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RESUMO  

A miocardiopatia hipertrófica (MCH) é a doença cardiovascular hereditária mais comum 

sendo definida por um aumento da espessura do ventrículo esquerdo, não explicado por fatores 

hemodinâmicos. As suas principais características histopatológicas incluem um aumento de 

tamanho dos cardiomiócitos, desorganização dos sarcómeros e aumento da fibrose intersticial. 

Trata-se de uma doença complexa, devido à sua heterogeneidade de apresentação clínica e 

grande número de mutações causais associadas. Contudo, frequentemente, os testes genéticos 

não possibilitam a identificação de uma mutação causal e, neste momento, as terapêuticas 

utilizadas para a MHC procuram o alívio de sintomas e a prevenção de complicações graves, 

não havendo ainda uma terapêutica farmacológica especifica da doença, que previna ou reverta 

o seu fenótipo característico. São, portanto, necessárias melhorias não só ao nível do 

diagnóstico, mas também no desenvolvimento de novas terapêuticas dirigidas às causas 

moleculares da doença. Para tal é essencial que haja modelos adequados, que permitam o 

estudo da fisiopatologia da MHC bem como o ensaio de novas terapias dirigidas 

Assim, o principal objetivo desta tese foi estabelecer uma nova abordagem experimental que 

permita a identificação e caracterização de novas variantes genéticas que contribuam para o 

fenótipo da MHC, investigar os mecanismos moleculares subjacentes às mesmas e testar 

possíveis abordagens terapêuticas. Primeiramente, fomos avaliar o desempenho de ferramentas 

de previsão computacional disponíveis e identificamos quais os algoritmos que mostram o melhor 

desempenho na identificação da patogenicidade de variantes missense ou splice site associadas 

a MHC; além disso, esta análise demonstrou que as ferramentas estudadas apresentam uma 

falha de precisão na previsão de variantes deep-intronic.  De seguida, e por forma a gerar 

modelos celulares experimentais que pudessem ser utilizados para estudar o impacto de 

variantes associadas a MHC, aplicámos o sistema de edição génica CRISPR / Cas9 em células 
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estaminais pluripotentes induzidas humanas (hiPSCs) para criar uma linha celular isogénica 

portadora de uma variante associada a MHC. Por fim, desenvolvemos uma estratégia 

reprodutível e otimizada para gerar populações homogéneas de cardiomiócitos derivados de 

hiPSCs que fossem capazes de recapitular características celulares específicas da MHC. 

O trabalho apresentado serve como base para uma melhoria no diagnóstico de MHC, 

facilitando não só a identificação de variantes causais e o estudo do seu impacto no fenótipo da 

doença, bem como o desenvolvimento e teste de novas abordagens terapêuticas. 

 

 

 

Palavras-chave: miocardiopatia hipertrófica, células estaminais pluripotentes induzidas, 

diferenciação cardíaca, ferramentas bioinformáticas, edição génica 

  



iii 
 

ABSTRACT 

Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the heart. It is 

a complex disease characterized by left ventricular hypertrophy, its anatomical hallmark, 

abnormal diastolic function, increase in myocyte size with distorted nuclei, myocyte disarray and 

increased extracellular fibrosis. Several associated molecular mechanisms and a heterogeneous 

set of clinical manifestations had been reported, ranging from asymptomatic mutation carriers to 

severe heart failure or even sudden cardiac death as the first manifestation of the disease. Unmet 

needs in HCM include the need for improved diagnosis since standard genetic testing often fails 

to identify a causative mutation, as well the need for therapies precisely targeted at the molecular 

cause of the disease since current treatment options only aim to alleviate symptoms. To address 

these needs, good disease models that can help understand the pathophysiology of HCM and 

test new therapeutic approaches are required.  

Therefore, the main objective of this thesis was to establish a new experimental approach 

that allows the identification and characterization of novel genetic variants that contribute to HCM 

phenotype, investigate the molecular mechanisms underlying it and test possible therapeutic 

approaches. Firstly, the performance of available computational prediction tools was 

benchmarked and the algorithms that show the best performance in identification of missense 

and splice site HCM variants were identified; moreover, this analysis showed lack of prediction 

power for deep intronic variants of such bioinformatics approaches. Afterwards, and to generate 

experimental cellular models that could be used to study the impact of HCM-associated variants, 

the CRISPR/Cas9 gene-editing system was applied in human induced pluripotent stem cells 

(hiPSCs) to create an isogenic cell line bearing an HCM-associated pathogenic variant.  Lastly, a 

reproducible optimized strategy for generating homogeneous populations of hiPSC-derived 
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cardiomyocytes capable of recapitulating HCM-specific features at the single-cell level was 

established.  

The presented work sets the foundation for an improvement in HCM diagnosis, by identifying 

and determining the impact of HCM-causing mutations, and the development and testing of new 

HCM therapeutic approaches. 

 

 

 

Keywords: hypertrophic cardiomyopathy, human induced pluripotent stem cells, cardiac 

differentiation, in silico prediction tools, gene editing 
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I.1. THESIS OUTLINE 

The central topic of this thesis is the development of a strategy based on cell bioengineering 

that allows the identification and characterization of novel genetic variants that contribute to the 

HCM phenotype, to investigate the molecular mechanisms underlying it and test possible 

therapeutic approaches.  

In chapter II we evaluate the performance of several available computational tools in 

predicting the potential pathogenicity of genetic variants in different contexts by using three 

datasets, including a specific and curated dataset of HCM associated variants. The assessed 

tools shown that the combined use of several of them may be needed to correctly assign variant 

pathogenicity, mainly depending on the variant type (missense or splice-site), and that new 

approaches for the evaluation of deep intronic variants need to be developed. 

In chapter III, we perform gene editing in hiPSCs using a CRISPR/Cas9 based system to 

establish a cell line bearing a well described HCM associated pathogenic variant. The edited 

hiPSC line and its isogenic control, upon cardiomyocyte differentiation, would allow testing for a 

reliable disease model of HCM that can recapitulate the disease phenotype at the cellular level. 

The challenges and potential approaches for precise introduction of a single nucleotide variant 

through gene-editing in hiPSCs are further discussed. 

Lastly, in chapter IV, we describe an optimized strategy that uses a pre-established GiWi 3D 

differentiation protocol combined with a purification step by FACS for VCAM1 expressing hiPSC-

CMs and further maturation of this cardiomyocytes in a monolayer culture until day 30 of 

differentiation. The generated hiPSC-CMs represented homogeneous populations of 

cardiomyocytes with a high degree of maturation that, when used to differentiate HCM patient 

derived hiPSCs, could recapitulate HCM-specific features at the single-cell level, as demonstrated 

by the increased cellular size, multinucleation and disorganized sarcomeres in HCM hiPSC-CMs 

as compared to normal hiPSC-CMs. 
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I.2. HYPERTROPHIC CARDIOMYOPATHY 

Hypertrophic cardiomyopathy (HCM) is a primary disease of the myocardium and the most 

common genetic cardiovascular disorder. It has an estimated prevalence ranging between 1:200 

and 1:500 in the general population affecting people of different ethnicities and races spread by 

all regions of the 6 continents (Maron, Rowin, and Maron 2018; Semsarian et al. 2015; Maron et 

al. 1995) and is well known for causing sudden cardiac death (SCD) in young athletes (Maron 

2010). 

The clinical hallmark of the disease is the increase in heart mass and the left ventricular 

hypertrophy in the absence of abnormal loading conditions or secondary causes such as other 

cardiac, metabolic or syndromic diseases namely systemic hypertension or aortic stenosis. Such 

hypertrophy of the left ventricle leads to decreased chamber volume, resulting in left ventricle 

outflow obstruction and abnormal diastolic function (Christiaans and Elliott 2016; Viswanathan et 

al. 2017; Maron 2018; Maron and Maron 2013; P. M. Elliott et al. 2014). Histopathologic 

manifestations include an increase in cardiomyocytes size (which can be 20–30μm in diameter, 

in contrast to a diameter of 5–12μm in normal cells) with distorted nuclei, myocyte disarray and 

increased extracellular fibrosis (Watkins, Ashrafian, and Redwood 2011; Christiaans and Elliott 

2016; Tejado and Jou 2018) (Figure I.1).  

HCM may present a large spectrum of potential outcomes ranging from asymptomatic with 

survival to normal life expectancy to heart failure and SCD (Sedaghat-Hamedani et al. 2018; 

Melacini et al. 2010). The majority of individuals affected by this condition are thought to remain 

undiagnosed, with approximately two-thirds of patients with HCM being asymptomatic or 

minimally symptomatic (Klarich et al. 2013; Maron et al. 2014; 2015). Mild manifestations of the 

disease include symptoms such as chest pain, dyspnea, dizziness and fatigue (Viswanathan et 

al. 2017; Geske, Ommen, and Gersh 2018). Nevertheless, in up to 25% of HCM-affected 

individuals, these symptoms can be relentlessly progressive resulting in severe health 
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complications such as arrhythmic sudden death, end-stage heart failure and atrial fibrillation with 

embolic stroke (Roma-Rodrigues and Fernandes 2014; Frey, Luedde, and Katus 2012; Ali J. 

Marian and Braunwald 2017b).  

 

Figure I.1. Schematic representation of a normal heart and a heart with HCM, showing marked 

hypertrophy of the left ventricle wall. Accompanied with hematoxylin-eosin stained myocardial 

section images with correspondent histological phenotypes. Adapted from 

“http://sayostudio.com/health-infographic-art” and  (Watkins, Ashrafian, and Redwood 2011). 

The heterogeneous phenotype and complex clinical profile of the disease poses a problem 

to its diagnosis, which is primarily based on a left ventricular wall thickness >15 mm in adults, 

determined by an echocardiogram or other imaging techniques, such as computed tomography 

or cardiac magnetic resonance, in the absence of a known secondary cause (Maron, Maron, and 

Semsarian 2012; Geske, Ommen, and Gersh 2018; P. M. Elliott et al. 2014). Often, such 

diagnosis is only possible during adulthood, when there is a marked progression of the 

morphological and functional deficits of the heart (Roma-Rodrigues and Fernandes 2014).  

Current treatment options for HCM aim primarily for the reduction of the symptoms, according 

to their severity and risk for SCD, but do not target the pathophysiology or genetic cause of the 

disease (Tardiff et al. 2015). Regarding pharmacological approaches, the beta-adrenergic 

receptor blockers are the most used, followed by calcium channel blockers and disopyramide as 

Normal Heart HCM Heart 

left 

ventricular 

hypertrophy 
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an antiarrhythmic agent. Patients that remain symptomatic despite pharmacological treatment are 

often referred for surgical strategies such as implantable defibrillators, in order to prevent sudden 

death, surgical myectomy or percutaneous alcohol septal ablation, for the reduction of the left 

ventricle outflow obstruction and, in patients with advanced heart failure, implantation of a left 

ventricular device or cardiac transplantation may be the only option (Christiaans and Elliott 2016; 

Geske, Ommen, and Gersh 2018; P. M. Elliott et al. 2014).  

Patients with a clinical diagnosis of HCM are encouraged to undergo genetic counselling in 

order to search for a disease-causing variant that would support the diagnosis in a proband. When 

such pathogenic variant is identified, a cascade screening of the family members is also 

recommended to identify high-risk individuals whose symptoms are not yet apparent and reassure 

those with a negative test (Charron et al. 2010). Genetic analysis is also useful to confirm the 

diagnosis of HCM in ambiguous situations. For example, because HCM is a common cause of 

SCD in young athletes, who often exhibit left ventricular wall thickness between 13 and 18 mm, it 

is critical to distinguish the physiological hypertrophy of athletes from the pathological hypertrophy 

of HCM (Grazioli et al. 2016). On the other hand, a positive test supports the HCM diagnosis in 

individuals with the septal thickness below the cut point for the clinical diagnosis (Niimura et al. 

1998; 2002). Another important contribution of genetic testing is that it allows distinction between 

HCM and the so-called phenocopy conditions. Namely, autosomal dominant cardiomyopathies 

caused by PRKAG2 mutations, X-linked cardiomyopathies such as Fabry's disease and Danon's 

disease, glycogen storage diseases, lysosomal storage diseases, mitochondrial diseases, which 

share clinical features with sarcomeric HCM yet are distinct disorders with different natural history 

and treatment (Ali J. Marian and Braunwald 2017a). 

To date, more than 1500 HCM-associated mutations have been reported; however, due to 

the rarity of individual mutations, the available clinical data are insufficient to support meaningful 

genotype-phenotype correlations. Thus, for the majority of HCM patients, a positive genetic test 

is unable to predict the clinical course of the disease or the risk of complications including SCD 
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and heart failure (Ali J. Marian and Braunwald 2017a). Nevertheless, young age at diagnosis and 

the presence of a sarcomeric mutation were described as powerful predictors of adverse 

outcomes (Ho et al. 2018).  

In fact, still, a major limitation of current genetic testing is its failure to identify a causative 

mutation in 50-60% of HCM patients (Gruner et al. 2013). Initially it was thought that patients with 

a negative test had mutations in genes not yet associated with HCM. Although the full spectrum 

of HCM genes was expected to be quickly determined using high-throughput DNA sequencing 

approaches, which allow whole-exome and whole genome analysis, the accumulated results did 

not improve the effectiveness of HCM gene-based diagnosis. Rather, access to high-throughput 

DNA sequencing data has vastly expanded the number of variants of uncertain significance 

(VUS), and currently available in silico tools are not always useful to distinguish between benign 

and deleterious variants leading to many inconclusive results that limit the clinical utility of genetic 

testing (Sabater-Molina et al. 2018; Walsh, Thomson, et al. 2017). Another issue in this lack of 

molecular diagnosis is the presence of disease causing variants in poorly studied regions, such 

as deep within the introns, for which few in silico prediction tools are also available  (Ward and 

Kellis 2012). 

The insufficiency of clinical diagnosis in cases such as the overlapping between an HCM 

phenotype and the physiological thickening of the left-ventricular wall due to high physical activity, 

or in identification of family members at risk, supports the need for a differential diagnosis 

(Christiaans and Elliott 2016; Viswanathan et al. 2017; Maron 2010). On the other hand, the often-

inconclusive results of genetic testing stress the need for better tools to correctly classify the 

increasing number of HCM-associated variants found by large scale sequencing approaches. 

Moreover, the relentlessly progressive symptoms that can result in severe health complications 

underscore the importance of the development of therapeutic strategies that precisely modify 

HCM pathophysiology to slow, halt, or reverse disease progression (Roma-Rodrigues and 

Fernandes 2014; Frey, Luedde, and Katus 2012; Ali J. Marian and Braunwald 2017b). These 
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needs highlight the importance of having a good model to study both genotype-phenotype 

relations that can aid differential diagnosis, and to test new targeted therapies. To encourage 

research in this field, HCM has recently been given orphan disease status (Heitner 2018). 

Genetics of Hypertrophic Cardiomyopathy 

HCM is mostly inherited in an autosomal dominant manner with incomplete penetrance and 

high phenotypic variability, even within the same family (Greaves et al. 1987; Watkins, Ashrafian, 

and Redwood 2011). Some sporadic cases of de novo mutations and rare cases of X-linked and 

autosomal recessive modes of inheritance have also been reported (Christiaans and Elliott 2016; 

Hartmannova et al. 2013; Paranal et al. 2020).  

Despite being an inherited cardiomyopathy, the underlying genetic cause of HCM is only 

found in less than 50% of patients (Gruner et al. 2013). The proportion of mutation carriers with 

clinically detectable disease tends to increase with age despite of in most persons the hypertrophy 

starts to manifested in adolescence (Watkins, Ashrafian, and Redwood 2011). However, due to 

the incomplete penetrance, patients with subtle HCM features are difficult to recognize in the 

general population and the median age at diagnosis is around 46 years old (Ho et al. 2018). 

HCM mutations occur predominantly in genes that encode structural and functional 

components of the sarcomere, the contractile unit of the cardiomyocytes (P. M. Elliott et al. 2014; 

Van Driest et al. 2005; Morita et al. 2008; Brito et al. 2012; Kassem et al. 2013; Lopes et al. 2013). 

Even though the variable phenotype and clinical outcomes among HCM patients may be 

associated to the different causative mutations, the heterogeneity between carriers of the same 

mutation within or between families suggests that the genomic context and environmental 

modifiers also play an important role (A J Marian 2002; Jodie Ingles et al. 2017). Non-genetic 

factors, such as hypertension and obesity are reportedly associated to a more severe phenotype 

(Christiaans and Elliott 2016; Nagueh and Zoghbi 2015). It has also been suggested that the 
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clinical outcome of HCM is likely to be the sum of multiple genetic mutations, with a subset of 

HCM patients (~5%) presenting two or more mutations, either in the same gene or in different 

genes, and these compound or double heterozygosity genotypes being associated with a more 

severe phenotype (Girolami et al. 2010; J. Ingles et al. 2005; Wessels et al. 2015). In this regard 

it is poorly understood how multiple mechanisms may be contributing to the heterogeneity of HCM 

phenotype, including the transcriptional and splicing profile, epigenetic modifications, and protein 

posttranslational modifications (Roma-Rodrigues et al. 2015; Jellis and Desai 2015). 

Given the heterogeneous and complex phenotypes of HCM, a genotype–phenotype 

correlation has not been well established yet and poses a problem for risk evaluation and 

preventive care of HCM patients (Maron 2018). Nevertheless, the pathogenicity of a variant will 

depend on which gene is affected, the site of the mutation in the gene, i.e. if the variant is in a 

conserved region or in a location that is involved in protein-protein interactions, and the relative 

amount of wild-type and mutated protein incorporated in the sarcomeric structure (Roma-

Rodrigues and Fernandes 2014).  

Regarding the gene-disease association, detailed family linkage studies, many of which 

supported by functional and segregation data, indicate that at least 8 genes, all coding for 

components of the sarcomere, are associated with HCM, namely myosin-binding protein C 

(MYBPC3), β-myosin heavy chain (MYH7), cardiac troponin T (TNNT2), cardiac troponin I 

(TNNI3), α-tropomyosin (TPM1), α-actin (ACTC1), myosin light chain 2 (MYL2), and myosin light 

chain 3 (MYL3). (Walsh, Thomson, et al. 2017; Walsh, Buchan, et al. 2017; Jodie Ingles et al. 

2019) (Figure I.2). Among the sarcomeric genes mutated in patients, MYH7 and MYBPC3 

account for more than half of HCM-causing mutations, while in TNNT2, TNNI3, TPM1, ACTN1, 

MYL2 and MYL3 genes the frequency ranges from 1-5% (Christiaans and Elliott 2016; Walsh, 

Thomson, et al. 2017; Walsh, Buchan, et al. 2017).  
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Figure I.2. Molecular structure of the human sarcomere displaying the localization of cardiac 

sarcomere proteins and genes found to be associated with HCM (MYH7, MYBPC3, TNNT2, TNNI3, 

TPM1, MYL2, MYL3 and ACTC1). 

Recent studies pointed for distinct molecular mechanisms underlying HCM concerning the 

two most frequently HCM mutated genes. The vast majority of MYH7 mutations, as well as most 

other sarcomere mutations, are classified as missense leading to expression of mutant proteins. 

This mutant proteins may present a gain of function (either by increasing their activity or lengthen 

their functional lifespan) or dominant negative properties (causing a decrease in the protein’s 

activity) over the wild-type ones produced by the non-mutated allele (Walsh, Thomson, et al. 

2017). In the specific case of MYH7 mutations, biophysical properties of mutated myosins indicate 

a gain of function, with enhanced myosin ATPase activity, increased generated force and 

accelerated actin filament sliding (Tyska et al. 2000). In contrast, most MYBPC3 mutations are 

classified as nonsense, frameshift or splice site mutations, and predicted to generate mRNA 

containing premature termination codons (PTC) that might be degraded by nonsense mediated 

decay (NMD) causing an haploinsufficiency phenotype (reduced amount of protein due to 

inactivation of expression of the mutant allele) (Glazier, Thompson, and Day 2019). Indeed, 

several studies shown that HCM patients with MYBPC3 gene mutations have an absence of 

(ACTC1) 
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truncated proteins and reduced levels of the normal one, leading to altered cardiac function 

(Marston et al. 2009; van Dijk et al. 2009a; Strande 2015; Prondzynski et al. 2017a). 

On the other hand, allelic imbalance has also been reported for many missense HCM-related 

mutations in MYH7, MYBPC3, TNNT2 and MYL2 genes. Allelic imbalance consists of a 

differential expression of both alleles, at the mRNA or protein level, which can be either for higher 

or lower expression of the mutant alleles relative to the wild type. This differential expression can 

be related to different features. Epigenetic modifications such as imprinting or differential 

methylation combined with sequence variants in regulatory elements, may influence the 

availability of the DNA to the transcription machinery. Interestingly, studies analyzing 

heterozygous MYBPC3 truncating variants show that wild-type MYBPC3 is expressed at levels 

higher than 50%, suggesting the existence of a compensation mechanism (Glazier, Thompson, 

and Day 2019). This compensation from the normal allele is thought to be an attempt of 

maintaining the normal stoichiometry of the sarcomeric proteins. Despite that, such partial allelic 

compensation may not be enough to completely overcome the lack of protein being translated, 

leading to haploinsufficiency (Christiaans and Elliott 2016).  
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I.3. RNA MIS-SPLICING IN HCM  

As it was already discussed, the introduction of high-throughput DNA sequencing approaches 

for clinical diagnostic has vastly expanded the number of VUS, leading to many inconclusive 

results that limit the clinical utility of genetic testing. Moreover, the presence of disease-causing 

variants in poorly studied regions, such as deep within the introns, also contributing to the lack of 

molecular diagnosis. Recently, developments in RNA analysis are improving the diagnostic 

outcome by identifying new variants that interfere with splicing; also, and besides improving the 

precision of genetic diagnostics, the discovery of disease-causing aberrantly spliced mRNAs in 

HCM patients opens new venues for the development of RNA-targeted therapies. Considering 

this, we reviewed the current knowledge on how mutations that interfere with splicing cause 

disease, the recent discoveries of RNA mis-splicing in HCM and discuss emerging strategies for 

HCM-targeted RNA therapeutics. 

 

The content of the current section was adapted from the publication:  

Marta Ribeiro, Marta Furtado, Sandra Martins, Teresa Carvalho, Maria Carmo-Fonseca, 

“RNA splicing defects in hypertrophic cardiomyopathy: Implications for diagnosis and therapy“, 

doi: 10.3390/ijms21041329 

 

Disease-causing splicing mutations  

There are diverse mechanisms by which mutation-induced defects in RNA splicing act as a 

primary cause of disease (Faustino and Cooper 2003; Abramowicz and Gos 2018; Scotti and 

Swanson 2016). 

One category of splicing mutations includes single nucleotide substitutions that disrupt 

constitutive or alternative splice sites. The two highly conserved positions at the 5' and 3' splice 

https://dx.doi.org/10.3390%2Fijms21041329
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junction (typically GT and AG, respectively) are called the “essential” or “canonical” splice site 

nucleotides and substitutions at these positions in haploinsufficient autosomal dominant genes 

are diagnostically classified as pathogenic. However, recognition of a splice site by the 

spliceosome relies on a larger “splice region” composed of less well-conserved sequences. 

Although several studies highlight the importance of the near-splice-site region (Rivas et al. 2015; 

Lek et al. 2016; S. Zhang et al. 2018), variants in this region are often diagnostically classified as 

variants of unknown significance (VUS).  

Splice site mutations result in either exon skipping, activation of a nearby cryptic or alternative 

3' or 5' splice site, or intron retention (Figure I.3.A). Use of unnatural splice sites or intron retention 

frequently changes the reading frame for translation and introduces premature termination codons 

(PTCs) into the mRNA (Figure I.3.B). Similarly, skipping of some exons alters the reading frame 

and introduces PTCs. In cells, most abnormal mRNAs harboring PTCs are recognized and 

degraded by a quality-control mechanism termed nonsense-mediated mRNA decay or NMD 

(Chang, Imam, and Wilkinson 2007). Degradation of PTC-containing mRNAs by NMD prevents 

the translation of truncated proteins with potentially deleterious gain-of-function or dominant-

negative activity. Thus, in most cases splice site mutations result in inactivation (loss of function) 

of the mutated allele. However, some mRNAs containing PTCs escape NMD and are translated 

into truncated proteins. If the skipped exon does not alter the reading frame, then a shorter protein 

will be synthesized. In other cases, the mutations induce expression of alternatively spliced 

protein isoforms with different functional properties; rather than create an aberrant (cryptic) splice 

site usually associated with loss of function, these mutations shift the ratio of expression of natural 

protein isoforms.   
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Figure I.3. Splicing mutations. (A) Schematics illustrating the consequences of cis-acting mutations on 

pre-mRNA splicing. (B) Representation of a frame-shift deletion introduced by activation of a cryptic splice 

site within an exon, and degradation of the resulting mRNA by nonsense-mediated decay (NMD).  

A second category of mutations disrupts exonic splicing regulatory elements. Remarkably, 

the majority of human exons are predicted to contain exonic splicing elements (Z. Wang et al. 

2004; Z. Wang and Burge 2008), suggesting that many disease-causing exonic mutations 

classified as synonymous, missense or nonsense could be unrecognized splicing mutations 

(Cartegni, Chew, and Krainer 2002). Exonic mutations that affect RNA splicing may induce 

skipping of the mutant exons, leading to either synthesis of a shorter protein or inactivation of the 

mutant allele expression.  
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Mutations in the third category are located in internal regions of introns (deep-intronic 

mutations). For a long time, medical genetic testing has focused mainly on sequencing the exons 

and the exon-intron boundaries, searching for mutations that are more likely to affect the function 

of the encoded protein. However, in recent years, advances in whole-genome sequencing 

techniques have resulted in the identification of an increasing number of disease-causing 

mutations located more than 100 nucleotides away from splice junctions (Vaz-Drago, Custódio, 

and Carmo-Fonseca 2017). Deep intronic mutations most commonly lead to pseudo exon 

inclusion due to creation and activation of cryptic splice sites (Figure I.3.A). Alternatively, deep 

intronic mutations disrupt splicing regulatory elements located within introns. Deep intronic 

mutations can also interfere with the function of transcription regulatory motifs and non-coding 

RNA genes (Vaz-Drago, Custódio, and Carmo-Fonseca 2017; Abramowicz and Gos 2018).  

In contrast with the previous categories, which all refer to mutations that affect expression of 

a single gene by disrupting a splicing cis-element, mutations in the fourth category have an effect 

in trans on multiple genes by interfering with the function of either core components of the 

spliceosome or splicing regulatory proteins. For example, some patients with retinitis pigmentosa 

have mutations in genes that encode protein components of the U4/U6.U5 tri-snRNP (Vithana et 

al. 2001; Chakarova 2002; McKie 2001). Another example is spinal muscular atrophy, one of the 

most common genetic causes of childhood mortality, which is caused by loss of function mutations 

in a gene encoding a protein required for assembly of spliceosomal snRNPs (Paushkin et al. 

2002). More recently, mutations in genes encoding either protein or snRNA components of the 

minor spliceosome have been identified as causative of several diseases (Verma et al. 2018). 

HCM-associated splicing mutations  

 Typically, HCM is inherited in an autosomal dominant manner with incomplete penetrance 

and high phenotypic variability, even within the same family (Greaves et al. 1987; Watkins, 
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Ashrafian, and Redwood 2011). The proportion of mutation carriers with clinically detectable 

disease tends to increase with age and in most persons the hypertrophy is manifested in 

adolescence (Watkins, Ashrafian, and Redwood 2011). However, due to the incomplete 

penetrance, patients with subtle HCM features are difficult to recognize in the general population. 

HCM can be caused by a single allelic mutation in any of at least 8 genes that encode cardiac 

sarcomere-associated proteins (Walsh, Thomson, et al. 2017; Konno et al. 2010; Walsh, Buchan, 

et al. 2017). These are the beta-myosin heavy chain (MYH7), the cardiac myosin-binding protein 

C (MYBPC3), cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), cardiac alpha-actin 

(ACTC), alpha-tropomyosin (TPM1), the myosin ventricular essential light chain 1 (MYL3) and the 

myosin ventricular regulatory light chain 2 (MYL2) genes. Mutations in MYH7 and MYPBC3 occur 

most often, and together account for approximately half of all HCM cases (Walsh, Thomson, et 

al. 2017; Walsh, Buchan, et al. 2017). 

The vast majority of HCM mutations in MYH7, as well as most other sarcomere mutations 

(Figure I.4.), have been classified as missense, i.e., they are point mutations that result in the 

substitution of one amino acid for another in the protein (Walsh, Thomson, et al. 2017). Studies 

have found normal levels of mutant MYH7 protein, but its function is perturbed. Specifically, 

biophysical properties of myosins that contain HCM mutations indicate a gain of function, with 

enhanced myosin ATPase activity, increased generated force and accelerated actin filament 

sliding (Tyska et al. 2000). In contrast, most MYBPC3 mutations have been classified as 

nonsense, frameshift or splice site mutations (Figure I.4.). A nonsense mutation is a single 

nucleotide substitution that results in a PTC in the transcribed mRNA, while a frameshift mutation 

can be an insertion, deletion or duplication of nucleotides that changes the reading frame of the 

mRNA and often leads to a PTC. Splice site mutations may also disrupt the normal reading frame 

and introduce a PTC in the mRNA (Figure I.3.B). It is therefore expected that the most frequent 

MYBPC3 mutations result in degradation of PTC-containing mutant mRNAs. Indeed, analysis of 

myosin binding protein-C expressed in human myectomy samples from HCM patients with 
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MYBPC3 gene mutations revealed absence of truncated proteins and reduced levels of the 

normal protein (Marston et al. 2009). Moreover, HCM mutations in the MYBPC3 gene engineered 

into mice resulted in reduced expression of myosin binding protein-C and caused altered cardiac 

function (van Dijk et al. 2009b). These results suggest that MYBPC3 haploinsufficiency (i.e., 

reduction in the amount of normal protein due to inactivation of expression of the mutant allele) is 

a pathologic mechanism for HCM. 

 

Figure I.4. HCM mutations. The bar graphs depict the number and type of HCM-associated variants 

in the indicated genes. All variants reported as pathogenic or likely pathogenic in the National 

Center for Biotechnology Information’s ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/) 

were considered. 

As expected, the majority of HCM-associated splice site variants reported in the ClinVar 

database change the two most highly conserved nucleotides at the splice junction (Figure I.5.). 

Although several computational algorithms have been developed to predict the effect of single 

nucleotide variants on splicing (S. Zhang et al. 2018; Barash et al. 2010; Di Giacomo et al. 2013; 

Erkelenz et al. 2014; Rosenberg et al. 2015; Xiong et al. 2015; Jaganathan et al. 2019), the 

definitive test of whether a disease-causing mutation affects splicing is by direct analysis of 

http://www.ncbi.nlm.nih.gov/clinvar/


41 
 

mRNA. Indeed, it is essential to sequence the mutant mRNA to define its splicing pattern. 

Moreover, the total levels of mRNA should be measured to determine whether the mutation 

triggers NMD and therefore reduces the expression of the mutant transcript. 

 

Figure I.5. HCM splice site mutations reported in the ClinVar database. Position of splice site 

mutations reported in the ClinVar database for the 8 HCM-associated genes shown in Figure 5. The 

number of variants per position is indicated. The 5' splice site (ss) is also known as the donor (D) 

splice site, whereas the 3' site is also known as the acceptor (A) splice site. Position D+1 

corresponds to the first intronic nucleotide downstream of the depicted exon, D+2 to the second, 

and so forth. Position A-1 corresponds to the last intronic nucleotide upstream of the depicted exon, 

A-2 to the previous one, and so forth. 

Aberrant splicing caused by HCM mutations has been shown using minigenes transfected 

into HEK293 cells (Ito et al. 2017). However, this is not an ideal system because mechanisms 

controlling splicing decisions are known to be influenced by chromatin structure and to be cell-

type specific. Thus, RNA from the affected tissue should be studied. One possibility is to analyze 

mRNA from left ventricular septum samples from patients undergoing septal myectomy to relieve 

left ventricular outflow tract obstruction (Marston et al. 2009; Helms et al. 2014; Bagnall et al. 

2018; Singer et al. 2019). Alternatively, RNA can be studied in cardiomyocytes differentiated in 
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vitro from induced pluripotent stem cells (iPSCs) derived either from patients or from normal 

iPSCs gene edited to harbor a patient-specific genetic variant (Lan et al. 2013; Ross et al. 2017; 

Ma et al. 2018a). RNA analysis can also be performed on peripheral blood samples, at least for 

MYBPC3 mutations. Indeed, it was recently shown that RNA extracted from fresh venous blood 

supports amplification of MYBPC3 transcripts and replicates the splicing patterns found in 

myocardial tissue (Singer et al. 2019).  

RNA analysis of families with MYBPC3 variants in the near-splice-site region allowed 

reclassification from uncertain significance to likely pathogenic (Singer et al. 2019). Multiple 

variants located in the near-splice-site region and predicted to disrupt splicing by computational 

algorithms were shown to either activate cryptic splice sites or induce exon skipping (Figure I.6.). 

Some variants resulted in a frameshift and introduction of a PTC, while other variants resulted in 

shorter mRNAs within frame deletions. RNA analysis further revealed that exonic variants 

classified as missense but predicted to disrupt splicing by computational algorithms caused exon 

skipping leading to frameshifts (Singer et al. 2019). Another study used whole genome 

sequencing and identified deep intronic variants that resulted in inclusion of pseudo exons (Figure 

I.6) leading to frameshifts (Bagnall et al. 2018).  A synonymous exonic variant was further shown 

to create a novel cryptic splice sequence that truncated the exon (Figure I.6) leading to an in-

frame deletion (Bagnall et al. 2018).   
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Figure I.6. Recently reclassified MYBPC3 splicing mutations. Exons are represented by boxes and introns 

by lines. Exonic nucleotides are indicated by capital letters and intronic nucleotides by small-case letters.  

(A) Variant c.654+5G>C created a cryptic donor splice site within exon 5, leading to a truncated exon with 

an in-frame deletion of 48 pb (Singer et al. 2019). (B) Variant c.1624+4A>T caused skipping of exon 17, 

leading to a frameshift (Singer et al. 2019). (C) Deep intronic variant c.1090+453C>T creates a new splice 

donor sequence, which leads to inclusion of a 77 bp pseudo exon in the mRNA causing a frameshift and 

introduction of a PTC (Bagnall et al. 2018).  (D) Deep intronic variant c.1091-575A>C creates a new splice 

acceptor sequence, which leads to inclusion of a 85 bp pseudo exon in the mRNA causing a frameshift and 

introduction of a PTC (Bagnall et al. 2018).  (E) Synonymous variant c.2274C>T (p.Gly758Gly) caused 

truncation of exon 23 by 36 nucleotides, leading to an in-frame deletion of 12 amino acids (Bagnall et al. 

2018).   
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RNA therapeutics for HCM 

Besides improving diagnostics, understanding precisely the expression of relevant RNAs in 

patient cells has the potential to inspire the development of new strategies to specifically treat that 

individual. Although for years the field of RNA therapeutics had to overcome numerous difficulties 

in achieving efficacious results without toxic side effects, the first RNA-targeted therapies have 

recently reached the clinic, and many are advancing to the final phases of clinical trials. In 2016, 

the antisense oligonucleotides EteplirsenTM and NusinersenTM were approved for treatment of 

Duchenne muscular dystrophy (Charleston et al. 2018) and Spinal muscular atrophy (Michelson 

et al. 2018), respectively. These oligonucleotides form base pair interactions with the nascent pre-

mRNA and alter its splicing pattern. Eteplirsen hybridizes to a site within exon 51 of the DMD pre-

mRNA, thereby sterically blocking spliceosome assembly at that site; this results in skipping of 

exon 51 and correction of the disease-causing frameshift mutation. The corrected mRNA contains 

exon 50 ligated to exon 52 and generates a shortened but still functional version of the dystrophin 

protein. Nusinersen hybridizes to an intronic region upstream of exon 7 of SMN2 pre-mRNA and 

blocks an inhibitory signal located at that site, causing inclusion of exon 7. The SMN2 mRNA with 

exon 7 encodes a fully functional protein that substitutes for the missing SMN1 protein. 

In principle, splice-switching antisense oligonucleotides could be valuable for HCM treatment 

in cases of disease caused by mutations that disrupt normal splicing. A proof-of-concept study 

demonstrated the feasibility and efficacy of inducing skipping of a mutated MYBPC3 exon 6 using 

viral-mediated transfer of antisense oligonucleotides in a mouse model of HCM (Gedicke-

Hornung et al. 2013). Transduction of cardiac myocytes or systemic administration of the 

oligonucleotides reduced aberrantly spliced mRNAs, abolished cardiac dysfunction and 

prevented left ventricular hypertrophy in newborn mice (Gedicke-Hornung et al. 2013). Although 

not yet experimentally tested, antisense oligonucleotides designed to hybridize to cryptic splice 
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sites in mutant pre-mRNAs could sterically block spliceosome assembly at that site, thus 

preventing mis-splicing.  

Another therapeutic strategy is to induce silencing of disease-causing genes by RNA 

interference (Setten, Rossi, and Han 2019). After the discovery that double-stranded RNAs (often 

called small interfering RNAs or siRNAs) can silence the expression of proteins encoded by 

complementary mRNAs in the nematode Caenorhabditis elegans (Fire et al. 1998; Montgomery, 

Xu, and Fire 1998), synthetic exogenous siRNAs were shown to induce sequence specific gene 

expression knock-down in mammalian cells (Elbashir et al. 2001). RNAi is a fundamental process 

initiated by the presence of long double-stranded RNA that is cleaved by the enzyme Dicer into 

shorter fragments of 21-23 nucleotides containing two single-stranded nucleotides on their 3' 

ends. Synthetic siRNAs are designed to mimic the natural products of Dicer. Each siRNA 

comprises a sense “passenger” RNA strand and a paired antisense or “guide” RNA strand. The 

siRNA molecules are loaded onto the RNA-induced silencing complex (RISC), which is composed 

of Dicer and Argonaute 2 (Ago2). During RISC assembly the siRNA is unwound, the “passenger” 

strand is removed and the single-stranded antisense guide base-pairs with the mRNA target. The 

mRNA hybridized to the siRNA is then cleaved by Ago2, which contains an RNase H like domain 

that functions to cleave one strand of an RNA:RNA duplex. Because siRNAs can in principle 

down-regulate any human mRNA, they should be ideal to eradicate expression of disease-

causing mutant alleles. Yet, despite major efforts, siRNA-based therapies have faced multiple 

hurdles. Namely, delivery and stability proved difficult.  Further, siRNAs were found to trigger 

innate toll-like immune receptors to initiate inflammation, raising concerns about safety (Setten, 

Rossi, and Han 2019). Tremendous progress in the field culminated in 2018 with the first-ever 

siRNA product (Patisiran) approved as a therapy for the rare hereditary disease transthyretin-

mediated amyloidosis (J. Yang 2019). More recently, siRNAs targeting mRNA isoforms 

responsible for expression of the placenta-derived mediators of preeclampsia succeeded in 

suppressing clinical signs in a primate model (Turanov et al. 2018). 
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In the case of HCM, selective reduction in the expression of mutant alleles that code for 

dominant negative proteins would be the most direct therapeutic approach. Proof of concept has 

been established in a mouse model of HCM that is heterozygous for the R403Q mutation in Myh6 

(Jiang et al. 2013). RNAi constructs delivered by an adeno-associated virus vector preferentially 

reduced the levels of mutant transcripts and suppressed myocardial hypertrophy and fibrosis 

(Jiang et al. 2013). Although siRNAs can distinguish between mRNAs that differ by one single 

nucleotide, transcripts with splicing mutations that lead to in-frame deletions or insertions should 

be easier to target by RNAi. However, before pursuing any RNAi-based strategy for HCM it is 

critical to ensure that expression of the normal allele is sufficient to support normal myocardial 

function. 

An alternative modality for correction of mutant mRNAs with potential application in HCM is 

spliceosome-mediated RNA trans-splicing, or SMaRT (Berger et al. 2016). Inspired by the 

observation that spliceosomes can ligate exons from two distinct pre-mRNAs creating a chimeric 

mRNA, the SMaRT technology makes use of an exogenous RNA sequence to replace one or 

several exons of the target mutant pre-mRNA. An artificial pre-mRNA is engineered to contain 

the coding sequence of substitution next to an intron. The end of this artificial intron consists of a 

stretch of nucleotides that base pair with the target intron in the endogenous pre-mRNA, bringing 

the exogenous exon in close proximity to its endogenous mutant counterpart. Efficient substitution 

of the mutant exon requires that the engineered trans-splicing out-competes the physiological cis-

splicing process, and this currently remains a major challenge. If successful, the SMaRT 

technology would be particularly appealing to treat HCM because a single engineered RNA 

construct could be used to repair numerous mutations. Namely, two distinct RNA constructs 

covering the first and the second half of the MYBPC3 mRNA should in principle be able to repair 

all the mutations in this gene and therefore treat 40-60% of all HCM patients. Proof-of-concept 

studies have been reported using an artificial pre-mRNA that carried the wild type MYBPC3 cDNA 

sequence from exon 1 to exon 21 juxtaposed to an intron with a 120-nucleotide binding domain 
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for base pairing with a complementary sequence in intron 21 of the endogenous MYBPC3 mRNA 

(Mearini et al. 2013; Prondzynski et al. 2017b). However, chimeric molecules resulting from trans-

splicing represented less than 1% of all MYBPC3 mRNAs in cardiomyocytes, indicating that the 

efficiency of this approach was too low to be considered as a therapeutic option (Prondzynski et 

al. 2017b). 

Non-coding RNAs, particularly microRNAs (miRNAs), are also attracting much attention as 

biomarkers of cardiac disease and potential therapeutic targets. Altered expression levels of 

circulating miRNAs have been reported in association with hypertrophic cardiomyopathy (Sayed 

et al. 2007; Roncarati et al. 2014; Song et al. 2014; Ming et al. 2018), and forced overexpression 

of stress-inducible miRNAs was shown to induce cardiomyocyte hypertrophy (Van Rooij et al. 

2006). However, it remains to be established whether modulation of miRNA levels is sufficient to 

revert the HCM phenotype.  
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I.4. DISEASE MODEL SYSTEMS FOR HCM 

Different model systems have been used to model cardiomyopathies and more specifically 

HCM, providing important information about the pathogenesis of the disease. These models 

include primary cultures, animal models, immortalized cell lines and human pluripotent stem cell 

derived cardiomyocytes (hiPSC-CMs).  

While primary cell cultures have the advantage of reflecting the disease biology faithfully, 

since they maintain their morphology, function and protein markers, it is very difficult to obtain 

cardiac tissue from human patients, as it is limited to extreme clinical situations such as a 

cardiomyectomy or a biopsy. Moreover, the amount of tissue is often insufficient for extensive 

molecular analysis and these cells are difficult to maintain in culture due to their limited lifespan 

and expansion potential. On the other hand, since myectomy or biopsy samples are generally 

obtained from patients in late stage of HCM development it poses a major difficulty in studying 

pathophysiological mechanisms leading to disease (Ojala and Aalto-Setälä 2016; Hoes, Bomer, 

and van der Meer 2019).  

Several animal models have been used in the study of HCM, including genetically engineered 

animals and those with spontaneous mutations. Rodents are the most used model species for 

HCM research, due to the ease of maintenance and genetic manipulation to generate transgenic 

or mutant strains and their short gestation time. Moreover, mice short life span allows to follow 

the natural history of the disease at an accelerated pace, leading to a fast conclusion of the 

experiments and its potential translation to human research. However, these characteristics can 

also limit the data’s applicability to human cardiovascular function since rodents are 

phylogenetically farthest from humans compared to other mammals, and there are significant 

differences between pathophysiological features of HCM phenotypes in mouse models and the 

human disease presentation (Houser et al. 2012; Purevjav 2019; Milani-Nejad and Janssen 

2014). Most mouse models of HCM carry human mutations in sarcomeric protein-encoding genes 
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such as MYBPC3 (Q. Yang et al. 1998), TNNT2 (Ferrantini et al. 2017), TNNI3 (James et al. 

2000) and TPM1 (Prabhakar et al. 2001). Compared with the mouse, larger animals offer some 

advantages for cardiovascular research due to the larger size and slower heart rate, which are 

advantageous for physiological analyses. These include genetically engineered rabbit (Sanbe et 

al. 2005; Lowey et al. 2018; Nagueh et al. 2004) and pig models (Montag et al. 2018) and some 

naturally occurring cat (Freeman et al. 2017; Meurs et al. 2005) and pig models (Shyu et al. 2002; 

J. H. Lin et al. 2002). Considering that the development and investigation of animal models is 

complex, expensive, time-consuming, and even when natural occurring animal models, larger 

than rodents, are available, the outcomes can be difficult to translate to humans due to 

interspecies differences of cardiovascular anatomy, physiology and gene expression, alternative 

disease models were needed. Nevertheless, the use of animal models had improved our 

knowledge on the mechanisms of cardiac diseases and promoted an advancement preclinical 

assessment of drug discovery and development (Hearse and Sutherland 2000; Savoji et al. 2019; 

Purevjav 2019; Milani-Nejad and Janssen 2014), 

Immortalized human cell lines can be derived either from tumors or from the immortalization 

of other cell lines such as the human ventricular AC16 cell line, which was developed by fusing 

primary ventricular cardiomyocytes with a SV-40 transformed fibroblast cell line (Davidson et al. 

2005). Immortalized cell lines have the advantage of unlimited lifespan, they are easy to grow and 

maintain with low associated costs. However, this does not reflect accurately normal physiological 

conditions and can cause genetic and phenotypic variation over time with the accumulating 

genetic aberrations leading to a different behavior than in vivo (Jimenez-Tellez and Greenway 

2019; Hoes, Bomer, and van der Meer 2019). 

Recently, alternative models have been developed based on the advances in stem cell 

technology and research, which provide a new human cell source that has demonstrated great 

potential for disease modeling due to the unlimited in vitro expansion potential and differentiation 

capability that allows them to, in principle, differentiate into any human cell type, including 



50 
 

cardiomyocytes (hiPSC-derived cardiomyocytes, hiPSC-CMs). Encouragingly, it had been shown 

that patient-derived hiPSC-CMs can recapitulate in vitro the HCM phenotype at the cellular level 

(Lan et al. 2013; van Mil et al. 2018; Ojala and Aalto-Setälä 2016). 

Human induced pluripotent stem cells for disease modeling 

Stem cells are defined as a population of undifferentiated cells characterized by their self-

renewal capability and the ability to differentiate into specialized cell types (De Los Angeles et al. 

2015; Mahla 2016). They can be divided in three different types according to their differentiation 

potential. Totipotent stem cells can generate all cell types, giving rise to an entire organism and 

the only cells with this classification are the zygote and early blastomeres. Pluripotent stem cells 

(PSCs) can originate cells from all three embryonic germ layers: ectoderm, endoderm and 

mesoderm. Lastly, multipotent stem cells, such as hematopoietic stem cells, are already 

committed to give rise to cells of a restricted spectrum of cell lineages (De Los Angeles et al. 

2015; Mahla 2016). 

For modeling human diseases, PSCs are the most interesting group since in theory they can 

be indefinitely expanded maintaining an undifferentiated state, have ability to differentiate into 

most (if not all) embryonic and adult cell lineages and are easier to obtain than totipotent cells. 

PSCs can have different origins, the main ones being embryonic stem cells (ESCs) and induced 

pluripotent stem cells (iPSCs). 

Human ESCs were the first human PSCs obtained. They were first isolated from the inner 

cell mass of human blastocysts produced in vitro in 1998 by James Thomson (Thomson 1998). 

Even though the isolation and expansion of hESCs opened new avenues for in vitro studies of 

human development and diseases, they are associated with some drawbacks. Human disease-

specific ESCs are either obtained by genetic modification, having low efficiency of gene targeting 

and unknown predisposition for diseases (Urbach 2004; Tulpule and Daley 2009) or isolated from 
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embryos carrying monogenic disease-associated mutations detectable via pre-implantation 

genetic diagnosis (Urbach and Benvenisty 2009; Eiges et al. 2007) and often fail to recapitulate 

disease-associated phenotypes (Halevy and Urbach 2014).  Importantly, in most cases, making 

a hESC line involves the destruction of an embryo raising significant ethical issues.  

Human iPSCs were first obtained by Yamanaka & Takahashi in 2007 by overexpressing a 

cocktail of four transcription factors, (Octamer-binding transcription factor 4  (OCT4), Sex 

determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4) and v-myc avian 

myelocytomatosis viral oncogene homolog (c-MYC)) into a human adult fibroblast. The generated 

hiPSCs showed similar properties to hESCs, such as same morphology and proliferation capacity 

when cultured in vitro (Takahashi et al. 2007). Despite the initial concerns that iPSC could have 

significant differences from ESCs due to their epigenetic memory, nowadays such concerns 

largely subsided; in fact,  studies comparing isogenic hiPSCs with hESCs show that for all 

purposes these cell types are molecularly and functionally equivalent, and observed differences 

are most likely to arise from the genetic background variation (Choi et al. 2015; Young et al. 2012). 

Several different somatic cell types can now be reprogramed into hiPSCs. These include the 

initially used dermal fibroblasts obtained through skin biopsies and other, more convenient, 

accessible and risk-free cell sources such as peripheral blood cells, typically T cells (Seki et al. 

2010; Loh et al. 2009), renal tubular cells collected from urine samples (Zhou et al. 2011) and 

keratinocytes from plucked hair follicles (Aasen et al. 2008). 

Regarding the choice of methods to deliver reprograming factors into human somatic cells, 

the integrative methods (retrovirus and lentivirus) initially used are still one off the top choices due 

to their high efficiencies; although, in many cases, they are being progressively substituted by 

non-integrating methods such as episomal plasmid vectors (Yu et al. 2007; Junying et al. 2009), 

messenger RNA transfection (Warren et al. 2010) and Sendai virus (Fusaki et al. 2009; Seki et 

al. 2010). These nonintegrative methods have the advantage of avoiding insertional mutations or 
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unintentional transgene reactivation, and should consequently result in less variability between 

the generated hiPSC lines (Yoshida and Yamanaka 2017).  

Since the first time they were described, hiPSCs emerged as a powerful tool to study 

development and human genetic disease. Their use circumvents the ethical issues associated 

with the manipulation of hESCs and the different possible cell sources facilitate the establishment 

of new hiPSC lines, including patient-specific cell lines which in turn are the most relevant cell 

source for drug screening and human disease study since they reproduce the patient’s genetic 

background. 

Although patient derived hiPSCs (PD-hiPSCs) are very attractive to be used for disease 

modeling, there are also several advantages in the use of gene edited hiPSC. One is the case 

where a given variant of interest is so rare in a population that recruiting a patient with that specific 

mutation is not feasible. Another is that it enables the study of a chosen variant irrespective of the 

genetic background. Moreover, gene editing can be very useful in providing isogenic controls that 

allow for better comparation and genotype-phenotype correlations (Musunuru et al. 2018; Bellin 

et al. 2012).  Therefore, gene editing approaches can be useful either to try to revert the disease 

phenotype by correcting the causal variant from a PD-hiPSC, or to recapitulate the disease 

phenotype by inducing a variant thought to be causal in an established hiPSC cell line derived 

from a healthy donor (Figure I.7) (Musunuru et al. 2018). 
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Figure I.7. Disease-modeling applications of iPSC technology. hiPSCs used can be either previously 

establish cell lines that are gene-edited to carry the variant of interest or generated by 

reprogramming adult somatic cells derived from patients. The subsequent in vitro differentiation, 

namely in cardiomyocytes, and comparation with matched controls provide a valuable tool for 

disease modeling and allows to answer different questions of sufficiency or necessity of a given 

variant to cause a disease. 

CRISPR/Cas9 gene editing system 

In recent years a variety of genome editing technologies have emerged allowing to insert, 

delete or modify target DNA sequences in its endogenous context, both in vitro and in vivo. These 

genome editing tools include zinc-finger nucleases (ZFNs), transcription activator-like effector 

nucleases (TALENs) and clustered regularly interspaced short palindromic repeats 

(CRISPR)/associated protein 9 (Cas9) that rely on the use of nucleases to induce double-strand 
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DNA breaks (DSBs) in desired locations of the genome leading to the activation of endogenous 

repair mechanisms (Doudna and Charpentier 2014). 

ZFNs and TALENs are chimeric nucleases that contain an endonuclease catalytic domain 

coupled to a modular DNA-binding region that can be programmed according to the genomic 

target site. On the other hand, in the CRISPR/Cas9 system, site targeting is based on a small 

RNA (gRNA) that can guide the Cas9 nuclease to the target locus through RNA-DNA base pairing. 

Since its recent introduction to edit mammalian cells, the CRISPR/Cas9 system became the most 

widely used gene editing tool due to its ease of use and design, high specificity, more flexible site 

targeting, and improved efficiency compared to earlier methods (Ran et al. 2013) 

CRISPR/Cas systems, found in bacteria and archaea, function as adaptive immune systems 

protecting them from invading viral or plasmid nucleic acids. The CRISPR/Cas9 system, 

commonly used for gene editing, is an adaptation of this defense mechanism in the bacteria 

Streptococcus pyogenes. CRISPR loci is comprised of conserved repetitive bases intercalated 

by short fragments of DNA from a previously invading organism (spacers) and acts as an “immune 

memory”. In response to a new infection, the bacteria produces RNA segments using these 

spacer sequences as templates, which are then cleaved into small CRISPR RNAs (crRNA). This 

particular loci also encodes an extra small RNA that is complementary to the repeat sequence, 

known as a trans-activating crRNA (tracrRNA) (Deltcheva et al. 2011). When combined, to form 

a tracrRNA:crRNA complex, they guide the Cas nuclease to the target sequence of the invader 

genome. This genomic target sequence (protospacer) is complementary to the crRNA, and was 

found to be adjacent to short (3–5 bp) DNA sequences termed protospacer adjacent motifs (PAM) 

that are also required for the binding of Cas-RNA complex to the DNA, through Watson-Crick 

base-pairing. Subsequently, the nuclease domains of the Cas protein cleave the target region in 

the invading genome (Figure I.8.a) (Jinek et al. 2012; F. Zhang, Wen, and Guo 2014). 

For its application as a gene-editing tool, the CRISPR/Cas9 system was engineered in order 

to be easily adapted to the regions to be edited (Figure I.8.b), by using a single guide RNA 
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(sgRNA), composed by the fusion between a crRNA and part of the tracrRNA sequence. This 

sgRNA leads the Cas9 to cleave target DNA sites that are complementary to the 5′ 20 nucleotides 

of the sgRNA and lie next to a PAM sequence with the canonical form 5′-NGG. Consequently, 

with this system, the Cas9 endonuclease can be directed to any DNA sequence with the form N-

NGG by changing the first 20-nt of the sgRNA to correspond to the target genomic DNA sequence. 

Upon recognition of the PAM sequence, the Cas9 mediates a DSB  3 bp upstream of the PAM, 

promoting the activation of host DNA repair pathways (Cong et al. 2013; Mali et al. 2013).  

 

 

Figure I.8.Naturally occurring and engineered CRISPR-Cas systems. (a) The natural occurring 

adaptive CRISPR/Cas9 immune system. (b) The engineered CRISPR/Cas9 system for an easier 

application in gene-editing, requiring only a single guide RNA whose sequence can be modified 

according to desired target genomic sequence. Adapted from (Sander and Joung 2014). 

 

The repair of the Cas9-induced DSBs can be achieved by two different molecular 

mechanisms: the error-prone non-homologous end joining (NHEJ) or the homology-directed 
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repair (HDR), a more high-fidelity and error-free repair mechanism (F. Zhang, Wen, and Guo 

2014). The NHEJ pathway is the most typically used since it is faster and active during the entire 

cell cycle. With this pathway, the two cleaved ends of the DNA can rapidly be ligated often 

resulting in the introduction of errors such as insertion or deletion of nucleotides at the target site 

(indels). Since these events often lead to frameshifts and generation of premature stop codons it 

can be useful in gene-editing when attempting gene knockouts (Figure I.9.) (M. Liu et al. 2019). 

In order to precisely edit DNA sequences, such as to obtain single nucleotide modifications, it is 

necessary that the DSB is repaired through the HDR pathway. This pathway requires the 

presence of a repair template, and it is restricted to late S and G2 phases (when DNA replication 

is completed, and sister chromatids are accessible to serve as templates). Besides the sister 

chromatids endogenous template, exogenous DNA molecules can also be used to precisely 

introduce specific nucleotide modifications or knock-ins in the target location (Figure I.9.) (M. Liu 

et al. 2019). 

 
Figure I.9. Nonhomologous end joining (NHEJ) or homology-directed repair (HDR) pathways used 

in nuclease-induced genome editing. The error-prone NHEJ-mediated repair often results in the 

insertion or deletion of nucleotides at the target site. HDR-mediated repair can introduce precise 

point mutations or insertions in the presence of a single or double-stranded DNA donor template. 

Adapted from (Sander and Joung 2014). 
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 However, even in the presence of a repair template, HDR efficiency is low, reportedly 

between 0,1-1% (Miyaoka et al. 2016), and frequently detected unwanted mutations can be 

explained by the high nuclease activity of CRISPR/Cas9, which may continuously re-cut edited 

loci, or by the HDR competition with NHEJ in S and G2 phases and specific down-regulation of 

HDR at M phase and early G1. To overcome this limitations, several strategies have been 

proposed to increase HDR frequency or prevent Cas re-cutting such as cell cycle modulation with 

timely CRISPR/Cas delivery (S. Lin et al. 2014),  incorporation of CRISPR-Cas9 blocking 

mutations along with the mutation of interest (Paquet et al. 2016), modifications to the 

CRISPR/Cas9 system (Aasen et al. 2008; Howden et al. 2016), or the use of small molecule 

inhibitors of the NHEJ pathway (Maruyama et al. 2015). Other frequent concerns include the 

presence of off-target effects, arising from unspecific binding of the sgRNA to other sites in the 

genome, and high variability between different cell types regarding delivery of the large 

CRISPR/Cas9 machinery and gene-editing efficiency. These issues can be tackled by reducing 

non-specific binding of sgRNA sequences and cell line dependent delivery optimization of 

CRISPR/ Cas9 systems, either in the form of plasmid DNA, RNA, or proteins (Wilbie, Walther, 

and Mastrobattista 2019; J. J. Liu et al. 2019). 

Despite challenges in its applicability, the gene editing CRISPR/Cas9 system significantly 

enhanced the ability to precisely modify a chosen locus with minimal impact on the remaining 

genome and thereby the utility of hiPSCs for purposes such as disease modeling. Based on that 

the CRISPR technology has already been used to establish both animal and hiPSC-CMs HCM 

disease specific  models (Motta et al. 2017; Nguyen et al. 2019).  
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I.5. HIPSC DERIVED CARDIOMYOCYTES  

The development of hiPSCs was already proven valuable for different applications, from 

disease modeling to drug testing, by providing an unlimited supply of differentiated cells from any 

somatic cell type, particularly cardiomyocytes (hiPSC-CMs). However, such studies present some 

limitations such as the lack of consistency, purity or maturity presented by the differentiated CMs 

and approaches to enhance these characteristics are being continuously developed (Figure I.10.). 

 

 

Figure I.10. Cardiomyocyte differentiation approach. Different steps can be performed to enhance 

the characteristics of the obtained hPSC-CM population. 
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Differentiation protocols 

Initial efforts to obtain cardiomyocytes from human PSCs used hESCs to form embryoid 

bodies (EBs) in serum containing medium. However, only approximately 8% of the EBs presented 

spontaneous contraction, indicating the presence of CMs, with CMs typically representing less 

than 1% of the total culture (Kehat et al. 2001).  

Since then more specific and efficient cardiac differentiation methods have emerged, taking 

advantage of knowledge regarding key signaling pathways associated with embryonic heart 

development such as activin/nodal/transforming growth factor-β (TGF-β), Wnt, and bone 

morphogenetic protein (BMP4). Through the appropriate temporal addition of growth factors 

and/or small molecules, it was possible to recapitulate to some extent the critical stages of cardiac 

specification leading to a higher cardiac differentiation efficiency (Karakikes et al. 2015).  

This information was earlier used to establish a monolayer-based activin A/BMP4-directed 

differentiation system reported to be at least 50-fold more efficient than the previously used EBs 

with serum induction (Laflamme et al. 2007). Protocols using EBs in suspension culture could 

also be improved by the addition of the growth factors BMP4, fibroblast growth factor 2 (βFGF) 

and Activin A during early stage of differentiation, and the Wnt inhibitor DKK1 and vascular 

endothelial growth factor  (VEGF) during late stage of differentiation, leading to a yield of more than 

50% of CMs (L. Yang et al. 2008). Another significant improvement was brought by the 2D 

differentiation approach proposed by Lian et al., where the sole modulation of the Wnt pathway, 

by the sub sequential addition of two small molecules, CHIR99021 (a glycogen synthase kinase-

3 (GSK3) inhibitor that leads to Wnt pathway activation and it turn to mesoderm commitment of 

the cells) and IWP2 (an inhibitor of Wnt ligand production that leads to Wnt pathway inhibition, 

which at this time point can direct the generated mesoderm progenitors to a cardiac fate), 

generated 80–98% pure populations of CMs (Lian et al. 2012; 2013).  
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This Wnt modulation approach (commonly termed GiWi approaches – for the GSK3 

inhibition, Wnt inhibition) was also used by Burridge et al. to create a chemically defined and 

xeno-free cardiac differentiation approach, which would reduce the variability in media 

components and eliminate possible patient immune reactions to animal components in the CM 

product, as the commonly used B27 supplement (a supplement that contains all factors required 

to support the survival and differentiation of the cells) was replaced by ascorbic acid and human 

recombinant albumin, leading to the production of approximately 85% CMs that could further 

enriched to >95% using chemically defined metabolic selection. 

A summary of the mentioned protocols, with the timing at which to induce these pathway 

changes and the growth factors and small molecules used for such modulations, is seen in Figure 

I.11. 

 

Figure I.11. Summary of cardiac differentiation protocols for differentiating hPSCs into 

cardiomyocytes. Adapted from (Dunn and Palecek 2018). 

Despite the important advances brought by the development of the described cardiac 

differentiation protocols, with production of higher yields of cardiomyocytes, for some applications 

it is desirable to have a purer and more mature CMs population than the ones generated with 

such protocols. In order to address such requirements, several purification and maturation 

strategies have been proposed. 
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Purification strategies 

One of the most widely used purification strategies takes advantage of the iPSC-CMs ability 

to metabolize lactate, in contrast to undifferentiated cells.  In this metabolic purification, the 

prolonged incubation with glucose-depleted lactate-supplemented medium has been shown to 

increase the yield of iPSC-CMs up to 98% (Tohyama et al. 2013; Burridge et al. 2014). Moreover, 

the combination of glutamine and glucose depletion was reported to further eliminate 

undifferentiated PSCs (Tohyama et al. 2016). This methodology, if used in a monolayer 

differentiation protocol, can purify CMs while still in the dish, providing pure hiPSC-CMs with 

minimal experimental complexity. 

 Another effective way to separate CMs from other cells is to make use of antibodies 

recognizing a CM-specific membrane protein for fluorescence-activated cell sorting (FACS) or 

magnetic activated cell sorting (MACS), followed by replating of the purified hiPSC-CMs 

population.  MACS can be performed under sterile culture conditions but leads to a loss of CM 

yield following the purification (Dubois et al. 2011). FACS is highly efficient in terms of purity and 

yield but difficult to scale. Signal-regulatory protein-α (SIRPA) and vascular cell adhesion 

molecule 1 (VCAM1) have both been identified as such CM markers by two independent studies 

(Dubois et al. 2011; Uosaki et al. 2011; D. A. Elliott et al. 2011). Elliot et al. used expression 

profiling analyses and found that expression levels of both VCAM1 and SIRPA were significantly 

upregulated in cardiac progenitor cells expressing NKX2.5. Importantly, SIRPA positive (+)/ 

VCAM negative (-) cells had higher expression of smooth muscle cell and endothelial cell markers 

than SIRPA+/VCAM+ cells, indicating that cells sorted solely based on SIRPA expression may 

not be of pure cardiac lineage (D. A. Elliott et al. 2011). On the other hand,  Dubois et al. and 

Uosaki et al. screened antibody panels against hPSC-CMs and identified SIRPA and VCAM1 

respectively, as  specific surface proteins expressed on hPSC-CMs (Dubois et al. 2011; Uosaki 

et al. 2011). In particular, Uosaki et al. described that 80% of TNNT2+ (an early marker of cardiac 
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differentiation) cells at day 11 of differentiation were VCAM1+ and 95–98% of VCAM1+ cells at 

day 11 were positive for TNNT2 (Uosaki et al. 2011). Since their identification, different studies 

have used VCAM1+ selection to purify cardiomyocyte populations and further establishing 

VCAM1 up-regulation as a key marker of cardiomyogenic commitment (Schwach and Passier 

2016; Skelton et al. 2014; Pontén et al. 2013). Despite cell sorting with antibodies against either 

of these proteins reportedly result in >95% pure populations of hiPSC-CMs, it appears that these 

surface markers are not exclusive for CMs as these antibodies also mark other cell types including 

smooth muscle cells and endothelial cells (Ban, Bae, and Yoon 2017). 

Other purification strategies include the use of antibiotics but these typically involve the 

introduction of antibiotic resistance genes in CMs specific promotors or genes, which is not always 

feasible or advisable (Musunuru et al. 2018; Schwach and Passier 2016). 

Maturation markers  

Although the previously mentioned strategies can successfully purify hiPSC-CMs, giving rise 

to a more homogeneous population, such CMs still present important differences from the ones 

isolated from adult human heart, and resemble more closely fetal CMs. Some of this differences 

are summarized in Table I.1. (Veerman et al. 2015; Bedada et al. 2014; Cai et al. 2019; Lundy et 

al. 2013; Karbassi et al. 2020; Yoshida and Yamanaka 2017; Denning et al. 2016). 

Structurally, adult CMs are large and rod-shaped, with high length-to-width ratio and can be 

bi-nucleated. They are highly organized, with longitudinal alignment and long sarcomeres that 

display Z-discs, I-, H-, A- and M- bands. In contrast, in vitro differentiated CMs are round or multi-

angular, mono-nucleated small cells that typically show chaotic alignment with disorganized and 

short sarcomeres. Commonly, only Z-discs and I-bands can be detected in microscopic analysis 

and they lack transverse tubules. (Veerman et al. 2015; Lundy et al. 2013; Denning et al. 2016). 

Furthermore, the less well-developed sarcoplasmic reticulum and the lack of T-tubules of hiPSC-
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CMs results in an impaired calcium handling that relies more on flux through the sarcolemma, 

resembling that of fetal CMs (Veerman et al. 2015; Denning et al. 2016). 

Metabolically, while hiPSC-CMs can use fatty acids as an energy source but depend more 

on glycolysis, metabolizing glucose and lactate, adult CMs rely primarily in β-oxidation of fatty 

acids for energy and have, accordingly, a higher mitochondria content (Correia et al. 2017; 

Karbassi et al. 2020). 

In general, adult CMs are quiescent but, when stimulated, generate greater force, upstroke 

and conduction velocities. In contrast, hiPSC-CMs, electrical immaturity is evident from their 

spontaneous beating; here, the higher resting membrane potential (close to the one found in nodal 

cells), probably due to low expression of inwardly rectifying potassium current (IK1), triggers the 

depolarization more easily, leading to spontaneous contraction. Moreover, they present a slow 

upstroke velocity and small amplitude, which can be related to a lower density of IKs potassium 

and INa sodium channels and inactivation of sodium channels at higher resting membrane 

potentials. Finally, the conduction velocity is also slower, due the localization of gap junctions 

around the cell circumference rather than at the intercalated discs (Veerman et al. 2015; 

Karakikes et al. 2015; Karbassi et al. 2020),  

Importantly, the gene expression profile of in vitro differentiated CMs is reported to most 

closely resemble that of fetal CMs, while being quite distinct from that of adult ones.  With respect 

to calcium handling and cardiac ion channel genes as KCNH2 (potassium voltage-gated 

channel), RYR2 (ryanodine receptor 2), SCN5A (sodium voltage-gated channel alpha subunit 5) 

are more expressed in adult-CMs. Moreover, adult CMs express high levels of important structural 

proteins such as titin, myosins, α-actin and the troponin complex, which are less abundant, or 

differ in isoform, in fetal and hPSC-CMs. Both myosin heavy chain (MHC), troponin I and myosin 

regulatory light chain 2 (MLC2) have isoforms that are generated from different genes and 

regulated in a developmental manner. Myosin heavy chain (MHC) fetal isoform, α-MHC, is 

encoded by MYH6 and is characterized by fast ATPase activity and rapid actin binding (features 
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needed in fetal hearts to support faster beating), while the adult β-isoform (-MHC) is encoded by 

the MYH7 gene that present higher expression levels in adult ventricular CMs. Troponin I slow 

skeletal muscle isoform (ssTnI) is encoded by TNNI1 and expressed in CMs during embryonic 

development causing altered calcium affinities, which result in slowed relaxation; after birth, there 

is a switch to the cardiac isoform (cTnI) encoded by TNNI3. MLC2 cardiac ‘atrial’ isoform (MLC2A) 

is encoded by MYL7 and, during development, is expressed in all heart chambers while in the 

postnatal heart it becomes restricted to the atrium and pacemaking centers. The cardiac 

ventricular isoform (MLC2V), encoded by MYL2, is only expressed in the ventricle and considered 

a maturation marker for ventricular CMs (Bedada, Wheelwright, and Metzger 2016; Karbassi et 

al. 2020; Denning et al. 2016; Yoshida and Yamanaka 2017).  
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Table I.1. Differences between hiPSC-CMs and human adult cardiomyocytes (Veerman et al. 2015; 

Bedada et al. 2014; Cai et al. 2019; Lundy et al. 2013; Karbassi et al. 2020; Yoshida and Yamanaka 

2017; Denning et al. 2016). 

 iPSC-CMs Adult Cardiomyocytes 

Morphology 

 Shape Round or polygonal Rod and elongated 

 Size  20–30 μm 150 μm 

 Nuclei per cell Mononucleated ≈25% multinucleated 

 Multicellular organization Disorganized Polarized 

 Sarcomere appearance Disorganized Organized 

 Sarcomere length Shorter (≈1.6 μm) Longer (≈2.2 μm) 

 Sarcomere units Z lines and I-bands I-, H-, A-bands, and M- Z- lines 

 T tubules Absent Present 

 Distribution of gap junctions Circumferential Polarized to intercalated disks 

    Aspect ratio  5–9.5:1 2–3:1 

Calcium handling 

 Ca2+ transient Inefficient Efficient 

 Amplitudes of Ca2+ transient Small; decreases with pacing Increases with pacing 

 Adrenergic stimulation response Lack of inotropic reaction Inotropic reaction 

Metabolism 

 Mitochondria Low; perinuclear High 

 Metabolic substrate Glycolysis (glucose) Oxidative (fatty acid) 

Electrophysiology 

 Resting membrane potential ≈ –60 mV ≈ –90 mV 

 Upstroke velocity ≈50 V/s ≈250 V/s 

 Amplitude Small Large 

Contractility 

 Contractile force ≈ nN range/cell ≈ μN range/cell 

 Spontaneous beating Exhibited Absent 

Gene and protein expression 

 Sarcomeric gene or protein 

expression  

Low expression 

 

β MHC > α MHC 

ssTnI (TNNI1) 

 ACTN2, TNNT2, MYL2, 

MYH7, MYPC3 

β MHC >> α MHC 

cTnI (TNNI3) 

 Ca2+-handling proteins Low or absent CASQ2, RYR2, PLN 

    Ion channels  Lower SCN5A (INa); KCNJ2 (IK1) 
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Other important isoforms for maturation assessment are the developmental splicing isoforms 

of TTN and TNNT2. 

Cardiac alternative splicing developmental isoforms 

Over 90% of human genes are known to express several different mRNAs through the 

process of alternative splicing, which results in proteomic diversity (Zhu, Chen, and Guo 2017).  

Since alternative splicing exons can be either included or excluded from the mature form of 

mRNA, the structure of the protein may be altered, with possible impacts on its location, regulation 

and ultimately, function (Beqqali 2006; Lara-Pezzi et al. 2013; Zhu, Chen, and Guo 2017). 

During cardiac development, the alternative splicing pattern of pre-mRNAs leads to an 

isoform switch that results in the expression of slightly different proteins, in order to adapt to 

changes in physiological conditions that cardiomyocytes suffer along its maturation, such as 

drastically different postnatal oxygen and metabolic conditions (Baralle and Giudice 2017). 

Overall, this programme of alternative splicing and isoform switching supports the postnatal 

growth and maturation of the heart. In heart disease, and more specifically in cardiomyopathies, 

several studies have reported that upon stress there is a reversion from adult to fetal alternative 

splicing patterns, accompanied by a return to neonatal oxygen consumption and metabolic 

programmes, and by severe alterations in the internal architecture and functionalities of 

cardiomyocytes (Weeland et al. 2015; Baralle and Giudice 2017). 

In the case of titin and troponin T, it has been reported that different protein isoforms are 

translated from a single pre-mRNA due to alternative splicing (Zhu, Chen, and Guo 2017; 

Weeland et al. 2015). Titin, one of the most well described cases, is the protein responsible for 

the maintenance of passive tension in cardiomyocytes. It plays an essential role in sustaining the 

structural integrity of the sarcomere, mainly due its size and elasticity. Different titin isoforms are 

produced through alternative splicing of a single TTN transcript. In fetal hearts, a large isoform 

denominated as N2BA is expressed. However, after birth and throughout development of the 
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adult heart, a smaller and stiffer titin isoform, the N2B, gradually replaces the large N2BA one. 

The N2B is the predominant isoform in the normal adult human heart, being expressed in left 

ventricle in a ratio of 65% (Zhu, Chen, and Guo 2017; Weeland et al. 2015). The ratio of N2BA to 

N2B determine sarcomere length and cardiomyocyte passive tension and, consequently, 

myocardium wall stiffness during ventricular filling (Baralle and Giudice 2017). Alterations of the 

N2B/N2BA expression ratio has been associated to heart disease, and the shift towards the 

expression of the N2BA fetal isoform in adult hearts was found mainly associated with dilated 

cardiomyopathy (Zhu, Chen, and Guo 2017).  

Troponin T (TnT) is part of the troponin complex, a calcium-sensitive regulator of muscle 

contraction, and mediates the interaction between this complex and tropomyosin. TnT has three 

muscle type-specific isoforms encoded by different genes. TNNT2 encodes cardiac troponin T 

(cTnT), the only present in cardiac muscle (Wei and Jin 2016). In the human heart, cTnT has at 

least four known alternative splicing isoforms (cTnT1, cTnT2, cTnT3 and cTnT4) and their switch 

is thought to be regulated by a genetically programmed biological clock (Yin, Ren, and Guo 2015). 

cTnT1 (all exons present) and cTnT2 (lacking exon 4) isoforms are expressed in fetal heart. 

During heart development, cTnT1 expression level decreases, whereas expression of cTnT3 

(lacking exon 5) increases becoming the predominant isoform in the normal adult heart. cTnT4 

isoform (lacking both exon 4 and 5) is expressed in the fetal heart and re-expressed in the failing 

adult heart (Anderson et al. 1995; Zhu, Chen, and Guo 2017; Yin, Ren, and Guo 2015). The 

expression of exon 5 in the fetal cTnT isoform helps with the tolerance of cardiac muscle to 

acidosis since it encodes a segment of the N-terminal variable region that is highly acidic and 

negatively charged at physiological pH. Moreover, embryonic cTnT’s exert higher calcium 

sensitivity of actomyosin ATPase activity and myofilament force production, compared with the 

adult cTnT3 (Wei and Jin 2016). Altered splicing patterns of cTnT with a shift toward the fetal 

isoforms has been described in animal models and adult human heart associated with 

hypertrophy and cardiac failure. This abnormal combined expression of embryonic and adult cTnT 
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leads to desynchronized calcium activation of actin filament (Yin, Ren, and Guo 2015; Wei and 

Jin 2016). Besides, the re-expression of fetal isoforms, with higher Ca2+ sensitivity than cTnT3, 

may increase susceptibility to arrhythmia (Zhu, Chen, and Guo 2017). Possibly in line with this 

findings, HCM due to TNNT2 mutations have been clinically characterized as having increased 

risk of SCD even with modest amounts of LVH (Paranal et al. 2020). 

It is also important to be aware that some parameters differ depending on CM subtype 

(ventricular, atrial or nodal) or can be altered in a disease setting such as the β: α MHC 

(MYH7/MYH6) ratio. To address this issue, a panel of different markers, including some that do 

not suffer from such fluctuations, such as the TNNI1 to TNNI3 switch, should be used (Bedada, 

Wheelwright, and Metzger 2016; Cai et al. 2019) .  

Maturation strategies  

In order to achieve in vitro differentiated hiPSC-CMs that better resemble adult CMs several 

maturation strategies have already been attempted, with some demonstrated improvements. 

Nevertheless, a definitive answer to this issue remains an actively pursued goal in the field. 

The long time taken by human CMs to mature in vivo lead to the hypothesis that an extended 

time in culture would also promote hiPSC-CMs maturation and so, this was one of the first tried 

approaches. If fact, with prolonged culture, hiPSC-CMs become larger, elongated and 

multinucleated cells with improved myofibril alignment, calcium handling and increased action 

potential amplitudes (Lundy et al. 2013; Bedada et al. 2014; Lewandowski et al. 2018).  Moreover, 

hiPSC-CMs maintained in culture for one year accumulate structural characteristics of mature 

CMs demonstrating that despite the fact of their global transcriptome remains mostly unchanged 

after 8 weeks of differentiation, some improvements in maturation status continue to occur for 

periods of up to nearly a year (Bedada et al. 2014; Kamakura et al. 2013; Kuppusamy et al. 2015; 

Piccini et al. 2015; M. Zhang et al. 2015). Although, such long periods of culture are not practical 
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for routine biomedical application, they offer a useful developmental tool that can provide 

directions for new possible maturation strategies. In Kuppusamy et al., let-7 was identified as the 

most highly up-regulated microRNA in mature hESC-CMs and further analyses demonstrated 

that, when overexpressed in hESC-CMs, it is sufficient to induce maturation enhancing cell size, 

sarcomere length and force of contraction (Kuppusamy et al. 2015).  

The use of biochemical cues to enhance hiPSC-CMs maturity, either by hormone 

supplementation (i.e. Triiodothyronine) or by alterations of the energy source available from 

glucose to fatty acids, are straight forward approaches that were able to induce more adult-like 

cell size, gene expression profile, as well contractile and electrophysiological function (Bedada et 

al. 2014; Correia et al. 2017; 2018; Karbassi et al. 2020). 

As in vitro cell culture generally lacks elements from the in vivo environment, different 

observations regarding this aspect lead to alterative maturation strategies. The human heart 

development is complex and the three-dimensional (3D) configuration of the embryo, with the 

appropriate spatial, temporal and mechanical cues, is crucial for the success of this process. 

Therefore, 3D platforms for in vitro cardiac differentiation and maturation that aim at better 

mimicking the embryonic development of the heart in vitro have emerged in the past few years 

(Correia et al. 2018; Branco et al. 2019; M. Zhang et al. 2015). Their application lead to generation 

of hiPSC-CMs with a higher degree of structural, functional and metabolic maturation when 

compared to that in 2D cultures (Correia et al. 2018; Ahmed et al. 2020). Moreover, hiPSC-CMs 

in 3D culture exhibited a faster and more reproductible source of hiPSC-CMs when compared 

with similar but 2D approaches (Branco et al. 2019; Correia et al. 2018). 

In parallel, the observation that hiPSC-CMs undergo structural and functional maturation 

when transplanted into the myocardium of model species lead to the hypothesis that CMs can 

mature when placed in an appropriate milieu (Laflamme et al. 2007; Denning et al. 2016). 

Therefore, different CMs maturation approaches arose evaluating physical, chemical, genetic and 

environmental factors in order to facilitate their maturation. Such approaches have mainly relied 
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in altering the stiffness or morphology of the growth substrate and have shown that 

polyacrylamide hydrogels with higher degrees of stiffness improved the morphology of CMs and 

increased contractile stress; also, the use of adhesive micropatterns or nanogrooves, which 

promotes natural features in a 2D environment, also showed improvements in sarcomere 

alignment and organization and Ca2+ handling (Musunuru et al. 2018). Interestingly, the 

combination of micropatterned polyacrylamide hydrogels of stiffness similar to that found in 

myocardial tissue generated differentiated cells with similarities to adult CMs with respect to 

contractile activity, myofibril alignment, electrophysiology, direction of calcium flow, organization 

of mitochondria and T- tubules formation (Ribeiro et al. 2015). Lastly, an easy-to-prepare Matrigel 

mattress could promote rod-shaped morphologies, increased sarcomere length, contractility and 

expression of maturation markers in iPSC-CMs (Feaster et al. 2015). 

Another interesting, although complex, approach that takes advantage of modulating the 

biophysical cues provided by the cell culture is the generation of engineered heart tissue (EHT). 

EHTs typically uses a scaffold that mimics some aspects of cardiac extracellular matrix combined 

with the differentiated CMs and, in some cases, support cells (Denning et al., 2016; Ahmed et al., 

2020). This approach is even more powerful when combined with mechanical and electrical 

stimuli and as demonstrated the possibility to generate cardiac tissues from hPSC-CMs that reach 

a maturation level with structural and functional characteristics closer to human adult tissue 

(Ronaldson-Bouchard et al. 2018; 2019).  

 

 

HCM hiPSC-CM disease models  

The ability to culture hiPSC-CMs, combined with improvements in hiPSC reprograming and 

gene-editing technologies, is rapidly emerging as a central approach to model heart diseases in 
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vitro, with over 90 studies using hiPSCs derived cardiomyocytes (hiPSC-CMs) for cardiac disease 

modeling being published until date (van Mil et al. 2018). HCM disease modelling using hiPSC-

CMs as also been explored in different studies and was already proven to offer a pathophysiologic 

relevant approach to understand the mechanisms of disease (Musunuru et al. 2018; Giacomelli, 

Mummery, and Bellin 2017; van Mil et al. 2018; Ojala and Aalto-Setälä 2016). 

In 2013, Lan and colleagues demonstrated that iPSC-CMs derived from HCM patients can 

recapitulate HCM-specific features at the single-cell level, namely cellular enlargement and 

multinucleation, disarray of sarcomere organization, increased β:αMHC ratio, alterations in 

contractility, electrophysiological proarrhythmic phenotype and abnormal Ca2+-handling (Lan et 

al. 2013).  

Building on this knowledge, several studies have since been published using hiPSC-CMs for 

HCM disease modeling, either using PD-hiPSCs (Lan et al. 2013; Liang et al. 2013; Han et al. 

2014; Ojala et al. 2016; Tanaka et al. 2014; Birket et al. 2015; Ma et al. 2018b; Prondzynski et al. 

2017a) or isogenic gene-edited hiPSCs (Ma et al. 2018b; Mosqueira et al. 2018; L. Wang et al. 

2018). Mutations accessed in these studies were mainly located in the MYBPC3 (Ojala et al. 

2016; Birket et al. 2015; Prondzynski et al. 2017a; Ma et al. 2018b) or MYH7 genes (Lan et al. 

2013; Liang et al. 2013; Han et al. 2014; Mosqueira et al. 2018), while two mutations in TMP1 

(Tanaka et al. 2014; Ojala et al. 2016), one in MYL3 (Ma et al. 2018b) and one in TNNT2 (L. 

Wang et al. 2018) were also reported.  

In most of these studies, hiPSC-CMs could reflect some characteristics of HCM 

cardiomyocytes showing that recapitulation of a general HCM phenotype at the cellular level is 

irrespective of the use of PD-hiPSCs or gene-edited hiPSCs and may be used as an effective 

disease model. 

Despite providing a basis for the possibility of modeling HCM in vitro and some insight 

regarding mechanisms involved in the pathophysiology of the disease, the significant differences 

amongst these studies regarding the origin of the cells, methods used for differentiation and 
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parameters analyzed, confound their interpretation and comparison. Importantly, a recent high-

throughput phenotyping toolkit for characterizing cellular models of HCM in vitro was proposed, 

in order to tackle this issue of heterogeneity among the different CMs differentiation protocols 

(Mosqueira, Lis-Slimak, and Denning 2019). Nevertheless, as already discussed, the 

heterogeneity and immature characteristics of iPSC-CMs obtained from established 

differentiation protocols remains as a concern around the use of hiPSCs in cardiac disease 

modeling. 
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II. IN SILICO PREDICTION TOOLS IN THE 
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92 
 

 



93 
 

II.1. ABSTRACT 

Next-generation sequencing has revolutionized molecular diagnostics for many diseases, 

including HCM, by allowing human genome analysis in a cost-effective way. However, these 

studies often reveal a vast number of genetic variants of uncertain clinical significance, particularly 

in intronic regions. In silico methods can help predict pathogenicity, but the choice of which tools 

to use is not straightforward. This work aimed to evaluate the performance of several available 

computational tools in predicting the potential pathogenicity of genetic variants in different 

contexts by using three different datasets: one HCM disease specific, one global with all intronic 

variants described in ClinVar and one of deep intronic variants curated from the literature. Our 

results show that the clinical interpretation of HCM genetic variants may be a challenge and the 

use of different tools may be needed to correctly assign variant pathogenicity. We further 

demonstrate that near splice site prediction is reasonably well covered by several methods from 

different scopes (including SpliceAI, LINSIGHT and phastCons). Finally, we observed that 

SpliceAI is the only tool with a good performance in identifying deleterious deep intronic variants. 

This highlights the existing need to develop new approaches that effectively look at full introns in 

the context of gene expression regulation and human disease. Knowing the best qualified 

computational tools to use in each case can greatly improve genetic diagnosis, which in turn may 

help preventing the disease and/or its progression. 

 

 

 

Keywords: Bioinformatics prediction; in silico tools, Pathogenicity; Variant of uncertain 

significance  

 

 



94 
 

 



95 
 

II.2. INTRODUCTION 

Mendelian diseases are considered to be rare, with an incidence of 1 in 500 for a mendelian 

disease to be considered high. But, collectively, genetic disorders affect a substantial number of 

people reaching up to 8% of the population (Yang et al. 2013). Knowledge regarding molecular 

mechanisms and genetic mutations associated with diseases is increasing but many patients 

remain without a molecular diagnosis, that would be important for the assessment of risk, 

adequacy of treatment and guidance (Frey, Luedde, and Katus 2012; Yang et al. 2013). 

The advent of next-generation sequencing (NGS) technologies has made targeted exome 

sequencing an exceptional approach to identify both neutral polymorphisms and disease-causing 

mutations responsible for genetic diseases, providing innovation in the way some diseases are 

managed and, even guiding drug discovery. Moreover, with their decreasing costs, whole-exome 

(WES) and whole-genome sequencing (WGS) are emerging as effective alternatives to gene-

panel tests, in diagnose and, mainly, in a research setting for identifying causal variants in 

mendelian disease patients. (Smedley et al. 2016; Yang et al. 2013)  

One of the biggest challenges when using NGS approaches is the bioinformatic analyses of 

massive amounts of data, since a single sequenced exome can yield several thousands of 

variants (Gilissen et al. 2012) and identifying a single, likely causative, disease mutation is a 

challenging and time-consuming process. An effective way to distinguish benign from pathogenic 

variants is through allele frequencies (AF) filtering. If a variant is absent or in a low frequency, 

similar to the prevalence of the investigated disease, in reference databases such as the Exome 

Aggregation Consortium (ExAC) or GnomAD (Lek et al. 2016) this is an important criteria for 

variant pathogenicity, as opposed to variants with high frequency in the general population 

(Whiffin et al. 2017). However this filtering will only reduce number of candidate pathogenic 

variants to a couple hundred (Gilissen et al. 2012) and further prioritization of pathogenic variants 

remains a challenging task (Lelieveld, Veltman, and Gilissen 2016; Whiffin et al. 2017). 
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Clinical testing laboratories use guidelines to classify variants based upon the American 

College of Medical Genetics revised criteria (ACMG) (Richards et al. 2015) and others such as 

their supplementation by the Association for Clinical Genetic Science (ACGS) in 2017 (Ellard et 

al. 2017). The use of these guidelines intends to help assign variants as pathogenic, likely 

pathogenic, variant of uncertain significance (VUS), likely benign, and benign in a reproductible 

way across different labs. However, many patients who undergo genetic sequencing do not 

receive a clear molecular diagnosis but instead a list of detected changes that are assigned as 

VUS. These VUS are variants which cannot be discriminated between disease-causing and 

others of no pathological significance and they are one of the main findings in most genetic 

sequencing analysis (Hoffman-Andrews 2017).  

Even though most research and clinical testing has been focused in the protein-coding 

exome, it represents less than 2% of the genome and more than 50% of the causes of mendelian 

disorders are not determined after sequencing affected families (Chong et al. 2015). This raised 

questions regarding the importance of intronic regions for clinical genetic testing. Historically, 

introns were considered as “junk DNA” because they are removed from the pre-mRNA by RNA 

splicing (Gilbert 1978), but throughout the years evidence has shown the opposite: intron-

containing genes seem to increase the levels of transcription (Shabalina et al. 2010), they may 

give rise to functional non-coding RNA by-products (Hubé and Francastel 2015) and are directly 

involved in alternative splicing (Chen and Manley 2009). Moreover, genome-wide association 

studies (GWAS) showed that the majority of genetic variants associated with human diseases are 

noncoding, exhibiting their effects through the regulation of gene expression (Ward and Kellis 

2012b). In fact, it was estimated that between 15 and 50% of all monogenic disease-causing 

mutations affect pre-mRNA splicing, which highlights intronic regions as a potential genetic source 

for disease discovery (G. S. Wang and Cooper 2007).  

Computational approaches that also score in introns were developed throughout the past 

years to predict impact of genetic variants and empower the identification of novel genotype-
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phenotype associations (Table II.1.). Most of the approaches rely on training a classifier using 

sets of known pathogenic and benign variants, and then apply the fitted model to unseen variants. 

More recent models were derived by using primary DNA/RNA sequence directly and making use 

of sequence context. Nevertheless, these tools usually infer a significance cutoff so one can 

interpret variants in a binary manner as a mean to distinguish putative pathogenic vs benign 

variants. To ease its application in clinical practice, developers commonly run their model over 

millions of putative variants occurring in genes and generate pre-computed scores that the 

researcher/clinician uses to compare with his own set of variants. 

Finding the best-fitted method to prioritize likely pathogenic variants to be further studied, 

especially in non-coding regions remains a difficult problem to solve. These tools can be divided 

in different groups that vary in their scope, training data and algorithm employed.  

The first class of methods do not predict pathogenicity per se, rather they rely on the 

evolutionary conservation of the variant position across multiple species, based on the 

assumption that evolutionarily conserved positions have essential roles in the structure or function 

of the encoded protein. These measurements were obtained by constructing genome-wide 

multiple alignments of dozens of genomes followed by quantification of evolutionary rates either 

at a single base-pair resolution or by considering neighboring positions (Siepel et al. 2005; Siepel, 

Pollard, and Haussler 2006; Davydov et al. 2010). 

The appearance of large-scale projects aiming to comprehend the functional role of non-

coding regions (Dunham et al. 2012; Kundaje et al. 2015) triggered the development of genome 

wide predictors that use these data as features to train new models. Some of them predict the 

impact of variants on the fitness of the individual (Huang, Gulko, and Siepel 2017; Rentzsch et al. 

2019), while others tell whether variants are likely to be functional relevant (e.g. regulatory 

variants occurring in promotors or transcription factor binding sites) (Shihab et al. 2015; Ionita-

Laza et al. 2016). 
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The last class of models predict the effect of variants on splicing. Splicing is a process 

orchestrated by a complex interplay of cis and trans elements where disease phenotype may be 

caused by several possible mechanisms. Accordingly, splicing tools may predict different splicing 

outcomes based on their target function (e.g. effect of variant on exon inclusion or alternative 5’ 

splice site), meaning that some methods are not targeted to predict pathogenicity directly, rather 

they assess functional effects of variants in the spliced product (Xiong et al. 2015; Cheng et al. 

2019). Nevertheless, in theory all splicing tools should be able to accurately predict splice site 

disruptions. 

Despite the diversity and potential of these approaches none can be considered as ideal or 

complete since all have limitations. Moreover these tools are hardly comparable with each other 

due to their differences and it is still unclear which one or which combination should be used for 

prioritizing variants (Salgado et al. 2016; Dong et al. 2015; Lelieveld, Veltman, and Gilissen 2016). 

Importantly validation studies for these computational prediction tools are also still lacking or give 

conflicting results (van der Velde et al. 2015; Miosge et al. 2015).  

Currently efforts are being made in the review and classification of genetic variants, allowing 

for a better development of prediction computational tools that aid to prioritize candidate variants. 

However, there is still an unmet need for a good characterization of these tools and refinement of 

their prioritization thresholds. 

In this study we aimed to assess to what extent available prediction tools can be efficiently 

applied in clinical genomics by using three clinically relevant datasets to perform the evaluations 

of a vast number of available bioinformatics tools, and provide some recommendations to the 

community regarding their performance in variant classification. 
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Table II.1. Description of the tools evaluated in the study 

 

Tool Description Method Threshold Data used #Features Feature type 
Other 
scores 
added 

Obtained 

from 

C
o

n
se

rv
at

io
n

 s
co

re
s 

GERP 
(Davydov 

et al. 2010) 

Identification of 
evolutionarily 

constrained elements 

Maximum 
Likelihood to 

estimate 
evolutionary 

rate and 
dynamic 

programming 

> 4.4 
 (Dong et 
al. 2015) 

Genomes of 34 
mammals 

- - No vcfanno 

phyloP 
(Siepel, 
Pollard, 

and 
Haussler 

2006) 

P-value that indicates 
how aligned sequences 
deviate from the null 
hypothesis of neutral 

evolution 

Hidden 
Markov 
Model 

> 1.6 
 (Dong et 
al. 2015) 

Genomes of 100 
vertebrates 

- - No vcfanno 

SiPhy 
(Garber et 
al. 2009) 

Identification of 
constrained sites as 

those with a nucleotide 
substitution pattern 

significantly deviating 
from the neutral pattern 

Maximum 
Likelihood 

and Hidden 
Markov 
Model 

> 12.7 
 (Dong et 
al. 2015) 

Genomes of 29 
mammals 

- - No vcfanno 

Phast Cons 
(Siepel et 
al. 2005) 

Probability that each 
nucleotide belongs to a 

conserved element 

Hidden 
Markov 
Model 

> 0.99 
 (Li et al. 

2018) 

Genomes of 100 
vertebrates 

- - No vcfanno 

G
en

o
m

e-
w

id
e 

p
re

d
ic

to
rs

 

FATHMM-
MKL 

(Shihab et 
al. 2015) 

Prediction of functional 
consequences of coding 

and non-coding SNVs 
using genomic 

annotations from 
ENCODE and 

conservation scores 

Support 
Vector 

Machine 
based on 
Multiple 
Kernel 

Learning 

> 0.5 
 (Liu et al. 

2016) 

3,063 disease-
implicated SNVs 

from HGMD; 5,252 
negative instances 

from 1000G project 

763 from 4 
main feature 

groups 

ENCODE data; 
Conservation 

scores; 

Yes vcfanno 

GWAVA 
(Ritchie et 
al. 2014) 

Genome-wide 
annotation of the 

functional impact of DNA 
variants using ENCODE, 

conservation, allele 
frequencies and 

sequence context data 

Random 
Forest 

> 0.4 
(Bendl et 
al. 2016) 

1,614 disease-
implicated SNVs 
from HGMD; 3 

benign datasets 
from 1000G project: 
~161,400; ~16,140; 

5,027 

~175 ENCODE data; 
Conservation 
scores; Allele 

frequency; 
General variant 
and sequence 

context 

Yes vcfanno 

Eigen 
(Ionita-

Laza et al. 
2016) 

Unsupervised learning 
approach to leverage the 
functional importance of 
genetic variants across 

the whole genome 

Principal 
Component 

Analysis 

> 1 
(Jagadees

h et al. 
2016) 

~76.7 million coding 
non-synonymous 

variants from 
dbNSFP database 
(other variant set 
was employed to 

study the non-
coding genome) 

29 from 3 
main feature 

groups 

ENCODE data; 
Conservation 
scores; Allele 

frequency 

Yes vcfanno 

Funseq2 
(Y. Fu et al. 

2014) 

A genome-wide 
deleteriousness 
prediction score 

designed for non-coding 
somatic SNVs 

Weighted 
scoring 

scheme based 
on feature 
importance 

measurement 

> 1.5 
 (Y. Fu et 
al. 2014) 

Functional 
annotations from 

ENCODE and 
Roadmap 

Epigenomics, PWMs, 
Conservation scores, 
Network properties, 
recurrent sites from 

COSMIC 

11 feature 
groups 

Functional 
annotations 

from ENCODE 
and Roadmap 
Epigenomics, 

PWMs, 
Conservation 

scores, Network 
properties, 

recurrent sites 
from COSMIC  

Yes vcfanno 
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G
en

o
m

e-
w

id
e 

p
re

d
ic

to
rs

 

ReMM 
(Smedley 

et al. 2016) 

Classifier to predict the 
potential of an arbitrary 
position in the genome 
to cause a Mendelian 

disease if mutated 
(targeted for non-coding 

regions). 

Random 
Forest 

> 0.984 
(“ReMM 

Threshold
” n.d.) 

453 disease-
implicated by 

manual curation; 
14,755,199 as 
benign dataset 

26 ENCODE data; 
Conservation 

scores; 
FANTOM5 data; 
Allele frequency 

Yes vcfanno 

CADD v1.4 
(Rentzsch 

et al. 2019) 

Deleteriousness 
prediction using 

ENCODE, conservation, 
allele frequencies and 
sequence context data 

Logistic 
Regressor 

> 15 
 (Dong et 
al. 2015) 

14,695,338 of both 
proxy-neutral and 
proxy-deleterious 

variants 

949 
representing 
63 different 
annotations 
from CADD 

v1.3 + 
measures of 

variant 
density from 
gnomAD + 

splice defect 
prediction 

from dbscSNV 

ENCODE data; 
Conservation 
scores; Allele 

frequency; 
General variant 
and sequence 

context 

Yes VEP 
plugin 

DANN 
(Quang, 

Chen, and 
Xie 2015) 

Same as CADD, but 
based on a deep learning 

model 

Deep neural 
network 

> 0.9 
(Richards
on et al. 

2016) 

Whole CADD proxy-
neutral dataset 
(16,627,775); 

Sampled the same 
number from the 
CADD simulated 

deleterious dataset 

Same as 
CADD v1.3 

ENCODE data; 
Conservation 

scores; General 
variant and 
sequence 
context 

Yes vcfanno 

fitCons 
(Gulko et 
al. 2015) 

Evolution-based 
measurement of fitness 
consequence using both 

divergence data and 
functional genomics data 

Clustering & 
Approximate 
Expectation 

Maximization 
used by 
INSIGHT 

> 0.4 
 (Liu et al. 

2017) 

Genomes of 54 
unrelated human 

individuals 

33 functional 
genomics 

annotations 
polymorphis

m and 
divergence 

data used by 
INSIGHT 

ENCODE data 
from three 

different cell 
lines; 

Evolutionary 
data 

No vcfanno 

LINSIGHT 
(Huang, 

Gulko, and 
Siepel 
2017) 

Prediction of noncoding 
nucleotide sites at which 

mutations are likely to 
have deleterious fitness 

consequences 

INSIGHT & 
Online 

stochastic 
gradient-
descent 

> 0.4 
(same as 
fitCons) 

Genomes of 54 
unrelated human 

individuals 

48 genomics 
annotations; 
polymorphis

m and 
divergence 

data used by 
INSIGHT 

ENCODE, 
Roadmap 

Epigenomics 
and FANTOM5 

data; 
Conservation 

scores; 
Predicted 

binding sites; 
Evolutionary 

data 

Yes vcfanno 

Sp
lic

in
g 

Sp
lic

in
g 

MaxEnt 
Scan (Yeo 
and Burge 

2004) 

Prediction of RNA splice 
site signal based on the 

maximum entropy 
principle 

Maximum 
Entropy 

distribution 

|MaxEnt 
Scan_diff|

> 3 
(Desmet 

et al. 
2009) 

~8500 real 5' and 3' 
splice sites; 

~180,000 decoy 5' 
and 3' splice sites 
from 1.821 set of 

nonredundant 
transcripts 

- Estimated from 
known signal 

sequences 
around real and 

decoy splice 
sites 

No VEP 
plugin 

dbscSNV 
(Jian, 

Boerwinkle
, and Liu 

2014) 

In Silico prediction of 
splice-altering variants 

based on an ensemble of 
individual methods 

AdaBoost and 
Random 
Forest 

> 0.6 
(Jian, 

Boerwinkl
e, and Liu 

2014)  

Splice altering 
variants from 

HGMD, 
SpliceDisease and 
DBASS databases;  
Negative variants 

from 1000G 

11 Splicing-related 
prediction 

scores; 
Conservation 
scores; CADD 

scores 

Yes VEP 
plugin 
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Sp
lic

in
g 

SPIDEX 
(Xiong et 
al. 2015) 

Prediction of how much 
SNVs cause splicing 

misregulation by 
measuring differential 
exon inclusion events 

Deep neural 
network 

|deltaPSI
_zscore| 

> 2 
 (Xiong et 
al. 2015) 

RNA-seq data in 
10,700 exons across 

16 tissues 

1393 Context-
dependent RNA 

sequence 
properties 

No vcfanno 

HAL 
(Rosenberg 
et al. 2015) 

Variant efffect prediction 
(SNPs, indels) on 

different isoform usage 
from alternative splicing 
events (alternative 5'ss 

and Exon skipping 
events) 

Linear model 
using 

hexamer 
motif 

frequencies 

|deltaPSI
| > 5 * 

Massively parallel 
reporter assay 

(MPRA) containing 
265,137 mini-genes 

in a library of 
alternative 5' splice 

donors 

4,096 possible 
6-mer 

6-mer features 
extracted from 

sequence 
information 

No kipoi 

TraP v3  
(Gelfman 

et al. 2017) 

Prediction of the damage 
caused by SNVs at the 

transcript level by 
incorporation of splicing-

related features 

Random 
Forest 

Coding > 
0.416 
Non-

coding > 
0.289 

(Gelfman 
et al. 
2017) 

75 pathogenic 
synonymous 
variants; 402 
synonymous 

variants as benign 

20 Conservation 
scores; Splicing-

specific 
measurements; 
General Variant 

Annotations 

Yes vcfanno 

S-CAP 
(Jagadeesh 
et al. 2018) 

Splicing-specific 
pathogenicity score 

derived from variant, 
exon and gene 

importance 
measurements 

Gradient 
Boosting tree 

Several 
different 
threshold

s 
(Jagadees

h et al. 
2018) ** 

17,059 splicing 
related pathogenic 

variants from HGMD 
and ClinVar and 

6,760,450 splicing 
region benign 
variants from 

gnomAD 

29 Region-specific 
models derived 
from gene-level, 
exon-level, and 

variant-level 
features. 

Incorporates 
conservation, 
splicing and 
functional 

scores 

Yes vcfanno 

MMSplice 
(Cheng et 
al. 2019) 

Modular approach to 
study functional effects 
of variants on splicing 

Linear model 
that combines 
coefficient of 

5 neural 
network 
modules 

|deltaLogi
tPSI| > 1 
(“MMSpli

ce 
Threshold

” n.d.) 

Vex-Seq high 
throughput assay 

containing 
constructs of 2059 
ExAC variants. 957 
variants from chr1 
to chr8 were used 

for training 

9 Region-specific 
neural networks 

that use data 
from GENCODE 

and MPRA 

No kipoi 

SpliceAI 
v1.3 

(Jaganatha
n et al. 
2019) 

Cryptic splice site 
prediction from primary 

sequence 

Deep neural 
network 

> 0.2 
(Jaganath
an et al. 

2019) 

Primary transcript of 
13,384 genes, 
accounting for 
130,796 donor-

acceptor pairs, plus 
novel splice 

junctions observed 
in the GTEx cohort 

Automatically 
learned by 
the model 

Context-
dependent RNA 

sequence 
properties 

No vcfanno 

Kipoi 
Splice4 

(States et 
al. 2019) 

Ensembl method that 
incorporates predictions 
from 4 splicing related 

models 

Logistic 
Regression 

> 0.5 
(States et 
al. 2019) 

10,715 splice region 
variants from 

ClinVar and 2959 
variants from 

dbscSNV 

4 Predictions 
from 4 models 

(HAL, 
MaxEntScan5, 
MaxEntScan5 

and 
LaBranchoR) 

Yes kipoi 

* HAL scores percent spliced in (PSI) for the sequence containing alternative splice donor variants, therefore we defined a change in PSI > 5 as 

the relevant threshold. 

** S-CAP authors provide different reference thresholds depending on the location and context of the variant.  3intronic: 0.006; exonic: 0.009; 

5intronic: 0.006; 5core_dominant: 0.034; 5core_recessive: 0.367; 5extended: 0.005; 3core_dominant: 0.033; 3core_recessive: 0.264. 
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II.3. DATASETS CONSTRUCTION AND METHODOLOGY 

HCM-associated genetic variants 

Over 1,400 mutations spread among at least 11 different genes have been associated with 

HCM (Richard et al. 2003). Most of the mutations are found in genes normally expressed on the 

cardiac sarcomere. MYH7, MYBPC3, TNNT2, TNNI3, TPM1, MYL2, MYL3 and ACTC1  are the 

most prevalent causal genes (Lopes, Rahman, and Elliott 2013; Ingles et al. 2019). Genetic 

counseling and testing is indicated in HCM patients and relatives (Charron et al. 2010). However, 

not all variants found in HCM patients are confirmed as pathogenic and some can be restricted 

to one family. Furthermore, only one third of probands with HCM have likely 

pathogenic/pathogenic variants that can be useful for family screening (Alfares et al. 2015; Maron, 

Maron, and Semsarian 2012).  

To evaluate prediction tools in a disease specific manner, we gathered HCM associated 

variants assigned as Pathogenic/Likely Pathogenic in the ClinVar database (Landrum et al. 2018), 

manually curated all articles present in PubMed respecting to each selected variant and applied 

the ACMG guidelines to ensure that only unequivocal pathogenic mutations were used in the 

benchmarks. This set of variants included missense and splice site variants spread across the 

eight sarcomeric genes referred above (Table S II.1.).  

Regarding control variants, ACMG guidelines were not fully employed because information 

about benign variants is scarce as usually labs put their efforts into the classification of disease-

causing variants. Therefore, for selecting our set of benign variants we considered the single 

criteria of variant frequency in the population, as reported in the Genome Aggregation database 

(gnomAD) v2.1.1tA (Karczewski et al. 2019). According to this criterion, if a variant has a 

frequency higher than 5% is most likely benign. To generate a homogeneous dataset we wanted 

to select the same number of benign variants as the pathogenic ones so we used variants found 
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in 33 genes (Table S II.2.), between missense and splice site variants.  The choice of genes was 

based on the Pan Cardiomyopathy Panel of 62 genes, available at NCBI’s website 

(https://www.ncbi.nlm.nih.gov/gtr/tests/509149/), that has also been used by others (Ouellette et 

al. 2018).  

After this selection we ended up with a “ground truth” dataset composed of 75 pathogenic 

and 75 benign variants distributed between missense and splice site against which tools were 

tested.  

Intronic variants from ClinVar database 

ClinVar (Landrum et al. 2018) is a well stablished and accessible resource that maps the 

relationship between human genetic variation and disease phenotype. Submissions may contain 

several levels of supporting evidence and review status are assigned to each call based on how 

trustworthy an assertion is (e.g. number of submissions with the same interpretation, variant 

reviewed by expert panel). We downloaded ClinVar v20191202 for the GRCh37 genome build 

and selected just Single Nucleotide Variants (SNVs) for downstream analysis. To avoid the 

selection of intronic variants that overlap with exons of alternative transcripts or other genes (e.g. 

lncRNA) we extracted a set of non-redundant intronic regions by using bedtools (Quinlan and Hall 

2010) operations on the Basic GENCODE v31liftt37 gene annotations (Harrow et al. 2012), 

resulting in a total intronic space of 1,625,325,724bp considering primary assembly units (52.4% 

of the total genome length). 67,692 ClinVar variants overlapped these genomic intervals.  

We employed the Ensembl Variant Effect Predictor (VEP) v98 (Mclaren et al. 2016) to 

annotate the variants and only one block of consequence per gene was picked per gene affected 

(--per_gene –pick). We further filtered the dataset to remove consequence blocks without HGVSc 

expression (e.g. upstream and/or downstream consequences) and variants with conflicting 

interpretations by selecting variants with “Pathogenic”, “Likely Pathogenic”, “Benign” and “Likely 

https://www.ncbi.nlm.nih.gov/gtr/tests/509149/
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Benign” in the Clinical Significance field, which resulted in 45,664 variants that were evaluated. 

Distance of the variants to the nearest splice junction was calculated based on the HGVS 

nomenclature that VEP outputs in the HGVSc field. This distance was used to partition variants 

by the following intronic bins.: 0-10; 10-30; 30-100; 100-200; 200-500; 500+. A bin-based analysis 

was performed to assess how much prediction performance is influenced by the location depth of 

the variant within the intron. 

Clinically relevant deep intronic variants 

A list of previously aggregated disease-causing mutations was selected for testing purposes 

(Vaz-Drago, Custódio, and Carmo-Fonseca 2017). Additionally, we looked in the literature for 

recent reports of experimentally confirmed splicing altering variants occurring deep within introns. 

This list contains 51 novel variants (Table S II.3). We combined these two datasets summing up 

to 132 deep intronic to be tested. In these papers, authors usually report the effect of the variant 

in the canonical and/or clinically relevant transcript. Therefore, we did extra validations to ensure 

variants are effectively deep intronic, regardless of the transcripts considered: from the previously 

described intronic regions, we subtracted 20bp to obtain intervals representing deeper regions of 

human introns (>20bp from the nearest annotated junction). Only 7 variants (out of 132) appeared 

to overlap with non-deep intronic intervals (ENST00000278407.4:c.-22-155G>T; 

ENST00000270142.6:c.240-188C>G; ENST00000340855.6:c.1007-133A>G; 

ENST00000311893.9:c.418+382G>C; ENST00000397163.3:c.1782+1072G>C; 

ENST00000233627.9:c.17-1167C>G, ENST00000321666.5:c.1082-285T>G). However, by 

manually checking transcript annotations we noticed these 7 variants overlap with shorter 

transcripts that either represent retained introns, antisense transcripts or alternative exonic UTR 

of specific isoforms that are hardly expressed on GTEx data (Consortium 2017). Hence, we 

decided to keep these variants for tool performance analysis. 
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Control variants were obtained from gnomAD v2.1 by selecting deep intronic SNVs with allele 

frequency > 5% in the same 93 genes for which positive variants were described. In addition, we 

removed variants present in ClinVar as well as variants without a valid HGVSc notation, that 

resulted in 22,338 variants. To create a balanced dataset for evaluation we randomly shuffled and 

selected 132 variants from this set. 

Prediction tools and performance evaluation 

Table II.1. describes all the tools that score in introns that were benchmarked. For the 

missense variants in the HCM dataset we also included protein predictors described in Table S 

II.4. A local version of the Ensembl v98 GRCh37 cache was installed and pre-computed scores 

for most of the tools were obtained directly from each tool website or using dbNSFP v4.0b1 (Liu 

et al. 2017), WGSA v0.76 (a resource that extends dbNSFP database for whole genomes) and 

UCSC genome browser (conservation scores) (Raney et al. 2014). VCF scores annotation was 

performed with Ensembl VEP using custom plugins or with vcfanno v0.3.1 (Pedersen, Layer, and 

Quinlan 2016). Additional splicing related models were run via Kipoi v0.6.24 (States et al. 2019).  

The performance of each tool was evaluated upon comparison of the reference thresholds 

(Table II.1). Depending on the balanced nature of the dataset (number of pathogenic and benign 

variants), different metrics were used to rank the tools. For balanced data, accuracy and area 

under Receiving Operating Characteristic (auROC) were applied, while the F1 score, the 

harmonic mean between precision and recall, was used on unbalanced data. It is common that 

some methods do not score certain variants (missing data), thus we also considered prediction 

capacity, referred as coverage, when measuring performance. All the analyzes and plots were 

produced with VETA (Barbosa et al. 2019), a simple tool to evaluate variant predictors that is 

available at https://github.com/PedroBarbosa/VETA. 

 

https://github.com/PedroBarbosa/VETA
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II.4. RESULTS 

Ground truth HCM dataset highlights known issues in the field   

To test computational tools for predicting the clinical significance of HCM related genetic 

variants, we firstly re-assessed pathogenicity criteria of 89 previously described pathogenic/likely 

pathogenic present in ClinVar using ACMG guidelines. We observed that 14 were classified as 

VUS due to lack of supporting evidence (Table S II.1.). Consequently, our “ground truth” dataset 

of pathogenic mutations was reduced to 75, from which we carried out evaluations with the control 

dataset of the same size. 

According to our results on the performance of analyzed tools, best performance was 

achieved when analyzing different variant types (missense or splice site) separately (Figure II.1). 

When looking at all variants together (Figure II.2.) genome wide predictors perform better, as 

expected. FATHMM-MKL (weighted accuracy of 0.79) and ReMM (0.78) ranked first, but they did 

not come close to VEST4 (0.90) or REVEL (0.87) for the missense dataset alone, or to S-CAP 

(1.0) and SpliceAI (1.0) for splice site data. This is not a surprising observation considering the 

fact these tools were trained on similar, if not the same data (except of SpliceAI). It highlights a 

well-known issue in the field, the so-called type 1 circularity (Grimm et al. 2015), which occurs 

when some variants are used both for training and evaluation, spuriously boosting prediction 

accuracy. S-CAP (“perfect” classifier in the splice site data) is a clear example of this problem, as 

it used pathogenic ClinVar and control gnomAD variants to train the model, just like we did to 

select this HCM associated dataset. Nevertheless, missense predictions were not impressive: the 

average weighted accuracy score for the top 10 methods was 0.79 and best predictors belong to 

the same scope (protein predictors). Conversely, splice site variants displayed higher accuracies 

overall and were well predicted by methods from several scopes (including methods that are not 

prone to suffer from circularity such as SpliceAI, LINSIGHT or phastCons).  
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Figure II.1. Prediction performance on the dataset of Missense (A) or Splice site (B) HCM associated 

variants. Tools with more than 90% of missing scores were discarded. Ranking metric presented is 

accuracy weighted by the fraction of predictable variants.  

 

Figure II.2. Prediction performance on the full dataset of HCM associated variants. Tools with more 

than 90% of missing scores were discarded. Ranking metric presented is accuracy weighted by the 

fraction of predictable variants.  

Additionally, recommended thresholds are vulnerable as they are commonly derived from 

evaluations performed on some test data. Although clinicians desire a universal score cut-off that 

represents the best ratio of sensitivity and specificity, this is not usually easy to achieve. Best 

thresholds are highly dependent of the data at hands. We always tried to apply thresholds 
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recommended by the authors of each model. If not available, we employed the thresholds 

suggested by other studies (Table II.1), but by no means this is indicative of the best threshold. 

FunSeq2 and Eigen are two clear examples of such issues presenting a poor performance (Figure 

II.3.A and B). However, when looking at the score distribution of each class (Figure II.3.A and B) 

in splice site variants, it is clear that the reference threshold is not appropriate for this dataset. By 

adjusting Eigen and FunSeq2 thresholds to 10 and 1, respectively, weighted accuracy score 

increased substantially (0.87 and 0.89, data not shown). To complicate things further, score 

statistics differ between variant types. By looking at the Eigen scores distribution on missense 

variants (Figure II.3.C), an adjusted threshold of 10 is too stringent, pinpointing the fact that 

threshold decisions for clinical practice may need to be tuned for specific variant types. 

 

Figure II.3. Scores distribution per each class in the HCM dataset. A) FunSeq2 scores distribution 

on splice site variants. Vertical read dashed line represents the default threshold. B) Eigen scores 

distribution on splice site variants. Plot demonstrates how inappropriate default threshold of 1 
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seems to be. C) Eigen scores distribution on missense variants. Vertical read dashed line 

represents Eigen adjusted threshold for splice site variants (10)  

Predictors start to fail 10bp away from the splice junction 

Intronic ClinVar variants were analyzed according the bins previously described.  We started 

to investigate class distribution at each bin, and it was not surprising to observe that the majority 

of pathogenic intronic variants (96.9%) locate at splice sites or near there (0-10 bin, Figure II.4.). 

Nonetheless, we confirmed we had enough reported pathogenic variants for analysis in the 

remaining bins (Figure II.4., zoomed plot). Since we had a rather big and balanced dataset for the 

0-10 bin, we also benchmarked the models using ROC curves. As shown before in the HCM 

splicing variants, tools perform well across different prediction scopes (Figure S II.1). However, 

from 10bp onwards within the intron tools performance drops dramatically. Most of splicing 

models can’t score variants across whole introns, except for TraP and SpliceAI (Figure II.5.). This 

is an expected behavior rather than a critical comment on the tools: they were not explicitly 

designed to predict deep in the introns, be it due to their own formulation or due to the lack of 

proper data to train. For instance, fraction of unscored variants for MMSplice and SPIDEX 

significantly increases at the intronic distances (bins) that authors refer to be the recommended 

limit (100bp and 300 bp, respectively). Because of that, and to perform fair comparisons, models 

were evaluated using weighted F1 score (albeit conservation-based and whole genome predictors 

do not suffer from this issue as they give scores across whole introns (Figure S II.2). Overall, 

SpliceAI was the only model to predict reasonably well deep intronic pathogenic variants reported 

in ClinVar (Figure II.6.A, B and C). When excluding near splice-site variants from analysis (0-10 

bin), weighted F1 score across all the remaining bins was 0.43 for SpliceAI, followed by MMSplice 

with 0.18 and TraP with 0.16 (Figure S II.3). Apart from having low capacity to reveal pathogenic 

variants from 10bp onwards (low sensitivity), very low precision was also observed: when a 
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method predicts a variant to be relevant, it is usually the case the variant is assigned as benign 

in ClinVar (false positive). 

Cautious interpretations should be taken, however. Despite an initial filtering of the ClinVar 

dataset, this “raw” analysis accommodated variants that lack strong support and evidence for the 

assigned status. When we tried to restrict the confidence level (e.g. 2 stars), we were left with 

very few positive instances deep in the introns. Therefore, we blinded trusted disease status, 

although we are aware that conflicting or wrong ascertainments may be propagated in ClinVar, 

as we show in this paper and was demonstrated by others (Shah et al. 2018). These errors may 

slightly skew (either positively or negatively) models’ performance.  Having said that, we still 

believe these results are a clear demonstration of the current limitation on predicting variants 

within introns. 

 

Figure II.4. Number of benign and pathogenic variants at each intronic bin. 
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Figure II.5. Fraction of unscored variants by splicing related models at each intronic bin.  

 

Figure II.6. Prediction tools performance at each intronic bin. A) Conservation scores. B) Whole 

genome predictors. C) Splicing models  
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Manual curation identifies a rich and clinically relevant dataset of deep 

intronic mutations 

A literature review of recently reported variants allowed us to extend a previous collection 

(Vaz-Drago, Custódio, and Carmo-Fonseca 2017) of disease-causing mutations deep within the 

introns (Table S II.3). This new dataset includes variants from 33 different conditions, and they 

are mostly involved in splicing aberrations. Variants that create new splice sites or alter the 

strength of existing cryptic ones were observed at higher frequency. Notwithstanding, no matter 

the molecular effect of the variant identified, the outcome of the genetic defect ultimately leads to 

the inclusion of pseudoexons that frequently contain a termination codon,  targeting the mRNA 

for degradation by NMD (Dhir and Buratti 2010). In addition, several of these variants were shown 

to trigger disease by compound heterozygosity, where other variants located in the coding region 

of the gene were identified.  

Consequently, we merged these variants with the list of previously identified variants by Vaz 

Drago et al. (Vaz-Drago, Custódio, and Carmo-Fonseca 2017). Remarkably, a large fraction of 

these merged set of variants are absent from gnomAD and ClinVar (Figure II.7.A) and are very 

rare in the population (Figure II.7.B). From the subset that overlaps with ClinVar, there were 9 

SNVs with wrong classifications: 6 VUS, 1 Benign, 1 drug response and one with no criteria 

provided, which highlights the need for continuous efforts on variant reclassification as new 

studies are performed. Anyway, we gathered a rich and non-redundant dataset of deep intronic 

disease-causing SNVs that we used to benchmark the tools along with a control dataset obtained 

as described in the methods section. 

As observed before, most of splicing models did not score deep in the introns (Figure S II.4.). 

Paradoxically, the two best scoring methods were splicing-based, SpliceAI and TrAP (Figure 

II.8.A). However, SpliceAI was by far distance the best scoring model. It leveraged a striking 

weighted accuracy of 0.89, being the only method able to predict most of disease-causing 
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variants. In fact, all the remaining methods that give a score (conservation and whole genome 

predictors) were useless as their weighted accuracy lied around 0.5 just because they predict all 

the variants to be harmless. By doing ROC curve analysis on the methods that score more than 

30% of the variants (Figure II.8.A), we observed that the poor performance of the majority of the 

methods was not due to a wrong pathogenicity threshold that would be inadequate for deep 

intronic variants (as ROC curves test performance using different thresholds). Rather, it is likely 

because no model (except for SpliceAI and TraP) was trained with features that explain this data. 

 

 

Figure II.7.  Description of the deep intronic pathogenic dataset. A) Overlap with existing catalogs 

of genetic variation. B) gnomAD frequency of the variants compared with the control benign 

variants used to evaluate tools performance (Wilcoxon rank-sum test, p-value = 6.561e-13) 
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Figure II.8. Tools performance in the deep intronic dataset. A) Analysis using predefined thresholds. 

B) ROC curve analysis for the methods predicting more than 30% of the variants. 

0.0 0.2 0.4 0.6 0.8 1.0

SPIDEX (0.03)

MMSplice (0.03)

SiPhy (0.31)

fitCons (0.38)

Eigen (0.44)

GWAVA (0.47)

DANN (0.48)

phastCons (0.5)

phyloP (0.51)

ReMM (0.52)

GERP (0.52)

CADD (0.53)

FunSeq2 (0.53)

LINSIGHT (0.53)

FATHMM MKL (0.54)

TraP (0.69)

SpliceAI (0.89)

 variants: 264 (132 pos, 132 neg)

Specificity

Sensit ivity

Fract ion predictable

0.0 0.5 1.0

False Posi t ive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
r
u
e
 P
o
s
it
iv
e
 R
a
te
 (
T
P
R
) GERP(n 260, auROC 0.53)

phyloP(n 251, auROC 0.54)

SiPhy(n 196, auROC 0.6)

phastCons(n 251, auROC 0.52)

f i tCons(n 198, auROC 0.62)

L INSIGHT(n 259, auROC 0.68)

CADD(n 249, auROC 0.57)

DANN (n 259, auROC 0.6)

FATHMM  M KL(n 259, auROC 0.75)

Eigen(n 197, auROC 0.61)

ReMM (n 260, auROC 0.63)

FunSeq2(n 257, auROC 0.58)

Tr aP(n 259, auROC 0.82)

Spl iceAI (n 258, auROC 0.97)

BA



115 
 

II.5. DISCUSSION 

In this study, we performed a comprehensive evaluation of variant effect predictors across 

the full body of disease related genes, with a focus on intronic regions. We benchmarked the 

models using 3 datasets that differed in their nature and the way they were collected. The first, a 

high confidence dataset of missense and splice site variants from a specific mendelian disease, 

HCM, that was manually reviewed following ACMG guidelines. A second dataset that specifies a 

subset of the ClinVar public archive representative of intronic variants evaluated on a bin-based 

approach. And lastly, a dataset of clinically relevant deep intronic variants derived from the 

literature. 

HCM dataset  

Ideally, the aim was to find the most appropriate set of tools to prioritize different variant types. 

Analysis of the HCM variants revealed that despite the known limitations VEST4 or REVEL may 

be decent choices to score missense variants in this disease. REVEL is an ensemble method that 

combines predictions from 18 individual scores (including VEST3, a previous version of VEST4 

and many other that we also evaluated), thus it was unsurprising REVEL stood out. Curiously, 

VEST4 and REVEL were also the best performers in a recent benchmark (Li et al. 2018). 

Importantly, they were both trained on variants from HGMD (Stenson et al. 2017) and Exome 

Sequencing Project (W. Fu et al. 2013) and used a random forest to build the model (Table II.1.). 

Additionally, in REVEL paper, authors mention VEST3 scores to be one of the most important 

features in their model (Ioannidis et al. 2016). Altogether, along with considerations mentioned in 

the HCM results section, we highlight important concerns in the field of missense variant 

prediction raised before (Walters-Sen et al. 2015; Mahmood et al. 2017; Grimm et al. 2015), and 

careful interpretations should always be considered. 
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Splice site predictions did well (Figure II.1.B), with most of the best performing methods 

perfectly rescuing pathogenic variants. When they failed, it was mostly due to some false positives 

(lower specificity). Thus, we would suggest using one (or a combination) of the three following 

methods: SpliceAI, LINSIGHT and phastCons. They represent different unbiased approaches that 

did not depend on specific variants to build the model: SpliceAI was trained directly from mRNA 

sequences, LINSIGHT used the genomes of 54 unrelated human individuals and the widely used 

phastCons relies on the alignment of 100 vertebrate genomes. 

We should also note that the tools were tested using a small panel of variants, as we opted 

to have a high-quality and manually curated dataset of HCM variants. Therefore, we recognize 

that the results found in this study may not be entirely reproduced if working with a larger dataset 

(Schaafsma and Vihinen 2018), or more importantly, with a different mendelian condition. Still, 

being able to correctly assign the status of a given variant in HCM is crucial for molecular 

diagnosis and for developing strategies that may predict the occurrence of the disease in a relative 

and guide management.  The possibility of molecular-based interventions to alter or suppress the 

expression of a given disease-causing mutation by means of gene editing is gaining track and 

may become a new reality. Thus, all efforts should be done to improve our current capacities to 

correctly assign variants of unknown significance in HCM. 

Prediction across whole intronic sequences  

While near splice site, variants were well covered by a great range of methods (Figure S 

II.1.), analysis of intronic variation further away from splice junctions revealed the overall poor 

performance of current methods to discern functional variants, both in ClinVar and in the manually 

derived deep intronic dataset. These analysis disclosed SpliceAI as the best prediction model to 

score such variants. This model is a deep learning approach that allowed a comprehensive 

analysis of the biology of splicing and the impact of SNVs in disease (Jaganathan et al. 2019). 
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Technically, SpliceAI is a 32-layer deep convolutional neural network (CNN) that predicts splice 

sites directly from the sequence of mRNA. Splicing determinants are learned by evaluating 10,000 

flanking base-pairs of the positions of interest. The output of the model consists of three scores 

(probability of a given position to be a splice acceptor, splice donor and neither). We believe the 

large amount of training data (Table II.1.) and the use of a large sequence context allowed 

SpliceAI to accentuate its performance against the other models.  

Overall, only two splicing models, SpliceAI and TraP score across full gene body. This reflects 

a known property of most of these models that are not designed to predict deeper in the introns. 

In addition, we note that splicing models that were run through Kipoi are limited by the regions 

defined in the data loader, thus reducing the possible prediction space of these models. One such 

case is HAL, a very elegant approach to study splicing determinants, that in our evaluation 

performed very poorly (for now HAL implemented in Kipoi just scores splice donor sites).  

Most of the manually derived pathogenic variants by Vaz Drago and all the new variants 

described in this study (Table S II.3) relate with splicing aberrations. That is a paradoxal 

observation given the lack of prediction power of most of splicing methods. On the other hand, 

despite some whole genome predictors include some splicing features (e.g. CADD), they were 

mostly trained using ENCODE data as features, likely being more suitable to predict non-coding 

variation affecting transcriptional regulation.  

 Hence, we recommend the use of SpliceAI in any splicing-related variant prioritization 

pipeline, with a focus on variants located further away from splice sites (10bp onwards). This 

agrees with a very recent work where SpliceAI alone was recommended to assess splicing 

mutations in the context of rare disease (Ellingford et al. 2019). We recognize the fantastic 

breakthroughs enabled by SpliceAI, but some of the limitations should be pointed out: this model 

is just predicting splice sites. If splicing regulatory elements are disrupted or created, this model 

will not perform properly. Additionally, it is very common that variants affecting splicing may be 

only disease-relevant on specific tissues where the gene is expressed, and it is not straightforward 
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how much of the aberrant transcript is going to be formed. For example, in RNA-based analysis, 

small differences in the inclusion of an exon (10% variation) may be functionally relevant but not 

sufficiently strong to cause disease. Again, SpliceAI does not measure that. Therefore, this study 

aims to raise awareness of the importance of deep intronic regions on splicing regulation and 

human disease, and we expect that with all the new available data, forthcoming models can take 

into consideration deep intronic specificities to improve our own understanding of the splicing 

code (Barash et al. 2010). 

Ultimately, this study highlights the need for caution in the interpretation of likely causative 

disease mutations prioritized by computational tools. Our data also suggests that some proposed 

thresholds can be adjusted in order to have more reliable results. 

We hope our results can help researchers and clinicians to decide on which tool to use when 

assigning the status of genetic variants, potentially saving time and resources when investigating 

the nature of new variants found. To the best of our knowledge this is yet the best effort ever done 

in evaluating the performance of prediction tools on intronic regions.  
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II.7. SUPPLEMENTAL MATERIAL 

 

Figure S II.1. Prediction tools performance on Clinvar variants located in the 0-10bp intronic bin. A) 

Analysis using predefined thresholds. Tools with more than 90% of missing scores were discarded. 

Ranking metric presented refers to the accuracy weighted by the fraction of predictable variants. 

B) ROC curve analysis for the methods predicting more than 30% of the variants. S-CAP was not 

included in this analysis because it contains more than one recommended threshold in intronic 

regions.  

 

Figure S II.2. Fraction of unscored variants at each intronic bin. A) Conservation scores. B) Whole genome 

predictors 
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Figure S II.3. Prediction tools performance on Clinvar variants located in all the bins except the 0-

10bp one, which shows the large class imbalance. Ranking metric presented is F1 score weighted 

by the fraction of predictable variants.  

 

Figure S II.4. Fraction of unscored variants in the deep intronic dataset 
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Figure S II.5.: gnomAD frequency of Clinvar variants at two different intronic bins reveal no 

significant differences between Benign and Pathogenic classifications. A) 30-100bp bin (Wilcoxon 

rank-sum test, p-value = 9.290e-02). B) 100-200bp bin (Wilcoxon rank-sum test, p-value =6.728e-02) 

Table S II.1. HCM associated pathogenic variants evaluated 

Chr Position Ref Alt Gene HGVSc Consequence rsID Max 
frequency 

Max 
frequency 

pop 

Frequency 
gnomAD 
v2.1.1 ( 

genomes 

1 201332458 G A TNNT2 ENST00000509001.1:
c.536C>T 

missense 
variant 

rs727504246; CM002871 None None . 

1 201332477 G A TNNT2 ENST00000509001.1:
c.517C>T 

missense 
variant 

rs727503512; CM127304 None None . 

1 201333464 G A TNNT2 ENST00000509001.1:
c.421C>T 

missense 
variant 

rs74315379; CD117175; CM013440 None None . 

1 201333497 G A TNNT2 ENST00000509001.1:
c.388C>T 

missense 
variant 

rs397516463; CM962587 None None . 

1 201334425 C T TNNT2 ENST00000509001.1:
c.275G>A 

missense 
variant 

rs121964856; CM951218; CM961373; 
COSM6805424; COSM6805425; 

COSM6805426 

None None . 

1 201334426 G A TNNT2 ENST00000509001.1:
c.274C>T 

missense 
variant 

rs397516456; CM971501; COSM4026926; 
COSM4026927; COSM4026928 

8.793e-06 gnomAD NFE 3.1858999
136602506

e-05 

1 201334758 C T TNNT2 ENST00000509001.1:
c.244G>A 

missense 
variant 

rs727504255 None None . 

1 201334766 A T TNNT2 ENST00000509001.1:
c.236T>A 

missense 
variant 

rs121964855; CM132559; CM951217 8.8e-06 gnomAD NFE . 

3 46901001 T C MYL3 ENST00000395869.1:
c.445A>G 

missense 
variant 

rs104893748; CM961007 None None . 

3 46902192 C T MYL3 ENST00000395869.1:
c.281G>A 

missense 
variant 

rs199474703; CM082965 2.892e-05 gnomAD 
AMR 

. 

3 46902303 G C MYL3 ENST00000395869.1:
c.170C>G 

missense 
variant 

rs139794067; CM014210 0.0002718 gnomAD EAS . 

11 47353433 C T MYBPC3 ENST00000545968.1:
c.3815-1G>A 

splice acceptor 
variant 

rs397516044 6.847e-05 gnomAD AFR . 

11 47354116 C T MYBPC3 ENST00000545968.1:
c.3627+1G>A 

splice donor 
variant 

rs397516031; CS1010363; CS982279 None None . 

11 47354255 T A MYBPC3 ENST00000545968.1:
c.3491-2A>T 

splice acceptor 
variant 

rs397516022 None None . 

11 47354526 T G MYBPC3 ENST00000545968.1:
c.3331-2A>C 

splice acceptor 
variant 

rs869025469 0.0001407 gnomAD AFR . 

11 47354743 A C MYBPC3 ENST00000545968.1:
c.3330+2T>G 

splice donor 
variant 

rs387906397; CS034593; CS081937; 
FHC0086 

None None 3.1935000
15186146e

-05 

11 47355106 A C MYBPC3 ENST00000545968.1:
c.3190+2T>G 

splice donor 
variant 

rs113358486; CS135613 1.777e-05 gnomAD NFE . 

11 47355107 C T MYBPC3 ENST00000545968.1:
c.3190+1G>A 

splice donor 
variant 

rs111683277; CS103025 9.97e-05 gnomAD ASJ . 
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11 47359280 A G MYBPC3 ENST00000545968.1:
c.2374T>C 

missense 
variant 

rs187830361; CM043543 0.0001203 EA . 

11 47359347 T C MYBPC3 ENST00000545968.1:
c.2309-2A>G 

splice acceptor 
variant 

rs111729952; CS043648 None None . 

11 47360070 C T MYBPC3 ENST00000545968.1:
c.2308+1G>A 

splice donor 
variant 

rs112738974; CS133963; CS971816; 
CS982278; FHC0062 

0.0001191 EA; EA . 

11 47360070 C A MYBPC3 ENST00000545968.1:
c.2308+1G>T 

splice donor 
variant 

rs112738974; CS133963; CS971816; 
CS982278; FHC0061 

None None . 

11 47361343 T C MYBPC3 ENST00000545968.1:
c.1928-2A>G 

splice acceptor 
variant 

rs397515937; CS014131 None None . 

11 47362688 C T MYBPC3 ENST00000545968.1:
c.1897+1G>A 

splice donor 
variant 

rs397515935 None None . 

11 47364127 A G MYBPC3 ENST00000545968.1:
c.1624+2T>C 

splice donor 
variant 

rs111437311; CS036038; FHC0032 None None . 

11 47364129 C G MYBPC3 ENST00000545968.1:
c.1624G>C 

missense 
variant; splice 
region variant 

rs121909374; CM971007 0.0002382 AA 6.3747000
24025515e

-05 

11 47364248 C T MYBPC3 ENST00000545968.1:
c.1505G>A 

missense 
variant 

rs397515907; CM981325; FHC0027 None None . 

11 47364269 C T MYBPC3 ENST00000545968.1:
c.1484G>A 

missense 
variant 

rs200411226; CM981324; COSM5510502; 
COSM5510503 

5.564e-05 gnomAD EAS . 

11 47364296 C T MYBPC3 ENST00000545968.1:
c.1458-1G>A 

splice acceptor 
variant 

rs397515903; CS1110418 None None . 

11 47364570 A G MYBPC3 ENST00000545968.1:
c.1351+2T>C 

splice donor 
variant 

rs397515897 None None . 

11 47364571 C T MYBPC3 ENST00000545968.1:
c.1351+1G>A 

splice donor 
variant 

rs727503204; CS0910205 None None . 

11 47364698 T C MYBPC3 ENST00000545968.1:
c.1227-2A>G 

splice acceptor 
variant 

rs730880531 None None 3.1855000
99789351e

-05 

11 47367757 C T MYBPC3 ENST00000545968.1:
c.1090+1G>A 

splice donor 
variant 

rs727504269; CS068101; CS106129; 
CS119774 

None None . 

11 47367757 C A MYBPC3 ENST00000545968.1:
c.1090+1G>T 

splice donor 
variant 

rs727504269; CS068101; CS106129; 
CS119774 

8.875e-06 gnomAD NFE . 

11 47367923 T C MYBPC3 ENST00000545968.1:
c.927-2A>G 

splice acceptor 
variant 

rs397516082; CS982277; COSM3383501; 
COSM3383502 

1.164e-05 gnomAD NFE 3.1875999
411568046

e-05 

11 47369407 C T MYBPC3 ENST00000545968.1:
c.821+1G>A 

splice donor 
variant 

rs397516073; CS034591; CS982276; 
FHC0005 

0.0002127 gnomAD 
OTH; 

gnomAD OTH 

. 

11 47369407 C G MYBPC3 ENST00000545968.1:
c.821+1G>C 

splice donor 
variant 

rs397516073; CS034591; CS982276 None None . 

11 47369974 C T MYBPC3 ENST00000545968.1:
c.772+1G>A 

splice donor 
variant 

rs397516072 None None . 

11 47369975 C T MYBPC3 ENST00000545968.1:
c.772G>A 

missense 
variant; splice 
region variant 

rs397516074; CM981322 3.671e-05 gnomAD NFE 6.3722996
85608596e

-05 

11 47370092 C G MYBPC3 ENST00000545968.1:
c.655G>C 

missense 
variant; splice 
region variant 

rs397516068; CM043535; CM106111 None None . 

11 47370092 C A MYBPC3 ENST00000545968.1:
c.655G>T 

missense 
variant; splice 
region variant 

rs397516068; CM043535; CM106111 0.0001695 gnomAD OTH . 

11 47370093 C T MYBPC3 ENST00000545968.1:
c.655-1G>A 

splice acceptor 
variant 

rs397516067; CS106128 None None . 

11 47373058 T C MYBPC3 ENST00000545968.1:
c.26-2A>G 

splice acceptor 
variant 

rs376395543; CS043791 0.0001204 EA 3.1855000
99789351e

-05 

12 111352091 C T MYL2 ENST00000228841.8:
c.173G>A 

missense 
variant 

rs104894369; CM981332 9.24e-05 gnomAD FIN . 

12 111356937 C T MYL2 ENST00000228841.8:
c.64G>A 

missense 
variant 

rs104894368; CM961005; FHC0203; 
MYL2:c.64G>A; COSM245869 

0.0014 AMR; AMR; 
AMR 

. 

14 23884861 G A MYH7 ENST00000355349.3:
c.5134C>T 

missense 
variant 

rs121913650; CM050714; COSM4050058 None None . 

14 23886383 G A MYH7 ENST00000355349.3:
c.4498C>T 

missense 
variant 

rs45544633; CM045547; COSM469829 None None . 

14 23887453 C T MYH7 ENST00000355349.3:
c.4135G>A 

missense 
variant 

rs397516202; CM020288 None None 3.1853000
10954961e

-05 

14 23893250 C T MYH7 ENST00000355349.3:
c.2788G>A 

missense 
variant 

rs397516171; CM068020; CM952164; 
FHC0186 

None None . 

14 23893268 C T MYH7 ENST00000355349.3:
c.2770G>A 

missense 
variant 

rs121913628; CM032609; CM920494 None None . 
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14 23893328 G A MYH7 ENST00000355349.3:
c.2710C>T 

missense 
variant 

rs727503253; CM112510; COSM1258462 9.921e-05 gnomAD ASJ . 

14 23894525 C T MYH7 ENST00000355349.3:
c.2389G>A 

missense 
variant 

rs3218716; CM066923; CM950825 0.000227 AA . 

14 23894612 C T MYH7 ENST00000355349.3:
c.2302G>A 

missense 
variant 

rs727503260; CM109192; FHC0161; 
HM971867 

None None . 

14 23894969 C T MYH7 ENST00000355349.3:
c.2221G>A 

missense 
variant 

rs121913632; CM930505; CM931218; 
CM952162; FHC0159 

None None 3.1853000
10954961e

-05 

14 23894999 G A MYH7 ENST00000355349.3:
c.2191C>T 

missense 
variant 

rs727504299; CM133936; COSM230283 None None . 

14 23896043 G A MYH7 ENST00000355349.3:
c.1987C>T 

missense 
variant 

rs397516127; CM031273; CM973126; 
COSM5612930 

None None . 

14 23896451 T C MYH7 ENST00000355349.3:
c.1954A>G 

missense 
variant; splice 
region variant 

rs727504239; CM025421 8.795e-06 gnomAD NFE . 

14 23896866 C T MYH7 ENST00000355349.3:
c.1816G>A 

missense 
variant 

rs121913627; CM920492; COSM954772 8.79e-06 gnomAD NFE 3.1855000
99789351e

-05 

14 23900656 C T MYH7 ENST00000355349.3:
c.767G>A 

missense 
variant 

rs121913633; CM930502; COSM3495248 None None . 

14 23900677 C T MYH7 ENST00000355349.3:
c.746G>A 

missense 
variant 

rs3218713; CM910268; COSM954783 None None . 

14 23901912 C A MYH7 ENST00000355349.3:
c.438G>T 

missense 
variant 

rs397516212; CM054005 None None . 

15 35085599 C T ACTC1 ENST00000290378.4:
c.301G>A 

missense 
variant 

rs193922680; CM003400; COSM960888 8.79e-06 gnomAD NFE . 

15 63349227 T C TPM1 ENST00000358278.3:
c.284T>C 

missense 
variant 

rs104894504; CM010475; COSM3502945; 
COSM3502946; COSM3502947; 
COSM3502948; COSM3502949 

None None . 

15 63353098 G A TPM1 ENST00000358278.3:
c.523G>A 

missense 
variant 

rs104894503; CM941333 0.0001389 gnomAD FIN 3.1842999
30580892e

-05 

15 63354462 G A TPM1 ENST00000358278.3:
c.688G>A 

missense 
variant 

rs199476317; CM100401 None None . 

19 55663224 C T TNNI3 ENST00000344887.5:
c.611G>A 

missense 
variant 

rs727504275; CM050764; COSM5699804; 
COSM7303011 

None None . 

19 55663260 C T TNNI3 ENST00000344887.5:
c.575G>A 

missense 
variant 

rs104894729; CM030288; FHC0415; 
COSM5183237 

None None . 

19 55663278 C T TNNI3 ENST00000344887.5:
c.557G>A 

missense 
variant 

rs397516357; CM031381 None None . 

19 55665438 C T TNNI3 ENST00000344887.5:
c.509G>A 

missense 
variant 

rs727503503; CM0910618; COSM4429422 None None . 

19 55665462 C T TNNI3 ENST00000344887.5:
c.485G>A 

missense 
variant 

rs397516354; CM031380; CM034575; 
FHC0392; COSM6212838 

6.536e-05 gnomAD SAS; 
gnomAD SAS 

. 

19 55665477 G A TNNI3 ENST00000344887.5:
c.470C>T 

missense 
variant 

rs397516353; CM031379; COSM6388939 None None . 

19 55665513 C T TNNI3 ENST00000344887.5:
c.434G>A 

missense 
variant 

rs397516349; CM971497 0.0001113 gnomAD EAS . 

19 55665514 G A TNNI3 ENST00000344887.5:
c.433C>T 

missense 
variant 

rs104894724; CM030285; CM971498; 
FHC0405; COSM475295 

3.268e-05 gnomAD SAS; 
gnomAD SAS 

6.3795996
53882906e

-05 

19 55665514 G C TNNI3 ENST00000344887.5:
c.433C>G 

missense 
variant 

rs104894724; CM030285; CM971498; 
FHC0407; COSM475295 

None None . 

19 55665525 C T TNNI3 ENST00000344887.5:
c.422G>A 

missense 
variant 

rs397516347; CM031378; COSM5056941 None None 3.1878000
299911946

e-05 

 

Table S II.2. Likely benign variants in cardiomyopathy related genes evaluated 

Chr Position Ref Alt Gene HGVSc Consequence rsID Max 
frequency 

Max 
frequency 

pop 

Frequency 
gnomAD v2.1.1 

(genomes) 

1 3328659 C T PRDM16 ENST00000270722.5
:c.1898C>T 

missense variant rs2493292 0.2233 gnomAD 
ASJ 

0.13600000739 

1 78392446 G A NEXN ENST00000334785.7
:c.733G>A 

missense variant rs1166698 0.3925 gnomAD 
EAS 

0.165099993348 

1 116283343 A G CASQ2 ENST00000261448.5
:c.420+6T>C 

splice region variant ; 
intron variant 

rs9428083 0.878 EA 0.711799979209 

1 116310967 T C CASQ2 ENST00000261448.5
:c.196A>G 

missense variant rs4074536 ; 
CM108210 

0.5488 gnomAD 
EAS 

0.328500002622 
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1 156096387 G A LMNA ENST00000504687.1
:c.52G>A 

missense variant rs593987 0.3215 AFR 0.100299999117 

1 156096417 T G LMNA ENST00000504687.1
:c.82T>G 

missense variant rs594028 0.6626 AFR 0.20759999752 

1 156099669 T G LMNA ENST00000473598.2
:c.29T>G 

missense variant rs513043 0.5408 AFR 0.177399992942 

1 156107534 C T LMNA ENST00000368300.4
:c.1698C>T 

splice region variant ; 
synonymous variant 

rs4641 ; 
CM003892 

0.3237 gnomAD 
AMR 

0.196199998259 

1 236902594 C G ACTN2 ENST00000366578.4
:c.877-8C>G 

splice region variant ; 
intron variant 

rs2288601 0.7999 gnomAD 
EAS 

0.78539997339 

1 237433625 C T RYR2 ENST00000360064.6
:c.41+4C>T 

splice region variant ; 
intron variant 

rs2275287 0.6954 EAS 0.356000006198 

1 237540615 A C RYR2 ENST00000366574.2
:c.464-8A>C 

splice region variant ; 
intron variant 

rs10925391 0.5484 AFR 0.345299988985 

1 237586384 T C RYR2 ENST00000366574.2
:c.849-8T>C 

splice region variant ; 
intron variant 

rs16835237 0.3135 EAS 0.097599998116 

1 237841390 A G RYR2 ENST00000366574.2
:c.8873A>G 

missense variant rs34967813 ; 
CM1110947 

0.3069 gnomAD 
NFE 

0.211999997496 

1 237957161 A G RYR2 ENST00000366574.2
:c.13783-6A>G 

splice region variant ; 
intron variant 

rs790901 0.9494 EAS 0.682299971580 

2 106013147 C T FHL2 ENST00000344213.4
:c.263G>A 

missense variant rs34179780 0.2245 gnomAD 
SAS 

0.145699992775 

2 106015412 G C FHL2 ENST00000344213.4
:c.142C>G 

missense variant rs76810592 0.0991 gnomAD 
AMR 

0.061299998313 

3 14174427 A T TMEM43 ENST00000306077.4
:c.504A>T 

missense variant rs4685076 0.4613 EAS 0.296600013971 

3 14175262 T C TMEM43 ENST00000306077.4
:c.536T>C 

missense variant rs2340917 0.6756 EAS 0.354999989271 

3 38645420 T C SCN5A ENST00000413689.1
:c.1673A>G 

missense variant CM031355 ; 
TMP ESP 3 
38645420 
38645420 ; 
rs1805124 

0.3094 AFR 0.24510000646 

3 38647642 G T SCN5A ENST00000413689.1
:c.1141-3C>A 

splice region variant ; 
intron variant 

rs41312433 ; 
CS057601 

0.1933 SAS 0.174300000071 

4 186423637 G A PDLIM3 ENST00000284770.5
:c.906C>T 

splice region variant ; 
synonymous variant 

rs4635850 0.8736 gnomAD 
FIN 

0.71850001811 

6 7576527 G A DSP ENST00000379802.3
:c.2631G>A 

splice region variant ; 
synonymous variant 

rs1016835 0.8175 gnomAD 
ASJ 

0.73540002107 

6 7580958 A G DSP ENST00000379802.3
:c.4535A>G 

missense variant rs2076299 ; 
COSM3831039 

0.3139 AFR 0.128499999642 

6 7581636 G A DSP ENST00000379802.3
:c.5213G>A 

missense variant rs6929069 0.379 AFR 0.197099998593 

6 112435273 A C LAMA4 ENST00000230538.7
:c.5326+6T>G 

splice region variant ; 
intron variant 

rs3734289 0.3472 EAS 0.249699994921 

6 112457383 G C LAMA4 ENST00000230538.7
:c.3356C>G 

missense variant rs1050349 0.3601 EAS 0.21500000357 

6 112457390 C T LAMA4 ENST00000230538.7
:c.3349G>A 

missense variant rs2032567 0.8926 SAS 0.77310001850 

6 112493872 A G LAMA4 ENST00000230538.7
:c.1492T>C 

missense variant rs1050348 0.8224 gnomAD 
EAS 

0.65609997510 

6 112522852 G A LAMA4 ENST00000230538.7
:c.460C>T 

missense variant rs11757455 0.1005 gnomAD 
SAS 

0.0428000018 

6 123696766 G T TRDN ENST00000398178.3
:c.1257C>A 

missense variant rs17737379 0.3116 AFR 0.17360000312 

6 123699019 A C TRDN ENST00000398178.3
:c.1211T>G 

missense variant rs28494009 0.2371 gnomAD 
SAS 

0.17430000007152
557 

6 123699042 T C TRDN ENST00000398178.3
:c.1188A>G 

splice region variant ; 
synonymous variant 

rs6901953 0.4251 AMR 0.33610001206 

6 123869607 G C TRDN ENST00000398178.3
:c.383C>G 

missense variant rs9490809 0.5785 gnomAD 
ASJ 

0.50550001859 

7 92077203 G A GATAD1 ENST00000287957.3
:c.160G>A 

missense variant rs10281879 0.45 gnomAD 
ASJ 

0.1099999994 

10 21112137 A T NEBL ENST00000377122.4
:c.1962T>A 

missense variant ; 
splice region variant 

rs4748728 0.2337 AFR 0.0724000036 

10 21134282 C G NEBL ENST00000377122.4
:c.1132G>C 

missense variant rs41277370 ; 
COSM5915956 

0.1666 gnomAD 
ASJ 

0.0549999997 

10 21139389 T C NEBL ENST00000377122.4
:c.1051A>G 

missense variant rs4025981 0.1716 gnomAD 
ASJ 

0.05530000105 

10 69926334 C G MYPN ENST00000358913.5
:c.1884C>G 

missense variant rs10823148 0.544 gnomAD 
FIN 

0.4061999917 

10 69933921 G A MYPN ENST00000358913.5
:c.2072G>A 

missense variant rs10997975 0.5298 gnomAD 
FIN 

0.40459999442 

10 69933969 G A MYPN ENST00000358913.5
:c.2120G>A 

missense variant rs7916821 0.5277 gnomAD 
FIN 

0.401300013065 

10 69934258 C G MYPN ENST00000358913.5
:c.2409C>G 

missense variant rs3814182 0.6307 gnomAD 
FIN 

0.52719998359 



135 
 

10 69959242 C A MYPN ENST00000358913.5
:c.3403C>A 

missense variant rs7079481 0.5268 gnomAD 
FIN 

0.4169999957 

10 112544655 C T RBM20 ENST00000369519.3
:c.1527+8C>T 

splice region variant ; 
intron variant 

rs7077757 0.2288 gnomAD 
AFR 

0.2152000069 

10 121429633 T C BAG3 ENST00000369085.3
:c.451T>C 

missense variant rs2234962; 
CM1111343 

0.2276 gnomAD 
FIN 

0.14790000021 

10 121436286 C T BAG3 ENST00000369085.3
:c.1220C>T 

missense variant rs3858340; 
CM1111345 

0.2658 gnomAD 
EAS 

0.12540000677 

11 47370041 T C MYBPC3 ENST00000545968.1
:c.706A>G 

missense variant rs3729989; 
CM043536 

0.1412 EUR 0.09650000184 

11 47371598 C T MYBPC3 ENST00000545968.1
:c.472G>A 

missense variant rs3729986 0.1064 EUR 0.0709000006 

11 111781047 A C CRYAB ENST00000533971.1
:c.328T>G 

missense variant rs11603779 0.3601 gnomAD 
ASJ 

0.25709998607 

12 22068849 G T ABCC9 ENST00000261200.4
:c.574-5C>A 

splice region variant ; 
intron variant 

rs3759236 0.8026 EAS 0.59820002317 

12 33021934 A G PKP2 ENST00000070846.6
:c.1097T>C 

missense variant rs1046116 0.2301 EA 0.19769999384 

14 23858271 A G MYH6 ENST00000405093.3
:c.3979-7T>C 

splice region variant ; 
intron variant 

rs535111647 0.08033 gnomAD 
AMR 

0.02180000022 

14 23859610 C T MYH6 ENST00000405093.3
:c.3388G>A 

missense variant rs28730771 0.1352 EUR 0.0816999971 

14 23861811 A G MYH6 ENST00000405093.3
:c.3302T>C 

missense variant rs365990 0.6437 AFR 0.41830000281 

14 23876267 C T MYH6 ENST00000405093.3
:c.166G>A 

missense variant rs28711516; 
CM122341 

0.1105 gnomAD 
ASJ 

0.07050000131 

14 23900794 G A MYH7 ENST00000355349.3
:c.732C>T 

splice region variant ; 
synonymous variant 

rs2069542 0.5976 AFR 0.2556000053 

17 39912145 T A JUP ENST00000393931.3
:c.2089A>T 

missense variant ; 
splice region variant 

rs1126821 0.7435 EUR 0.6647999882 

18 3086065 C T MYOM1 ENST00000356443.4
:c.4222G>A 

missense variant rs3765623 0.09502 gnomAD 
SAS 

0.05820000171 

18 3100429 G A MYOM1 ENST00000356443.4
:c.3576-5C>T 

splice region variant ; 
intron variant 

rs7232329 0.5781 gnomAD 
AMR 

0.35469999909 

18 3126811 A G MYOM1 ENST00000356443.4
:c.2879T>C 

missense variant rs1071600 0.3205 gnomAD 
EAS 

0.19210000336 

18 3168816 G A MYOM1 ENST00000356443.4
:c.1338C>T 

splice region variant ; 
synonymous variant 

rs2230167 0.3313 AFR 0.281899988651 

18 3176040 C G MYOM1 ENST00000356443.4
:c.1022G>C 

missense variant ; 
splice region variant 

rs8099021 0.8081 AA 0.7581999897 

18 3188873 G A MYOM1 ENST00000356443.4
:c.644C>T 

missense variant rs2230165 0.149 AFR 0.0666000023 

18 3188976 A G MYOM1 ENST00000356443.4
:c.541T>C 

missense variant rs1962519 0.8363 EAS 0.40259999036 

18 3215158 C G MYOM1 ENST00000356443.4
:c.64G>C 

missense variant rs1791085 0.1845 EAS 0.10740000009 

18 28649042 T C DSC2 ENST00000280904.6
:c.2326A>G 

missense variant rs1893963 0.472 AFR 0.17049999535 

18 29104714 A G DSG2 ENST00000261590.8
:c.877A>G 

missense variant rs2230234; 
CM1312995 

0.1453 gnomAD 
FIN 

0.07169999927 

18 29122618 G A DSG2 ENST00000261590.8
:c.2137G>A 

missense variant rs79241126; 
CM068260 

0.09818 gnomAD 
FIN 

0.06030000001 

18 29122799 G A DSG2 ENST00000261590.8
:c.2318G>A 

missense variant rs2278792 0.4666 gnomAD 
EAS 

0.228599995374 

18 29172865 G A TTR ENST00000237014.3
:c.76G>A 

missense variant rs1800458 0.09544 gnomAD 
FIN 

0.058499999344 

18 32470291 G A DTNA ENST00000598334.1
:c.2062G>A 

missense variant rs9944927 0.5946 AFR 0.29379999637 

19 55668509 A T TNNI3 ENST00000344887.5
:c.25-8T>A 

splice region variant ; 
intron variant 

rs3729836 0.6899 AFR 0.33840000629 

20 42747247 C T JPH2 ENST00000372980.3
:c.1186G>A 

missense variant rs3810510 0.3933 AFR 0.19730000197 

X 31893307 T G DMD ENST00000357033.4
:c.7096A>C 

missense variant ; 
splice region variant 

rs1800275 0.5162 gnomAD 
AMR 

0.20270000398 

X 32380996 C T DMD ENST00000357033.4
:c.5234G>A 

missense variant rs1801187 ; 
COSM4999532 ; 
COSM4999533 ; 
COSM4999534 ; 
COSM4999535 

0.7348 gnomAD 
EAS 

0.39179998636 

X 32503194 T C DMD ENST00000357033.4
:c.2645A>G 

missense variant rs228406 0.8861 gnomAD 
EAS 

0.69510000944 
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Table S II.3. List of pathogenic deep intronic variants extracted from literature with functional 

studies performed. Blank fields indicate that specific information was not possible to retrieve from 

the reading of the paper. 

HGVS Gene ID Disease Molecular effect Functional 
consequence 

Disease 
expression 

Ref 

ABCA4 
c.1937+435C>G 

ENSG00000198691 Stargardt disease splice silencer 
disruption 

  (Sangermano et 
al. 2019) 

ABCA4 c.1938-
619A>G 

ENSG00000198691 Stargardt disease alter cryptic splice 
donor site strength 

174bp 
pseudoexon 
inclusion & 

134bp 
pseudoexon 

inclusion 

 (Fadaie et al. 
2019) 

ABCA4 c.2919-
826T>A 

ENSG00000198691 Stargardt disease alter cryptic splice 
donor site strength 

133bp 
pseudoexon 

inclusion 

 (Fadaie et al. 
2019) 

ABCA4 
c.3050+370C>T 

ENSG00000198691 Stargardt disease new splice donor 
site 

105bp 
pseudoexon 

inclusion 

 (Fadaie et al. 
2019) 

ABCA4 
c.4253+43G>A 

ENSG00000198691 Stargardt disease exonic splicing 
enhancer 

creation|exonic 
splicing silencer 

disruption 

possible 
pseudoexon 

inclusion | exon 
skipping 

hypomorph 
variant; 

compound 
heterozygous 

(Zernant et al. 
2018; 

Sangermano et 
al. 2019) 

ABCA4 
c.4352+61G>A 

ENSG00000198691 Stargardt disease alter cryptic splice 
donor site strength 

59bp exon 
extension; 59bp 

partial intron 
retention 

 (Fadaie et al. 
2019) 

ABCA4 
c.4539+1100A>G 

ENSG00000198691 Stargardt disease alter cryptic splice 
donor site 

  (Sangermano et 
al. 2019) 

ABCA4 
c.4539+1106C>T 

ENSG00000198691 Stargardt disease alter cryptic splice 
donor site 

  (Sangermano et 
al. 2019) 

ABCA4 
c.4539+2001G>A 

ENSG00000198691 Stargardt disease exonic splicing 
enhancer creation 

pseudoexon 
inclusion 

 (Albert et al. 
2018) 

ABCA4 
c.4539+2028C>T 

ENSG00000198691 Stargardt disease exonic splicing 
enhancer creation 

pseudoexon 
inclusion 

 (Albert et al. 
2018) 

ABCA4 c.769-
784C>T 

ENSG00000198691 Stargardt disease strength increase 
of intronic splice 

acceptor 

296bp 
pseudoexon 

inclusion 

 (Sangermano et 
al. 2019) 

ABCA4 c.859-
506G>C 

ENSG00000198691 Stargardt disease strength cryptic 
intronic splice 
acceptor site 

56bp 
pseudoexon 

inclusion 

 (Sangermano et 
al. 2019) 

ANAPC1 c.2705-
198C>T 

ENSG00000153107 Rothmund-
Thomson 
syndrome 

new splice donor 
site 

95bp 
pseudoexon 

inclusion 

 (Ajeawung et al. 
2019) 

CDKN2A c.458-

554T>G 

ENSG00000147889 Breast Cancer new splice 
acceptor site 

 compound 
heterozygous 

(R. Khan et al. 
2019) 

CFTR 
c.1679+1634A>G 

ENSG00000001626 Cystic Fibrosis new splice 
acceptor site 

49bp 
pseudoexon 

inclusion 

 (Sanz et al. 
2017) 

CLRN1 c.254-
649T>G 

ENSG00000163646 Usher syndrome alter cryptic splice 
donor site 

pseudoexon 
inclusion 

 (A. O. Khan et 
al. 2017) 

CNGB3 c.1663-
1205G>A 

ENSG00000170289 Achromatopsia alter cryptic splice 
donor site strength 

34bp 
pseudoexon 

inclusion 

 (Weisschuh et 
al. 2020) 

CNGB3 c.1663-
2137C>T 

ENSG00000170289 Achromatopsia new splice donor 
site 

99bp 
pseudoexon 

inclusion 

 (Weisschuh et 
al. 2020) 

COL6A1 
c.930+189C>T 

ENSG00000142156 Collagen VI-
related dystrophy 

new splice donor 
site 

72bp 
pseudoexon 

inclusion 

 (Cummings et 
al. 2017) 

DES c.1289-
741G>A 

ENSG00000175084 Myopathy with 
cardiac 

involvement 

new splice 
acceptor site  

118bp 
pseudoexon 

inclusion 

compound 
heterozygous 

(Riley et al. 
2019) 

DMD 
c.5739+362A>G 

ENSG00000198947 Duchenne 
muscular 
dystrophy 

new splice donor 
site 

78bp 
pseudoexon 

inclusion 

 (Xu et al. 2019) 
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DMD 
c.9974+175T>A 

ENSG00000198947 Duchenne 
muscular 
dystrophy 

alter cryptic splice 
donor site strength 

88bp 
pseudoexon 

inclusion 

 (Lee et al. 2019) 

DONSON c.607-
36G>A 

ENSG00000159147 Meier-Gorlin 
syndrome 

new splice 
acceptor site 

34bp exon 
extension 

 (Knapp et al. 
2019) 

DYSF c.5668-
824C>T 

ENSG00000135636 Muscular 
Dystrophy 

new splice donor 
site 

180bp 
pseudoexon 

inclusion 

 (Dominov et al. 
2019) 

F7 c.571+78G>A ENSG00000057593 Coagulation 
factor VII 
deficiency 

alter cryptic splice 
donor site strength 

78bp exon 
extension; 78bp 

partial intron 
retention 

 (Ferraresi et al. 
2019) 

F7 c.572-392C>G ENSG00000057593 Coagulation 
factor VII 
deficiency 

new splice donor 
site 

282bp 
pseudoexon 

inclusion 

 (Ferraresi et al. 
2019) 

F8 c.5999-277G>A ENSG00000185010 Mild hemophilia A U1snRNP binding 
creation 

95-bp 
pseudoexon 

inclusion 

 (Chang et al. 
2019) 

FECH c.464-
1169A>C 

ENSG00000066926 Erythropoietic 
Protoporphyria 

exonic splicing 
silencer disruption 

156bp 
pseudoexon 

inclusion 

 (Chiara et al. 
2020) 

GALNS c.899-
167A>G  

ENSG00000141012 Morquio A  new splice donor 
site 

53bp 
pseudoxeon 

inclusion 

 (Caciotti et al. 
2018) 

GPR143 
c.885+748G>A 

ENSG00000101850 Ocular albinism    (Lionel et al. 
2018) 

IGHMBP2 
c.1235+894C>A 

ENSG00000132740 Charcot-Marie-
Tooth disease 

new splice 
acceptor site 

182bp 
pseudoexon 

inclusion 

 compound 
heterozygous 

(Cassini et al. 
2019) 

MYBPC3 c.1224-
80G>A 

ENSG00000134571 Hypertrophic 
cardiomyopathy 

new splice 
acceptor site  

78bp exon 
extension; 78bp 

partial intron 
retention 

haploinsufficie
ncy 

(Janin et al. 
2019) 

MYBPC3 
c.1927+600C>T 

ENSG00000134571 Hypertrophic 
cardiomyopathy 

new splice donor 
site 

94bp 
pseudoexon 

inclusion 

 (Janin et al. 
2019) 

MYBPC3 c.906-
36G>A 

ENSG00000134571 Hypertrophic 
cardiomyopathy 

new splice 
acceptor site  

34bp exon 
extension; 34bp 

partial intron 
retention 

haploinsufficie
ncy 

(Frank-Hansen 
et al. 2008) 

NDUFAF6 
c.420+784C>T 

ENSG00000156170 Leigh syndrome new splice 
acceptor site  

124bp 
pseudoexon 

inclusion 

compound 
heterozygous 

(Catania et al. 
2018) 

NDUFAF8 
c.195+271C>T 

ENSG00000224877 Leigh syndrome U1snRNP binding 
creation 

exon extension compound 
heterozygous 

(Alston et al. 
2020) 

NF1 
c.4173+278A>G 

ENSG00000196712 Neurofibromatosi
s  

new splice 
acceptor site 

80bp 
pseudoexon 

inclusion 

 (Kannu et al. 
2013) 

NIPBL 
c.4560+2069C>T  

ENSG00000164190 Cornelia de 
Lange syndrom  

new splice donor 
site 

pseudoexon 
inclusion 

 (Rentas et al. 
2020) 

NM 000082.3 
c.173+1119G>C 

ENSG00000049167 Cockayne 
syndrome 

exonic splicing 
enhancer creation 

activation cryptic 
splice sites & 
pseudoexon 

inclusion 

 (Schalk et al. 
2018) 

NM 001099857.2 
c.518+866C>T 

ENSG00000269335 EDA-ID U1snRNP binding 
creation 

44bp 
pseudoexon 

inclusion 

 (Boisson et al. 
2018) 

POLA1 c.1375-
354A>G 

ENSG00000101868 X-linked reticulate 
pigmentary 

disorder 

new splice donor 
site 

76bp 
pseudoexon 

inclusion 

 (Starokadomsky
y et al. 2016) 

PROM1 c.2077-
521A>G 

ENSG00000007062 Cone-rod 
dystrophy 

new splice donor 
site 

155bp 
pseudoexon 

inclusion 

 (Mayer et al. 
2016) 

PYROXD1 c.415-
976A>G 

ENSG00000121350 Congenital 
myopathy 

exonic splicing 
silencer disruption 

& alter cryptic 
splice donor site 

strength 

110bp 
pseudoexon 

inclusion 

 (Lornage et al. 
2019) 

RTTN 
c.2309+1093G>A 

ENSG00000176225 Primary 
microcephaly 

new splice 
acceptor site 

85bp 
pseudoexon 

inclusion 

 (Vandervore et 
al. 2019) 

SERPING1 c.-22-
155G>T 

ENSG00000149131 Hereditary 
angioedema 

   (Germenis and 
Cicardi 2019) 
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SLC20A2 
c.289+937G>A 

ENSG00000168575 Primary familial 
brain calcification 

new splice 
acceptor site 

38-bp 
pseudoexon 

inclusion 

 (Chen et al. 
2019) 

SLC46A1 c.1166-
285T>G 

ENSG00000076351 Hereditary folate 
malabsorption  

new splice donor 
site 

168bp 
pseudoexon 

inclusion 

 (Tozawa et al. 
2019) 

SPG7 
c.286+853A>G 

ENSG00000197912 Hereditary spastic 
paraplegia 

U1snRNP binding 
creation 

75bp 
pseudoexon 

inclusion 

compound 
heterozygous 

(Verdura et al. 
2020) 

TMEM165 
c.792+182G>A 

ENSG00000134851 Congenital 
Disorder of 

Glycosylation  

new splice donor 
site & alter cryptic 
splice donor site 

strength 

117bp 
pseudoexon 

inclusion 

 (Foulquier et al. 
2012) 

TULP1 
c.718+23G>A 

ENSG00000112041 Photoreceptor 
Dystrophy 

exon extension 20bp exon 
extension 

 compound 
heterozygous 

(Verbakel et al. 
2019) 

USH2A c.7595-
2144A>G 

ENSG00000042781 Usher syndrome alter cryptic splice 
donor site 

pseudoexon 
inclusion 

 (Vaché et al. 
2012) 

Table S II.4. Protein prediction tools evaluated in subset of missense variants within the HCM 

dataset 

Tool  Threshold Method Data used Description Other 

scores 

added 

Obtained 

from 

SIFT (Kumar, 

Henikoff, and 

Ng 2009) 

 < 0.05 

(Liu et al. 

2016) 

Sequence homology 

search using PSI-

BLAST to build 

multiple alignments to 

further infer a position 

specific scoring matrix 

1,750 deleterious and 

2,254 tolerant 

nsSNVs of E. coli LacI 

gene 

Homology-based 

prediction of the tolerance 

of a given aminoacid 

substitution 

No dbNSFP 

v4.02 

PolyPhen-2 

HDIV 

(Adzhubei et 

al. 2010)  

 > 0.5 (Liu 

et al. 

2016) 

Naïve Bayes classifier 5,564 damaging 

alleles from Uniprot; 

7,539 neutral 

mutations 

Prediction of impact of an 

amino acid substitution on 

the structure and function 

of a human protein.  

No dbNSFP 

v4.02 

PolyPhen-2 

HVAR 

(Adzhubei et 

al. 2010) 

 > 0.5 (Liu 

et al. 

2016) 

Naïve Bayes classifier 22,196 damaging 

alleles from Uniprot; 

21,119 neutral 

mutations 

Prediction of impact of an 

amino acid substitution on 

the structure and function 

of a human protein.  

No dbNSFP 

v4.02 

LRT (Chun 

and Fay 

2009) 

 < 0.01(Liu 

et al. 

2016) 

Likelihood Ratio Test Protein coding 

regions of 32 

vertebrates and 3 

human genomes 

Identification of 

deleterious mutations 

within protein-coding 

sequences. Obtained via 

dbNSFP v4.02 

No dbNSFP 

v4.02 

Mutation 

Assessor 

(Reva, 

Antipin, and 

Sander 2011) 

 > 1.935 

(Liu et al. 

2016) 

Combinatorial entropy 

approach 

Multiple alignments of 

sequence homologs 

from the Uniprot 

database 

Functional impact of 

protein mutations based 

on evolutionary 

information 

No dbNSFP 

v4.02 

FATHMM 

(Shihab et al. 

2015) 

 < -1.5 

(Shihab et 

al. 2015) 

Sequence homology 

and Hidden Markov 

Models combined with 

protein domain 

annotations 

SNVs from HGMD 

and UniProt 

Prediction of the 

functional impact of 

protein missense 

mutations.  

No dbNSFP 

v4.02 

PROVEAN 

(Choi and 

Chan 2015)  

 < -2.5 (Liu 

et al. 

2016) 

Sequence homology 

search and BLAST 

hits clustering 

followed by a delta 

alignment score 

calculation 

NCBI nr protein 

database and ~58k 

variants from Uniprot 

Predicts whether an 

amino acid substitution or 

indel has an impact on 

the biological function of a 

protein.  

No dbNSFP 

v4.02 
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Mutation 

Taster2 

(Schwarz et 

al. 2014) 

 > 0.5 (Liu 

et al. 

2016) 

Naïve Bayes classifier Disease associated 

mutations from 

HGMD and Clinvar + 

neutral SNVs from 

1000G 

Prediction of the 

functional consequences 

of protein-coding 

substitutions, splice site 

and intronic alterations.   

No dbNSFP 

v4.02 

MutPred2 

(Pejaver et al. 

2017) 

 > 0.5 

(Pejaver 

et al. 

2017) 

Random Forest Protein substitutions 

from HGMD, 

Swissprot and cancer-

related datasets 

Based upon aminoacid 

sequence, it models the 

changes in the structure 

and function of proteins. It 

incorporates SIFT 

predictions.  

Yes dbNSFP 

v4.02 

Condel 

(González-

Pérez and 

López-Bigas 

2011) 

 > 0.98 

(González

-Pérez 

and 

López-

Bigas 

2011) 

Weighted average of 

the normalized scores 

of several tools  

Variants from HumVar 

and HumDiv datasets 

Unified classification of 

Nonsynonymous SNVs 

based on the integration 

of several individual tools 

Yes VEP plugin 

CAROL 

(Lopes et al. 

2012) 

 > 0.468 

(Lopes et 

al. 2012) 

Weighted Z method  SIFT and PolyPhen2 

scores 

Combination of SIFT and 

PolyPhen2 into a 

functional annotation 

score for non-

synonymous variants 

Yes VEP plugin 

M-CAP 

(Jagadeesh 

et al. 2016) 

 > 0.025 

(Jagadee

sh et al. 

2016) 

Gradient boosting 

trees 

12,418 pathogenic 

variants from HGMD; 

3,137,919 benign 

dataset retrieved from 

ExAC v0.3  

Pathogenicity likelihood 

score that aims to 

aggressively reduce the 

number of variants of 

uncertain significance 

(VUS) 

Yes dbNSFP 

v4.02 

REVEL(Ioann

idis et al. 

2016) 

 > 0.5 

(Ioannidis 

et al. 

2016) 

Random Forest 6,182 disease 

variants from HGMD ; 

123,706 putative 

neutral missense 

variants from the 

Exome Sequencing 

Project (ESP) 

An Ensemble method for 

predicting the 

pathogenicity of rare 

missense variants 

Yes dbNSFP 

v4.02 

VEST4 

(Carter et al. 

2013) 

 > 0.67 

(Carter et 

al. 2013) 

Random Forest 47,724 disease 

variants from HGMD ; 

45,818 putative 

neutral missense 

variants from ESP 

Prioritization of rare 

missense variants with 

likely involvement in 

human disease. 

Yes dbNSFP 

v4.02 

MetaSVM 

(Dong et al. 

2015) 

 > 0.5 

(Dong et 

al. 2015) 

Support Vector 

Machine 

14,191 deleterious 

and 22,001 neutral 

variants from Uniprot 

An Ensemble method for 

predicting 

nonsynonymous variants 

using 9 independent 

scores and allele 

frequencies 

Yes dbNSFP 

v4.02 

MetaLR 

(Dong et al. 

2015) 

 > 0.5 

(Dong et 

al. 2015) 

Logistic Regressor Same as MetaSVM Same as MetaSVM Yes dbNSFP 

v4.02 
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III. GENE EDITING BY CRISPR TO CREATE 

ISOGENIC HCM DISEASE MODELS  

 

 

 

 

 

 

 

 

 

 

 

 



142 
 

 



143 
 

III.1. ABSTRACT 

Hypertrophic cardiomyopathy (HCM) is an inherited heart disease with an estimated 

prevalence higher than 1:500 caused by mutations in sarcomeric proteins. Disease presentation 

is extremely heterogeneous even in patients bearing the same mutation. 

Recent advances in stem cell technologies, with the discovery of induced pluripotent stem 

cells (iPSCs) and their differentiation into cardiomyocytes, provided a pathophysiologic relevant 

approach to understand the mechanisms of disease. Nonetheless, the creation of reliable disease 

models for HCM that allow to overcome the disease heterogeneity and establish trustworthy 

genotype-phenotype relations requires the use of isogenic controls. Here we apply the 

CRISPR/Cas9 gene-editing system to introduce an HCM-associated variant in a healthy donor 

hiPSCs in order to help build such a model. 

 Development of CRISPR/Cas9 technology greatly improved the ability to precisely modify a 

chosen locus with minimal impact on the remaining genome and consequently the usefulness of 

hiPSCs for disease modeling purposes. However, its application still poses important challenges 

namely low homology direct repair (HDR) efficiency, frequently detected unwanted mutations or 

issues with cell viability, which are further discussed. 

 

 

 

 

Key words: CRISPR; hypertrophic cardiomyopathy; human pluripotent stem cells; cellular 

disease models 
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III.2. INTRODUCTION 

HCM is a primary disease of the myocardium and the most common hereditary disease of 

the heart, occurring in more than 1:500 individuals and often leading to sudden cardiac death in 

young adults (Maron, Rowin, and Maron 2018; Maron 2018). Most HCM is caused by inherited 

autosomal dominant gene mutations with variable expressivity and penetrance. These mutations 

occur predominantly in genes that code for structural and functional components of the sarcomere 

and until date, more than 1000 mutations have been identified in at least 15 different genes (Elliott 

et al. 2014; Marian and Braunwald 2017; Skelton et al. 2014). The majority of identified HCM 

disease causing mutations are missense; however, with the increasing use of NGS approaches 

in clinical diagnosis, experimental evidences pointing for the role of non-coding variants in human 

disease, namely in HCM, are growing. Among these, splicing mutations appear as an important 

subgroup, highlighting splicing has a relevant and overlooked mechanism in human genetic 

diseases, mainly when considering variants found in non-canonical splice-sites, such as deep 

intronic variants, for each is particularly challenging establish a genotype-phenotype relationship, 

proving them as disease causing variants.  

Gene-editing approaches such as the CRISPR/Cas9 technology, by allowing introduction of 

a single variant in any desired genomic region, are emerging as a powerful tool in generation of 

isogenic human disease models, where the impact of any variant of interest may be successfully 

addressed. In particular, the combination of CRISPR/Cas9 approaches with the recent 

emergence of human induced pluripotent stem cells (hiPSCs) represents a promising tool for 

disease modeling, since this cell type have unlimited expansion potential and can be differentiated 

into most cell lineages of the human body including cardiomyocytes (Takahashi et al. 2007; 

Yoshida and Yamanaka 2017). Since their discovery hiPSCs have been widely used for the study 

of inherited cardiac diseases, with over 90 studies using hiPSCs derived cardiomyocytes (hiPSC-

CMs) for cardiac disease modeling being published until date (van Mil et al. 2018). Even though 
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disease modelling of HCM using hPSC-CMs has been proven to offer a pathophysiologic relevant 

approach to understand the mechanisms of disease, most of these studies lack isogenic controls 

which confounds the establishment of reliable genotype-phenotype correlations (Ma et al. 2018; 

Wang et al. 2018; Mosqueira et al. 2018), raising the need to combine them with gene-editing 

methodologies in order to obtain isogenic controls and trustworthy disease models (Yoshida and 

Yamanaka 2017).  

The use or CRISPR/Cas9 to introduce any given variant of interest in healthy donor hiPSCs 

allows to determine if such variant is causing the disease upon differentiation of gene-edited 

hiPSCs into cardiomyocytes that recapitulate the disease phenotype. Moreover, simultaneous 

differentiation of the healthy donor hiPSCs provides a isogenic control that allows to access if the 

variant sufficient to cause the disease phenotype, regardless of the genetic background 

(Musunuru et al. 2018). 

Despite being a powerful genome-editing tool, CRISPR/Cas9 accuracy can severely be 

reduced by its tendency to re-edit previously modified loci, causing unwanted mutations (indels) 

along with intended changes (Doudna and Charpentier 2014). Importantly, the selective and 

scarless introduction of mono-allelic single nucleotide sequence modifications is particularly 

critical for the study of variants expected to have a non-coding effect since, if variants other than 

the study variant are present, it is not possible to prove that any effect seen at the cellular level is 

solely due to the variant of interest .  

For this reason, in this study, we decided to use a recently reported CRISPR-Cas9 strategy 

termed “CORRECT re-Cas” approach, which involves two rounds of CRISPR and where silent 

CRISPR-Cas9 blocking mutations are incorporated along with the pathogenic mutation of interest. 

Briefly, in a first round of CRISPR, the variant of interest “X” is introduced in a target locus along 

with a blocking mutation, “B”, by an HDR repair template (XB template). This blocking mutation 

prevents the recognition of the PAM sequence by the Cas9 thus preventing repeated cutting and 

subsequent unwanted mutations. Then, in a second round of CRISPR, the altered PAM sequence 
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is targeted by a Cas9 mutant (Cas9-VRER) and the template used preserves the intended 

mutation while removing the blocking mutation (X template) (Kwart et al. 2017). Moreover, to 

obtain the desired mono-allelic modifications, the chosen guide RNA was designed to provide a 

cut-to-mutation distance between 10-12bps, described as the ideal cut-to-variant distance to favor 

heterozygous incorporation of the intended mutation (Paquet et al. 2016). An overview of the 

CORRECT re-Cas editing strategy in the creation of a hiPSC line with the mono-allelic 

modification for the MYBPC3 c.927-2A>G variant is depicted in Figure III.1. 

 

Figure III.1. CORRECT re-Cas strategy. In the first round a PAM altering mutation “B” (NGG > NGCG) 

is introduced by HDR along with the MYBPC3 c.927-2A>G mutation “X” using the “XB template”. In 

the second round the altered PAM sequence is targeted by the Cas9-VRER and “B” is removed, 

resulting in the introduction of the c.927-2A>G variant alone.  

The aim of this work was to use the CRISPR/Cas9 system to generate hiPSC lines carrying 

candidate genetic variants predicted to affect splicing, previously identified in HCM patients. This 

hiPSC lines, by being an isogenic cellular model, upon cardiomyocyte differentiation, will allow to 

study the effect of each individual genetic variant in cardiomyocyte differentiation and function 

and, by that, their potential clinical relevance. 
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III.3. METHODS AND RESULTS 

Chosen variant 

In order to select a variant that could be used as a proof of concept for our work model, the 

ClinVar database (Landrum et al. 2014) was searched for well-described, pathogenic, splice-site 

variants associated with HCM. Selected variants were then analyzed by bioinformatic tools to 

predict their impact on splicing, and literature search on these variants was performed concerning 

familial segregation pattern and functional impact. 

The computational prediction tools used were Human Splicing Finder (HSF) and 

MaxEntScan. HSF predicts the impact that a variant might have on splicing by employing 

algorithms to evaluate the strength of cryptic donor and acceptor splice sites as well as cis-acting 

elements such as enhancer and silencer motifs, created by the presence of the variant, comparing 

their strength to the consensus sites and issuing a score that reflects the probability of splicing 

alterations due to that specific mutation (Desmet et al. 2009). Similarly, the MaxEntScan method 

assigns a score to the 5’ or 3’ splicing sequences and compares reference and mutated motifs 

scores to predict the usage of the splice site. Given two splicing sequences, i.e. wild-type and 

mutated, the higher scoring sequence has a superior likelihood of being used in detriment of the 

other (Eng et al. 2004; Leman et al. 2018).  

Considering the splice-altering scores obtained from the computational tools and the 

available literature, the MYBPC3 c.927-2A>G was selected as the first variant to be tested (Figure 

III.2).  
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Figure III.2. Scheme of MYBPC3 c.927-2A>G variant location, identification and predicted 

consequences. The variant is located in the canonical acceptor site and serves as a positive control 

for a variant that may alters splicing. Scheme depicts the normal intron splicing (blue) and the 

hyphotesized splicing alteration caused by the variant (orange, dashed lines). HSF and Max Ent 

Scores are also presented.  

 

This variant is predicted to destroy the canonical splice acceptor site in intron 11, leading to 

skipping of MYBPC3 exon 12. Such abnormal MYBPC3 RNAs can either give rise to a truncated 

protein (if in frame exon skipping occurs) or be subjected to NMD leading to a haploinsufficiency 

phenotype (due to generation of PTC). Studies shown that this variant associates with 

cardiomyopathy, heart failure, ventricular tachycardia and atrial fibrillation (Adalsteinsdottir et al. 

2014; Norland et al. 2019). It has been reported in multiple unrelated individuals with HCM 

(Niimura et al. 1998; Richard et al. 2003; Ehlermann et al. 2008; Yiu et al. 2012; Adalsteinsdottir 

et al. 2014) and segregates with the disease within families (Bonne et al. 1995; Ehlermann et al. 

2008; Christiaans et al. 2010). Moreover, mRNA from lymphoblastoid cells derived from affected 

family members with this variant showed evidence of aberrant splicing (Bonne et al. 1995; Niimura 

et al. 1998) and it was observed in large population cohorts with an allele frequency as low as 

8.7x10-6 (Karczewski et al. 2019).  

HSF Score: -

MYBPC3 c.927-

MaxEnt 3’ Score: 

431.14 % 

Ref Sequence: -1.83 

Mut Sequence: -9.72 

 

GRCh37.p13 GRCh38.p12 rs_id 

11:47367923 11:47346372 rs397516082 
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Maintenance of human iPSCs  

We used the DF6.9.9 T.B cell line (WiCell®), a vector-free commercially available human iPS 

cell line reprogrammed from foreskin fibroblasts (Junying et al. 2009). 

hiPSCs were cultured on Matrigel™(Corning)-coated plates with mTeSR™1 Medium 

(StemCell Technologies). Medium was changed daily. Cells were passaged every three to four 

days (at a confluency of approximately 85% of the surface area of the culture dish) using 0.5mM 

EDTA dissociation buffer (Life Technologies). Two to three passages were performed before the 

transfection. 

Validation of target  genomic sequences 

Genomic DNA was isolated from the DF6 hiPSC line using a standard protocol. Then target 

region was amplified by PCR. PCR products were purified using the PCR Clean protocol from the 

NZYGelpure Kit (NZYTech) and sent for sequencing by Sanger at STAB Vida or Eurofins 

Genomics, according to the conditions defined by the designated company. Produced 

chromatograms were aligned to the genomic sequence to confirm the absence of target variant, 

as shown in Figure III.3. The DF6 hiPSC line was confirmed to be WT for the chosen variant. 

 
Figure III.3. Validation of target genomic sequence. Absence of the MYBPC3 c.927-2A>G variant in 

the hiPSC DF6 cell line. 
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gRNAs design and activity test 

Candidate sgRNAs for the target variants were initially chosen using the available 

bioinformatics tool website from Zhang laboratory (http://crispr.mit.edu/) according to their scores 

and predicted off-target effects as previously described (Ran et al. 2013). It was also considered 

the cut-to-mutation distance since, as described by Paquet et. al., to introduce a mutation in 

heterozygoty the sgRNA should mediate the Cas9 cut at a distance of 2-26 bp from the mutation 

site, with the optimal being between 10-12 bp (Paquet et al. 2016; Kwart et al. 2017). Guide RNAs 

that fulfilled these criteria were chosen and designed according to what was previously described. 

MLM3636 U6-sgRNA expression vector backbone (Addgene #43860) was digested for 1 

hour at 37ºC with BsmBI. The linearized plasmid was then dephosphorylated using the Fast AP 

Enzyme (Thermo Scientific) for 10 minutes at 37 ºC followed by 5 minutes at 75ºC, to avoid 

linearized plasmid religation. Synthetized sgRNAs were annealed and cloned into linearized 

plasmid using T4 DNA ligase (Thermo Scientific) overnight at 4ºC. Ligated MLM3636 vectors 

were transformed into DH5α chemically competent E.Coli, plasmid DNA was extracted with the 

Mini Prep Protocol for isolation and purification of plasmid DNA (NZYTech) and analyzed by 

Sanger sequencing to ensure correct cloning of the sgRNA in the vector. 

The efficiency of the chosen gRNAs was tested using the GeneArt® Genomic Cleavage 

Detection Kit (Thermo Fisher), according to the manufacturer’s instructions. Briefly, HEK293T 

cells at 70-90% confluency were transfected with pCas9_GFP (Addgene #44719) and MLM3636 

with sgRNA, using Lipofectamine® 2000 Reagent (Invitrogen). Cells were incubated for 48 hours 

at 37°C with 5% CO2 before being collected and lysed. Cell lysates were then used as template 

for PCR amplification of the target genomic region, in parallel with a control reaction to ensure the 

good performance of the detection kit. Afterwards, these PCR products were run in a thermal 

cycler program to randomly anneal the PCR fragments with and without indels to form 

heterogeneous DNA duplexes. The heteroduplex DNAs that contain mismatches, meaning that 

http://crispr.mit.edu/
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Cas9 introduced a DSB that, in absence of an HDR template, was repaired by NHEJ resulting in 

the incorporation of indel mutations, were cleaved by the Detection Enzyme for 1 hour at 37°C 

and resulting samples were subsequently ran on a 2% agarose gel (0.5x TBE, EtBr).  

The process of sgRNA design and testing for the MYBPC3 c.927-2A>G variant is depicted in Figure 

III.4. and shows efficient in the guidance of the Cas9 to the intended genomic target site by the 

chosen sgRNA. The chosen sgRNA sequence is shown in  

Table III.1. 

 

Figure III.4. Design and activity test of sgRNA. Design of a gRNA with cut site 10bp upstream of 

variant, which inside the ideal described cut-to-variant distance to favor heterozygous. Activity test 

shows that the correct genomic locus is being targeted by the presence of two bands corresponding 

to the cleaved DNA (arrows in red) with sizes consistent with the distance to the cut site, results 

from the PCR Kit sample are positive control and from MLM3636 with no sgRNA a negative control. 

 

Table III.1. Chosen sgRNAs for MYBPC3 c.927-2A>G target variant. 

 

 

HDR template design 

The donor template to be used in the first round of edition (BX template) should contain the 

intended variant and a blocking mutation that prevents PAM detection by mutating the NGG to 

sgRNA Sense Antisense 

MYBPC3 5´- ACACCgCCGGCCACAGCCTAGACTGCG- 3´ 5´- AAACGCAGTCTAGGCTGTGGCCGGCcG - 3´ 
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NGCG, which is recognized by a Cas9 variant (Cas9 VRER), to be used in the second round of 

edition. The donor template for the second round of edition (X template) should contain only the 

intended variant (Kwart et al. 2017). 

Both a plasmid containing homology arms (HA) and a single-stranded donor oligonucleotide 

(ssODN) were designed to be used as HDR repair templates. 

The donor plasmid was created amplifying by PCR the region that comprised target variant 

flanked by ~1kb HA, from DF6 hiPSC genomic DNA, with primers containing the appropriate 

restriction enzyme sequence, in order to get “sticky ends” for the ligation to the plasmid (Table 

III.2). PCR products were purified from gel with the Gel Extraction Protocol from the NZYGelpure 

Kit (NZYTech). The generated HA constructs were cloned into pPur plasmid by digestion of the 

plasmid with the indicated (BamHI and EcoRI) restriction enzymes. Dephosphorylation of the pPur 

plasmid, ligation, bacterial transformation and plasmid DNA purification were performed as above. 

Sanger sequencing was used to confirm that the HA insert was correctly cloned in the vector and 

site directed mutagenesis was performed in order to introduce the chosen variant and PAM 

altering nucleotide (Figure III.5.A.). 

Table III.2. Primers for HA design. 

  

The ssODN was designed to have 100-nt centered around the cut site promoted by the 

chosen gRNA and using the sequence of the nontargeted strand in order to avoid base-pairing 

between the gRNA and repair oligo (Figure III.5.B.). 

Primer Prod. Size Sequence  BamHI GGATCC 

MYBPC3_Fwd 
1742 

GCAGGATCCGTCCCGTCAACAGTCATCCT  EcoRI GAATTC 

MYBPC3_Rev GCAGAATTCCCTCCATTCAGTCGGTGTTT  +3 nucleotides GCA 
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Figure III.5. HDR templates design. Design of the BX template to be used in the first CRISPR round, 

bearing the PAM-altering CRISPR/Cas9-blocking mutation and our desired mutation MYBPC3 c.927-

2A>G. A- pPur plasmid containing the HA with the intended mutation plus the NGG>NGCG. B- 100-

nt ssODN centered around the cut site, using the sequence of the same strand as the gRNA 

containing the PAM-altering mutation and our desired mutation. 

Edition steps 

As already mentioned, the chosen variant was the MYBPC3 c.927-2A>G variant since it 

would work as a proof of concept for our work model. Edition steps described below were 

performed for this variant and are illustrated in Figure III.6. 

Transfection  

For the transfection two different strategies were used: electroporation, using the Neon® 

Transfection System (Invitrogen) and lipofection with Lipofectamine® 3000 Reagent (Invitrogen). 
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Electroporation 

In brief, for electroporation transfection, cells were treated with ROCKi (Y-27632, 10μM, 

StemCell Technologies) for 24h at 37ºC prior to electroporation and then dissociated using 

Accutase (Sigma) for 7 min at 37ºC. After dissociation, 2x106 cells were carefully resuspended in 

150µL of cold R buffer (Neon Transfection Kit) and kept on ice. Just before electroporation cells 

were added and mixed with the DNAs to be transfected (pCas9_GFP; MLM3636_sgRNA; donor 

plasmid or ssODN). This mixture was then carefully aspirated into the 100-μl Neon tip and placed 

on the pipette station, as per manufacturer instructions, and electroporation was performed using 

selected conditions. Electroporated cells were subsequently plated in a pre-warmed Matrigel-

coated 6-well plate with mTeSR™1 + 10μM ROCKi (~1x106 cells/well) and incubated at 37ºC 5% 

CO2 for 48h, replacing the media with fresh mTeSR™1 each 24h. 

To select electroporation parameters to be used, considering cell viability and transfection 

efficiency, DF6 hiPSCs were first transfected only with 20 µg of pCas9_GFP (Table III.3). After 

analysis of GFP+ transfected cells by flow cytometry, 72h post transfection, the parameters 

selected for further experiments were 1400V / 5ms / 3 pulses since they result in less cell death 

and a reasonable transfection efficiency. With the 1150V / 30ms / 2 pulses parameters there was 

more cell death for the same transfection efficiency, and with 1600V / 20ms / 1 pulse the efficiency 

was the highest but almost all cells died. 

In edition experiments, cells were treated as described and electroporated using the chosen 

parameters and DNA amounts selected according to the literature and protocols previously 

established in the lab (Table III.3.) (Kwart et al. 2017). For the conditions using donor plasmid 

constructs as templates for HDR, a mix of template with the mutation and without was used in 

order to favor heterozygous. 
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Table III.3. Amounts of DNA to be tansfected and electroporation parameters to be used. 

Electroporation parameters 
1400 Volts / 5miliseconds / 

3 pulses 

1150V / 30ms / 

 2 pulses 

1600V / 20ms /  

1 pulse 

D
N

A
 a

m
o

u
n
ts

 

Electroporation 

parameters test 
20 µg Cas9_GFP 

20 µg 

Cas9_GFP 

20 µg 

Cas9_GFP 

Kwart et.al., 2017 

conditions 

20 µg Cas9_GFP 

5µg sgRNA  

3 µg ssODN 

  

Kwart et.al., 2017 

conditions adapted to 

HA 

20 µg Cas9_GFP 

5µg sgRNA 

15 µg pPUR_HA_BX 

15 µg pPUR_HA 

  

HA conditions 

5 µg Cas9_GFP 

2,5µg sgRNA 

2 µg pPUR_HA_BX 

2 µg pPUR_HA 

  

Lipofection 

For lipofection, hiPSCs were treated and dissociated to obtain single-cell suspensions as 

previously described. After counting, 1x105 cells were plated per 24 well-plate coated with 

Matrigel. The following day, medium was changed, and transfection of the gene-editing reagents 

was performed by lipofection, using Lipofectamine® 3000 Reagent (Invitrogen) according to 

manufacturer’s protocol. The DNA amounts used in the transfection were: 50 ng sgRNA, 200 ng 

pCas9-GFP and 250ng ssODN or 100ng sgRNA, 400ng pCas9_GFP and 600ng ssODN. 

Selection of GFP+ hiPSCs by FACS 

72h after transfection cells were dissociated into single-cell suspension, as previously 

described. Cell pellets were resuspended in 200-1000 μL of mTeSR™1 with 10 μM ROCKi and 

filtered through a 70μm strainer before proceeding to the sorting, in a BD FACS Aria IIu (BD 

Biosciences). Between 3×104 to 5×104 GFP+ sorted cells were plated in 10 cm culture dishes 

coated with Matrigel with mTeSR™1 supplemented with 10µM ROCKi, in order to form 

individualized clones. Cells were incubated at 37°C, 5% CO2 for 48 hours after which half of the 
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medium was replaced with fresh mTeSR™1 with 10µM ROCKi.  72h after sorting, full feeds with 

mTeSR™1 were performed every day to every other day until single-cell clone colonies emerge 

(typically 12 days after sorting).  

hiPSCs clone picking 

hiPSC clones were picked with the help of a microscope (JuLITM, NanoEnTek) and a 

micropipette, inside the flow chamber to a 96 or 48-well plate with mTeSR1+ROCKi. 48 hours 

after picking, the ROCKi was removed and clones were maintained in culture with daily medium 

changes until splitting. 

Splitting of hiPSCs clones  

Clones were passaged using Accutase, as previously described. A fraction of the cell 

suspension was maintained in culture in a 96 or 48-well plate. The remaining cells were used for 

DNA isolation and sequencing of the target region to identify correctly gene-edited clones.  

Confirmation of the XB clones by Sanger sequencing 

After clone splitting, ~ half of cells from each clone were pelleted and genomic DNA was 

isolated as previously described (Kwart et al. 2017). Briefly, cells were lysed overnight at 65°C 

with a Nuclear Lysis Buffer containing Proteinase K. DNA was precipitated with an EtOH/NaCl 

solution (1.5% 5M NaCl in absolute EtOH) and DNA pellets were washed with EtOH 70%, air-

dried and resuspended in RNase/DNase free H2O.  

From the first 25 clones screened by Sanger sequencing, 2 (#14 and #17) had the desired 

mutations in heterozygosity, as shown in Figure III.6., suggesting a high efficiency of the edition 

protocol.  
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Figure III.6. Edition steps followed to obtain the hiPSCs with mono-allelic blocking and desired mutation 

(BX hiPSCs). Electroporation conditions used; selection of transfected cells by FACS for GFP; clone picking 

and confirmation of the XB clones by Sanger sequencing. 

Gene-edited clones were further expanded and frozen. However, upon thawing, and prior to 

second round of edition, cells show low viability and proliferating capability. This led to the 

impossibly to maintain these cells in culture and perform further experiments. 

Subsequently, two more attempts to obtain clones with the intended mutation were made 

using the same parameters and the ssODN as repair template, but no correctly edited clones 

could be obtained, despite some had indel mutations in the target region. 

In order to promote HDR and enhance cell viability some derivations of the protocol were 

also tried. These attempts included using different electroporation parameters or choosing the 

lipofection method, that causes less cell death, combined with a “cold shock” step to promote 

HDR, in which in the first 48 hours after transfection cells were incubated at 32°C (Guo et al. 

2018) (Table III.4.).  

Table III.4. Variations to the edition protocol. 

 

Electroporation Lipotransfection 

• 1200V /10ms / 2pulses 

• 1400V / 5ms / 2 pulses 

• 20 µg Cas9_GFP 

• 5µg sgRNA  

• 3 µg ssODN 

• 400ng Cas9_GFP 

• 100ng sgRNA  

• 600ng ssODN 

• 1,5 uL Lipo 3000 
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We also tested the transfection of Cas9-Gem mRNA instead of GFP-Cas9 plasmid DNA. 

Cas9-Gem mRNA was shown to promote HDR due to its transitory and cell-cycle-tailored 

expression resulting in low levels of Cas9 in G1 (when the HDR mechanism is absent), but high 

expression in S/G2/M, the cell cycle phases where HDR mechanism is active (Gutschner et al. 

2016).  

In total at least 8 edition experiments were attempted, with 120 to 230 clones screened from 

each one, but none lead to the obtention of correctly edited viable clones. 
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III.4. DISCUSSION 

New experimental tools are needed for the study of HCM in order to improve molecular 

diagnosis and aid the development of new targeted therapies.  

Since HCM is extremely heterogeneous, with patients bearing the same mutation presenting 

entirely different phenotypes and clinical outcomes, and establishing reliable genotype-phenotype 

correlations is challenging, the use of isogenic controls is of uttermost importance. 

Development of CRISPR/Cas9 system greatly improved gene-editing approaches rendering 

more feasible to create isogenic sets of “diseased” and control hiPSCs. Even though edited 

hiPSCs lines have already been established in several studies, the low efficiency of gene-editing 

in these cells remains a serious challenge in the field, with different laboratories reporting HDR 

efficiencies that range from 0.1 – 2% (Miyaoka et al. 2016; Paquet et al. 2016). 

The primary protocol followed for this work was adapted from Kwart et al. who developed this 

gene-editing approach based on the observation that in many of the cells, where the DSBs had 

been repaired through HDR, there were also indel mutations, due to a subsequent re-cutting by 

the Cas9 of a correctly edited locus. Using CRISPR/Cas-blocking mutations at the PAM site would 

minimize re-cutting by the Cas9 nuclease and so subsequent indels (Kwart et al. 2017). 

After the first round of edition using this protocol, we obtained two correctly edited clones, 

containing the blocking mutation and our intended variant. The edited clones were amplified and 

did not show evident morphological changes or a marked decrease in replication rate that could 

indicate spontaneous differentiation or foresee future culturing difficulties. Despite that, upon 

thawing the clones to perform the second round of editing, their viability was very low, and it was 

impossible to recover them. It is possible that, although no morphologic changes were noted, our 

edited clones had lost pluripotency and were not in ideal conditions when cryopreserved. Despite 

the use of experimental strategies to improve the rate of cells edited by the HDR pathway, the 

edition efficiency is still very low, and to overcome this low efficiency, several hundred clones 
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must be isolated, expanded and screened, which translates in a multistep process with prolonged 

periods of cells in culture, eventually under suboptimal conditions. One important issue should be 

optimization of the clone picking and screening techniques used in order to reduce the time clones 

are kept in culture and enhance their viability. 

An alternative approach for reducing the time spent with clones in culture could be their 

cryopreservation after splitting for screening. In this work we did not attempt this approach; 

however previous experience from our lab indicates that freezing hiPSCs in plates leads to the 

death of many cells, which could mean losing the correctly edited clones. This seams a 

reasonable and cost-effective alternative but to be used it would be essential to optimize freezing 

and thawing protocols for this specific condition. 

After two subsequent and unsuccessful gene-editing attempts, using the same protocol and 

conditions, and since several clones screened presented indel mutations in the target region, we 

hypothesized that the sgRNA was efficiently guiding the Cas9 to its target, but the HDR efficiency 

would to be too low to obtain correctly edited clones. It is also important to note that, in addition 

to the inherent difficulties of HDR mediated gene-editing efficiency, hiPSCs are particularly 

sensitive cell lines and some difficulties posed in gene-editing are related to low transfection 

efficiencies and cell viability after transfection of the CRISPR/Cas9 system components. One of 

the most effective transfection approaches is electroporation; however, it typically leads to major 

cell death, which is even more problematic in the case of hiPSCs. Other methods, such as 

lipofection, cause less cell death but are also less effective.  

Taking this into account some derivations of the protocol, intended to enhance cell viability 

or promote HDR, were also tried. In these modified attempts we combined the use of lipofection 

or different electroporation parameters (to lower cell death) with a “cold shock” step to promote 

HDR. Even though the mechanism is not completely understood this “cold shock” step has been 

reported to substantially increase HDR rates, especially when HDR efficiency is lower, and it is 

hypothesized that this is due to the influence of the lower temperature (32ºC) in the cell cycle, 
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leading cells to accumulate in the G2/M stage, which concurs with the phase of the cycle when 

HDR is active (G2) (Guo et al. 2018). 

Lastly, since the primary protocol devised two consecutive rounds of editing and 

accomplishing the first round successfully was already proving to be a challenge, we decided to 

test an alternative strategy to prevent the re-editing and unwanted mutations without making the 

gene-editing process lengthier. For this new approach it was decided to use lipofection and the 

cell-cycle regulated Cas9-Gem mRNA. This approach relies on the fact that the HDR pathway is 

only active in the S and G2 phases of the cell cycle. The fusion of the Cas9 with the Geminin 

peptide leads to their degradation during the G1 phase reducing Cas9 presence when only the 

NHEJ pathway is active and by that promoting a 2 to 3-fold decrease of NHEJ activity. Moreover, 

since mRNA is transfected, instead of a plasmid, the expression of the Cas9 is more transient, 

also contributing to minimize re-cutting activity and the introduction of unwanted mutations in the 

target region (Howden, Thomson, and Little 2018; Howden et al. 2016).   

In addition to the modifications to the gene-editing method already discussed, several other 

approaches have been reported in the literature. Tube electroporation was described to enhance 

transfection efficiency in the hard-to-transfect hiPSCs while present a low cytotoxicity when 

compared to conventional electroporation methods (Xu et al. 2018). Inhibition of the NHEJ 

pathway with small-molecule inhibitors of the DNA ligase IV combined with cell cycle regulation 

of the Cas9 presence, is also reported to result in a higher HDR efficiency (Tang et al. 2019). 

Although the primary objective of this work could not be achieved, this study highlights the 

challenges that the precise introduction of a single nucleotide variant through gene-editing in 

hiPSCs still poses. Moreover, it provides important insights regarding strategies that can be 

applied or should be avoided to improve future gene-edited assays, drawing attention to the fact 

that additional care should be taken regarding time and culture conditions to ensure hiPSCs 

viability and pluripotency after edition.  
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IV.1. ABSTRACT 

A limitation in cardiac research has been the lack of adequate disease models. As an 

alternative to animal models, or primary cells, cardiomyocytes have been derived from human 

induced pluripotent stem cells (hiPSC-CMs). However, many differentiation protocols are only 

able to produce heterogeneous populations of cardiomyocytes, with a low degree of maturation.  

Here we describe a novel combinatory approach, taking advantage of an initial GiWi 3D 

differentiation strategy from which VCAM1 expressing hiPSC-CMs can be purified by FACS and 

further matured in a monolayer culture until day 30 of differentiation. This process allowed the 

generation of homogeneous populations of cardiomyocytes with a higher degree of maturation 

when compared to hiPSC-CMs generated through a standard GiWi monolayer protocol.  

To ensure the capability of this approach to be used as an HCM disease modeling, we also 

differentiated HCM patient-derived hiPSCs and accessed if the generated hiPSC-CMs could 

recapitulate the HCM phenotype at the cellular level, namely increased cellular size, 

multinucleation, and disorganized sarcomeres. 

We anticipate that this approach can be used to better understand mechanisms underlying 

the pathophysiology of HCM and test targeted therapeutic approaches. 

 
 

 

Keywords: cardiomyocytes, hypertrophic cardiomyopathy, human pluripotent stem cells, 

cardiac differentiation; disease models 
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IV.2. INTRODUCTION 

Cardiac diseases are the most prevalent cause of death in the worldwide (World Health 

Organization 2018) and understanding molecular mechanisms underlying many cardiac afflictions 

and identifying individual drug sensitivities is an active field of research.  

The recent emergence of hiPSCs provided an important human cell source to develop 

alternative disease models, based on their in vitro expansion potential and capability to 

differentiate into any somatic cell-type, including cardiomyocytes (Takahashi et al. 2007; Yoshida 

and Yamanaka 2017).   

Cardiac differentiation protocols were greatly improved by the modulation of key signaling 

pathways associated with embryonic heart development that enable to recapitulate to some 

extent the critical stages of cardiac specification, leading to a higher differentiation efficiency 

/yield. One of the most widely applied is based on the temporal modulation of Wnt signaling 

pathway (GiWi protocols) (Karakikes et al. 2015; Lian et al. 2013; Burridge et al. 2014). However, 

the heterogeneity and immature characteristics of the obtained hiPSC-CMs, which resemble more 

the characteristics of fetal CMs than adult ones, may limit their application in generating reliable 

cellular disease models to study genotype-phenotype relations, the impact of VUS or testing new 

therapeutic approaches (Hoes, Bomer, and van der Meer 2019; Purevjav 2019; Musunuru et al. 

2018). To address these concerns different strategies have been proposed for the purification 

and/or maturation of hiPSC-CMs. 

Since the previously mentioned differentiation protocols have been mostly applied in 

monolayer cultures, they do not consider the 3D configuration of the embryo, which provides 

appropriate spatial, temporal and mechanical cues that are crucial for the human heart 

development. Recently, cardiac differentiation and maturation strategies that use a 3D culture to 

mimic the embryonic development of the heart in vitro have emerged. These approaches 
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demonstrated a faster and more reproducible way to generate hiPSC-CMs with higher levels of 

maturity than the ones obtain from similar 2D strategies (Branco et al. 2019; Correia et al. 2018). 

To purify hiPSC-CMs from other cells types that may be present in the differentiated cardiac 

cell cultures, several methods have been proposed. An effective method to do so is by FACS, 

using an antibody for a CM-specific membrane protein, the VCAM-1. VCAM-1 has been identified 

as a CM markers in previous studies, with 80% of TNNT2-expressing cells, at day 11 of 

differentiation, being VCAM+, and 95–98% of VCAM1+ cells being positive for TNNT2 (Uosaki et 

al. 2011; D. A. Elliott et al. 2011).  

Here, we describe a novel combinatory in vitro cardiac differentiation approach, taking 

advantage of an initial GiWi 3D differentiation strategy, from which VCAM-1 expressing hiPSC-

CMs are purified by FACS and further matured in a monolayer culture until day 30 of 

differentiation. 

Using this approach, we aimed to obtain a pure and mature population of hiPSC-CMs that 

could be further used for HCM disease modeling, as standard genetic testing often fails to identify 

causative mutation for this disease and currently available treatments do not target the 

pathophysiology or genetic cause of the disease (Gruner et al. 2013; P. M. Elliott et al. 2014).  

To ensure the capability of the proposed approach to be used in HCM disease modeling, we 

used it to differentiate HCM patient-derived hiPSCs and access if generated hiPSC-CMs could 

recapitulate the HCM phenotype at the cellular level, namely increased cellular size, 

multinucleation and disorganized sarcomeres. 
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IV.3. METHODS 

Maintenance of human iPSCs  

Three commercially available human iPSC lines were used as wild-type (WT) control cell 

lines, namely DF6.9.9 T.B cell line (DF6, WiCell®), reprogrammed from foreskin fibroblasts 

(Junying et al. 2009), F002.1A.13 (TCLab, Portugal), derived from female donor fibroblasts 

(Takahashi et al. 2007) and iPSC6.2 (Gibco®), derived from CD34+ cord blood (Burridge et al. 

2011). Six HCM patient-derived hiPSC lines, reprogrammed from fibroblasts using Sendai virus, 

were also analyzed (Table IV.1.). 

Table IV.1. hiPSC lines derived from HCM patients used in the study. AA - amino acid; Ref – 

reference nucleotide; Alt – HCM altered nucleotide. 

Name 
Mutated 

gene 
AA change 

Start 

coordinate 
Ref Alt 

Miov 
TTN 

p.F17690L 179430596 A G 

p.V20731M 179418346 C T 

p.I22692T 179410693 A G 

p.I10273T 179538425 A G 

MYH7 p.R663C 23896043 G A 
      

iooi 
TTN 

p.K6071N 179486037 C A 

p.E7030K 179582913 C T 

MYBPC3 p.R502W 47364249 G A 
      

Ruah TTN 

p.A13755P 179442784 C G 

p.S14161G 179441295 T C 

p.R6843H 179482089 C T 

p.K4646E 

*intronic 
179613191 T C 

      

Jewl TTN 
p.S14161G 179441295 T C 

p.R6843H 179482089 C T 
      

Xutl MYBPC3 p.I1250fs 47353690 C insC 
      

Newl ACTN2 p.Q741R 236920853 A G 
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All human iPSCs were cultured on Matrigel™(Corning)-coated plates with mTeSR™1 

Medium (StemCell Technologies). Medium was changed daily, and cells were passaged every 

three to four days (at a confluence of approximately 85% of the surface area of the culture dish) 

using 0.5mM EDTA dissociation buffer (Life Technologies). Two to three passages were 

performed before starting the differentiation process.  

Cardiac differentiation 

For 2D culture, hiPSCs were seeded onto Matrigel-coated 12-well tissue culture plates and 

cultured in mTeSR™1. Medium was changed daily until a confluence of around 90% was attained. 

For 3D aggregates formation, before seeding, hiPSCs were incubated with ROCKi (Y-27632, 

10μM, StemCell Technologies) for 1 h at 37ºC and then treated with Accutase (Sigma) for 7 min 

at 37ºC. After dissociation, cells were forced to aggregate using microwell plates 

(AggreWell™800, StemCell Technologies) according to the manufacturer’s instructions. Cells 

were plated at a density of 0.9 x 106cells/well (3,000 cells/microwell) in 1.5 mL/well of mTeSR™1 

supplemented with 10μM ROCKi. The day on which the cell seeding was performed was defined 

as day -3. After 24 hours, full volume of the medium was replaced, and aggregates were 

maintained in mTeSR™1 without ROCKi for an additional 48h.  

For hiPSCs differentiation into cardiomyocytes, for both 2D and 3D2D culture conditions, an 

adapted GiWi protocol was used (Lian et al. 2013; Branco et al. 2019). From day 0 to day 6, cells 

were cultured in RPMI 1640 (Thermo Fisher Scientific) supplemented with 2%(v/v) B-27 minus 

insulin (Thermo Fisher Scientific). Then, from day 7 until the end of differentiation, cells were 

cultured in RPMI supplemented with 2%(v/v) B-27 (Thermo Fisher Scientific). At day 0 of 

differentiation, the Wnt signaling pathway was activated using the GSK3 inhibitor CHIR99021 

(Stemgent) at a final concentration of 6 μM, in 2D conditions, and 11 µM, in the 3D aggregates. 

After 24 hours (day 1), full-volume medium replacement with RPMI + B27 minus insulin was 
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performed. At day 3, half of the medium in each well was replaced and cells were supplemented 

with Wnt inhibitor IWP-4 (Stemgent) at a final concentration of 5 µM, for two days. At day 5, a 

total volume of medium change was performed. On day 7, medium was changed for RPMI + B27 

and, in the case of the 3D culture, aggregates were flushed from the AggreWell™800 plate and 

transferred to ultra-low attachment 6-well plates (Costar, Corning). At day 10, full-volume medium 

replacement was performed, and for the 2D differentiation, total volume of RPMI + B27 medium 

was replaced at each 2–3 days, until cell harvest at day 30 of differentiation. For the 3D2D 

differentiation, at day 12, aggregates were dissociated using 0.25% Trypsin-EDTA (Gibco) for 7 

min at 37ºC. After dissociation, cells were washed with 2% fetal bovine serum in phosphate 

buffered saline (1xPBS, 0.1M), resuspended in VCAM1 antibody (BioLegend, 1:50) diluted in 

1xPBS/2% FBS and incubated for 30 min at 37ºC. Afterwards, cells were washed and 

resuspended in with 1xPBS/2% FBS prior to FACS sorting. VCAM1 positive cells were plated on 

wells coated with Matrigel, at a seeding density between 20,000 – 40,000 cells/cm2. For the 

remaining time in culture, two-thirds of the total volume of RPMI + B27 medium was replaced at 

every 2–3 days, until cell harvest at day 30 of differentiation.   

Quantitative real time (qRT)-PCR  

Expression profiles of sarcomeric genes were assessed by qRT-PCR analysis in hiPSC-CMs 

at day 30 of differentiation. As a positive cardiac control, a commercially available human heart 

RNA was used (cat # AM7966, Ambicon, Invitrogen). Briefly, total RNA was extracted using NZYol 

(NZYTech®) with a standard protocol, and contaminating DNA was removed by DNase I 

(Roche®) treatment. Complementary cDNA synthesis was achieved with the Transcriptor High 

Fidelity cDNA Synthesis Kit (Roche®). qRT-PCR was performed using the Universal SYBR Green 

Supermix (Bio-Rad) and specific primers for each gene and/or developmental isoform (Table 

IV.2.) All PCR reactions were run in triplicate, using the ViiA™7 RT-PCR Systems (Applied 
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BioSystems). Data was normalized against the U6 housekeeping gene (or cardiac specific 

TNNT2) and depicted in histograms with mean and standard deviation from at least three 

independent experiments. 

Table IV.2. Primers used for qRT-PCR 

Gene  Foward  Reverse  

U6 CGTTCGGCAGCACATATAC AAATATGGAACGCTTCACGA 

MYBPC3 TAGCAAGAAGCCACGGTCAG CCAGCAATGACTGCGTAAGA 

MYH7 TCGTGCCTGATGACAAACAGGAGT  ATACTCGGTCTCGGCAGTGACTTT 

MYH6 GATAGAGAGACTCCTGCGGC CCGTCTTCCCATTCTCGGTT 

ACTN2 ACTCCCGAGAAGACCATGC CAGGACGGTTGCTGATCC 

TNNT2 total AGAGCGGAAAAGTGGGAAGA GCTGATCTTCATTCAGGTGGT 

TNNT2 fetal AGAGGAGGACTGGAGAGAGG CTGGGCTTTGGTTTGGACTC 

TTN total TTCAGAAGCAACCTTGGGCT GTAACGGCTGCGTAAACGTC 

TTN N2BA GCCTGGAATGAGCCTCACAT ATGTTGCATGACTCCCCAGG 

TTN N2B GGTTGACTGCGGCGAGTATA ACAACTTCTTCCTTTGGTTCAGG 

TNNI1 CAGCTCCACGAGGACTGAAC CTCTTCAGCAAGAGTTTGCG 

TNNI3 CCTCAAGCAGGTGAAGAAGG CAGTAGGCAGGAAGGCTCAG 

 

Immunofluorescence (IF) assays and morphologic characterization of 

hiPSC-CMs 

IF assays were performed using different antibodies against several sarcomeric proteins. 

Briefly, at day 30 of differentiation, hiPSC-CMs were fixed with 3.7% PFA/1xPBS and 

permeabilized with 0.5% Tx100/1XPBS. Next, a double stained with (1) phalloidin conjugated with 

TxRed (Thermo Fisher, T7471) (for detection of actin) and (2) a specific antibody against a given 

sarcomeric protein (Table IV.3), detected by an anti-mouse Alexa Fluor 488-conjugated (A-11018 



177 
 

Thermo Fisher Scientific) was performed overnight at 37ºC, in a moist chamber. Nuclei 

counterstaining was performed using 4’,6-diamidino-2-phenylindole (DAPI, 1μg/mL; Enzo Life 

Sciences). After brief drying, coverslips were mounted in VECTASHIELD® Mounting Medium. 

Fluorescence images were acquired with Zeiss LSM 710 Confocal Laser Point-Scanning 

Microscope. 

Table IV.3. List of primary antibodies and dilutions used for IF assays 

Antibody  Company  Host species  Dilution  

α-Actinin (Actinin) Abcam mouse  1:75  

cMyBP-C (MYBPC3)  Santa Cruz Biotechnology  mouse  1:50  

cTnT (Troponin T) Neomarkers mouse  1:50  

 

hiPSC-CMs cell morphology parameters, namely area and shape descriptors (circularity and 

aspect ratio), were determined in Image J software using standard analysis plugins. Sarcomere 

length and percentage of binucleated cells were also accessed. For each cell line, at least 100 

cells from 2 independent experiments were examined. Cell morphology parameters of control and 

PD hiPSC-CMs were compared using Student’s t-test at a 95% confidence interval. The statistical 

analysis of the data was performed using GraphPad Prim software, version 5.03. 

RNA sequencing 

Total RNA was extracted from hiPSC-CMs at day 30 of differentiation using NZYol 

(NZYTech®), as previously described. Strand-specific RNA libraries were prepared for Illumina 

sequencing using standard protocols. Raw data was preprocessed with TrimGalore v0.4.4. 

Splicing isoform quantification was performed with Salmon v0.13.1. 
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IV.4. RESULTS 

Cardiac differentiation of hiPSCs using a combined 3D/2D approach 

Human iPSCs were differentiated into cardiomyocytes using a 3D/2D combined approach of 

differentiation, purification and maturation steps. The initial 3D differentiation steps were adapted 

from a GiWi protocol previously published (Branco et al. 2019), where hiPSCs were forced to 

aggregate in AggreWell™800 plates and then induced to differentiate into cardiomyocytes (CMs), 

as size-controlled aggregates, via temporal modulation of the Wnt signaling pathway, by 

sequential addition of a GSK3 inhibitor (CHIR99021) and a Wnt inhibitor (IWP-4). After this step, 

on day 12 of differentiation, aggregates were dissociated and cells expressing VCAM-1 were 

isolated by FACS (Uosaki et al. 2011). These purified CMs were replated on wells coated with 

Matrigel and further maintained in 2D culture until cell harvest at day 30 of cardiac differentiation 

Figure IV.1. 

 
Figure IV.1. Schematics illustrating the culture conditions used to induce differentiation of iPSCs to 

cardiomyocytes with the 3D2D differentiation protocol. DF6, TCLab and Gibco cells were forced to 

aggregate in AggreWell™800 plates. CM differentiation was performed following temporal 

modulation of Wnt signalling pathway. On day 7 of differentiation, aggregates were transferred to 

ultra-low attachment plates; then, on day 12, aggregates were dissociated and VCAM1 positive 

cells, sorted by FACS, were replated on wells coated with Matrigel, and kept in 2D monolayer culture 

until day 30 of cardiac differentiation. 
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3D/2D cardiac differentiation of hiPS cells gives rise to a population of 

pure CMs with a high degree of maturation  

The three WT hiPSC lines were differentiated using two different approaches, an established 

GiWi monolayer protocol, adapted from Lian et al., and the 3D/2D approach just described (Lian 

et al. 2013; Branco et al. 2019). hiPSC-CMs at day 30 of differentiation were then collected and 

further analyzed. To access the impact of the introduced FACs purification step in our combined 

3D/2D approach, a fraction of dissociated 3D aggregates not subjected to FACS purification 

(unsorted), as well as cells that were negative for VCAM1 (VCAM1 -) were also collected and 

further analyzed. 

Comparative IF analysis of cells generated through each of the protocols and stained for 

sarcomeric proteins (cMYBPC, cTnT and a-actinin) revealed a marked improvement in cell 

elongation and sarcomere organization, which was evidenced by higher density and more visible 

striation alignment across the cells, in the 3D/2D hiPSC-CMs. In turn, cells differentiated through 

the 2D protocol are rounder, smaller and present less organized and aligned sarcomeres (Figure 

IV.2.). 

The length of sarcomeres within the contractile apparatus was measured, for one of the 

differentiated cell lines, using cells stained with α-actinin (present in the Z-lines of sarcomeres) 

(Figure IV.3.A.). The statistically significant elongation of sarcomere length, from 1.59±0.008 mm 

in 2D hiPSC-CMs to 1.765 ± 0.008 mm in 3D/2D hiPSC-CMs, further confirms a more mature 

phenotype of the generated 3D/2D hiPSC-CMs (Figure IV.3.B.). 
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Figure IV.2. Representative IF image of hiPSC-CMs generated using the 2D or the 3D/2D protocol. 

Cells were stained for: MYBPC3 (a and b), Troponin T (c and d) or α-Actinin (e and f) (green) and F-

actin (red). Nuclei are stained with DAPI (in blue). On the right side, schematic illustrations depict 

the location of the analyzed sarcomeric proteins, with a magnification of the sarcomeric pattern 

formed among them.  
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Figure IV.3. Sarcomere length measurement using IF against α-Actinin. (A) Example of a sarcomere 

measurement. (B)  Quantitative plot of the data collected from 200 and 330 sarcomere 

measurements in 2D or 3D/2D TCLab hiPSC-CMs, respectively. Data represented as mean ± SD. 

***p<0.001,  

To evaluate the performance of the two cardiac differentiation protocols used, the expression 

of sarcomeric genes was accessed by qRT-PCR analysis. Results show that all analyzed 

sarcomeric genes MYBPC3, MYH7, MYH6, ACTN2, TTN, TNNT2 are expressed in the different 

experimental conditions (2D protocol; 3D/2D protocol without purification; and 3D/2D protocol 

VCAM1 positive cells); however, in the 3D2D VCAM+ condition, expression levels were 

significantly higher (Figure IV.4.A.). Interestingly, when normalizing our data to TNNT2 

expression, the differences amongst the expression of the remaining sarcomeric genes were 

attenuated, suggesting the presence of a more homogeneous hiPSC-CM population in 3D/2D 

VCAM1+ cells (Figure IV.4.B.). In contrast, VCAM1 negative cells shown very low to inexistent 

expression levels of cardiac sarcomeric genes (qRT-PCR analysis), and absence of sarcomere 

formation (IF assays) (data not shown), confirming that hiPSC-CMs were positively selected by 

FACs. 

A B
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Figure IV.4. qRT-PCR analysis of sarcomeric genes expression in WT hiPSC-CMs collected on day 

30 of differentiation (average of 3 independent cell lines), under the different experimental 

conditions: 2D protocol (2D_WT); 3D/2D protocol without sorting (3D2D_Unsorted_WT) and 3D/2D 

protocol VCAM1 positive cells (3D2D_VCAM+_WT), compared to human heart as a positive 

reference. (A) Data normalized against housekeeping U6 gene. (B) Data normalized against TNNT2 

(n= 3 independent experiments, data represented as mean ± SD).   

 

 

Since all tested conditions were able to produce hiPSC-CMs, although in different yields, we 

further characterized the degree of maturation of such hiPSC-CMs by accessing the expression 

B 

A 
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levels of different developmental cardiac isoforms of selected sarcomeric genes. Specifically, here 

we evaluated the levels of fetal troponin T (TNNT2), fetal and adult titin (TTN) and fetal and adult 

troponin I (TNNI), by qRT-PCR. Results show that there is an increased expression of the adult 

cardiac isoforms in the 3D/2D VCAM+ hiPSC-CMs population (Figure IV.5.A.). This can be better 

visualized by looking to the ratios between fetal / adult (or total) isoforms, which are higher in the 

2D hiPSC-CMs, demonstrating their tendency to be more immature (Figure IV.5.B). 

 

Figure IV.5. (A) qRT-PCR analysis of sarcomeric splicing isoforms (TNNT2, TTN and TNNI) in WT 

hiPSC-CMs (average of 3 independent cell lines), under the different experimental conditions: 2D 

protocol (2D_WT); 3D/2D protocol without sorting (3D2D_Unsorted_WT) and 3D/2D protocol VCAM1 

positive cells (3D2D_VCAM+_WT), compared to human heart as a positive reference. (B) Ratios 

between fetal/adult (or total) sarcomeric splicing isoforms. (n= 3 independent experiments, data 

represented as mean ± SD).   

 

RNA-seq data analysis further confirmed that 3D/2D VCAM+ hiPSC-CMs are expressing 

splicing isoforms characteristic of the adult heart in greater levels than the fetal ones (Figure 

IV.6.). 

A 
B 
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Figure IV.6. Analysis of TTN and TNNT2 developmental splicing isoforms expressed in hiPSC-CMs 

differentiated from the three WT hiPS cell lines (DF6, Gibco and TCLab). 

3D/2D patient derived hiPSC-CMs  recapitulates HCM phenotype at the 

cellular level 

The expression of cardiac sarcomeric genes in hiPSC-CMs, generated through the previously 

described 3D/2D protocol, either from WT or HCM patient derived hiPSC lines, was further 

evaluated by qRT-PCR. Both HCM and WT hiPSC-CMs show similar levels of expression of the 

analyzed sarcomeric genes, confirming that we were able to successfully generate hiPSC-CMs 

from all tested cell lines (Figure IV.7).  

When evaluating the maturity of such WT and HCM hiPSC-CMs through the expression of 

developmental cardiac splicing isoforms, it can be observed that fetal splicing TNNT2 isoform 

appears enriched in some HCM iPSC-CMs relative to WT ones; also, the majority of HCM iPSC-

CMs show reduced levels of the adult splicing N2B TTN isoform relative to control, WT hiPSC-

CMs. Nevertheless, no clear differences regarding fetal TNNI1 and adult TNNI3 expression levels 

were observed among WT and HCM hiPSC-CMs (Figure IV.8.). 
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Figure IV.7. qRT-PCR analysis of sarcomeric genes expression in WT hiPSC-CMs VCAM+ (average 

of 3 independent cell lines) and HCM PD hiPSC-CMs VCAM+ (n= 3 independent experiments, data 

represented as mean ± SD).  

 

Figure IV.8. qRT-PCR analysis of sarcomeric isoforms (TNNT2, TTN and TNNI) in WT hiPSC-CMs 

VCAM+ (average of 3 independent cell lines), and HCM iPSC-CMs VCAM+. (n= 3 independent 

experiments, data represented as mean ± SD). 

Comparative IF analysis of WT and HCM hiPSC-CMs generated through the proposed 3D/2D 

protocol show that HCM hiPSC-CMs are larger, rounder and have a less organized sarcomeric 

structure than the WT ones (Figure IV.9). 
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Figure IV.9. Representative IF image of WT (Control; a, b, c) and HCM (d-Xutl, e- Ruah, f- Ruah) 

hiPSC-CMs generated with the proposed differentiation approach and stained for α-actinin, 

cMYBPC3 or Troponin T (green) and F-actin (red). Nuclei are depicted in blue (DAPI staining).  

To further characterize hiPSC-CMs morphology in a quantitative manner, several cell 

parameters were analyzed, namely shape descriptors (circularity and aspect ratio) and area. The 

percentage of binucleated cells was also analyzed ((Figure IV.10.A,B and C). Results show that 

HCM hiPSC-CMs are larger (area) and rounder than the normal ones (circularity and aspect ratio) 

(Figure IV.10.A, B and C).  Moreover, the percentage of binucleated was found to be elevated in 

the HCM hiPSC-CMs population when compared with the WT ones (Figure IV.10.D).  
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Figure IV.10. Quantification of morphologic parameters and percentage of binucleated cells in WT 

(DF6, Gibco, TCLab) and HCM (Ruah, Xutl, Jewl, Newl, Miov and Iooi) hiPSC-CMs using the 3D/2D 

approach. (A) Aspect Ratio. (B) Circularity. (C) Cell size, as Area. (D) Percentage of binucleated 

cells. Min. n=2 independent experiments (105-234 cells/cell line). Data represented as mean ± SD. 

***p<0.001, **p<0.01. 
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IV.5. DISCUSSION 

To date, in vitro differentiated hiPSC-CMs have not yet fully resembled the functional 

phenotype of an adult cardiomyocyte and it is arguable if it ever will in a practical laboratory time 

frame, since in vivo human cardiomyocytes undergo developmental changes even postnatally. 

However, that might not be completely necessary for hiPSC-CMs to function as a valid disease 

model provided they can recapitulate the studied disease phenotype well enough to answer the 

research questions (Pohjoismäki et al. 2013; Veerman et al. 2015). 

This work describes the establishment of an optimized method for the generation of a pure 

and mature population of CMs from hPSCs that can be successfully used for HCM disease 

modeling. This approach combines the use of a 3D GiWi differentiation protocol with purification 

of hPSCs-derived CMs using VCAM1 staining for FACS and a subsequent period of culture in 2D 

conditions.  

This is a fitting combination since during the first step of differentiation, 3D conditions 

potentiate a faster maturation, while being highly reproducible across cell lines, since cell density 

and number can be better controlled when compared with 2D cultures. In fact, this initial phase of 

differentiation, by mimicking the 3D configuration of the embryo, was described to provide a better 

mesoderm commitment and faster maturation of the CMs (Branco et al. 2019). Then, at day 12 

of differentiation, when aggregates are dissociated, hiPSC-CMs are selected with high purity by 

FACS for VCAM1 and further replated at an appropriate density in Matrigel coated plates. We 

chose this selection strategy since our main concern was related with the purity of the obtained 

hiPSC-CMs, regardless of the scalability of the method, moreover the handling and replating of 

cells for some further analysis as already required. VCAM-1 has previously been identified as a 

CM marker with 95–98% of VCAM1+ cells being positive for TNNT2 (Uosaki et al. 2011; D. A. 

Elliott et al. 2011). Nevertheless, some studies described this surface marker as not exclusive for 

CMs as it could also be found in other cell types including smooth muscle and endothelial cells 
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(Ban, Bae, and Yoon 2017). So, in the future, a combined metabolic selection of the sorted CMs 

may be considered. Lately, hiPSC-CMs are further matured in monolayer culture for 18 more days 

after which they can be readily analyzed. Such extended period in culture (~4 weeks) proved to 

favor the development of additional structural features of mature, adult CMs such as cell 

elongation, higher degree of sarcomere organization and increased action potential amplitudes 

(Lundy et al. 2013; Bedada et al. 2014; Lewandowski et al. 2018).   In summary, when 

compared with standard 2D cell cultures, our proposed 3D/2D protocol allows the generation of 

a more mature cardiomyocyte population promoted not only by the initial 3D cues but also by the 

subsequent extended period in monolayer culture. Supporting this, qRT-PCR and RNA-seq 

analysis of the splicing pattern of pre-mRNAs that code for sarcomeric proteins (namely titin and 

cardiac troponin T) that changes during cardiac development shows that our iPSC-CMs are 

expressing splicing isoforms characteristic of the adult heart. Moreover, FACs selection of cells 

expressing the VCAM1 cardiac surface marker leads to a much more homogeneous population 

of CMs, as demonstrated from the higher expression of several sarcomeric genes in 3D/2D 

VCAM1+ hiPSC-CMs when compared with the ones generated by 2D standard approaches or 

our approach without this purification step. Finally, in order to evaluate if our proposed 3D/2D 

protocol could be used for HCM disease modeling, WT and HCM hiPSC lines were differentiated 

under the same conditions until day 30 of differentiation, and further analyzed. Our results show 

increased cellular size, multinucleation, and disorganized sarcomeres in HCM iPSC-CMs as 

compared to WT iPSC-CMs, confirming that patient iPSC-CMs recapitulate HCM-specific features 

at the single-cell level. 

Therefore, the use of a newly established combined approach to differentiate, purify and 

further mature hiPSC-CMs allowed us to obtain populations of cardiomyocytes that, after 30 days 

of differentiation, presented less heterogeneity and higher degree of maturation when compared 

to a standard monolayer protocol. Moreover, it was possible to differentiate six HCM patient 

derived hiPSC lines that, upon characterization of the generated HCM iPSC-CMs, demonstrate 
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increased cellular size, multinucleation, and disorganized sarcomeres as compared to normal 

hiPSC-CMs. Overall, these results confirm that patient hiPSC-CMs obtained through this 

approach recapitulate HCM-specific features at the single-cell level, which can further be used to 

study HCM genotype-phenotype relations, the impact of VUS or testing new therapeutic 

approaches. 
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During this project, we aimed to generate a new bioengineering approach to model HCM. 

Being the most common hereditary disease of the heart, HCM often leads to sudden cardiac 

death, particularly in young athletes (Maron, Rowin, and Maron 2018; Watkins, Ashrafian, and 

Redwood 2011). It is a complex disease characterized by left ventricular hypertrophy, abnormal 

diastolic function, increase in myocyte size with distorted nuclei, myocyte disarray and increased 

extracellular fibrosis (Christiaans and Elliott 2016; Watkins, Ashrafian, and Redwood 2011). While 

clinical diagnosis is primarily based on left ventricular hypertrophy, the anatomic hallmark of the 

disease, many individuals die without ever being diagnosed (Semsarian et al. 2015; Elliott et al. 

2014). Moreover, in more than 50% of the HCM clinical cases, standard genetic testing fails to 

identify a causative mutation (Elliott et al. 2014; Gruner et al. 2013). Later advances in next-

generation sequencing have revolutionized molecular diagnostics for many diseases, including 

HCM, by allowing human genome analysis in a cost-effective way. However, these approaches 

have also reveal a vast number of genetic variants of uncertain clinical significance (Hoffman-

Andrews 2017), particularly in intronic regions. Therefore, our first aim was to address the 

potential pathogenicity of missense and splice site variants, taking advantage of already available 

in silico prediction tools, as described in Chapter II of this thesis. However, the choice of which 

tools to use is not straightforward, as different computational tools perform differently depending 

on the genomic context. Our analysis demonstrated that the combined use of several of the 

assessed tools may be needed to correctly assign variant pathogenicity, mainly depending on the 

variant type (missense or splice-site). Additionally, new approaches for the evaluation of deep 

intronic variants need to be developed, with splicing being an overlooked mechanism in what 

concerns to disease pathophysiology, as we have reviewed. 

Despite the usefulness of in silico prediction tools, the existence of mechanistic and functional 

studies is important to establish variants pathogenicity.  In HCM, such studies have been largely 

restricted to animal models, which do not recapitulate the physiological and mechanistic 

characteristics of the human heart. The recent emergence of hiPSCs with their unlimited 
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expansion potential and capability to be differentiated into CMs that can recapitulate the HCM 

phenotype at single-cell level, hold great promise for disease modeling (Takahashi et al. 2007; 

Yoshida and Yamanaka 2017; Lan et al. 2013). In fact, since their discovery, hiPSCs have been 

widely used for the study of inherited cardiac diseases, with over 90 studies using hiPSC-CMs for 

cardiac disease modeling being published until date (van Mil et al. 2018). Despite providing a 

basis for the possibility of modeling HCM in vitro and important insight regarding mechanisms 

involved in the pathophysiology of the disease, the significant differences amongst these studies 

specially regarding the origin of the cells, methods used for differentiation and parameters 

analyzed confound their interpretation and comparison (Ma et al. 2018; Musunuru et al. 2018). 

Furthermore, the frequent lack of adequate isogenic controls in most of these studies difficult the 

establishment of reliable genotype-phenotype correlations. To overcome this issue, we used the 

CRISPR/Cas technology to gene edit hiPSCs, enabling the creation of isogenic controls and 

trustworthy disease models to study the impact of a well-described HCM associated pathogenic 

splice variant. But, the precise insertion of a given single nucleotide variant into the genome of 

human iPSCs has proved to be particularly challenging, as discussed on Chapter IV of this thesis. 

In fact, even when state-of-art approaches are used, the editing efficiencies remain low and 

successfully genotyping of the edited cell clones while still maintaining their pluripotency is a work-

intensive task. In the future, the optimization of CRISPR screening and genotyping protocols may 

allow the generation of personalized HCM disease models, either by the insertion of study variants 

in a WT cell lines or the correction of PD-hiPSCs, where the contribution of a given variant to the 

establishment of the HCM phenotype can be properly addressed.  

Another of the biggest concerns around the use of hiPSCs in cardiac disease modeling is the 

heterogeneity and immature characteristics of iPSC-CMs obtained from established 

differentiation protocols which can compromise the reliability of such models (Ma et al. 2018; 

Wang et al. 2018; Mosqueira et al. 2018; Musunuru et al. 2018). In Chapter V of this thesis, we 

describe an optimized strategy that uses a combined 3D/2D GiWi differentiation protocol, where 
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VCAM1 positive hiPSC-CMs are purified from 3D aggregates by FACS at day 12 of differentiation 

and further maturated in a 2D monolayer culture until day 30. The generated hiPSC-CMs 

represented homogeneous populations of cardiomyocytes with a high degree of maturation when 

compared to a standard monolayer based protocol. When this 3D/2D approach was used to 

differentiate HCM patient derived hiPSCs, the originated hiPSC-CMs could recapitulate HCM-

specific features at the single-cell level, demonstrated by the increased cellular size, 

multinucleation, and disorganized sarcomeres in HCM hiPSC-CMs as compared to normal ones. 

In the future we intend to further characterize and confirm the ability of these hiPSC-CMs to 

recapitulate the HCM phenotype using image analysis of light microscopy time-lapse videos to 

quantify changes in contractility. And, if this is insufficient to reveal differences between normal 

and patient-derived iPSC-CMs, we will try a hydrogel-based engineered heart tissue protocol that 

has been shown to replicated canonical response to different physiological and pharmacological 

regulators in a systematic contractility analysis (Mannhardt et al. 2016). By developing a highly 

reproducible strategy for generating an homogeneous population of cardiomyocytes that can 

recapitulate the HCM phenotype at the cellular level, we expected to contribute with a valuable 

approach that can be further used in the establishment of reliable HCM genotype-phenotype 

correlations and test of new targeted therapies. 

Overall, the work presented in this thesis represents a contribution to the advancement of 

HCM disease modeling using hiPSC technology. In a near future, integrating all steps of this work 

would allow us to use accurate in silico prediction tools to evaluate WGS of HCM patients with no 

pathogenic variant identified and choose a VUS predicted with high confidence to be disease 

causing. Produce matched hiPSC lines harboring the chosen variant, either patient derived with 

isogenic controls through its correction by CRISPR, or through its introduction in a normal hiPSC 

line. And use these hiPSCs to, upon differentiation with the previously proposed 3D/2D approach, 

obtain homogenous and mature populations of hiPSC-CMs to access the impact of the chosen 
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variant, infer on its pathogenicity, study associated molecular mechanisms and eventually test 

new therapies.  
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