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Abstract: The transformative potential of deep learning models is felt in many research fields,

including hydrology and water resources. This study investigates the effectiveness of the Temporal

Fusion Transformer (TFT), a deep neural network architecture for predicting daily streamflow in

Portugal, and benchmarks it against the popular Hydrologiska Byråns Vattenbalansavdelning (HBV)

hydrological model. Additionally, it evaluates the performance of TFTs through selected forecasting

examples. Information is provided about key input variables, including precipitation, temperature,

and geomorphological characteristics. The study involved extensive hyperparameter tuning, with

over 600 simulations conducted to fine–tune performances and ensure reliable predictions across

diverse hydrological conditions. The results showed that TFTs outperformed the HBV model,

successfully predicting streamflow in several catchments of distinct characteristics throughout the

country. TFTs not only provide trustworthy predictions with associated probabilities of occurrence

but also offer considerable advantages over classical forecasting frameworks, i.e., the ability to model

complex temporal dependencies and interactions across different inputs or weight features based

on their relevance to the target variable. Multiple practical applications can rely on streamflow

predictions made with TFT models, such as flood risk management, water resources allocation, and

support climate change adaptation measures.

Keywords: streamflow; hydrological prediction; hydrological model; deep learning; temporal fusion

transformer; probabilistic prediction; forecasting

1. Introduction

Throughout history, rivers have played a significant role in human civilization, being
vital for several key activities (e.g., agriculture, commerce, and culture). The United
Nations Department of Economic and Social Affairs (UN DESA) and the International
River Foundation underline this importance, stating that “Rivers are the lifeblood of
the land, people, and economies they support. [. . .] if a river stops flowing, life stops
working” [1]. With the global population surpassing 8 billion [2], the exploration of riverine
resources has reached unprecedented levels. This, combined with the growing frequency
of extreme weather events—such as floods and droughts—has placed significant strain on
water management systems worldwide [3], also leading to massive economic investments
in reconstruction and adaptation strategies capable of diminishing their effects.

Lee et al. [3] highlighted that over 5300 water—related disasters—WRDs (i.e., floods,
storms, landslides, and droughts)—occurred between 2001 and 2018. In this period, over
3.4 billion people were affected, 300,000 died, and over 1.7 trillion USD were estimated in
damages worldwide. Floods and droughts account for nearly 60% of WRDs. In 2020, the
World Resources Institute claimed that “by 2030, [. . .] 132 million people and $535 billion
in urban property will be impacted annually due to riverine flooding” [4]. The heart of the
matter is that grave challenges are associated with streamflow’s high temporal and spatial
variability. Droughts impair energy production, disrupt ecosystems, and trigger famine,
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disease outbreaks, and economic recessions. Conversely, when water abounds, floods can
cause unfortunate damage.

Water–related challenges are only expected to worsen, with pressure scaling from
the supply and demand sides. In fact, Alfieri et al. [5] projected that the upsurge in
atmospheric temperature will increase the flood risk on a global scale: “At 4 ◦C global
warming, countries representing more than 70% of the global population [. . .] will face
increases in flood risk in excess of 500%”.

In Portugal, the unfortunate events of December 2022 and January 2023 constitute ad-
ditional examples of the current challenges. Total damages were estimated at €293 million,
also resulting in the death of one person [6].

Accurately predicting streamflow is essential for sound water resources management.
Succeeding in doing so may have profound implications for saving human lives, bolstering
the economy, and protecting the environment. It may be easier said than done. In reality, the
task is inherently complex due to the dynamic and heterogeneous nature of hydrological
processes (something the classical hydrological models struggle with), meteorological data
imprecision, and streamflow measurement difficulties. Due to these reasons, decision–
makers must also develop the capability to act based on imperfect information.

Indeed, this study explores the application of a deep learning model, the Temporal
Fusion Transformer (TFT) [7] to predict daily streamflow in Portugal with the respective
uncertainty in a set of different experiments. We also compare how TFT predictions fare
against a “classical” hydrological model, that is, “Hydrologiska Byråns Vattenbalansavdel-
ning” (HBV), resorting to the implementation of the RS Minerve software [8]. The results
presented herein can contribute toward a new path for hydrological prediction (HP), where
such applications are still rare (e.g., [9]).

The article is organized as follows: in Section 2, theoretical foundations and related
studies are specified. Afterwards, in Section 3, the methodology is presented, providing
insight into the hydrological and meteorological data that are used, the explored predictive
models, and the metrics chosen for performance assessment. Section 4 is dedicated to the
description of the case study—unregulated catchments in Portugal. Results and discussion
are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Theoretical Framework and Related Studies

State–of–the–art studies have strengthened the scientific community’s belief in the
exacerbation of all the referred impacts. For example, countries like India [10] have been
shown to have a high susceptibility to floods, while South Africa, Botswana, Zimbabwe,
and Mozambique are particularly affected by flood and drought events [11]. Infamous
flood events have also recently been recorded in Europe [12] and North America [13]. In
May 2024, the late floods in Rio Grande do Sul (Brazil) almost totally cut off this city with
1.3 million inhabitants, causing a total of 95 confirmed deaths, leaving at least 130 missing,
and leaving 80% of the population without access to drinkable water [14]. Clearly, water–
related disasters are a global issue.

Since the 1850s, hydrological models have continuously been explored and improved [15],
in particular, to predict hydraulic variables (e.g., streamflow) using measured inputs
(e.g., precipitation and temperature or potential evapotranspiration). HP is essential for
issuing alerts and evacuations before floods and constitutes a vital tool for managing
reservoirs in tasks of flood lamination, hydropower production, irrigation, water supply,
and others. Incorporating uncertainty in HP is a technically demanding task, but it is crucial
to guarantee a reasonable analysis of the specific problems faced by decision–makers,
especially when predictions are most challenging.

On the one hand, deterministic predictions, which offer a single–point estimate, usually
fail to account for risk and uncertainty, limiting their utility for decision–making in critical
situations (Figure 1a). On the other hand, probabilistic predictions, which provide a range
of possible outcomes with different probabilities, offer a more robust framework for flood
prediction and water resource management (Figure 1b).
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Figure 1. Examples of (a) deterministic and (b) probabilistic predictions for streamflow (Q). The
months of the year are indicated along the horizontal axis. Bands indicate the percentage of observa-
tions expected to fall within their bounds.

Since its appearance in the 1950s [16], artificial intelligence (AI) and its sub–field of
machine learning (ML) strove to enhance human productivity by automating complex
tasks, achieving remarkable performance in different fields such as speech recognition [17],
healthcare and prevention of diseases [18], autonomous vehicles [19], the energy sector [20],
civil engineering [21–24], and many others.

Deep learning (DL) is a subset of ML that uses artificial neural networks (ANNs) to
emulate behaviors similar to those of a human neural system [25]. In recent years, ad-
vancements in DL enabled the ongoing explosion in terms of large–language model (LLM)
capabilities, including their application in hydrology (e.g., [26]). Noteworthy advancements
in ANNs [27] include sophisticated architectures such as recurrent neural networks (RNNs)
or Long Short–Term Memory (LSTM) networks [28–30]. One of the most recent innovations
in this area is the “transformer” architecture [31], which has, alongside LSTMs, a central
component of the TFT model [7] that is used in this study.

3. Methodology

3.1. Overview

Defining a methodology that balances data quality and availability, reasonable training
and validation periods, appropriate model complexity, and coherent performance evalua-
tion is essential in ML applications. Accordingly, and including the HBV model, the three
main stages of this study are (Figure 2):

(1) Data collection, validation, and feature engineering: collecting and validating data,
such as precipitation, temperature, and streamflow records, and performing feature
engineering allows the creation of meaningful input variables to feed the model.

(2) Model development: whose main goal is to find a robust TFT model that can ac-
curately replicate observed streamflow. This iterative process involves adjusting
hyperparameters (external configuration variables used to manage model training
such as dropout rate) such as learning rate, batch size, and dropout rate within the TFT,
as well as defining model training and validation (with an emphasis on preventing
overfitting). The deterministic models, the HBV, were also calibrated in this phase.

(3) Performance assessment: after the prediction task is complete, graphical methods (e.g.,
time series plots) and performance metrics particularly well–suited for hydrological
applications are employed to assess the accuracy of the models. Eventually, if the
obtained accuracy is not desired, the process returns to the model development phase.
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Figure 2. Work chain for model development.

Four representative catchments chosen from a broad set of unregulated catchments
in Portugal were selected to dive into the capabilities of the TFT. In a first step, the model
was applied to each catchment separately, generating individual predictions from meteoro-
logical and geomorphological data. In a second step, the full set of catchments was used
to train and validate the model, producing new predictions. The main goal was to assess
the model’s capacity to incorporate hydrological data from all over the country to improve
upon the initial results obtained with catchment–specific models. Finally, in a forecasting
setup, observed streamflow values were also presented as input data. Two meteorologi-
cal data sources were used: ERA5–Land (in the prediction tasks) and Global Forecasting
System (GFS) (used in forecasting). More details on the different experiments that were
undertaken can be found in Section 4.3.

3.2. Data Collection, Validation, and Feature Engineering

3.2.1. Hydrological Data

Hydrological data were retrieved from the Portuguese National Water Resources
Information System (SNIRH) [32] as a series of average daily streamflow collected at
monitored catchments. Data collection covered the period from 1980 to the present. A
qualitative data analysis where all the selected time series were individually inspected
was undertaken. Special attention was given to identifying and removing anomalous
values inconsistent with plausible streamflow patterns. The main preoccupation was not
to “pollute” the model with questionable values. Accordingly, in case of doubt, it was
preferred to remove those values from the data set. Several criteria were adopted for
exclusion, namely:

(i) Abrupt variations in streamflow on consecutive days, inconsistent with the patterns
of the remainder of each series.

(ii) Consecutive years of streamflow records with zero values, suggesting faulty records
in a considerable number of years.

(iii) Offsets in streamflow records, indicating potential calibration issues or other problems
with the data.

Finally, data exclusions targeted whole periods. In other words, when problems
were identified, whole hydrological years (and often larger periods) were removed from
the series.

3.2.2. Meteorological Data

For model development purposes, precipitation and temperature were collected from
the ERA5–Land reanalysis dataset [33], produced by the European Centre for Medium–
Range Weather Forecasts (ECMWF) with global coverage (overland) in a 0.1 × 0.1◦ grid.
Hourly data were downloaded from 1 January 1980 to 31 December 2022 for the whole
Iberian Peninsula. The downloaded data were first aggregated for each catchment and
then resampled to the daily scale after conversion to local time (UTC to Lisbon time,
including daylight saving time shifts). Temperatures were resampled to the daily mean
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and precipitation to the daily sum. These data (and additional variables—see Section 3.2)
were used to train and validate the models for streamflow prediction. No quality control
measures were applied to the precipitation and temperature data, as previous studies
have already demonstrated the relevance and reliability of ERA5–Land over the Iberian
Peninsula and Portugal (e.g., [34,35]).

Additionally, the potential evapotranspiration (ET0 in mm/day) was used as an input
variable to the HBV model. ET0 was calculated using the Hargreaves approach [36],
following Equations (1) and (2).

ET0 = 0.0135
(

Td + 17.78
)

Rs (1)

Rs = RaKT

√

Tdmax − Tdmin (2)

where Td is the daily mean temperature (°C), Rs the incident solar radiation (mm/day),
Ra the extraterrestrial solar radiation (mm/day) (calculated based on latitude and day of
year), KT an empirical constant, which depends on the region conditions (assumed equal to
1), Tdmax the maximum daily temperature from ERA5-Land (°C), and Tdmin the minimum
daily temperature also from ERA5–Land (°C).

Forecasting attempts resorted to meteorological data from the Global Forecasting Sys-
tem (GFS) from the United States National Centers for Environmental Prediction (NCEP),
which is a publicly available global weather forecasting model [37]. GFS forecasts with a
three–hourly time discretization and a spatial grid of 0.25 × 0.25◦ were downloaded. These
corresponded to the 00:00 UTC production cycle (additional runs are undertaken at 06:00,
12:00, and 18:00). Temperature and precipitation were pre–processed for the available area
in the study from 1 January 2022 onwards. After spatial aggregation, they were resampled
for 1h: temperature linearly and precipitation in 3 equal values for each 3–hourly block.
Similarly to what was performed for ERA5–Land, the time zone was updated to Lisbon
time, and the data aggregated was updated to daily.

Training and validation of the TFT model were performed with data from ERA5–Land,
a decision due to both the short period of time during which GFS data are available and
the comparatively greater homogeneity of the former. To make the GFS data more suitable
to the trained TFT models and mitigate potential change of support problems, corrections
were applied. Precipitation (PGFS) and temperature forecasts (TGFS) were thus transformed
by applying Equations (3) and (4), respectively:

P∗
GFS = PGFS ×

PERA5

PGFS

(3)

T∗
GFS =

(

TGFS − TGFS

)

× sERA5

sGFS
+ TERA5 (4)

where P∗
GFS is the transformed value of each precipitation forecast from GFS. Additionally,

PERA5 represents the average of the precipitation records from ERA5–Land, and PGFS

represents the average of the precipitation forecasts from GFS. T∗
GFS, TGFS, and TERA5 rep-

resent the same variables as mentioned but for temperature. sERA5 symbolizes the standard
deviation of temperature records from ERA5–Land and sGFS the standard deviation of
temperature forecasts from GFS.

3.3. Model Development

3.3.1. Hydrologiska Byråns Vattenbalansavdelning

The HBV model is a conceptual hydrological model designed to simulate runoff in
river catchments, developed by the Swedish Meteorological and Hydrological Institute
(SMHI) [38]. Although initially tailored for application in Scandinavia, the HBV model
quickly gained widespread adoption for hydrological modeling across the globe [39].
The model uses a lumped–parameter approach, representing the catchment as a single
and uniform unit rather than accounting for spatial variations within the area. The RS–
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Minerve software (v. 2.9.1.0) was used to carry out the simulations for this model, primarily
developed by the Swiss Alpine Environment Research Center (CREALP) in collaboration
with HydroCosmos SA [8]. The SCE–UA optimization algorithm, commonly used to
calibrate hydrological models, was employed to find optimal parameters for each one of
the considered catchments.

3.3.2. Temporal Fusion Transformer

The TFT is a class of deep neural networks designed to handle complex and multi-
variate data. It is a promising choice for prediction tasks based on observed trends [7].
It builds upon the “transformer” architecture by introducing additional features that im-
prove performance, especially for time series prediction. Standard “transformers” rely on
self–attention mechanisms, which can capture relationships between different time steps in
sequential data [31]. Additionally to self–attention, the TFT resorts to gating mechanisms
that help control the information flow, sample–dependent variable selection for focusing on
the most relevant inputs, and static covariate encoders that handle time–invariant features,
allowing the model to capture better short– and long–term dependencies in time series
data [7]. Among such gating mechanisms are LSTMs, notorious for their increasing use in
hydrological applications.

Modeling was carried out in Python 3.9.18 (December 2023) and relied heavily on the
PyTorch library and its forecasting package (Pytorch Forecasting [40]). PyTorch Forecasting
facilitates the use of state–of–the–art time series forecasting with neural networks, including
building, training, and evaluating the performance of TFTs. Eclipse (with the PyDev
extension) was used as the integrated development environment (IDE). A set of initial and
simple trials with synthetic series (e.g., linear, sinusoidal, sinusoidal with heteroscedastic
noise, sinusoidal with heteroscedastic noise and an exogenous variable, and autocorrelation)
was conducted to understand the capabilities of TFTs and how different inputs can affect
the predictions. In fact, some interesting conclusions led to the consideration of additional
inputs as further explained in Section 4.2.

With respect to the iterative nature of the hyperparameter tuning, the process of their
definition started with a trial–and–error approach in order to understand how models
of different complexities (e.g., number of hidden neurons, attention heads, and LSTM
layers) fared at predicting discharges. Initial values for hyperparameters (e.g., learning
rate, dropout rate, network size) were selected based on the prior literature and domain
knowledge. Subsequent adjustments were made based on performance metrics. This
process was repeated until a choice of parameters was found that reliably yielded good
validation and test metrics. More information on this is provided in Section 5.1.

For each experiment, the selection of training, validation, and test periods was defined
as a fraction of the available data. More precisely:

Training period: 60% of the available data.
Validation period: 20% of the available data.
Test period: 20% of the available data.

The selection of the available data was random and accounted for the hydrological
year in Portugal (from 1 October of a given year to 30 September of the following year).
During preliminary testing and model development, numerous TFTs were trained on three
machines with CUDA–capable Graphics Processing Units (GPUs).

3.4. Performance Assessment

3.4.1. Deterministic Predictions

The Nash–Sutcliffe efficiency (NSE) [41] is often used in hydrological applications to
assess and quantify the quality of deterministic predictions. It is scale–invariant and valu-
able for evaluating the performance of predictive models. Its optimal value is 1 (unitless)



Hydrology 2024, 11, 217 7 of 22

and increasing deviations between the observed and simulated values diminish the value
of the NSE. It can be calculated through Equation (5):

NSE = 1 − ∑
N
i=1

(

Q̂i − Qi

)2

∑
N
i=1

(

Q̂i − Q
)2 (5)

where i is the time step, N is the total number of time steps considered, Q̂i is the computed
streamflow at the ith time step, Qi is the observed streamflow at the ith time step, and Q is
the mean observed streamflow.

3.4.2. Probabilistic Predictions

The Continuous Ranked Probability Score (CRPS) [42] measures how well a prediction
matches the observed outputs—Equation (6)—and is particularly useful to quantify the
performance of probabilistic or ensemble predictions. A value equal to 0 indicates an
accurate prediction, while greater values suggest more significant differences between the
probabilistic distribution of predictions and observations. Its units are the same as the
variable that is being evaluated. CRPS has the particularly interesting feature of allowing
the direct comparison of probabilistic and deterministic predictions, as in the case of the
latter, it converges to the mean absolute error (MAE).

CRPS =
1
N

N

∑
i=1

∫ +∞

−∞

[

F̂i(x)−H(Qi − x)
]2

dx (6)

In the above equation and additionally to the description of the previous variables, F̂i is the
value of the cumulative distribution function of predicted streamflow at the ith time step,
and H is the Heaviside step function.

A predictive distribution can be called reliable if the observations fall within the pro-
posed distribution with matching probability. Predictive quantile–quantile (QQ) plots are
valuable for assessing reliability (α)—Equation (7). They are based on the quantile distri-
bution of the observed and predicted variables [43]. They consist of the complementary
area between the obtained QQ plot for the prediction and a perfect diagonal (Figure 3).
Therefore, values equal to 1 are desired (reliability is unitless). Deviations from this straight
diagonal reflect different types of shortcomings in predictions [44]. Extreme deviations
correspond to values closer to 0.

α = 1 − 2
N

N

∑
i=1

|pi − pth
i | (7)

Here, pi is the p–value of the ith ranked prediction, and pth
i is the theoretical p–value of the

ith ranked prediction.
The relative resolution evaluates the predictive distribution’s precision (or sharpness)—

Equation (8) [44]. A prediction is said to be reliable when the predicted values are inserted
in the uncertainty bands. The lower the variation between observed and predicted values,
the greater the resolution. Figure 4 depicts an example of two different resolutions.

π
rel =

1
N

N

∑
i=1

Q̂i

SQ̂i

(8)

In the above equation, SQ̂i
is the standard deviation of the predicted streamflow at the ith

time step.
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Figure 3. Examples of predictive QQ plots, more precisely of (a) an accurate prediction, (b) an
over–prediction for lower theoretical p–values and under–prediction for higher theoretical p–values,
and (c) an under–prediction.
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Figure 4. Example of a probabilistic prediction with different resolutions: (a) low resolution and
(b) high resolution. The months of the year are indicated along the horizontal axis. Bands indicate
the percentage of observations expected to fall within their bounds.

4. Case Study

4.1. Geographical and Hydrometeorological Context

Portugal is located on the Iberian Peninsula, in southwestern Europe. The country,
which extends to the archipelagos of Madeira and Azores, in the North Atlantic, covers
a total area of approximately 92,000 km2 [45]. It is roughly bounded by 37◦ N and 42◦ N
latitudes and 7◦ W and 9.5◦ W longitudes (WGS84 datum). Throughout this study, only
Mainland Portugal is referred to, not including the Islands.

Figure 5 portrays the mean daily temperature (in ◦C) registered in Mainland Portugal
from 1980 to 2022 (derived from hourly ERA5–Land data) and the annual average precipi-
tation (in mm/year) for the same period, also derived from ERA5–Land. This visualization
provides a better understanding of the meteorological conditions under which the models
were applied, noticing that the north comprises wetter regions, while the south tends to
be drier.

Figure 6 depicts the digital elevation model (DEM) [46] of Mainland Portugal and
its main rivers (i.e., Douro, Tagus, and Guadiana) and hydrographic regions [47,48]. The
northern region of the country is mainly characterized by rugged terrain.
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Figure 5. Variation of meteorological data in Mainland Portugal between 1980 and 2022, based
on data retrieved from ERA5–Land, namely, (a) the daily average temperature and (b) the annual
average precipitation.
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Figure 6. Geomorphological information about Mainland Portugal, specifically, (a) the digital
elevation model and (b) the main hydrographic regions and rivers.

4.2. Additional Data and Feature Engineering

The available streamflow data correspond to 216 catchments monitored by a different
hydrometric station in Mainland Portugal. In order to validate the generated information,
ArcGIS Pro (v. 3.1 developed by Esri Inc., Redlands, CA, USA) [49] was used. The area
calculated for each catchment was compared with the respective official value defined
within SNIRH. All the catchments differing by more than 10% were judged to have prob-
lems and were therefore eliminated, which resulted in a revised total of 191. This threshold
is meant to rule out problems associated with the derivation of each catchment from the
DEM. The reasoning was that excluding some catchments is not critical to the process or the
results, whereas including ill–derived catchments could lead to errors. Following this, all
the catchments with a large part of their area in Spain were also removed, as well as those
located downstream of dams and reservoirs, based on the extensive information provided
by The Global Dam Tracker [50]. At the end of the process, a subset of 91 unregulated
catchments remained.
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Working with unregulated catchments is important to guarantee that no streamflow
records are heavily influenced by man–made decisions that may be difficult to predict or
reproduce. After a qualitative data analysis, anomalous values inconsistent with usual
streamflow patterns were identified and removed, as referred to in Section 3.2.1. In total,
17 stations were judged problematic or not having enough data for training and/or vali-
dation (3 years at least of observed values) and were removed from the set, equaling the
final 74 monitored catchments with useful data to “feed” the model. Figure 7a displays
the distribution of the final catchments along the country, as well as dams/reservoirs and
other eliminated streamflow gages. This process was complex and crucial to guarantee that
the training and validation data accurately mirror the reality of these phenomena.

ffi

tt

 
 
 𝐺𝐶 𝐺𝐶 𝐺𝐶

𝐺𝐶 = 𝑃𝑤2√𝜋𝐴𝑃௪
 

 

  
(a) (b) 

ff ff

Figure 7. Representation of (a) the 74 catchments in the study, dams, and SNIRH stations, and (b) the
main classes of land cover in Mainland Portugal.

Five variables were calculated and used as static inputs associated with each catchment:

• Drainage area (in km2).
• Centroid’s coordinates (in WGS84 datum).
• Gravelius compactness index (GC). It evaluates the resemblance of the shape of the

catchment to a perfect circle (where GC = 1.0). GC increases as the shape distances
itself from a circle. Equation (9) reveals how to obtain it:

GC =
Pw

2
√

πA
(9)

where Pw is the smoothed perimeter of the catchment.
• Mean elevation (in m.a.s.l.) was based on the information provided by the GLO–30

DEM, from Copernicus, with a 30 × 30 m spatial resolution [46].
• Land use (as an integer code) was introduced based on the information provided by

the Copernicus CORINE data set [51], choosing the dominating land use class for each
catchment. Figure 7b portrays the main classes of land use, proving the dominance
of forest and seminatural areas (in orange) and agricultural areas (in green) in the
selected catchments.

Following initial trials, it was decided to define the target variable to be predicted
as not just streamflow, but specific streamflow—Equation (10). This decision was taken
to facilitate the comparison between data from different catchments of different sizes.
Additionally, this normalization avoids that the bigger catchments have an unwarranted
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larger weight on the training owing to larger streamflow, enabling the prediction for
catchments with very different scales.

q =
Q

A
× 103 (10)

Here, q is the specific streamflow (m3/s/km2 × 103), Q is the observed streamflow (m3/s),
and A the catchment’s drainage area (km2).

4.3. Experiment Definition

This section aims to define concisely what experiments were performed. Each experi-
ment was run using a trained TFT with a certain combination of hyperparameters, and a
satisfactory achieved result. They were designed to evaluate the potential of TFT models to
enhance hydrological predictions as follows:

(1) Experiment P1: This experiment is divided into four different “micro tests”, where
the model is trained for a single catchment. This setup simulates localized prediction
tasks where models are tailored for individual catchments. The results reveal insights
into the feasibility of using TFTs in situations where hydrological models are usually
employed.

(2) Experiment P2: This experiment aims to use the information of all the 74 selected
catchments for model training and validation simultaneously. The main idea is to
assess whether the TFT can effectively gain general knowledge about hydrological
processes in Portugal to improve upon predictions “specialized” for specific locations,
in this case, the predictions from P1. This approach can be particularly relevant for
managing interconnected catchments, where understanding regional patterns can
improve predictions and lead to better resource allocation strategies.

(3) Experiment P3: Building on P2, this experiment includes past observed streamflow
as training data, showcasing a near–operational application of TFTs. Although the
meteorological data are from ERA5–Land rather than forecasts (the reason why we
denominated P3 as “pseudo” forecasting), the experiment simulates real–world fore-
casting scenarios and allows the direct comparison with the other experiments.

(4) Comparison with the HBV model: To contrast with the performance of TFTs, an
additional prediction was made for the control catchments with a calibrated HBV
model. It demonstrates the practical utility of TFTs in possibly replacing traditional
hydrological models, widely used in catchment management.

(5) Forecasting experiment using GFS meteorological data as input, instead of data from
ERA5–Land. The used model is the same as the one from P3.

The four selected stations to test the central hypothesis of this research—that the TFT
model can outperform streamflow predictions from the HBV model—are strategically
located across the country, ensuring a diverse representation of regional hydrological
conditions (Figure 8):

(i) 05K/01H lies in a small catchment in a relatively wet region and is isolated from other
catchments.

(ii) 16G/01H is in a relatively large catchment in a moderately wet region and is involved
with other catchments.

(iii) 24H/03H is moderately sized, lies in a relatively dry zone, and is isolated from other
catchments.

(iv) 28L/02H is moderately sized, located in a relatively dry zone, and is involved with
other catchments.

Table 1 shares the most significant information for each, such as their identification
(ID), latitude (Lat.), and longitude (Long.) of its centroid, drainage area (A), average
streamflow (Q) average temperature (T), and the average annual precipitation (P). Table 1
depicts the geographical position and relative dimensions of the four catchments.
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Figure 8. Representation of the four catchments used to compare the performance of each experiment
and the HBV model. The comparison with Figure 7a can be beneficial to understand the relative
position of these four comparative to the other catchments.

Table 1. Significant information of the considered stations.

Station SNIRH ID Lat. (◦) Long. (◦) A (km2)
—
Q (m3/s)

—
P (mm/y)

—
T (◦C)

Santa Marta do Alvão 05K/01H 41.498 −7.754 48.76 1.4 1058.1 11.8

Fábrica da Matrena 16G/01H 39.532 −8.379 1047.15 7.3 797.2 15.0

Torrão do Alentejo 24H/03H 38.299 −8.229 468.35 1.6 539.0 16.8

Vascão 28L/02H 37.520 −7.579 409.89 1.7 460.2 16.8

5. Results and Discussion

5.1. Fine–Tuning of TFT Hyperparameters

Each of the experiments (P1, P2, and P3) involved different model configurations
and datasets. P1, the simplest experiment, used data from one station to train each TFT,
while subsequent models, from P2 to P3, incorporated data from multiple locations. This
increased the model complexity and respective training times, with P1 taking an average of
40 min, P2 almost 5 h, and P3 over 6 h.

As outlined in Section 3.3.2, this study entailed a detailed exploration of hyperpa-
rameter combinations to optimize the performance of the TFT model, comprising more
than 600 simulations and over 400 h of computational processing. Key parameters were
systematically tested to understand their impact on the model’s accuracy. A trial–and–
error approach was employed, highlighting the iterative nature of the tuning process.
Through numerous simulations, an understanding of which configurations resulted in
better or poorer performance emerged. This process was crucial for ensuring reliable
predictions across diverse hydrological conditions. The main conclusions obtained from
the analysis were:
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(1) For the simplest experiment (P1), the number of nodes in hidden layers (hidden_size
parameter) equal to 45 had the best performance. As the complexity of the relations
increased in the following experiments (P2 and P3), a value of 60 for this parameter
produced more accurate predictions. Values above the referred tended to cause model
overfitting, that is, the model replicated well the training data set but at the cost of
producing poorer predictions in the test data set. Lower values did not allow the
model to reproduce the patterns between the inputs and the streamflow, generally
leading to poorer training and performance metrics.

(2) A minimum dropout rate (partial removal of information during part of training)
is important to prevent overfitting. A high value is not desirable, at the risk of
removing information essential to the model learning process. Fractions between
0.0 and 0.4 were tested. Values near 0.15 led to the best model performance. Results
were less sensitive to dropout than to hidden layer size.

(3) Batch size is important. Lower batch sizes showed the ability to reduce the uncertainty
of predictions, especially in higher values of quantiles. Finally, values in the range
of 64 to 256 were used. Larger batches can lead to faster training but hinder model
convergence.

(4) The learning rate plays a crucial role in model development. High learning rates
can lead to overshooting of optimal weight configurations, while low learning rates
may slow down the training process and cause the training procedure to stall at local
minima. A set of values between 0.0001 and 0.01 was tested. In addition, 0.0001
showed adequacy to P1 and 0.0002 to P2 and P3.

Table 2 aggregates the chosen hyperparameters for each experiment, from P1 to P3
(for more information about the meaning of each hyperparameter, please consult PyTorch
Forecasting and PyTorch Lightning documentations [52,53]), as well as additional infor-
mation about the experiments with TFT models. The hyperparameters defined for each
experiment correspond to the best combination identified for each case.

Table 2. Adopted hyperparameters and additional information about the experiments with the
TFT models.

Parameter P1 P2 P3

hidden_size 45 60 60
lstm_layers 3 3 3

attention_head_size 4 4 4
batch_size 64 64 64

limit_train_batch 1024 2048 1024
limit_val_batch 1024 1024 1024
learning_rate 0.0001 0.0002 0.0002

patience 24 24 24
dropout 0.15 0.15 0.15

Total number of parameters 6.10 × 104 5.61 × 105 5.77 × 105

Model size (MB) 0.24 2.25 2.31
Time to train (average) 40 min 4 h 50 min 6 h 20 min

5.2. Comparative Performance of Deep Learning Models in Prediction

The heterogeneous hydrological conditions in Portugal, from wetter regions in the
north to drier areas in the south, present a significant challenge to the streamflow prediction
model while also providing an opportunity to assess its robustness.

Figure 9 aggregates an example of the obtained predictions for one of the stations (i.e.,
05K/01H) for the HBV model and the experiments from P1 to P3. Figure 9a illustrates the
resampled daily temperature and precipitation data for the catchment monitored by this
station in the period of the prediction.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 9. Set of predictions of streamflow at the hydrometric station 05K/01H with the correspon-
dent (a) meteorological data (ERA5–Land); (b) deterministic prediction from the HBV model; and
probabilistic predictions with the TFT for the experiments: (c) P1 (single catchment), (d) P2 (joint
catchments), and (e) P3 (“pseudo” forecasting with joint catchments). The observed streamflow and
its median prediction are represented in the plots, alongside the respective uncertainty bands.
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The calibrated HBV model (classical approach), shown in Figure 9b, provides the
deterministic prediction of streamflow obtained directly from it. As mentioned above, it
does not account for uncertainty or any other possible outcomes. It also fails to capture two
significant peaks in the beginning of 1996. This can be a major limitation in flood analysis,
as missing such peaks could lead to misleading flood risk assessments. In Table 3, the
obtained performance metrics can be consulted.

Table 3. Performance metrics obtained for each experiment. The color bars are proportional to the
values in each metric.

Station Metric HBV Model
P1 P2 P3

(Single Catchment) (Joint Catchments) (“Pseudo“ Forecasting)
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For P1 (TFT model trained with a single catchment), the obtained results are promising,
as seen in Figure 9c. The model was capable of “learning” a great part of the inherent
hydrological processes and still providing information about uncertainty, in particular
the two peaks the HBV model struggled to replicate. The performance metrics shown in
Table 3 emphasize the potential of the probabilistic prediction. For example, in stations
05K/01H and 24H/03H (the ones that monitor the isolated catchments), all metrics in P1
outperformed the HBV results. However, for stations 16G/01H and 28L/02H, the NSE in
P1 showed poorer results compared to the HBV model, that is, 0.71 in HBV vs. 0.65 in P1
for the first and 0.48 in HBV vs. 0.45 in P1 for the second, possibly due to model training
issues or the influence of local factors not fully captured by the TFT. Still, the CRPS is lower
in P1 (which is desirable), and this experiment additionally offers insights into reliability
and resolution, which HBV fails to do. Globally, this experiment suggests that TFTs can
perform the same tasks as the HBV model with more accurate outcomes.

In P2 (the TFT model trained with joint catchments), the expanded dataset introduced
a higher level of complexity into the model, which required significantly more time to
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train and validate. The model performance was expected to improve due to the increased
exposure to hydrological information, which occurred. Figure 9d briefly confirms this by
showing a prediction with narrower uncertainty bands and, therefore, increased accuracy
in comparison with P1. Looking at Table 3, in fact, one can see resolution increased from
2.19 to 3.43. In the remainder of the stations, this improvement was not as strong, and
resolution values are relatively similar. NSE improved in all stations, surpassing also all the
values obtained by the HBV model. Reliability generally decreased slightly from P1 to P2,
although remaining generally satisfactory. The CRPS globally improved from P1 to P2. For
the relatively isolated catchments (05K/01H and 24H/03H), P2 has strongly increased the
model performance. Experiment P2 showcases the capability of TFT to learn information
about hydrological processes in such a way that can improve local predictions.

Experiment P3 (TFT model used for “pseudo” forecasting) introduced knowledge
about past streamflow into the model at each time step. Once again, Figure 9e depicts an
increase in the accuracy of the prediction with yet narrower uncertainty bands. Table 3
corroborates this by the abrupt increase in the resolution in comparison with prior experi-
ments. Likewise, NSE and CRPS improved from the values obtained for HBV, P1, and P2.
Reliability remained satisfactory.

Figure 10 presents the QQ plots that resulted from the three experiments (P1, P2,
and P3) for the same catchment (05K/01H). Deviations in the predictions, as well as
overestimations and underestimations of the predictive uncertainty, could be identified, to a
greater or lesser extent, in all the experiments. This said, the calculated performance metrics
(Table 3) for the four catchments suggest that the deviations are not major, especially when
the results obtained using the “classical” HBV model are used to put them into perspective.

α
π

α
π

α
π

α

π
 

   
(a) (b) (c) 

tt

Figure 10. QQ plots for the streamflow prediction in the catchment gauged by the station 05K/01H in
the experiments (a) P1 (b) P2 and (c) P3. All the obtained QQ plots are relatively close to the desired
1–1 line, evidencing good reliability.

5.3. Adaptation of Deep Learning Models to Forecasting Tasks

The forecasts obtained with GFS meteorology (item no. 5 in Section 4.3) are exempli-
fied in Figure 11. Although the temperature forecasts from GFS are relatively accurate in
this period, the precipitation presents some inaccuracies during particularly intense raining
events. Data limitations (meteorology and streamflow observations) dictated that forecasts
were only produced for stations 16G/01H and 24H/03H, between 1 January 2022 and
1 January 2024. The obtained results, covering this period, were benchmarked against per-
sistence. In this context, persistence refers to a simple method where the forecast assumes
that the value of the variable in the future will be equal to that of the last observation.

Looking at Table 4, it is possible to conclude that, for the period of 2 years, the TFT
model had better results on the performance metrics when compared to the benchmark.
The QQ plots for both stations are available in Figure 12, showing increased deviations
when compared to Figure 10. This can be explained by the shorter period of analysis and
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the fact that GFS forecasts are expected to reproduce precipitation and temperature less
accurately than ERA5–Land.

 

α

π

α
π

Figure 11. Forecast of streamflow at the hydrometric station 24H/03H with the correspondent
meteorological forecasts from GFS in comparison with the values from ERA5–Land. The wet season
(autumn and winter) of 2022/23 is depicted. The observed streamflow and its median prediction are
represented in the plots, alongside the respective uncertainty bands.

Table 4. Performance metrics obtained for the forecasts. The color bars are proportional to the values
in each metric.

Station Metric Persistence Forecast
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Figure 12. QQ plots for the streamflow forecasts in the catchment gauged by the stations: (a) 16G/01H
and (b) 24H/03H.

It can be concluded that the TFT models are highly promising for streamflow prediction
applications, especially if compared with classical approaches such as the HBV model.
TFT models can easily be used in an operational setting where forecasts are generated
continuously as new input data (e.g., updated meteorological forecasts or streamflow
measurements) become available. The showed plots, performance metrics, and following
reasons support this rationale:

(i) Flexibility in the types of inserted inputs and model adaptability in producing pre-
dictions: The TFT model can incorporate different types of input data (categorical
or real, constant or variable, and known or unknown), including past streamflow,
meteorological data, and other geomorphological variables, allowing it to adapt to
diverse hydrological contexts more effectively than the HBV model (and most likely
other similar “classical” hydrological models).

(ii) Possibility of transposing knowledge from hydrological processes between catch-
ments: Due to their nature, when trained with data from many catchments, TFTs can
learn general features of the rainfall–runoff transformation processes that allow it to
improve local predictions.

(iii) Probabilistic nature of TFT in comparison with deterministic nature of HBV: The
HBV model, as a classical hydrological model, is not probabilistic, requiring either a
post–processor to estimate uncertainty or a set of model parameters that “generates”
an ensemble of model results capable of reproducing that uncertainty. In contrast, the
TFT is inherently probabilistic, providing a distribution of possible outcomes along
with associated uncertainties. Naturally, knowledge about predictive uncertainty
allows for more informed decision–making in situations of risk management (e.g., in
flood forecasting).

(iv) Simplicity of the TFT modeling chain: In practice, the modeling chain necessary
for a TFT to produce forecasts is much simpler than the one required by classical
hydrological models. Indeed, the latter cannot directly use past streamflow as an
additional input and require that internal state variables (e.g., water storage in the
soil layers and other reservoirs) are continuously updated so that predictions match
the latest observations—a process that can be very demanding.

To balance the positive results, it is only fair to highlight some limitations. The
following stand out:

(1) Data availability and quality: The performance of the TFTs highly depends on the
quantity and quality of data, which sometimes can be difficult to guarantee. Even if
long –time series exist, they may not be enough to ensure adequate performances,
especially when observations are inaccurate.
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(2) Complexity of hyperparameter definition: Finding adequate combinations of model
hyperparameters can be very time–consuming and absorb significant computational
resources. Optimizing batch size, dropout rate, learning rate, network architecture,
and other factors requires a fine understanding of their hidden relationships.

(3) Some environmental and physical factors are not accounted for. Although the trained
TFT models considered temperature, precipitation, and other relevant variables asso-
ciated with the catchment, they did not include all factors that may affect hydrological
responses. Notably, time was not accounted for at the level of catchment characteriza-
tion (e.g., changes in land use over time).

(4) Overfitting: In smaller datasets (e.g., P1), the risk of overfitting is more pronounced,
mainly when dropout rates are not carefully selected. Generically, when an excessively
complex model is used, it tends to achieve a quick reduction of the training error but
will soon stabilize and worsen in terms of validation (and test) groups. In such cases,
the models can be generally improved by reducing the number of parameters, i.e., the
complexity of the network.

These results show that TFTs can have operational applications in streamflow predic-
tion. Namely, they have the potential to be beneficial in the following diverse activities:

(i) Predicting flood events in the scope of early warning systems and emergency response
and acknowledging the different uncertainties associated with streamflow.

(ii) Optimizing reservoir operations and supporting decisions on water storage, release,
and allocation across different sectors (e.g., agriculture, industry, and energy).

(iii) Optimizing hydropower production by adjusting power generation schedules to
comply with energy demand while ensuring sustainable use.

(iv) Guiding the implementation of water–saving measures during low–flow periods
or droughts.

(v) Managing the health of ecosystems and protecting wildlife highly sensitive to fluctua-
tions in streamflow.

6. Conclusions

The presented results proved the potential of the TFT model in the prediction of
daily streamflow, especially in contrast with the HBV model. Focusing on individual
catchments (experiment P1), the model was able to generate reliable probabilistic predic-
tions and thus provide information useful to decision–makers. In objective performance
metrics, as well as capacity to generalize and inbuilt capacity to generate probabilistic
predictions, it outperformed the “classical” HBV model. It also corresponded to a common
site–based data–driven model application, fulfilling the objectives of the initially defined
question. Very importantly, the P2 experiment showed that, trained with regional datasets,
TFTs can learn about generic hydrological behaviors. Lastly, with P3, after providing
the model streamflow awareness, the TFT performance improved, and the uncertainty
decreased. Still, it is relevant to notice that this model has some limitations too (e.g., high
dependence on data availability and quality, complexity of hyperparameter definition, and
computational requirements).

The TFTs can be easily adapted to online forecasting of streamflow. Adding past
streamflow to model inputs clearly improves performance, and even with a simple correc-
tion, the model fed with data not directly used in training (GFS replaced ERA5–Land in the
forecasting experiment) could clearly outperform the benchmark.

The results can be applied to improve water management practices and operational
forecasting, contributing to predicting future flood and drought events with uncertainty
associated, optimizing reservoir operations and hydropower production, implanting water–
and wildlife–saving measures, and mitigating the effects of climate change.

The potential improvement of the performance of the TFT model is enormous. Indeed,
numerous additional features can be tested to increase the accuracy of predictions/forecasts
as follows:
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(i) Application of additional measures to mitigate model overfitting, including testing
other regularization methods and conducting a more in–depth analysis of different
combinations of model hyperparameters.

(ii) Attribution to greater weights to the data from under–represented catchments in the
study area.

(iii) Specification of how the data are distributed within the catchment of different input
variables (instead of one average value representing the entire catchment).

(iv) Extension to other variables besides streamflow (e.g., sediment transport in rivers,
river stage, and hydropower scheduling).
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