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Superior Técnico, Universidade de Lisboa
Doctor Pedro Miguel dos Santos Alves Madeira Adão, Instituto
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Abstract

The purpose of the present dissertation is to characterize complexity classes from
standard computational complexity theory by means of systems of ordinary differen-
tial equations. We start this work by recalling the concepts of generable functions
as functions represented by solutions of polynomial ordinary differential equations.
Then we present the details about a previous existing analog characterization for
the classes P and FP. Building on this result we show how to extend the character-
ization for the class FEXPTIME, and then for the classes of elementary functions
and primitive recursive functions. To be able to obtain these extensions we have to
overcome the fact that the previous construction designed for FP relied on compo-
sition properties of polynomials which does not stand for other general boundaries.
We also demonstrate that with some modifications to the main definitions of our
simulation it is possible to provide a description of complexity classes of decidable
sets, such as EXPTIME. Moreover, modifying the way the continuous simulation
of Turing machines is performed we are able to provide a complete characterization
of the polynomial space complexity classes FPSPACE and PSPACE.

Finally, we discuss the complexity of the problem of computing the complex
square root over simply connected domains of the complex plane, describing an
algorithm that proves the upper complexity bound to belong to the class P

⊕
P. This

description improves the existing computational complexity result for this problem,
which was achieved with an algorithm of complexity PMP.

Keywords: Computability and complexity, analog computation, dynamical
systems, computable analysis, ordinary differential equations, Grzegorczyk hi-
erarchy, general purpose analog computer, EXPTIME, PSPACE, complex anal-
ysis, complex square root.

We acknowledge the support of Instituto de Telecomunicações. This work is
funded by FCT/MCTES through national funds and when applicable co-funded
EU funds under the project UIDB/50008/2020.
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Resumo

O objetivo da presente dissertação é caracterizar classes de complexidade da
teoria da complexidade computacional através de equações diferenciais ordinárias
polinomiais.

Inicialmente relembramos o conceito de função gerável, que são funções repre-
sentadas por meio de soluções de equações diferenciais ordinárias polinomiais. De
seguida, utilizando funções geráveis, apresentamos em detalhe uma caracterização
analógica já existente na literatura para as classes P e FP. Com base neste re-
sultado, é mostrado como se pode estender a caracterização anterior para a classe
FEXPTIME, e de seguida para a hierarquia de Grzegorczyk. Em consequência da
caracterização da hierarquia de Grzegorczyk, obtemos também uma caracterização
da classe das funções elementares e da classe das funções recursivas primitivas. De
modo a poder obter estas extensões, é necessário ultrapassar alguns problemas. Em
particular, a construção anteriormente utilizada para caracterizar FP depende do
facto da classe dos polinómios ser fechada sob composição, enquanto isso não é
necessariamente verdadeiro para outras classes de funções como a classe das funções
exponenciais. Adicionalmente mostramos que, com algumas modificações nas prin-
cipais definições de simulação de sistemas discretos através de sistemas cont́ınuos,
é posśıvel fornecer uma descrição puramente analógica de classes de complexidade
envolvendo linguagens, como EXPTIME. Além disso, modificando a forma como
a simulação cont́ınua das máquinas de Turing é realizada, é também apresentada
uma caracterização analógica das classes de complexidade FPSPACE e PSPACE
envolvendo espaço polinomial.

Finalmente, discutimos a complexidade computacional do problema de calcular
a raiz quadrada complexa sobre doḿınios simplesmente conexos no plano complexo,
e descrevemos um algoritmo de complexidade computacional P

⊕
P, melhorando o

resultado existente de complexidade computacional para este problema, que utilizava
um algoritmo de complexidade PMP.

Palavras-chave: Computabilidade e complexidade, computação analógica,
sistemas dinâmicos, análise computável, equações diferenciais ordinárias, hi-
erarquia de Grzegorczyk, GPAC, EXPTIME, PSPACE, análise complexa, raiz
quadrada complexa.

Agradecemos o apoio do Instituto de Telecomunicações. Este trabalho é
financiado pela FCT/MCTES através de fundos nacionais e, quando aplicável,
cofinanciados por fundos da UE no âmbito do projeto UIDB/50008/2020.
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Chapter 1

Introduction

The main purpose of this thesis work is to investigate the nature of analog
computation through the help of dynamical systems. This investigation may
provide important tools to future research on the validity of the generalized
form of the Church-Turing hypothesis.

Since its first formulation, the Church-Turing postulate has made computer
scientists wonder about the intrinsic limitations of algorithmic computation.
This hypothesis, named after Alan Turing and Alonzo Church, states that a
function on the natural numbers can be calculated by an effective method if
and only if it is computable by a Turing machine. Many empirical evidences as
well as theoretical confirmations has been found through the years by different,
independent teams of researchers leading to a universal agreement on the content
of the postulate [1], [2], [3], [4], [5]. Due to the impressive generality of such
a result, different formulations have been stated with the purpose of extending
the postulate validity for other areas of computer science, such as complexity
theory or analog computation. This led to the formulation of the generalized
physical form of the Church-Turing hypothesis, which states that any physically
realistic (macroscopic) computer is equivalent to Turing machines both in terms
of computability and complexity.

Nevertheless, in the context of continuous-time and continuous-space mod-
els of computation, no convincing confirmation or disproof of this generalized
statement has been provided and universal agreement has not been reached.
Therefore, the hope of discovering some super-Turing algorithmic solutions to
relevant problems has survived for models of computation that could make use
of continuous measurements of complexity. An example of one of these models
is Quantum computation, a continuous-space, discrete-time model described by
Richard Feynman in 1982 [6] that has the power of allowing significant speedups
for the solution of complex problems such as factorization [7]. However, most
of these analog or half-analog models of computation present the same type of
obstacles for a reasonable characterization of their complexity. One of these
obstacles goes under the name of Zeno phenomenon. This phenomenon consists
in the possibility of contracting or enlarging the time boundaries of a contin-
uous method of computation without affecting the outcome. This contraction
can be applied to the extent of transforming infinite time of computation into
finite time, and therefore can generate surprising super-Turing results, such as
the ones presented by [8], [9], [10], [11].
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This technique can also be used to continuously simulate Turing machines in
any desirable short time [12], [13]. A simple way to qualitatively understand how
this phenomenon presents itself is through the example of ordinary polynomial
differential equations. Let us consider p to be a polynomial on the reals and
x(t) : R→ R to be the solution of the equation

x′ = p(x(t)). (1.1)

Consider now the following system{
y′ = p(y(t))z(t)

z′ = z(t)
(1.2)

The solution y(t) of the first equation of (1.2) will reproduce the solution x(t)
of (1.1) with an exponential speedup, i.e. y(t) = x(et), although the ODE is
remaining polynomial.

The Zeno phenomenon is a transversal problem that seems to be somehow
dependent on the nature of continuous-time and takes place in many different
methods of continuous computation [14]. The main model considered for analog
computation in this thesis work is the model called GPAC, or General Purpose
Analog Computer . Claude Shannon introduced this model in 1941 [15] inspired
by the idea of giving a strong theoretical foundation to devices like the differ-
ential analyzer, a machine made by a system of disks and wheels that could
compute solutions of simple differential equations [16]. Shannon worked as an
operator on this machine years prior his formulation of the model. A section of
this introduction will be dedicated to describe this model and its more recent
modifications.

Another model that is taken in consideration is computable analysis. Com-
putable analysis is an approach to computation with real numbers (and, in
general, continuous entities) that makes use of type-2 Turing machines, (or,
equivalently, of oracle Turing machines) to describe approximations of infinite
objects with arbitrary precision. Although this model uses type-2 Turing ma-
chines as a base for computations, it is useful to consider computations over
a great variety of continuous objects and a great variety of problems of analy-
sis, constituting therefore a paradigm for analog computation. A more detailed
treatment of the subject can be found in [17], and a brief description will be
given in a section following this introduction.

The two models just listed above present an interesting connection both
on a computability and on a complexity level. One important explanation of
this connection came in a paper of 2007 by Bournez, Campagnolo, Graça and
Hainry [18] where they proved that the GPAC and computable analysis are two
equivalent paradigms of analog computation. Specifically, this means that ev-
ery computable function in the sense of computable analysis can be obtained
using a system of polynomial differential equations of the same type of the ones
described by the GPAC model, and vice versa. It is important to stress the
relevance of this result on the investigation on the generalized Church-Turing
postulate. One immediate consequence of this result is acknowledging that the
GPAC, a purely continuous (both in time and space) model of computation,
is Turing complete, and therefore possesses all the power of digital, discrete
computation. This fact constituted a surprise at the time because, due to some
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technical aspects of the original definition of the GPAC model, the scientific
community believed computable analysis to be more powerful in terms of com-
putational resources. Nevertheless, a slight modification on the GPAC definition
allowed the authors to boost the computational power of the model and obtain
the equivalence. Indeed, within the right set of assumptions, computation by
means of ODEs possesses an impressive computational power. For example, it
was later shown in 2020 in [19] that there exists a single system of polynomial
ODEs whose solutions can approximate up to any desirable precision every con-
tinuous function over the reals. The proof of this fact relies on the construction
of a universal ordinary differential equation using only polynomial terms.

In 2017 a similar conclusion to what it was done for computability in [18]
was reached for the case of polynomial complexity. In [20] the authors found an
efficient way to solve the problem posed by the Zeno phenomenon, identifying
the length of the curve of the solutions of dynamical systems as a suitable pa-
rameter to measure the complexity of the model. Precisely, it has been proved
that discrete functions computable in polynomial time correspond to functions
which are emulable by polynomial ordinary differential equations of polynomial
length. The paper [20] constitutes the main inspiration and reference to this
thesis work. However, little was known about the possibility of extending this
result to functions (and sets) computable (decidable) in greater times, such as
FEXPTIME (EXPTIME). A straightforward extension was indeed hindered by
technical complications connected with the requirement of specific composition
properties in the structure of the proofs of [20]. In particular it relied on the
fact that the class of polynomials is closed under composition. However, closure
under composition is not satisfied for the class of exponential functions. More-
over, a treatment of discrete classes defined by space bounds, such as PSPACE,
was still missing for this approach. With this thesis work, we found a way to
obtain the same characterization of [20] for exponential classes, showing that
discrete complexity classes defined by greater time boundaries can always be
analyzed with the same analog approach. This extension allowed us to identify
some conditions that are sufficient for a greater generalization of the approach,
and this lead us to a complete analog characterization of the Grzegorczyk hi-
erarchy, which implies a characterization of all elementary functions and all
primitive recursive functions. Moreover, we show that it is also possible to de-
scribe with systems of ODEs classes defined by polynomial space boundaries,
such as FPSPACE and PSPACE. We believe that these results can provide
a deeper understanding of the effectiveness and limitations of the generalized
Church-Turing postulate on a complexity level.

Another area in which this thesis work has interesting applications is implicit
complexity theory. It is not easy to explain the exact meaning of the word
implicit in that expression, because its interpretation can vary depending on
the area of interest of the scientific group that is using it. Heuristically, goes
under the name of implicit complexity theory the attempt to describe complexity
classes without the help of any basic computational device, such as Turing
machines. One of the main motivations for this research area is to find an
alternative perspective from where to address the most complicate and cryptic
theorems of complexity theory. Indeed, it is common opinion between computer
scientists that one possible reason to explain the amount of open and unsolved
problems in complexity theory (such as the famous P vs NP) could be a lack
of mathematical tools able to effectively handle the process of computation
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through Turing machines. Therefore, establishing a machine-independent way
to define complexity classes could circumvent this obstacle, allowing to borrow
tools from other well known areas of mathematics and apply them in this new
context.

Many machine-independent characterizations of complexity theory have been
provided by different research teams from all over the world by means of function
algebras [21], rewriting systems, lambda calculus [22], neural networks [23] and
many others. However, none of these characterizations present a fully continu-
ous parametrization of the space and time boundaries. Therefore, one important
achievement of [20] was to construct the first entirely continuous characteriza-
tion of the complexity class P. Extending the work done by Bournez, Graça and
Pouly this thesis work proves how to systematically characterize any complexity
class (of computable functions, or decidable sets) defined by time boundaries
(such as FEXPTIME, or EXPTIME), as long as these boundaries satisfies a
specific set of properties, such as being closed when composed with polynomi-
als. Indeed, the analysis we made allow us to precisely define a set of conditions
on the boundaries which are sufficient for extending the characterization. Fol-
lowing this direction we also show that this characterization procedure can be
applied for functions that are computable by Turing machines in time greater
than an exponential on the size of the input; specifically, it can be general-
ized for functions belonging to any of the levels of the Grzegorczyk hierarchy.
Concretely, the latter includes all elementary functions as well as all primitive
recursive functions. Moreover, according with the spirit of implicit complexity
theory, we have been able to formulate an alternative version of the open com-
plexity problem EXPTIME vs PSPACE that only relies on theoretical objects
and definitions from analysis.

The remaining part of the introduction aims to illustrate the basics of three
of the main areas related to this thesis work. It will be organized in three
separate sections, one for dynamical systems and ODEs, one for computable
analysis and one for the GPAC and generable functions.

1.1 Dynamical systems and ordinary differential
equations

Dynamical systems are arguably the most common mathematical model for the
description of physical phenomenons. Their applications extend also to other
scientific areas, such as chemistry, finance or biology. Some standard textbooks
on the topic are [24], [25]. A dynamical system is a system whose properties
evolve over time in a specific external environment modeled by a mathematical
space X. Depending on the context X can represent a common Euclidean space
or have a more complex structure of a manifold.

A formal mathematical definition of a dynamical system is the following.

Definition 1.1 (Dynamical system) A dynamical system is a tuple (T,X,Φ)
where T is an additive monoid, X is a set and Φ : U ⊆ T ×X → X is a map
satisfying

� Φ(0, x) = x

� Φ(t2,Φ(t1, x)) = Φ(t1 + t2, x) for t1, t2 ∈ T
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The monoid T is generally described as the time, the set X as the state or phase
space and the map Φ as the flow.

Generally the description of the evolution is given in implicit form, by means
of iterations of certain classes of functions or by means of systems of differential
equations. The trajectories described over the phase space by the evolving
properties are called orbits. If the time evolution of these properties is ruled
by a deterministic law, we call the system a deterministic dynamical system.
Otherwise, if the evolution depends on some probability distribution, we call
the system a stochastic dynamical system. In this thesis work we will deal only
with deterministic systems. A detailed analysis of stochastic systems can be
found in [24]. Moreover, dynamical systems can be distinguished in two classes:
discrete and continuous. Hybrid dynamical systems also exist, as systems that
make use of some continuous components and some discrete components, and
their use is common within the context of control theory [24], [26]. We will
return on some aspects of control theory later in this section.

Discrete time dynamical systems are systems whose evolving properties are
measured only at integer times. Examples of discrete dynamical systems are
sequences, cellular automata, shifts or Turing machines themselves. From the
point of view of computation, the treatment of discrete-time and discrete-space
systems is simpler than the continuous case, and much is known on the behavior
of these systems. Nevertheless, discrete-time and discrete-space systems are ex-
tremely relevant also because they can arise as a possible alternative description
of certain classes of differential equations, by means of the Poincaré Map [25]. In
some cases, it is still possible to generate extremely complex behaviors just by
iterating a function defined on a closed interval. Discrete systems that present
such behaviors are the discrete chaotic maps, which are transitive maps that
present infinitely many, dense, periodic points on their definition domain and
that are extremely sensitive to initial conditions. The logistic map and the
horseshoe map are two famous examples of discrete and chaotic dynamical sys-
tems [27], [28].

Continuous dynamical systems are systems in which the time is measured
continuously, meaning that t ∈ R. A subclass of continuous systems is the class
of smooth dynamical systems, where properties of the systems depend on time
in a continuously differentiable manner. The computational task of determine
whether the orbit of a continuous systems passes through specific areas of the
phase space is called reachability . Connected with reachability are key questions
from control and verification theory. Indeed if we can fully solve reachability
problems related to specific continuous systems, from a computational perspec-
tive, then we can provide automated verification tools (where a digital computer
is used) for those systems, ensuring that they will behave correctly [29], [30].
Unfortunately the latter is in general a difficult problem, and negative results
for reachability also exist in literature; for instance, in [11].

Continuous-time dynamical systems can present chaotic behaviors as well,
where the definition of chaos has to be intended in a similar fashion to the
discrete case. In dimensions greater than one, these systems can manifest the
so called strange attractors, which are attractors whose description is not a
simple geometrical object. The most famous example is perhaps the Lorenz
attractor, generated from certain solutions of the Lorenz system, a system of
differential equations originally proposed to model atmospheric convection phe-
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nomenons [31]. Understanding the chaotic behavior of this system constituted
one of the eighteen problems proposed by Steve Smale in his list of 1998 [32],
and a satisfying description was later given by Warwick Tucker in 2002 [33].

The main category of continuous dynamical systems studied in this thesis
work is the one of ordinary differential equations, and, more precisely, the class
of Polynomial Initial Value Problems, or PIVP. A differential equation is called
ordinary if it contains only functions f, g, .. that depend on one independent
variable, and the derivatives of those functions f ′, f ′′, .., g′, g′′, ... Other possible
classes of differential equations are differential algebraic equations, which are not
completely solvable for the derivatives of all components, and partial differen-
tial equations, where more than one independent variable and the use of partial
derivatives are allowed. Neither of these two classes are taken in consideration
by this thesis work. An initial value problem is defined as the mathematical task
of finding the solution of a given differential equation when the initial condi-
tions are also given. In general, a method to obtain solutions of a generic initial
value problem involving ODEs is not known, and the most common approaches
consider only approximation methods for solutions with bounded domains of
definition. Areas of research related to this topic are computable analysis and
numerical analysis of ODEs, which studies digital implementations of proce-
dures such as the Euler’s method. Most of these methods share common ideas
inspired by the Euler method and are based on considering discrete sequence of
points and time steps, converging to the solution. Each procedure can present
a different degree of efficiency and accuracy, depending on the computational
speed and precision of the algorithm used to obtain the approximation of the
solution. Both the parameters can be estimated by a theoretical analysis of the
algorithm prior to any implementation, and they usually depend on the way the
considered interval is discretized into separate subintervals [34].

For some specific restricted subclasses of IVP there are theorems that ensure
the existence of solutions. One of these particular cases is the case of Lipschitz
differential equations.

Definition 1.2 (Lipschitz function) Let O ⊂ Rn be an open set. A function
F : O → Rn is said to be Lipschitz on O if there exists a constant K such that

|F (X)− F (Y )| ≤ K|X − Y | for all X,Y ∈ O

we call K a Lipschitz constant for F . More generally, we say that F is locally
Lipschitz if each point in O has a neighborhood O′ in O such that the restric-
tion F to O′ is Lipschitz. The Lipschitz constant of F |O′ may vary with the
neighborhoods O′.

Notice that every function F such that F is Cn (the first n derivatives of
F exist and are continuous) with n ≥ 1 is locally Lipschitz. An initial value
problem whose definition makes use of functions that satisfy a locally Lipschitz
condition on their existence domain can be successfully solved with the help of
the following existence and uniqueness theorem [35].

Theorem 1.3 (The existence and uniqueness theorem) Consider the ini-
tial value problem

X ′ = F (X), X(0) = X0 (1.3)
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where X0 ∈ Rn. Suppose that F : Rn → Rn is locally Lipschitz on Rn. Then
there exists a unique solution of this initial value problem. More precisely, there
exists a > 0 and a unique solution

X : (−a, a)→ Rn

of (1.3) satisfying the initial condition X(0) = X0.

A PIVP, or Polynomial Initial Value Problem is an IVP whose differential
equations are defined using only polynomial terms. As we will see further on in
this introduction, the solutions of these problems are closely related to solutions
generated by alternative versions of the GPAC.

Concerning the computability and complexity of computing ODEs solutions,
an important result given by Graça and Pouly in 2016 will be used extensively
in this thesis work. In [36] they presented an algorithm to compute up to any
desirable precision the solution of a PIVP on a fixed time interval using oracle
Turing machines with a computational time polynomial on the length of the
solution on that domain. The speed of the algorithm also depends polynomially
on the required precision, the initial condition, and the degree and coefficients
of the polynomial defining the PIVP.

For the more general case, where the IVP is defined by a locally Lipschitz
differential equation on a bounded domain, it was shown in [37] that the com-
putational complexity of the solution lies in the class of PSPACE problems.

1.2 Computable analysis

The idea of studying computable properties of real numbers and continuous
mathematical objects dates back to Alan Turing [38]. Turing stated that a
computable real number is one whose decimal (or binary) expansion can be
enumerated by a finite procedure on a Turing machine. He subsequently de-
veloped the theory of computable functions of computable real numbers, where
he considered computable functions defined on these computable numbers. The
computable functions are defined not on the reals themselves, however, but
on sequences of digits of those reals. Although greatly innovative, this concept
contained some problems. Indeed, under this definition of computability, simple
operations on the reals such as addition and multiplication are not computable
due to the impossibility of obtaining part of the infinite decimal expansion of
the outcome of these operations with the only help of finitely many digits of
the inputs. Nevertheless, the approach inspired other scientists, such as Daniel
Lacombe and Andrzej Grzegorczyk, to propose alternative definitions of what
means to compute real numbers in order to solve this problem [39], [40]. Dif-
ferent ways to work with computability and complexity of continuous objects
have been proved to be more useful and efficient with respect to others, and vice
versa, depending on the main goal of the research. For example, an efficient way
to work with real numbers, when the main focus is computational complexity,
is to work with representations of these numbers. In general, a representation
of a continuous object is an infinite string of binary symbols that encodes that
object. An approach to real numbers that makes use of representations is to
consider real numbers as quickly converging sequences of rational numbers. This
is the most popular approach under the framework of computable analysis, and
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it is the one considered by this thesis work. The sequences of rationals are
then encoded in binary and disposed on a infinite string of symbols, forming
this way a representation that can be manipulated by the chosen computational
devices. The devices can be type-2 machines, following the approach of Klaus
Weihrauch [17], or oracle Turing machines, following the approach of Ker-I
Ko [41]. In general, for a generic continuous object, such as a set, a number or a
function on the reals, many different choices of representations are possible, and
the results obtained by these approaches often vary depending on the chosen
representation. However, for what concerns computability of real numbers, we
will show later in this chapter that the most common chosen representations
are proved to be equivalent.

It is important to notice that computable analysis is not the only com-
putational paradigm over the reals considered by the scientific community.
Approaches to real computability from Lenore Blum, Mike Shub, and Steve
Smale [42] (BSS) and Cristopher Moore [14] yield to very different and in some
cases more powerful models of computations. Comparisons between these mod-
els can be found in literature: see [43] for a comparison of type-2 computability
and Moore’s recursion, and [44] for some connections between BSS and com-
putable analysis.

The remaining part of this section will make use of [41] as main reference.
We now present three definitions of computable real numbers, each one based
on a different representation.

Definition 1.4 (Computable real number) Let D be the set of rational dyadic
numbers, where a dyadic rational number d ∈ D is a rational number that has
a finite binary expansion; that is, d = m

2n for some integers m,n, n ≥ 0. As-
sume each dyadic number y to be written in its binary expansion and let prec(y)
denotes the number of bits to the right of his binary point

� For each real number x, a function φ : N→ D is said to binary converge to
x if it satisfies the condition that for all n ∈ N, prec(φ(n)) = n and |φ(n)−
x| ≤ 2−n. Let CFx (Cauchy function) denote the set of all functions
binary converging to x

� For each real number x, the set {d ∈ D|d < x} is called the left cut of x.
Let LCx denote this set

� For each real number x, a function φ : N ∪ {−1} → N, with φ(−1) ∈
{1,−1} (the sign of x) and φ(i) ∈ {0, 1} for all i > 0, is called the binary
expansion of x if it satisfies the equation:

x = φ(−1)φ(0) +

∞∑
i=1

φ(i)2−i

let BEx denote this function. We have the three following definitions

� A real number x is CF-computable if CFx contains a computable function
φ

� A real number x is LC-computable if LCx is a computable set

� A real number x is BE-computable if BEx is a computable function
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As mentioned above, these different definitions yield to the following equiv-
alence theorem.

Theorem 1.5 The three definitions of CF-computable numbers, LC-computable
numbers and BE-computable numbers are equivalent.

Working with these definitions of real computable numbers offers the possi-
bility of defining a criterion for measuring complexity in a natural way. However,
when the complexity context is introduced, the previous equivalence is not valid
any longer for numbers computable in polynomial time. Let us define the com-
plexity classes of real numbers computable in polynomial time following the
three definitions listed above.

Definition 1.6 (Real numbers computable in polynomial time) We give
three alternative definitions of real numbers computable in polynomial time

� Let PCF be the class of all real numbers for which there is a function
φ ∈ CFx that is computable in polynomial time, with the input written
in unary notation. Equivalently, a real number x is in PCF if there is a
polynomial-time Turing machine M such that for all n, M(0n) outputs a
dyadic rational d ∈ D with prec(d) = n and such that |d− x| ≤ 2−n

� Let PLC be the class of all real numbers x for which the set LCx = {d ∈
D|d < x} is computable in polynomial time, with inputs d written in their
natural binary representations

� Let PBE be the class of real numbers x for which the function BEx is
computable in polynomial time, with the input n written in unary notation.

Then we obtain the following theorem.

Theorem 1.7 PBE = PLC ( PCF

Specifically, both the classes of PBE and PLC are not closed under addition,
while PCF instead is a real closed field. Therefore, the most suitable choice is
to identify polynomial time computable real numbers with the class PCF .

Following this guideline, if real numbers are seen as functions from integers
to rational numbers, or type-1 objects [17], it is intuitive to extend the com-
putable notion also for real functions, that will be considered as operators that
map a type-1 object into another. Therefore, a computable real function is
viewed as a type-2 object. Because type-1 objects are infinite, any device that
computes them have to be able to deal with infinite strings of symbols. This
can be done with the help of type-2 machines, or with the help of oracle Turing
machines. Here we present how to use oracle Turing machine to this purpose.
In general, computable real functions are studied under bounded domains, but
extensions to infinite domains are also possible when extra care is applied to
take in consideration the size of the input. We present here the definition of
computable real function taken from [41].

Definition 1.8 (Computable real function) A real function f : R → R is
computable if there is an oracle Turing machine M such that for each x ∈ R
and each φ ∈ CFx, the function Ψ computed by M with oracle φ (i.e., Ψ(n) =
Mφ(n)) is in CFf(x). We say that the function f is computable on interval [a, b]
if the above condition holds for all x ∈ [a, b].
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Similarly to computable real numbers, there are several different formula-
tions for computable real functions, but they all are proved equivalent [39], [40], [45].

Notice that as a natural consequence of the definition above it follows that a
function on the reals needs to be continuous in order to be computable. Indeed,
it can be shown that any computable function possesses a recursive modulus
function.

Definition 1.9 (Modulus function) Let f : [a, b]→ R be a continuous func-
tion on [a, b]. Then, a function m : N → N is said to be a modulus function of
f on [a, b] if for all n ∈ N and all x, y ∈ [a, b], we have

|x− y| ≤ 2−m(n) ⇒ |f(x)− f(y)| ≤ 2−n

Theorem 1.10 If f : [a, b]→ R is computable on [a, b] then f is continuous on
[a, b]; furthermore, f has a recursive modulus function m on [a, b].

An equivalent characterization of computable functions can then be given
with the help of modulus functions.

Theorem 1.11 A function f : R → R is computable if and only if there exist
two recursive functions m : N× N→ N and ψ : D× N→ D such that

� for all k, n ∈ N and all x, y ∈ [−k, k], |x − y| ≤ 2−m(k,n) implies |f(x) −
f(y)| ≤ 2−n

� for all d ∈ D and all n ∈ N, |ψ(d, n)− f(d)| ≤ 2−n

In a similar fashion to what it was done for computable reals, it is then
straightforward to obtain a notion of polynomial time complexity based on the
previous definition of computable functions. We will state that a function f
is computable in polynomial time if and only if both the function ψ and the
modulus function m of the previous theorem are computable in polynomial time.
Analog treatments exist for computability and complexity of sets in Rn or other
continuous objects.

Finally, it is important to mention a model proposed by Akitoshi Kawamura
and Stephen Cook [46], where complexity of continuous operators is designed
in a general uniform way, so that many weaker results concerning properties of
computable functions (maximization, integrations or derivation problems) can
be obtained naturally under this single unified model [47].

1.3 GPAC and generable functions

As originally described by Claude Shannon in 1941, the GPAC was a model for
analog computation defined by circuits, each one composed by different com-
binations of several basic units. The basic units represented the atoms of the
model, and each of them was able to perform a specific simple operation such a
addition, multiplication or integration.



11

The inspiration for the formulation of the model came from the mechanical
device called differential analyzer, invented in 1876 by James Thomson [48],
brother of Lord Kelvin. This machine could compute solutions of certain differ-
ential equations up to the sixth order, but it required great amount of time and
resources to perform its computations, due to the huge size of the wheels and
the complex structure of the mechanism. The GPAC model was later applied to
describe the behavior of more efficient and developed machines, still based on
the example of the differential analyzer, but built using electronic circuits and
operational amplifiers. The use of these machines became then obsolete with
the growth in popularity of digital computers.

In the first formulation of the GPAC, Shannon claimed that the functions de-
scribed by his model corresponded with solutions of algebraic differential equa-
tions. Given a function f and an interval on the reals I, an algebraic differential
equation is a differential equation of the form

f(y(t), y′(t), y′′(t), ..., y(k)(t)) = 0

However, a few years later Marian Boykan Pour-El modified the original
construction and consequently presented a new version of the GPAC model in
her paper in 1974 [49]. Her version of the model was founded on the concept
of quasi-linear differential equations. Another alternative description of the
properties and computational power of the model was then given by Daniel
Graça and José Félix Costa in [50], where, restricting the amount of possible
connections in the circuits, they managed to show that GPAC functions could
always be written as components of solutions of PIVPs. Another vantage of their
new definition was to allow the model to generate multivariate functions. The
type of functions generated by this model are often called generable functions.
Therefore, this result established an equivalence between the GPAC model and
polynomial differential equations.

Given a fixed field K for the coefficients of the considered polynomials, we
present here the definition of the class of functions generated by this version
of the model [51]. We call these functions polynomially bounded generable
functions with K, or GPVALK [51].

Definition 1.12 (GPVALK) Let I be an open and connected subset of Rd and
f : I → Re. Let the notation Jy(x) indicate the Jacobian of y evaluated at
point x. We say that f ∈ GPVALK if and only if there exists a polynomial
sp : R+ = [0,+∞[→ R+, n ≥ e, a n×d matrix p consisting of polynomials with
coefficients in K, x0 ∈ Kd ∩ I, y0 ∈ Kn and y : I → Rn satisfying for all x ∈ I



12

� y(x0) = y0 and Jy(x) = p(y(x))

� f(x) = (y1(x), .., ye(x))

� ‖y(x)‖ ≤ sp(‖x‖)

A more general definition of generable functions can be given in the same
way with the use of a generic boundary sp. In this case we will refer to functions
belonging to GVALK(sp). If the boundary is not specified, then the class GVALK
stands for all the functions satisfying the first two conditions of definition 1.12
above, without any condition on the norm of the solution.

The GPVALK class can be seen as an extended version of functions gener-
ated by PIVPs. Indeed, when I is an interval, the Jacobian of y simply becomes
the derivative of y and we get the solutions of y′ = p(y) where p is a vector of
polynomials. This class contains many of the most common elementary func-
tions. Indeed, all polynomials are in the class, as well as sin, cos and arctan
functions. Although functions in GPVALK can be viewed as solutions of partial
differential equations (PDEs) (as we use a Jacobian), we will never have to deal
with classical problems related to PDEs. Indeed, PDEs have no general theory
about the existence of solutions. Therefore, in this thesis work, we will explic-
itly present the functions in GPVALK which will be used and we will show that
they satisfy the conditions of the previous definition. Note also that it can be
shown [Remark 15] [51] that a solution to the PDE defined with the Jacobian is
unique, because the condition Jy(x) = p(y(x)) is not general enough to capture
the class of all PDEs. We also remark that, because a function in GPVALK
must be polynomially bounded, it is defined everywhere on I.

This class is more stable than the original class of generable functions, and
satisfies important composition properties; namely, it is closed under compo-
sition, addition and subtraction [51]. Another crucial property of the class
GPVALK is that it is closed under solutions of ODEs. In practice, this means
that we can write differential equations of the form y′ = g(y) where g is genera-
ble, knowing that this can always be rewritten as a PIVP. The following lemma
is taken from [20].

Lemma 1.13 (Closure by ODE of GPVALK) Let J ⊆ R be an interval, f :
Rd → Rd ∈ GPVALK, t0 ∈ Q ∩ J and y0 ∈ Qd ∩ dom f . Assume there exists
y : J → dom f and a polynomial sp : R+ → R+ satisfying for all t ∈ J

� y(t0) = y0 and y′(t) = f(y(t))

� ‖y(t)‖ ≤ sp(t)

Then y is unique and belongs to GPVALK.

The GPVALK class is the milestone on which are based all the main classes
presented in [20], as well as the new classes created during this thesis work, that
will be introduced in the upcoming chapters.

One of the interests of this thesis work is to study the connection between
this latest version of the GPAC model and the computational models based on
Turing machines. As described in previous sections of this introduction, this
connection was already established first on a computability level [18], and then
on a complexity level in case of polynomial time complexity [20]. However, based
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on its original definition, the GPAC is a model that outputs the solution in real
time: the result of its computation is the graph of the function itself, while
the most interesting aspect of Turing machines computations is not the whole
list of configurations but the asymptotic behavior, i.e. the way it reaches the
accepting or rejecting state. Therefore, to be able to construct their equivalence,
the authors needed an asymptotic version of the GPAC model. This asymptotic
version of the polynomially bounded generable functions defined above is the
one used by the authors in [20], and will be the one considered and extended in
the course of this thesis work.

Following the definition of polynomially bounded generable functions it is
possible to define the concept of generable fields [50]. For the purpose of this
thesis work, the key property of generable fields to consider is the following one.

Theorem 1.14 Let K be a generable field. If α ∈ K and f is generable using
coefficients in K (i.e. f ∈ GPVALK) then f(α) ∈ K.

Without the help of this property it would be possible to have some fields K
for which the relative classes GPVALK are not closed under composition, which
is not natural and would create a great obstacle to our work. For the whole
construction built in [20] to hold, in order to be able to continuously simulate
computations of Turing machines, the coefficients field K used for defining the
main analog classes has to be a generable field. Unfortunately, Q is not a gener-
able field. Nevertheless, It has been shown in [51] that there exists a generable
field RG lying somewhere between Q and RP : Q ⊆ RG ⊆ RP , where RP stands
for the class of real numbers computable in polynomial time. Moreover, the class
RP is a generable field. Unless stated otherwise, we will assume the coefficients
of our functions to belong to RP throughout all the rest of this thesis work.
This will allow to shortly indicate the class as GPVAL, where the presence of
the field RP is implicit.

1.4 Related work

The goal of this section is to offer to the reader a concise and unified picture
of which other works and papers could be associated with the content of this
thesis. Therefore, we will be listing again some of the articles and publications
we previously mentioned in this chapter, as well as include works that can be
ideally located closer or further away from this thesis, but that all share with it
similarities in terms of topics, arguments or approach.

The first field to mention has to be the study of differential equations from
the perspective of computability and complexity theory. Specifically, the lat-
ter ranges from studies over the computability properties of IVP, such as the
problem of computing maximal intervals and the decidability of their domain
of existence [52], [53], [54] to studies over complexity properties of smooth dif-
ferential equations [55] or of ordinary differential equations such as the ones in
[56], [36], [57]. Investigations over the complexity of solving ODEs have also
treated the case of IVPs with Lipschitz continuous right-hand terms, and in [37]
have been proved the PSPACE-completeness of such problem.

Extremely important connections with this thesis work have also to be found
with the vast area of research conducted on analog models of computation, and
specifically on the GPAC model and models based on systems of ODEs. A
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survey on the subject of continuous-time models of computation have been pro-
duced in [58]. As an example, we can mention here the model of signal machines
[59]. Formulations of complexity measures and boundaries for continuous-time
models are discussed in [60], [61]. The efficiency of the GPAC model in terms of
computational power has been carefully analyzed in [51]. The work illustrated
in [62], [63] demonstrate its equivalence with the model of computable analy-
sis, and this contribution has been deeply considered and applied to achieve the
polynomial characterization result in [20], which represents the main inspiration
of this thesis work.

Moreover, different ways of exploiting systems of ODEs to simulate Turing
machines are well described in [64], [65], [18] and a particular focus over robust
simulation has been developed in [66]. This last point of view has been partic-
ularly relevant in our treatment of the FPSPACE characterization. Concerning
our extension of the analog characterization of FP in [20] to elementary func-
tions, similar ideas and similar goals can be found in [67], [68]; moreover the
authors of [69] obtained an analog characterization of the Grzegorczyk hierarchy
by means of systems of nonlinear differential equations. However, the character-
ization of [69] is achieved using nonanalytic functions, with an approach that is
more recursive compared to the one developed in this thesis work. Indeed, our
characterization is obtained just by modifying resources on our computational
model based on systems of polynomial ODEs.

Finally, the problem of computing analytic branches of the complex square
root over simply connected domains have been originally presented in [70], while
similar studies connected with the complexity of winding numbers could be
found in [71]. Moreover, computational complexity of problems related to two
dimensional regions has been studied in several directions, including the study
of Julia sets [72], [73], the study of fractals [74], [75], and the study of the
path-finding problems [76], [77].
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Chapter 2

Computing with polynomial
differential equations

In this chapter we will review several definitions and results from [20], which
were used there to present an analog characterization of functions computable
in polynomial time FP. We will also show how to continuously perform simula-
tions of Turing machine computations in order to achieve this goal. This whole
chapter does not contain any fresh result; however, the concepts introduced here
are necessary for the understanding of our original contribution. The reader can
find technical details and missing proofs in [20].

2.1 Definitions of the analog classes

The classes that will be defined in this chapter represent an asymptotic version of
definition 1.12, and they can be proved to be all equivalent. A deeper treatment
of the subject can be found in [51], where other equivalent classes, out of the
scope of this thesis work, are introduced. All the functions belonging to the
following analog classes share the same common principle, which is the key
concept for defining a correct criterion of how to measure complexity in this type
of dynamical systems: they are related to solutions of polynomial differential
equations with length polynomially bounded on the norm of their input. This
concept inspires the following definition of Analog-Length-Computable functions,
or ALC.

Definition 2.1 (ALC) Let f ⊆ Rn → Rm, and Π : R2
+ → R+. We say that f

is Π-length-analog-computable if and only if there exist d ∈ N, p ∈ RdP [Rd] and
q ∈ RdP [Rn] such that for any x ∈ dom f , there exists (a unique) y : R+ → Rd
satisfying for all t ∈ R+

� y(0) = q(x) and y′(t) = p(y(t))

� ∀µ ∈ R+ if leny(0, t) ≥ Π(‖x‖ , µ) then ‖(y1(t), .., ym(t))− f(x)‖ ≤ e−µ

� ‖y′(t)‖ ≥ 1

where RdP [Rn] indicates a polynomial in n variables with coefficients in RdP ;
leny(0, t) represents the length of y from time 0 to time t and as a norm function



16

we are using the canonical infinity norm, ‖x‖ = maxi=1,2,..,m(|xi|) for x ∈ Rm.
We recall that the notation Ck(Rm,Rn) represents the set of functions from Rm
to Rn whose first k derivatives exist and are continuous, and that the length of a
curve y ∈ C1(I,Rn) defined over some interval I = [a, b] is given by leny(a, b) =∫
I
‖y′(t)‖ dt. We denote by ALC(Π) the class of Π-length-computable functions,

and by ALP the class of all analog-length-computable functions bounded by a
polynomial. Other two alternative ways of describing the functions in ALP, all
proved to be equivalent [51], are the following ones.

Definition 2.2 (ATSP) Let f ⊆ Rn → Rm. We say that f ∈ ATSP if and
only if there exist d ∈ N, p ∈ RdP [Rd], q ∈ RdP [Rn] and polynomials Π : R2

+ →
R+ and Υ : R2

+ → R+ such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+

� y(0) = q(x) and y′(t) = p(y(t))

� ∀µ ∈ R+ if t ≥ Π(‖x‖ , µ) then ‖(y1(t), y2(t), ..ym(t))− f(x)‖ ≤ e−µ

� ‖y(t)‖ ≤ Υ(‖x‖ , t)

Definition 2.3 (AOP) Let f ⊆ Rn → Rm. We say that f ∈ AOP if and
only if there exist δ ≥ 0, d ∈ N, p ∈ RdP [Rd × Rn], y0 ∈ RdP and polynomials
Π,Υ,Λ : R2

+ → R+ such that for any x ∈ C0(R+,Rn), there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+

� y(0) = q(x) and y′(t) = p(y(t), x(t))

� ‖y(t)‖ ≤ Υ(supδ ‖x‖ (t), t)

� ∀I = [a, b] ⊆ R+ if there exist x̄ ∈ dom f and µ̄ ≥ 0 such that ∀t ∈ I, we
have ‖x(t)− x̄‖ ≤ e−Λ(‖x‖,µ̄) then ‖(y1(u), y2(u), ..ym(u))− f(x)‖ ≤ e−µ̄
whenever a+ Π(‖x̄‖ , µ̄) ≤ u ≤ b

where with the notation supδ f(t) for a generic function f over the reals we
indicate the supremum of f on a small interval δ around t, i.e. supδ f(t) =
sup[t,t−δ]∩R+

f(u).

Among these three different definitions, the one considered and modified
to obtain the main results of this work is the class of Analog-Time-Space-
Polynomial-Computable functions, or ATSP. Both ALP and AOP (Analog-
Online-Polynomial-Computable functions) will just be used as alternative re-
sources to demonstrate proofs or properties of the considered functions. The
reason for this choice has to be found in the analogies of the ATSP definition
with the world of digital computations by means of Turing machines. Indeed,
this class presents two boundaries functions, Π and Υ, whose role in the dy-
namical system is similar to the one played by the number of steps and the
number of visited cells for Turing machine computations. Namely, Υ controls
the absolute value of the solution y, which can be thought as the space growth
of the system, and Π controls the rate of convergence to the desired value of the
function f , which can be thought as the time boundary of the system. For this
reason, during this thesis work we will refer to Π as the time boundary function
and to Υ as the space boundary function for our dynamical systems. In general,
given two polynomials Π and Υ we will write f ∈ ATSP(Π,Υ) as a shortcut
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notation meaning that f ∈ ATSP with time boundary Π and space boundary
Υ.

The ATSP class presents a close connection with the class GPVAL; precisely,
GPVAL ⊆ ATSP when defined over star domains.

Definition 2.4 (Star domain) A set X is called a star domain if there exists
x0 ∈ X such that for all x ∈ X the line segment from x0 to x is in X, i.e.
[x0, x] ⊆ X. Such an x0 is called a vantage point.

Given this definition, we can then state the following theorem taken from [20].

Theorem 2.5 If f ∈ GPVAL has a star domain with a generable vantage point,
then f ∈ ATSP.

The intuition behind the above theorem comes from the fact that on a star
domain, once we know that the solution of our GPVAL dynamical system exists
between two different points of the domain, we can always consider as trajectory
the straight line connecting those points and being sure that the solution of the
asymptotic definition of ATSP converges to the correct value over a parametriza-
tion of that line. From now on throughout the rest of this thesis work, if not
specified otherwise, we will always deal with domains of definition of analog
classes that will be star domains. Indeed, we will mostly consider domains of
the form Rn × Rm, which happen to be star domains.

2.2 Properties of the ATSP class

The class of ATSP functions is an interesting class also because it can be shown
that it possesses many useful properties [51],[20]. We will now present a list of
the most important properties repeatedly used during this thesis work.

Theorem 2.6 (ATSP closure by arithmetic operations) If g, f ∈ ATSP,
then g + f, g − f, g · f ∈ ATSP, with the obvious restrictions on the domains
of definition.

Theorem 2.7 (ATSP modulus of continuity) If f ∈ ATSP, then f admits
a polynomial modulus of continuity: there exists a polynomial Ω : R2

+ → R+ such
that ∀x, y ∈ dom f and µ ∈ R+

‖x− y‖ ≤ e−Ω(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ ≤ e−µ

in particular, f is continuous.

One the most important properties, that will present a concrete obstacle for
a straightforward extension of polynomial results (concerning ATSP) to different
and greater boundaries (concerning extended analog classes) is the composition
property.

Theorem 2.8 (ATSP composition) If f, g ∈ ATSP, and f(dom f) ⊆ dom g,
then g ◦ f ∈ ATSP.
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Because of the key role played by this particular property in our work, we
present also here the full proof of the theorem [20].

Proof of theorem 2.8. Let f : I ⊆ Rn → J ⊆ Rm and let g : J → K ⊆ Rl.
We will show that g ◦f ∈ ATSP by using the fact that g satisfies definition 2.3.

Indeed, if g ∈ ATSP, by equivalence of the classes, we get that there exist
polynomials Π,Υ,Λ such that g ∈ AOP(Π,Υ,Λ) with corresponding r, δ, z0,
where r is the polynomial defining the AOP differential equation, δ is the same
parameter of the original definition of AOP, and z0 is the initial condition of
the system. In the same way we obtain that there exist two polynomial bound-
aries Π′,Υ′ such that f ∈ ATSP(Π′,Υ′) with corresponding d, p, q parameters
for dimension and polynomials defining the system. Assume, without loss of
generality, that all the functions used as boundaries for definitions of f and g
are increasing functions. Let x ∈ I and consider the following system

{
y(0) = q(x)

y′(t) = p(y(t))

{
z(0) = z0

z′(t) = r(z(t), (y1(t), y2(t), ..ym(t)))

{
x(0) = x

x′(t) = 0

(2.1)
Define now v(t) = (x(t), y(t), z(t)). Then it immediately follows that v satisfies
a PIVP of the form {

v(0) = poly(x)

v′(t) = poly(y(t))
(2.2)

Furthermore, by definition of v we have

‖v(t)‖ = max(‖x(t)‖ , ‖y(t)‖ , ‖z(t)‖)
≤ max(‖x‖ , ‖y(t)‖ ,Υ(supu∈[t,t−δ] ‖y1..m(u)‖ , t))
≤ poly(‖x‖ , supu∈[t,t−δ] ‖y(u)‖ , t)
≤ poly(‖x‖ , supu∈[t,t−δ] Υ′(‖x‖ , u), t)

≤ poly(‖x‖ , t)

(2.3)

where with the notation poly we indicate an unspecified polynomial. Now de-
fine x̄ = f(x), Υ∗(α) = 1 + Υ′(α, 0) and Π′′(α, µ) = Π′(α,Λ(Υ∗(α), µ)) +
Π(Υ∗(α), µ). From the fact that f ∈ ATSP (Π′,Υ′), we get ‖x̄‖ ≤ Υ′(‖x‖ , 0) +
1 = Υ∗(‖x‖). Let µ > 0, then by definition of Π′, if t ≥ Π′(‖x‖ ,Λ(Υ∗(‖x‖), µ))
then ‖(y1(t), y2(t), ..ym(t))− x̄‖ ≤ e−Λ(Υ∗(‖x‖),µ)) ≤ e−Λ(‖x‖,µ). Therefore, if we
consider a = Π′(‖x‖ ,Λ(Υ∗(‖x‖), µ)) we get that

‖(v1(t), v2(t), ..vl(t))− g(f(x))‖ ≤ e−µ ∀t ≥ a+ Π(‖x̄‖ , µ) (2.4)

and since t ≥ a+ Π(‖x̄‖ , µ) whenever t ≥ Π′′(‖x‖ , µ), and Π′′ is a polynomial,
we get as a consequence that g ◦ f ∈ ATSP.

Another interesting type of closure property for this class is a property that
we call closure by GPVAL-ODEs of ATSP. This property ensures that us-
ing functions in the GPVAL class as right-hand terms of ordinary differential
equations for initial value problems always generates as solutions functions that
belong to the ATSP class.
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Theorem 2.9 (Closure of by GPVAL-ODEs of ATSP) The class ATSP
remains the same if instead of restricting p, q to be polynomial in definition 2.2,
we allow the extension p, q ∈ GPVAL.

Finally, we state one last property related to the maximum values of these
functions.

Theorem 2.10 (Polynomial bound of ATSP) Let f ∈ ATSP, then there
exists a polynomial P such that ‖f(x)‖ ≤ P (‖x‖) ∀x ∈ dom f .

2.3 Simulating a Turing machine

In the main result of [20], the authors proved an equivalence relation between
the class ATSP and the standard class of polynomial computable functions FP.
To prove this result, they designed a way to simulate a regular computation of
a standard Turing Machine in a continuous context, reproducing the discrete
step-evolution of the machine with a particular system of polynomial differen-
tial equations. In this section we will present some of the milestones of this
construction, but we suggest the careful reader to read the original article for a
full description of the details. We will simulate deterministic, one-tape Turing
machines, with complete transition functions.

As just showed at the end of the previous section, the classes of functions
that are used to construct the simulation are classes that include only contin-
uous functions. This fact implies that, to be able to reproduce a computation
using these classes it is essential to find suitable continuous substitutes for all
the discrete operations that would be required for perfectly simulate a Turing
machine using real numbers, such as rounding a number to its closest integer,
evaluating norms of vectors, or taking the absolute value of certain numbers.

Using some care, it is possible to select in ATSP good candidates to replace
the role of these discrete operations at a cost of introducing a small, controlled
error, that will be kept bounded along the course of the whole simulation. It
follows a list of results that make the latter possible. All the necessary proofs
are included in [20].

2.4 Useful functions in ATSP

Theorem 2.11 (Absolute value, maximum and minimum) The real func-
tions x→ |x| , max, min ∈ ATSP .

Theorem 2.12 Let rnd∗(x, µ) ∈ C0(R,R) be the unique function such that

� rnd∗(x, µ) = n ∀x ∈ [n− 1
2 + e−µ, n+ 1

2 − e
−µ] ∀n ∈ Z

� rnd∗(x, µ) is affine over [n+ 1
2 − e

−µ, n− 1
2 + e−µ] ∀n ∈ Z

Then the function rnd∗ ∈ ATSP.

Theorem 2.13 (Norm) For every δ ∈]0, 1[ there exists a real function
norm∞,δ(x) ∈ ATSP such that for any x ∈ Rn we have

‖x‖ ≤ norm∞,δ(x) ≤ ‖x‖+ δ
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Other two crucial functions are lxh and hxl that allow to smoothly approx-
imate a step function in a continuous manner.

Proposition 2.14 (Low-X-High and High-X-Low) For every I = [a, b],
a, b ∈ RP there exist two real functions lxhI ,hxlI ∈ ATSP such that for any
µ ∈ R+ and x, t ∈ R we have

� lxhI is of the form lxhI(t, µ, x) = φ1(t, µ, x)x where φ1(t, µ, x) ∈ ATSP

� hxlI is of the form hxlI(t, µ, x) = φ2(t, µ, x)x where φ2(t, µ, x) ∈ ATSP

� If t ≤ a, |lxhI(t, µ, x)| ≤ e−µ and |x− hxlI(t, µ, x)| ≤ e−µ

� If t ≥ b, |x− lxhI(t, µ, x)| ≤ e−µ and |hxlI(t, µ, x)| ≤ e−µ

� In all cases, |lxhI(t, µ, x)| ≤ x and |hxlI(t, µ, x)| ≤ x

We will describe now the notation used in this thesis work for the real en-
coding of a Turing machine.

2.5 Notation used for Turing machines

Definition 2.15 (Turing Machine) A Turing machine is defined as a tuple
M = (Q,Σ, b, δ, q0, q∞), where Q = {0, ...,m} are the states of the machine,
Σ = {0, ..., k − 2} is the alphabet and b = 0 is the blank symbol, q0 ∈ Q is the
initial state, q∞ ∈ Q is the halting state, and δ : Q × Σ → Q × Σ × {L, S,R}
is the transition function with L = −1, S = 0, R = 1. We write δ1, δ2, δ3 as the
components of δ. That is δ(q, w) = (δ1(q, w), δ2(q, w), δ3(q, w)) where δ1 is the
new state, δ2 the new symbol, and δ3 the head move direction. We require that
δ(q∞, w) = (q∞, w, S).

Definition 2.16 (Configuration) A configuration for a Turing machine M
is a tuple c = (x, σ, y, q), where x ∈ Σ∗ is the part of the tape at the left of the
head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol under the head, and
q ∈ Q is the current state.

More precisely, x1 is the symbol immediately at the left of the head and y1 is
the symbol immediately at the right. The set of configurations of M is denoted
as CM . The initial configuration is defined by c0(w) = (λ, b, w, q0) and the final
configuration by c∞(w) = (λ, b, w, q∞) where λ is the empty word.

Definition 2.17 (Step function) The step function of a Turing machine M
is the function, acting on configurations, denoted by M and defined by

M(x, σ, y, q) =



(λ, b, σ′y, q′) if d = L and x = λ

(x2..|x|, x1, σ
′y, q′) if d = L and x 6= λ

(x, σ′, y, q′) if d = S

(σ′x, b, λ, q′) if d = R and y = λ

(σ′x, y1, y2..|y|, q
′) if d = R and y 6= λ


q′ = δ1(q, σ)

σ′ = δ2(q, σ)

d = δ3(q, σ)

(2.5)
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Definition 2.18 (Result of a computation) The result of a computation of
M on input w ∈ Σ∗ is defined by

M(w) =

{
x if ∃ n ∈ N such that M [n](c0(w)) = c∞(x)

⊥ otherwise
(2.6)

Some of the finite and discrete transitions of the machine can be continuously
reproduced by means of an interpolation scheme, in the same way the Lagrange
polynomial can describe certain functions in dimension one.

Theorem 2.19 (Finite Interpolation) For any finite G ⊆ RdP and f : G→
RP there exists a function 11f ∈ ATSP with (11f )|G = f , where (11f )|G denotes
the restriction of 11f to G.

The most important functions to interpolate in this context are the charac-
teristic functions.

Theorem 2.20 (Characteristic interpolation) For any finite G ⊆ RdP ,
f : G → RP and α ∈ RP define the functions Df=α, Df 6=α : Rd → R in the
following manner

Df=α = 11fα(x) and Df 6=α = 111−fα(x)

where

fα(x) =

{
1 if f(x) = α

0 otherwise
(2.7)

Then Df=α, Df 6=α ∈ ATSP.

Once we have clarified the notation used in this thesis work for configura-
tions of Turing machines, we can proceed to encode them as tuples of rational
numbers.

2.6 Real encoding of Turing machines

Definition 2.21 (Real encoding) Let c = (x,w, y, q) be a configuration of
M . Then the real encoding of c is defined as 〈c〉 = (0.x, σ, 0.y, q) ∈ Q×Σ×Q×Q
where 0.x = x1k

−1 + x2k
−2 + ...+ x|w|k

|w| ∈ Q.

Following the same principle, with a suitable encoding, we want to transform
also the step function in an operation over real numbers. To do so we need to
allow the system to commit small errors during the computation. This is indeed
necessary to obtain continuity during the evolution. Therefore one crucial aspect
is to maintain stability for these type of dynamical systems, which means that
the error introduced here cannot accumulate and grow over some fixed threshold
during the course of the whole evolution.

First, we will define the ideal real step: an encoding of the step function that
does not admit errors and then we will describe a modified one, introducing
errors, that we will call real step and that will make use of some of the ATSP
functions defined in the previous chapter.
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Theorem 2.22 (Ideal real step) The ideal step of a Turing machine M is
the function defined over 〈CM 〉 by

〈M〉∞ =


(frac(kx̃), int(kx̃), σ

′+ỹ
k , q′) if d = L

(x̃, σ′, ỹ, q′) if d = S

(σ
′+x̃
k , int(kỹ), frac(kỹ), q′) if d = R


q′ = δ1(q, σ)

σ′ = δ2(q, σ)

d = δ3(q, σ)

(2.8)

where int(x) = max(0, bxc) ; frac(x) = x− int(x). Then, for any machine M
and configuration c, 〈M〉∞(〈c〉) = 〈M(c)〉.

Definition 2.23 (Real step) For any x̃, ỹ, σ̃, q̃ and µ ∈ R, define the real step
function of a Turing machine M by

〈M〉(x̃, ỹ, σ̃, q̃, µ) = 〈M〉∗(x̃, rnd∗(σ̃, µ), ỹ, rnd∗(q̃, µ)))

where 〈M〉∗(x̃, ỹ, σ̃, q̃, µ) = 〈M〉?(x̃, ỹ, 11δ1(q̃, σ̃), 11δ2(q̃, σ̃), 11δ3(q̃, σ̃), µ)))

and

〈M〉?(x̃, ỹ, q̃, σ̃, d̃, µ) =



choose[frac∗(kx̃), x̃, σ̃+x̃
k ]

choose[int∗(kx̃), σ̃, int∗(kỹ)]

choose[ σ̃+x̃
k , ỹ, frac∗(kỹ)]

q̃

µ

(2.9)

where

choose[l, s, r] = Did=L(d̃)l + Did=S(d̃)s+ Did=R(d̃)r

int∗(x) = rnd∗(x− 1

2
+

1

2k
, µ+ ln k) , frac∗(x) = x− int∗(x).

It has been proved in [20] that the real step defined this way belongs to
ATSP. Moreover, it is a robust operator, meaning that it maintains the final
error on the output proportional to the initial error on the input. The latter is
clarified by the following theorem.

Theorem 2.24 (Real step is robust) For any machine M , c ∈ CM , µ ∈
R+, and c̃ ∈ R4, if ‖〈c〉 − c̃‖ ≤ 1

2k2 − e
−µ, then

‖(〈M〉(c̃, µ)1, 〈M〉(c̃, µ)2, 〈M〉(c̃, µ)3, 〈M〉(c̃, µ)4)− 〈M(c)〉‖ ≤ k ‖〈c〉 − c̃‖
(2.10)

Furthermore, 〈M〉 ∈ ATSP.

2.7 Continuous simulation of Turing machines
computations

To prove the equivalence between ATSP and FP this real step has to be iterated
for a polynomial number of times, so that the outcome of any computation of
a given Turing machine computing functions in FP can be fully reproduced in
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a continuous manner. To do so, we will make use of a theorem that ensures us
that indeed there exists a function in ATSP that computes iterations of the real
step.

Theorem 2.25 (Polynomial iterations of real step) Let I ⊆ Rm, f : I →
Rm ∈ ATSP, η ∈ [0, 1

2 ] and assume there exists a family of subsets In ⊆ I, for
all n ∈ N and polynomials Ω : R+ → R+, Π : R2

+ → R+ such that ∀n ∈ N

� In+1 ⊆ In and f(In+1) ⊆ In

� ∀x ∈ In
∥∥f [n](x)

∥∥ ≤ Π(‖x‖ , n)

� ∀x ∈ In , ∀y ∈ Rm , ∀µ ∈ R+ if ‖x− y‖ ≤ e−Ω(‖x‖)−µ then y ∈ I
and ‖f(x)− f(y)‖ ≤ e−µ

Define f∗η (x, u) = f [n](x) for x ∈ In, u ∈ [n − η, n + η] and n ∈ N. Then,
f∗η ∈ ATSP.

Finally, for converting input words of Turing machines in a desired fashion,
it has been used a particularly suitable encoding that for every input word w
of the alphabet provides a corresponding rational number while keeping track
of the original length of the word. This is done by defining a 2-dimensional
encoding that we will call Ψ. Together with this particular encoding the notion
of emulable function completes the required knowledge to state the equivalence.
This is done in the next section.

2.8 Equivalence relation between FP and ATSP

From this point on, we fix an alphabet Γ and all languages are considered over
this alphabet. It is common practice to take Γ = {0, 1} but every other possible
choice works equally for any finite alphabet. We will assume that Γ comes with
an injective mapping γ : Γ → N \{0}, which means that every letter of the
alphabet has a unique assigned positive number. By extension, γ applies letter
wise over words.

Definition 2.26 (Discrete emulation) Let G be a set of functions over R2

and let k = 2 + max(γ(Γ)). The function f : Γ∗ → Γ∗ is called emulable under
G if there exists g ∈ G such that for any word w ∈ Γ∗

g(Ψk(w)) = Ψk(f(w)) where Ψk(w) =

 |w|∑
i=1

γ(wi)k
−i, |w|


In this case we say that g emulates f .

The theorem that establishes the equivalence at a polynomial level is then
the following.

Theorem 2.27 (FP equivalence) Let f : Γ∗ → Γ∗. Then f ∈ FP if and only
if f is emulable under ATSP.
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Chapter 3

Exponential analog classes

One of the goals of this thesis work is to characterize the class FEXPTIME
by means of an extension of the class ATSP. The idea is to allow greater
boundaries for the dynamical system but preserve for the simulation the same
core structure used in the polynomial case. We define now the new analog class
of functions that we will use to achieve this goal. We will refer to this class as
Analog-Time-Space-Exponential , or ATSE.

Whenever we refer to an exponential boundary function f : R+ → R+ we
intend that there exist polynomials p, q with coefficients in RP and a constant
c ∈ RP such that ∀x ∈ R we have

f(x) = q(x)cp(x). (3.1)

3.1 Definitions of the exponential analog classes

Definition 3.1 (ATSE) Let f ⊆ Rn → Rm. Let Π1 : R+ → R+ and Υ1 :
R+ → R+ be two exponential boundary functions and let Π2 : R+ → R+ and
Υ2 : R+ → R+ be two polynomials.

We say that f ∈ ATSE if and only if there exist d ∈ N, p ∈ RdP [Rd] and
q ∈ RdP [Rn] such that for any x ∈ dom f , there exists (a unique) y : R+ → Rd
satisfying for all t ∈ R+

� y(0) = q(x) and y′(t) = p(y(t))

� ∀µ ∈ R+ if t ≥ Π1(‖x‖)Π2(µ) then ‖(y1(t), y2(t), .., ym(t))− f(x)‖ ≤ e−µ

� ‖y(t)‖ ≤ Υ1(‖x‖)Υ2(t)

Notice that the key difference between this definition and the definition of
ATSP is that in this case the dependence of the two boundaries from the ‖x‖
variable is raised from a polynomial to an exponential boundary function, but
the dependence from their second variable, respectively the precision µ and
the time of the system t, is preserved as polynomial. The original definition
of ATSP as in [20] was designed with the intent of characterizing polynomial
complexity classes and aimed to provide the most simple description of the dy-
namical systems involved, therefore it made use of just one single term for both
the time and the space boundaries. Indeed, at a polynomial level, having two
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multiplied terms with polynomial dependences or having a single one depend-
ing polynomially on two inputs provide the same results. Nevertheless, this is
not true for different categories of boundaries, such as exponential functions.
The main intuition behind this definition comes from noticing that when using
exponential boundaries it is not natural to require exponential dependences on
precision and time as well. We show this by means of the following example:
assume for the sake of the argument that we defined ATSE with a single term
for the boundaries Π and Υ as done for ATSP, but with Π and Υ both raised
to exponential boundary functions instead of polynomials. Then given some
f ∈ ATSE, to compute f(x) we would need to wait a time t∗ = Π(‖x‖ , µ)
exponential in ‖x‖ and µ to get an approximation of f(x) with accuracy e−µ,
due to the second condition of definition 3.1. Moreover, at time t∗, we would
have that the norm of the solution y of the ODE computing f(x) is bounded by
Υ(‖x‖ , t∗) = Υ(‖x‖ ,Π(‖x‖ , µ)), which is a double exponential in both ‖x‖ and
µ, while what would be natural is that ‖y(t∗)‖ is bounded by an exponential
in ‖x‖ and µ, and not a double exponential in these parameters. Note that
this problem does not happen when both Π and Υ are polynomials: since the
composition of two polynomials is again a polynomial, when computing f(x)
with accuracy e−µ we will be able to use an approximation y(t∗) whose norm
is bounded by a polynomial in ‖x‖ and µ. Quite naturally, this exponential
class is closely related (by means of theorem 3.6) to a class of Exponentially-
Bounded-Generable-Functions, or GEVAL, which is defined as the class obtained
by GVAL(sp) when the function sp is an exponential boundary function.

Definition 3.2 (GEVAL) Let I be an open and connected subset of Rd and
f : I → Re. We say that f ∈ GEVAL if and only if there exists an exponential
boundary function sp : R+ → R+ , n ≥ e , a n × d matrix p consisting of
polynomials with coefficients in RP , x0 ∈ RdP ∩ I, y0 ∈ RnP and y : I → Rn
satisfying for all x ∈ I

� y(x0) = y0 and Jy(x) = p(y(x))

� f(x) = (y1(x), y2(x), .., ye(x))

� ‖y(x)‖ ≤ sp(‖x‖).

3.2 Properties of the exponential analog classes

Most of the properties of the GPVAL class are still valid when applied to GEVAL
as it is possible to check by repeating the same proofs developed for the poly-
nomial case [20]. In this way we get the following properties.

Theorem 3.3 (GEVAL closure by arithmetic operations)
If g, f ∈ GEVAL, then g+f, g−f, g ·f ∈ GEVAL, with the obvious restrictions
on the domains of definition.

Theorem 3.4 (GEVAL modulus of continuity) If f ∈ GEVAL, then f
admits an exponential modulus of continuity: there exists an exponential bound-
ary function Ω : R2

+ → R+ such that ∀x, y ∈ dom f and µ ∈ R+

‖x− y‖ ≤ e−Ω(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ ≤ e−µ

In particular, f is continuous.
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Theorem 3.5 (Exponential bound of GEVAL) Let f ∈ GEVAL, then there
exists an exponential boundary function E such that ‖f(x)‖ ≤ E(‖x‖) ∀x ∈
dom f .

The way these two classes are related is the same that connects GPVAL with
ATSP, where the inclusion happens for star domains by means of the following
theorem.

Theorem 3.6 If f ∈ GEVAL has a star domain with a generable vantage point,
then f ∈ ATSE.

Proof of theorem 3.6. The structure of the proof is similar to the polynomial
case [20] and it involves connecting two points of the domain of the function
f ∈ GEVAL with a straight line parametrized by the time of the ATSE system
that converges with an exponential rate to the right value of f . We present
it to illustrate how results for GPVAL extend in a straightforward manner to
GEVAL.

Let f : Rn → Rm be a function in GEVAL and let x0 ∈ RnP ∩ dom f be a
generable vantage point. By definition of GEVAL we know that there exist an
exponential boundary function sp, two polynomials p, q, two initial points x0, y0

and a solution y that satisfy definition 3.2. Moreover, since the point x0 is a
generable point, we know that y(x0) ∈ RdP . Let x ∈ dom f and consider the
system 

x(0) = x

γ(0) = x0

z(0) = y(x0)


x′(t) = 0

γ′(t) = x(t)− γ(t)

z′(t) = p(z(t)) (x(t)− γ(t))

(3.2)

Notice that all the differential equations of (3.2) are expressed as polynomials
of the variables x(t), γ(t), z(t). It is immediate to check that the variable x(t)
is constant and that γ(t) = x − (x0 − x)e−t. Notice that we know that γ(t) ⊆
[x0, x] ⊆ dom f for all t because we are in a star domain and x0 is a vantage
point. For the solution of z(t) we have z(t) = y(γ(t)) since x(t) − γ(t) = γ′(t)
and the Jacobian of the GEVAL system defining f is exactly p. Therefore
applying definition 3.2 yields (z1(t), z2(t), .., zm(t)) = f(γ(t)). Thanks to the
same definition we also know that y is exponentially bounded and so is z(t) for
every t ∈ R+, i.e. ‖z(t)‖ ≤ ‖y(γ(t))‖ ≤ exp(‖γ(t)‖) ≤ exp′(‖x‖) where exp and
exp′ are two exponential boundary functions. Therefore the space boundary
required by the ATSE definition is correct, which means that condition 3 of
definition 3.1 is satisfied. We can now proceed proving condition 2. Since
GEVAL functions have exponential modulus of continuity, by means of theorem
3.4 there exists an exponential boundary function h such that, ∀x1, x2 ∈ dom f
satisfying [x1, x2] ⊆ dom f , we have

‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖h(‖x1, x2‖)

and since ‖γ(t)‖ ≤ ‖x0, x‖ we get

‖f(x)− z(t)‖ ≤ ‖x− x0‖ e−th(‖x0, x‖)

Therefore, there exist an exponential boundary function Π1 : R+ → R+ and a
polynomial Π2 : R+ → R+ such that
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∀µ ∈ R+,∀t ≥ Π1(|x|)Π2(µ) we have ‖f(x)− z(t)‖ ≤ e−µ (3.3)

This completes the proof for f ∈ ATSE.

What we have seen above shows that most of the properties of GPVAL
have a clear correspondence for the exponential counterpart GEVAL. Never-
theless, when dealing with the classes defined by limit procedure, such as ATSP
and ATSE, this correspondence is more delicate to obtain and the extension
of the polynomial proofs is not straightforward for the exponential cases. One
of the reasons for this is that some proofs of ATSP properties make use of the
equivalence established in [51] between ATSP, AOP, ALP and other polyno-
mial classes. Specifically, the features of the AOP class are particularly useful
in these proofs, since this class allows functions to be applied over values that
are not fixed, but can oscillate around a certain point. To see an example of
the latter, the reader can check the proof of theorem 2.7 as taken from [20].
Because of the novelties of the ATSE class it is not immediately clear how to
describe a new analog class with features comparable to AOP and that could be
equivalent to ATSE. Hence, whether some properties of ATSP are still valid for
this exponential extension is a complex question that would require new proving
techniques to be answered.

Nevertheless, a crucial observation for this thesis work is to notice that the
only properties we need for our goal of characterizing FEXPTIME are closure
under arithmetic operations and closure under composition with ATSP func-
tions.

Theorem 3.7 (ATSE closure by arithmetic operations) If g, f ∈ ATSE,
then g + f, g − f, g · f ∈ ATSE, with the obvious restrictions on the domains
of definition.

Proof of theorem 3.7. We present the proof only for the closure by prod-
uct, since the other cases are similar. We prove the theorem for dimension
one, but the proof can be easily repeated for higher dimensions. Moreover,
this proof illustrates why it is impossible to obtain an analog class of this kind
that is closed under product without splitting the dependence of the bound-
aries in two parts, one exponential and one polynomial, as done in the ATSE
definition. Let us consider a function f ∈ ATSE(Π1Π2,Υ1Υ2) and a func-
tion g ∈ ATSE(Π∗1Π∗2,Υ

∗
1Υ∗2) with parameters d, p, q and d∗, p∗, q∗ respectively,

where d, d∗ represent the dimensions of the two dynamical systems, p, p∗ the
polynomials defining the right-hand terms of the differential equations and q, q∗

the polynomials defining the initial conditions. Recall that, by definition of the
class, we have that Π1,Υ1,Π

∗
1,Υ

∗
1 are exponential boundary functions and that

Π2,Υ2,Π
∗
2,Υ

∗
2 are polynomials. Assume, without loss of generality, that all the

functions used as boundaries for definitions of f and g are increasing functions.
Let x ∈ dom f ∩ dom g and consider the following system

{
y(0) = q(x)

y′(t) = p(y(t))

{
z(0) = q∗(x)

z′(t) = p∗(z(t))

{
w(0) = y1(0)z1(0)

w′(t) = p1(y(t))z1(t) + y1(t)p∗1(z(t))

(3.4)
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Notice that the solution of (3.4) for the variable w is: w(t) = y1(t)z1(t) and
that this system has polynomial right-hand terms. We can now proceed with
the analysis of the boundaries. Since f, g ∈ ATSE we have ‖f(x)‖ ≤ 1 +
Υ1(‖x‖)Υ2(Π1(‖x‖)Π2(0)) and ‖g(x)‖ ≤ 1 + Υ∗1(‖x‖)Υ∗2(Π∗1(‖x‖)Π∗2(0)); de-
note by l(‖x‖) and l∗(‖x‖) these two bounds respectively. Notice that we
get that l(‖x‖) and l∗(‖x‖) are exponential boundaries functions, and this
would not have been true if Π2,Υ2,Π

∗
2,Υ

∗
2 were not polynomials. Now consider

t ≥ Π1(‖x‖)Π2(µ+ ln 2l∗(‖x‖)); then ‖f(x)− y1(t)‖ ≤ e−µ+ln 2‖g(x)‖ and in the
same way if t ≥ Π∗1(‖x‖)Π∗2(µ+ ln 2l(‖x‖)) then ‖g(x)− z1(t)‖ ≤ e−µ+ln 2‖f(x)‖.
Therefore if we consider times greater than the maximum of these two bounds
we have

‖y1(t)z1(t)− f(x)g(x)‖ ≤ ‖(y1(t)− f(x))g(x)‖+ ‖y1(t)(z1(t)− g(x))‖ ≤ e−µ

This proves condition 2 of definition 3.1. Condition 3 is verified by observing
that ‖y1(t)‖ ≤ l(‖x‖) and ‖z1(t)‖ ≤ l∗(‖x‖) and this concludes the proof.

The lack of a closure by composition property is the main obstacle on a
straightforward extension of the polynomial equivalence to an exponential level.
As we can clearly see in the proof of theorem 2.8, if we try to consider the two
boundaries Π′ and Υ′ to be exponential boundary functions for the function
f , then the resulting solution of the composed system will not be bounded by
an exponential neither in space nor time. This is the reason that originally
brought us to split the dependence of the boundaries in two parts. Indeed,
with this modification, which leads to the definition of ATSE, we can state the
following property (which was not true for the case of exponential dependence
of the boundaries on both their inputs, as it will be clear to the reader following
the proof).

Theorem 3.8 (Composition of ATSE and ATSP) Let f be a function, f ∈
ATSE and g be a function, g ∈ ATSP. Let f(dom f) ⊆ dom g. Then g ◦ f ∈
ATSE.

Proof of theorem 3.8. Let f : Rn → Rm and let g : Rm → Rl. We will show
that g ◦ f ∈ ATSE by using the fact that g satisfies definition 2.3. Indeed, if
g ∈ ATSP, we can apply the equivalence between ATSP and AOP to obtain that
g satisfies definition 2.3; then there are polynomials Π,Υ,Λ such that definition
2.3 holds with corresponding r, δ, z0, where r is the polynomial defining the
differential equation, δ ∈ R is the same parameter as in definition 2.3, and z0

is the initial condition of the system. In the same way we obtain that there
exist two exponential boundary functions Π′1,Υ

′
1, and two polynomials Π′2,Υ

′
2

such that f ∈ ATSE(Π′1Π′2,Υ
′
1Υ′2) with corresponding parameters d, p, q for

the dimension and polynomials defining the system. Assume, without loss of
generality, that all the functions used as boundaries for definitions of f and g
are increasing functions. Let x ∈ Rn and consider the following system{

y(0) = q(x)

y′(t) = p(y(t))

{
z(0) = z0

z′(t) = r(z(t), (y1(t), y2(t), ..ym(t)))

{
x(0) = x

x′(t) = 0

Define v(t) = (x(t), y(t), z(t)). Then it immediately follows that v satisfies a
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PIVP of the form {
v(0) = poly(x)

v′(t) = poly(v(t)).
(3.5)

We will show that the polynomial IVP (3.5) computes g ◦ f according to def-
inition 3.1. First we check the space bound condition of that definition. By
definition of v we have

‖v(t)‖ = max(‖x(t)‖, ‖y(t)‖, ‖z(t)‖)
≤ max(‖x‖, ‖y(t)‖,Υ(supu∈[t,t−δ] ‖(y1(u), y2(u), ..ym(u))‖, t))
≤ exp(‖x‖) poly(supu∈[t,t−δ] ‖y(u)‖, t)
≤ exp(‖x‖) poly(supu∈[t,t−δ] Υ′1(‖x‖)Υ′2(u), t)

≤ exp(‖x‖) poly(t)

where the notation poly and exp indicate a polynomial and a exponential bound-
ary function, respectively. This proves the space bound.

Let us now tackle the time bound of definition 3.1. Define x̄ = f(x), Υ∗(α) =
Υ′1(α)Υ′2(Π′1(α)Π′2(0))+1 and Π′′(α, µ) = Π′1(α)Π′2(Λ(Υ∗(α), µ))+Π(Υ∗(α), µ).
Notice that Υ∗ is an exponential boundary function, and notice that there always
exist two functions, Π∗1 and Π∗2, such that 0 ≤ Π′′(α, µ) ≤ Π∗1(α)Π∗2(µ), where
Π∗1 is an exponential boundary function and Π∗2 is a polynomial. From the fact
that f ∈ ATSE(Π′1Π′2,Υ

′
1Υ′2), by using time t∗ = Π′1(‖x‖)Π′2(0), we conclude

that ‖(y1(t∗), y2(t∗), ..ym(t∗))− f(x)‖ ≤ e−0, which implies that

‖x̄‖ = ‖f(x)‖
≤ ‖y(t∗)‖+ 1

≤ Υ′1(‖x‖)Υ′2(t∗) + 1

= Υ′1(‖x‖)Υ′2(Π′1(‖x‖)Π′2(0)) + 1

= Υ∗(‖x‖).

Let µ > 0. By definition of ATSE, if t ≥ Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ)) then
‖(y1(t), y2(t), .., ym(t)) − x̄‖ ≤ e−Λ(Υ∗(‖x‖),µ)) ≤ e−Λ(‖x‖,µ). Therefore, due to
definition 2.3 , we have that

t ≥ Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ)) + Π(‖x̄‖, µ)

implies that ‖(v1(t), v2(t), .., vl(t)) − g(f(x))‖ ≤ e−µ. At this point note that
Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ)) + Π(‖x̄‖, µ) depends exponentially on ‖x‖, but only
polynomially on µ. This shows the time bound for ATSE.

3.3 Equivalence relation between FEXPTIME
and ATSE

Finally, we can state the main result of this chapter. Indeed, slightly modi-
fying the construction already developed in [20], we can show the equivalence
between the class ATSE and the class FEXPTIME of functions computable in
exponential time. This equivalence is described by the following theorem.
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Theorem 3.9 (FEXPTIME equivalence) Let f : Γ∗ → Γ∗. Then f ∈
FEXPTIME if and only if is emulable under ATSE.

The proof of this theorem will follow in the next section of this thesis work.

3.4 Proof of the FEXPTIME analog character-
ization

We start this section by proving theorem 3.9. We will proceed with the direct
and reverse direction of the theorem separately.

For the direct direction of theorem 3.9 we will need once again to be able to
iterate the step function with the help of theorem 2.25. The only difference to
the polynomial case will be the number of iterations of the step function required
to simulate a Turing machine computing a function in FEXPTIME. The latter
is obviously connected with the maximum amount of steps that such a machine
can perform before halting: while this amount was polynomial in the original
case analyzed in [20], now it is in principle an exponential on the size of the
input. Nevertheless, an exponential version of theorem 2.25 is not necessary, and
the original polynomial version it is enough for our goal. Applying theorem 2.25
to our case of interest, the real step function defined in theorem 2.24 will play
the role of the f function described in the statement above. This particular
choice will automatically satisfy the third condition of the theorem, as a direct
consequence of the fact that the real step belongs to ATSP together with the
property of ATSP functions of having polynomial modulus of continuity given
by theorem 2.7.

For what concerns the first condition of the theorem, the construction can
be maintained identical to the one described in [20], and a proper description
will be given later in this chapter. As real step function to iterate we will
choose h(〈c〉) = 〈M〉(〈c〉, µ) for 〈c〉 ∈ R4 and for a fixed value of µ. Even if this
function will need to be iterated an exponential number of times to be able to
represent the transition function of a Turing machine that computes functions
in FEXPTIME, the second condition of theorem 2.25 will still be valid, due to
the particular choice of the family of intervals In and the precision µ. Indeed,
it is possible to ensure that

∥∥h[n](〈c̄〉)− h[n](〈c〉)
∥∥ ≤ kn ‖〈c〉 − 〈c̄〉‖ ≤ 1

4k2 for
every 〈c̄〉 ∈ In, for every encoded configuration 〈c〉 of M and for every n ∈ N.
Recall now that, for all n ∈ N and for every configuration c of M , we have from
theorem 2.24: 〈M [n](c)〉 = h[n](〈c〉). Therefore, since the encoding of any con-
figuration 〈c〉 is never greater than a fixed real number (recall that 0.γ(w) ≤ 1
for all w ∈ Γ∗, as it follows from the definition of γ together with definition 2.21
), we obtain that the second condition of the theorem is always satisfied. We
can now proceed showing in more detail how the construction of the simulation
is made.

Proof of theorem 3.9. Let f ∈ FEXPTIME. Then there exists a Turing
machine M = (Q,Σ, b = 0, δ, q0, F ) where Σ = {0, ..., k − 2} and γ(Γ) ⊆ Σ \{b}
and an exponential boundary function eM (|w|) ≡ K |w| ∈ N for some constant
K ∈ N such that for any word w ∈ Γ∗ M halts in at most eM (|w|) steps, that
is M [eM (|w|)](c0(γ(w))) = c∞(γ(f(w))). We assume that Ψk(w) = (0.γ(w), |w|)
for any word w ∈ Γ∗. Define µ = ln(4k2) and h(c) = 〈M〉(c, µ) ∀c ∈ R4. Define
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I∞ = 〈CM 〉 and In = I∞ + [εn, εn]4 where εn = 1
4k2+n ∀n ∈ N. Note that

εn+1 ≤ εn
k and that ε0 ≤ 1

2k2 − e
−µ. By definition of the real step, and because

of theorem 2.24, we have that the real step function of this machine, h, satisfies
h ∈ ATSP and h(In+1) ⊆ In. In particular

∥∥h[n](c̄)− h[n](c)
∥∥ ≤ kn ‖c− c̄‖

∀c ∈ I∞ and c̄ ∈ In, ∀n ∈ N. Let δ ∈ [0, 1
2 [ and define J =

⋃
n∈N

In× [n− δ, n+ δ].

Apply then theorem 2.25 to the function h to get h∗δ : J → I0 ∈ ATSP such
that for all c ∈ I∞ and n ∈ N we have h∗δ(c, n) = h[n](c). Let Pi denote the i-th
projection, that is, Pi(x) = xi; then Pi ∈ ATSP. Define

g(y, l) = P3(h∗δ(0, b, y, q0, eM (l))) for (y, l) ∈ Ψk(Γ∗)

and notice that g is well defined. Indeed, if (y, l) = Ψk(w) for some w ∈ Γ∗,
then y = 0.γ(w), l = |w|, and (0, b, y, q0) = 〈(λ, b, γ(w), q0)〉 = 〈c0(γ(w))〉 ∈ I∞.
Therefore, by construction, for any word w ∈ Γ∗ we have

g(Ψk(w)) = P3(h∗δ(〈c0(γ(w))〉, eM (|w|)))
= P3(h[eM (|w|)]〈c0(γ(w))〉)

= P3(〈C [eM (|w|)]
M (c0(γ(w)))〉)

= P3(〈c∞(γ(f(w)))〉)
= 0.γ(f(w)) = P1(Ψk(f(w)))

(3.6)

Recall that to show the validity of the emulation we need to compute Ψk(f(w))
and so far we only have the first component, the output of the tape encoding,
but we miss the second component: its length. To complete the task, we can
apply a useful function defined in [20] that allows to extract the length of its
input.

Theorem 3.10 (Length recovery [20]) For any machine M there exists a
function tlengthM : P3(〈CM 〉)×N→ N ∈ ATSP such that for any word w ∈ (Σ
\{b})∗ and any n ≥ |w|, tlengthM (0.w, n) = |w|.

Then we can apply this theorem to get

tlengthM (g(Ψk(w)), |w|+ eM (|w|)) = |γ(f(w))| = |f(w)|

since γ(f(w)) does not contain any blank character by definition of γ and
|γ(f(w))| ≤ |w|+ eM (|w|). Therefore, if we define the function ḡ as

ḡ(Ψk(w)) ≡ (g(Ψk(w)), tlengthM (g(Ψk(w)), |w|+ eM (|w|))) (3.7)

We have just showed that ḡ emulates f as described by definition 2.26. To
conclude the direct direction of the theorem, the last result to prove is that
ḡ ∈ ATSE. Recall the definition of g, g(Ψk(w)) = P3(h∗δ(〈c0(γ(w))〉, eM (|w|))),
and notice that because of theorem 2.25, h∗δ ∈ ATSP. It is trivial to show
that eM ∈ ATSE. Then, due to the composition theorem 3.8 we obtain that
h∗δ(〈c0(γ(w))〉, eM (|w|)) ∈ ATSE. By definition of ḡ in (3.7) and because we
know that tlength, P3 ∈ ATSP and h∗δ(〈c0(γ(w))〉, eM (|w|)), eM ∈ ATSE we
can apply again the composition theorem 3.8 to state that ḡ ∈ ATSE and
conclude the direct direction of the proof of theorem 3.9.

We now proceed with the reverse direction of the proof. This direction is
similar to the one already provided by [20] for the ATSP equivalence, where the
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difference here is the nature of the boundaries considered. To be able to prove
this result, it is necessary to introduce a theorem related to the complexity of
solving polynomial differential equations. The proof and more details about
the theorem can be found in [36]. We need to introduce new notation to state
the result. For any multivariate polynomial p, where α = (α1, . . . , αm) ∈ Nm,
|α| = α1 + . . .+ αm, and xα = xα1

1 · · ·xαmm , we call k the degree, k = deg(p), if
k is the minimal integer for which the condition p(x) =

∑
|α|≤k aαx

α holds, and

we denote the sum of the norm of the coefficients by Σp =
∑
|α|≤k |aα| (also

known as the length of p). For a vector of polynomials, we define the degree and
Σp as the maximum over all components. For any continuous y and polynomial
p, define the pseudo-length as

PsLeny,p(a, b) =

∫ b

a

Σp max(1, ‖y(u)‖)deg(p)du (3.8)

Then the necessary theorem is the following.

Theorem 3.11 (Computing values of ODEs solutions) Let I = [a, b] be
an interval, p ∈ Rn[Rn], k its degree and y0 ∈ Rn. Assume that y : I → Rn
satisfies ∀t ∈ I

y(a) = y0 , y′(t) = p(y(t)) (3.9)

Then y(b) can be computed with precision 2−µ in time bounded by

poly(k,PsLeny,p(a, b), log ‖y0‖ , µ)n (3.10)

More precisely, there exists a Turing machine M such that for any oracle O
representing (a, y0, p, b) and any µ ∈ N we have:

∥∥MO(µ)− y(b)
∥∥ ≤ 2−µ where

y is the solution of (3.9) and the number of steps of the machine is bounded by
the above expression in (3.10).

Now we can continue with the proof. Assume that f is emulable under ATSE.
Apply then the definition of emulable function to get g ∈ ATSE(Π1Π2,Υ1Υ2)
with respective d, p, q. Recall that, according with definition 3.1, the parameters
d, p and q represent respectively the dimension, the polynomial right-hand term
and the polynomial initial condition of the ATSE dynamical system relative to
g. Recall also that Υ1,Π1 are exponential boundary functions and Υ2,Π2 are
polynomials. Let w ∈ Γ∗; we will now describe an FEXPTIME algorithm to
compute f(w). Consider the following system

y(0) = q(Ψk(w)) , y′(t) = p(y(t)) (3.11)

note that the coefficients of p, q and q(Ψk(w)) are polynomially computable in
the sense of computable analysis. The algorithm works in two steps: first, we
compute a rough approximation of the output to be able to guess its length.
Then we rerun the system with enough precision to get the full output.

Let tw = Π1(|w|)Π2(2) for any w ∈ Γ∗. Note that tw is computable and that
it is exponentially bounded in |w| because Π1 is an exponential boundary func-
tion. Apply now theorem 3.11 to (3.11) to compute ȳ such that ‖ȳ − y(tw)‖ ≤
e−2: this operation takes a computational time that is exponential in |w| be-
cause tw is exponentially bounded, log ‖q(Ψk(w))‖ is polynomial in |w| and be-
cause PsLeny,p(0, tw) ≤ poly(tw, sup[0,tw] ‖y(t)‖) and, by construction, ‖y(t)‖ ≤
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Υ1(‖Ψk(w)‖)Υ2(tw) for t ∈ [0, tw] where Υ1 is an exponential boundary function
and Υ2 is a polynomial. Furthermore, by definition of tw: ‖y(tw)− g(Ψk(w))‖ ≤
e−2 thus ‖ȳ −Ψk(f(w))‖ ≤ 2e−2 ≤ 1

3 . But, since Ψk(f(w)) = (0.γ(f(w)), |f(w)|),
from ȳ2 we can find |f(w)| by rounding to the closest integer. In other words
we can compute |f(w)| in exponential time in |w|. Note that this implies that
|f(w)| is at most exponential in |w|.

Let t′w = Π1(|w|)Π2(2+|f(w)| ln k). Notice that there always exists an expo-
nential boundary function on |w| such that it is greater than t′w. Indeed, Π1 is an
exponential boundary function, Π2 is a polynomial, and |f(w)| is at most expo-
nential in |w|. We can then apply the same reasoning and use again theorem 3.11
to get ỹ such that ‖ỹ − y(t′w)‖ ≤ e−2−|f(w)| ln k. Once again this operation takes
a time exponential in |w|. Furthermore, ‖ỹ1 − 0.γ(f(w))‖ ≤ 2e−2−|f(w)| ln k ≤
1
3k
−|f(w)|. We claim that this allows us to recover f(w) unambiguously in expo-

nential time in |w|. Indeed, it implies that
∥∥k|f(w)|ỹ1 − k|f(w)|0.γ(f(w))

∥∥ ≤ 1
3 .

At this point, if we unfold the definition of the expression 0.γ(f(w)), we are

able to notice that k|f(w)|0.γ(f(w)) =
∑|f(w)|
i=1 γ(f(w)i)k

|f(w)|−i ∈ N; thus by
rounding k|f(w)|ỹ1 to the closest integer we recover γ(f(w)) and then f(w). This
is all done in polynomial time in |f(w)|, and so in exponential time in |w|. This
completes the proof of theorem 3.9.
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Chapter 4

Characterization of
FPSPACE

Studying the construction developed until now to prove theorem 3.9 it is natural
to wonder whether a similar procedure could be applied in the attempt of con-
tinuously characterize classes of standard complexity theory defined by means
of space boundaries, such as FPSPACE or PSPACE. Indeed, since we know
that FPSPACE ⊆ FEXPTIME it makes sense to search for a specific subset of
the ATSE functions that could capture in its definition the essential features of
polynomially space bounded Turing machine computation. In order to do so,
the first element to notice from the analog simulation described in the previous
chapters is that the key property that we are exploiting is the total number of
steps performed on each input word by the Turing machine M that we want to
simulate. This is the only necessary information that we require to know to be
able to establish the simulation. Provided that this total number of steps can
be generated by an ODE with the correct boundaries, then we are capable to
simulate the machine M for the amount of steps we want. Nevertheless, what
we know about FPSPACE computations is that they share the same maximum
number of steps with FEXPTIME computations, since a polynomially space
bounded machine can move its head for a number of times that is an exponen-
tial on the size of the input. Therefore, using only the maximum number of steps
as a parameter, our construction would produce the same results it produced
for the ATSE case when trying to simulate functions in the FPSPACE class.
Moreover, since the content of the tape of the simulated machine is encoded in a
number between 0 and 1 during the course of the simulation, every information
about its length is lost in the process, and the encoding Ψk needs to make use of
a second component in order to keep track of this element. However, for compu-
tations related to space complexity classes, where the length of the working tape
is a crucial variable, having this information encoded in a separate component
is not practical. Therefore, we need to introduce an extra condition that allows
us to preserve a more practical connection with the information concerning the
length of the tape of the machine M . One way to do that is to discard the
encoding presented in definition 2.26 and introduce another encoding that does
not need to have two components to encode a discrete word together with its
length. The encoding that we are going to use in this chapter is not new to
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the scientific community, since it has already been considered in [66], [18]. Nev-
ertheless in these papers the authors focused their interests on computability,
while here the encoding is introduced with the clear goal of describing space
complexity classes. Let us define the encoding with the symbol Ψ̂ as follows
[66], [18].

Definition 4.1 (Ψ̂) We say that Ψ̂(x) = w if x ∈ R is such that

d(x,
∑|w|
i=1 wik

i−1) < 1/2, where d(x, y) = ‖x− y‖.

Note the encoding defined in definition 2.26 and used in the previous chapters
could be described as follows.

Definition 4.2 (Ψ̄) We say that Ψ̄ (x, y) = w if (x, y) ∈ R2 is such that

(x, y) =
(∑|w|

i=1 wik
−i, |w|

)
.

Technically both encodings depend on the choice of the integer k but, for
readability reasons, we omit the index k when referring to Ψ̂ and to Ψ̄. The
encoding Ψ̄ has the advantage of encoding w into a real vector which norm is
equal to |w|, being in this sense a more efficient encoding than Ψ̂. On the other
hand, two real values are needed to encode a word w via Ψ̂. Each encoding
Ψ̂ and Ψ̄ has its own strengths and apparent limitations, and each one is well-
suitable for at least one purpose as we will see in the next section. Usually there
is a trade-off between size and required accuracy of the encoding of a word: we
can be less demanding on the accuracy at the cost of increasing the size of the
norm of the encoding and vice versa.

As we just mentioned above, the encoding Ψ̂ is more suitable for the purpose
of presenting a characterization of PSPACE and FPSPACE in terms of polyno-
mial ODEs, and this will be more evident during the course of this chapter.

Another important concept related to encodings is the size of an encoded
word. Note that there exist more or less efficient encodings of words in terms
of the size of the norm of the encoded word. For example, considering the
encodings Ψ̂ and Ψ̄ used in [66] and [20] respectively, we expect that if Ψ̂ and Ψ̄
encode the same word of Γ∗, i.e. Ψ̂(x) = Ψ̄ (x′, y′), then ‖x‖ will be exponentially
larger than ‖(x′, y′)‖. This has to be reflected when using bounded continuous
systems to compute discrete functions.

Definition 4.3 (Encoding bounds) Let Ψ : D ⊆ Rk → Γ∗ be an encoding
and let g : N→ N. We say that a function φ : R→ R is a Ψ-bound if for
all v, w ∈ Γ∗, |v| ≤ |w| implies that ‖x‖ ≤ φ(‖y‖) whenever Ψ(x) = v and
Ψ(y) = w.

For example, when considering the encoding Ψ̄ we may take as a Ψ̄-bound
the function φ̄(x) = x, and for the encoding Ψ̂ we may take φ(x) = 2x+1.

Once we change the encoding that is used to encode configurations of Turing
machines into real numbers, we also have to change accordingly the notion of
emulation of definition 2.26 and the way the continuous simulation of Turing
machine computations is performed to prove the direct direction of the char-
acterization. Indeed, the way the simulation is conducted in this chapter is by
means of an iteration technique inspired by the formulation of M.S. Branicky in
[78] and later refined in [79], [66], that allows to define a dynamical systems of
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ODEs able to iterate a specific given function f over the course of its evolution.
In the following section we formally introduce this technique, modifying it in a
way that can produce the desired boundaries over the solution of the dynamical
systems involved.

4.1 Reaching a value with ODEs

The goal of this section is to perform a basic construction with an ODE, which
is to approximate a value b ∈ R in a finite (given) amount of time with some
(given) accuracy. This will be essential to perform the simulation of Turing
machines with ODEs, which is needed to provide a characterization of PSPACE.
In particular, we will study the following basic equation

y′ = c(b− y)3φ(t). (4.1)

As mentioned above, this ODE was already studied in [78], [79], [66] but here we
present an extended version which provides bounds on y(t) for t ≥ t0 (previously
those were only established at a time instant t1), since those bounds are needed
to establish bounds on the values that the solution of an ODE simulating a
Turing machine can have.

Lemma 4.4 Consider a point b ∈ R (the target), some γ > 0 (the targeting
error), time instants t0 ( departure time) and t1 ( arrival time), with t1 > t0,
and a function φ : R→ R with the property that φ(t) ≥ 0 for all t ≥ t0 and∫ t1
t0
φ(t)dt > 0. Then the IVP defined by (4.1) (the targeting equation) with the

initial condition y(t0) = y0 and

c ≥ 1

2γ2
∫ t1
t0
φ(t)dt

(4.2)

has the following properties

1. |y(t)− b| < γ for t ≥ t1, independently of the initial condition y0 ∈ R

2. min(y0, b) ≤ y(t) ≤ max(y0, b) for all t ≥ t0.

Proof of lemma 4.4. For the first condition of the lemma, there are two
cases to consider: (i) y(t0) = b and (ii) y(t0) 6= b. In the first case, the solution
is given by y(t) = b for all t ∈ R and the lemma is trivially true. For the second
case, note that (4.1) is a separable equation, which gives

1

(b− y(t1))2
− 1

(b− y(t0))2
= 2c

∫ t1

t0

φ(t)dt =⇒

1

2c
∫ t1
t0
φ(t)dt

> (b− y(t1))2.

Hence, we get that |y(t1)− b| < γ if c satisfies (4.2). This yields condition 1 of
the lemma. For condition 2, note that y = b yields a fixed point for (4.1), so
once the solution of (4.1) reaches b, it cannot leave this point, which trivially
proves condition 2 when b = y0. If b > y0, then y′(t) ≥ 0 for all t ≥ t0 and, in
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particular, y(t) ∈ [y0, b] for all t ≥ t0. A similar analysis applies when b < y0.

We now extend the previous lemma for the case of “perturbed” targeting
equations

Lemma 4.5 Consider a point b ∈ R (the target), some γ > 0 (the targeting
error), time instants t0 ( departure time) and t1 ( arrival time), with t1 > t0,
and a function φ : R→ R with the property that φ(t) ≥ 0 for all t ≥ t0 and∫ t1
t0
φ(t)dt > 0. Let ρ, δ ≥ 0 and let b̄, E : R→ R be functions with the property

that
∣∣b(t)− b∣∣ ≤ ρ and |E(t)| ≤ δ for all t ≥ t0. Then the IVP defined by

z′ = c(b(t)− z)3φ(t) + E(t) (4.3)

with the initial condition z(t0) = z̄0, where c satisfies (4.2) and γ > 0 is the
targeting error, has the following properties

1. |z(t1)− b| < ρ+γ+δ(t1−t0), independently of the initial condition z̄0 ∈ R

2. min(z0, b − ρ) − δ(t1 − t0) ≤ z(t) ≤ max(z0, b + ρ) + δ(t1 − t0) for all
t ∈ [t0, t1].

Proof of lemma 4.5. Without loss of generality, we take the departure time
to be t0 = 0 and the arrival time to be t1 = 1/2 (these specific values will be
used later on). Let z be the solution of the IVP (4.3), with initial condition
z(0) = z0 and let z+, z− be the solutions of z′ = c(b + ρ − z)3φ(t) + δ and
z′ = c(b−ρ−z)3φ(t)−δ, respectively, with initial conditions z+(0) = z−(0) = z0.
For simplicity denote

f(t, z) = c(b(t)− z)3φ(t) + E(t) (4.4)

f+(t, z) = c(b+ ρ− z)3φ(t) + δ

f−(t, z) = c(b− ρ− z)3φ(t)− δ.

We have that for all (t, x) ∈ R2

f−(t, x) ≤ f(t, x) ≤ f+(t, x). (4.5)

Since z is the solution of the ODE z′ = f(t, z) and z± are the solutions of the
ODEs z′ = f±(t, z), all with the same initial condition z(0) = z±(0) = z0, from
(4.5) and a standard differential inequality from the basic theory of ODEs (see
e.g. [80, Appendix T]), it follows that z−(t) ≤ z(t) ≤ z+(t) for all t ∈ R. Now, if
we put upper and lower bounds on z+ and z−, respectively, we get immediately
bounds for z.

Let us study what happens with z+. For convenience, let y± be the solution
of

y′ = c(b± ρ− y)3φ(t) (4.6)

(i.e. y′±(t) = f±(t, y±)∓ δ), with initial condition y±(0) = z0. Since f+(t, x) >
f+(t, x) − δ and f−(t, x) < f−(t, x) + δ for all (t, x) ∈ R2, we have similarly to
the case of z−, z, and z+, that

z−(t) ≤ y−(t) ≤ y+(t) ≤ z+(t) for all t ≥ 0. (4.7)

We consider two cases for z+:
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(i) z0 ≤ b+ ρ. Since y+ is the solution of a targeting equation (4.1), we have
from lemma 4.4 and (4.7) that

b+ ρ− γ < y+(t) < b+ ρ =⇒ b+ ρ− γ < z+(t)

for all t ≥ 1/2. Moreover, from lemma 4.4 we also conclude that y+(t) ∈
[z0, b+ρ] for all t ≥ 0. Note also that (4.7) implies that c(b+ρ−y+)3φ(t)+
δ > c(b+ ρ− z+)3φ(t) + δ which together with (4.6) implies that

δ >
∣∣z′+(t)− y′+(t)

∣∣ for all t ≥ 0.

Integrating the last equation, we get that δ/2 > |z+(t)− y+(t)| for all
t ∈ [0, 1/2], which by its turn together with (4.7) implies that z+(t) ∈
[z0, b+ρ+δ/2] for all t ∈ [0, 1/2]. Moreover, because b+ρ−γ < y+(1/2) <
b+ρ due to lemma 4.4 and due to (4.7), we also conclude that b+ρ−γ <
z+(1/2) < b+ ρ+ δ/2.

(ii) z0 > b+ ρ. Since y+ is solution of the targeting equation (4.6), by lemma
4.4 we conclude that y+(t) ∈ [b+ρ, z0] for all t ≥ 0 and b+ρ < y+(1/2) <
b+ ρ+ γ. Proceeding similarly as in the previous case, we get that δ/2 >
|z+(t)− y+(t)| for all t ∈ [0, 1/2], which together with (4.7) implies that
z+(t) ∈ [b + ρ, z0 + δ/2] for all t ∈ [0, 1/2]. Moreover, because b + ρ <
y+(1/2) < b + ρ + γ and due to (4.7), we also conclude that b + ρ <
z+(1/2) < b+ ρ+ γ + δ/2.

We also consider two cases for z−:

(i)’ z0 ≤ b− ρ. Since y− is the solution of a targeting equation (4.1), we have
from lemma 4.4 and (4.7) that

b− ρ− γ < y−(t) < b− ρ =⇒ z−(t) < b− ρ

for all t ≥ 1/2. Moreover, from lemma 4.4 we also conclude that y−(t) ∈
[z0, b−ρ] for all t ≥ 0. Note also that (4.7) implies that c(b+ρ−y−)3φ(t)−
δ < c(b+ ρ− z−)3φ(t)− δ which together with (4.6) implies that

δ >
∣∣z′−(t)− y′−(t)

∣∣ for all t ≥ 0.

Integrating the last equation, we get that δ/2 > |z−(t)− y−(t)| for all
t ∈ [0, 1/2], which by its turn together with (4.7) implies that z−(t) ∈
[z0−δ/2, b−ρ] for all t ∈ [0, 1/2]. Moreover, because b−ρ−γ < y−(1/2) <
b− ρ due to lemma 4.4 and (4.7), we also conclude that b− ρ− γ − δ/2 <
z−(1/2) < b− ρ.

(ii)’ z0 > b− ρ. Since y− is solution of the targeting equation (4.6), by lemma
4.4 we conclude that y−(t) ∈ [b−ρ, z0] for all t ≥ 0 and b−ρ < y−(1/2) <
b− ρ+ γ. Proceeding similarly as in the previous case, we get that δ/2 >
|z−(t)− y−(t)| for all t ∈ [0, 1/2], which together with (4.7) implies that
z−(t) ∈ [b − ρ − δ/2, z0] for all t ∈ [0, 1/2]. Moreover, because b − ρ <
y−(1/2) < b − ρ + γ, we also conclude using (4.7) that b − ρ − δ/2 <
z−(1/2) < b− ρ+ γ.

Combining the previous cases we have the following conclusion. If



39

1. z0 ≤ b−ρ, then by cases (i) and (i)’, we conclude that z0− δ/2 ≤ z−(t) ≤
z(t) ≤ z+(t) ≤ b + ρ + δ/2 for all t ∈ [0, 1/2] and that b − ρ − γ − δ/2 <
z−(1/2) ≤ z(1/2) ≤ z+(1/2) < b+ ρ+ δ/2;

2. b − ρ < z0 < b + ρ, then by (i) and (ii)”, we conclude that b − ρ −
δ/2 ≤ z−(t) ≤ z(t) ≤ z+(t) ≤ b + ρ + δ/2 for all t ∈ [0, 1/2] and that
b− ρ− δ/2 < z−(1/2) ≤ z(1/2) ≤ z+(1/2) < b+ ρ+ δ/2;

3. b+ ρ ≤ z0, then by (ii) and (ii)”, we conclude that b− ρ− δ/2 ≤ z−(t) ≤
z(t) ≤ z+(t) ≤ z0 +δ/2 for all t ∈ [0, 1/2] and that b−ρ−δ/2 < z−(1/2) ≤
z(1/2) ≤ z+(1/2) < b+ ρ+ γ + δ/2.

Combining these 3 cases, we conclude that

b− ρ− γ − δ/2 < z(1/2) < b+ ρ+ γ + δ/2

which implies condition 1 of the lemma and also

min(z0, b− ρ)− δ/2 ≤ z(t) ≤ max(z0, b+ ρ) + δ/2

which is condition 2.

4.2 Simulation of Turing machines with encod-
ing Ψ̂

As we already mentioned, since we are using a different encoding with respect to
what it was done in section 2.3, we need a different way to continuously simulate
Turing machines accordingly. In this section we will slightly change also the
notation previously used in section 2.3, in order to make it suit better with
this new context. Following what was done in [66], let M be a one-tape Turing
machine computing some function f : Γ∗ → Γ∗ and let Σ be the alphabet of M ,
with Γ ⊆ Σ, B ∈ Σ where B is the blank symbol, and B /∈ Γ. For simplicity, we
assume that Γ = {1, 2, . . . , k − 1} and Σ = {0, 1, . . . , k − 1}, which implies that
we assume B = 0. Let

...B B B a−p a−p+1... a−1 a0a1... anBBB... (4.8)

represent the tape contents of the Turing machine M at a given time. We
assume that the head is reading symbol a0. Assume also that M has m states,
represented by numbers 1 to m. We also assume that if M reaches an halting
configuration, then it moves to the same configuration. We consider that, in
each transition, the head either moves to the left, moves to the right, or does
not move. Take

y1 = a0 + a1k + . . .+ ank
n

y2 = a−1 + a−2k + . . .+ a−pk
p−1 (4.9)

which implies that Ψ̂k(y1) = a0a1... an and Ψ̂k(y2) = a−1a−2...a−p, and suppose
that q is the state associated to the current configuration. Then (y1, y2, q) ∈ N3

gives the current configuration of M . In this sense we can consider that the
transition function of M can be encoded as a function fM : N3 → N3. Actually,
due to the results of [66], this function can be extended to a function fM : R3 →
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R3 which also has the desirable properties that: (i) it can simulate M even in
the presence of perturbations and (ii) the expression of each component of f
can be written only by using the following terms: variables, polynomial-time
computable constants (in the sense of computable analysis), +, −, ×, sin, cos,
arctan. More formally, let ‖f‖ = supx∈Rl ‖f(x)‖. By f [k] we denote the kth
iterate of the function f : A → A, which is defined as follows: f [0](x) = x,
f [j+1](x) = f [j](f(x)). The following result is from [66].

Theorem 4.6 Let ψ : N3 → N3 be the transition function of a Turing machine
M , under the encoding described above and let 0 < δ < ε < 1/2. Then ψ admits
a globally analytic elementary extension fM : R3 → R3, such that the expression
of each component can be written only by using the following terms: variables,
polynomial-time computable constants, +, −, ×, sin, cos, arctan. Moreover, ψ is
robust to perturbations in the following sense: for all f such that ‖f − fM‖ ≤ δ,
for all j ∈ N, and for all x̄0 ∈ R3 satisfying ‖x̄0 − x0‖ ≤ ε, where x0 ∈ N3

represents an initial configuration∥∥∥f [j](x̄0)− ψ[j](x0)
∥∥∥
∞
≤ ε.

Note that, as noticed before, we implicitly assumed that if y is a halting
configuration, then ψ(y) = y. The proof of this theorem is constructive and
f can be obtained explicitly. The proof of this theorem can be found in [66].
Note that since the expression of each component of fM can be written only
by using the following terms: variables, polynomial-time computable constants,
+, −, ×, sin, cos, arctan, and since all these operations are polynomial-time
computable, we conclude that fM is computable in polynomial time in the
sense of computable analysis.

The next important step is to iterate the transition function of a Turing
machine to be able to compute the result of its computation. The following
result is also from [66].

Theorem 4.7 Let ψ : N3 → N3 be the transition function of a Turing machine
M , under the encoding described above and let 0 < ε < 1/4. Let also 0 ≤ δ <
2ε < 1/2. Then there exist

� η > 0 satisfying η < 1/2, which can be computed from ψ, ε, δ

� A PIVP function gM : R7 → R6 which can be written only by using the
following terms: variables, polynomial-time computable constants, +, −,
×, sin, cos, arctan

such that the ODE z′ = gM (t, z) robustly simulates M in the following sense:
for all g satisfying ‖g − gM‖ ≤ δ < 1/2 and for all x0 ∈ N3 which codes a
configuration according to the encoding described above, if x̄0, ȳ0 ∈ R3 satisfy
the conditions ‖x̄0 − x0‖ ≤ ε and ‖ȳ0 − x0‖ ≤ ε, then the solution z(t) of

z′ = g(t, z), z(0) = (x̄0, ȳ0)

satisfies, for all j ∈ N0 and for all t ∈ [j, j + 1/2]∥∥∥z2(t)− ψ[j](x0)
∥∥∥ ≤ η,

where z ≡ (z1, z2) with z1 ∈ R3 and z2 ∈ R3.



41

Remark 4.8 We note that, similarly to theorem 4.6, gM is computable in poly-
nomial time in the sense of computable analysis.

The following theorem is a refinement of theorem 4.7, since it provides the
amount of resources needed to simulate a Turing machine with ODEs when
using theorem 4.7.

Theorem 4.9 Let ψ : N3 → N3 be the transition function of a Turing machine
M under the encoding described above and let 0 < ε < 1/4 and 0 ≤ δ < 2ε <
1/2. Suppose that gM : R7 → R6 is the function from theorem 4.7 such that
the ODE z′ = gM (t, z) robustly simulates M . Let x0 ∈ N3 be an encoding of
a configuration according to the encoding described above and let x̄0, ȳ0 ∈ R3

be such that ‖x̄0 − x0‖ ≤ ε and ‖ȳ0 − x0‖ ≤ ε. Then the solution z(t) of z′ =
gM (t, z), z(0) = (x̄0, ȳ0) satisfies the following condition for all t ∈ [0, k], where
k ∈ N0 is arbitrary

min
0≤j≤k

∥∥∥ψ[j](x0)
∥∥∥− 1 ≤ ‖z(t)‖ ≤ max

0≤j≤k

∥∥∥ψ[j](x0)
∥∥∥+ 1.

The remaining of this section is devoted to prove theorem 4.9.

Proof of theorem 4.9. To prove this result, we have to analyze the structure
of the proof of theorem 4.7, so we start by presenting it here. The idea to prove
theorem 4.7 is to iterate the transition function given in theorem 4.6 with ODEs.
We will also analyze the amount of resources used in the simulation to be able
to determine how efficiently one can simulate Turing machines with ODEs.

Following along the lines of the argument presented in [66], the idea is to
adapt the construction in [8] to simulate the iteration of an integer function
which admits an extension to the real line R. Although our objective is to
obtain an analytic function gM defining an ODE z′ = gM (t, z) which simulates
a given Turing machine M , in a first step we iterate the transition function with
a non-analytic ODE. First let us introduce some auxiliary functions.

Proceeding as in [81, p. 37], let θj : R → R, j ∈ N − {0, 1} be the function
defined by

θj(x) = 0 if x < 0, θj(x) = xj if x ≥ 0.

This function is a Cj−1 version of Heaviside’s step function θ(x), where θ(x) = 1
for x ≥ 0 and θ(x) = 0 for x < 0. Using θj we can obtain a function r : R→ R
which returns the integer part of a real number. More precisely, let

r(0) = 0, r′(x− 1/4) = cjθj(− sin 2πx) (4.10)

where cj =
(∫ 1

0
θj(− sin 2πx)dx

)−1

. The function r has the property that

r(x) = n, whenever x ∈ [n − 1/4, n + 1/4], for all integers n. Now consider
the ODE {

z′1 = λj(f̃(r(z2))− z1)3θj(sin 2πt),
z′2 = λj(r(z1)− z2)3θj(− sin 2πt),

(4.11)

where f̃ : R → R is an extension of the function f : N → N, z1(0) = z2(0) =
x0 ∈ N and λj > 8cj . Let us see how this construction works. Let us suppose
that t ∈ [0, 1/2]. In this case z′2(t) = 0 and hence z2(t) = x0 and r(z2) = x0.
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Therefore, the first equation of (4.11) becomes the targeting equation (4.1) with
b = f̃(r(z2)) = f(x0), t0 = 0, t1 = 1/2, and φ(t) = θj(sin 2πt). By lemma 4.4
and the choice of λj , we conclude that

|b− z1(1/2)| = |f(x0)− z1(1/2)| ≤ 1/4.

Moreover, min(x0, f(x0)) ≤ z1(t) ≤ max(x0, f(x0)) for all t ∈ [0, 1/2] also by
lemma 4.4. On the time interval [1/2, 1], the roles of z1 and z2 are reversed:
we will have z′1(t) = 0 and thus z1(t) = z1(1/2) for all t ∈ [1/2, 1]. Therefore
r(z1(t)) = f(x0) for t ∈ [1/2, 1] and the second equation of (4.11) becomes
the targeting equation (4.1) with b = r(z1(t)) = f(x0), t0 = 1/2, t1 = 1, and
φ(t) = θj(− sin 2πt). By lemma 4.4 and the choice of λj , we conclude that

|b− z2(1)| = |f(x0)− z2(1)| ≤ 1/4.

Moreover, min(x0, f(x0)) ≤ z2(t) ≤ max(x0, f(x0)) for all t ∈ [0, 1] also by
lemma 4.4 and min(x0, f(x0)) ≤ z1(t) ≤ max(x0, f(x0)) for all t ∈ [0, 1]. Now
the cycle repeats itself. On the time interval [1, 3/2], we get z′2(t) = 0 and thus
f̃(r(z2)) = f(f(x0)) = f [2](x0). Repeating the same reasoning, we conclude
that

∣∣f [k](x0)− z2(t)
∣∣ < 1/4 for all t ∈ [k, k + 1/2], where k ∈ N0 is arbitrary

(assuming f [0](x) = x) and
∣∣f [k+1](x0)− z1(t)

∣∣ < 1/4 for all t ∈ [k+ 1/2, k+ 1],
where k ∈ N0 is arbitrary. Moreover, when t ∈ [k, k + 1], with k ∈ N, we have
that min(f [k](x0), f [k+1](x0))−1/4 ≤ zi(t) ≤ max(f [k](x0), f [k+1](x0))+1/4 for
i = 1, 2.

In this manner we are able to iterate (the extension of) a discrete function
f : N → N with an ODE. However, the ODE is still not analytic as required
in theorem 4.7. Notice that to have an analytic ODE, z′1 and z′2 cannot be 0
in half-unit intervals, otherwise it is well-known that if they are analytic and
take the value zero in a non-empty interval, then these derivatives have to be
identically equal to 0 on all their domain. To avoid this problem, instead of
requiring that z′1 and z′2 take the value 0 in half-unit intervals, we require that
they take values very close to zero; the robustness of fM in theorem 4.6 will
ensure that the whole construction will not break up when iterating the function
fM with an ODE, even if z′1 and z′2 are not exactly 0 in half-unit intervals, and
thus the values of z1(t) and z2(t) might change slightly. The main challenge is
to keep the magnitude of |z′1| and |z′2| sufficiently small in the half-unit intervals
of interests so that the iteration can be carried out without major problems. To
achieve this effect, we have to analyze the effects of introducing perturbations
in (4.11).

As we have seen above, Branicky’s simulation relies on the use of targeting
equations of the type (4.1). If z′2(t) is not 0 in the time interval [0, 1/2] and
hence z2(t) is not constant there, we are still able to analyze the system (4.11)
using lemma 4.5.

Following the ideas sketched above, we replace the non-analytic function
θj(sin 2πt) in the first equation of (4.11) by an analytic function which is periodic
with period 1 and close to zero when t ∈ [1/2, 1]. This can be done in a two-step
process. First we construct a very rough approximation of θj(sin 2πt), which
will then be improved upon on a second step. For the first step, let us consider
the function s defined by

s(t) =
1

2

(
sin2(2πt) + sin(2πt)

)
. (4.12)
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This function ranges between 0 and 1 in [0, 1/2] (and, in particular, between
3/4 and 1 when x ∈ [0.16, 0.34]), and between − 1

8 and 0 on the time interval
[1/2, 1]. Next we consider the function l2 given in the next lemma, which was
proved in [66].

Lemma 4.10 Let l2 : R2 → [0, 1] be given by l2(x, y) = 1
π arctan(4y(x−1/2))+

1
2 . Suppose also that a ∈ {0, 1}. Then, for any ā, y ∈ R satisfying |a− ā| ≤ 1/4
and y > 0, we obtain |a− l2(ā, y)| < 1/y.

We can see the function l2 as a function which reduces the error of any value
within distance ≤ 1/4 of 1 (0, respectively) by an amount specified by 1/y where
y > 0 is the second argument of l2. Now we can introduce the following analytic
function W : R2 → [0, 1], which is given by

W0(t, y) = l2(s(t), y) (4.13)

to replace the non-analytic function θj(sin 2πt) in (4.11), since
∫ 1/2

0
W0(t, y) >

3/4×(0.34−0.16) > 0 (assuming that y ≥ 4) and |W0(t, y)| < 1/y for t ∈ [1/2, 1]
(i.e.y allows us to provide an error bound for z′1(t) when z′1(t) should be close
to zero).

Let us also consider the following function σ introduced in [66]. This function
works as a uniform contraction in a neighborhood of the integers Z. It has the
advantage that it works around every integer, contrarily to the function l2 which
works only for the integer values 0 and 1. On the other hand, l2 allows us to
prescribe the rate of contraction of the error (as the second argument of l2),
while this rate of contraction cannot be changed for σ. The following lemma is
from [66].

Lemma 4.11 Let n ∈ Z and let ε ∈ [0, 1/2). Then there is some contracting
factor λε ∈ (0, 1) such that, ∀δ ∈ [−ε, ε], |σ(n+ δ)− n| < λεδ.

As done in [66], we will henceforth assume that ε ∈ [0, 1/2) is fixed and that
λε is the respective contracting factor given by lemma 4.11. In particular, we
can take λ1/4 = 0.4π − 1 ≈ 0.2566371.

We now have all the ingredients to prove theorem 4.7. Let γ > 0 be such
that 2γ + δ/2 ≤ ε < 1/4, and let fM be the map given by theorem 4.6 (where
the values ε and δ of the statement of the theorem are replaced by the values
η = (γ + δ) /2 + ε < 1/2 and η/2, respectively, in what follows, although the
value for δ is not relevant for the present result). Consider the system of ODEs
z′ = gM (t, z) given by

z′1,i = λ1,i(z1,i − σ[n] ◦ fM,i(z2,i))
3 φ1,i(t, z1,i, z2,i) (4.14)

z′2,i = λ2,i(z2,i − σ[n](z1,i))
3 φ2,i(t, z1,i, z2,i)

where z(t) = (z1(t), z2(t)) ∈ R3×R3 = R6 and i = 1, 2, 3, with initial conditions
z1(0) = x̄0, z2(0) = ȳ0, where x̄0, ȳ0 ∈ R3 approximate, with error bounded by
ε, some initial configuration x0

φ1,i(t, z1,i, z2,i) = l2

(
s(t), λ1

γ (z1,i − σ[n] ◦ fM,i(z2,i))
4 + λ1

γ + 10
)

φ2,i(t, z1,i, z2,i) = l2

(
s(−t), λ2

γ (z2,i − σ[n](z1,i))
4 + λ2

γ + 10
)

(4.15)
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and λ1,i, λ2,i, i = 1, 2, 3, are constants to be defined in a moment. The ODE
(4.14) works in a similar way to the ODE (4.11) when simulating the iteration of
fM , although it is formed by a total of 6 components. The constants λ1,i, λ2,i,
i = 1, 2, 3 are constants associated to a targeting error of value γ. The main dif-
ference comparatively to (4.11) is that extra terms are allowed to account for the
introduction of errors. Since we want that the ODE z′ = gM (t, z) simulates M in
a robust manner, let us assume that the right-hand side of the equations in (4.14)
can have an error of absolute value not exceeding δ. To analyze the behavior of
(4.14), let us start with the time interval [0, 1/2]. For readability reasons, we will
now drop the component index when analyzing the behavior of z1 and z2 (i.e. we
will write simply z1 instead of zi,1, etc.), unless there is risk of notational con-

fusion. We have that |s(−t)| ≤ 1/8 and, by lemma 4.10 (note that |x|3 ≤ x4 + 1

for all x ∈ R), φ2 is less than min(γ(λ2

∥∥z2 − σ[n2](z1)
∥∥3

∞)−1, 1/10). This im-
plies that ‖z′2(t)‖ ≤ γ+ δ for t ∈ [0, 1/2]. Because the initial condition has error
bounded by ε, z′2 in (4.15) is perturbed by an amount not exceeding δ and hence
|z2(t)− z2(0)| ≤ (γ + δ)/2 for all t ∈ [0, 1/2], one has

‖z2(t)− x0‖ ≤
γ + δ

2
+ ε = η < 1

2 for all t ∈ [0, 1/2]. (4.16)

Due to theorem 4.6, we conclude that

‖fM (z2(t))− ψ(x0)‖ ≤ η < 1
2 for all t ∈ [0, 1/2].

Therefore, for n large enough (depending only on η: it suffices to choose an
n such that σ[n](η) ≤ γ), one has ‖σ[n] ◦ fM (z2(t)) − fM (x0)‖ < γ for all
t ∈ [0, 1/2]. Moreover, as we have seen above, there is some non-empty time
interval [0.16, 0.34], where s(t) ∈ [3/4, 1], which implies by lemma 4.10 that φ1

satisfies the assumptions of function φ in lemma 4.5. Therefore, the behavior of
z1 is given by lemma 4.5 and∥∥∥∥z1

(
1

2

)
− ψ(x0)

∥∥∥∥ < 2γ + δ/2 ≤ ε. (4.17)

In the interval [1/2, 1] the roles of z1 and z2 are reversed and one concludes,
using arguments similar to those used in the time interval [0, 1/2] that ‖z′1(t)‖ ≤
γ + δ for t ∈ [1/2, 1] and hence that ‖z1(t)− z1(1/2)‖ ≤ (γ + δ)/2 for all
t ∈ [1/2, 1]. This inequality, together with (4.17) yields that

‖z1(t)− ψ(x0)‖ < ε+ (γ + δ)/2 = η for all t ∈ [1/2, 1].

We have that
∥∥σ[n](z1(t))− ψ(x0)

∥∥ ≤ γ from the definition of n and lemma 4.5
yields

‖z2 (1)− ψ(x0)‖ < 2γ + δ/2 ≤ ε. (4.18)

Again, on the time interval [1, 3/2], the roles of z1 and z2 will be switched and
we will have that ‖z′2(t)‖ ≤ γ+δ for t ∈ [1, 3/2] and hence that ‖z2(t)− z2(1)‖ ≤
(γ + δ)/2 for all t ∈ [1/2, 1]. This inequality, together with (4.18) yields again
that

‖z2(t)− ψ(x0)‖ < ε+ (γ + δ)/2 = η for all t ∈ [1, 3/2]

and therefore the whole procedure can be repeated for subsequent time intervals.
Therefore we conclude that for j ∈ N0, if t ∈ [j, j+ 1

2 ] then ‖z2(t)−ψ[j](x0)‖ ≤ ε.
This proves theorem 4.7.
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Concerning the proof of theorem 4.9, we note that if in the previous simula-
tion we apply the bounds given by lemma 4.5, namely condition 2, we conclude
that on the time interval [0, 1/2] we have

min(x0 − ε, ψ(x0)− γ)− δ/2 ≤ z1(t) ≤ max(x0 + ε, ψ(x0) + γ) + δ/2.

From this equation and noting that ‖z1(t)− z1(1/2)‖ ≤ (γ + δ)/2 for all t ∈
[1/2, 1], we conclude that (note that 0 < γ < ε, δ < 1/2, and ε+ (γ+ δ)/2 = η),
for all t ∈ [0, 1] we have

min(x0 − ε, ψ(x0)− γ)− δ − γ/2 ≤ z1(t)

≤ max(x0 + ε,ψ(x0) + γ) + δ + γ/2 =⇒
min(x0, ψ(x0))− ε− δ − γ/2 ≤ z1(t) ≤ max(x0, ψ(x0)) + ε+ δ + γ/2 =⇒

min(x0, ψ(x0))− η − δ/2 ≤ z1(t) ≤ max(x0, ψ(x0)) + η + δ/2 =⇒
min(x0, ψ(x0))− 1 ≤ z1(t) ≤ max(x0, ψ(x0)) + 1.

Similarly, by (4.16), we have that ‖z2(t)− x0‖ < (γ + δ)/2 for all t ∈ [0, 1/2],
which implies that |z2(1/2)− x0| < (γ+ δ)/2 and, by condition 2 of lemma 4.5,
we have, on the time interval [1/2, 1],

min(z2(1/2), ψ(x0)− γ)− δ/2 ≤ z2(t) ≤ max(z2(1/2), ψ(x0) + γ) + δ/2.

Combining both inequalities, we conclude that, for all t ∈ [0, 1]

min(x0 − (γ + δ)/2, ψ(x0)− γ)− δ/2 ≤ z2(t)

≤ max(x0 + (γ + δ)/2,ψ(x0) + γ) + δ/2 =⇒
min(x0, ψ(x0))− γ − δ ≤ z2(t) ≤ max(x0, ψ(x0)) + γ + δ =⇒

min(x0, ψ(x0))− 1 ≤ z2(t) ≤ max(x0, ψ(x0)) + 1.

Proceeding similarly for subsequent intervals, we conclude the theorem.

Remark 4.12 We note that since gM can be written only by using the follow-
ing terms: variables, polynomial-time computable constants, +, −, ×, sin, cos,
arctan, and since all these terms belong to GPVAL, it is always possible to
rewrite the IVP involving the ODE z′ = gM (t, z) as a PIVP with initial con-
dition in GPVAL and whose solution is polynomially bounded thanks to lemma
1.13.

4.3 Space emulation and FPSPACE equivalence

In this section we present the new notion of emulation that replaces the concept
introduced by definition 2.26 for the case of time complexity classes. This notion
of space emulation exploits the benefits of using the encoding Ψ̂ from definition
4.1 to encode the Turing machines configurations together with the benefits of
simulating these machines by means of theorem 4.9, allowing us to achieve our
main characterization result for the class FPSPACE. To provide an effective
definition of space emulation we have to take in account some new problematics
that are not present for the case of time complexity classes. A problem which
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does not appear directly in the characterization of P is the need to know when
the system already has the correct solution – just reaching some space bound is
not enough to conclude that the computation has stopped, contrarily to a time
bound. Hence we have to consider a way of detecting if the system has already
produced a correct answer. We use the ideas presented in [20] for deciding
discrete sets by means of ODEs and use a variable y1 which allows us to detect
if the system already produced the correct answer if a certain threshold has
been reached.

Another issue is that we might be able to decrease the bound on the size
of the solution by using more accuracy, which also has a cost in practice that
might not be reflected in a notion of space. For this reason, in our notion of
space emulation, we assume that our “measuring instruments” only have access
to some fixed precision. This yields the following definition (see the comments
below the definition for more explanations).

Definition 4.13 Let f : Γ∗ → Γ∗ and g : R+ → R+ be two functions. We say
that f is (Ψ-)emulable in space g by an ODE{

y′ = p(y, z)
z′ = q(y, z)

(4.19)

where p, q are functions formed by polynomial components, if there are two
(vector-valued) function r, s ∈ GPVAL, and ε > 0, τ ≥ α > 0, j, l, k ∈ N
with 0 < j ≤ l such that, for all w ∈ dom(f) ⊆ Γ∗ and for any Ψ-bound φ
one has that the solution of the IVP formed by (4.19) and the initial condition
y(0) = r(x), z(0) = s(y(0)) = s ◦ r(x), where Ψ(x) = w, satisfies

1. (halting decision is irreversible) If t0 > 0 is such that y1(t0) ≥ 1,
then y1(t) ≥ 1 for all t ≥ t0 and y1(t) ≥ 3/2 for all t ≥ t0 + 1

2. (halting decision is eventually taken) There is some t0 ≥ 0 such that
y1(t0) ≥ 1

3. (correct output) If y1(t) ≥ 1, then Ψ(y2(t), . . . , yj(t)) = f(w)

4. (bounded space) ‖(y(t), z(t))‖ ≤ φ ◦ g(x) for any x satisfying Ψ(x) = w
and for all t ≥ 0

5. (robustness to perturbations) For any t̄0 ≥ 0, if z1(t̄0) ≥ 1 and ȳ0

is such that ‖ȳ0 − y(t̄0)‖ ≤ ε, then the solution (ȳ, z̄) of (4.19) with the
initial condition ȳ(0) = ȳ0 and z̄(0) = s(ȳ0) satisfies conditions 1–4 above

6. (robustness is common) For any b > a ≥ 0 such that |b− a| ≥ τ , there
is an interval I = [c, d] ⊆ [a, b], with |d− c| ≥ α, such that z1(t) ≥ 3/2 for
all t ∈ I

7. (robustness preserves main properties) If (ỹ, z̃) is a solution of (4.19)
with the initial condition ỹ(0) = ỹ0, z̃(0) = s(ỹ0) such that ‖ỹ0 − y(t̄0)‖ ≤
ε as in condition 5, then we can take ỹ in place of y in conditions 5 and
6 if t̄0 ≥ τ . Moreover, if we repeat this procedure an arbitrarily number of
times, there will still be some t0, counted from t = 0 in the original ODE
(4.19), such that condition 1 holds.
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Some comments are in order for definition 4.13. First we note that the system
(4.19) is really just one ODE, which is separated into two parts. The first part
defines the dynamics of the master variables y while the second part defines
the dynamics of the auxiliary variables z. The idea is that, in each instant,
the meaningful information about the current state (or “configuration”) is fully
encoded on the master variables, while the remaining variables are just auxiliary
in nature and can be readily and easily computed from the master variables,
as we will see. The initial condition depends on two functions r, s ∈ GPVAL.
This means that the initial conditions can be easily computed from the input x
by a polynomial ODE using reasonable (polynomial) resources. The fact that
r and s may be multidimensional is not problematic, since r (and s) is the
unique solution of a polynomial ODE and we may consider that each argument
xi depends on a time variable t. Due to the uniqueness of the solution of the
polynomial ODE [51] the value of r only depends on the current value of each
xi(t) for a given time instant t. This allows us to update the values of r and of s
to their values r(x) and s◦r(x) using a finite amount of resources. The condition
y1(t) ≥ 1 signals that the computation has already ended with the correct result
(condition 3) and that once the system ended, it will stay on the same state
(condition 1). We also require that the system eventually halts (condition 2)
and if y1(t0) ≥ 1, then y1(t) ≥ 3/2 after, at most, one time unit. This is to
avoid problems sampling the output and deciding whether the computation has
finished if we only have access to a fixed precision measuring “device”. Condition
4 states that if (4.19) computes f in space g, then ‖(y(t), z(t))‖ must be less or
equal to any Ψ-bound for g for all times t ≥ 0. Condition 5 can be seen as follows.
The ODE has the master variables y1, . . . , yl which provide all the relevant
information about the computation. The other remaining variables z1, . . . , zk
can be thought as “auxiliary” – they are useful to help update the main variables
y1, . . . , yl, but have no other relevant function besides that. Similarly to what
happens with Turing machine, we would like to be able to stop the computation,
store the “configuration” of the ODE, and then restart the computation where
we left it and still be able to carry on the computation faithfully. For that
reason we just need to store the values of the main variables y1, . . . , yl, which
work as the configuration. Since in practice we only can store these values with
some restricted precision, say ε, we want that any meaningful computation is
robust to this slight change of values. We do not need to record the values of
the auxiliary variables, since those can be easily recovered from the values of
the master variables, and thus we do not need to ensure a robustness condition
for the auxiliary variables. Moreover, some parts of the computation might
be too sensitive to be sampled and re-used as the start of another simulation.
For example, if we see a digital computer as an analog computer, the voltages
of the circuit might be at certain time instants changing quickly and between
the voltage values which correspond to the bits “0” and “1”. Sampling the
circuit at that time with a certain accuracy might be especially prone to errors,
so it might be more suitable to sample when the values of the voltages have
stabilized. That’s why we use the variable z1 to flag when it is appropriate
to store the values of the master variables, and this must happen frequently.
Note that it may well be the case that we can sample the system at any time
without problems. Condition 5 also encompasses this case (e.g. add a variable z1

defined by z1(0) = 3/2, z′1(t) = 0). This provides the rationale behind condition
5. Condition 6 asserts that the system can be sampled often. Condition 7 is
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mainly for the case where we stop and restart the computation many times.
The introduction of the time step τ > 0 is needed to ensure that the system has
enough time to “stabilize”, using negative feedback or other similar behavior to
correct for imprecisions on the input. If we do not use the time step requirement,
we could stop and restart the system several times in a very quick succession,
without giving the system opportunity to correct itself, until the initial error
is made arbitrarily high and the whole simulation is destroyed. We also note
that many of the ideas about the conditions 5–7 come from similar requirements
from engineering and from topics such as structural stability or shadowing in
dynamical systems theory. In condition 7, there could be a problem when we
stop the computation and restart it with an approximate initial condition an
arbitrary number of times as in condition 5, since each new computation might
take a longer time than the preceding one to satisfy condition 1, and thus never
halt. Therefore we include a requirement in condition 7 that this cannot happen.

At this point we are ready to present the main theorem that describes our
characterization of FPSPACE.

Theorem 4.14 Let f : Γ∗ → Γ∗ be a function. Then f ∈ FPSPACE if and
only if f is Ψ̂-emulable in polynomial space by a polynomial ODE.

4.4 Proof of theorem 4.14

To prove theorem 4.14, we will use the following result

Theorem 4.15 Let f : Γ∗ → Γ∗ be a function which is computable by a one-
tape Turing machine in space g, where g : N→ N is a non-decreasing function
satisfying g(n) ≥ n. Suppose that ḡ : R→ R is a non-decreasing function which
is an extension of g. Then f is (Ψ̂-)emulable in space P ◦ ḡ by a polynomial
ODE, where P is a polynomial.

Proof of theorem 4.15. First we note that if a one-tape Turing machine M
computes f in space g and if (4.8) is the tape contents of M at a given instant
of the computation which started with an input w ∈ Γ∗, where the head is
reading symbol a0, y1, y2 ∈ R satisfy (4.9), q ∈ {1, . . . ,m} is the current state
and |y3 − q| ≤ 1/4, we conclude that (note that M uses at most k symbols)

‖(y1, y2, q)‖ ≤ kg(|w|)+1 +m+ 1.

From theorem 4.9, we also conclude that M with input w can be simulated by
an IVP {

y′ = gM (y)
y(0) = (x0, 0, 1, x0,0, 1)

(4.20)

as in theorem 4.7, assuming that Ψ̂(x0) = w and that 1 corresponds to the initial
state. Moreover, we get that the solution x of this IVP satisfies the following
condition for all t ≥ 0

‖x(t)‖ ≤ kg(|w|)+1 +m+ 2.

Now, following the observation of remark 4.12, we can use the closure property
of GPVAL expressed by lemma 1.13 to conclude that the IVP (4.20) can be
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expanded to a polynomial IVP such that the initial condition y0 satisfies y0 =
α(x0), where α ∈ GPVAL. Moreover there is a polynomial R, which without
loss of generality we can assume to be increasing, such that if y is the solution
of the IVP, then

‖y(t)‖ ≤ R(‖x(t)‖) ≤ R
(
kg(|w|)+1 +m+ 2

)
≤ 2P◦ḡ(‖x0‖) − 1

for some polynomial P which we can assume to have positive integers as coeffi-
cients. In particular that implies that the solution of the ODE satisfies condition
4 of definition 4.13. We have now to detect when the computation has halted.
Let us assume that m denotes the halting state and suppose y3 encodes the
current state of the TM in the simulation of the TM with our polynomial ODE
derived from (4.20). Note that y3(t)−m < −1/2 until the machine halts. There
might be a brief transient time period of size bounded by 1/2 where y3(t) is quite
near to m, but where the other components are not close enough to their correct
value. Hence we cannot directly use y3(t)−m+ 1/2 as a variable to signal that
the simulation has ended. However, we know that there is another variable,
y6, from the “mirror” simulation of the ODE, which will update its value in the
next half-unit time interval to near m. So we can use a new variable u1 to signal
the end of the computation, by taking

u1(t) = 2l2(σ[b](y3(t)−m+ 1), 10) · l2(σ[b](y6(t)−m+ 1), 10)

where b ∈ N0 is chosen so that σ[b](η) ≤ 1/4, where σ and l2 are defined by
lemmas 4.11 and 4.10. Note that u1 can be written as the solution of a PIVP
function since it is the composition of PIVP functions. Since the Turing machine
eventually halts and the state will be kept near m, we conclude that conditions
1 and 2 are satisfied and condition 4 continues to be satisfied (reordering the
components of the ODE so that u1 is the first component). For condition 5, 6
and 7, they follow immediately by taking τ = 2, and by considering intervals
[c, d] with the format [0.16+ i, 0.34+ i], where i ∈ N since the function s defined
by (4.12) takes values between 3/4 and 1 when x ∈ [0.16, 0.34] and it has period
1, so it suffices to take as first component of the auxiliary variables z1(t) = 2s(t).
Note also that the ODEs defining s are autonomous, since sin(2πt) corresponds
to the first component of the solution of the IVP y′1 = 2πy2, y

′
2 = −2πy1,

y1(0) = 0 and y2(0) = 1.

An obvious corollary to this theorem, we get the following result.

Theorem 4.16 If f ∈ FPSPACE, then f is (Ψ̂-)emulable in polynomial space
by a polynomial ODE.

To prove theorem 4.14, we just need the reverse direction of the above the-
orem.

Theorem 4.17 If f : Γ∗ → Γ∗ is a function which is (Ψ̂-)emulable in polyno-
mial space by a polynomial ODE, then f ∈ FPSPACE.

Proof of theorem 4.17. The idea is to numerically simulate (4.19) using
the algorithm of [36], due to theorem 3.11. The analysis of the algorithm pre-
sented in theorem 3.11 focus on time complexity boundaries, while now we are
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interested on space complexity. Nevertheless, by a careful observation of the ar-
gument described in [36] it is straightforward to define a space boundary for the
same algorithm, as presented by the following theorem. Indeed we remark that
the algorithm which proves theorem 3.11 in [36] is obtained by using a Taylor
method which provides approximations (via Taylor approximations of variable
order) of the solution of the polynomial ODE at times a = t0, t1, t2, . . . , tN = b
and the number of steps performed by the algorithm depends polynomially on
PsLeny(a, b). On the other hand, the number of bits used depends only on
log PsLeny(a, b). Hence we have the following theorem.

Theorem 4.18 Let p : Rn → Rn be a vector-valued function formed by poly-
nomials of degree at most k. Assume that y : R → Rn is a solution of a PIVP
defined with the initial condition y(a) = y0, with a ∈ Q and y0 ∈ Qn. Then
y(b), where b ∈ Q satisfies b ≥ a, can be computed with precision 2−µ, µ ∈ N0,
in space bounded by poly(deg(p), log PsLeny(a, b), log ‖y0‖, log Σp, µ)n.

At this point we can continue with the proof of theorem 4.17. Let (y, z)
be the solution of (4.19) which emulates f with argument Ψ̂(x) = w. Due
to condition 4 of definition 4.13, we know that there is a polynomial P such
that ‖(y(t), z(t))‖ ≤ 2P (|x|) for all t ≥ 0. Then using the algorithm of [36], we
can compute (y(ti), z(ti)) with accuracy ε/2 < 1/4, obtaining approximations
ȳ(0), z̄(0), ȳ(1), z̄(1), . . . , ȳ(L), z̄(L) where τ = t0, t1, . . . , tL = 2τ are rational num-
bers satisfying |ti+1 − ti| ≤ α. Due to condition 5 and 6, we know that there is
at least some ti such that z̄(i),1 ≥ 5/4, which implies that z1(ti) ≥ 1 and thus
that one can store the values the values ȳ(i). We note that the computation
needed to obtain ȳ(i) can be carried out in polynomial space due to theorem
4.18. Next we repeat the procedure for the initial value problem obtained by
using (4.19) and y(0) = ȳ(i), z(0) = s(ȳ(i)). We repeat this procedure until
we eventually conclude that ȳ(i),1 ≥ 5/4 for some i. At that time we know
that the system has halted (in the sense of condition 1 of definition 4.13) and
since Ψ̂ only has one argument, according with definition 4.13, we round ȳ(i),2

to the nearest integer a. Then we will have Ψ̂(a) = f(w), and it will be a
straightforward computation to return f(w) from the integer a with a Turing
machine. Therefore we were able to compute f(w) in space polynomial in |w|,
which implies that f ∈ FPSPACE.
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Chapter 5

Characterizations of classes
of languages

Until now we have described connections between analog classes of functions
(ATSP, ATSE) and discrete classes of computable functions (FP, FEXPTIME
and FPSPACE) by means of discrete emulation or space-emulation. At this
point a very natural question arises: is it then possible to extend these results
to discrete classes of computable sets as well, such as PSPACE and EXPTIME?
The answer to this important question is yes, and the latter can be done by mod-
ifying the criterion of acceptance in the definition of the analog classes. Indeed,
it won’t be required any convergence of the dynamical system, but the solution
of the PIVP, with initial condition dependent from the input word as usual, will
be required to enter a certain region to determinate whether the input word w
belongs or not to the considered set. This modification will allow solutions of
ODEs to decide a certain class of sets of words over the considered alphabet Γ,
and therefore it will be possible to introduce a new analog class closely related
to EXPTIME. A similar procedure has been followed by the authors of [20] to
extend their results obtained for polynomial computable functions to the com-
plexity class P and, as we just mentioned above, the same idea has inspired the
formulation of condition 1 in the definition of space-emulation in 4.13. We start
with the definition of this new analog class, related to languages, that we will
call Exponential-Analog-Recognizable, or EAR.

Definition 5.1 (EAR) A language L ⊆ Γ∗ is called exponential analog rec-
ognizable if there exist a vector q of bivariate polynomials and a vector p of
polynomials with d variables, both with coefficients in RP , and an exponential
boundary function Π : R+ → R+ such that ∀w ∈ Γ∗ there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+

� y(0) = q(Ψk(w)) and y′(t) = p(y(t))

� if |y1(t)| ≥ 1 then |y1(u)| ≥ 1 for all u ≥ t

� if w ∈ L (respectively, w /∈ L) and leny(0, t) ≥ Π(|w|) then y1(t) ≥ 1
(respectively, y1(t) ≤ −1)

� leny(0, t) ≥ t



52

where leny(0, t) represents the length of the solution y in the interval [0, 1].

As it is possible to see from this definition, the first variable of the system
y1(t) is the variable that is actually deciding the word w considered as an input
to the model. As always the relationship between the dynamical system and the
input w is obtained by means of the initial condition q which is a polynomial
function of the real encoding of the word w, expressed with Ψk(w) as usual.
The second condition of the above list makes sure that the decision is stable,
forcing the variable y1(t) to maintain its decision once it has been made. The
third condition requires the length of the solution to be at most exponential on
the input in the moment in which the encoded word has been decided. This
condition on the length of the system is directly connected with the use of
the ATSE class and the implications of theorem 3.9. Finally, condition four is
important to avoid including in the class solutions with too slow evolutions, as
for example the case of solutions close to an equilibrium point.

For the case of PSPACE, the equivalence for languages is once again de-
scribed starting from the result obtained for functions, where the notion of
space-emulation is modified to describe space-decidability. The key difference
in this case is expressed by condition 3, which requires the solution of the dy-
namical system to reach a fixed threshold represented by the value 1 for words
belonging to the language, and by the value −1 for words not in the language.

Definition 5.2 (Space-decidability) Let L ⊆ Γ∗ be a language and g : R+ →
R+ be a function. Then we say that L is (Ψ-)decidable by an ODE (4.19)
in space g if there are (vector-valued) functions r, s ∈ GPVAL and ε > 0,
τ ≥ α > 0, α, τ ∈ Q, l, k ∈ N such that, for all w ∈ dom(f) ⊆ Γ∗ and for any
Ψ-bound φ one has that the solution of the IVP formed by (4.19) and the initial
condition y(0) = r(x) and z(0) = s(y(0)) = s ◦ r(0), where Ψ(x) = w, satisfies

1. (halting decision is irreversible) If t0 > 0 is such that y1(t0) ≥ 1,
then y1(t) ≥ 1 for all t ≥ t0 and y1(t) ≥ 3/2 for all t ≥ t0 + 1

2. (halting decision is eventually taken) There is some t0 ≥ 0 such that
y1(t0) ≥ 1

3. (correct output) If Ψ(x) ∈ L (respectively /∈ L) and y1(t) ≥ 1 then
y2(t) ≥ 1 (respectively ≤ −1)

4. (bounded space) ‖(y(t), z(t))‖ ≤ φ ◦ g(x) for any x satisfying Ψ(x) = w
and for all t ≥ 0

5. (robustness to perturbations) For any t̄0 ≥ 0, if z1(t̄0) ≥ 1 and ȳ0

is such that ‖ȳ0 − y(t̄0)‖ ≤ ε, then the solution (ȳ, z̄) of (4.19) with the
initial condition ȳ(0) = ȳ0 and z̄(0) = s(ȳ0) satisfies conditions 1–4 above;

6. (robustness is common) For any b > a ≥ 0 such that |b− a| ≥ τ , there
is an interval I = [c, d] ⊆ [a, b], with |d− c| ≥ α, such that z1(t) ≥ 3/2 for
all t ∈ I

7. (robustness preserves main properties) If (ỹ, z̃) is a solution of (4.19)
with the initial condition ỹ(0) = ỹ0, z̃(0) = s(ỹ0) such that ‖ỹ0 − y(t̄0)‖ ≤
ε as in condition 5, then we can take ỹ in place of y in conditions 5 and



53

6 if t̄0 ≥ τ . Moreover, if we repeat this procedure an arbitrarily number of
times, there will still be some t0, counted from t = 0 in the original ODE
(4.19), such that condition 1 holds.

The results of the following section provide an interesting new perspective
on the famous open problem of standard complexity theory: EXPTIME vs
PSPACE. Indeed, proving a separation result between the two analog charac-
terizations consequently proves the same result for the standard open problem,
and vice versa. Therefore, this constitutes a reduction from a hard problem of
complexity theory to a problem of analysis formulated by means of polynomial
ODEs.

5.1 Equivalence relation for EXPTIME

Theorem 5.3 (EXPTIME equivalence) For any language L ⊆ Γ∗, L ∈
EXPTIME if and only if L is exponential analog recognizable.

Proof of theorem 5.3. The proof is similar to the what was done in [20]
for the polynomial case. Let L ∈ EXPTIME. Then there exists a function
f ∈ FEXPTIME and two distinct symbols 0̄, 1̄ ∈ Γ such that for any w ∈ Γ∗,
f(w) = 1̄ if w ∈ L and f(w) = 0̄ otherwise. By theorem 3.9 there is some
g ∈ ATSE that emulates f . Since for any w ∈ Γ∗ one has f(w) ∈ {0̄, 1̄}, this
implies that Ψk(f(w)) = (k−1γ(0̄), 1) or Ψk(f(w)) = (k−1γ(1̄), 1). Next define a
function res : {k−1γ(0̄), k−1γ(1̄)} → {−2, 2} which is defined by res(k−1γ(0̄)) =
−2 and res(k−1γ(1̄)) = 2. Using Lagrange interpolation, by theorem 2.20 we
can extend res to a function Lres ∈ ATSP which extends res to R. Now take
g∗(x) = Lres(g1(x)), where g(x) = (g1(x), g2(x)). Since g∗ is the composition
of an ATSP function with an ATSE function, by theorem 3.8 we conclude that
g∗ ∈ ATSE. Moreover, g∗(Ψk(w)) = 2 if w ∈ L and g∗(Ψk(w)) = −2 if w /∈ L.

From the definition of the ATSE class we know that g∗ ∈ ATSE (Π1Π2,Υ1Υ2)
for some exponential boundary functions Π1,Υ1 and some polynomials Π2,Υ2

with corresponding d, p, q as parameters and functions defining the dynamical
system. Assume, without loss of generality, that these four functions used as
boundaries are increasing functions. Let w ∈ Γ∗ and consider the following sys-
tem, where v is a constant variable used to store the input and in particular the
input length (v2(t) = |w|), τ(t) = t is used to keep the time, z is the decision
variable, and τ∗ = Π1(v2(t))Π2(ln 2) = Π1(|w|)Π2(ln 2)

y′(t) = p(y(t))

v′(t) = 0

z′(t) = lxh[0,1](τ(t)− τ∗, 1 + τ(t), y1(t)− z(t))
τ ′(t) = 1

where y(0) = q(Ψk(w)), v(0) = Ψk(w), z(0) = 0, and τ(0) = 0. Let t ∈ [0, τ∗].
Then, by the properties of lxh (see proposition 2.14), one has |z′| ≤ e−1−t. This
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implies that

z(t) =

∫ t

0

z′(u)du ⇒

|z(t)| ≤
∫ t

0

|z′(u)| du ≤
∫ t

0

e−1−udu ≤ e−1 − e−1−t ≤ e−1. (5.1)

In particular we conclude that |z(t)| < 1 for t ∈ [0, τ∗] and therefore that the
system has not decided whether w should be accepted or rejected for times ≤ τ∗.

Let us now consider the case when t ≥ τ∗. By definition of ATSE, we have
‖y1(t) − g∗(Ψk(w))‖ ≤ e− ln 2. Recall that g∗(Ψk(w)) ∈ {−2, 2} and let s ∈
{−1, 1} be such that g∗(Ψk(w)) = 2s. Then ‖y1(t)−2s‖ ≤ 1

2 , which means that
y1(t) = sλ(t), where λ(t) ≥ 3

2 . By (5.1), we conclude that z(τ∗) ∈ [−e−1, e−1].
From proposition 2.14, we also conclude that z satisfies, for t ≥ τ∗

z′(t) = φ(t)(sλ(t)− z(t))

where 1 > φ(t) > 0. Let us assume, without loss of generality, that s = 1
(a similar reasoning can be applied for the case s = −1). Then the previous
equation gives us, for t ≥ τ∗

z′(t) = φ(t)(λ(t)− z(t)) ≥ φ(t)

(
3

2
− z(t)

)
(5.2)

Furthermore, since z(τ∗) ∈ [−e−1, e−1], we conclude that z is strictly increasing
when t ≥ τ∗. To see this, consider a variable r(t) defined by r′(t) = 3/2− r(t)
and r(τ∗) = z(τ∗). We can explicitly solve the ODE for r and conclude that it
converges to 3/2 with a rate of convergence of the order of e−t and stays below
3/2 for all t ≥ τ∗. Furthermore, using standard results from ODEs we can
conclude that 3/2 > r(t) ≥ z(t) for all t ≥ τ∗. Knowing that z(τ∗) ∈ [−e−1, e−1]
this implies that z(t) is strictly increasing for all t ≥ τ∗.

By proposition 2.14, we have that for t ≥ τ∗ + 1∣∣y1(t)− z(t)− lxh[0,1](τ(t)− τ∗, 1 + τ(t), y1(t)− z(t))
∣∣ ≤

≤ e−1−τ(t) ≤ e−1

This inequality and the definition of z(t) yield that

|y1(t)− z(t)− z′(t)| ≤ e−1. (5.3)

We will now show that if t ≥ τ∗∗ = τ∗ + 4/(1− 2e−1), then z(t) ≥ 1. To show
that it suffices to show that z(τ∗∗∗) ≥ 1 for some τ∗∗∗ ∈ [τ∗, τ∗∗] since z is
increasing for t ≥ τ∗. Suppose, by absurd, that there is no such τ∗∗∗. Then
z(t) < 1 for all t ∈ [τ∗, τ∗∗] which implies that y1(t) − z(t) > 3/2 − 1 = 1/2.
Then using this last inequality and (5.3), we conclude that z′(t) ≥ 1/2 − e−1.
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Since z(τ∗) ∈ [−e−1, e−1], this implies that

z(τ∗∗) = z(τ∗) +

∫ τ∗∗

τ∗
z′(t)dt

≥ −e−1 + (τ∗∗ − τ∗)
(
1/2− e−1

)
≥ −1 +

4

1− 2e−1

(
1

2
− e−1

)
= −1 +

2
1
2 − e−1

(
1

2
− e−1

)
= 1

which is an absurd. Therefore z(t) ≥ 1 for all t ≥ τ∗∗. This proves conditions 1
and 2 of definition 5.1.

Note that ‖(y, v, z, τ)′(t)‖ ≥ 1 for all t ≥ 1 so condition 4 of definition 5.1
is also satisfied. To show condition 3, recall that |g∗(Ψk(w))| = 2. Therefore
from (5.1) for t < τ∗ and from the previous analysis for t ≥ τ∗, it is possible to
conclude that |z(t)| ≤ |g∗(Ψk(w))|+ 1/2 = 5/2 for all t ≥ 0. This shows that if
Y = (y, v, z, τ), then ‖Y (t)‖ is bounded by an exponential boundary function on
‖Ψk(w)‖ and by a polynomial on t because ‖y(t)‖ ≤ Υ1(‖Ψk(w)‖)Υ2(t) for all
t ≥ 0. Because y′(t) = p(y(t)) and, by proposition 2.14 |z′(t)| ≤ |y1(t)− z(t)| ≤
|y1(t)|+ 5/2, we conclude that there are an exponential boundary function Υ∗1
and a polynomial Υ∗2 such that ‖Y ′(t)‖ ≤ Υ∗1(‖Ψk(w)‖)Υ∗2(t) and, without loss
of generality, we can assume that Υ∗1 and Υ∗2 are increasing functions. Now,
since ‖Y ′(t)‖ ≥ 1, we have that

t ≤ lenY (0, t) ≤ t supu∈[0,t] ‖Y ′(u)‖ ≤ tΥ∗1(‖Ψk(w)‖)Υ∗2(t). (5.4)

Define the function Π∗ by Π∗(|w|) ≡ τ∗∗Υ∗1(|w|)Υ∗2(τ∗∗) which is an exponential
boundary function in ‖Ψk(w)‖ = |w|, because τ∗∗ is an exponential boundary
function on |w|, Υ∗2 is a polynomial, and Υ∗1 is an exponential boundary function.
Let t be such that lenY (0, t) ≥ Π∗(|w|). Then, by (5.4)

tΥ∗1(|w|)Υ∗2(t) ≥ Π∗(|w|) = τ∗∗Υ∗1(|w|)Υ∗2(τ∗∗)

which implies that tΥ∗2(t) ≥ τ∗∗Υ∗2(τ∗∗). Since Υ∗2 is increasing, this last con-
dition is only true when t ≥ τ∗∗ which, by the previous analysis, implies that
|z(t)| ≥ 1, that is, the system has decided. This concludes the direct direction
of the proof of theorem 5.3.

We will now proceed with the reverse direction of the proof of theorem 5.3.
Assume that L ∈ EAR. Apply the definition of the class EAR to get the
parameters and polynomials d, p, q characterizing the dynamical system and
an exponential boundary function Π which satisfies the third condition of the
definition of the class. Let w ∈ Γ∗ and consider the following system

y(0) = q(Ψk(w)), y′(t) = p(y(t)).

We will show that we can decide in time exponential in |w| whether w ∈ L or
not. Note that q is a polynomial with coefficients in RP and Ψk(w) is a rational
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number. Therefore q(Ψk(w)) ∈ RdP . Finally, note that

PsLeny,p(0, t) =

∫ t

0

Σpmax(1, ‖y(u)‖)deg(p)du

≤ tΣpmax(1, sup
u∈[0,t]

‖y(u)‖deg(p))

≤ tΣpmax(1, sup
u∈[0,t]

(‖y(0)‖+ leny(0, t))deg(p))

≤ t poly(leny(0, t))

≤ poly(leny(0, t))

where the last inequality holds because leny(0, t) ≥ t. We can now apply theo-
rem 3.11 to conclude that we are able to compute y(t)±2−µ in time polynomial
in t, µ and leny(0, t).

At this point some extra care is necessary. Indeed, the temptation is to use
theorem 3.11 to compute the value of the curve y(t) with some desired precision
at time Π(|w|). Nevertheless, it is possible that, at time Π(|w|), the length of
the solution could be already over exponential in |w|. Therefore, it is essential
to use carefully the algorithm developed for the proof of theorem 3.11 and stop
the computation as soon as the length of the solution is greater than Π(|w|).
This is possible due to the particular nature of the algorithm developed for
the proof of theorem 3.11 in [36]. Let t∗ be the time at which the algorithm
stops. Then, the running time of the algorithm will be polynomial in t∗, µ and
leny(0, t∗) ≤ Π(|w|) + O(1). Finally, by definition of the EAR class, we have
t∗ ≤ leny(0, t∗) and so, because leny(0, t∗) ≤ Π(|w|) this algorithm has running
time exponential in |w| and polynomial in µ. By taking µ = log 2 we can obtain
ỹ such that ‖y(t∗) − ỹ‖ ≤ 1

2 . By definition of Π we have that y1(t∗) ≥ 1 or
y1(t∗) ≤ −1, so we can decide from ỹ if w ∈ L or not. This finishes the proof of
the theorem.

5.2 Equivalence relation for PSPACE

Theorem 5.4 A language L ⊆ Γ∗ belongs to PSPACE if and only if there is a
polynomial ODE that Ψ̂-decides it in polynomial space.

Proof of theorem 5.4. The proof of theorem 5.4 is similar to the proof of
theorem 4.14. First let us assume that L ∈ PSPACE. Then there is a Turing
machine M which recognizes the language in polynomial space. We can assume
that M has one halting state, which is coded by the number m if the states
are coded by the integers 1, . . . ,m as in the proof of theorem 4.7. A word w
is assumed to be accepted by M if M halts and has the symbol coded by the
number 1 in its tape, and is rejected if when the Turing machine halts the tape
has only blanks and thus is coded by the integer 0. Proceeding similarly as in
the proof of theorem 4.15, we can simulate the behavior of the Turing machine
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with a polynomial ODE which satisfies the condition of definition 5.2 if we take

u1(t) = 10l2(σ[b](y3(t)−m+ 1), 10) · l2(σ[b](y6(t)−m+ 1), 10)

u2(t) = 10l2(σ[b](y3(t)−m+ 1), 10) · l2(σ[b](y6(t)−m+ 1), 10)

· (l2(σ[b](y1(t)), 10)− 1/2)

= u1(t) · (l2(σ[b](y1(t)), 10)− 1/2)

where b ∈ N0 is chosen so that σ[b](η) ≤ 1/4, σ and l2 are defined by lemmas
4.11 and 4.10, y1 codes the right part of the tape in the simulation given by
the dynamical system, y3 and y6 code the state in each half-unit interval, and
we assume that the system is reordered so that u1 and u2 are the first two
components of the main variables of the ODE. Thus L is (Ψ̂-)decidable by a
polynomial ODE in polynomial space.

For the reverse direction, we can proceed as in the proof of theorem 4.17.
The only difference is that, after we conclude that ȳ(i),1 ≥ 5/4 (the computation
has halted), we accept w if ȳ(i),2 ≥ 3/4 and reject w if ȳ(i),2 ≤ −3/4. The whole

procedure takes polynomial space and thus if L is (Ψ̂-)decidable by a polynomial
ODE in polynomial space, then L ∈ PSPACE.

As a logical consequence of the previous results of this chapter we can state
the following theorem.

Theorem 5.5 (EXPTIME vs PSPACE) We have PSPACE ( EXPTIME
if and only if there exists a language L ∈ EAR such that no polynomial ODE
Ψ̂-decides L in polynomial space.
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Chapter 6

Generalization of the
exponential result

As we have showed in chapter 3, the key intuition of splitting the dependence
of the time and space boundaries from one single term, Υ, into the product
of two separate components Υ1Υ2 with different behaviors has allowed us to
capture the full power of exponential time computation with the suitable dy-
namical systems of polynomial differential equations. Since this procedure has
successfully divided the part of the construction that may continue to depend
polynomially on the input from the part that has to depend exponentially from
the input in order to obtain the equivalence, and since this division process does
not seem to explicitly depend on properties possessed only by exponential type
of boundaries, it is natural to wonder if an equivalence can be obtained in the
same way for other standard complexity classes in a straightforward manner.
More precisely, if the second part of the time and space boundaries (Π2 and
Υ2 in the original ATSE definition) is kept polynomial, it is natural to wonder
which classes of functions can be used as first term (Π1 and Υ1) in order to
characterize other classes from standard complexity theory.
Following every step of the proofs, starting from the basic properties and defini-
tions of the GEVAL and ATSE classes, it is possible to see that four conditions
are sufficient for the construction to hold.

In this section we extend the result of theorem 2.27 to other complexity
classes. More precisely, we list which conditions the analog classes involved
have to satisfy in order to repeat the simulation process already obtained for
the polynomial case. First, let us define a version of the ATSE class in which the
time and space boundaries are defined using functions from a set A of functions
over the reals. More concretely, and in a similar manner to definition 3.1, we
introduce the following definition

Definition 6.1 (ATSC(A)) Let A be a class of functions from R+ to R+. Let
f ⊆ Rn → Rm. Let Π1,Υ1 : R+ → R+ ∈ A and Π2,Υ2 : R+ → R+ be
two polynomials. We say that f ∈ ATSC(A) if and only if there exist d ∈ N,
p ∈ RdP [Rd] and q ∈ RdP [Rn] such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

� y(0) = q(x) and y′(t) = p(y(t))
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� ∀µ ∈ R+ if t ≥ Π1(‖x‖)Π2(µ) then ‖(y1(t), y2(t), ym(t))− f(x)‖ ≤ e−µ

� ‖y(t)‖ ≤ Υ1(‖x‖)Υ2(t)

As we already discussed, we need to be able to enforce closure by composi-
tion and by arithmetic operations for the class ATSC(A) to extend the result of
theorem 2.27 to other complexity classes. Nevertheless, a more careful analysis
of the details of the construction shows that the functions in A should satisfy
other additional properties that are trivially shared by polynomials and expo-
nentials, but that are not obvious for a generic class A. Before stating sufficient
conditions that ensure closure by composition and by arithmetic operations for
the class ATSC(A), we recall the notion of time-constructible functions [82].

Definition 6.2 (Time-constructible function) Let f : N → N be a func-
tion. We call f time-constructible if there exists a Turing machine M which,
given as an input a string 1n, outputs the binary representation of f(n) in time
O(f(n)).

We now present conditions that ensure that the result of theorem 2.27 can
be extended to other complexity classes.

Definition 6.3 (Sufficient conditions) Let A be a class of functions from
R+ to R+ such that

(1) If f, g ∈ A then there exists h ∈ A such that f ? g(x) ≤ h(x) for every
x ∈ R+, where ? denotes any operator in the list of arithmetical operations:
(+,−,×)

(2) If p is polynomial and f ∈ A then there exists g ∈ A such that p ◦ f(x) ≤
g(x) and f ◦p(x) ≤ g(x) for every x ∈ R+. Moreover, the identity operator
belongs to A

(3) If f ∈ A, then there exists g ∈ A such that f(n) ≤ g(n) for every n ∈ N
and g ∈ ATSC(A)

(4) If f ∈ A then there exists g : N → N and h ∈ A and such that f(n) ≤
g(n) ≤ h(n) for every n ∈ N and g is a time-constructible function.

The first condition enforces a form of closure for the main arithmetical op-
erations which are of interest to us. The second condition provides enough
elements so that we can have a variant of theorem 3.8 for the class ATSC(A) as
well as allowing us to replace a polynomial in the proofs by a member of A when
needed (polynomials may not belong to A). The third condition is sufficient to
show that if a function is computed by a Turing machine in time f |N, where
f ∈ A (note that f(N) ⊆ [0,+∞[. Hence, although f(n) might not belong
to N when n ∈ N, we can still say that a Turing machine computes in time
≤ f(n)), then we may replace f by a function g ∈ ATSC(A) which will play a
role similar to the time bound eM in the proof of theorem 3.9. The fourth and
final condition is due to the fact that we do not have any assurances about the
computability or complexity needed to compute elements of A. If some bound
f of ATSC(A) has these problems, we need to be sure that we can replace it by
a well-behaved bound g, which can be used to prove the reverse direction of 3.9,
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e.g. when computing the value tw. Of course, the function g should not grow
quicker than any element of A, hence there is the need to ensure that there is a
function h ∈ A which grows at least as quickly as g over the naturals.

We remark again that if f ∈ A is a function such that f(N) ⊆ [0,+∞[,
then we say that a Turing machine M computes a set of functions F in time
O(f(n)) if there are some c, n0 ∈ N such that if w is a word of length n ≥ n0,
then M computes g(w) ∈ F in time ≤ cf(n). Now we can define FTIME(A) =
{g|g : N → N is a function computable in time O(f(n)) for some f ∈ A}. At
this point we can finally state the following generalized equivalence theorem.

Theorem 6.4 (Generalized equivalence) Let A be a class of functions that
satisfies the conditions of definition 6.3. Then given a function f : Γ∗ → Γ∗,
we have that f ∈ FTIME(A) if and only if f is emulable under ATSC(A).

In the following section we will use this theorem to characterize the Grze-
gorczyk hierarchy with ODEs. In particular, we will also be able to characterize
the class of elementary functions and the class of primitive recursive functions
with ODEs.

6.1 Application to the Grzegorczyk hierarchy

We start this section by briefly recalling the definition of the Grzegorczyk hier-
archy. The Grzegorczyk hierarchy, originally proposed by Andrzej Gregorczyk
in 1953 in [83], is a hierarchy of classes of functions from the naturals to the
naturals, defined recursively. To our specific purpose, the first two levels of the
hierarchy are not relevant, including only trivial functions such as all addition
and multiplication functions, which are obviously computable in polynomial
time. The third level, which we indicate with the notation ξ3 coincides with
the set of all elementary functions. The definition of each level of the hierarchy
for n ≥ 3 involves the generator functions, Gn, whose definition is also recur-
sive. Let G2 : N → N be the exponential function G2(x) = 2x and for n ≥ 2

define: Gn+1(x) = G
[x]
n (1), where the notation G

[x]
n (1) stands for the iteration

of the function Gn for x times evaluated on the value 1, i.e. G
[0]
n (x) = x and

G
[k+1]
n (x) = Gn(G

[k]
n (x)). Then, formally [84, definition VIII.8.12].

Definition 6.5 (Grzegorczyk Hierarchy) For n ≥ 3 the nth level of the
hierarchy, ξn, is the smallest class of functions containing the zero function, the
successor function, the projections, cut-off subtraction and Gn−1 which is closed
under composition, bounded sum and bounded product.

It can be shown that each level is properly included in the next one, ξn−1 (
ξn ( ξn+1, and that all together they constitute a hierarchy that satisfies⋃
n∈N

ξn = PR, where PR is the set of primitive recursive functions. Moreover,

for any function f ∈ ξn, there is some m ∈ N such that f(x) ≤ G[m]
n−1(x) (see [84,

theorem VIII.7.8]. Although this theorem is proved for the case of the elemen-
tary functions ξ3, its proof generalizes to ξn for any n ≥ 2). We also note [84,
theorem VIII.8.14] that f belongs to ξn if and only if it is computable in time
belonging to ξn. Combining the last two facts we conclude that f belongs to ξn

if and only if it is computable in time bounded G
[m]
n−1(x) for some m ∈ N. We
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will use this last characterization to characterize ξn in the context of theorem
6.4 to avoid having to deal with bounded sums and products.

6.2 Analog characterization of each level

In this section our objective is to use ODEs to characterize the classes ξn, n ≥ 3,
defining the Grzegorczyk hierarchy, with the use of theorem 6.4.

However, a problem arises if one wants to use theorem 6.4 to characterize
ξn for all n ≥ 3. When characterizing the classes FP and FEXPTIME, we
had to rely on the classes ATSP and ATSE which are defined using polynomial
and exponential/polynomial bounds, respectively, which are defined over R+ =
[0,+∞[. In the polynomial and exponential cases, this was not problematic
since polynomial and exponential functions over N admit a trivial extension to

R. This is not the case for the time bounds G
[m]
n−1 for the Grzegorczyk hierarchy,

which are defined using iteration and hence do not admit a trivial extension to
R. To solve this problem, in this section we show how we can obtain functions

in GVAL which essentially work as an extension of G
[m]
n−1. To achieve this

purpose, we have to be able to iterate a function with ODEs over integers,

since the definition of G
[m]
n−1 relies on the use of iterations, as mentioned earlier.

Therefore we need to consider once again the construction used in chapter 4
to iterate functions with ODEs which is based on the ODE called targeting
equation

y′ = c(b− y)3φ(t) (6.1)

that was already studied in [78], [79], [66]. We will now show how lemma 4.5
and the targeting ODE (4.3) can be used to obtain a function f : R3 → R2 ∈
GVAL such that the solution of the IVP y′ = f(t, y), y(0) = (1, 1) satisfies
|y1(t)−G2(k)| ≤ 1/4 (i.e.

∣∣y1(t)− 2k
∣∣ ≤ 1/4) for all t ∈ [k, k + 1/2] and k ∈

N, where y = (y1, y2). To do so we will make use once again of the same
error-correcting functions l2 and σ defined in lemmas 4.10 and 4.11 respectively,
considering again λ1/4 = 0.4π − 1 ≈ 0.2566371. In the same way, the periodic
function s involved is the one already introduced in (4.12), combined with l2 to
obtain W0 as in (4.13), and we will repeat the main iterating method already
used for the proof of theorem 4.9.

Let us now show how we can obtain a function f : R3 → R2 ∈ GVAL such
that the solution of the IVP y′ = f(t, y), y(0) = (1, 1) satisfies

∣∣y1(t)− 2k
∣∣ ≤ 1/4

for all t ∈ [k, k + 1/2] and k ∈ N, where y = (y1, y2). This will be done by
iterating the function f : N→ N defined by f(x) = 2x via the ODE{

y′1 = c(2σ(y2)− y1)3φ1(t, y1, y2)
y′2 = c(σ(y1)− y2)3φ2(t, y1, y2)

(6.2)

with initial condition y1(0) = y2(0) = 1, where

φ1(t, y1, y2) = W0(t, 16c((2σ(y2)− y1)4 + 1) + 4) (6.3)

φ2(t, y1, y2) = W0(−t, 16c((σ(y1)− y2)4 + 1) + 4)

and c = 1000. Its (ideal) behavior is depicted in fig. 6.1.

We note that φ1 is essentially the function W0 from (4.13), where the main
change is made on the upper bound for W0 on the time intervals [k+1/2, k+1],
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Figure 6.1: Iterating a function with an ODE. Here the red and blue graphs
represent the ideal behavior of y1 and y2, respectively, in (6.2).

where k ∈ Z. In this case, noting that
∣∣x3
∣∣ ≤ x4 + 1 for all x ∈ R, we have that

for any t ∈ [k + 1/2, k + 1]

|φ1(t, y1, y2)| ≤ 1

16c((2σ(y2)− y1)4 + 1) + 4

<
1

16c(2σ(y2)− y1)3

which implies that |y′1(t)| < 1/16 whenever t ∈ [k + 1/2, k + 1] for some
k ∈ Z. Furthermore, since 16c((2σ(y2) − y1)4 + 1) + 4 ≥ 4, we conclude that∫ k+1/2

k
φ1(t, y1, y2)dt > 0.135 > 0 and therefore that the first equation of (6.2)

defines a targeting equation on the time interval [0, 1/2] (or, more generally, on
time intervals with the format [k, k + 1/2] where k ∈ Z) with targeting error
1/16, since according to (4.2)

c = 1000 >
1

2
(

1
16

)2
0.135

>
1

2
(

1
16

)2 ∫ 1/2

0
φ1(t, y1, y2)dt

.

Using a similar argument we conclude that |y′2(t)| < 1/16 whenever t ∈
[k, k + 1/2] for some k ∈ Z and that the second equation of (6.2) defines a
targeting equation on the time interval [1/2, 1] (or, more generally, on time
intervals with the format [k+1/2, k+1] where k ∈ Z) with targeting error 1/16.

Let us now analyze in more detail the ODE (6.2). When t ∈ [0, 1/2], we
have that |y′2(t)| ≤ 1/16, which further implies that |y2(t)− 1| ≤ 1/32 when
t ∈ [0, 1/2], since

|y2(t)− y2(0)| =
∣∣∣∣∫ t

0

y′2(t)dt

∣∣∣∣
≤
∫ t

0

|y′2(t)| dt

≤
(

1

2
− 0

)
1

16
=

1

32
.
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Now notice that, since |y2(t)− 1| ≤ 1/32, then

|2σ(y2(t))− 2 · 1| ≤ 2 |y2(t)− 1|
≤ 1/16.

Hence, since the equation for y1 in (6.2) defines a targeting equation with
targeting error γ = 1/16, we get that

∣∣y1(1/2)− 21
∣∣ < 1/16 + 1/16 = 1/8.

Now, on the next half-unit interval, we have that |y′1(t)| ≤ 1/16 which implies
that

∣∣y1(t)− 21
∣∣ < 1/8 + 1/32 = 5/32 for all t ∈ [1/2, 1]. This implies that∣∣σ(y1(t))− 21

∣∣ ≤ λ1/4

∣∣y1(t)− 21
∣∣ < 1/24 for all t ∈ [1/2, 1]. Hence y2 will be-

come a targeting equation in the time interval [1/2, 1] with targeting error γ =
1/16 and we will have

∣∣y2(1)− 21
∣∣ < 1/24 + 1/16 < 1/8. Now the procedure re-

peats itself in subsequent intervals. For example, when t ∈ [1, 3/2], we will have
that |y′2(t)| ≤ 1/16, which further implies that

∣∣y2(t)− 21
∣∣ < 1/8 + 1/32 < 5/32

when t ∈ [1, 3/2]. By a similar argument as in the previous case, we conclude
that ∣∣2σ(y2(t))− 2 · 21

∣∣ ≤ 2λ1/4

∣∣y2(t)− 21
∣∣

≤ 2λ1/45/32

≤ 1/12.

and since the equation for y1 in (6.2) defines a targeting equation with targeting
error γ = 1/16, we get that

∣∣y1(3/2)− 22
∣∣ < 1/12 + 1/16 = 7/48. On the next

half-unit interval, we have that |y′1(t)| ≤ 1/16 which implies that
∣∣y1(t)− 22

∣∣ <
7/48+1/32 = 17/96 for all t ∈ [3/2, 2]. This implies that

∣∣σ(y1(t))− 22
∣∣ < 1/22

for all t ∈ [3/2, 2]. Hence y2 will become a targeting equation in the time
interval [3/2, 2] with targeting error γ = 1/16 and we will have

∣∣y2(2)− 22
∣∣ <

1/22 + 1/16 < 1/8. The procedure repeats itself on subsequent intervals and we
conclude that

|y2(t)−G2(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and k ∈ N.

This result can be generalized as shown in the following theorem.

Theorem 6.6 Given the function Gn : N → N, n = 2, 3, . . ., there is an
IVP y′ = fn(t, y), y(0) = y0, where fn ∈ GVAL and y0 ∈ Nl, such that
|y1(t)−Gn(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and k ∈ N\{0}.

Proof of theorem 6.6. The proof is done by induction on n. The base case
was performed just before the proof of this theorem (note that y2 in the above
argument corresponds to y1 in the context of this theorem).

Now we go to the induction step. Suppose that y′ = fn(t, y), y(0) = y0

satisfies the conditions of the theorem. Then we want to show that there is
a system y′ = fn+1(t, y) which simulates Gn+1 in the sense mentioned in the
theorem. Consider the ODE z′ = fn(τ, y)τ ′ = cfn(τ, y)(w + 1/4− τ)3θ1(t, τ, w)

τ ′ = c(w + 1/4− τ)3θ1(t, τ, w)
w′ = c(σ(z1)− w)3θ2(t, z1, w)

(6.4)

with initial condition z(0) = y0, τ(0) = 0, w(0) = 1 where

θ1(t, τ, w) = φ(t, 16c((w + 1/4− τ)4 + 1) + 4)

θ2(t, z1, w) = φ(−t, 16c((σ(z1)− w)4 + 1) + 4)
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Figure 6.2: Iterating the function Gn with an ODE. Here the red, blue, and
green graphs represent the ideal behavior of z1, w, and τ , respectively, in (6.4).

and c = 5000. Its (idealized) behavior is depicted in fig. 6.2. We note that θ1

and θ2 behave like φ1 and φ2 of (6.3), respectively. By using arguments similar
to those presented after (6.3), we conclude that: (i) |τ ′(t)| ≤ 1/16 whenever
t ∈ [k + 1/2, k + 1] for some k ∈ Z and the equation for τ in (6.4) defines a
targeting equation on time intervals with the format [k, k + 1/2] where k ∈ Z,
with targeting error 1/32 and (ii) |w′(t)| ≤ 1/16 whenever t ∈ [k, k + 1/2] for
some k ∈ Z and that the equation for w in (6.4) defines a targeting equation on
time intervals with the format [k+ 1/2, k+ 1] where k ∈ Z, with targeting error
1/32.

We note also that, by construction z(t) = y(τ(t)), where y is the solution of
y′ = fn(t, y), y(0) = y0. Therefore the value of z only depends on the value of τ .
We now have to analyze the behavior of τ and w. This simulation works again
in half-unit time intervals. On the first half-unit interval, where t ∈ [0, 1/2],
we have that w is (almost) constant, since |w′(t)| ≤ 1/16, which implies that
|w(t)− 1| ≤ 1/32 for all t ∈ [0, 1/2]. Therefore, since the equation governing the
behavior of τ in this time interval [0, 1/2] is a targeting equation, we conclude
that |τ(1/2)− (1 + 1/4)| ≤ 1/32 + 1/32 = 1/16, since the targeting error is
1/32. This gives that τ(1/2) ∈ [1 + 3/16, 1 + 5/16]. Since |τ ′(t)| ≤ 1/16 in the
time interval [1/2, 1] we conclude that τ(t) ∈ [1 + 1/8, 1 + 3/8] ⊆ [1, 3/2] for
t ∈ [1/2, 1]. This implies, by the induction hypothesis, that z(t) = y(τ(t)) is such
that |z1(t)−Gn(1)| ≤ 1/4 for all t ∈ [1/2, 1]. Note that |σ(z1(t))−Gn(1)| ≤
λ1/4 |z1(t)−Gn(1)| ≤ λ1/4/4 < 1/15 for all t ∈ [1/2, 1]. Since the targeting
error is 1/32, we conclude that |w(1)−Gn(1)| ≤ 1/32+1/15. Now the procedure
repeats itself on the time interval [1, 3/2]. On this interval, we have |w′(t)| <
1/16 and thus |w(t)−Gn(1)| ≤ 1/32 + 1/15 + 1/32 = 31/240 for all t ∈ [1, 3/2].
Therefore, the targeting equation for τ yields that |τ(3/2)− (Gn(1) + 1/4)| ≤
31/240 + 1/32 = 77/480. Since |τ ′(t)| ≤ 1/16 in the time interval [3/2, 2],
we have that |τ(t)− (Gn(1) + 1/4)| ≤ 77/480 + 1/16 = 107/480 < 1/4 and
therefore τ(t) ∈ [Gn(1), Gn(1) + 1/2] for t ∈ [3/2, 2]. This implies, by the
induction hypothesis, that z(t) = y(τ(t)) is such that |z1(t)−Gn(Gn(1))| =
|z1(t)−Gn+1(2)| ≤ 1/4 for all t ∈ [3/2, 2]. Note that |σ(z1)−Gn+1(2)| ≤
λ1/4 |z1(t)−Gn+1(2)| ≤ λ1/4/4 < 1/15 for all t ∈ [3/2, 2]. Considering the
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targeting equation for w in [3/2, 2], we conclude that |w(2)−Gn+1(2)| ≤ 1/32+
1/15 since the targeting error is 1/32. Notice again that, for all t ∈ [2, 5/2], since
|w′(t)| < 1/16, we have |w(t)−Gn+1(2)| ≤ 1/32 + 1/15 + 1/32 = 31/240 < 1/4.
By repeating this procedure on subsequent intervals and by considering w as
the variable y1 of the statement of the theorem, we conclude the desired result.

We now know from the previous theorem that each function Gn admits an
GVAL-extension tn in the sense of theorem 6.6. In other words, there is some
GVAL function tn such that |tn(t)−Gn(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and
k ∈ N\{0}.

Definition 6.7 For each n ≥ 3, we define the class Tn as the smallest class
of functions f : R → R containing tn−1, the identity, RP , and which is closed
under sum, difference, product, and composition for n ≥ 3.

Note that this definition of Tn implies that condition 1 and 2 in the list
of definition 6.3 are immediately satisfied (for condition 2 remarks that Tn
includes t2 which grows exponentially fast, and hence which grows more quickly
than any polynomial). Furthermore, it is also not difficult to see that condition
4 is satisfied. Indeed, we have that tn−1(k) ≤ Gn−1(k)+1 and since ξn is closed
under composition and arithmetic operations, this shows that any function in
Tn is dominated, over the naturals, by a function in ξn (note that all function
in ξn are time-constructible). Reciprocally, if f ∈ ξn, then there is some m ∈ N
such that f(k) ≤ G

[m]
n−1(k) ≤ tn−1(. . . tn−1(k) + 1 . . .) + 1, where tn−1 + 1 is

composed m times. Since (tn−1 + 1) ◦ (tn−1 + 1) ◦ . . . ◦ (tn−1 + 1) ∈ Tn, we
conclude that condition 4 is satisfied. Moreover, this also shows the following
lemma.

Lemma 6.8 FTIME(Tn) = FTIME(ξn) = ξn.

It is then left to prove condition 3, which requires that given any function
f ∈ ξn there is a function g ∈ Tn such that f ≤ g and g ∈ ATSC(Tn), for
all n ≥ 3. We will now show that this condition is satisfied, in a multi-step
argument.

From the above argument, we have just showed by means of the above proof
of theorem 6.6 that each tn is generable, meaning that tn ∈ GVAL for each
n ≥ 3. We now show that (i) we have Tn ⊆ GVAL(Tn), where

GVAL(Tn) =
⋃
g∈Tn

GVAL(g),

and (ii) GVAL(Tn) ⊆ ATSC(Tn). This will show condition 3 of definition 6.3,
since any function f ∈ ξn is bounded by a function in Tn, as we have already
seen.

To show condition (i), we first present the two following lemmas taken from
[51, Lemma 24, Corollary 26].

Lemma 6.9 ([51], Arithmetic on bounded generable functions)
Let d, l, n,m ∈ N, sp, sp : R+ → R+, f :⊆ Rd → Rn ∈ GVAL(sp) and g :⊆
Rl → Rm ∈ GVAL(sp). Then
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� f + g, f − g ∈ GVAL(sp+ sp) over dom f ∩ dom g if d = l and n = m

� f · g ∈ GVAL(max(sp, sp, sp · sp)) if d = l and n = m

� f ◦ g ∈ GVAL(max(sp, sp ◦ sp)) if m = d and g(dom g) ⊆ dom f .

Lemma 6.10 ([51], Generable functions are closed under ODE) Let d ∈
N, J ⊆ R an interval, sp, sp : R+ → R+, f :⊆ Rd → Rd ∈ GVAL(sp),
t0 ∈ RP ∩J and y0 ∈ RdP ∩dom f . Assume there exists y : J → dom f satisfying
for all t ∈ J :

� y(t0) = y0

� y′(t) = f(y(t))

� ‖y(t)‖ ≤ sp(t)

Then y ∈ GVAL(max(sp, sp ◦ sp)) and is unique.

Since lemmas 6.9 and 6.10 show closure of GVAL(Tn) under the operations
used to define Tn, to show (i), i.e. that Tn ⊆ GVAL(Tn) it is enough to show
that tn ∈ GVAL(Tn+1) (note that the identity and all elements of RP belong
to GPVAL ⊆ GVAL(Tn)).

First, define T2 = {p | p ∈ poly} as the class of polynomials over RP . We
show that the above proof of theorem 6.6 implies that fn ∈ GVAL(T2) and
tn = y1 ∈ GVAL(Tn+1) for each n ≥ 2, where fn and y1 are defined in the
statement of this theorem. This result can be showed by induction on n thanks
to the closure by composition of each class Tn.

To show that fn ∈ GVAL(T2) and tn = y1 ∈ GVAL(Tn+1) for each n ≥ 2,
we proceed by induction. For the base case n = 2, consider f2 as defined in (6.2)
and note that f2 ∈ GVAL(T2) = GPVAL since all the right-hand terms in the
system (6.2) belong to GPVAL. Moreover, note that, from the arguments which
follow (6.2), the norm of the solution y of that dynamical system is bounded by a
function sp2 ∈ T3, where sp2(k) = t2(k+ 1). Therefore, since T2 ⊂ T3 and each
class is closed by composition, applying lemma 6.10 above yields y ∈ GVAL(T3)
and, in particular, t2 = y1 ∈ T3. This proves the base case.

Let us now assume that fn ∈ GVAL(T2) and that tn ∈ GVAL(Tn+1). We
now want to show that fn+1 ∈ GVAL(T2) and tn+1 ∈ GVAL(Tn+2). First we
note that fn+1 is defined as the function used in the right-hand side of the ODE
(6.4) and applied to the variables z, τ , and w. Since fn+1 is built using arithmetic
operations, elements of RP , and the functions fn, θ1, θ2, σ ∈ GVAL(T2), we
conclude by lemma 6.9 that fn+1 ∈ GVAL(T2). Also, from the analysis done in
the proof of theorem 6.6, we conclude that the solution x(t) of (6.4) is bounded
by tn+1(t + 1) ∈ GVAL(Tn+2), which shows by lemma 6.10 that x and hence
tn+1 belongs to GVAL(Tn+2).

At this point we have shown that tn ∈ GVAL(Tn+1) and hence we have
proved (i). Now the last element left is condition (ii), which follows from the
following theorem, that is a variant of theorems 2.5 and 3.6, but now applied to
Tn.

Theorem 6.11 If f ∈ GVAL(Tn) has a star domain with a generable vantage
point, then we have f ∈ ATSC(Tn).
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We note that (necessarily univariate) functions of GVAL(Tn+1) are always
defined at any point of R+ = [0,+∞[. This implies that such functions have
a vantage point over this domain (e.g. 0 or 1 may be used as vantage points).
Hence, we can conclude from theorem 6.11 that if f ∈ GVAL(Tn), then f ∈
ATSC(Tn), which immediately implies condition 3 of definition 6.3. To prove
theorem 6.11, we need another result from [51, Proposition 28].

Lemma 6.12 Let sp : R+ → R+, f ∈ GVAL(sp). There exists a polynomial
q : R → R, with coefficients in RP , such that for any x1, x2 ∈ dom f then
‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))).

This lemma tells us that each function in GVAL(sp) has a modulus of con-
tinuity expressed by the function q ◦ sp where q is a polynomial; therefore,
since GVAL(Tn) is closed by composition with polynomials, this implies that
each function in GVAL(Tn) has modulus of continuity in Tn. At this point it
is straightforward to check that the proof already performed for theorem 3.6
for the exponential case can be repeated identical for the case in which the
boundary sp belongs to Tn, and consequently lead to the desired result.

Hence, the classes Tn defined above satisfy all the four conditions in the list
of definition 6.3, and therefore theorem 6.13 holds. We then have the following
result.

Theorem 6.13 (Analog characterization of the Grzegorczyk hierarchy)
Let n ∈ N. Let f : Γ∗ → Γ∗, then f ∈ ξn if and only if is emulable under
ATSC(Tn).

Note that, because of what we discussed in section 6.1 when we recalled the
definition of the Grzegorczyk hierarchy, theorem 6.13 above naturally implies
an analog characterization of the class of elementary functions and the class of
primitive recursive functions by means of polynomial ODEs.
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Chapter 7

Complex square root

In this chapter we are going to analyze the problem of computing single-valued,
analytic branches of the square root function over some class of complex do-
mains. In particular, this study is focused on describing the upper complexity
bound of such a problem in the context of complexity theory of real functions of
Ko [41]. The work presented in this chapter is based on reference [70] where the
authors described algorithms that could provide complexity bounds for comput-
ing the square root function and the logarithm function over simply connected
domains. Finding single-valued, analytic branches of a multi-valued function
defined on a simply connected domain is a fundamental problem in computa-
tional complex analysis [85]. Here we limit our attention to simply connected
complex domains S whose boundary is a polynomial time computable Jordan
curve. Let us consider two fixed dyadic points on the complex plane, z and a
and a simply connected domain S whose boundary is a polynomial-time com-
putable Jordan curve. We assume that ∂S is represented by a polynomial time
computable function f : [0, 1]→ C and also use f to denote the image of f . The
problem we are concerned about is to be able to compute the complex square
root on the domain S. More precisely, the problem as taken from [70] is defined
to be the following one.

Definition 7.1 (Complex square root problem) Let z0 be a point in ∂S.
Given two points z ∈ S and a ∈ C− S̄, compute g1(z− a)/g1(z0 − a), where g1

is an arbitrary single-valued, analytic branch of
√

z on domain S − a.

In the above definition with S̄ = S ∪ ∂S we indicate the closure of the
domain S and with S − a we refer to the domain {w − a|w ∈ S}. It is easy
to see that the imaginary part of g1(z − a)/g1(z0 − a) depends on how many
times a path in S from z0 to z must wind around the point a. Indeed, given
a domain T ⊆ C − S̄, if we introduce a function hS : S̄ × T → R that we call
continuous argument function such that (i) for any point a ∈ T , hS(z,a) is
continuous (ii) hS(f(0),a) = 0 for any a ∈ T and (iii) 2πhS(z,a) = θ1 − θ2 for
some θ1 ∈ arg(z− a) and some θ2 ∈ arg(f(0)− a) then we have [70].

Theorem 7.2 The complex square root problem on S introduced by definition
7.1 is polynomial time solvable if and only if the function (hS(z,a) mod 2) is
polynomial time computable.
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Proof of theorem 7.2. For any single valued, analytic branch f1 of
√

z
on S − a we have f1(z − a)/f1(z0 − a) = (

√
z− a/

√
z0 − a)ehS(z,a)πi; but√

z− a/
√

z0 − a is polynomial time computable and we know that e2πi = 1.
Therefore theorem 7.2 holds.

Notice that, according to the relationship between hS and the multi-valued
function arg(z), the fractional part of (hS(z,a) mod 2) is trivially polynomial
time computable. The integer part instead is dependent on how many times a
path in S from z0 to z must wind around the point a and thus computing this
quantity is closely related to the problem of computing the winding number for
a domain S and is dependent on the computational complexity of the domain
S itself. There are a few more helpful assumptions that we can make on the
points z and a. Without losing generality, we may assume the point a to
belong to a bounded domain T . To see this suppose all z ∈ S have |z| <
m for some m > 0. Then for any point a with |a| ≥ m + 1 the imaginary
part of hS(z,a) is just a direct angle from the half line az0 to the half-line
az, therefore is trivially polynomial time computable. Thus, as far as time
complexity is concerned, we may safely assume that both a and z are bounded.
Moreover, to avoid any problem connected with the computability properties of
functions in regions close to the border of the domain S, we allow our algorithm
to commit mistakes if the points a and z are too close to the boundary ∂S. To
our analysis, this will be implemented by requiring the property d(z, ∂S) > 2−n

and d(a, ∂S) > 2−n for some n, where d represents the distance function, i.e.
d(z, ∂S) = inf{|z− z′| |z′ ∈ ∂S}. This approach is a generalization of the notion
of polynomial time recognizable sets introduced by Chou and Ko in [71] for the
study of the membership problem of two dimensional domains. It follows a more
precise definition of this approach.

Definition 7.3 (Function computable on a simply connected domain)
Let S be a bounded, simply connected domain whose boundary ∂S is a computable
Jordan curve. A function f : S → C is computable on domain S if there exists
an oracle Turing machine M such that for any oracles (φ, ψ) representing a
complex number z ∈ S we have

∣∣Mφ,ψ(n)− f(z)
∣∣ ≤ 2−n for all inputs n > 0

whenever d(z, ∂S) > 2−n.
Furthermore, f is polynomial time computable on domain S if f is com-

putable on S by an oracle Turing machine that operates in polynomial time.

Since we have connected the problem of definition 7.1 to the function hS(z,a)
by means of theorem 7.2, to study its complexity it is enough to study the
complexity of computing hS(z,a). Intuitively, one direct method to compute
the function hS(z,a) could be given by two main operations

� Let L be the half-line going in the direction from a to z. Then find a real
number t0 ∈ [0, 1] such that f(t0) lies on L and the line segment zf(t0)
lies entirely in S̄

� Compute hS(f(t0),a) by integration, then let hS(f(t0),a) = hS(z,a).

However, this method presents some hidden complications and cannot be
followed in a straightforward manner. Indeed, t0 can in principle be a non-
computable real number, making the first point of the above method impossible
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to perform. In [70] the authors found a clever way to overcome this obstacle.
The key intuition is noticing that for solving problem 7.1 the value of t0 is not
needed, as long as it is possible to compute hS(f(t0),a). So they designed an
algorithm able to explore the boundary ∂S and finding suitable candidates t
for t0 that could be used to point out the correct value for hS(f(t0),a). The
complexity of this particular algorithm was showed to belong to the class PMP,
which is the class of sets decidable by polynomial time bounded Turing Machines
working with an oracle in the class MP. Nevertheless, the authors also suggested
that there could be room for improvement for this particular result, proposing
an hypothetical complexity bound belonging to the class of P

⊕
P. Following

this hint, here is presented an algorithm (based on the construction developed
in [70]) that is able to compute the quantity b(hS(z,a))c mod 2 in polynomial
time just by looking once at the last bit of a function in #P. Therefore, this new
algorithm demonstrates that the square root problem of definition 7.1 indeed
belongs to P

⊕
P.

Before discussing our algorithm we recall the definitions of the standard
complexity classes involved [86], [87].

Definition 7.4 (Complexity classes) Define the following classes as

� #P: the class of functions that counts the number of accepting paths of
nondeterministic polynomial time machines

�

⊕
P: the class of sets A for which there exists a nondeterministic poly-

nomial time Turing machine M such that for all x, x ∈ A if and only if
there are an odd number of accepting paths for x in M ; equivalently a set
A is in

⊕
P if there exists a function G ∈ #P such that for all x, x ∈ A

if and only if G(x) mod 2 = 1

� MPb: the class of sets A for which there exists a function G ∈ #P and a
function φ ∈ FP such that for all x, x ∈ A if and only if the φ(x)th bit in
the b-ary representation of G(x) is not zero, where b is an integer greater
than 1

� MP: the union of MPb over all b ≥ 2

We also recall two properties of the class #P that are useful to understand our
result [86], [87].

Theorem 7.5 (a) For any function g : {0, 1}∗ → N, g belongs to #P if and
only if there exists a set A ⊆ {0, 1}∗ ∈ P and a polynomial p such that for each
w ∈ {0, 1}∗, G(w) is equal to the number of strings u of length p(|w|) such that
〈w, u〉 ∈ A

(b) Assume that a function F : {0, 1}∗ × {0, 1}∗ → N is polynomial time
computable, where the output is written in binary form. Then the function
G : {0, 1}∗×0∗ → N defined by: G(w1, 0

n) =
∑
|w2|=n F (w1, w2) belongs to #P.

7.1 Approximation of the curve

Consider the curve described by f and defining ∂S. To be able to correctly work
with this curve, and compute certain quantities related to this curve (such as
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find intersections of the curve with specific straight lines in the complex plane) it
is used here the same technique used in [70], where the curve is approximated by
a collection of piecewise linear functions, up to some desired precision, following
the core ideas of computable analysis. Let M be an oracle Turing machine
that computes f in time p for some polynomial p. It follows that p is a modulus
function of f . Let n be an integer such that d(z, ∂S) > 2−n and d(a, ∂S) > 2−n.
For each 0 ≤ i ≤ 2p(n) let si = i · 2−p(n) and zi = Msi(n). Then, for any
0 ≤ i ≤ 2p(n) − 1 and any t ∈ [si, si+1] we have |f(t)− zi| ≤ 2−n. Let fn be the
piecewise linear function with breakpoints fn(si) = zi for i = 0, .., 2p(n), and
Γn be the image of fn on [0, 1]. Then, Γn is an approximation of ∂S within an
error of 2−n. Note that Γn is not necessarily simple. Often in this work we will
shortly refer to the segment zi−1zi as the ith segment of the approximation fn,
or as the segment i. For simplicity, we may assume that fn(0) = f(0) (this can
be achieved by, for example, transforming the whole plane so that f(0) becomes
the origin). Without loss of generality, we may also assume that z0 does not
lay on the line connecting the points a and z. Indeed, if it is not the case, we
can pick a point s ∈ [0, 1] such that this condition is satisfied and then use the
function f1(t) = f(s+ t mod 1) on [0, 1] to represent ∂S.

We now define a segment L, a half-line V and two straight-lines L′ and V ′.
Let L be the segment that connects a and z and L′ the straight line containing
L. Assume that the direction of L′ is the one going from a to z. Let V be the
half-line starting from a passing through z0 and V ′ the straight-line containing
V . Assume that the direction of V ′ is the one going from a to z0. Trivially, the
line V ′ divide the plane in two half planes, the one on the left of V ′ is denoted
as V ′l and the one on the right plus V ′ is denoted as V ′r . In the same way,
the line L′, divide the complex plane in two half planes, the one on the left of
L′ is denoted as L′l and the one on the right plus L′ is denoted as L′r. This
construction allows us to define two functions that we call sign functions and
that will be crucial for our algorithm.

Definition 7.6 (Sign functions) Let sngVfn : {1, 2, ..., 2p(n)} → {−1, 0, 1}
and sngLfn : {1, 2, ..., 2p(n)} → {−1, 0, 1} be the functions defined as follows

sngVfn(i) =


1 if zi ∈ V ′l and zi−1 ∈ V ′r and zi−1zi ∩ V 6= ∅
−1 if zi ∈ V ′r and zi−1 ∈ V ′l and zi−1zi ∩ V 6= ∅
0 otherwise

(7.1)

sngLfn(i) =


1 if zi ∈ L′l and zi−1 ∈ L′r and zi−1zi ∩ L 6= ∅
−1 if zi ∈ L′r and zi−1 ∈ L′l and zi−1zi ∩ L 6= ∅
0 otherwise

(7.2)

Notice that the function sngVfn signals when there is an intersection between
the half-line V and the approximated image of our curve, Γn, distinguishing with
a plus or minus sign between two different types of intersections. We will infor-
mally refer to these two different types of intersections as the possible directions
of the intersection, that intuitively can be seen as clockwise or counterclockwise.
The same applies to sngLfn that signals when there is an intersection between
the segment L and Γn, taking in account the possible directions of the intersec-
tion. Every segment identified by an i ∈ {1, 2, ..., 2p(n)} with sngVfn(i) 6= 0 or
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sngLfn(i) 6= 0 will be shortly named as a V-crossing segment or a L-crossing
segment, respectively.

Definition 7.7 (V and L crossing segments) For any i ∈ {1, 2, ..., 2p(n)}
we say that segment i is a V-crossing segment (L-crossing segment) if and only
if sngVfn(i) 6= 0 (sngLfn(i) 6= 0).

Notice that, due to the definition of the two functions above, segments with
an extreme point belonging to V ′l and the other belonging to V will be con-
sidered as V-crossing segments, and we will say that they cross V, where the
meaning of the word crossing in this context has to be intended in the sense
of this definition. The same consideration obviously applies to L-crossing seg-
ments. When sngLfn(i) is not zero, and hence i is an L-crossing segment, there
is a unique s′i ∈ [si−1, si] such that bi ≡ fn(s′i) ∈ zi−1zi∩L; we call bi an inter-
section point of fn([si−1, si]) and L. The same consideration obviously applies
to V-crossing segments. Moreover, we have the following lemma.

Lemma 7.8 Assume that ∂S is polynomial-time computable. Then the func-
tions φ1(n, i) = sngLfn(i), φ2(n, i) = s′i, φ3(n, i) = bi (if they exist) are
polynomial-time computable.

Proof. Since z0 = f(0), a, z and zi are all dyadic points, the function sngLfn(i)
is computable in polynomial-time by exact arithmetic. When sngLfn(i) 6= 0,
the quantities s′i and bi are not necessarily dyadic but must be rational. We
can compute, for any k ≥ p(2n) a dyadic dk ∈ Dk, such that |dk − s′i| ≤ 2−k,
which implies that |fn(dk)− fn(s′i)| ≤ 2−(2n+k−p(2n))

Obviously, an identical lemma can be stated for the case of the function
sngVfn(i) and its intersection points.

The last missing element before being able to describe the algorithm is to
set the correct offset, where with offset we mean the correct initial point from
which the algorithm starts working. To do so, let us consider all the points of
intersection between the segment L and the approximation of the border Γn.
Since there is only a finite number of segments in the approximation, there is
also a finite number of intersection points with L, let us say k, where we know
that k ≤ 2p(n). These points can be ordered according with the ordering of the
segments of the approximation. This means that we can identify them with the
notation b1,b2, ..,bk, where b1 indicates the intersection point between L and
the least i ∈ {1, 2, ..., 2p(n)} representing an L-crossing segment. We will shortly
refer to b1 as the intersection point related to the first L-crossing segment, to
b2 as the intersection point related to the second L-crossing segment, and so
on. Then, we call i∗ the first L-crossing segment, with intersection b1, and we
consider that as the starting point of our algorithm. Notice that i∗ is easily
polynomial-time computable given n, p(n) and the approximation of the curve
Γn. The reason behind choosing such a point as a starting point instead of
simply choosing z0 is that, on this first intersection, the border ∂S has never
completed a full spin around the point a yet, and therefore this particular point
has to be excluded from the counting method performed by the algorithm we
are going to illustrate below.
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7.2 The algorithm

Given a word w ∈ {0, 1}∗ we denote its length with the notation |w| as usual.
Moreover, if |w| = p(n) we indicate with iw the nonnegative integer iw ≤ 2p(n)−1
whose p(n)−bit binary representation is w. Consider now the function: F :
(S ∩ D2) × (T ∩ D2) × {0, 1}∗ → N defined as the function computed by the
following algorithm

1. if |w| 6= 2p(n) for any n > 0 then output 0.

2. if |w| = 2p(n) for some n > 0, let w = uv with |u| = |v| then

if iu ≤ i∗ then let eu = ev = 0

if iu > i∗ then let eu = |sngLfn(iu)|
if i∗ < iv ≤ iu then let ev = sngVfn(iv) + 2

else let ev = 0

3. output eu · ev

It is clear that F (z,a, w) is polynomial time computable and always nonnega-
tive. At this point we can define a function G : (S ∩D2)× (T ∩D2)×{0}∗ → N
by G(z,a, 0m) =

∑
|w|=m

F (z,a, w). Then, G is in #P thanks to theorem 7.5. We

have then the following theorem.

Theorem 7.9 G(z,a, 02p(n)) mod 2 = b(hS(z,a))cmod 2

Notice that if we call R the function R : (S ∩D2)× (T ∩D2)×{0}∗ → {0, 1}
such that R = G(z,a, 02p(n)) mod 2, then from the above theorem combined
with theorem 7.2 we obtain that there exists a Turing machine that solves the
complex square root problem in polynomial time using as oracle a function R
in
⊕
P , and this satisfies our final goal.

It is left to prove theorem 7.9. To explain the proof, we need to look closely
at the algorithm described above. First, notice that the only interesting case

is the one in which the sum
∑
|w|=m

F (z,a, w) involves a word w of length 2p(n)

such that w = uv with |u| = |v| = p(n), iu > i∗ and i∗ < iv ≤ iu, since all the
other cases generate summed terms that are equal to zero by definition of the
algorithm. Therefore, we can write the interesting quantity to analyze as

G(z,a, 02p(n)) =
∑

{|u|=p(n),iu>i∗}

∑
{|v|=p(n),i∗<iv≤iu}

F (z,a, uv)

=
∑
iu>i∗

|sngLfn(iu)| ·
∑

i∗<iv≤iu

(sngVfn(iv) + 2)

(7.3)

First, we give a very brief, general description of the algorithm, after which
we will start analyzing it in detail. Notice that the first factor of the sum is
nonzero only when sngLfn(iu) 6= 0, iu > i∗ and this happens only for segments
such that ziu−1ziu ∩ L 6= ∅ and iu > i∗, which are segments that cross the
segment L and follow segment i∗, related to the first L-crossing segment. So, we
will have a term to sum for each of the intersections of the approximated curve
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Γn with the L segment, excluding the first one. Since the L segment connects a
to z, this part of the algorithm takes care of computing the winding number only
until the point z, and not for the whole domain S. For each of this nonnegative,

nonzero terms, the second factor of the above expression,
∑
iv≤iu

(sngVfn(iv) + 2),

will sum quantities that will be relevant to us only for segments that cross the
half-line V . Thanks to the condition i∗ < iv ≤ iu, this means that, for each iu
representing a L-crossing segment excluding the first one, we will sum as many
relevant terms as many V-crossing segments we encounter starting from i∗ before
reaching the segment iu. Notice that in this case, these terms will be summed
with their relative sign, depending on the direction of the crossing segments.
Notice also that, thanks to the +2 contribution in

∑
i∗<iv≤iu(sngVfn(iv) + 2),

all the summed terms will always be nonnegative, no matter the sign assigned
by sngVfn to the segments. The segments that do not intersect V , instead of
contributing as zero terms to the sum, they all generate an additional +2 to the
sum. This is irrelevant, since what interests us at the end is the modulus 2 of
the result.

7.3 Description of the algorithm and proof of
the result

We can now proceed with a more precise description of the above.

Proof of theorem 7.9. We introduce here another notation that will be used
extensively in the following analysis. For any intersection point bq in the set of
intersections of L-crossing segments {b1,b2, ..,bk}, we indicate with the symbol
bh̄S(bq,a)c the value of bhS(z′,a)c where z′ ∈ S̄ is such that |bq − z′| ≤ 2−n+1.
Notice that, thanks to the conditions on our approximation Γn, this quantity is
well defined, and that there is no ambiguity in this definition, since bh̄S(z′,a)c
has the same value for all the z′ ∈ S̄ such that |bq − z′| ≤ 2−n+1 due to the
conditions d(z, ∂S) > 2−n and d(a, ∂S) > 2−n .

At this point, notice that there always exists a point bk∗ in {b1,b2, ..,bk}
such that b(hS(z,a))c = b(h̄S(bk∗ ,a))c. Therefore, we reduce the problem of
computing b(hS(z,a))c to compute b(h̄S(bk∗ ,a))c instead, and we find a way to
do so without having to compute the point bk∗ , in a similar fashion to what has
been done in [70] for the logarithm function. Notice that the number of intersec-
tions of the curve described by f with the segment L is always an odd number
(since a is outside the domain S and z is inside the domain) and notice that
this number cannot be less than the quantity 2b(hS(z,a))c + 1. Nevertheless,
simply counting the L-crossing segments is not enough to compute b(hS(z,a))c,
since in general there can be intersections between L and the curve that do not
represent a spin around a. Moreover, since we are only able to deal with an
approximation of the curve, Γn, some intersections with L may be present in the
approximation and not in the curve f , or vice versa. The algorithm described
above has a way to rule out those problematic situations, exploiting the fact that
the quantity we are really interested to compute is b(hS(z,a))cmod 2 and not
just b(hS(z,a))c. Specifically what the above algorithm does is to compute, for
each of the intersections bk the value b(h̄S(bk,a))c and then summing all these
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values. In the final sum all the irrelevant terms will produce an even quantity,
which we will indicate with E, that will add to b(h̄S(bk∗ ,a))c. Finally, taking
the modulus 2 of the result, will cancel out the E term, leaving us with the
solution to our problem, the quantity b(h̄S(bk∗ ,a))cmod 2.

For each of the intersection points {b2, ..,bk} (corresponding to each of
the L-crossing segments iu excluding the first one i∗), let us now analyze the
role of the factor

∑
i∗<iv≤iu(sngVfn(iv) + 2). Let us pick a generic point

bq ∈ {b2, ..,bk−1} and let us consider the portion of the curve f which is
approximated by the segments starting from the L-crossing segment related to
the intersection point bq, until the L-crossing segment related to the intersection
point bq+1 (in increasing order according to the usual ordering). To be able to
quickly refer to this entity, we will informally call it the bq portion of the curve
f in this analysis.

In the same spirit, we will refer as the collection of segments approximating
the bq portion of the curve f as the bq collection of segments. By definition,
we exclude the L-crossing segments related to the points bq and bq+1 from the
bq collections of segments, so that there are no segments with nonzero sngLfn
in the collection.

Definition 7.10 (bq collection of segments) Let bq ∈ {b2, ..,bk−1} be an
intersection point of the L-crossing segment indicated by number r, where r ≤
2p(n). Recall that, according to the notation described above, we called this
segment the rth-segment, or segment r of the approximation Γn. We define the
bq collection of segments as the set of segments composed by segments {r+1, r+
2, ..., g − 1} where segment g is the L-crossing segment that corresponds to the
intersection point bq+1 in our ordering of the intersection points.

Definition 7.11 (bq portion of the curve) Let bq ∈ {b2, ..,bk−1} be an in-
tersection point of one L-crossing segment indicated by number r, where r ≤
2p(n). We define the bq portion of the curve as the curve composed by points
that satisfy { x ∈ ∂S such that |x− y| ≤ 2−n for some point y in the bq
collection of segments }.

To understand these definitions it is necessary not to make confusion between
the ordering of the segments composing the approximation Γn, {1, 2, .., 2p(n)}
and the ordering given to the L-crossing segments and their relative intersec-
tion points, {b1,b2, ..,bk−1}. Indeed, notice that each L-crossing segment can
be identified with a specific number from both the different ordering. As an
example, in the definitions above, segment r can also be identified as the qth
L-crossing segment, or the L-crossing segment number q, or by means of its
intersection point bq. We will explicitly make clear to which of the ordering we
are referring to whenever it will be needed in the rest of this analysis.

At this point, there are three possible situations we need to distinguish:

1. b(h̄S(bq,a))c = b(h̄S(bq+1,a))c

2. b(h̄S(bq,a))c = b(h̄S(bq+1,a))c+ 1

3. b(h̄S(bq,a))c+ 1 = b(h̄S(bq+1,a))c

notice that no other situation is possible, since bq and bq+1 are two successive
intersections in the ordering of all L-crossing segments. Let us analyze separately
these three situations:
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1) if b(h̄S(bq,a))c = b(h̄S(bq+1,a))c then the bq portion of the curve f does
not spin around the point a. To see that this statement is true, just notice that
the approximation Γn closely follows the border line described by f . Moreover,
in this situation we will have

∑
{iv≤iu|iv∈bqc.s.}(sngVfn(iv) + 2) = E, where the

abbreviation c.s represents the fact that we are summing over all the segments
belonging to the bq collection of segments. To see that this statement is true,
notice that, since the bq portion of the curve f does not spin around the point a,
in the bq collection of segments we can only have pairs of V-crossing segments,
with opposite sign according to the definition of the function sngVfn . Therefore,
summing all these terms, the resulting sum will produce an even quantity E.

2) if b(h̄S(bq,a))c + 1 = b(h̄S(bq+1,a))c then the bq portion of the curve
f does spin in one direction around the point a (whether this spinning di-
rection is clockwise or anticlockwise is irrelevant to the algorithm). To see
that this statement is true, just notice that the approximation Γn closely fol-
lows the border line described by f . Moreover, in this situation we will have∑
{iv≤iu|iv∈bqc.s.}(sngVfn(iv) + 2) = E + 1, where we are summing over all the

segments belonging to the bq collection of segments. To see that this statement
is true, notice that, since the bq portion of the curve f does spin around the
point a, in the bq collection of segments we can only have one V-crossing seg-
ment such that its sngVfn function equals 1, plus pairs of V-crossing segments
with opposite sign according to the definition of the function sngVfn . Therefore,
summing all these terms, the resulting sum will produce in the final term +1
plus an even quantity E.

3) if b(h̄S(bq,a))c = b(h̄S(bq+1,a))c + 1 then the bq portion of the curve
f does spin around the point a in the direction opposite to the one of case 2)
(whether this spinning direction is clockwise or anticlockwise is irrelevant to the
algorithm). To see that this statement is true, just notice that the approximation
Γn closely follows the border line described by f . Moreover, in this situation
we will have

∑
{iv≤iu|iv∈bqc.s.}(sngVfn(iv) + 2) = E− 1, where we are summing

over all the segments belonging to the bq collection of segments. To see that
this statement is true, notice that, since the bq portion of the curve f does
spin around the point a, in the bq collection of segments we can only have one
V-crossing segment such that its sngVfn function equals −1, plus pairs of V-
crossing segments with opposite sign according to the definition of the function
sngVfn . Therefore, summing all these terms, the resulting sum will produce in
the final term −1 plus an even quantity E.

We can now describe the meaning of the total sum in (7.3), in a more precise
way. Let us consider two generic, successive L-crossing segments (excluding the
first one i∗), say the segment related to the point bq and the segment related
to the point bq+1. These segments will produce two nonzero terms in the total
sum. Notice that, if we are in case 1) described above, then summing these two
terms will result to an even quantity E. Indeed, as we just discussed above,
the two terms we are summing only differ by a quantity E. This consideration
allows us to ignore all the pairs of L-crossing segments of this type. Therefore,
we are left with the contributions coming from the pairs of L-crossing segments
related to cases 2) and 3). If we are in the case 2), the two nonzero terms
corresponding to the segment related to bq and the segment related to bq+1
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will differ by a quantity E + 1. Therefore, summing both to the total sum will
generate an increment of 1, up to an even quantity E. In the same way, if we
are in the case 3), the two nonzero terms corresponding to the segment related
to bq and the segment related to bq+1 will differ by a quantity E−1. Therefore,
summing both to the total sum will generate an increment of −1, up to an even
quantity E.

Notice now that, as we already discussed above, case 2) and case 3) describe
portions of the curve starting from a point close to L and ending in a point
close to L that in between make a full spin around the point a, in one direction
or in the opposite, respectively. Now, since the curve ∂S is a closed curve, the
number of situations we will encounter belonging to case 2) has to be the same
of the one belonging to the case 3). This means that for each pair of intersection
points bq and bq+1 preceding bk∗ and representing a case 2) in the list described
above that contributes to the sum for a factor E + 1, there exists another pair
of intersection points, say bh and bh+1, for some h ∈ {2, .., k − 1}, following
bk∗ and representing a case 3) that contributes to the sum for a factor E − 1.
In the same way, for each pair of intersection points bq and bq+1 preceding bk∗

and representing a case 3) in the list described above with that contributes to
the sum for a factor E − 1, there exists another pair of intersection points, say
bh and bh+1, for some h ∈ {2, .., k − 1}, following bk∗ and representing a case
2) that contributes to the sum for a factor E + 1. Moreover, notice also that,
because ∂S is a closed curve, the last nonzero term of the sum in (7.3), the one
related to the last L-crossing segment with intersection bk produces an even
quantity E. Indeed, this quantity corresponds to summing the sign of all the
V-crossing segments between the first L-crossing segment (our starting point for
the counting) and last L-crossing segment.

Therefore, based on what we discussed above, we can organize our total sum
in (7.3) in pairs of terms producing even contributions E in the following way:
the first pair producing an E contribution is the one formed by the first and
the last L-crossing segment; then all the pairs of L-crossing segments related
to case 1) above naturally produce E contributions, and finally each pair of
L-crossing segment belonging to case 2) above, producing a +1 contribution to
the sum, is canceled out (up to an even quantity E) by a pair of L-crossing
segments belonging to case 3) above, producing a -1 contribution to the sum,
and vice-versa. But as we already pointed out previously in this section, the
total number of L-crossing segments has to be an odd number. There is then
one contribution that has not been counted by this organization by pairs, and
it is easy to see that is contribution is precisely the one related to the point bk∗ .

Let us now indicate with the symbol C the number of situations belonging to
the case 2) encountered in the group of segments preceding the segment related
to bk∗ , and with the symbol A the number of situations belonging to the case
3) encountered in the group of segments preceding the segment related to bk∗ .

Then, because of we discussed until now, computing the contribution to
the total sum of the L-crossing segment with intersection bk∗ , we are correctly
summing to an even constant E only the +1’s and −1’s that are related to spins
of the ∂S border around a. This operation will produce a total of C−A+E. So,
we will have that b(hS(z,a))cmod 2 = b(h̄S(bk∗ ,a))cmod 2 = C−A+Emod 2,
and this concludes our analysis of the correct behavior of the algorithm and
proves the theorem.
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7.4 Example

Figure 7.1: Computing the complex square root

In this section we present a simple example to clarify the functioning of our
algorithm. Let us consider the case illustrated by figure 7.1 above. The letters
z, a, z0, L and V represent the quantities presented in the previous section for
the description of the algorithm. Specifically, z0 represents the origin. Notice
that, in the particular case of this example, the gray domain S spins 2 times
around the point a before reaching the point z. In other words, the winding
number of z with respect to a is 2, i.e b(hS(z,a))c = 2. Therefore, since our
algorithm aims to compute the quantity b(hS(z,a))cmod 2, the correct output
of the algorithm summation in the case of this example should be E, where, as
usual, we indicate with E a generic even quantity. Hence, we have to verify that

G(z,a, 02p(n)) =
∑

{|u|=p(n),iu>i∗}

∑
{|v|=p(n),i∗<iv≤iu}

F (z,a, uv)

=
∑
iu>i∗

|sngLfn(iu)| ·
∑

i∗<iv≤iu

(sngVfn(iv) + 2)

=E

(7.4)

In the figure we indicated with the letters l1, l2, l3, l4, l5 the L intersection
points, and with v1, v2, v3, v4, v5, v6 the V intersection points. Notice that l1
is the first intersection with L, and hence corresponds with the starting point
of our algorithm. This is why this point is colored in black in the figure above.
Therefore its contribution to the total sum is zero, i.e. Cl1 = 0. The points v1
and v2 are also colored in black because their contribution is also not relevant, as
we will show immediately. Let us now proceed with computing the sum above.
To count the contributions to the sum we start from the starting point l1 as
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explained and follow the border ∂S in clockwise direction. Accordingly, for the
signs of the intersection with L and V , we consider a positive sign for clockwise
intersections and negative sign for anticlockwise. This is just a convention, and
the outcome would be the same in case of the opposite choice. Moreover, since
in each term of the above sum we are summing a +2 quantity, the calculations
that follows will be considered up to an even quantity E, as usual. So, the
first contribution to the sum comes from the first L intersection encountered,
which is point l3. Notice that the only relevant V intersection preceding l3 is
v3 (indeed the V intersection corresponding to point v1 is not relevant, since it
precedes our starting point l1), with positive sign, and hence produces a con-
tribution corresponding to 1. We indicate this contribution with the notation
cv3 = 1. So we have Cl3 = cv3 = 1, where we use a capital C to express the
contribution coming from the L intersections, and a little c for the terms related
to V intersections. Notice that at this point the portion of the border ∂S that
we are considering has already completed a full spin around the point a. Now,
if we keep following the border, the second L intersection point encountered is
l5. It is easy to see from the figure above that this point corresponds to the
point we have called bk∗ in the description of the algorithm above, such that:
b(hS(z,a))cmod 2 = b(h̄S(bk∗ ,a))cmod 2. This point is preceded by two rele-
vant V intersections, the points v3 and v5, both contributing with positive sign.
Hence, Cl5 = cv3 + cv5 = 2. Notice that this contribution indeed corresponds
to the winding number of z with respect to point a.

The two remaining L intersections are l4 and l2. First, we observe that the
relevant V intersections preceding l4 are the points v3, v5, and v6 where v3 and
v5 have positive sign, while v6 has negative sign. Hence, Cl4 = cv3 + cv5− cv6 =
2− 1 = 1. Finally, notice that the point l2 is preceded by the following relevant
V intersections: v3, v5 with positive sign, and v6, v4 with negative sign. Hence
Cl2 = cv3 + cv5 − cv6 − cv4 = 2 − 2 = 0. Notice at this point that the V
intersection v2 is not relevant in this analysis, since there is no L intersection
that follows it.

We can then sum all these contributions, restoring the presence of a generic
even quantity E, to obtain as final result of the total sum

G(z,a, 02p(n)) =
∑

{|u|=p(n),iu>i∗}

∑
{|v|=p(n),i∗<iv≤iu}

F (z,a, uv)

=
∑
iu>i∗

|sngLfn(iu)| ·
∑

i∗<iv≤iu

(sngVfn(iv) + 2)

=Cl1 + Cl3 + Cl5 + Cl4 + Cl2

=0 + 1 + 2 + 1 + 0 + E = 2 + E = E

(7.5)

which is exactly the result we wanted to verify.
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Chapter 8

Conclusions

To conclude this thesis work we quickly summarize in the following list the
topics discussed in each one of the previous chapters.

In chapter one we introduced the main topics related to this work. In chap-
ter two we presented the main analog classes previously used in [20] to obtain
a characterization of polynomial standard complexity classes by means of sys-
tems of ODEs. We also explained how to build a specific dynamical system
composed only of ODEs in order to successfully simulate the computation of
Turing machines and how exactly the equivalence with FP has to be inter-
preted. In chapter three we extended the results of [20] and showed that the
process presented in the previous chapter can be performed also in the case of
Turing machines working for an exponential amount of steps, therefore lead-
ing to a complete characterization of the class FEXPTIME. In chapter four
we tackled the case of functions computable in polynomial space. In order to
do so, we had to abandon the encoding previously used for the simulation of
Turing machines and to introduce a new notion of emulability, which we called
space-emulability. In this way we established a complete characterization of the
standard complexity class FPSPACE. In chapter five we demonstrated how it
is possible to adapt the solutions found for the previous characterizations of
classes of functions to classes of sets as well, including therefore the standard
complexity classes of EXPTIME and PSPACE in the description. In chapter
six we showed how to generalize the construction illustrated in chapter three
for exponentials to other classes of functions, applying those guidelines to the
concrete case of the functions belonging to the Grzegorczyk hierarchy. This also
implied a characterization of the class of elementary functions and the class of
primitive recursive functions. In chapter seven we studied the problem of com-
puting single-valued, analytic branches of the square root function over simply
connected complex domains whose boundary is given by a polynomial time com-
putable Jordan curve. Specifically, we improved the upper complexity bound of
this problem from the class PMP to the class P

⊕
P.

Finally, we would like to mention some possible directions of research that arise
as consequences of the work conducted for this thesis. The following questions
are still open and constitute an enlargement as well as a possible application of
this thesis work.
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1. Taking as an inspiration the model already described in [20] for the case
of polynomial complexity, it is not clear whether it is possible to modify
our exponential class ATSE in order to achieve a set of alternative equiv-
alent definitions similar to the definitions of classes AOP , ALP for the
ATSP case, as described in [51]. This possibility is particularly relevant,
since the resources provided to the polynomial characterization by these
alternative equivalent definitions are the key element to the heart of a full
characterization of computable analysis. Instead, a description by means
of polynomial ODEs of functions computable in exponential time in the
sense of computable analysis is still missing in our approach.

2. One of the natural consequences of our polynomial space characterization
is the idea of discovering which features could be modified in order to
continuously simulate nondeterministic polynomial computations. This is
due to the well known fact that P ⊆ NP ⊆ PSPACE. The most promising
route to follow for achieving this goal seems to be to exploit the definition
of NP that makes use of the existential quantifier, nevertheless, to the
present date, there is no exact clue on how to successfully introduce this
element into the picture without spoiling the continuity requirements that
are necessary for dynamical systems of ODEs.

3. One of the implications of the algorithm we described for the problem of
computing the complex square root is the possibility of computing and
summing quantities defined over the boundary of simply connected do-
mains on the complex plane. Specifically, we are able to compute and
sum these quantities even when they are defined on particularly problem-
atic non computable points of the boundary. Since a branch of computable
analysis studies the computability and complexity of complex sets whose
boundaries are polynomial time computable, it is likely that other com-
plexity problems in the context of computable analysis could benefit from
our result. Therefore, one possible direction of research could be to dis-
cover the right context where to make use of the complexity improvement
achieved by our theoretical algorithm.

The work related to the characterization of space complexity classes FPSPACE
and PSPACE, presented in chapters four and five respectively, has been included
in an article recently submitted to a scientific journal. The material related to
complexity classes FEXPTIME, EXPTIME and the generalization to the Grze-
gorczyk hierarchy is included in an article soon to be submitted to a scientific
journal. The content of chapter seven related to the complex square root rep-
resents ongoing work.
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