dark proteins have even fewer interactions with 
other proteins (median = 6), compared to non-dark proteins (median = 38); C) For high quality, 

dark proteins have no interactions with other proteins (median = 0), compared to non-dark 
proteins (median = 16). 
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Next will be presented the results for HIPPIE database concerning Human 

organism. Figure 7.6 shows the results of protein-protein interactions for dark and non-

dark proteins of human for the three levels of quality. 

 

 
 

Figure 7.6: Protein-proteins interactions for Human using HIPPIE. A) For low quality, it was 
observed that dark proteins have slight more interactions (median = 13,5) compared to non-dark 
proteins (median = 13); B) For medium quality, dark proteins have also slight more interactions 
with other proteins (median = 13,5), compared to non-dark proteins (median = 11); C) For high 
quality, dark proteins have the same number of interactions with other proteins (median = 3), 

compared to non-dark proteins (median = 3). 
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For high quality confidence it was observed that dark proteins have substantially the 

same interactions compared with non-dark proteins. Here the pattern observed, namely 

the prominent peak at around 100-120 interactions, has a shift to the right of about 125; 

that is still consistent from the ribosome complex (let us consider in this case lack of 

precision) but another unusual pattern comes around the 240 interactions. 

 
7.6. Discussion 

Concerning HIPPIE results (and in comparison with STRING results), it was 

observed that was detected a peak for proteins with 240 interactions (something not 

seen in STRING) in low and medium link quality. According with HIPPIE non-dark 

proteins has more interactions in comparison with the dark ones (a marginal difference 

- Figure 7.6). When we move to high quality, and again concerning HIPPIE, there is no 

observable difference, i.e., the interaction counts for dark and non-dark proteins are the 

same (3 median interactions). 

As I said in the beginning of this chapter, STRING is regarded as a reference 

database, since it is much more widely used than HIPPIE. In addition, STRING imports 

much more protein association knowledge not only from databases of physical 

interactions, but also from databases of curated biological pathway knowledge, in 

comparison with HIPPIE. Thus, the results observed for STRING are more likely to 

correctly reflect reality. 

7.7. Conclusions 

The conclusion is clear from the results shown above, and are sustained across all 

the organisms evaluated. In short, there is clear and consistent evidence that dark 

proteins tend to have less interactions with other proteins in comparison with the non-

dark ones. As the interaction quality increases from low to high, this observation 

becomes even more evident. Therefore, it could be said that dark proteins are more 

autonomous than non-dark proteins, since they appear to fulfill their biological function 

with substantially fewer interactions with proteins.  

7.8. Author Contributions 

Nelson Perdigão contributions on this chapter were all algorithms for generation of 

Dark Autonomy database, the database itself and its validation. 

 



 
 
 

171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART V 
 

CONCLUSIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

173 

8. General Discussion 
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Currently, the Protein Data Bank (PDB) archives the world’s knowledge about 

protein structures contains just over 120,000 experimentally determined structures of 

large biological molecules. These data can be used as input for high-throughput 

computational modeling studies that can accurately predict structures for many protein 

sequences not in the PDB. In this thesis, the success of these modeling efforts has been 

mapped – we see that many proteins contain regions of unknown structure, and so they 

have been considered part of the dark proteome. This systematic mapping and 

exploration of the dark proteome could help clarify future research directions, in an 

analogous way to which studies of dark matter have done in physics.  

 

In this study, the features of the dark proteome’s proteins were analyzed and it was 

shown that much of these unknown regions of proteins cannot readily be explained. 

The fact that so much is still unknown shows there is still much potential for a broad 

spectrum of research into the complexity of biology. By pushing forth the set of 

unexpected features of the dark proteins, it has raised much discussion throughout the 

structural biology research community. 

 

In this research, the majority of the dark proteome was proven to be determined by 

different factors than those which were initially expected, such as disorder, 

transmembrane regions, or compositional bias (i.e., the known unknowns). Instead, 

most of the dark proteome was found to be ordered, globular, and with low 

compositional bias (and therefore, ‘unknown unknowns’).  It was also unveiled that 

dark proteins have a diversity of functions, but many have unknown function, and it is 

unclear to what extent they interact with other proteins. Curiously, an overrepresented 

set of dark proteins are extracellular; they also tend to be shorter than non-dark proteins. 

 

 The dark proteome in bacteria represent a smaller portion, implying that knowledge 

of their structural biology is more complete, which may prove useful in the research 

and development of specific types of antibacterial drugs. Similar results were seen for 

the archaea proteome. But the proteome of the Eukaryotes and Viruses is the opposite, 

in that most of it is dark, or of unknown structure. 

 

Structural biology experiments with non-dark proteins have been, until now, the 

focus of research. This is mostly due to the fact that those proteins were more tangible 
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in terms of isolation and crystallization. It may be that the dark proteins requires 

expertise that has yet to be developed. This research raises many questions that are left 

without answer. However, it does clarify the fact that there is still much to learn about 

the protein structure and function, and that in order to facilitate future research, 

interdisciplinary collaboration is required to reach the necessary tools that would allow 

this exploration.  

 

 I am certain, that many proteins that are part of the dark proteome are involved in 

a many different functions in the cell, like cellular signaling or cellular organization; 

undoubtedly, many of these proteins will be associated with diseases, such as cancer, 

diabetes, cardiovascular disease, neurodegenerative diseases such as Parkinson or 

Alzheimer. Therefore, mapping the dark proteome is likely to have an important impact 

in human biology, and in medicine. After this mapping the next step will be to focus on 

decoding the dark proteome, so that new drugs or therapies could occur, and this poses 

many challenges. 

 

I am certain once again, like computer science played a central and important role 

in mapping the dark proteome, computer science will play again an important role in 

the dark proteome decoding, even more that the traditional structural biology methods 

like crystallography, as these are physically limited. Computation predictions will also 

be a key player for more closely examining the role of intrinsic disorder as well as for 

transmembrane proteins.  

As we gain more knowledge about the structure of proteins that are currently ‘dark’, 

we will gain insight into their function, which in turn will give new insight into a range 

of diseases, as well as other important advances in the life science.  

 

Like Donald Knuth said “can’t be as confident about computer science as I can 

about biology. Biology easily has 500 years of exciting problems to work on. It’s at that 

level.” The work presented in this thesis provides yet another demonstration that – 

going forward - Biology cannot solve its problems without computer science. 
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