
A Reference Implementation of ECMAScript
Built-in Objects

David Manuel Sales Gonçalves

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos

Examination Committee
Chairperson: Prof. José Carlos Martins Delgado

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos
Member of the Committee: Prof. Nuno Miguel Carvalho dos Santos

November 2021

Acknowledgments

This work would not have been possible without the numerous engineers that have preceded me and
the core values and principles of the civilization that supported them in their creativity and endeavours.
Special thanks to Marc Andreessen and Brendan Eich for the birth of ECMAScript, whose legacy this
work aspires to continue.

I would like to express my gratitude and appreciation to my family for granting me the conditions to
make this project a reality, and to my supervisor, Prof. Dr. José Fragoso Santos, for suggesting this topic
to me and for his undying motivation and assistance throughout the course. I would also like to thank
Prof. Dr. António Leitão for his review, feedback and enlightenment in what would become of this project
and my colleague Luı́s Loureiro who I worked in close collaboration with for the larger project in which
this one is integrated.

i

Abstract

ECMAScript (ES), commonly known as JavaScript, is one of the most important programming lan-
guages today because it is the de facto option when it comes to dynamic front-end web development.
Throughout the years, ES has become an increasingly complex language, making it a difficult target for
static analyses. This project is part of a wider project that aims to build a trustworthy reference inter-
preter for ES, which will, among other things, enable the development of precise static analysis tools
for modern ES applications through the use of a novel intermediate language called ECMA-SL. This
work focuses on implementing three built-in objects of ECMA-262 Edition 5.1: Array (15.4), RegExp
(15.10), and JSON (15.12). It also implements a few methods of the String (15.5) built-in object and
implements the Promise (25.4) built-in object of the ECMA-262 6th Edition. This implementation scrupu-
lously follows the ES standard’s pseudo-code line-by-line, thus ensuring that our interpreter is correct
with respect to the standard and allowing us to regard the interpreter as the standard itself in the context
of static analysis. To this end, we also extend the ECMA-SL execution engine with new programming
constructs, including UTF-8 support. Furthermore, our reference implementation is thoroughly tested
against Test262, the official ECMAScript test suite. Finally, in order to assist with the transition from the
current HTML representation of the standard to ECMA-SL, we introduce HTML2ECMA-SL, a tool that aims
to generate the ECMA-SL code for any given function described in the standard.

Keywords: ECMAScript, Specification Language, Reference Interpreters, Dynamic Languages,
Test262, OCaml

iii

Resumo

ECMAScript (ES), vulgarmente conhecida como JavaScript, é uma das linguagens mais importantes
de hoje porque é a opção de facto para desenvolvimento web front-end. Ao longo dos anos, ES tornou-
se uma linguagem cada vez mais complexa, tornando-se um alvo difı́cil para análises estáticas. Este
projeto faz parte de um projeto mais amplo que visa construir um interpretador de referência fiável para
ES, que permitirá, entre outras coisas, o desenvolvimento de ferramentas de análise estática precisas
para aplicações ES modernas através do uso de uma nova linguagem intermédia chamada ECMA-
SL. Este trabalho foca-se na implementação de três bibliotecas built-in da edição 5.1 do standard de
ES: Array (15.4), RegExp (15.10), e JSON (15.12). Também implementa alguns métodos da biblioteca
String (15.5) e implementa a biblioteca Promise (25.4) da 6ª edição do standard. Esta implementação
segue escrupulosamente o pseudo-código do standard linha por linha, assegurando assim que o nosso
interpretador está correto com respeito ao standard e permitindo-nos considerar o interpretador como
o próprio standard no contexto da análise estática. Para este fim, também estendemos o motor de
execução da ECMA-SL com novas construções de programação, incluindo suporte para UTF-8. Além
disso, a nossa implementação de referência é testada na totalidade com a Test262, a suite de testes
oficial para ECMAScript. Finalmente, a fim de auxiliar na transição da representação HTML atual do
standard de ES para ECMA-SL, apresentamos HTML2ECMA-SL, uma ferramenta que visa gerar o código
ECMA-SL para qualquer função descrita no standard.

Palavras-Chave: ECMAScript, Linguagem de especificação, Interpretadores de referência,
Linguagens dinâmicas, Test262, OCaml

v

Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1

1.1 Why JavaScript? . 1

1.2 ECMA-262’s Complexity . 2

1.3 ECMA-SL Project . 2

1.4 Problem Statement . 3

1.5 Thesis structure . 4

2 Background 5

2.1 ES Standard . 5

2.2 ES5 Array Object . 6

2.3 ES5 String Object . 9

2.4 ES5 RegExp Object . 12

2.5 ES5 JSON Object . 14

2.6 ES6 Promise Object . 17

2.7 ES6 Incompatibilities with Prior Editions . 20

3 Related Work 21

4 Extending ECMA-SL 25

4.1 An Overview of ECMA-SL . 25

4.2 Implementing UTF-8 . 29

4.3 Other Extensions . 33

5 Reference Implementation 35

5.1 ES5 Array . 35

5.2 ES5 String . 40

5.3 ES5 RegExp . 43

5.4 ES5 JSON . 46

5.5 ES6 Promise . 49

6 HTML2ECMA-SL 55

vii

7 Evaluation 59
7.1 Reference Implementations . 59
7.2 HTML2ECMASL . 62

8 Conclusion 63

Bibliography 64

A Syntax of the ECMA-SL language 69

B Reference implementation results 71

viii

List of Tables

4.1 Structure of the UTF-8 encoding. 31
4.2 An overview of the ECMA-SL string-related operators. 31

5.1 Implemented methods of the ES5 Array object. 39
5.2 Implemented methods of the ES5 String object. 42
5.3 Implemented methods of the ES5 RegExp object. 45
5.4 Implemented methods of the ES5 JSON object. 48
5.5 Implemented methods of the ES6 Promise object. 53

7.1 Test262 test results for our ES5 reference implementation. 61

B.1 Test262 test results for the methods of the ES5 String object that we implemented. 71
B.2 Test262 test results for the ES5 JSON object. 71
B.3 Test262 test results for the ES5 Array object. 72
B.4 Test262 test results for the ES5 RegExp object. 73

ix

List of Figures

1.1 The evolution on the number of pages of the ES standard official document. 2
1.2 Tools that can be created from an ES reference interpreter. 3

2.1 A graphical overview of the ECMAScript language 6th edition’s built-in objects. 6
2.2 ES5 Array Object Graph. 6
2.3 Properties of arr after executing lines 2–6. 8
2.4 ES5 Array’s [[DefineOwnProperty]] resizing the length. 9
2.5 ES5 String Object Graph. 10
2.6 ES5 String’s [[GetOwnProperty]] returning a new data property descriptor. 11
2.7 ES5 RegExp Object Graph. 12
2.8 JSON Object Graph. 14
2.9 An ECMA-262 note on JSON’s parse method. 15
2.10 JSON’s parse pseudo-code. 16
2.11 ES6 Promise Object Graph. 17
2.12 FulfillPromise and TriggerPromiseReactions abstract operations. 19

4.1 Architecture of the ECMA-SL project. 26
4.2 The ECMA-SL Execution Engine pipeline. 27

5.1 ES5 Array Object Graph in ECMA-SL. 35
5.2 ES5 String Object Graph in ECMA-SL. 40
5.3 ES5 RegExp Object Graph in ECMA-SL. 43
5.4 ES5 JSON Object Graph in ECMA-SL. 46
5.5 ES6 Promise Object Graph in ECMA-SL. 49

6.1 The FulfillPromise method generated by HTML2ECMA-SL. 56

7.1 Meta-data of two Test262 test files. 59
7.2 Test execution pipeline. 60

xi

Acronyms

API Application Programming Interface. 1

AS ActionScript. 15

ASCII American Standard Code for Information Interchange. 29–31

AST Abstract Syntax Tree. 25, 43, 44, 61

BMP Basic Multilingual Plane. 30, 32, 33, 42

BOM Byte Order Mark. 30

DOM Document Object Model. 1, 23

DRY Don’t Repeat Yourself. 17

ECMA European Computer Manufacturers Association. 1

ECMA-262 Standard of the ECMAScript programming language. xi, 2–5, 7, 8, 11–15, 17, 19–26, 31,
35, 36, 40, 46, 47, 50, 55–57, 59–63

ECMA-404 Standard of the JSON Data Interchange Syntax. 14, 34, 48

ECMA-SL ECMAScript Specification Language. ix, xi, 1–4, 9, 23–28, 30–33, 35–37, 40–50, 55–57,
59–63, 69

ES ECMAScript. xi, 1–3, 5–15, 17, 18, 22–26, 28, 31–33, 35, 36, 39, 47, 48, 55, 56, 59–61, 63

ES12 ECMAScript 12th Edition. 59

ES3 ECMAScript 3rd Edition. 21, 22

ES5 ECMAScript 5.1 Edition. ix, xi, 3–6, 9–12, 14, 17, 20, 22, 24, 25, 31, 33–37, 39–50, 55, 59–61, 63,
71–73

ES6 ECMAScript 6th Edition. ix, xi, 2–6, 14, 17, 18, 20, 23, 25, 32, 33, 35, 44, 48–50, 53, 55, 57, 59,
60, 62, 63

ES8 ECMAScript 8th Edition. 2

HTML HyperText Markup Language. 1, 3, 13, 14, 26, 47, 55–57, 59, 60

IL Intermediate Language. 2, 25

JS JavaScript. 1, 21–23, 25, 26, 29, 30, 56

xiii

JSON JavaScript Object Notation. ix, xi, 3–5, 14–16, 20, 23, 24, 33–35, 46–48, 61, 63, 71

LOC Lines of Code. 37, 41, 45, 47, 50, 57, 63

PDF Portable Document Format. 55

RegExp Regular Expression. ix, xi, 3–5, 9, 12–14, 20, 22–24, 33, 35, 41, 43–45, 57, 61, 63, 73

Test262 Official ECMAScript Conformance Test Suite. ix, xi, 2, 3, 20–23, 31, 33, 42, 43, 50, 59–63,
71–73

TS TypeScript. 56, 57

UCS Universal Character Set. 29

UCS-2 Universal Character Set with a 16-bit encoding. 29–31

UCS-4 Universal Character Set with a 32-bit encoding. 29, 30

UI User Interface. 23

URL Uniform Resource Locator. 56

UTF Unicode Transformation Format. 33

UTF-16 Unicode Transformation Format — 16-bit. 10, 29–33, 42

UTF-32 Unicode Transformation Format — 32-bit. 29–31

UTF-8 Unicode Transformation Format — 8-bit. ix, 3, 29–33, 61

xiv

Chapter 1

Introduction

In this chapter, we motivate the reader by highlighting the importance that JavaScript has in the world
today (1.1). Then, we raise awareness to the complexity of JavaScript’s standard document (1.2), which
is one of the problems that this work attempts to address. We then introduce ECMA-SL, a novel interme-
diate language that aspires to solve many of the problems with the specification and uses of JavaScript
in modern web applications (1.3). Finally, we give an overview of the problems addressed by this work
(1.4) and the structure of this document (1.5).

1.1 Why JavaScript?

JavaScript (JS) is one of the most important programming languages today because it is the de facto
option when it comes to dynamic front-end web development. Whilst there are viable alternatives (such
as TypeScript, CoffeeScript, and so on), the fact is that these end up being transpiled into JavaScript.
JavaScript is used by over 95% of websites1, is the most active language on GitHub2 and the second
most active on StackOverflow3. Throughout the years, a rich ecosystem was built on top of JS, from
transpilers to frameworks, such that, for a web developer, it is almost impossible to avoid working with
JS in some way or another.

JavaScript was envisioned by Marc Andreessen, founder of Netscape Communications, and created
by Brendan Eich in September 1995, who completed the first version in only ten days in order to accom-
modate the Navigator 2.0 Beta release schedule [1]. Originally, it had the code name Mocha but was
launched as LiveScript and soon after renamed to JavaScript for marketing purposes, which was possi-
ble due to Netscape’s collaboration with Sun Microsystems, who had been responsible for the creation
of the Java programming language. At the same time, Microsoft was working on its own web browser,
Internet Explorer, and after witnessing the success of JS on the Netscape Navigator it had no choice
but to come up with its own implementation of JS, which they called JScript in order to avoid trademark
issues with Sun Microsystems. To prevent competition between scripts, Netscape submitted JS to the
European Computer Manufacturers Association (ECMA) in November 1996, as the starting point for a
standard specification that all browser vendors could conform to. This led to the official release of the
first ECMAScript (ES) language specification in June 1997. It is worth mentioning that Web APIs such
as the HTML DOM API are not a part of ES and have their own standards.

1Usage statistics of JavaScript as client-side programming language on websites, 31 October 2021, W3Techs.com - https:
//w3techs.com/technologies/details/cp-javascript

2Github most active programming languages based on pull requests, 31 October 2021 - https://madnight.github.io/

githut
3Stack Overflow Trends over time based on use of their tags, 31 October 2021 - https://insights.stackoverflow.com/

trends

1

https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript
https://madnight.github.io/githut
https://madnight.github.io/githut
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends

JavaScript, whose official name is now ECMAScript, is an ever-evolving programming language that
keeps backward compatibility with its earlier versions. It is currently in its 12th edition. However, a large
portion of JavaScript’s current features were introduced with the release of ECMAScript 6 (ECMAScript
2015), which has added new syntax for writing more complex applications, among many other features
that would define the next era of JavaScript.

1.2 ECMA-262’s Complexity

ECMA-262 [2] is the specification of the ECMAScript (ES) programming language, standardized by
Ecma International. Since 2015, the specification underwent yearly updates. Figure 1.1 shows how
complex the standard has become, with the largest updates being introduced in ES6 and ES8.

Figure 1.1: The evolution on the number of pages of the ES standard official document.

Given the current size and complexity of ECMA-262, introducing new features to the language is a
complex and error-prone process. For instance, it must be guaranteed that any change does not break
the behaviour of previous features and that it is compatible with the internal invariants maintained by the
semantics of the language. For this reason, the ECMAScript committee created Test262 [3], the official
ECMAScript Conformance Test Suite, which is known to have significant coverage issues. Even with
extensive testing, one might fail to cover an edge case of the language. In contrast to testing, formal
methods offer strong correctness guarantees. But, in order to be able to apply formal methods to the
ECMA-262 standard, one must first have a formal model of it.

1.3 ECMA-SL Project

The ECMAScript Specification Language (ECMA-SL) is a dedicated intermediate language (IL) for ES
analysis and specification that aims to mitigate the problems caused by the complexity of ECMA-262.
One of the goals of the ECMA-SL project is to have a reference interpreter for ES that is tightly linked to
the text of ECMA-262, allowing us to regard the interpreter as ECMA-262 itself in the context of formal
analysis. We can also generate a textual version of ECMA-262 from the ECMA-SL code, making ECMA-
SL a viable alternative for specifying the ES language. As we can test the ECMA-SL interpreter against
Test262, we can: make sure that any changes are backward compatible with previous versions; apply
test generation techniques [4] to automatically obtain tests for newly introduced features; and measure
the coverage of Test262. The ECMA-SL project is currently in the development stage and ships a fully
functional reference interpreter for the ECMA-262 Edition 5.1 [5], henceforth referred to as ECMARef5, in
part contributed to by this work.

2

Reference
Interpreter

English HTML
Description

Specialized
Reference

Interpreters

Compiler to
Intermediate

Language

Formal
Language
Semantics

Static Analysis
Tools

Conformance
Test Suit

Generator

Figure 1.2: Tools that can be created from an ES reference interpreter.

1.4 Problem Statement

In this work, we extend ECMARef5 in order to include the ES5 Array object, the ES5 RegExp object,
and the ES5 JSON object, which were yet to be implemented with regards to the pseudo-code of the
standard. We also implement a few methods of the ES5 String object, that depend on the ES5 RegExp
object and Unicode, and start implementing the ECMA-SL reference interpreter for the ECMA-262 6th
Edition, henceforth referred to as ECMARef6, by implementing the ES6 Promise object.

The ECMA-SL execution engine is implemented in the OCaml [6] programming language and in-
cludes a parser based on Menhir [7]. In order to implement the aforementioned built-in objects, we
extend the ECMA-SL execution engine with new programming constructs and UTF-8 support. As part
of this work, we also create a tool for converting the HTML representation of the ES6 standard directly
to ECMA-SL code, which we call HTML2ECMA-SL. So far we can only guarantee full support of the ES6
Promise object for HTML2ECMA-SL. HTML2ECMA-SL has a number of benefits:

1. It guarantees consistency : The ECMA-SL instructions generated by this tool are kept consistent
across functions. Sometimes, there can be multiple ways to implement a given pseudo-code
instruction, and, by adhering to one single way, the inverse process of converting the ECMA-SL
code to a textual representation of the standard is facilitated. Moreover, different programmers
may have different styles of coding (e.g. placement of braces, spaces around operators, function
names, etc.). HTML2ECMA-SL helps with style standardization.

2. It avoids errors: Manual tasks are known for being error-prone. It is easy for the programmer to
make mistakes which can take a long time to debug and detect.

3. It speeds up the implementation: Whilst there is an initial overload on implementing this tool along-
side the ECMA-SL reference implementation, as more statements and expressions are supported
by the tool the easier and quicker it becomes to implement more functions from the ECMA-262’s
pseudo-code along the line.

We thoroughly evaluate the three main modules of this work: The extensions to the ECMA-SL exe-
cution engine, the built-in objects added to the ECMA-SL reference interpreter, and the HTML2ECMA-SL

conversion tool. The string operators added to the ECMA-SL execution engine concerning UTF-8 were
partially tested using the OUnit [8] testing framework and all the extensions to the ECMA-SL execution
engine were tested together with the ECMA-SL reference interpreter against Test262. Out of a total of
3,440 applicable tests from Test262, we pass 99.8%, thus guaranteeing that our reference implemen-
tation is correct with respect to the ECMA-262 standard. HTML2ECMA-SL is evaluated using the Jest [9]
testing framework, by comparing each generated ECMA-SL function’s code to the code that we deem
to be correct. HTML2ECMA-SL passes 51 out of 51 unit tests and has a test coverage of 97%.

3

1.5 Thesis structure

This document is organized as follows: Chapter 2 introduces ECMA-262 and the built-in objects that
this work focuses on, explaining their features, methods and evolution from edition 5.1 [5] to the 6th
edition [10]. Chapter 3 presents several research works with similarities to our own. Chapter 4 introduces
ECMA-SL and our extensions to this language. Chapter 5 presents our implementation of the built-in
objects that this work focuses on, starting with the ES5 Array object (5.1), followed by part of the ES5
String object (5.2), the ES5 RegExp object (5.3), the ES5 JSON object (5.4), and the ES6 Promise
object (5.5); for each of these we give an overview of their internal representation, internal functions
(or abstract operations), reference implementation, implementation-dependent methods (if any), and
auxiliary functions. Chapter 6 presents HTML2ECMA-SL. Chapter 7 presents the evaluation of the main
outcomes of this work: Reference implementations (7.1) and HTML2ECMA-SL (7.2). Finally, Chapter
Chapter 8 draws some conclusions about our work and points out some future research directions.

4

Chapter 2

Background

In this chapter, we give an overview of the ECMAScript standard (2.1) and explain each of the built-in
objects and methods that this work focuses on: the ES5 Array object (2.2), part of the ES5 String object
(2.3), the ES5 RegExp object (2.4), the ES5 JSON object (2.5), and the ES6 Promise object (2.6). We
also mention some of the incompatibilities of ES6 with the prior editions (2.7).

2.1 ES Standard

Edition 5.1 [5] of ECMA-262 defines the ECMAScript programming language for version 5.1, hereafter
referred to as ES5, and the 6th edition [2] defines version 6 of the language, hereafter referred to as ES6.
ECMA-262 defines the types, values, objects, properties, functions, program syntax and semantics that
should exist in an ES language implementation. Note that ECMA-262 allows an implementation of the
language to provide additional types, values, objects, properties, and functions 1.

ECMAScript defines a collection of built-in objects whose specification comprises almost half of the
6th edition [2] of the ECMA-262 standard (253 out of 545 pages). Built-in objects provide the essential
functionality of the language. The built-in objects present in ES5 are the Global object, the Object object,
the Function object, the Array object, the String object, the Boolean object, the Number object, the Math
object, the Date object, the RegExp object, the JSON object, and the following Error objects: Error,
EvalError, RangeError, ReferenceError, SyntaxError, TypeError, and URIError.

ES6 is mostly compatible with the previous versions, with a few exceptions 2, so it contains the same
built-in objects that are present in ES5. However, it introduces the following new built-in objects: Ar-
rayBuffer, DataView, Float32Array, Float64Array, Generator, GeneratorFunction, Int8Array, Int16Array,
Int32Array, Map, Proxy, Promise, Reflect, Set, Symbol, Uint8Array, Uint8ClampedArray, Uint16Array,
Uint32Array, WeakMap and WeakSet. ES6 also introduces the following iteration interfaces: Iterable,
Iterator, and IteratorResult.

Figure 2.1 illustrates the ECMAScript language 6th edition’s built-in objects. Of the several specified
built-in objects, this work focuses on the ES5 Array object, part of the ES5 String object, the ES5 RegExp
object, the ES5 JSON object, and the ES6 Promise object.

1Standard ECMA-262’s 6th Edition, Chapter 2, Paragraph 4.
2Standard ECMA-262’s 6th Edition, Annex D and Annex E.

5

ES6 Built-in Objects

Global Object

Date

Number

Math

Numbers and Dates

String

RegExp

Text Processing

Indexed
Collections

Float64Array

Float32Array

Uint32Array

Int32Array

Uint16Array

Int16Array

Uint8ClampedArray

Uint8Array

Int8Array

TypedArrayArray

Map

Set

WeakMap

WeakSet

Keyed Collection

ArrayBuffer

DataView

JSON

Structured Data
IteratorPrototype

GeneratorFunction

Generator

Promise

Control Abstraction

Reflect

Proxy

Module Namespace

Reflection

Object

Function

Boolean

Error

NativeError

EvalError

RangeError

SyntaxError

TypeError

URIError

Symbol

Fundamental
Objects

ReferenceError

Figure 2.1: A graphical overview of the ECMAScript language 6th edition’s built-in objects.

2.2 ES5 Array Object

Indexed Collections include the Array object, also present in ES5, as well as nine different variants of
typed arrays, provided by the TypedArray library, whose elements have a specific numeric data repre-
sentation and have been introduced in ES6. This work focuses only on the ES5 Array object. Figure 2.2
illustrates the internal representation of a typical ES5 Array object according to the standard.

a: Array

[[Prototype]]:

[[Class]]: "Array"

[[Extensible]]: true

[[DefineOwnProperty]] (variation)

length: DPD(n+1, T, F, F)

"0": DPD(value, T, T, T)

...

"n": DPD(value, T, T, T)

Array Prototype

[[Prototype]]: Object.[[Prototype]]

[[Class]]: "Array"

[[Extensible]]: true

[[DefineOwnProperty]] (variation)

length: DPD(0, T, F, F)

constructor: DPD(ref, T, F, T)

push: DPD(pushFuncObjRef, T, F, T)

pop: DPD(popFuncObjRef, T, F, T)

toString: DPD(toStringFuncObjRef, T, F, T)

...

[[Get]]
[[GetOwnProperty]]

[[GetProperty]]
[[CanPut]]

[[Put]]
[[HasProperty]]

[[Delete]]
[[DefaultValue]]

[[DefineOwnProperty]]

Object Internal Methods

Array Constructor

[[Prototype]]: Function.[[Prototype]]

length: DPD(1, T, F, F)

prototype: DPD(ref , F, F, F)

isArray: DPD(isArrayFuncObjRef, T, F, T)

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

Figure 2.2: ES5 Array Object Graph.

In order to understand this figure, we first need to introduce some basic concepts related to the
representation of objects and arrays in ES.

First, we observe that ES arrays are stored in memory as objects. As all ES objects, an Array object
has two types of properties: internal properties and named properties. Internal properties, which we

6

represent between double square brackets, store the meta-data and internal algorithms associated with
the object and cannot be directly accessed or modified by an ES program; they include the properties:

• [[Class]] representing the type of the object in the form of a string;

• [[Extensible]] storing a boolean that determines whether or not it is possible to add new named
properties to the object;

• [[Prototype]] representing the internal prototype of the object (used to implement prototype-
based inheritance [11]). Its value is either a pointer to an object, also referred to as an object
location, or null.

Named properties are the properties explicitly set by the program, either through built-in functions
or assignment expressions. They are represented by Property Descriptors. A property descriptor is a
record with specific attributes representing both the property value and meta-information about the prop-
erty. There are three types of property descriptors, but here we focus only on data property descriptors,
which store the following four attributes:

• [[Value]] holds the actual property value;

• [[Writable]] determines whether the property value may or may not be modified;

• [[Enumerable]] determines whether the property is to be visible by operations that iterate over
the properties of the object, such as for-in enumerations;

• [[Configurable]] determines whether the property can be deleted, have its attributes changed
(other than [[Value]]), or if it can be transformed into an accessor property descriptor.

When it comes to Array objects, ECMA-262 distinguishes two types of named properties: indexed
properties, corresponding to array indexes, and non-indexed properties. Importantly, just like any other
property, indexed properties are also associated with property descriptors. By default, indexed proper-
ties are writable, enumerable, and configurable. Given that they are writable and configurable, all of their
attributes can be changed at runtime.

Besides indexed properties, all Array objects have a distinguished property length, representing the
length of the array. The length of an array corresponds to the value of its highest index incremented
by one. In Figure 2.2, we can see that the attributes [[Enumerable]] and [[Configurable]] of the
length property descriptor are set to false. [[Enumerable]] is false because the property length is
not supposed to be visible to operations that iterate over the properties of an object, such as for-in

enumerations. [[Configurable]] is false because the property length cannot be deleted nor have its
attributes changed (other than [[Value]]).

In ES, all objects have an internal prototype from which they can inherit properties. As arrays are
represented in memory as objects, Array objects also have an internal prototype—the Array Prototype
object—which stores the methods shared by all Array objects (e.g. push, pop, etc.). Given that the Array
Prototype object is itself an object, it also has an internal prototype—the Object Prototype object—which
stores the methods shared by all ES objects, regardless of their type (e.g. toString, hasOwnProperty,
etc.). This realises prototype-based inheritance [11].

ES functions are also represented in memory as objects. Hence, the Array constructor is itself
an object. Function objects have a distinguished named property, prototype, where they store the
object to be used as the internal prototype of the objects constructed with that function. Hence, the
property prototype of the Array constructor Function object points to the Array Prototype object, which,
as previously mentioned, is the internal prototype of all Array objects. In the same fashion, the Array

7

Prototype object (as all prototype objects) stores a reference to the constructor function of the objects
that inherit from it in its named property constructor, which, in this case, is the Array constructor
Function object. This effectively creates a circular dependency between the Array constructor object
and the Array Prototype object, allowing us to write silly code like the one presented in Listing 2.1.

1 var arr = new Array.prototype.constructor.prototype.constructor ();

2 // Equivalent to: var arr = new Array();

Listing 2.1: A silly Array object instantiation.

It is worth noting that the Array prototype object is itself an array and that all the built-in methods
that can be called on an Array object are inherited from the Array prototype object. Another important
characteristic of Array objects that is worth mentioning is that these objects are exotic objects (the
concept of exotic object is formally introduced in Definition 2.2.1).

Definition 2.2.1 (Exotic Object). An exotic object is an object that does not have the default behaviour
for one or more of the essential internal methods that must be supported by all objects. Array objects,
for instance, provide an alternative definition for the [[DefineOwnProperty]] internal method.

In order to understand why this matters, we use Listing 2.2 to illustrate a practical example of a
strange case with an Array object, which will promptly be explained ahead with the aid of the pseudo-
code present in the ECMA-262’s 5.1 Edition [5].

1 var arr = [1, 2, 3];

2 Object.defineProperty(arr , "66", {

3 value: 666,

4 writable: true ,

5 enumerable: true ,

6 configurable: false });

7 arr.length = 2;

8 arr.length; // ??

Listing 2.2: A strange case with the array length.

In order to understand how this example works, we will also consider the ES heap resulting from the
execution of lines 1–6 of the example, illustrated in the Figure 2.3.

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

a: Array

[[Prototype]]: Array.prototype length: DPD(67, T, F, F)

[[Class]]: "Array" "0": DPD(1, T, T, T)

[[Extensible]]: true "1": DPD(2, T, T, T)

[[DefineOwnProperty]] (variation) "2": DPD(3, T, T, T)

... "66": DPD(666, T, T, F)

Figure 2.3: Properties of arr after executing lines 2–6.

For general ES objects, the core behaviour of the property update operation is described in the
internal method DefineOwnProperty (DOP), given in section 8.12.9 of ECMA-262’s 5.1 Edition [5]. Array
objects, however, have their own DefineOwnProperty internal method (DOP-A), given in section 15.4.5.1
of ECMA-262’s 5.1 Edition [5]. Among other things, DOP-A describes the behaviour of the ES semantics
when trying to update the property length of an Array object. Figure 2.4 shows the exact snippet of this
internal method that captures this behaviour. In line 3 of the figure, DOP-A checks if the property being

8

modified is the length property. Should this be the case, DOP-A iterates on all indexed properties of the
array whose indexes are greater than or equal to the new length, in case the new length is smaller than
the old length (line 3.l). For each iteration, the method first decrements the value of the oldLen variable
(line 3.l.i) and tries to delete the current indexed property (line 3.l.ii). Then, it checks whether or not the
delete operation was successful (line 3.l.iii). If it is successful, the loop continues. If it is not successful,
the loop terminates and the length of the array is set to the value oldLen + 1 (lines 3.l.iii.1–3.l.iii.4). Notice
that, should the delete operation not be successful, the loop terminates with “Reject”, which throws a
TypeError exception if the Throw parameter is true, and returns false otherwise.

15.4.5.1 [[DefineOwnProperty]] (P, Desc, Throw) # Ⓣ Ⓔ

Array objects use a variation of the [[DefineOwnProperty]] internal method used for other native

ECMAScript objects (8.12.9). Assume A is an Array object, Desc is a Property Descriptor, and Throw is a

Boolean flag. In the following algorithm, the term “Reject” means “If Throw is true, then throw a

TypeError exception, otherwise return false.” When the [[DefineOwnProperty]] internal method of A is

called with property P, Property Descriptor Desc, and Boolean flag Throw, the following steps are taken:

(...)

3. If P is "length", then

(...)

l. While newLen < oldLen repeat,

i. Set oldLen to oldLen – 1.

ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing

ToString(oldLen) and false as arguments.

iii. If deleteSucceeded is false, then

1. Set newLenDesc.[[Value] to oldLen+1.

2. If newWritable is false, set newLenDesc.[[Writable] to false.

3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",

newLenDesc, and false as arguments.

4. Reject.

(...)

Figure 2.4: ES5 Array’s [[DefineOwnProperty]] resizing the length.

We are now at the position where we can describe the behaviour of the program given in Listing 2.2.
The array in the example is said to be sparse, because the indexes between 2 and 66, exclusive, are
undefined. What makes this example unorthodox is that we set index 66’s [[Configurable]] attribute
to false, making it impossible to delete it. When setting the [[Value]] of the length of the array to 2, as
per line 7 of the example, the JS engine will attempt to delete all the array elements whose indexes are
greater than or equal to 2. This operation will not succeed, however, for the index 66, because it is not
configurable. Hence, after the execution of line 7, the length of the array will continue to be 67 and a
TypeError exception will be thrown in strict mode 3.

2.3 ES5 String Object

Text Processing objects include the String built-in object and the RegExp built-in object. The ES5 String
object had already been partially implemented in ECMA-SL when this work was started. However, some
methods of the String object depend on the RegExp object, which was yet to be implemented as part of
this work. Additionally, operators in ECMA-SL that deal with Unicode “characters”, and which the String
object depends on, were also implemented as part of this work. For this reason, it was decided that the
conclusion of the ES5 String object was also to be included in this thesis.

3ECMAScript’s strict mode was introduced with ES5 as a way to avoid common pitfalls, which are possible due to to the
backward compatibility of ES with its earlier versions that contained poorly written algorithms.

9

Strings are traditionally sequences of characters, although they can often store any sequence of
bytes. They can be typically found in any useful programming language and resemble arrays, in the
sense that they store a sequence of values that can be indexed. In ES, the pre-eminent differences
between the String object and the Array object, is that the latter can store a sequence of values of
any type and is mutable, whilst the former can only store a sequence of 16-bit code units 4 and is
immutable. Furthermore, the String object is designed for the purpose of storing, manipulating, and
displaying human-readable data, hence its methods provide useful operations in that regard.

In ES, a string is a primitive value corresponding to a sequence of zero or more 16-bit unsigned
integers, because strings in ES use the UTF-16 character encoding, which is explained in more detail
in Section 4.2. In ES5, string literals are denoted by single or double quotes and can contain certain
escape sequences, such as Unicode code points 5 represented in hexadecimal. A string primitive can
be wrapped in a String object, when passed to the String constructor, even though ES automatically
coerces string primitives to String objects when a method is invoked on them. The explicit usage of
String objects in ES is usually discouraged, as string objects are compared by reference while string
primitives are compared by value. Listing 2.3 illustrates this difference. String objects may be explicitly
coerced to string primitives by calling the String constructor as a function (i.e. without using the new

keyword).

1 var s1 = "1";

2 var s2 = "1";

3 s1 == s2 // true

4 var S1 = new String("2");

5 var S2 = new String("2");

6 S1 == S2 // false

7 String(S1) == String(S2) // true

Listing 2.3: Comparing string primitives and String objects.

The internal representation of a typical ES5 String object is illustrated in Figure 2.5. The string
primitive is stored in the [[PrimitiveValue]] internal property of the String object.

s: String

[[Prototype]]:

[[Class]]: "String"

[[Extensible]]: true

[[PrimitiveValue]]: string_value

[[GetOwnProperty]] (variation)

length: DPD(string_value_length, F, F, F)

String Prototype

[[Prototype]]: Object.[[Prototype]]

[[Class]]: "String"

[[Extensible]]: true

[[PrimitiveValue]]: ""

[[GetOwnProperty]] (variation)

length: DPD(0, F, F, F)

constructor: DPD(ref, T, F, T)

toString: DPD(toStringFuncObjRef, T, F, T)

valueOf: DPD(valueOfFuncObjRef, T, F, T)

charAt: DPD(charAtFuncObjRef, T, F, T)

...

[[Get]]
[[GetOwnProperty]]

[[GetProperty]]
[[CanPut]]

[[Put]]
[[HasProperty]]

[[Delete]]
[[DefaultValue]]

[[DefineOwnProperty]]

Object Internal Methods

String Constructor

[[Prototype]]: Function.[[Prototype]]

length: DPD(1, T, F, F)

prototype: DPD(ref , F, F, F)

fromCharCode: DPD(fromCharCodeFuncObjRef, T, F, T)

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

Figure 2.5: ES5 String Object Graph.

By having the length of a String object non-writable and non-configurable, we have an important hint
about strings in ES—that they are immutable. In other words, the [[PrimitiveValue]] internal property
of a String object cannot be changed, and a new string primitive or String object must be created if any

4A 16-bit code unit occupies 2 bytes. The concept of code units will be formally introduced in Section 4.2.
5The definition of code point is formally introduced in Section 4.2

10

alteration is to be made. In fact, none of the internal nor built-in methods of the String object change
the internal property [[PrimitiveValue]], returning a new string primitive instead, when applicable.
Listing 2.4 demonstrates this.

1 var s = "This is a string.";

2 s.toUpperCase ();

3 s // "This is a string ."

4 s = s.toUpperCase ();

5 s // "THIS IS A STRING ."

Listing 2.4: A demonstration of string immutability.

Although ECMA-262 does not place any restrictions or requirements on how to store string primitives,
one could take advantage of the immutability of String objects in order to save memory space, with
string interning being the most obvious optimization to apply, where the ES engine only needs to keep
one copy of each distinct string value handled by the program. String immutability can also have a few
disadvantages in performance, however, especially when numerous changes are applied to a string (e.g.
multiple string concatenations). In some programming languages where strings are immutable, such as
Java and .NET, there are alternatives to immutable strings, such as the StringBuilder class, where
strings are mutable and perform drastically better than the immutable counterpart in the aforementioned
case. The ES standard does not include any mutable string alternative, but the performance drawback
of string immutability can be tackled through the use of the rope data structure [12].

String objects can be accessed as Array objects to obtain their corresponding characters; for in-
stance, we write s[2] to obtain the third character of the string bound to s. However, String objects do not
have explicit named properties corresponding to the indexes of the given string. In the example men-
tioned before, the String object bound to s does not actually have a property 2 storing its 3rd character.
Hence, in order to model string indexed properties, String objects have their own [[GetOwnProperty]]

internal method (making them exotic), which adds access to array-like zero-indexed name properties
to String objects. In a nutshell, every time one accesses an index property of a String object, the ES
engine will use the internal method [[GetOwnProperty]] of String objects to determine the character
stored at that index, which is then returned in the form of a data property descriptor. The pseudo-code
of the String object [[GetOwnProperty]] internal method is given in Figure 2.6.

15.5.5.2 [[GetOwnProperty]] (P) # Ⓣ Ⓔ

String objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript

objects (8.12.1). This special internal method is used to add access for named properties corresponding to

individual characters of String objects.

(...)

8. Let resultStr be a String of length 1, containing one character from str, specifically the character at

position index, where the first (leftmost) character in str is considered to be at position 0, the next one

at position 1, and so on.

9. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,

[[Configurable]]: false }

Figure 2.6: ES5 String’s [[GetOwnProperty]] returning a new data property descriptor.

The importance of the String object immutability surfaces again, with the ability of indexing its char-
acters. Listing 2.5 demonstrates a common pitfall for programmers who are unaware of the immutable
characteristic of ES String objects. It should be noted that, executing the code of Listing 2.5 in strict
mode 3 will throw a TypeError exception.

11

1 var s = "abc";

2 s[0] = "d";

3 s // "abc"

Listing 2.5: A common pitfall for programmers unaware of ES String object immutability.

Annex B of the ES5 standard [5] contains additional syntax and properties for some of the standard
built-in objects, including the String object, for compatibility with past editions of the ES standard and/or
some implementations of ES. This additional syntax and properties are not part of the ES5 standard,
and thus this work does not cover them.

A mild curiosity regarding Unicode escape sequences, is that in Java, these escapes are processed
before the compiler proceeds to lexical analysis 6. This causes, for example, the Unicode escape se-
quence \u000A, which is the line feed, to be interpreted as an actual line terminator in the source text.
If this escape sequence were to occur within a string literal, then the string would not have the closing
quote. In ECMAScript, Unicode escape sequences are interpreted during lexical analysis, thus avoiding
the unexpected behaviour described above (see Section 6 of the ECMA-262 Edition 5.1 [5]).

2.4 ES5 RegExp Object

The RegExp built-in object is part of the Text Processing category of the ES library. Regular expressions
(RegExp) have their origin in automata theory and formal language theory. They were invented by the
mathematician Stephen Cole Kleene during the 1950s and became popular due to their conciseness,
simplifying pattern matching in text files and lexical analysis in compiler design. Every regular expression
has an equivalent finite automaton, and every regular language can be defined by a regular expression.
However, many modern RegExp libraries provide features that recognize non-regular languages, as is
the case of the ES RegExp built-in object.

Figure 2.7 illustrates the internal representation of a typical ES5 RegExp object according to the
ECMA-262 Edition 5.1 [5].

re: RegExp

[[Prototype]]:

[[Class]]: "RegExp"

[[Extensible]]: true

[[Match]]: pattern

source: DPD(pattern_string, F, F, F)

global: DPD(boolean, F, F, F)

ignoreCase: DPD(boolean, F, F, F)

multiline: DPD(boolean, F, F, F)

lastIndex: DPD(number, T, F, F)

RegExp Prototype

[[Prototype]]: Object.[[Prototype]]

[[Class]]: "Object" (ES6)

[[Extensible]]: true

constructor: DPD(ref, T, F, T)

exec: DPD(execFuncObjRef, T, F, T)

test: DPD(testFuncObjRef, T, F, T)

toString: DPD(toStringFuncObjRef, T, F, T)

[[Get]]
[[GetOwnProperty]]

[[GetProperty]]
[[CanPut]]

[[Put]]
[[HasProperty]]

[[Delete]]
[[DefaultValue]]

[[DefineOwnProperty]]

Object Internal Methods

RegExp Constructor

[[Prototype]]: Function.[[Prototype]]

length: DPD(2, T, F, F)

prototype: DPD(ref, F, F, F)

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

Figure 2.7: ES5 RegExp Object Graph.

RegExp instances have an internal property [[Match]] that holds an implementation dependent in-
ternal procedure that recognizes expansions of the corresponding regular expression. In the following

6Unicode Escapes in Java: https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.3

12

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.3

we will refer to this internal procedure as a regular expression matcher. The ECMA-262 standard spec-
ifies how regular expression patterns are to be transformed into regular expression matchers. RegExp
instances also have the following named properties: source, holding a string representation of the pat-
tern of the regular expression; global, a boolean value indicating if the search for the pattern on a text
should look for all the matches, or stop at the first one found; ignoreCase, a boolean value indicating
whether the search for the pattern on a text should be case-insensitive; multiline, a boolean value
indicating whether or not the boundary characters ^ $ should match the beginning and ending of every
line, instead of the beginning and ending of the whole text; and lastIndex, a number, coerced to an
integer, that specifies the position in the text at which to start looking for a match.

Understanding patterns The syntax of ES regular expressions is quite complex. Here we only aim to
give the reader a general idea of how they work. As an example, suppose that we are given an HTML
element, which, for simplicity, may not contain HTML attributes nor other HTML elements within. We
do not know the type of this HTML element nor its content, and we want to retrieve both. Listing 2.6
demonstrates a way to achieve this using the RegExp object.

1 const str = "I am recognized !";

2 const re = /< (.+) > (.*) <\/ \1 >/;

3 const [m, tag , content] = re.exec(str);

4 console.log(tag); // ’strong ’

5 console.log(content); // ’I am recognized!’

Listing 2.6: Using the RegExp built-in object.

In this example, we make use of a RegExp literal (line 2) in order to define our pattern, so that we
are exempt from escaping the occurring backslash (\) characters, as would be required in a string literal.
RegExp literals must be enclosed in forward slash (/) characters. The evaluation of a RegExp literal
yields a RegExp object. In our regular expression pattern, the following characters have special mean-
ing: () . + * \ . The backslash character is used, among other things, to escape special characters,
making them literal. Occurrences of the forward slash character in a RegExp literal must be escaped in
order to have literal meaning, instead of terminating the pattern. The dot (.) metacharacter matches any
single character, except for the line terminator characters described in Table 3 of the ECMA-262 Edition
5.1 [5]. The plus sign (+) metacharacter matches the preceding element one or more times. In our pat-
tern, we have a dot (.) metacharacter followed by a plus sign (+) metacharacter, which means that any
character (except for line terminators) will be matched one or more times. This means that, if we ignore
the parenthesis, for now, the pattern <.+> will match any HTML tag, considering that the characters < >

have no special meaning, which is what we want. The asterisk (*) metacharacter matches the preceding
element zero or more times, meaning that our pattern accepts an HTML element—with the previously
mentioned restrictions—without any content. Notice that, because the dot (.) metacharacter does not
contemplate the line terminator characters, the content of our HTML element must not contain any of
these characters, if it is to be matched by our pattern.

By now, we have an idea of how pattern matching works, but we have yet to explain how we can
extract specific information with a pattern, such as the HTML tag type and the content of the element.
For this, we surround with parenthesis the sub-expression of the pattern whose match we want to store,
forming a capturing group. When the exec method is called in line 3, it matches the string defined
in line 1 with the RegExp pattern defined in line 2, returning an Array object containing the matched
string in the first index and each matched capture group in the indexes that follow. For clarity, we use
the destructuring assignment, in line 3, in order to assign each index of the returned array to a more
descriptive variable.

13

Finally, we make use of a feature that exceeds regular languages, and that is the backreference,
highlighted in blue. Backreferences allow us to match the same value that was matched by a specified
capturing group, which requires the parser to store this value in order to recall it. Because our backref-
erence has the number 1, it will match the same value that was matched by the first capturing group.
This allows us to guarantee that the type of the HTML closing tag will equal the type of the opening tag.

RegExp grammar The grammar for regular expression patterns in ES5 is described in Section 15.10.1
of the ECMA-262 Edition 5.1 [5]. Due to its complexity and length, we have chosen to leave its descrip-
tion outside the scope of this document. However, it is worth noting that the grammar is not the same
for all programming languages and libraries, and that implementations of regular expressions can vary
between versions. Such is the case for ES, in which newer versions add new features to the RegExp
built-in object.

2.5 ES5 JSON Object

JavaScript Object Notation (JSON) is a language-independent data interchange format based on a sub-
set of JavaScript. It is primarily used for storing and transmitting data objects consisting of key-value
pairs, arrays, and other serializable values 7, in a human-readable text format, although it can be used
for other purposes, such as configuration files. The JSON format was originally specified by Douglas
Crockford in the early 2000s and one of its earlier specifications was RFC 4627 8, which was adopted
by ES5 and is now obsolete. In 2013, JSON was standardized as ECMA-404 [13] and the specification
used by ES6 was updated accordingly. This work focuses on the ES5 JSON object, but uses the JSON
Data Interchange Syntax defined in ECMA-404.

Figure 2.8 illustrates the internal representation of the ES5 JSON object according to the standard.

JSON

[[Prototype]]: Object.[[Prototype]]

[[Class]]: "JSON"

[[Extensible]]: true

parse: DPD(parseFuncObjRef, T, F, T)

stringify: DPD(stringifyFuncObjRef, T, F, T)

[[Get]]
[[GetOwnProperty]]
[[GetProperty]]
[[CanPut]]
[[Put]]

[[HasProperty]]
[[Delete]]

[[DefaultValue]]
[[DefineOwnProperty]]

Object Internal Methods

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

Figure 2.8: JSON Object Graph.

The JSON object is a single object that contains only two functions, parse and stringify, and has
no constructor. Both functions are pure functions. The parse function parses a JSON text and produces
an ES value, whereas the stringify function returns a string in JSON format representing an ES value.

To illustrate the advantages and shortcomings of the JSON format, Listing 2.7 shows a case where
an Array object is serialized in a human-readable format, but in which data loss occurs.

7Serializable values in JSON include numbers, strings, booleans, arrays, objects (JSON objects), and null. Other ES data
types, such as Date, Function, RegExp, and undefined, are not part of ECMA-404.

8RFC 4627: https://www.ietf.org/rfc/rfc4627.txt

14

https://www.ietf.org/rfc/rfc4627.txt

1 Array.prototype [2] = 3;

2 var arr = [1, 2];

3 arr.prop = "I am not an ordinal named property!";

4 var jText = JSON.stringify(arr);

5 jText; // ’[1,2]’

Listing 2.7: Data loss with the JSON stringify method.

The clear advantage of this format is that it can be understood by both human and machine. But
the main disadvantage is that, as stated before, it cannot serialize all data types. As demonstrated by
Listing 2.7, inherited properties of an object are lost, as well as non-ordinal named properties of Array
objects. For this reason, JSON is not applicable for all purposes of serialization. When preserving the
exact state of an ES object is required, other formats may be more suitable. For instance, ActionScript
(AS), which is based on ECMAScript, uses the Action Message Format 9, a compact binary format, to
serialize object graphs.

For the reverse process, that is, JSON deserialization, an unorthodox usage of the parse method is
presented in Listing 2.8, whose behaviour we explain ahead with the help of ECMA-262’s 5.1 Edition [5].

1 Array.prototype [1] = 3;

2
3 var json = "[1, 2]";

4 var arr = JSON.parse(json , function(key , value) {

5 if (key === "0") {

6 delete this [1];

7 }

8 return value;

9 });

10
11 arr; // [1, 3]

12 Array.prototype [1]; // 3

Listing 2.8: An unorthodox usage of the JSON parse method.

In line 1 of Listing 2.8, we define property "1" of the Array prototype object, setting its value to 3,
which all the Array objects inherit. In line 3, we define a JSON-formatted string, json, representing an
Array object, whose property "0" contains 1 and property "1" contains 2, with the latter shadowing the
inherited property of the Array prototype object. In order to understand how the JSON’s parse method
works, the summary for this function is shown in Figure 2.9, as given in the ECMA-262’s 5.1 Edition [5].

15.12.2 parse (text [, reviver]) # Ⓣ Ⓡ Ⓑ
The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The

JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript objects. JSON

arrays are realized as ECMAScript arrays. JSON strings, numbers, booleans, and null are realized as

ECMAScript Strings, Numbers, Booleans, and null. JSON uses a more limited set of white space characters

than WhiteSpace and allows Unicode code points U+2028 and U+2029 to directly appear in JSONString

literals without using an escape sequence. The process of parsing is similar to 11.1.4 and 11.1.5 as

constrained by the JSON grammar.

The optional reviver parameter is a function that takes two parameters, (key and value). It can filter and

transform the results. It is called with each of the key/value pairs produced by the parse, and its return

value is used instead of the original value. If it returns what it received, the structure is not modified. If it

returns undefined then the property is deleted from the result.

Figure 2.9: An ECMA-262 note on JSON’s parse method.

9Action Message Format, 31 October 2021 - https://www.adobe.com/content/dam/acom/en/devnet/pdf/

amf-file-format-spec.pdf

15

https://www.adobe.com/content/dam/acom/en/devnet/pdf/amf-file-format-spec.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/amf-file-format-spec.pdf

Going back to Listing 2.8, we make use of the optional reviver parameter when we call the JSON.parse

method (lines 4–9). The atypical usage of this method happens in our reviver function, when we delete
property "1" of the newly constructed object once the reviver function is called for property "0" (lines
5–7). This leads us to question if we are deleting property "1" before or after it has been parsed, that is,
if the reviver function is called for each property has soon as it is parsed, in which case the property "1"

will not yet have been defined with the value of 2, or if it is called for each property after the entire object
has been parsed, in which case the property "1" will be deleted and the property of the Array prototype
object will be passed to the reviver function instead.

The summary of Figure 2.9 is not clear on whether the reviver function operates during or after
parsing. For clarification, we must consult the pseudo-code of the JSON parse method. Figure 2.10
shows the relevant portion of the algorithm to aid with our example. We can see that in line 2 of the
pseudo-code, the JSON-formatted string is first parsed according to the grammar, and only afterwards
the reviver function is called for each element of the Array through the recursive abstract operation Walk.
Thus, when we attempt to delete the property "1" in line 6 of Listing 2.8, it has been already parsed and
defined in the object. Consequentially, when the reviver function is called for this property, it will read
the value that exists in the Array prototype object.

1. Let JText be ToString(text).

2. Parse JText using the grammars in 15.12.1. Throw a SyntaxError exception if JText did not conform to

the JSON grammar for the goal symbol JSONText.

3. Let unfiltered be the result of parsing and evaluating JText (...)

4. If IsCallable(reviver) is true, then

a. Let root be a new object (...)

b. Call the [[DefineOwnProperty]] internal method of root with the empty String, the

PropertyDescriptor {[[Value]]: unfiltered, (...)

c. Return the result of calling the abstract operation Walk, passing root and the empty String. The

abstract operation Walk is described below.

(...)

The abstract operation Walk is a recursive abstract operation that takes two parameters: a holder object

and the String name of a property in that object. Walk uses the value of reviver that was originally passed

to the above parse function.

1. Let val be the result of calling the [[Get]] internal method of holder with argument name.

2. If val is an object, then

a. If the [[Class]] internal property of val is "Array"

i. Set I to 0.

ii. Let len be the result of calling the [[Get]] internal method of val with argument "length".

iii. Repeat while I < len,

i. Let newElement be the result of calling the abstract operation Walk, passing val and

ToString(I).

ii. If newElement is undefined, then

1. Call the [[Delete]] internal method of val with ToString(I) and false as arguments.

iii. Else

1. Call the [[DefineOwnProperty]] internal method of val with arguments ToString(I),

the Property Descriptor {[[Value]]: newElement, [[Writable]]: true, [[Enumerable]]:

true, [[Configurable]]: true}, and false.

iv. Add 1 to I.

b. Else

(Here Walk is called recursively for each property of a non-Array object.)

3. Return the result of calling the [[Call]] internal method of reviver passing holder as the this value and

with an argument list consisting of name and val.

Figure 2.10: JSON’s parse pseudo-code.

The reviver function is called for property "1", even after it is deleted, because the abstract operation
Walk iterates over all the properties of the parsed Array at parsing time, regardless of whether or not
those properties are later deleted.

16

2.6 ES6 Promise Object

The Promise built-in object belongs to the Control Abstraction category of the ES library. Control Abstrac-
tion follows the DRY principle of software development, which means “Don’t Repeat Yourself”, wherein
repeated software patterns are replaced with abstractions in order to make the code more readable and
less verbose, so that the programmer may focus on the control flow and logic of the application, instead
of low-level details. Common examples of control abstraction are higher order functions, closures, and
lambdas.

In ES, Promise objects have greatly simplified the creation, combination, and chaining of asyn-
chronous computations, eliminating the so-called “callback hell” of multiple nested callbacks[14], which
can easily become difficult to follow. The Promise object owes its name to the fact that it is used as a
place-holder for the eventual results of a deferred (and possibly asynchronous) computation—it is the
promise of a result, that was either already settled in the past or still remains to be settled in the future.
The Promise object works with a producer-consumer pattern, and it links the producing code to the con-
suming code. A Promise object is in one of three mutually exclusive states: “fulfilled”, “rejected”, and
“pending”. If it is settled successfully we say that it is “fulfilled” (or resolved). If it is settled unsuccessfully
we say that it is “rejected”. If a promise has not been yet settled, we say that it is “pending”.

Figure 2.11 illustrates the internal representation of a typical ES6 Promise object according to the
ECMA-262 6th Edition [2], with a specific state depicting an example introduced further ahead.

p: Promise

[[Prototype]]:

[[Extensible]]: true

[[PromiseState]]: "pending"

[[PromiseResult]]: undefined

[[PromiseFulfillReactions]]: [r]

[[PromiseRejectReactions]]: []

Promise Prototype

[[Prototype]]: Object.[[Prototype]]

[[Extensible]]: true

constructor: DPD(ref, T, F, T)

catch: DPD(catchFuncObjRef, T, F, T)

then: DPD(thenFuncObjRef, T, F, T)

@@toStringTag: DPD("Promise", F, F, T)

[[GetPrototypeOf]]
[[SetPrototypeOf]]

[[IsExtensible]]
[[PreventExtensions]]
[[GetOwnProperty]]

[[HasProperty]]
[[Get]]
[[Set]]

[[Delete]]
[[DefineOwnProperty]]

[[Enumerate]]
[[OwnPropertyKeys]]

Object Internal Methods

Promise Constructor

[[Prototype]]: Function.[[Prototype]]

length: DPD(1, T, F, F)

prototype: DPD(ref , F, F, F)

all: DPD(allFuncObjRef, T, F, T)

race: DPD(raceFuncObjRef, T, F, T)

reject: DPD(rejectFuncObjRef, T, F, T)

resolve: DPD(resolveFuncObjRef, T, F, T)

@@species:
APD(getPromiseSymbolSpeciesFuncObjRef,
undefined, F, T)

Data Property Descriptor
(DPD)

[[Value]]: value

[[Writable]]: boolean

[[Enumerable]]: boolean

[[Configurable]]: boolean

Accessor Property
Descriptor (APD)

[[Get]]: FunctionObject

[[Set]]: FunctionObject

[[Enumerable]]: boolean

[[Configurable]]: boolean

r: PromiseReaction

[[Capabilities]]: c

[[Handler]]: f (Function object)

c: PromiseCapability

[[Promise]]: p

[[Resolve]]: resolveFunctionObj

[[Reject:]]: rejectFunctionObj

Figure 2.11: ES6 Promise Object Graph.

First, we would like to point out a few changes that occurred in the standard built-in ES objects from
ES5 to ES6:

• The following internal methods that could be found in the standard built-in objects of ES5 have been
removed: [[GetProperty]], [[CanPut]], [[Put]], [[GetProperty]], and [[DefaultValue]].

• The following internal methods have been added to the standard built-in objects of ES6: [[GetPro-
totypeOf]], [[SetPrototypeOf]], [[IsExtensible]], [[PreventExtensions]], [[Set]], [[En-

17

umerate]], and [[OwnPropertyKeys]].

• The [[Class]] internal property, which was common to all objects, has been removed.

ES6 introduces the Symbol type, which represents a non-String value that can be used as the key
of an object property. In this work we do not cover the Symbol type, but we have included the Symbol
keyed properties in Figure 2.11, which use the notation @@name, for completion.

Lastly, we introduce accessor property descriptors for the first time in this document. The difference
between an accessor property descriptor and a data property descriptor, is that the latter accesses the
value that it stores directly, whilst the former makes use of a [[Get]] function to retrieve the value and a
[[Set]] function to update or set a new value. These functions may not be defined, however, in which
case, attempting to use them will produce no result.

Understanding Promise objects by example In order to understand how Promise objects work,
consider the example given in Listing 2.9, which exemplifies a deferred operation through the use of a
Promise object.

1 function f(v) { console.log(v) }

2
3 var rf;

4 var p = new Promise ((resolve , reject) => rf = resolve);

5 p.then(f);

6 rf(1);

7 f(2);

Listing 2.9: An example of a Promise object.

The Promise constructor receives as input an executor function, which captures the computation to
be performed asynchronously. Executor functions have two arguments: a function resolve for stating
that the corresponding promise has been resolved, and a function reject for stating that it has been
rejected. Until one of these functions is called, the corresponding promise is left pending. In the example,
the resolve function is called in line 6. Note that the created Promise is resolved outside the body of its
executor function.

In terms of the producer-consumer pattern, the executor function is the producer, and the then

method is the consumer. The first argument of the then method is a function that runs when the promise
is resolved, receiving the value with which the Promise was resolved. The second argument of the then

method is a function that runs when the promise is rejected, and receives the error. Both arguments
to this method are optional. In our example, only the first argument is passed to the then method, the
function f, which receives the result and prints it to the console.

Since we call the resolve function in line 6, one might expect the number ‘1’ to be printed immedi-
ately, since the promise p has just been resolved. However, this is not the case. In order to understand
why, we must first understand the ES execution model.

ES has a non-preemptive (or cooperative) concurrency model, meaning that each Job (2.6.1) runs to
completion before the execution of a new Job. In this example, the top-level Job schedules the execution
of function f once the Promise is resolved in line 6. However, the Job responsible for the execution of
function f can only start executing once the top-level Job finishes. This explains why the number ‘1’ will
not be the first to be printed. The concepts of Job and Job Queue are formally introduced in the following
definitions.

Definition 2.6.1 (Job). A Job is an internal function that initiates an ECMAScript computation when
no other ECMAScript computation is currently in progress. Execution of a Job can be initiated only
when there is no running execution context and the execution context stack is empty. A PendingJob is a

18

request for the future execution of a Job. Once execution of a Job is initiated, the Job always executes
to completion. No other Job may be initiated until the currently running Job completes. However, the
currently running Job or external events may cause the enqueuing of additional PendingJobs that may
be initiated some time after the completion of the currently running Job.

Definition 2.6.2 (Job Queue). A Job Queue is a FIFO queue of PendingJob records. Each Job Queue
has a name and the full set of available Job Queues are defined by an ECMAScript implementation.
Every ECMAScript implementation has at least the Job Queues ScriptJobs and PromiseJobs.

We will now give a more detailed explanation of how the program given in Listing 2.9 is executed,
detailing all the internal objects that it creates. The structure of Promise objects is complex. Figure 2.11
gives us the object graph associated with the promise p of the Listing 2.9 example after the execution of
the then method (line 5), but before the promise gets settled (line 6). Each Promise stores its current
state, reactions to be triggered when the promise is either resolved or rejected, and its result, in the in-
ternal properties [[PromiseState]], [[PromiseFulfillReactions]], [[PromiseRejectReactions]],
and [[PromiseResult]], respectively. In the case of our example, the promise p is in the state “pending”
and its result is undefined, as it has not been yet resolved. Observe that f, which is scheduled to execute
after p, is not stored directly as a fulfill reaction. Instead, there is a PromiseReaction, r, which, in addi-
tion to storing f in its [[Handler]] property, also holds, in its [[Capabilities]] property, a Promise-
Capability c, which stores the promise on whose settlement f should be executed (c.[[Promise]]),
and the resolve and reject functions given to the executor function of that promise (c.[[Resolve]] and
c.[[Reject]]). In the example, the promise capability c contains the promise p and the internal resolve
and reject algorithms of the standard.

In Figure 2.12, we can observe the FulfillPromise and TriggerPromiseReactions abstract oper-
ations of the ECMA-262 6th Edition [2].

(...)
1. Assert: the value of promise's [[PromiseState]] internal slot is "pending".
2. Let reactions be the value of promise's [[PromiseFul�illReactions]] internal slot.
3. Set the value of promise's [[PromiseResult]] internal slot to value.
4. Set the value of promise's [[PromiseFul�illReactions]] internal slot to unde�ined.
5. Set the value of promise's [[PromiseRejectReactions]] internal slot to unde�ined.
6. Set the value of promise's [[PromiseState]] internal slot to "fulfilled".
7. Return TriggerPromiseReactions(reactions, value).

(...)

1. Repeat for each reaction in reactions, in original insertion order
a. Perform EnqueueJob("PromiseJobs", PromiseReactionJob, «reaction, argument»).

2. Return unde�ined.

25.4.1.4	Ful�illPromise	(promise,	value)

25.4.1.8	TriggerPromiseReactions	(reactions,	argument)

Figure 2.12: FulfillPromise and TriggerPromiseReactions abstract operations.

The FulfillPromise abstract operation receives as parameters a Promise and a value. We can see
that this function changes the Promise’s state from “pending” to “fulfilled”, sets both [[PromiseFulfill-

Reactions]] and [[PromiseRejectReactions]] to undefined, sets [[PromiseResult]] to the value

parameter, and finally calls TriggerPromiseReactions, which will schedule the fulfilled reactions of the
given Promise to be executed.

The TriggerPromiseReactions abstract operation receives as parameters a list of Promise reactions
and the value with which they were resolved. This function is responsible for scheduling all the reactions
to be executed once the current Job ends. To this end, each reaction is enqueued into the PromiseJobs

queue using the abstract operation EnqueueJob.

19

2.7 ES6 Incompatibilities with Prior Editions

Despite the attempt to keep ECMAScript backward compatible between versions, a few minor breaking
changes were introduced in ES6. They are listed in Annex D and Annex E of the ECMA-262 6th Edi-
tion [2]. When testing our reference implementation against Test262 [3], we chose to apply the following
minor changes from ES6 in order to pass a larger number of tests:

1. The named property length of Function objects is not configurable in ES5 (Section 13.2 of ES5,
instruction 15), but it is configurable from ES6 onwards (Section 9.2.4 of ES6, instruction 3).

2. In ES5, the RegExp prototype object is itself a RegExp object (Section 15.10.6 of ES5), whereas
in ES6 it is an ordinary object (Section 21.2.5 of ES6).

3. In ES5, the exec method of the RegExp prototype object returns null if the property lastIndex

of the RegExp instance is set to a negative number (Section 15.10.6.2 of ES5, instruction 9.a.ii).
However, in ES6, this property is set to 0 in case it is negative, and the function resumes with the
attempt to find a match (Section 21.2.5.2.2 of ES6, instruction 4).

4. In ES5, the RegExp constructor throws a TypeError exception if it is given a RegExp object and
a flags argument (Section 15.10.4.1 of ES5). In ES6, however, the flags argument is used
instead of the flags from the given RegExp object in order to construct the new RegExp object
(Section 21.2.3.1 of ES6, instruction 5.c).

5. ES5 specifies no order for retrieving the named properties of an object when iterating over them
(Section 12.6.4 and Section 15.2.3.14 of ES5). However, ES6 specifies that integer index property
keys be retrieved first, in ascending order, followed by the remaining String property keys, in prop-
erty creation order, and, at last, followed by Symbol property keys, also in property creation order
(Section 9.1.12 of ES6). This affects the behaviour of the parse and stringify methods of the
JSON object.

20

Chapter 3

Related Work

The literature includes a great many number of works on different types of program analysis techniques
for JavaScript, including: type systems [15, 16], points-to analyses [17], control-flow analyses [18],
abstract interpretation [19, 20], information-flow analyses [21, 22, 23], and program logics [24, 11, 25].
Here we focus our account of the related work on projects that try to formalise the semantics of JS,
including reference implementations of some of its built-in objects.

The particularity of our ES5/6 reference interpreter, when compared to previous projects, is that it
is designed to be identical to the ECMA-262 specification. In contrast, existing reference interpreter-
s/formalisations differ substantially from the text of the ECMA-262 standard, resulting in two important
drawbacks:

• How can we know that we implemented the intended behaviour as specified in the ECMA-262
standard? Trust in reference implementations is only obtained through testing against Test262,
which is known to have coverage issues.

• How to guarantee that the reference implementation is accessible to a wide audience comprising
developers with very different programming backgrounds? Most existing reference implementa-
tions were developed in highly technical/mathematical formalisms (such as Coq [26] and K [27]),
which are generally out of the reach of non-academic programmers.

The first formal operational semantics of JavaScript Maffeis et al. were the first to design an op-
erational semantics for the ECMAScript language [28]. Their operational semantics targets the third
version of the ECMA-262 standard and is written in small-step style [29]. This semantics was the first JS
semantics to follow the ECMA-262 standard faithfully, modelling most of its internal functions and implicit
behaviours. The authors use this semantics to reason about various security properties of web appli-
cations and mashups [30, 31]. However, the authors do not automate nor mechanise their semantics,
leaving it as a long text document consisting of a large number of semantic rules written in the authors’
own custom-made syntax.

Lambda calculi for reasoning about JavaScript code: λJS and S5 Guha et al. [32] define λJS, a
core lambda calculus that captures the most fundamental features of the third version of the ECMA-262
standard. They implement an interpreter for λJS in Racket [33] together with a compiler from ES3 to λJS.
However, the authors do not test their compiler against Test262 and only support a subset of ES3. This
project also comes with a type system for checking a simple confinement property of λJS expressions.
With this type system, the authors are able to verify simple confinement properties of JS programs by
first compiling them to λJS, and then applying the type system to the resulting λJS programs.

21

Later, Politz et al. [34] develop S5, an extension of λJS from ES3 to ES5 with support for property
descriptors, getters and setters, and a complete treatment of the eval statement. Analogously to λJS, S5
is implemented in Racket [33] and comes with a compiler from JS to S5 and an interpreter of S5 written
in Racket. In contrast to λJS, which was not tested against Test262 [3], S5 was thoroughly tested against
Test262, passing 8,157 tests out of a total of 11,606 (≈70%). The authors report that most of the failing
tests are targeted at built-in objects like RegExp and Date, which the authors only implemented partially
(the authors state that they have only implemented 60% of the ES built-in objects). Furthermore, S5 also
fails a significant number of tests aimed at non-strict code, showing that S5 is not entirely consistent with
the ECMA-262 standard.

Mechanised semantics of JavaScript: JSCert and KJS Bodin et al. [35] implement JSCert, a for-
malisation of the semantics of ES5 written in the Coq interactive proof assistant [26]. The proposed
semantics is written in pretty-big-step style [36]. Besides an operational semantics, the authors also
implement a reference interpreter called JSRef, which they prove correct with respect to the defined op-
erational semantics. Using the Coq-to-OCaml extraction mechanism [6], the authors were able to obtain
an OCaml version of the JSRef interpreter, which they use to test JSRef against Test262 [3]. However,
JSCert targets only strict code and does not support most of the ES5 built-in objects, only implementing
a subset of the Global, Object, and Function built-in objects. JSRef passes 1,796 tests out of a total of
2,782 tests corresponding to the core features of the language. The authors argue that the failing tests
make use of non-implemented features related to built-in objects. For instance, multiple tests targeting
core features of the language make use of ES arrays, which are not supported by JSRef.

One year later, Gardner et al.[37] extend the JSRef interpreter with support for ES5 Arrays by linking it
to the Google’s V8 [38] Array built-in object implementation. Since this implementation is partially written
in JS, the authors simply concatenate it to the given JS programs, directly implementing in OCaml the
parts of the Array object that are not written in JS. The authors additionally provide a detailed account
of the testing infrastructure used to evaluate the JSCert project, including a thorough breakdown of all
passing and failing tests. One of the benefits of adding support for the Array built-in object is that it allows
the authors to obtain better testing results with regard to the core features of the language that they do
implement, as a great many number of tests for the core features of the language make use of arrays.
More concretely, with the inclusion of the V8 Array built-in object, JSRef passes 2,440 core language
tests out of 2,782, and 1,309 Array tests out of 2,267.

Park et al. present KJS [39], a formal semantics of ES5 written in the K framework [27], a state-of-the-
art term-rewriting system with support for several types of program analyses. KJS was tested against
Test262 passing 2,782 core language tests. The K framework includes a built-in symbolic analysis based
on reachability logic [40]. Hence, by combining KJS with the symbolic facilities of the K framework, one
can symbolically analyse JS programs. Later, the authors demonstrate how this strategy can be used
in practice to reason about simple JS programs [41]. In particular, they use KJS and the K framework
to verify various data structures and sorting algorithms implemented in JS, including: AVL tree, binary
search tree, red-black tree, quick sort, bubble sort, insertion sort, and merge sort.

JSExplain Charguéraud et al. present JSExplain [42], a reference interpreter for the ES5 language
that allows programmers to code-step not only their JS code but also the pseudo-code of the standard.
JSExplain is implemented in a purely functional subset of OCaml [6], extended with a built-in monadic
operator for automatically threading the state of the interpreter across pure computations [43]. The
authors additionally implement a compiler from their purely functional fragment of OCaml to JS, allowing
them to run JSExplain in the browser.

22

The main goal of JSExplain is to function as a JS code-stepper that allows the developer to code-step
not only the code of their own program but also the pseudo-code of the ECMA-262 standard. To this end,
JSExplain produces inspectable execution traces that bookkeep all the intermediate states generated by
the execution of the JS interpreter. JSExplain was tested against Test262 [3], passing over 5,000 tests.

Operational semantics / modules of ES6 Promises Madsen et al. [44] design λP, a λ-calculus that
captures the fundamental behaviour of ES6 Promises. More concretely, λP is an extension of λJS [32]
with dedicated constructs for the creation and manipulation of Promises. The authors further introduce
the concept of Promise graph and use it to reason about common bug patterns involving Promises.
Importantly, the authors neither present a compiler from ES to λP nor an interpreter of λP, meaning that
one cannot use the authors’ formalism to execute real world ES programs that use Promises.

Later, Alimadadi et al. [45] develop PromiseKeeper, a runtime debugging tool built on top of Jalangi
[46] for identifying and explaining Promise-related bugs. The authors apply PromiseKeeper to twelve
Promise-based Node.js applications taken from GitHub, showing that PromiseKeeper is able to construct
Promise graphs for real world applications with acceptable performance. Furthermore, PromiseKeeper
was able to detect a variety of Promise related bugs, such as: missing reject reactions; attempt to settle
a Promise multiple times; unsettled promises; and unnecessary promises.

Finally, Sampaio et al. [47] develop JaVerT.Click, an extension of JaVerT [11] with support for event-
based programming. More concretely, JaVerT.Click includes ES reference implementations of: the ES6
Promise built-in object, the DOM Core Level 1 API [48], and the DOM UI Events API [49]. The authors
use JaVerT.Click to symbolically test two real world event driven libraries: cash [50] and p-map [51].
JaVerT.Click is of special interest to us as its reference implementation of ES6 Promises follows, as
we do, the ES6 standard line-by-line. However, JaVerT.Click implements ES6 Promises directly in
JavaScript, while we do it in ECMA-SL. We believe that, as ECMA-SL is a much simpler language
than JS, the integration of our reference implementation into the code base of JaVerT.Click would result
in performance gains. To this end, one would simply need to compile our reference implementation to
JSIL, the intermediate language of JaVerT [11].

JISET Very recently, the authors of [52] introduce JISET, an instruction set specifically designed to be
a compilation target for ES code. They further develop an extraction mechanism that semi-automatically
creates an ES to JISET compiler from the text of the ECMA-262 standard. This extraction mechanism
generates not only compilation rules for all the constructs of the language, but also an ES parser. The
JISET project targets the 10th edition of the ECMA-262 standard. The project comes with an execution
engine for JISET which the authors use to test JISET against Test262, passing 18,064 out of 35,990
available tests.

Some aspects of the JISET project are quite similar to the ECMA-SL project, and to our project
in particular. For instance, like JISET, we also developed a mechanism for automatically converting
the text of the ECMA-262 standard into executable code; we target ECMA-SL, whilst JISET targets
its own instruction set. Analogously to JISET, we also use custom-made regular expressions for code
generation. An important difference between the two projects is that the JISET project does not support
most of the ES built-in libraries, including the RegExp and JSON built-in objects, as well as the methods
of the String object that interact with regular expressions. These are some of the most complex built-in
objects whose implementation requires advanced programming language techniques, such as: parser
construction and continuation-passing-style interpreters.

23

Contrasting with ECMA-SL Although there have been multiple implementations of the ECMA-262
standard, none of them feature a syntax that closely resembles the pseudo-code of the standard. Also,
none of the reference implementations have implemented the ES JSON and RegExp built-in objects, as
well as the ES String methods that depend on regular expressions. Additionally, most reference imple-
mentations ignore character encoding, unlike our reference implementation. Consequentially, ECMARef5
is the most complete academic reference implementation of ES5 to date, passing 12,026 tests out of
12,074 filtered tests [53], whilst JSCert [35] passes 1,796 tests, KJS [39] passes 2,782 tests, JSEx-
plain [42] passes 5,000 tests, S5 [34] passes 8,157 tests, and JS-2-JSIL [11] passes 8,797 tests. Even
though JISET passes 18,064 tests, it only accounts for 62% of its available pool of tests (28,952), which
is considerably larger than the pool of tests of ECMARef5, due to JISET targeting the 10th edition of the
standard. Therefore, the existing reference interpreters prove themselves unsuitable for promoting an
executable ES specification, which is the goal of ECMA-SL.

24

Chapter 4

Extending ECMA-SL

In this chapter, we start by giving an overview of ECMA-SL (4.1), where we describe the project’s
architecture and the language itself. We then describe our (partial) implementation of Unicode in ECMA-
SL (4.2) and conclude with an overview of other minor extensions that we added to the language (4.3).

4.1 An Overview of ECMA-SL

The ECMAScript Specification Language (ECMA-SL) is a simple imperative language with top-level
functions and extensible objects. It was created with the purpose of serving as a dedicated intermediate
language (IL) for ES analysis and specification. For this reason, ECMA-SL contains all the control-flow
constructs used by the pseudo-code of ECMA-262; these include, for instance, a return statement, a
do-while loop, a while loop, and an if statement. As in ECMAScript, we can dynamically add / remove
properties from objects. Finally, the primitive data types of ECMA-SL mostly coincide with those of ES,
with the most notable difference being that ECMA-SL also includes the integer type.

ECMA-SL Project Architecture The ECMA-SL project contains four main components that together
make up the ECMA-SL reference interpreter.

• JS2ECMA-SL - a tool written in Node.js that parses a given JavaScript program, using the Esprima
parser [54], and then creates an ECMA-SL function, called buildAST, that builds the abstract
syntax tree (AST) of the given program in memory, returning the ECMA-SL object corresponding
to the root of the AST.

• ECMARef5 - the ES5 interpreter written in ECMA-SL, which also contains the implementation of the
ES5 built-in objects.

• ECMARef6 - the ES6 interpreter written in ECMA-SL, which also contains the implementation of the
ES6 built-in objects.

• ECMA-SL Execution Engine - the interpreter of ECMA-SL, written in the OCaml [6] programming
language, which receives and executes an ECMA-SL program. The output of the program and
execution trace are printed to the console; furthermore, the final heap resulting from the program’s
execution can also be serialised to a file.

Listing 4.1 shows the snippet of ECMA-SL code that feeds the AST generated by the function
buildAST to the ECMARef5 interpreter. Note that this program is the same for every given JS program.
The only thing that changes is the code of the buildAST function, which is specifically generated for the

25

JS program to be executed. Hence, in order to execute a JS program in ECMA-SL, we simply need to
generate its corresponding buildAST function, store it in the file ES5_interpreter/ast.esl, and run Listing
4.1 using our ECMA-SL execution engine. Figure 4.1 shows a diagram that represents the execution
pipeline we have just described.

1 import "ES5_interpreter/ast.esl";

2 import "ES5_interpreter/ESL_Interpreter.esl";

3 function main() {

4 x := buildAST ();

5 ret := JS_Interpreter_Program(x, null);

6 return ret

7 }

Listing 4.1: Interpreting a JS program’s AST.

JS2ECMA-SL

ECMARef5

ECMA-SL Execution
EngineJS program

Final Heap (.json)

ECMA-SL Project

pr
og

ra
m

.e
sl

ast.esl

Output Log (.txt)

Figure 4.1: Architecture of the ECMA-SL project.

Besides the aforementioned tools, we also have a tool called Heap2HTML that creates an HTML rep-
resentation of the obtained final heap. With this tool, we can visualise a Heap and navigate through the
objects that it contains.

Extended ECMA-SL and Core ECMA-SL Beyond the scope of this thesis, although still relevant to
understand the way ECMA-SL realizes its objectives, is the distinction between Extended ECMA-SL,
simply referred to as ECMA-SL, and Core ECMA-SL. In order to be faithful to the pseudo-code of ECMA-
262 for the purposes mentioned in Section 1.3, ECMA-SL contains several high-level constructs, such as
foreach loops, that can be expressed using more fundamental constructs, such as while loops. For this
reason, and with the aim of facilitating a static analysis of ECMA-SL code, a simpler version of ECMA-SL,
called Core ECMA-SL, was also created. The ECMA-SL Execution Engine first compiles ECMA-SL code
to Core ECMA-SL code, converting, for instance, foreach loops to while loops, and then interprets the
obtained program. The compilation of ECMA-SL to Core ECMA-SL was implemented as part of another
parallel thesis [53]. Figure 4.2 shows a diagram that represents the execution pipeline we have just
described. Note that developing an interpreter for Core ECMA-SL is substantially simpler than doing so
for the entire ECMA-SL language, and such has been done as part of a parallel MSc thesis [55] that
focuses on the design of a dynamic information flow analysis for ECMA-SL. The complete grammars of
ECMA-SL and Core ECMA-SL are given in Appendix A.

Understanding ECMA-SL by example In order for the reader to get acquainted with the ECMA-SL
programming language, Listing 4.2 presents a simple ECMA-SL program that interacts with objects,
lists, and tuples. Just as in ES, an object in ECMA-SL is a collection of properties, and a property is an
association between a key and a value. Unlike in ES, however, ECMA-SL objects make no distinction

26

Core ECMA-SL
Interpreter

ESL program
(prog.esl)

Final Heap (.json)

ECMA-SL Execution Engine

Output Log (.txt)
./main.native -i prog.esl
-mode c -o output.esl

./main.native -i
output.esl -mode ci -h

final_heap.json

Extended ECMA-SL
to Core ECMA-SL

Compiler

output.esl

Figure 4.2: The ECMA-SL Execution Engine pipeline.

between named properties and internal properties, nor do they have property descriptors. ECMA-SL
objects are implemented in OCaml using the OCaml Hashtbl 1 module. ECMA-SL lists are implemented
in OCaml using the OCaml List 2 module, thus being an ordered sequence of elements, which in the
case of ECMA-SL may have arbitrary data types. ECMA-SL tuples are also implemented in OCaml
using the OCaml List 2 module, because, unlike ECMA-SL tuples, OCaml tuples are statically typed.

1 function Put(obj , key , value) {

2 obj[key] := value;

3 return

4 };

5
6 function Get(obj , key) {

7 return obj[key]

8 };

9
10 function GetKey(obj , value) {

11 /* When this function is called in line 32, L is:

12 [(" key2", 2.), ("key1", 1), ("key3", "3"), ("Get1", 1)] */

13 L := obj_to_list obj;

14 i := 0;

15 len := l_len L;

16 while (i < len) {

17 tuple := l_nth(L, i);

18 K := fst tuple;

19 V := snd tuple;

20 if (value = V) {

21 return K

22 };

23 i := i + 1

24 };

25 return ’undefined

26 };

27
28 function main() {

29 obj := { key1: 1, key2: 2. };

30 Put(obj , "key3", "3");

31 Put(obj , "Get1", Get(obj , "key1"));

32 Put(obj , "GetKey2", GetKey(obj , 2.));

33 print obj.key4; /* ’undefined */

34 return

35 }

Listing 4.2: Working with ECMA-SL objects, lists, and tuples.

1OCaml Hashtbl, 31 October 2021 - https://ocaml.org/api/Hashtbl.html
2OCaml List, 31 October 2021 - https://ocaml.org/api/List.html

27

https://ocaml.org/api/Hashtbl.html
https://ocaml.org/api/List.html

The ECMA-SL program given in Listing 4.2 corresponds to a simple implementation of a key-value
dictionary. This program is composed of four functions: a function main that serves as the entry point
of the program, a function Put for inserting a new key-value pair into the dictionary, a function Get for
retrieving the value associated with a given key, and a function GetKey for retrieving the key associated
with a given value. A dictionary is simply an ECMA-SL object, where keys are strings and the stored
values may have arbitrary data types.

Starting with the main function, in line 29 we create an object using the same curly braces notation
that is present in ES. The key names are coerced to strings. The most notable differences from ES are,
however, the assignment operator (:=), the distinction between integers and floats 3, and the manda-
tory semicolon at the end of a statement, since semicolons are used as statement separators and not
statement terminators.

In ECMA-SL, primitive data types are passed by value and objects are passed by reference. In line
30, we call the function Put which exemplifies this. This function receives an object, a key, and a value
and inserts the key-value pair into the object, effectively mutating the object in-place. Note that although
the logic of this function does not require the return of a value, it still requires a return statement in order
to comply with the semantics of the language.

In lines 31 and 32, we call the functions Get and GetKey, respectively, and store the results as
properties of the object, by using the Put function. The Get function is trivial, we retrieve the value
paired to a key by using the key to index the object. For the GetKey function, we cannot use indexing
and must loop through the object’s properties in search for the value. ECMA-SL supports for each loops,
but in this example we use a while loop in order to give more insight into the operations over ECMA-SL
lists. First, we use the operator obj to list in order to convert our object to a list, so that we can loop
through its properties. Then, we use the operators l len and l nth to get the length of the list and an
element at an index of the list, respectively, effectively allowing us to loop over the list. Each element is
represented by an ECMA-SL tuple, and we may access the first and second elements of the tuple, key
and value, using the operators fst and snd, respectively. This way, we are able to compare the value
for which we want to obtain the pairing key to each value that is present in the object, and return the first
key which has a corresponding value that matches, or ’undefined in case the value is not found.

As in ES, if a property of an object has not been defined, its value will be ’undefined (line 33).
Listing 4.3 shows the final heap of this program’s execution.

1 {

2 "heap": {

3 "$loc_1": {

4 "GetKey2": "key2",

5 "key2": 2,

6 "key1": 1,

7 "key3": "3",

8 "Get1": 1

9 }

10 }

11 }

Listing 4.3: Final heap from executing Listing 4.3

3The Number type in ECMAScript uses a double-precision 64-bit format that complies with the IEEE Standard for Floating-Point
Arithmetic (IEEE 754), for the most part – http://es5.github.io/#x8.5

28

http://es5.github.io/#x8.5

4.2 Implementing UTF-8

An introduction to Unicode In order to replace language specific character encodings with one co-
ordinated system, work began in the late 1980s on developing a “Universal Character Set” (UCS). The
initial objective was to replace the typical 256-character encodings (e.g. extended ASCII), which re-
quired 1 byte per character, with one single encoding that would include all the required characters from
most of the world’s human languages, as well as symbols from technical domains. To this end, 2 bytes
per character would be required—or so it was thought.

The encoding implementing the first version of Unicode was a 16-bit one, called UCS-2, which thrived
from 1991 to 1995. As mentioned in Section 1.1, JavaScript was created in September 1995, having
therefore adopted UCS-2 as the internal character encoding for strings. However, it became increasingly
clear that 216 (65,536) characters would not suffice 4, and UCS-4, which would require 4 bytes per
character, was introduced. Evidently, UCS-4 was met with resistance, not only due to the waste of
memory implicated, considering that a character that was previously encoded with 2 bytes now required
4 bytes, but also because popular technologies were already using a 2-byte-per-character encoding,
as was the case of JS, Windows, and Java, to name a few. As a compromise, the 16-bit Unicode
Transformation Format (UTF-16) encoding scheme, which is a variable-width encoding 5, was developed
and introduced in July 1996 with version 2.0 of the Unicode standard.

Before we move on, it should be noted that, in Unicode, the term “character”, which we have been
roughly using so far to refer to the mapping of a code point (4.2.1), is not well defined [56]. Hence, we
will hereinafter be using the terms code point and code unit (4.2.2) for the purposes of this work.

Definition 4.2.1 (Code point). Any value in the Unicode codespace; that is, the range of integers from 0

to 10FFFF16. 6

Definition 4.2.2 (Code unit). The minimal bit combination that can represent a unit of encoded text for
processing or interchange. The Unicode Standard uses 8-bit code units in the UTF-8 encoding form,
16-bit code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32 encoding form. 7

UTF-16 is backward compatible with UCS-2, and for this reason was adopted by JS and other soft-
ware that was already invested in UCS-2. Code points less than 216 are encoded with 2 bytes, which
we call a 16-bit code unit, as in UCS-2. However, code points greater than or equal to 216 are encoded
with surrogate pairs—two 16-bit code units (4 bytes). There are 2048 16-bit code units that can be used
to form a surrogate pair, which are code units that had not been yet assigned to characters in UCS-2,
and there are 2 048 ∗ 2 048 = 4 194 304 surrogate pairs that could be formed with 2048 code units, but
“only” 1 024 ∗ 1 024 = 1 048 576 pairs can actually be formed in UTF-16, for one simple reason: a parser
should know if it is in the middle of a code point for efficient random access, meaning that UTF-16 is
self-synchronizing on 16-bit code units. Hence, we have 1024 “high” surrogates (D80016—DBFF16)
and 1024 “low” surrogates (DC0016—DFFF16). A surrogate pair consists of a high surrogate followed
by a low surrogate, and the algorithm for determining the surrogate pair for a code point and vice versa
is given in the UTF-16 FAQ 8. Notice that, although more space-efficient than UCS-4, UTF-16 now has
three disadvantages when compared to UCS-4:

1. Surrogate values cannot be mapped to “characters”.

2. Unicode code points cannot be directly indexed.
4“What is UTF-16?”, 31 October 2021 - https://www.unicode.org/faq/utf_bom.html#utf16-1
5A variable-width (or multibyte) encoding uses a varying number of bytes to encode different characters.
6Unicode’s definition of code point, 31 October 2021 - http://unicode.org/glossary/#code_point
7Unicode’s definition of code unit, 31 October 2021 - http://unicode.org/glossary/#code_unit
8“What’s the algorithm to convert from UTF-16 to character codes?” https://www.unicode.org/faq/utf_bom.html#utf16-4

29

https://www.unicode.org/faq/utf_bom.html#utf16-1
http://unicode.org/glossary/#code_point
http://unicode.org/glossary/#code_unit
https://www.unicode.org/faq/utf_bom.html#utf16-4

3. Cost of converting code points to and from a pair of surrogates.

The first disadvantage is insignificant in terms of code space size, because 216 + 1 0242 − 2 048 =

1 112 064 code points are more than enough for the purposes of Unicode 9. However, parsers must
now be aware of invalid UTF-16 representations, or risk applications being susceptible to bugs and
security vulnerabilities (e.g. CVE-2008-2938 10, CVE-2012-2135 11). It should be noted that Unicode
has reserved the UTF-16 surrogate range and prohibited code points greater than 10FFFF16 in order
to match with the constraints of UTF-16. Thus, UCS-4 with this limited subset has been defined as
UTF-32.

Regarding the second disadvantage, it is not very common for a program to need to access the nth
code point of a string without first inspecting the previous ones, and even in such a scenario, should there
be combining characters (4.2.3) or grapheme 12 clusters (4.2.4) in the string, the perceived advantages
of code point indexing in UCS-4/UTF-32 lose their meaning with respect to graphemes. And whilst
truncation can be easier, it is not significantly so due to the self-synchronizing characteristic of UTF-16.

Definition 4.2.3 (Combining character). A character that modifies another character, such as diacritical
marks. As an example, the grapheme LATIN CAPITAL A WITH DIAERESIS, Ä, can be represented with
the code point 00C416 or the sequence of code points 004116030816, each mapping the LATIN CAPITAL
A and the COMBINING DIAERESIS, respectively.

Definition 4.2.4 (Grapheme cluster). A cluster of code points that form a grapheme. For instance, a
Unicode emoji can consist of multiple code points 13.

In order to address the third disadvantage, we must first realize that code points in the Unicode
standard are divided into 17 planes, each plane being a contiguous group of 216 (65,536) code points.
The first plane, called the Basic Multilingual Plane (BMP), contains code points that map to characters
for almost all modern human languages, and a large number of symbols. With the BMP being fully
encoded by UCS-2, this means that, for the large majority of use cases, surrogate pairs will be rare
occurrences in a string, and therefore the cost of conversion for practical purposes is negligible.

UTF-16, however, still has two major problems, with one of them affecting the ECMA-SL project
considerably. The first problem being that UTF-16 is not backward compatible with ASCII, which a
lot of software was using until the introduction of UCS-2, and much software kept using in spite of.
So, for instance, consider a JS source file, encoded in ASCII, that is given to a JS interpreter. The
string literals in this file will have to be converted to UTF-16 so that they can be manipulated by the
interpreter internally. The second problem is that the byte order of both UTF-16 and UTF-32 depend
on the endianness of the computer architecture, because I/O works in chunks of 2 bytes and 4 bytes
respectively, which can result in ambiguity and may require a Byte Order Mark (BOM) for clarification.

With the goal of having a Unicode Transformation Format backward compatible with ASCII, UTF-
8, also a variable-width encoding 5, was designed and first introduced in September 1992. Table 4.1
shows the structure of UTF-8, where the x characters are replaced by the bits of the code point. We can
observe that the first 27 (128) code points are encoded exactly as in ASCII. And we can also observe
a range of code points where UTF-8 is actually less space efficient than UTF-16 (080016—FFFF16). In
addition, we notice that the number of leading 1’s of a leading byte tells us how many bytes are used to
encode a code point, with the exception of the ASCII range, and any byte starting with the sequence of
bits 10 can only be a continuation byte, therefore making UTF-8 also self-synchronizing.

9“Will UTF-16 ever be extended to more than a million characters?”: https://www.unicode.org/faq/utf_bom.html#utf16-6
10CVE-2008-2938: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
11CVE-2012-2135: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2135
12A grapheme is the smallest functional unit in written language.
13Full Emoji List, v13.1: https://unicode.org/emoji/charts/full-emoji-list.html

30

https://www.unicode.org/faq/utf_bom.html#utf16-6
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2135
https://unicode.org/emoji/charts/full-emoji-list.html

First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4

U+0000 U+007F 0xxxxxxx

U+0080 U+07FF 110xxxxx 10xxxxxx

U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 4.1: Structure of the UTF-8 encoding.

As a bonus, because UTF-8 works with 8-bit code units, it avoids the complications of endianness
present in UTF-16 and UTF-32. Although, owing to the fact that Windows was one of the first operating
systems to adopt Unicode, before UTF-8 was introduced, changing the internal representations of strings
in its API from UCS-2 to UTF-8 would break a significant amount of existing code. Moreover, at that time,
the need to extend the Unicode codespace with more than 216 code points had not yet become apparent.
Hence, code point indexing was considered to be an advantage of UCS-2, explaining why the designers
of JavaScript also decided to opt for it.

As of 2021, UTF-8 is the de facto encoding for the World Wide Web, with over 97% of web pages
using it 14. Despite of this, ECMAScript never came to adopt UTF-8, deciding to keep backward com-
patibility with the first versions of ECMA-262.

String encoding in OCaml According to Chapter 6 of the ES5 standard [5], the source text of an
ES program is to be interpreted using the UTF-16 encoding. If the source text happens to be saved
in a different encoding, then it must first be converted to the UTF-16 encoding. This is due to the fact
that string literals in ES are to be encoded in UTF-16. However, this detail had been overlooked in the
beginning of the ECMA-SL project’s development. In addition, the ocamllex 15 lexical analyzer, which
had been chosen for the lexical analysis of ECMA-SL source code, has no support for Unicode.

Tackling the problem using UTF-8 In an attempt to address the problem of Unicode escape se-
quences occurring in string literals of some of the tests of Test262 [3], our first approach was to replace
the existing string-related operators in ECMA-SL, which were unaware of the string encoding, with op-
erators that assume the encoding to be UTF-8.

Former operator New operator

s len: Returns the number of bytes in a string. s len u: Returns the number of UTF-8 encoded
code points in a string.

s nth: Returns the nth byte of a string. s nth u: Returns the nth UTF-8 encoded code
point of a string.

s substr: Given a position pos and a length len,
returns the substring of a string, starting at byte
position pos and with a len length of bytes.

s substr u: Given a position pos and a length
len, returns the substring of a string, starting at
the UTF-8 encoded code point position pos and
with a len length of UTF-8 encoded code points.

from char code: Returns a character from the
given ASCII code.

from char code u Returns a UTF-8 encoded
code point from the given Unicode code.

to char code: Returns the ASCII code of a char-
acter.

to char code u: Returns the Unicode code of
a UTF-8 encoded code point.

Table 4.2: An overview of the ECMA-SL string-related operators.

14Usage survey of character encodings broken down by ranking, 31 October 2021, W3Techs.com - https://w3techs.com/
technologies/cross/character_encoding/ranking

15Lexer and parser generators (ocamllex, ocamlyacc), 31 October 2021 - https://ocaml.org/manual/lexyacc.html

31

https://w3techs.com/technologies/cross/character_encoding/ranking
https://w3techs.com/technologies/cross/character_encoding/ranking
https://ocaml.org/manual/lexyacc.html

Table 4.2 displays the former operators and the operators that we implemented, with a short descrip-
tion for each. Besides implementing new operators, we have also added support for Unicode escape
sequences in ECMA-SL, which are converted to UTF-8 encoded code points during lexical analysis.
An observation that we have made regarding Unicode escape sequences, is that until ES6, a single
Unicode escape sequence could only represent one code point in the BMP, more specifically, a single
Unicode escape sequence would require exactly four hexadecimal digits (e.g. \uhhhh). This means that
code points outside the BMP would have to be represented with surrogate pairs. From ES6 onwards,
Unicode escape sequences support a new syntax that allows a variable number of hexadecimal digits,
by enclosing them in curly braces (e.g. \u{10FFFF}, which is equivalent to \uDBFF\uDFFF in UTF-16).

In order to demonstrate how we deal with UTF-8 encoded code points, Listing 4.4 presents the
source code of our OCaml function that receives a string and returns the number of UTF-8 encoded
code points that it contains.

1 let s_len_u = fun (s : string) : int ->

2 let rec loop s cur_i_u cur_i =

3 if cur_i >= (String.length s) then (cur_i_u) else

4 let c = Char.code (s.[cur_i]) in

5 if (c <= 0x7f) then

6 loop s (cur_i_u + 1) (cur_i + 1)

7 else if c <= 0xdf then

8 loop s (cur_i_u + 1) (cur_i + 2)

9 else if c <= 0xef then

10 loop s (cur_i_u + 1) (cur_i + 3)

11 else

12 loop s (cur_i_u + 1) (cur_i + 4)

13 in loop s 0 0

Listing 4.4: Implementation of the ECMA-SL s len u operator in OCaml

In line 1 of Listing 4.4 we declare our function, s len u, which calls the recursive function loop in
line 13. The recursive function loop (line 2) receives the current index of the UTF-8 encoded code point,
cur i u, and the current index of the byte, cur i, that we visit on each iteration. Recalling Table 4.1,
the number of leading 1’s of a leading byte tells us how many bytes are used to encode a code point. With
this in mind, we increase cur i u and cur i accordingly. For instance, if the current byte has a value
greater than 7F16 (011111112) but less than or equal to DF16 (110111112), then our current byte, which is
always the first of a UTF-8 encoded code point, must have two leading 1’s, and thus we increase cur i

by two in order to get to the first byte of the next UTF-8 encoded code unit. Once there are no more
bytes to visit in the string, cur i u, which now represents the number of UTF-8 encoded code points in
the string, is returned. Notice that we do not check for invalid UTF-8 representations, because Node.js,
which is used by JS2ECMA-SL, ensures that the ECMA-SL source text has a valid UTF-8 representation.

Besides the new operators presented in Table 4.2, we have also implemented operator utf8 decode,
which receives a Unicode escape sequence and returns the corresponding UTF-8 encoded code point,
and operator hex decode, which receives an hexadecimal escape sequence (e.g. \xhh) and returns the
corresponding UTF-8 encoded code point.

UTF-8 is a temporary solution The operators that we implemented deal with UTF-8 encoded code
points. However, operations on ES strings should deal with 16-bit code units instead, which is not
possible with the current UTF-8 encoded strings, due to the incompatibility between UTF-8 and UTF-16.
For instance, the length of a UTF-16 encoded string should equal the number of 16-bit code units that it
contains, which may or may not equal the number of UTF-8 encoded code points in a UTF-8 encoded
string. For code points in the BMP, a 16-bit code unit of a UTF-16 encoded string is equal to the code

32

point, which means that for UTF-8 encoded strings containing only code points in the BMP, the number
of UTF-8 encoded code points will be the same as the number of 16-bit code units if the string were
to be encoded in UTF-16. But for code points in other planes, the operators that we implemented will
not produce the desired results. Because all of the tests of Test262 [3] that target ES5 do not contain
Unicode escape sequences outside the BMP, with the exception of one test for the JSON’s stringify

method, this solution works as a temporary work-around.

Proposed solution Due to time constraints, we were unable to implement an ideal solution in time for
the Unicode problem. We considered making ECMA-SL’s string-related operators aware of code points
that would require two 16-bit code units in a UTF-16 encoding, but the fact is that iterating over code
points is already detrimental to performance on its own. In ES and in most programming languages,
string-related operations are only aware of code units, not code points. Thus, the length of a string is
to be counted in code units and the nth “character” of a string is to be the nth code unit. Furthermore,
the ECMA-SL source code of the buildAST function, that is constructed by JS2ECMA-SL, is encoded
in UTF-8 in order to be compatible with ocamllex 15, and because JS2ECMA-SL is written in Node.js,
isolated surrogate values are replaced with the FFFD16 code point when written to a file, which is the
replacement character recommended by the standard for invalid UTF representations 16.

In order to solve the Unicode problem, we propose the replacement of ocamllex 15 with sedlex 17, a
lexer generator for OCaml [6], similar to ocamllex, that features support for UTF-16 inputs.

4.3 Other Extensions

Besides the string-related operators, we have also added other operators to ECMA-SL that were deemed
necessary during the implementation of the ES5 built-in objects covered in this work.

• int to string - Converts an integer to a string. First used for creating and accessing index
properties of the Array object, but eventually came to be used in several places.

• int of string - Converts a string representation of an integer to the integer.

• floor - Rounds a floating-point number to the integer value less than or equal to the number.
First used to implement step 4 of the reverse method of the Array prototype, as defined in Sec-
tion 15.4.4.8 of the ES5 standard [5].

• l prepend - Adds an element to the beginning of a list. First used to implement step 4 of the
concat method of the Array prototype, as defined in Section 15.4.4.4 of the ES5 standard [5].

• l reverse - Reverses a given ECMA-SL list. Used to assist with sorting the properties of an
object, for compatibility with the tests of Test262 [3] targeting the ES6 JSON built-in object.

• l remove last - Removes the last element of an ECMA-SL list. Used to implement step 11 of
both the JO and JA abstract operations, defined in Section 15.12.3 of the ES5 standard [5].

• octal to decimal - Converts an octal value to a decimal value. Used to implement the \xxx
RegExp meta-character, which is used to get the character specified by an octal number. Octal
escape sequences occur in a few tests of Test262 [3], despite Section B.1 of Annex B of the ES5
standard [5] asserting that they have been removed from ES5.

16Are there any byte sequences that are not generated by a UTF? How should I interpret them?, 31 October 2021 - https:
//www.unicode.org/faq/utf_bom.html#gen8

17Sedlex, an OCaml lexer generator for Unicode, 31 October 2021 - https://github.com/ocaml-community/sedlex

33

https://www.unicode.org/faq/utf_bom.html#gen8
https://www.unicode.org/faq/utf_bom.html#gen8
https://github.com/ocaml-community/sedlex

• int to four hex - Converts an integer to a string representation of four hexadecimal digits.
Used to implement step 2.c.iii of the Quote abstract operation defined in Section 15.12.3 of the
ES5 standard [5].

• parse number - Given a string that starts with the representation of a JSON number as specified
in Chapter 8 of the ECMA-404 [13] standard, extracts the part of the string that corresponds to the
JSON number.

• parse string - Given a string that starts with the representation of a JSON string as specified in
Chapter 9 of the ECMA-404 [13] standard, extracts the part of the string that corresponds to the
JSON string.

34

Chapter 5

Reference Implementation

This chapter elaborates on the reference implementation of the following ES built-in objects: ES5 Array
(5.1), ES5 RegExp (5.3), ES5 String (partially, 5.2), ES5 JSON (5.4), and ES6 Promise (5.5). For each of
these built-in objects, the internal representation, internal methods, implementation-dependent methods
(if any), and auxiliary functions are presented.

5.1 ES5 Array

Internal representation In Figure 2.2, presented in Section 2.2, we had the opportunity to analyse
the ES5 Array object’s graph, whose corresponding implementation in ECMA-SL is represented by Fig-
ure 5.1. By comparing the two figures we can observe that they are similar. However, because ECMA-SL
objects do not make a distinction between internal and named properties, the latter are stored in a prop-
erty named JSProperties, while the former are stored as regular properties. This approach avoids
name collisions between these two types of properties.

a: (ECMA-SL Array Object)

Prototype: ArrayPrototype_ObjRef

Class: "Array"

Extensible: true

DefineOwnProperty: "DefineOwnPropertyArray"

JSProperties: objectRef

ArrayPrototype (ECMA-SL Object)

Prototype: ObjectPrototype_ObjRef

Class: "Array"

Extensible: true

DefineOwnProperty: "DefineOwnPropertyArray"

JSProperties: objectRef

Get: "Get"
GetOwnProperty: "GetOwnProperty"

GetProperty: "GetProperty"
CanPut: "CanPut"

Put: "Put"
HasProperty: "HasProperty"

Delete: "Delete"
DefaultValue: "DefaultValue"

DefineOwnProperty: "DefineOwnProperty"

ES5 Built-in Object Internal Methods
(every ECMA-SL object representing an
ES built-in object has these properties)

ArrayConstructor (ECMA-SL Object)

Prototype: FunctionPrototype_ObjRef

JSProperties: objectRef

Data Property Descriptor
(DPD) (ECMA-SL Object)

Value: value

Writable: boolean

Enumerable: boolean

Configurable: boolean

ArrayPrototype.JSProperties (ECMA-SL Object)

length: DPD(0, T, F, F)

constructor: DPD(ArrayConstructor_ObjRef, T, F, T)

push: DPD(pushFunc_ObjRef, T, F, T)

pop: DPD(popFunc_ObjRef, T, F, T)

toString: DPD(toStringFunc_ObjRef, T, F, T)

...

ArrayConstructor.JSProperties (ECMA-SL Object)

length: DPD(1, T, F, F)

prototype: DPD(ArrayPrototype_ObjRef , F, F, F)

isArray: DPD(isArrayFunc_ObjRef, T, F, T)

a.JSProperties (ECMA-SL Object)

length: DPD(n+1, T, F, F)

"0": DPD(value, T, T, T)

...

"n": DPD(value, T, T, T)

Figure 5.1: ES5 Array Object Graph in ECMA-SL.

Internal methods of an ES built-in object are stored as properties of its corresponding ECMA-SL
object, with the key being the method’s name, as described in ECMA-262, and the value being the

35

corresponding ECMA-SL function. Naturally, should there be variations of an internal method, the
name given to its corresponding function can differ, as is the case of the DefineOwnProperty inter-
nal method of the ES Array object, whose corresponding ECMA-SL function we have decided to call
DefineOwnPropertyArray. Built-in methods of an ES built-in object are treated differently. First, an ES
Function object is created 1 that stores, among other data, the name of the ECMA-SL function for the
corresponding built-in method. Then, a data property descriptor is created to store this Function object.
Finally, the data property descriptor is assigned to a named property of the built-in object, whose key
is, as expected, the name of the built-in method. Listing 5.1 shows part of the ECMA-SL code that
demonstrates the process that we have just described.

1 function initArrayPrototype(global , objectPrototype , strict) {

2 prototype := NewECMAScriptObjectFull(objectPrototype , "Array", true);

3 setAllInternalMethodsOfObject(prototype);

4 prototype.DefineOwnProperty := "DefineOwnPropertyArray";

5
6 setJSProperty(prototype , "length", newDataPropertyDescriptorFull (0.,

true , false , false));

7
8 /* 15.4.4.2 Array.prototype.toString () */

9 toStringObject := CreateBuiltInFunctionObject ([], "arrayToString",

global , strict , null);

10 descriptor := newDataPropertyDescriptorFull(toStringObject , true ,

false , true);

11 setJSProperty(prototype , "toString", descriptor);

12
13 /* ... */

14
15 return prototype

16 };

Listing 5.1: Creating the Array Prototype object in ECMA-SL.

Line-by-line closeness In order to demonstrate the line-by-line closeness of our reference imple-
mentation of the ES5 Array object with respect to the text of ECMA-262, Listing 5.2 presents part of
our ECMA-SL code for the variation of the DefineOwnProperty internal method, whose corresponding
pseudo-code was introduced in Figure 2.4.

1 function DefineOwnPropertyArray(A, P, Desc , Throw) {

2 if (P = "length") {

3 /* ... */

4 while (newLen < oldLen) {

5 oldLen := oldLen - 1.;

6 deleteSucceeded := {A.Delete }(A, ToString(oldLen), false);

7 if (deleteSucceeded = false) {

8 newLenDesc.Value := oldLen + 1.;

9 if (newWritable = false) {

10 newLenDesc.Writable := false

11 };

12 DefineOwnProperty(A, "length", newLenDesc , false);

13 @Reject(Throw)

14 }

15 };

16 /* ... */

17 }

Listing 5.2: An ECMA-SL implementation of DefineOwnProperty for Array.

1Creating Function Objects in ES5: http://es5.github.io/#x13.2

36

http://es5.github.io/#x13.2

Below, we explain the non-standard syntactic elements of ECMA-SL that occur in the snippet and
that have not yet been introduced in this document.

• Dynamic function calls: The internal methods of an object, such as Delete, are stored as proper-
ties of the object. Hence, in order to call them, we first need to read the corresponding property.
To this end, we make use of dynamic function calls, in which the name of the function to be called
is only computed at runtime. In ECMA-SL, dynamic function calls are differentiated from static
function calls through the use of curly braces; for instance, the expression {A.Delete}(A, ToString(

oldLen), false) denotes a call to the function stored in the property Delete of the Object A.

• Macros: A macro resembles a function in syntax. However, a macro’s invocation, preceded with
the at sign, is expanded when compiled to Core ECMA-SL, effectively working by text substitution.
Therefore, macros generally imply a faster runtime execution, as there is no overhead of a function
call. And, more importantly, return statements in a macro become return statements of the invoking
function. Listing 5.3 shows an example of the macro’s definition for Reject.

1 macro Reject(Throw) {

2 if (Throw) {

3 throw TypeErrorConstructorInternal ()

4 } else {

5 return false

6 }

7 };

Listing 5.3: Reject macro in ECMA-SL.

Implemented methods Table 5.1 shows the methods related to the ES5 Array object that were imple-
mented in ECMA-SL as part of this work. For each method a brief description is given along with the
lines of code (LOC) required to implement it. The ES5 Array object was fully implemented.

Section Name Description LOC

Set up Array’s Object Graph

15.4.3 initArrayObj-

ect

Creates the Array constructor object and calls
initArrayPrototype to create the Array prototype object.
Adds the isArray function and the Array prototype object as
properties of the Array constructor and sets the constructor as
a property of the Array prototype.

12

15.4.4 initArrayPr-

ototype

Creates the Array prototype object, assigning all the meth-
ods under section 15.4.4 to itself, among other properties, as
demonstrated in Listing 5.1.

69

Auxiliary methods

15.4 isSparseArray Checks if an Array object is sparse. An Array object is said to
be sparse if any value of its indexes between 0 (inclusive) and
length (exclusive) is undefined.

12

15.4 isArrayIndex Checks if a property of the Array object is an index, as described
in the standard.

5

37

getArrayProt-

otype

Gets the Array prototype object from the Array constructor ob-
ject assigned to the Global object.

7

setAllIntern-

alMethodsOfA-

rray

Assigns the default internal methods to the Array object, as well
as the variation of the DefineOwnProperty method.

5

Array constructor

15.4.2 ArrayConstru-

ctor

The Array constructor function, selects either
internalNewArray or internalNewArrayLen, based on
the number of arguments.

8

15.4.2.1 internalNew-

Array

Constructs an Array object if no arguments or at least two ar-
guments were passed to ArrayConstructor. Each argument
becomes an element of the array, by order passed.

16

15.4.2.2 internalNew-

ArrayLen

Constructs an Array object if exactly one argument was passed
to ArrayConstructor. If the argument is a number, the Array’s
length is set to it. Otherwise, the argument becomes an element
of the Array.

19

Methods of the Array constructor

15.4.3.2 isArray Checks if the argument is an Array object. 10

Methods of the Array prototype

15.4.4.2 toString Calls the join method of the Array object if it is defined. Calls
Object.prototype.toString (15.2.4.2) otherwise.

8

15.4.4.3 toLocaleStr-

ing

Converts the elements of the Array object to strings, using their
toLocaleString methods, and concatenates these strings us-
ing a separator string derived in an implementation-defined
locale-specific way, which in our case is the comma character
regardless of locale.

40

15.4.4.4 concat Returns an Array resulting of the concatenation of the current
Array object with the objects passed as arguments. Each el-
ement of an Array passed as argument will be added to the
resulting Array object.

33

15.4.4.5 join Converts the elements of the Array to strings and concatenates
them, separating them with the separator argument, which, if
not provided, shall be a comma.

32

15.4.4.6 pop Removes and returns the last element of the Array object. 18

15.4.4.7 push Appends the arguments to the end of the Array object and re-
turns the new length of the Array object.

14

15.4.4.8 reverse Reverses the order of the elements in the Array object. 31

15.4.4.9 shift Removes and returns the first element of the Array object. 27

15.4.4.10 slice Receives indexes start and end as arguments and returns a
new Array containing the elements of the original Array from
start (inclusive) to end (exclusive).

37

38

15.4.4.11 sort By default, sorts the Array in ascending order and compares
the elements as strings. A callback can be passed as argument
and it should receive two arguments to compare. The sorting
algorithm is implementation-dependent—we chose Quicksort.

72

15.4.4.12 splice This method can be used to delete and/or add elements at any
position of the Array object. Receives a start index argument,
a deleteCount argument, and an optional list of items. Deletes
deleteCount elements starting at index start. The optional
items are added after the start index.

74

15.4.4.13 unshift Prepends the arguments to the start of the Array object by order. 30

15.4.4.14 indexOf Searches for an element in the Array object, in ascending order,
using the Strict Equality Comparison Algorithm (11.9.6). Re-
turns the index of the first occurrence or -1 if it is not found.

42

15.4.4.15 lastIndexOf Similar to indexOf (15.4.4.14), but searches in descending or-
der.

37

15.4.4.16 every Executes a callback for each element in the Array that is not
undefined. The callback returns a value that is coercible to a
boolean. If the callback returns false once then every returns
false, otherwise every returns true.

29

15.4.4.17 some Similar to every (15.4.4.16), but returns true if the callback re-
turns true for at least one element.

29

15.4.4.18 forEach Executes a callback for each element in the Array that is not
undefined, in ascending order.

26

15.4.4.19 map Executes a callback for each element in the Array that is not
undefined and returns a new Array with the results.

29

15.4.4.20 filter Executes a callback for each element in the Array that is not
undefined and returns a new Array with the elements for which
the callback returned true.

33

15.4.4.21 reduce Executes a callback, which receives the result from the previ-
ous call to the callback, for each element in the Array that is
not undefined, in ascending order. The accumulated value is
returned.

41

15.4.4.22 reduceRight Similar to reduce (15.4.4.21), but executes the callback in de-
scending order.

41

Internal methods of Array instances

15.4.5.1 DefineOwnPro-

pertyArray

A variation of the method given for other native ES objects
(8.12.9). In particular, it describes the steps for when the length
property or an index property of an Array object is updated.

65

Total: 951

Table 5.1: Implemented methods of the ES5 Array object.

39

Implementation-defined behaviour Some methods, or part of their behaviour, can be implementation-
defined. This is the case of the toLocaleString and sort methods of the Array prototype object. The
toLocaleString method, for instance, has the following step described in ECMA-262 Edition 5.1 [5]:

Let separator be the String value for the list-separator String appropriate for the host envi-
ronment’s current locale (this is derived in an implementation-defined way).

For simplicity, we always set separator to the comma character. However, it is interesting to note that
the list-separator String value can, in theory, be any string.

The sort method is more complex. There are many conditions of this method that are implementation-
dependent, such as:

• Elements deemed as equal by the comparison function do not necessarily remain in their original
order. This is the case with our implementation.

• If an index property is a data property whose [[Writable]] or [[Configurable]] attribute is false,
or if it is an accessor property. In our implementation we do not handle these conditions in any
specific way.

• The sorting algorithm is implementation dependent. We chose Quicksort for its simplicity.

Implementation-defined behaviour is outside the scope of the goals of ECMA-SL, thus, we approach
these cases in a minimalistic way.

5.2 ES5 String

Internal representation Figure 2.5 gave us an overview of the ES5 String object’s graph. We now
have the opportunity to analyse the corresponding implementation in ECMA-SL, illustrated in Figure5.2.

s: (ECMA-SL String Object)

Prototype: StringPrototype_ObjRef

Class: "String"

Extensible: true

PrimitiveValue: string_value

GetOwnProperty: "GetOwnPropertyString"

JSProperties: objectRef

StringPrototype (ECMA-SL Object)

Prototype: ObjectPrototype_ObjRef

Class: "String"

Extensible: true

PrimitiveValue: ""

GetOwnProperty: "GetOwnPropertyString"

JSProperties: objectRef

StringConstructor (ECMA-SL Object)

Prototype: FunctionPrototype_ObjRef

JSProperties: objectRef

s.JSProperties (ECMA-SL Object)

length: DPD(n+1, F, F, F)

"0": DPD(first_char, F, T, F)

...

"n": DPD(last_char, F, T, F)

Get: "Get"
GetOwnProperty: "GetOwnProperty"

GetProperty: "GetProperty"
CanPut: "CanPut"

Put: "Put"
HasProperty: "HasProperty"

Delete: "Delete"
DefaultValue: "DefaultValue"

DefineOwnProperty: "DefineOwnProperty"

ES5 Built-in Object Internal Methods
(every ECMA-SL object representing an
ES built-in object has these properties)

Data Property Descriptor
(DPD) (ECMA-SL Object)

Value: value

Writable: boolean

Enumerable: boolean

Configurable: boolean

StringPrototype.JSProperties (ECMA-SL Object)

length: DPD(0, F, F, F)

constructor: DPD(StringConstructor_ObjRef, T, F, T)

toString: DPD(toStringFunc_ObjRef, T, F, T)

valueOf: DPD(valueOfFunc_ObjRef, T, F, T)

charAt: DPD(charAtFunc_ObjRef, T, F, T)

...

StringConstructor.JSProperties (ECMA-SL Object)

length: DPD(1, T, F, F)

prototype: DPD(StringPrototype_ObjRef , F, F, F)

fromCharCode: DPD (fromCharCodeFunc_ObjRef, T, F, T)

Figure 5.2: ES5 String Object Graph in ECMA-SL.

The difference that stands out in this implementation, aside from the differences covered in Sec-
tion 5.1, is that we actually store each character of the string in a named property of the object, despite

40

the fact that the [[GetOwnProperty]] internal method creates and returns a new data property descrip-
tor for a given index. We take this approach because the auxiliary functions in ECMA-SL that had been
created to get the named properties of an object will look for them in the object’s JSProperties property.
Therefore, statements such as the for-in loop, that iterate over the enumerable properties of an object,
can only be aware of them if they exist in the JSProperties property of the object being iterated over.

Line-by-line closeness Listing 5.4 shows the implementation of the pseudo-code instructions of the
[[GetOwnProperty]] internal method previously presented in Figure 2.6. In this method, we make
use of the s nth u operator, which is described in more detail in Section 4.2. However, this operator
retrieves the nth code point of the string, when it should retrieve the nth 16-bit code unit.

1 function GetOwnPropertyString (S, P) {

2 /* ... */

3 /* 8. Let resultStr be a String of length 1, containing one character

from str , specifically the character at position index , where the

first (leftmost) character in str is considered to be at position 0,

the next one at position 1, and so on. */

4 resultStr := s_nth_u (str , int_of_float index);

5 /* 9. Return a Property Descriptor { [[Value]]: resultStr , [[

Enumerable]]: true , [[Writable]]: false , [[Configurable]]: false }

*/

6 return newDataPropertyDescriptorFull(resultStr , false , true , false)

7 };

Listing 5.4: String’s [[GetOwnProperty]] internal method in ECMA-SL.

The patterns of some pseudo-code instructions have very few occurrences in the standard. For
instance, the pattern of the pseudo-code’s instruction eight occurs only in one other function of the ES5
standard [5]—the charAt method of the String built-in object.

Implemented methods All methods of the ES5 String object were implemented in ECMA-SL, but
Table 5.2 only shows the methods that were implemented as part of this thesis. For each method, a
brief description is given along with the lines of code (LOC) required to implement it.

Section Name Description LOC

Methods of the String prototype

15.5.4.10 match Matches the string against a regular expression and returns the
matches as an Array object. If the g (global) modifier is not set
in the RegExp object, then only the first match is returned.

47

15.5.4.11 replace Receives a searchValue parameter, which can either be a
string or a regular expression, and a replaceValue parame-
ter, which can either be a string or a function. Occurrences
of searchValue in the string are replaced with replaceValue,
or the value returned from calling it. When replaceValue is a
string, it can have replacement text symbol substitutions as de-
scribed in Table 22 of the ES5 standard [5].

94

15.5.4.12 search Matches the string against a regular expression and returns the
position of the first match.

17

41

15.5.4.14 split Splits a string using the separator parameter, which can be
a string or a regular expression, and returns an Array object
with the sub-strings. The optional limit parameter sets the
maximum amount of sub-strings that the resulting Array may
contain.

77

15.5.4.16 toLowerCase Returns the string converted to lower-case. The Uni-
code character mappings are found in the UnicodeData.txt

and SpecialCasings.txt files of the Unicode character
database [57].

49

15.5.4.17 toLocaleLowe-

rCase

The same as toLowerCase, except that some characters are
supposed to be converted according to the host environment’s
locale, which may conflict with the Unicode case mappings in
some cases. Due to time constraints and lack of coverage from
Test262 [3], our implementation of this method is identical to the
toLowerCase method.

15.5.4.18 toUpperCase Returns the string converted to upper-case. The implementa-
tion is similar to the toLowerCase method’s, although we left out
some conditional casings, due to time constraints and lack of
coverage from Test262 [3].

29

15.5.4.19 toLocaleUppe-

rCase

Identical to toUpperCase. Just as in toLocaleLowerCase, we do
not consider the host environment’s locale.

15.5.4.20 trim Returns the string with white-space characters removed on both
ends. The white-space characters are specified in Table 2 and
Table 3 of the ES5 standard [5].

36

Abstract methods

15.5.4.14 SplitMatch Used by the split method in order to get a match result from
the string.

20

Auxiliary methods

resolveDolla-

rs

Used by replace in order to replace text symbols as specified
in Table 22 of the ES5 standard [5].

87

isSpaceChara-

cter

Used by trim in order to verify if a character is one of the white-
space characters described in Table 2 or Table 3 of the ES5
standard [5].

12

Total: 468

Table 5.2: Implemented methods of the ES5 String object.

Aside from the methods that were fully implemented in the context of this thesis, we updated other
methods of the ES5 String built-in object in order to make use of the new ECMA-SL operators described
in Section 4.2. Although these operators deal with Unicode code points instead of 16-bit code units, they
essentially produce the same result for strings containing only code points in the BMP, thus allowing us
to pass more tests of Test262 [3], as a temporary solution for the lack of UTF-16 support in ECMA-SL.

42

Implementation dependent methods The String built-in object has several functions whose sum-
mary, or pseudo-code, does not rigorously specify how to implement. Such is the case for the follow-
ing casing operations: toLowerCase, toLocaleLowerCase, toUpperCase, and toLocaleUpperCase. For
these methods, the specification tells us to use the case mappings in the Unicode character database [57],
that is, the UnicodeData.txt and SpecialCasings.txt files included in this database. However, this
mapping implementation will produce several lines of code due to the conditional mappings that can
be found in the SpecialCasings.txt file. As an example, when converting the upper-case Σ charac-
ter (03A316) to lower-case, it will generally be mapped to σ (03C316), unless the character appears at
the end of a string, in which case it will be mapped to ς (03C216). This was the only conditional cas-
ing that was implemented in this work, required for passing all tests of Test262 [3] that cover the ES5
standard [5].

An observation that we have made while implementing the aforementioned casing methods, is that
there is an additional mapping possible, besides the lower-case and upper-case mappings, and that is
the title-case mapping. For instance, the lower-case ß character (00DF16) is mapped to the upper-case
SS (005316005316) and to the title-case Ss (005316007316). This leads us to suggest the addition of a
toTitleCase method to the String prototype object.

5.3 ES5 RegExp

Internal representation In Figure 2.7, presented in Section 2.4, we had the opportunity to analyse
the ES5 RegExp object’s graph, whose corresponding implementation in ECMA-SL is represented by
Figure 5.3.

re: (ECMA-SL RegExp Object)

Prototype: RegExpPrototype_ObjRef

Class: "RegExp"

Extensible: true

Match: lambda function

JSProperties: objectRef

RegExpPrototype (ECMA-SL Object)

Prototype: ObjectPrototype_ObjRef

Class: "Object"

Extensible: true

JSProperties: objectRef

Get: "Get"
GetOwnProperty: "GetOwnProperty"

GetProperty: "GetProperty"
CanPut: "CanPut"

Put: "Put"
HasProperty: "HasProperty"

Delete: "Delete"
DefaultValue: "DefaultValue"

DefineOwnProperty: "DefineOwnProperty"

ES5 Built-in Object Internal Methods
(every ECMA-SL object representing an
ES built-in object has these properties)

Data Property Descriptor
(DPD) (ECMA-SL Object)

Value: value

Writable: boolean

Enumerable: boolean

Configurable: boolean

RegExpPrototype.JSProperties (ECMA-SL Object)

constructor: DPD(RegExpConstructor_ObjRef, T, F, T)

exec: DPD(execFunc_ObjRef, T, F, T)

test: DPD(testFunc_ObjRef, T, F, T)

toString: DPD(toStringFunc_ObjRef, T, F, T)

RegExpConstructor.JSProperties (ECMA-SL Object)

prototype: DPD(RegExpPrototype_ObjRef , F, F, F)

length: DPD(2, T, F, F)

re.JSProperties (ECMA-SL Object)

source: DPD(pattern_string, F, F, F)

global: DPD(boolean, F, F, F)

ignoreCase: DPD(boolean, F, F, F)

multiline: DPD(boolean, F, F, F)

lastIndex: DPD(integer, T, F, F)

RegExpConstructor (ECMA-SL Object)

Prototype: FunctionPrototype_ObjRef

JSProperties: objectRef

Figure 5.3: ES5 RegExp Object Graph in ECMA-SL.

In ECMA-SL, ES5 RegExp instances are represented as ECMA-SL objects. The methods shared by
all RegExp instances are stored in the ECMA-SL object corresponding to the RegExp.[[Prototype]]

object. The named properties of a RegExp instance, re, are stored in the object re.JSProperties.
Particularly, RegExp instances store their corresponding matchers in the internal property [[Match]]. In
ECMA-SL, matchers are modelled as lambda functions that recognize expansions of the corresponding
regular expression. Our implementation includes a regular expression interpreter that, given the AST

43

of a regular expression, generates the lambda function corresponding to its matcher. The implemented
interpreter follows the algorithms proposed by Fragoso Santos et al. in [58]. An account of these
algorithms is out of the scope of this thesis. The AST of the regular expression to be interpreted is
computed by JS2ECMA-SL using the regexp-tree 2 regular expression parser.

Line-by-line closeness Listing 5.5 shows a portion of the ECMA-SL code that corresponds to the loop
performed by the exec method for finding a match in a given string. Each instruction is accompanied
by a comment with its corresponding pseudo-code instruction, as described in the ES5 standard. As
before, we can see that the ECMA-SL constructs are descriptive and very similar to the pseudo-code of
the standard. Furthermore, the call to the [[Match]] internal method is abstracted in our code, therefore
not conflicting with the goals of ECMA-SL, as far as the exec method is concerned.

In this loop, the algorithm starts with the matchSucceeded boolean value set to false. If the i integer
value, corresponding to the value stored in the property lastIndex of the RegExp instance, is negative
or larger than the length of the string, then the property lastIndex is set to zero and the exec method
returns null. However, it should be noted that, as explained in item 3 of the enumeration given in
Section 2.7, we chose to modify this behaviour in order to comply with ES6, which we have done by
setting lastIndex to zero, should it be negative, before the execution of this loop. If the i value is within
the range of indexable characters of the string argument, then the matcher for this regular expression is
called with the string and i—the index of the string where the regular expression will attempt to match. If
the match fails, then the index i is increased and the next iteration of the loop starts, until either a match
is found or lastIndex is set to zero and null is returned.

1 /* 9. Repeat , while matchSucceeded is false */

2 while (matchSucceeded = false) {

3 /* a. If i < 0 or i > length , then */

4 if ((i < 0) || (i > length)) {

5 /* i. Call the [[Put]] internal method of R with

6 arguments "lastIndex", 0, and true. */

7 {R.Put}(R, "lastIndex", 0., true);

8 /* ii. Return null. */

9 return ’null

10 };

11 /* b. Call the [[Match]] internal method of R with

12 arguments S and i. */

13 ret := {R.Match}(R, S, i);

14 /* c. If [[Match]] returned failure , then */

15 if (isFailure(ret)) {

16 /* i. Let i = i+1. */

17 i := i + 1

18 }

19 /* d. else */

20 else {

21 /* i. Let r be the State result of the call to [[Match]]. */

22 r := ret;

23 /* ii. Set matchSucceeded to true. */

24 matchSucceeded := true

25 }

26 };

Listing 5.5: A snippet of the ECMA-SL implementation of the RegExp prototype’s exec method.

2regexp-tree, 31 October 2021 - https://github.com/DmitrySoshnikov/regexp-tree

44

https://github.com/DmitrySoshnikov/regexp-tree

Implemented methods Table 5.3 shows the methods related to the ES5 RegExp object that were
implemented in ECMA-SL as part of this work, with the exception of the auxiliary methods, due to their
large number and dissociation from the goals of ECMA-SL. For each other method, a brief description
is given along with the lines of code (LOC) required to implement it. The ES5 RegExp object was fully
implemented.

Section Name Description LOC

Set up RegExp’s Object Graph

15.10 initRegExpObj-

ect

Calls initRegExpConstructor to create the RegExp construc-
tor object and calls initRegExpPrototype to create the RegExp
prototype object. Returns the RegExp constructor object.

7

15.10.5 initRegExpCon-

structor

Creates the RegExp constructor Function object and sets its
prototype property to the RegExp prototype object.

6

15.10.6 initRegExpPro-

totype

Creates the RegExp prototype object, setting all of its internal
and named properties.

32

RegExp constructor

15.10.3 RegExpConstru-

ctorCalledAsF-

unction

Receives a pattern parameter and a flags parameter. If
pattern is a RegExp object and flags is undefined, then the
RegExp object is returned. Otherwise it calls newRegExp.

7

15.10.4 RegExpConstru-

ctor

Calls RegExpConstructorCalledAsFunction if the this object
is null or undefined. Otherwise it calls newRegExp.

11

15.10.4.1 newRegExp Constructs a RegExp object, given the arguments pattern and
flags. Calls the auxiliary function parsePattern.

28

Methods of the RegExp prototype

15.10.6.2 exec Receives a string argument, matches the string against the reg-
ular expression, and returns an Array object that contains the
results of the match, or null if the string did not match.

60

15.10.6.3 test Performs the exec method on a given string, returning true if the
result is not null and false otherwise.

9

15.10.6.4 toString Returns a string representation of the regular expression. 16

Auxiliary methods 938

Total: 1,114

Table 5.3: Implemented methods of the ES5 RegExp object.

45

5.4 ES5 JSON

Internal representation In Figure 2.8, presented in Section 2.5, we analysed the ES5 JSON object’s
graph, whose implementation in ECMA-SL is represented by Figure 5.4. Our ECMA-SL implementation
of the JSON object graph coincides almost exactly with the one discussed in Section 2.5, except that
the named properties of the JSON object are stored in a separate object whose location is stored in its
property JSProperties. Hence, the methods exposed by the JSON object, stringify and parse, are
stored as properties of the object JSON.JSProperties.

JSON (ECMA-SL JSON Object)

Prototype: ObjectPrototype_ObjRef

Class: "JSON"

Extensible: true

JSProperties: objectRef

JSON.JSProperties (ECMA-SL Object)

parse: DPD(parseFunc_ObjRef, T, F, T)

stringify: DPD(strinfifyFunc_ObjRef, T, F, T)

Get: "Get"
GetOwnProperty: "GetOwnProperty"

GetProperty: "GetProperty"
CanPut: "CanPut"

Put: "Put"
HasProperty: "HasProperty"

Delete: "Delete"
DefaultValue: "DefaultValue"

DefineOwnProperty: "DefineOwnProperty"

ES5 Built-in Object Internal Methods
(every ECMA-SL object representing an
ES built-in object has these properties)

Data Property Descriptor
(DPD) (ECMA-SL Object)

Value: value

Writable: boolean

Enumerable: boolean

Configurable: boolean

Figure 5.4: ES5 JSON Object Graph in ECMA-SL.

Line-by-line closeness Listing 5.6 shows the implementation of the JSON’s parse method in ECMA-
SL, whose pseudo-code was previously shown in Figure 2.10 of Section 2. Some instructions of the
pseudo-code leave the implementation algorithm to the discretion of the programmer. These instructions
cannot therefore follow a line-by-line closeness approach.

1 function jsonParse(global , this , strict , args) {

2 text := l_nth(args , 0);

3 reviver := getOptionalParam(args , 1);

4 JText := ToString(text);

5 /* 2. Parse JText using the grammars in 15.12.1. Throw a SyntaxError

exception if JText did not conform to the JSON grammar for the goal

symbol JSONText. */

6 objJSON := parseJSONText(global , this , strict , [JText]);

7 unfiltered := objJSON;

8 if (IsCallable(reviver) = true) {

9 root := ObjectConstructor(global , ’null , strict , [null]);

10 descriptor := newDataPropertyDescriptorFull(unfiltered , true , true ,

true);

11 {root.DefineOwnProperty }(root , "", descriptor , false);

12 return Walk(root , "", reviver)

13 }

14 else {

15 return unfiltered

16 }

17 };

Listing 5.6: JSON’s parse method in ECMA-SL.

In this implementation, we can see that the method parseJSONText, which we have named and
defined ourselves, is called in line 6. Unlike the rest of the code of the method parse, for which the
ECMA-262 standard tells us the exact steps that must be taken, here the standard simply says that

46

the provided string is to be parsed according to a given set of grammar rules. Hence, we were free
to implement this function as we deemed appropriate. We considered two main options: implement
the function in OCaml and create an ECMA-SL operator exposing the OCaml function to the ECMA-SL
code, or implement the function directly in ECMA-SL. We chose to go for the second option as it is much
easier to manipulate and interact with ECMA-SL objects in ECMA-SL code than at the OCaml level.
In order to parse the JSON text, we made use of several auxiliary functions, which are presented in
Table 5.4.

Importantly, pseudo-code instructions that leave the implementation to the discretion of the program-
mer raise a problem when it comes to the generation of the English HTML description of ECMA-262, as
we cannot generate the original text from it. In order to solve this problem, ECMA-SL uses annotations.
However, due to time constraints, we have left this topic outside the scope of this thesis.

Implemented methods Table 5.4 shows the methods related to the ES5 JSON object that we imple-
mented in ECMA-SL as part of this work. For each method, a brief description is given along with the
lines of code (LOC) required to implement it. The ES5 JSON object was fully implemented.

Section Name Description LOC

Set up JSON’s Object Graph

15.12 initJsonObje-

ct

Creates the JSON object as illustrated by Figure 5.4. 17

Methods of the JSON object

15.12.2 parse Parses a JSON-formatted String and produces an ES value. It
also receives an optional reviver parameter that can filter and
transform the results, with the help of the Walk abstract method.

16

15.12.3 stringify Receives an ES value and returns the corresponding JSON-
formatted String. An optional replacer parameter can be
passed, that can be either a function that alters the stringi-
fication process of objects and arrays, or an array of String
and Number objects that white-lists the object properties to
stringify. And there can be a space parameter to improve
human-readability. This method makes use of the Str, Quote,
JO, and JA abstract methods.

82

Abstract methods

15.12.2 Walk A recursive method that is called for each element of a JSON
array and each property of a JSON object.

38

15.12.3 Str Turns an ES value into a JSON string. This method makes use
of the Quote, JO, and JA abstract methods.

51

15.12.3 Quote Used to wrap a String in double quotes and escape certain char-
acters within it. Here we make an adjustment to have the same
behaviour as the 10th edition of ECMA-262 [59], where Unicode
surrogate characters are also escaped.

40

15.12.3 JO Serializes an object, calling Str for each property of the object. 48

15.12.3 JA Serializes an Array, calling Str for each property of the Array. 38

47

Auxiliary methods

getSortedPro-

pertiesES6

In order to comply with section 9.1.12 of the ES6 standard [2],
we get the property names with positive integer keys in ascend-
ing order first, followed by the remaining properties in ascending
creation order.

19

getOwnEnumer-

ableProperti-

esNames

Gets the enumerable properties of an object, sorted by
getSortedPropertiesES6. This method is used by both parse

and stringify when iterating over an object’s properties.

16

concatenateL-

istStrElmsWi-

thSeparator

Used by the JO and JA abstracted methods. Concatenates a list
of strings using a given separator argument.

17

isDigit Receives a character and verifies if it is a digit. Used by
getTokens.

4

unescapeJSON-

String

Receives a string and converts the escapes within it to the char-
acters they represent. Used by getTokens.

41

getTokens Receives a JSON-formatted string and returns a list with tokens.
Throws an exception if the string is not valid JSON.

64

parseJSONText Parses a JSON-formatted string according to ECMA-404
and returns the corresponding ES value in ECMA-SL. Uses
getTokens and parseJSONValue.

14

parseJSONVal-

ue

Converts a token from a JSON-formatted string to the corre-
sponding ES value in ECMA-SL.

31

parseJSONObj-

ect

Creates an glsES object in ECMA-SL from the list of tokens of
the corresponding JSON-formatted string.

41

parseJSONArr-

ay

Creates an glsES Array object in ECMA-SL from the list of to-
kens of the corresponding JSON-formatted string.

31

findClosingC-

urlyBracket

Receives a list of tokens of a JSON-formatted string, starting at
the opening of a JSON object, and returns a list of tokens until
the closing bracket for this object is found.

17

findClosingS-

quareBracket

Receives a list of tokens of a JSON-formatted string, starting at
the opening of a JSON array, and returns a list of tokens until
the closing bracket for this array is found.

17

isUnicodeSur-

rogate

Verifies if a given character is a Unicode leading surrogate char-
acter. Used by Quote.

9

Total: 651

Table 5.4: Implemented methods of the ES5 JSON object.

48

5.5 ES6 Promise

Internal representation In Figure 2.11, presented in Section 2.6, we had the opportunity to analyse
the ES6 Promise object’s graph, whose corresponding implementation in ECMA-SL is represented by
Figure 5.5.

p: (ECMA-SL Promise Object)

Prototype: PromisePrototype_ObjRef

Class: "Promise"

Extensible: true

PromiseState: "pending"

PromiseResult: undefined

PromiseFulfillReactions: [r]

PromiseRejectReactions: []

PromisePrototype (ECMA-SL Object)

Prototype: ObjectPrototype_ObjRef

Class: "Object"

Extensible: true

JSProperties: objectRef

Get: "Get"
GetOwnProperty: "GetOwnProperty"

GetProperty: "GetProperty"
CanPut: "CanPut"

Put: "Put"
HasProperty: "HasProperty"

Delete: "Delete"
DefaultValue: "DefaultValue"

DefineOwnProperty: "DefineOwnProperty"

ES5 Built-in Object Internal Methods
(every ECMA-SL object representing an
ES built-in object has these properties)

PromiseConstructor (ECMA-SL Object)

Prototype: FunctionPrototype_ObjRef

JSProperties: objectRef

Data Property Descriptor
(DPD) (ECMA-SL Object)

Value: value

Writable: boolean

Enumerable: boolean

Configurable: boolean

PromisePrototype.JSProperties
(ECMA-SL Object)

constructor:
DPD(PromiseConstructor_ObjRef, T, F, T)

catch: DPD(catchFunc_ObjRef, T, F, T)

then: DPD(thenFunc_ObjRef, T, F, T)

PromiseConstructor.JSProperties (ECMA-SL Object)

length: DPD(1, T, F, F)

prototype: DPD(PromisePrototype_ObjRef , F, F, F)

all: DPD(allFunc_ObjRef, T, F, T)

r: (ECMA-SL PromiseReaction Object)

Capabilities: c

Handler: Function or String

c: PromiseCapability

[[Promise]]: p

[[Resolve]]: resolveFunctionObj

[[Reject:]]: rejectFunctionObj

Figure 5.5: ES6 Promise Object Graph in ECMA-SL.

Our implementation of the ES6 Promise built-in object was made on top of ECMARef5, in parallel with
the transitioning of ECMARef5 to ECMARef6. For this reason, the ES5 built-in object internal methods were
kept, along with the [[Class]] internal property. The Symbol keyed properties were not implemented.

Line-by-line closeness The implementation of the ES6 Promise built-in object, unlike the implemen-
tation of the ES5 built-in objects presented heretofore, was generated entirely by the HTML2ECMA-SL

tool, which will be introduced in Chapter 6, with the exception of the ECMA-SL functions responsible
for creating the Promise object’s graph and other auxiliary functions. Listing 5.7 and Listing 5.8 present
the ECMA-SL code for the pseudo-code previously shown in Figure 2.12. The code presented in both
Listings was fully generated by HTML2ECMA-SL.

1 function FulfillPromise(promise , value) {

2 assert(promise.PromiseState = "pending");

3 reactions := promise.PromiseFulfillReactions;

4 promise.PromiseResult := value;

5 promise.PromiseFulfillReactions := ’undefined;

6 promise.PromiseRejectReactions := ’undefined;

7 promise.PromiseState := "fulfilled";

8 return TriggerPromiseReactions(reactions , value)

9 };

Listing 5.7: An ECMA-SL implementation of the FulfillPromise abstract operation.

49

1 function TriggerPromiseReactions(reactions , argument) {

2 foreach (reaction : reactions) {

3 EnqueueJob("PromiseJobs", "PromiseReactionJob", [reaction , argument

])

4 };

5 return ’undefined

6 };

Listing 5.8: An ECMA-SL implementation of the TriggerPromiseReactions abstract operation.

ES6 Dependencies In order to implement the ES6 Promise built-in object, we also had to make a
temporary implementation of Jobs and Job Queues, specified in Section 8.4 of the ECMA-262 6th Edi-
tion [2], so that the Promise object could be tested against Test262 [3]. Other ES6 internal functions
that are used by the Promise object, such as operations on iterator objects, were implemented by other
contributors to the ECMA-SL project.

Implemented methods Table 5.5 shows the methods related to the ES6 Promise object that were
implemented in ECMA-SL as part of this work. For each method a brief description is given along with
the lines of code (LOC) required to implement it. The ES6 Promise object was fully implemented.

Section Name Description LOC

Set up Promise’s Object Graph

25.4.4 initPromiseO-

bject

Creates the Promise constructor object and calls
initPromisePrototype to create the Promise prototype
object. Returns the Promise constructor object

21

25.4.5 initPromiseP-

rototype

Creates the Promise prototype object, setting all of its internal
and named properties.

14

Promise constructor

25.4.3.1 PromiseConst-

ructor

Receives an executor function, which captures the computation
to be performed asynchronously, and constructs a Promise.

22

InternalProm-

iseConstruct-

or

An ES5 alternative to OrdinaryCreateFromConstructor, used
by PromiseConstructor, which sets the internal properties
[[Prototype]], [[Extensible]], and [[Class]] of the new
Promise object.

13

Methods of the Promise constructor

25.4.4.1 all Receives an iterable of Promise objects, such as an Array, and
returns a new Promise object, which is either fulfilled with an Ar-
ray of the fulfilment values for the passed promises, or rejected
with the reason of the first Promise that rejects.

25

25.4.4.3 race Receives an iterable of Promise objects, such as an Array, and
returns a Promise that is settled with the same value of the first
Promise that is settled in the iterable.

25

25.4.4.4 reject Returns a Promise object that is rejected with a given reason. 12

50

25.4.4.5 resolve Returns a Promise object that is resolved with a given value. If
the value given is a Promise, then that Promise is returned.

19

Methods of the Promise prototype

25.4.5.1 catch Equivalent to calling then, but only with a function to execute
when the Promise is rejected.

5

25.4.5.3 then Called on a Promise object, optionally receives: a function to
run when the promise is fulfilled, which receives the fulfillement
value; and a function to run when the promise is rejected, which
receives the rejection reason. These functions are executed
asynchronously.

13

Non-Promise Abstract methods

6.2.2.1 NormalComple-

tion

Creates a new Completion record with a given value. 3

6.2.2.1 Completion Equivalent to NormalCompletion. 3

8.4.1 EnqueueJob Adds a Job to a Job Queue. Our implementation of this abstract
operation is incomplete, having only the purpose of allowing us
to test the Promise object.

7

8.4.2 NextJob Unimplemented. Place-holder for a future implementation. 3

Promise Abstract methods

25.4.1.1.1 IfAbruptReje-
ctPromise

A macro, short hand for a sequence of algorithm steps that use
a PromiseCapability record.

10

25.4.1.3 CreateResolv-

ingFunctions

Creates the resolve and reject Function objects for a given
Promise object.

18

25.4.1.3.1 PromiseRejec-
tFunctions

Algorithm to run when a Promise is rejected. 11

25.4.1.3.2 PromiseResol-
veFunctions

Algorithm to run when a Promise is resolved. 27

25.4.1.4 FulfillPromi-

se

Called by PromiseResolveFunctions. Changes a Promise’s
state from “pending” to “fulfilled”, sets its PromiseResult in-
ternal property, clears the internal reactions lists and calls
TriggerPromiseReactions.

9

25.4.1.5 NewPromiseCa-

pability

Creates a new PromiseCapability using a constructor function
that supports the parameter conventions of the Promise con-
structor.

22

25.4.1.5.1 GetCapabilit-
iesExecutorF-

unctions

Called by NewPromiseCapability to set the executor function
of the new Promise object of the PromiseCapability.

15

25.4.1.6 IsPromise Checks if a value is a Promise object. 9

51

25.4.1.7 RejectPromise Called by PromiseRejectFunctions and
PromiseResolveFunctions. Changes a Promise’s state
from “pending” to “rejected”, sets its PromiseResult inter-
nal property, clears the internal reactions lists and calls
TriggerPromiseReactions.

9

25.4.1.8 TriggerPromi-

seReactions

Receives a list of PromiseReaction records and enqueues a
new Job for each record.

6

25.4.4.1.1 PerformPromi-
seAll

Used by the all method of the Promise constructor in order to
get the new Promise.

43

25.4.4.1.2 PromiseAllRe-
solveElemen-

tFunctions

Resolved a specific all element. 19

25.4.4.3.1 PerformPromi-
seRace

Used by the race method of the Promise constructor in order to
get the first Promise that settles.

23

25.4.5.3.1 PerformPromi-
seThen

Used by the then method of the Promise prototype in order to
schedule either the function to execute when the Promise is re-
solved, or the function to execute when the Promise is rejected.

25

Promise Jobs

25.4.2.1 PromiseReact-

ionJob

Receives a PromiseReaction and an argument and either re-
solves or rejects the associated Promise object.

21

25.4.2.2 PromiseResol-

veThenableJob

Calls the then method associated with the Promise object. 10

Auxiliary methods

newPendingJob Creates a new Job object, which contains the name of the func-
tion to execute and a list of arguments.

22

initJobQueue Creates a list global variable, JobQueue. This function is called
by the interpreter before a program’s top level execution.

4

appendToJobQ-

ueue

Adds a Job to JobQueue. 4

executeJobs Executes the Jobs in the JobQueue, calling the abstract opera-
tions associated with each Job.

22

getPromiseCo-

nstructor

Returns the Promise constructor object. 4

getPromisePr-

ototype

Returns the Promise prototype object. 5

getPromiseCo-

nstructorFro-

mPromiseObje-

ct

Returns the Promise constructor object associated with a
method of the Promise constructor. Workaround for getting the
@@species property.

7

6.2.2 isCompletion-

Record

Checks if a value is a Completion record. 3

52

25.4.1.1 isPromiseCap-

abilityRecord

Checks if an object is a PromiseCapability record. 3

25.4.1.2 newPromiseRe-

action

Creates a new PromiseReaction record. 3

25.4.1.2 isPromiseRea-

ctionRecord

Checks if an object is a PromiseReaction record. 3

Total: 542

Table 5.5: Implemented methods of the ES6 Promise object.

53

Chapter 6

HTML2ECMA-SL

During the implementation of our first ES built-in object, the ES5 Array, we came to the realization that
this task was considerably repetitive. For each method, we would always perform the same steps:

1. Copy the method’s section number, name, parameters, summary, pseudo-code, and footer notes
from the HTML version of ECMA-262 to our ECMA-SL source file. Comment out each pseudo-
code instruction individually and the remaining information about the method.

2. In the HTML version of ECMA-262, the pseudo-code instructions of a method are structured in an
HTML ordered list, whose number (or letter) prefixes cannot be selected in the browser. For this
motive, we add them manually to each individual comment of a pseudo-code instruction.

3. Insert new lines in the comments so that each line does not exceed 80 characters, for readability.

4. Add the method’s signature and add curly braces around the pseudo-code comments.

5. Implement each pseudo-code instruction below its respective comment. Search for equivalent
implementations in our reference interpreter, in order to keep consistency.

6. Make sure that the indentation of a block is 2 spaces.

This process can become quite dull and error-prone, which led us to develop HTML2ECMA-SL for the
purpose of automating it. HTML2ECMA-SL searches for a function in the HTML version of the ECMA-
262 6th Edition [10] and parses the HTML description of the function’s pseudo-code into functional
ECMA-SL code, by taking advantage of regular expressions. Figure 6.1 illustrates our results for
the FulfillPromise method described in Section 25.4.1.4 of the ECMA-262 6th Edition [10], whose
pseudo-code had been previously shown in Figure 2.12. HTML2ECMA-SL allows us to output the gener-
ated ECMA-SL code of a function to: the console, with or without syntax highlighting, which is useful for
debugging and copy/pasting; an ECMA-SL source file, which will become useful when HTML2ECMA-SL is
capable of generating a whole section of the standard; and an HTML file with syntax highlighting, which
may be useful for embedding the generated ECMA-SL code in a web application or PDF document.
On top of this, HTML2ECMA-SL also allows us to specify the number of spaces or tabs to use for the
indentation, the maximum line width of the comments, and whether to generate the comments or not.

We have fully implemented the automatic generation of ECMA-SL code for the ES6 Promise and
ES6 Proxy built-in objects. Because many pseudo-code instructions have recurring patterns, many
other methods are already partially or fully implemented, including those belonging to newer versions of
ECMA-262, although these require a few modifications to our existing regular expressions. This means
that, even if we cannot generate ECMA-SL code for the entirety of ECMA-262, we can already automate

55

(a) HTML output. (b) Console output.

Figure 6.1: The FulfillPromise method generated by HTML2ECMA-SL.

many of the repetitive tasks, namely, the generation of comments and the generation of ECMA-SL
instructions whose patterns have already been implemented in HTML2ECMA-SL. At this stage, six other
contributors to the ECMA-SL project are already enjoying the benefits of this tool.

Project structure We decided to develop HTML2ECMA-SL in TypeScript (TS), a superset of JS that adds
a type system to the language. For the runtime we use Node.js 1. Because the focus of ECMA-SL is on
ES, this can help us further understand modern ES from a user’s perspective. The most relevant source
code of HTML2ECMA-SL is divided into the following ES modules 2:

• main.ts - This is the entry point of the application, responsible for: parsing the given command line
arguments, using the Yargs 3 Node.js library for this purpose, which allows us to specify various
options on how to output the generated ECMA-SL code; fetching the HTML version of the ECMA-
262 6th Edition [10] and extracting the HTML portion of a given function’s specification from it, using
the ecma262.ts module; and parsing the HTML of the function’s specification and generating the
corresponding ECMA-SL code, using the parser.ts module.

• ecma262.ts - Responsible for: fetching the HTML of the ECMA-262 6th Edition [10] from its URL,
caching it to a local file for future uses; fetching the HTML portion of a function’s specification from
the HTML of ECMA-262; and verifying if a given function is a constructor function by searching for
its name in Section 18.3 of the ECMA-262 6th Edition.

• parser.ts - Responsible for parsing the HTML portion of a function’s specification and producing
the corresponding ECMA-SL source code, taking into account the indentation, line-width, and
comment generation preferences.

• syntax highlighting.ts - Adds syntax highlighting to the ECMA-SL source code by using the
Prism 4 syntax highlighting library, which generates an HTML output that can then be converted to
Linux console or Windows Terminal 5 syntax-highlighted text by using the Chalk 6 Node.js library.

1Node.js, 31 October 2021 - https://nodejs.org/en/
2ES modules were introduced in the ECMA-262 6th Edition [10] and allow us to split our code in multiple files.
3Yargs, 31 October 2021 - https://www.npmjs.com/package/yargs
4Prism, 31 October 2021 - https://www.npmjs.com/package/prismjs
5Windows Terminal, 31 October 2021 - https://github.com/microsoft/terminal
6Chalk, 31 October 2021 - https://www.npmjs.com/package/chalk

56

https://nodejs.org/en/
https://www.npmjs.com/package/yargs
https://www.npmjs.com/package/prismjs
https://github.com/microsoft/terminal
https://www.npmjs.com/package/chalk

Aside from the aforementioned modules, we also have a test directory containing TS source files
for unit tests, in which we use the Jest [9] testing framework. In these tests, we verify if the text of
a generated ECMA-SL function, whose instructions we have implemented, is as expected. Currently,
HTML2ECMA-SL consists of 1,472 LOC for the source code and 1,188 LOC for the unit tests.

Parsing instructions The general structure of the HTML portion of an ECMA-262 function is illus-
trated in Listing 6.1, featuring the HTML SECTION tag of the specification of the FulfillPromise internal
method. Most HTML attributes are irrelevant to our parser, and therefore were omitted.

1 <section ...>

2 <h1><a ...>25.4.1.4 FulfillPromise (promise , value)</h1>

3 <p ...>When the FulfillPromise abstract operation is called with arguments <var>promise </var> and <var>value</var> the following

steps are taken:</p>

4 <ol class="proc">

5 <a ...>Assert : the value of <i>promise </i>’s [[PromiseState]] <a ...>internal slot is <code>"pending"</code>.

6 Let <i>reactions </i> be the value of <i>promise </i>’s [[PromiseFulfillReactions]] <a ...>internal slot.

7 Set the value of <i>promise </i>’s [[PromiseResult]] <a ...>internal slot to <i>value</i>.

8 Set the value of <i>promise </i>’s [[PromiseFulfillReactions]] <a ...>internal slot to undefined .

9 Set the value of <i>promise </i>’s [[PromiseRejectReactions]] <a ...>internal slot to undefined .

10 Set the value of <i>promise </i>’s [[PromiseState]] <a ...>internal slot to <code>"fulfilled"</code>.

11 Return <a ...>TriggerPromiseReactions (<i>reactions </i>, <i>value </i>).

12

13 </section >

Listing 6.1: FulfillPromise’s HTML SECTION tag.

The structure of the HTML SECTION tag of a function’s specification is divided in three parts: the
header, which contains the function’s section, name, parameters, and summary; the pseudo-code, which
is identified by an OL tag with class "proc"; and the footer, which contains notes and/or miscellaneous
information about the function. Some function (or macro) specifications may have more than one main
block of pseudo-code, as is the case of the IfAbruptRejectPromise macro (Section 25.4.1.1.1 of ES6).

In order to extract the necessary information from the HTML, we make extensive usage of the Reg-
Exp object, discussed in Section 2.4 of this document. This is possible because the patterns of function
specifications are generally the same, as well as the patterns of recurring pseudo-code instructions.
Listing 6.2 demonstrates the regular expression pattern that we use for extracting the information cor-
responding to a function’s signature. We obtain the function’s section identifier with the first capturing
group, highlighted in red, the function’s name with the second capturing group, highlighted in green, and
the function’s parameters with the third capturing group, highlighted in blue. The third group requires
further text processing in order to extract the individual parameters from the captured string. From the
second capturing group, we can not only extract the function’s name, but we can also infer if the func-
tion is internal or built-in, by verifying if the name contains the dot character, which is used to access
properties of an object.

1 const re = /<h1 ><span[^>]*><a[^>]*> ([^<]*) <\/a><\/span >\s* ([^(]+) (\([^)]*\)) ?\s*<\/h1 >/;

Listing 6.2: RegExp for extracting a function’s signature from the HTML.

For parsing the pseudo-code instructions, we parse each HTML LI tag, that is, each instruction,
individually. Each instruction is matched against a list of possible regular expression patterns until a
match is found. Because instructions may contain several expressions, this process can repeat for
some of the capturing groups. As we have not written regular expressions to cover all the possible
patterns of pseudo-code instructions in the standard, it is often the case that HTML2ECMA-SL is not able
to create an ECMA-SL statement corresponding to the instruction to be parsed. In such cases, the tool
simply outputs /* TODO: Instruction not yet implemented. */ and continues with the generation process.

57

Chapter 7

Evaluation

In this chapter, we present the evaluation results for the main topics of this work: the implementation
of the ES5 Array, part of the ES5 String, ES5 RegExp, and ES5 JSON built-in objects in ECMARef5; the
implementation of the ES6 Promise built-in object in ECMARef6; and HTML2ECMA-SL.

7.1 Reference Implementations

At this stage, our evaluation is primarily done with Test262 [3], the official ECMAScript Conformance Test
Suite. Despite its known coverage issues, Test262 is the most comprehensive ES test suite to date. At a
later stage in the ECMA-SL project, it will be possible to measure the coverage of Test262, with respect
to the code of the ECMARef5 interpreter, in order to know which features have not yet been tested.

Test filtering The evolution of Test262 is consistent with that of ECMA-262. Thus, Test262 contains
tests that target the latest edition of the standard—currently ES12—which our ES5 and ES6 reference
implementations cannot handle. Furthermore, as of October 2021, the number of tests from Test262
covering ES built-in objects is over 19k. Fortunately, many of the Test262 test files targeting ES5 contain
the ”es5id” key in the meta-data of the test, known as the frontmatter 1. This simplifies some of the
filtering process required in our project. Figure 7.1 shows the frontmatter of two Test262 test files that
illustrate this, for the ES5 Array and for the ES6 Promise built-in objects, respectively.

// Copyright (c) 2012 Ecma International. All rights reserved.

// This code is governed by the BSD license found in the LICENSE file.

/*---

es5id: 15.4.5-1

description: Array instances have [[Class]] set to 'Array'

---*/

var a = [];

var s = Object.prototype.toString.call(a);

assert.sameValue(s, '[object Array]', 's');

1

2

3

4

5

6

7

8

9

10

11

12

(a) 15.4.5-1.js

// Copyright (C) 2015 the V8 project authors. All rights reserved.

// This code is governed by the BSD license found in the LICENSE file.

/*---

es6id: 25.4.3.1

description: Promise executor is invoked synchronously

info: |

 9. Let completion be Call(executor, undefined,

 «resolvingFunctions.[[Resolve]], resolvingFunctions.[[Reject]]»).

 25.4.1.3.2 Promise Resolve Functions

1

2

3

4

5

6

7

8

9

10

11

12

(b) exec-args.js

Figure 7.1: Meta-data of two Test262 test files.

Unfortunately, both the ”es5id” and ”es6id” keys have been deprecated 2. New tests contain a ”esid”
key, without the version number, whose value is the hash ID of the HTML anchor of a section of the

1Test262 frontmatter, 31 October 2021 - https://github.com/tc39/test262/blob/main/CONTRIBUTING.md#frontmatter
2Test262 Technical Rationale Report, 31 October 2021 - https://github.com/tc39/test262/wiki/

Test262-Technical-Rationale-Report,-October-2017#specification-reference-ids

59

https://github.com/tc39/test262/blob/main/CONTRIBUTING.md#frontmatter
https://github.com/tc39/test262/wiki/Test262-Technical-Rationale-Report,-October-2017#specification-reference-ids
https://github.com/tc39/test262/wiki/Test262-Technical-Rationale-Report,-October-2017#specification-reference-ids

latest ECMA-262’s HTML version. For this reason, many tests with the ”esid” key may be supported by
ES5 and/or ES6. We filter these tests manually as we investigate the causes for the failing tests during
development. In some cases, there are small incompatibilities between different versions of ES, such
as the ”length” property of Function objects being configurable from ES6 onwards. For these cases, we
have chosen to adapt the behaviour of our reference interpreter to the latest version of ECMA-262.

Testing pipeline Test262 test files make use of auxiliary functions for run-time assertions. For in-
stance, the assert.sameValue function, shown in line 12 of Figure 7.1 (a), compares the values of the
first two arguments, and throws a custom error, Test262Error, if they differ, causing the test to fail. The
set of auxiliary functions used in test files comes from a collection of helper files called the harness of
Test262. In order to run a test file with the ECMA-SL project we must first include the harness, which
we do by concatenating it with the test file prior to running it. The frontmatter of a test file gives us a few
instructions on how the test should be executed and what to expect of it. For instance, if the frontmatter
contains the key flags, and if this key contains the boolean value onlyStrict in its list of values, then
we must append the "use strict" directive to the code of the test, which activates strict mode. Also, if
the frontmatter of a test file contains the key negative, then the test is expected to throw an exception,
whose error name is specified in the string value associated with this key. If the key negative is absent,
then any error thrown will cause the test to fail.

In order to automate the evaluation of our reference implementation we make use of a shell script
that automates the testing process. This process is described in Figure 7.2 and works as follows: (1) we
check if the frontmatter of the test includes the boolean value onlyStrict in the list of boolean values
referenced by the key flags, in which case we prepend the directive "use strict" directive to the code
of the test; (2) we prepend the code of the Test262 harness to the code of the test; (3) we compile
the test to ECMA-SL and execute it using the ECMA-SL engine; (4) we analyse the result of executing
the test, as discussed above, negative tests are expected to throw an exception of a certain type, while
positive tests are expected to execute normally.

After executing the pipeline for a given list of tests, we are given the information of which tests have
passed and which tests have failed, as well as the total passing and total failing tests.

Y

NTest is
Negative?

Y

N

Throws
Exception?JS2ECMA-SL

ECMARef5

ECMA-SL Execution
Engine

ECMA-SL Project

pr
og

ra
m

.e
sl

ast.esl

test.js

harness.js

input.js

N

Y
Throws

Exception?

Y

Is strict
mode?

"use strict";

Figure 7.2: Test execution pipeline.

Test results The test results of our reference implementation for the ECMARef5 interpreter are pre-
sented in detail in the tables of Appendix B, and summarized in Table 7.1. In total, our ES5 reference
implementation passes 3,433 out of the 3,440 filtered tests, with 7 tests failing. Many dependencies of
the ES6 Promise built-in object, such as syntactic elements and built-in functions, were not implemented
before the conclusion of this work. Thus, only 171 of a total of 613 filtered tests for the ES6 Promise
object are currently passing.

60

With respect to the failing tests, we currently have three tests failing for the methods that we im-
plemented for the ES5 String object, which are caused by a faulty conversion of large numbers to
string values in ECMA-SL. This is because the current implementation of the ToString method applied
to the Number type, as specified in Section 9.8.1 of the ECMA-262 Edition 5.1 [5], is incomplete in
ECMARef5. The test that currently fails for the JSON object has to do with the attempt of stringifying Uni-
code surrogate values. A Unicode surrogate value is currently replaced with the FFFD16 code point by
JS2ECMA-SL, as long as we are using UTF-8, which causes the stringify operation to generate a wrong
result. Finally, for the RegExp object, we have two tests failing due to backreferences appearing before
their capture groups being treated as decimal escapes by the regexp-tree library 3, which we use for
parsing the string representation of an ES regular expression pattern to its corresponding AST. The
remaining test that is currently failing for the RegExp object is due to an implementation error in the
handling of backslash characters in the string representation of RegExp patterns.

Section Description #T Passed Failed

15.4 Array 117 117 0

15.4 Array prototype 2150 2150 0

15.5.4 String prototype 538 535 3

15.12 JSON 116 115 1

15.10 RegExp 109 109 0

15.10 RegExp grammar 292 289 3

15.10 RegExp prototype 118 118 0

Total 3,440 3,433 7

Table 7.1: Test262 test results for our ES5 reference implementa-
tion.

3Backreferences appearing before their capture groups incorrectly treated as decimal escapes, 31 October 2021 - https:

//github.com/DmitrySoshnikov/regexp-tree/issues/69

61

https://github.com/DmitrySoshnikov/regexp-tree/issues/69
https://github.com/DmitrySoshnikov/regexp-tree/issues/69

7.2 HTML2ECMASL

The evaluation of HTML2ECMA-SL is a challenging task, since this application is not expected to produce
fully functional ECMA-SL code right out-of-the-box, considering that the ECMA-SL project is still under
development. It will often be necessary to review the generated code, write auxiliary functions, and,
in some cases, extend ECMA-SL with new operators and syntax. Hence, we cannot simply evaluate
HTML2ECMA-SL by having it generate several sections of the ECMA-262 standard and then check if the
generated code passes the corresponding Test262 tests.

In order to evaluate HTML2ECMA-SL, we apply it to Sections 25 and 26 of the ECMA-262 6th Edi-
tion [10], and check whether the generated ECMA-SL code is syntactically valid or not. These sections
correspond to the Promise and Proxy built-in objects, respectively. To automate the testing process, we
make use of unit tests, resorting to the Jest [9] testing framework. Each unit test compares the gen-
erated ECMA-SL code for a given function described in the ECMA-262 standard with the code that we
expect to be generated, which is susceptible to change over time as we adjust it to work with ECMARef6.

As previously mentioned, we could not have fully functional code for the ES6 Promise built-in ob-
ject due to the lack of syntactic and built-in function elements in ECMARef6, which is currently under
development. We also did not test the code generated for the ES6 Proxy built-in object in ECMARef6.
Despite this, testing that the ECMA-SL code is generated as expected is important in order to ensure
that future changes to HTML2ECMA-SL do not introduce silent bugs and corrupt the behaviour of the ap-
plication. HTML2ECMA-SL currently passes 51 out of 51 unit tests, with a test coverage of 97%, measured
by Codecov 4.

4Codecov is a dedicated code coverage solution, which we use to measure the coverage of our tests, 31 October 2021:
https://about.codecov.io

62

https://about.codecov.io

Chapter 8

Conclusion

With the steady evolution of the ECMA-262 standard, it becomes increasingly difficult to maintain and
extend this language specification. For this reason, we contribute to the ECMA-SL project by imple-
menting the following built-in objects in its ES5 reference interpreter: Array, String (partial), RegExp,
and JSON. This work paves the way for the implementation of these built-in objects in future ES refer-
ence interpreters, written in ECMA-SL, that target later versions of ECMA-262. Additionally, we further
contribute to the ECMA-SL project by devising a tool, which we have called HTML2ECMA-SL, that con-
siderably simplifies the implementation process by automatically generating ECMA-SL code from the
pseudo-code of the ECMA-262 6th Edition [10]. We were able to fully generate the ECMA-SL code for
the ES6 Promise and Proxy objects, which we used to initiate the development of an ES6 reference
interpreter written in ECMA-SL.

The three main topics of this thesis were thoroughly evaluated. Our reference implementation of the
ES5 Array, String, RegExp, and JSON built-in objects was tested against Test262 [3], passing 3,433
out of the 3,440 filtered tests. At this stage, we do not yet measure the coverage of Test262, nor apply
formal methods to the language. Our reference implementation of the ES6 Promise built-in object was
also tested against Test262, passing 171 out of 613 filtered tests. And, finally, HTML2ECMA-SL was tested
using a custom made test suite consisting of 51 unit tests, each targeting a specific algorithm / function
of the ECMA-262 standard. The proposed test suite has a 97% code coverage of HTML2ECMA-SL, giving
us a strong guarantee of its correctness.

Our contribution to the ECMARef5 interpreter has a total of 3,184 LOC, our contribution to the ECMARef6

interpreter has a total of 542 LOC, and HTML2ECMA-SL has a total of 2,660 LOC. The ECMA-SL project,
as well as HTML2ECMA-SL, will become open-source in the near future.

Future work We categorize the future work in two types: immediate and long-term. Due to the time
constraints of this project, we were unable to apply HTML2ECMA-SL to the entirety of the ECMA-262 6th
Edition [10] and to generate a given built-in object’s graph in ECMA-SL from the specification of the
standard. Hence, our immediate future work would be to extend HTML2ECMA-SL in order to recognize
more patterns of pseudo-code instructions occurring in the ES6 specification, as well as to generate a
given built-in object’s graph in ECMA-SL from its specification in the standard. Our implementation of the
ES6 Promise object in the ECMARef6 interpreter is also failing a large percentage of tests, which we would
seek to correct by extending the ECMA-SL language and the ECMARef6 interpreter as necessary. In the
long-term, we would like to adapt the patterns of pseudo-code instructions that occur in the ECMA-262
6th Edition [10] to the later editions.

63

Bibliography

[1] C. Severance, “Javascript: Designing a language in 10 days,” Computer, vol. 45, pp. 7–8, 02 2012.

[2] “Ecmascript® language specification, 6th edition / june 2015.” https://www.ecma-international.
org/ecma-262/6.0. Accessed on 2021-10-31.

[3] “Test262 - official ecmascript conformance test suite.” https://github.com/tc39/test262/. Ac-
cessed on 2021-10-31.

[4] S. Anand, E. Burke, T. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp, M. J. Harrold, A. Bertolino,
J. Li, and H. Zhu, “An orchestrated survey on automated software test case generation i,” 2013.

[5] “Annotated, hyperlinked, html version of edition 5.1 of the ecmascript specification.” https://es5.
github.io/. Accessed on 2021-10-31.

[6] “Ocaml - general-purpose, multi-paradigm programming language.” https://ocaml.org/. Ac-
cessed on 2021-10-31.

[7] “Menhir - lr(1) parser generator for the ocaml programming language.” http://gallium.inria.fr/

~fpottier/menhir/. Accessed on 2021-10-31.

[8] “Ounit - a unit test framework for ocaml.” https://github.com/gildor478/ounit/. Accessed on
2021-10-31.

[9] “Jest - a javascript testing framework designed to ensure correctness of any javascript codebase.”
https://jestjs.io/. Accessed on 2021-10-31.

[10] “Html rendering of ecma-262 6th edition, the ecmascript 2015 language specification.” https://
www.ecma-international.org/ecma-262/6.0/. Accessed on 2021-10-31.

[11] J. Fragoso Santos, P. Maksimović, D. Naudziuniene, T. Wood, and P. Gardner, “Javert: Javascript
verification toolchain,” Proceedings of the ACM on Programming Languages, vol. 2, pp. 1–33, 12
2017.

[12] J. Mate, “Javascript does not need a stringbuilder.” https://josephmate.github.io/java/

javascript/stringbuilder/2020/07/27/javascript-does-not-need-stringbuilder.html, 7
2020.

[13] “Standard ecma-404, the json data interchange syntax, 2nd edition / december 2015.”
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_

december_2017.pdf. Accessed on 2021-10-31.

[14] K. Gallaba, A. Mesbah, and I. Beschastnikh, “Don’t call us, we’ll call you: Characterizing callbacks
in javascript,” pp. 1–10, 10 2015.

65

https://www.ecma-international.org/ecma-262/6.0
https://www.ecma-international.org/ecma-262/6.0
https://github.com/tc39/test262/
https://es5.github.io/
https://es5.github.io/
https://ocaml.org/
http://gallium.inria.fr/~fpottier/menhir/
http://gallium.inria.fr/~fpottier/menhir/
https://github.com/gildor478/ounit/
https://jestjs.io/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://josephmate.github.io/java/javascript/stringbuilder/2020/07/27/javascript-does-not-need-stringbuilder.html
https://josephmate.github.io/java/javascript/stringbuilder/2020/07/27/javascript-does-not-need-stringbuilder.html
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

[15] P. Thiemann, “Towards a type system for analyzing javascript programs,” Lecture Notes in Computer
Science, vol. 3444, 04 2005.

[16] C. Anderson, S. Drossopoulou, and P. Giannini, “Towards type inference for javascript,” Lecture
Notes in Computer Science, vol. 3586, 07 2005.

[17] D. Jang and K.-M. Choe, “Points-to analysis for javascript,” Proceedings of the ACM Symposium on
Applied Computing, pp. 1930–1937, 01 2009.

[18] C. Park and S. Ryu, “Scalable and precise static analysis of javascript applications via loop-
sensitivity,” 01 2015.

[19] K. Dewey, V. Kashyap, and B. Hardekopf, “A parallel abstract interpreter for javascript,” pp. 34–45,
02 2015.

[20] A. Chaudhuri, “Flow: Abstract interpretation of javascript for type checking and beyond,” 10 2016.

[21] J. Fragoso Santos, T. P. Jensen, T. Rezk, and A. Schmitt, “Hybrid typing of secure information flow
in a javascript-like language,” 01 2016.

[22] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking information flow in javascript
and its apis,” 03 2014.

[23] A. Chudnov and D. A. Naumann, “Inlined information flow monitoring for javascript,” 10 2015.

[24] P. Gardner, S. Maffeis, and G. Smith, “Towards a program logic for javascript,” Sigplan Notices -
SIGPLAN, vol. 47, pp. 31–44, 01 2012.

[25] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner, “Javert 2.0: compositional symbolic
execution for javascript,” Proceedings of the ACM on Programming Languages, vol. 3, pp. 1–31, 01
2019.

[26] “Coq - interactive formal proof management system.” https://coq.inria.fr/. Accessed on 2021-
10-31.

[27] “K - rewrite-based executable semantic framework.” https://kframework.org/. Accessed on
2021-10-31.

[28] S. Maffeis, J. Mitchell, and A. Taly, “An operational semantics for javascript,” pp. 307–325, 12 2008.

[29] G. Plotkin, “A structural approach to operational semantics,” J. Log. Algebr. Program., vol. 60-61,
pp. 17–139, 07 2004.

[30] S. Maffeis and A. Taly, “Language-based isolation of untrusted javascript,” pp. 77–91, 07 2009.

[31] S. Maffeis, J. Mitchell, and A. Taly, “Isolating javascript with filters, rewriting, and wrappers,”
vol. 5789, pp. 505–522, 09 2009.

[32] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,” ECOOP, Lec- Ture Notes in
Computer Science, pp. 126–150, 06 2010.

[33] “Racket - general-purpose programming language.” https://racket-lang.org/. Accessed on
2021-10-31.

[34] J. Politz, M. Carroll, B. Lerner, J. Pombrio, and S. Krishnamurthi, “A tested semantics for getters,
setters, and eval in javascript,” ACM SIGPLAN Notices, vol. 48, pp. 1–16, 10 2012.

66

https://coq.inria.fr/
https://kframework.org/
https://racket-lang.org/

[35] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, and
G. Smith, “A trusted mechanised javascript specification,” Conference Record of the Annual ACM
Symposium on Principles of Programming Languages, vol. 49, pp. 87–100, 01 2014.

[36] A. Charguéraud, “Pretty-big-step semantics,” pp. 41–60, 03 2013.

[37] P. Gardner, G. Smith, C. Watt, and T. Wood, “A trusted mechanised specification of javascript: One
year on,” vol. 9206, pp. 3–10, 07 2015.

[38] “V8 - google’s open source high-performance javascript and webassembly engine, written in c++.”
https://v8.dev/. Accessed on 2021-10-31.

[39] D. Park, A. Stefănescu, and G. Roşu, “Kjs: A complete formal semantics of javascript,” ACM SIG-
PLAN Notices, vol. 50, pp. 346–356, 06 2015.

[40] G. Rosu, A. Stefanescu, Ş. Ciobâcă, and B. M. Moore, “One-path reachability logic,” in 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pp. 358–367, 2013.

[41] A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu, “Semantics-based program verifiers for
all languages,” in Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 74–91, 2016.

[42] A. Charguéraud, A. Schmitt, and T. Wood, “Jsexplain: A double debugger for javascript,” WWW ’18:
Companion Proceedings of the The Web Conference 2018, pp. 691–699, 04 2018.

[43] J. Launchbury and S. Peyton Jones, “State in haskell,” LISP and Symbolic Computation, vol. 8, 11
1998.

[44] M. Madsen, O. Lhoták, and F. Tip, “A model for reasoning about javascript promises,” Proceedings
of the ACM on Programming Languages, vol. 1, pp. 1–24, 10 2017.

[45] S. Alimadadi, M. Madsen, D. Zhong, and F. Tip, “Finding broken promises in asynchronous
javascript programs,” Proceedings of the ACM on Programming Languages, vol. 2, pp. 1–26, 10
2018.

[46] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: a selective record-replay and dynamic
analysis framework for javascript,” Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, 08 2013.

[47] G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner, “A trusted infrastructure for symbolic
analysis of event-driven web applications,” pp. 15–16, 11 2020.

[48] W3C, “Dom core level 1 specification.” https://www.w3.org/TR/1998/

REC-DOM-Level-1-19981001/level-one-core.html. Accessed on 2021-10-31.

[49] W3C, “Ui events.” https://www.w3.org/TR/uievents/. Accessed on 2021-10-31.

[50] Wheeler, Ken and Spampinato, Fabio, “cash (github).” https://github.com/kenwheeler/cash.
Accessed on 2021-10-31.

[51] Sorhus, Sindre, “p-map (github).” https://github.com/sindresorhus/p-map. Accessed on 2021-
10-31.

67

https://v8.dev/
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html
https://www.w3.org/TR/uievents/
https://github.com/kenwheeler/cash
https://github.com/sindresorhus/p-map

[52] J. Park, J. Park, S. An, and S. Ryu, “JISET: javascript ir-based semantics extraction toolchain,” in
35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Mel-
bourne, Australia, September 21-25, 2020, pp. 647–658, 2020.

[53] L. Loureiro, “Ecma-sl - a platform for specifying and running the ecmascript standard,” Master’s
thesis, Instituto Superior Técnico, July 2021.

[54] “Esprima - ecmascript parsing infrastructure for multipurpose analysis.” https://esprima.org/.
Accessed on 2021-10-31.

[55] F. Quinaz, “Precise information flow control for javascript,” Master’s thesis, Instituto Superior
Técnico, July 2021.

[56] M. Goregaokar, “Let’s stop ascribing meaning to code points.” https://manishearth.github.io/
blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/, 1 2017.

[57] “The unicode character database.” https://www.unicode.org/ucd/. Accessed on 2021-10-31.

[58] J. Fragoso Santos, L. Almeida, and R. Abreu, “Rexstepper: a reference debugger for javascript
regular expressions,” submitted.

[59] “Ecmascript® language specification, 10th edition / june 2019.” https://www.

ecma-international.org/ecma-262/10.0. Accessed on 2021-10-31.

68

https://esprima.org/
https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/
https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/
https://www.unicode.org/ucd/
https://www.ecma-international.org/ecma-262/10.0
https://www.ecma-international.org/ecma-262/10.0

Appendix A

Syntax of the ECMA-SL language

Syntax of the ECMA-SL language

Integers: i ∈ I Floats: f ∈ F Booleans: b ∈ B

Vars: x ∈ X Strings: s ∈ S Types: τ ∈ T Y

Locs: l ∈ L Symbol: sy ∈ SY

Values: v ∈ V := i | f | s | b | l | τ | [v1, · · · , vn] | (v1, · · · , vn) | void | null | sy

Expressions: e ∈ E := (e) | v | x | |x| | 	 e | e1 ⊕ e2 | ⊗(e1, e2, e3) | ⊗(e1, · · · , en) |

{} | {s1 : e1, · · · , sn : en} | e.x | e1[e2] |

e(e1, · · · , en) | e(e1, · · · , en) catch x | extern e(e1, · · · , en)

Statements: st ∈ Stmts := {st1; · · · ; stn} | skip | print e | fail e | assert e | throw e |

if (e) st1 else st2 | if (e1) st1 elif (e2) st2 elif · · · else stn |

repeat st | repeat st until e | while (e) st |

foreach (x : e) st | switch (e) {case e1 : st1 · · · case en : stn} |

match e with | {s : x | v | None } → st | · · · | default → st |

x := lambda (x1, · · · , xn)[x1, · · · , xn] st | @x(e1, · · · , en) |

|x| := e | x := e | e1[e2] := e3 | delete e1[e2] | return e

Syntax of the Core ECMA-SL Language

Integers: i ∈ I Floats: f ∈ F Booleans: b ∈ B

Vars: x ∈ X Strings: s ∈ S Types: τ ∈ T Y

Locs: l ∈ L Symbol: sy ∈ SY

Values: v ∈ V := i | f | s | b | l | [v1, · · · , vn] | τ | (v1, · · · , vn) | void | null | sy

Expressions: e ∈ E := v | x | 	 e | e1 ⊕ e2 | ⊗(e1, · · · , en)

Statements: st ∈ Stmts := st1; st2 | skip | merge | print e | fail e |

if (e) st1 else st2 | while (e) st | return e |

x := e | x := e(e1, ..., en) | x := {} | x := e1 in e2 |

e1[e2] := e3 | delete e1[e2] | x := e1[e2] |

x := e@(e1, ..., en) | x := fields e

69

Appendix B

Reference implementation results

Section (folder) #T Passed Failed

String prototype

15.5.4.10 (match) 38 38 0

15.5.4.11 (replace) 43 43 0

15.5.4.12 (search) 30 30 0

15.5.4.14 (split) 207 207 0

15.5.4.16 (toLowerCase) 24 24 0

15.5.4.17 (toLocaleLowerCase) 24 24 0

15.5.4.18 (toUpperCase) 23 23 0

15.5.4.19 (toLocaleUpperCase) 23 23 0

15.5.4.20 (trim) 126 123 3

Total 538 535 3

Table B.1: Test262 test results for the methods of the ES5 String
object that we implemented.

Section (folder) #T Passed Failed

JSON

15.12 (JSON) 5 5 0

15.12.2 (parse) 63 63 0

15.12.3 (stringify) 48 47 1

Total 116 115 1

Table B.2: Test262 test results for the ES5 JSON object.

71

Section (folder) #T Passed Failed

Array

15.4 (Array) 59 59 0

15.4.2 (constructor) 2 2 0

15.4.3.2 (isArray) 25 25 0

15.4.5.2 (length) 14 14 0

15.4.4 (prototype) 17 17 0

Array prototype

15.4.4.2 (toString) 10 10 0

15.4.4.3 (toLocaleString) 9 9 0

15.4.4.4 (concat) 13 13 0

15.4.4.5 (join) 21 21 0

15.4.4.6 (pop) 15 15 0

15.4.4.7 (push) 14 14 0

15.4.4.8 (reverse) 14 14 0

15.4.4.9 (shift) 17 17 0

15.4.4.10 (slice) 47 47 0

15.4.4.11 (sort) 27 27 0

15.4.4.12 (splice) 55 55 0

15.4.4.13 (unshift) 15 15 0

15.4.4.14 (indexOf) 190 190 0

15.4.4.15 (lastIndexOf) 191 191 0

15.4.4.16 (every) 207 207 0

15.4.4.17 (some) 208 208 0

15.4.4.18 (forEach) 183 183 0

15.4.4.19 (map) 187 187 0

15.4.4.20 (filter) 220 220 0

15.4.4.21 (reduce) 254 254 0

15.4.4.22 (reduceRight) 253 253 0

Total 2,267 2,267 0

Table B.3: Test262 test results for the ES5 Array object.

72

Section (folder) #T Passed Failed

RegExp

15.10 (RegExp) 11 11 0

15.10.1 (matcher-syntax) 16 16 0

15.10.3.1 (regexp-object) 9 9 0

15.10.4.1 (new-regexp) 47 47 0

15.10.5 (constructor-properties) 3 3 0

15.10.5.1 (constructor) 4 4 0

15.10.7 (instance-properties) 6 6 0

15.10.7.1 (source) 1 1 0

15.10.7.2 (global) 4 4 0

15.10.7.3 (ignoreCase) 4 4 0

15.10.7.4 (multiline) 4 4 0

RegExp grammar

15.10.2.3 (disjunction) 17 17 0

15.10.2.5 (term) 6 6 0

15.10.2.6 (assertion) 44 44 0

15.10.2.7 (quantifier) 69 69 0

15.10.2.8 (atom) 60 60 0

15.10.2.9 (atom-escape) 4 4 0

15.10.2.10 (character-escape) 13 12 1

15.10.2.11 (decimal-escape) 7 5 2

15.10.2.12 (char-class-escape) 2 2 0

15.10.2.13 (char-class) 28 28 0

15.10.2.15 (char-class-ranges) 42 42 0

RegExp prototype

15.10.6 (prototype-obj) 5 5 0

15.10.6 (prototype) 8 8 0

15.10.6.2 (exec) 61 61 0

15.10.6.3 (test) 38 38 0

15.10.6.4 (toString) 6 6 0

Total 519 516 3

Table B.4: Test262 test results for the ES5 RegExp object.

73

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Why JavaScript?
	ECMA-262's Complexity
	ECMA-SL Project
	Problem Statement
	Thesis structure

	Background
	ES Standard
	ES5 Array Object
	ES5 String Object
	ES5 RegExp Object
	ES5 JSON Object
	ES6 Promise Object
	ES6 Incompatibilities with Prior Editions

	Related Work
	Extending ECMA-SL
	An Overview of ECMA-SL
	Implementing UTF-8
	Other Extensions

	Reference Implementation
	ES5 Array
	ES5 String
	ES5 RegExp
	ES5 JSON
	ES6 Promise

	HTML2ECMA-SL
	Evaluation
	Reference Implementations
	HTML2ECMASL

	Conclusion
	Bibliography
	Syntax of the ECMA-SL language
	Reference implementation results

